1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62
63 static DEFINE_IDA(blk_queue_ida);
64
65 /*
66 * For queue allocation
67 */
68 static struct kmem_cache *blk_requestq_cachep;
69
70 /*
71 * Controlling structure to kblockd
72 */
73 static struct workqueue_struct *kblockd_workqueue;
74
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85
86 /**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96
97 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
98 static const char *const blk_op_name[] = {
99 REQ_OP_NAME(READ),
100 REQ_OP_NAME(WRITE),
101 REQ_OP_NAME(FLUSH),
102 REQ_OP_NAME(DISCARD),
103 REQ_OP_NAME(SECURE_ERASE),
104 REQ_OP_NAME(ZONE_RESET),
105 REQ_OP_NAME(ZONE_RESET_ALL),
106 REQ_OP_NAME(ZONE_OPEN),
107 REQ_OP_NAME(ZONE_CLOSE),
108 REQ_OP_NAME(ZONE_FINISH),
109 REQ_OP_NAME(ZONE_APPEND),
110 REQ_OP_NAME(WRITE_ZEROES),
111 REQ_OP_NAME(DRV_IN),
112 REQ_OP_NAME(DRV_OUT),
113 };
114 #undef REQ_OP_NAME
115
116 /**
117 * blk_op_str - Return string XXX in the REQ_OP_XXX.
118 * @op: REQ_OP_XXX.
119 *
120 * Description: Centralize block layer function to convert REQ_OP_XXX into
121 * string format. Useful in the debugging and tracing bio or request. For
122 * invalid REQ_OP_XXX it returns string "UNKNOWN".
123 */
blk_op_str(enum req_op op)124 inline const char *blk_op_str(enum req_op op)
125 {
126 const char *op_str = "UNKNOWN";
127
128 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
129 op_str = blk_op_name[op];
130
131 return op_str;
132 }
133 EXPORT_SYMBOL_GPL(blk_op_str);
134
135 static const struct {
136 int errno;
137 const char *name;
138 } blk_errors[] = {
139 [BLK_STS_OK] = { 0, "" },
140 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
141 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
142 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
143 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
144 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
145 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" },
146 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
147 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
148 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
149 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
150 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
151 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" },
152
153 /* device mapper special case, should not leak out: */
154 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
155
156 /* zone device specific errors */
157 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
158 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
159
160 /* Command duration limit device-side timeout */
161 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" },
162
163 [BLK_STS_INVAL] = { -EINVAL, "invalid" },
164
165 /* everything else not covered above: */
166 [BLK_STS_IOERR] = { -EIO, "I/O" },
167 };
168
errno_to_blk_status(int errno)169 blk_status_t errno_to_blk_status(int errno)
170 {
171 int i;
172
173 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
174 if (blk_errors[i].errno == errno)
175 return (__force blk_status_t)i;
176 }
177
178 return BLK_STS_IOERR;
179 }
180 EXPORT_SYMBOL_GPL(errno_to_blk_status);
181
blk_status_to_errno(blk_status_t status)182 int blk_status_to_errno(blk_status_t status)
183 {
184 int idx = (__force int)status;
185
186 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187 return -EIO;
188 return blk_errors[idx].errno;
189 }
190 EXPORT_SYMBOL_GPL(blk_status_to_errno);
191
blk_status_to_str(blk_status_t status)192 const char *blk_status_to_str(blk_status_t status)
193 {
194 int idx = (__force int)status;
195
196 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
197 return "<null>";
198 return blk_errors[idx].name;
199 }
200 EXPORT_SYMBOL_GPL(blk_status_to_str);
201
202 /**
203 * blk_sync_queue - cancel any pending callbacks on a queue
204 * @q: the queue
205 *
206 * Description:
207 * The block layer may perform asynchronous callback activity
208 * on a queue, such as calling the unplug function after a timeout.
209 * A block device may call blk_sync_queue to ensure that any
210 * such activity is cancelled, thus allowing it to release resources
211 * that the callbacks might use. The caller must already have made sure
212 * that its ->submit_bio will not re-add plugging prior to calling
213 * this function.
214 *
215 * This function does not cancel any asynchronous activity arising
216 * out of elevator or throttling code. That would require elevator_exit()
217 * and blkcg_exit_queue() to be called with queue lock initialized.
218 *
219 */
blk_sync_queue(struct request_queue * q)220 void blk_sync_queue(struct request_queue *q)
221 {
222 del_timer_sync(&q->timeout);
223 cancel_work_sync(&q->timeout_work);
224 }
225 EXPORT_SYMBOL(blk_sync_queue);
226
227 /**
228 * blk_set_pm_only - increment pm_only counter
229 * @q: request queue pointer
230 */
blk_set_pm_only(struct request_queue * q)231 void blk_set_pm_only(struct request_queue *q)
232 {
233 atomic_inc(&q->pm_only);
234 }
235 EXPORT_SYMBOL_GPL(blk_set_pm_only);
236
blk_clear_pm_only(struct request_queue * q)237 void blk_clear_pm_only(struct request_queue *q)
238 {
239 int pm_only;
240
241 pm_only = atomic_dec_return(&q->pm_only);
242 WARN_ON_ONCE(pm_only < 0);
243 if (pm_only == 0)
244 wake_up_all(&q->mq_freeze_wq);
245 }
246 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
247
blk_free_queue_rcu(struct rcu_head * rcu_head)248 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
249 {
250 struct request_queue *q = container_of(rcu_head,
251 struct request_queue, rcu_head);
252
253 percpu_ref_exit(&q->q_usage_counter);
254 kmem_cache_free(blk_requestq_cachep, q);
255 }
256
blk_free_queue(struct request_queue * q)257 static void blk_free_queue(struct request_queue *q)
258 {
259 blk_free_queue_stats(q->stats);
260 if (queue_is_mq(q))
261 blk_mq_release(q);
262
263 ida_free(&blk_queue_ida, q->id);
264 lockdep_unregister_key(&q->io_lock_cls_key);
265 lockdep_unregister_key(&q->q_lock_cls_key);
266 call_rcu(&q->rcu_head, blk_free_queue_rcu);
267 }
268
269 /**
270 * blk_put_queue - decrement the request_queue refcount
271 * @q: the request_queue structure to decrement the refcount for
272 *
273 * Decrements the refcount of the request_queue and free it when the refcount
274 * reaches 0.
275 */
blk_put_queue(struct request_queue * q)276 void blk_put_queue(struct request_queue *q)
277 {
278 if (refcount_dec_and_test(&q->refs))
279 blk_free_queue(q);
280 }
281 EXPORT_SYMBOL(blk_put_queue);
282
blk_queue_start_drain(struct request_queue * q)283 bool blk_queue_start_drain(struct request_queue *q)
284 {
285 /*
286 * When queue DYING flag is set, we need to block new req
287 * entering queue, so we call blk_freeze_queue_start() to
288 * prevent I/O from crossing blk_queue_enter().
289 */
290 bool freeze = __blk_freeze_queue_start(q, current);
291 if (queue_is_mq(q))
292 blk_mq_wake_waiters(q);
293 /* Make blk_queue_enter() reexamine the DYING flag. */
294 wake_up_all(&q->mq_freeze_wq);
295
296 return freeze;
297 }
298
299 /**
300 * blk_queue_enter() - try to increase q->q_usage_counter
301 * @q: request queue pointer
302 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
303 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)304 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
305 {
306 const bool pm = flags & BLK_MQ_REQ_PM;
307
308 while (!blk_try_enter_queue(q, pm)) {
309 if (flags & BLK_MQ_REQ_NOWAIT)
310 return -EAGAIN;
311
312 /*
313 * read pair of barrier in blk_freeze_queue_start(), we need to
314 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
315 * reading .mq_freeze_depth or queue dying flag, otherwise the
316 * following wait may never return if the two reads are
317 * reordered.
318 */
319 smp_rmb();
320 wait_event(q->mq_freeze_wq,
321 (!q->mq_freeze_depth &&
322 blk_pm_resume_queue(pm, q)) ||
323 blk_queue_dying(q));
324 if (blk_queue_dying(q))
325 return -ENODEV;
326 }
327
328 rwsem_acquire_read(&q->q_lockdep_map, 0, 0, _RET_IP_);
329 rwsem_release(&q->q_lockdep_map, _RET_IP_);
330 return 0;
331 }
332
__bio_queue_enter(struct request_queue * q,struct bio * bio)333 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
334 {
335 while (!blk_try_enter_queue(q, false)) {
336 struct gendisk *disk = bio->bi_bdev->bd_disk;
337
338 if (bio->bi_opf & REQ_NOWAIT) {
339 if (test_bit(GD_DEAD, &disk->state))
340 goto dead;
341 bio_wouldblock_error(bio);
342 return -EAGAIN;
343 }
344
345 /*
346 * read pair of barrier in blk_freeze_queue_start(), we need to
347 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
348 * reading .mq_freeze_depth or queue dying flag, otherwise the
349 * following wait may never return if the two reads are
350 * reordered.
351 */
352 smp_rmb();
353 wait_event(q->mq_freeze_wq,
354 (!q->mq_freeze_depth &&
355 blk_pm_resume_queue(false, q)) ||
356 test_bit(GD_DEAD, &disk->state));
357 if (test_bit(GD_DEAD, &disk->state))
358 goto dead;
359 }
360
361 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
362 rwsem_release(&q->io_lockdep_map, _RET_IP_);
363 return 0;
364 dead:
365 bio_io_error(bio);
366 return -ENODEV;
367 }
368
blk_queue_exit(struct request_queue * q)369 void blk_queue_exit(struct request_queue *q)
370 {
371 percpu_ref_put(&q->q_usage_counter);
372 }
373
blk_queue_usage_counter_release(struct percpu_ref * ref)374 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
375 {
376 struct request_queue *q =
377 container_of(ref, struct request_queue, q_usage_counter);
378
379 wake_up_all(&q->mq_freeze_wq);
380 }
381
blk_rq_timed_out_timer(struct timer_list * t)382 static void blk_rq_timed_out_timer(struct timer_list *t)
383 {
384 struct request_queue *q = from_timer(q, t, timeout);
385
386 kblockd_schedule_work(&q->timeout_work);
387 }
388
blk_timeout_work(struct work_struct * work)389 static void blk_timeout_work(struct work_struct *work)
390 {
391 }
392
blk_alloc_queue(struct queue_limits * lim,int node_id)393 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
394 {
395 struct request_queue *q;
396 int error;
397
398 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
399 node_id);
400 if (!q)
401 return ERR_PTR(-ENOMEM);
402
403 q->last_merge = NULL;
404
405 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
406 if (q->id < 0) {
407 error = q->id;
408 goto fail_q;
409 }
410
411 q->stats = blk_alloc_queue_stats();
412 if (!q->stats) {
413 error = -ENOMEM;
414 goto fail_id;
415 }
416
417 error = blk_set_default_limits(lim);
418 if (error)
419 goto fail_stats;
420 q->limits = *lim;
421
422 q->node = node_id;
423
424 atomic_set(&q->nr_active_requests_shared_tags, 0);
425
426 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
427 INIT_WORK(&q->timeout_work, blk_timeout_work);
428 INIT_LIST_HEAD(&q->icq_list);
429
430 refcount_set(&q->refs, 1);
431 mutex_init(&q->debugfs_mutex);
432 mutex_init(&q->elevator_lock);
433 mutex_init(&q->sysfs_lock);
434 mutex_init(&q->limits_lock);
435 mutex_init(&q->rq_qos_mutex);
436 spin_lock_init(&q->queue_lock);
437
438 init_waitqueue_head(&q->mq_freeze_wq);
439 mutex_init(&q->mq_freeze_lock);
440
441 blkg_init_queue(q);
442
443 /*
444 * Init percpu_ref in atomic mode so that it's faster to shutdown.
445 * See blk_register_queue() for details.
446 */
447 error = percpu_ref_init(&q->q_usage_counter,
448 blk_queue_usage_counter_release,
449 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
450 if (error)
451 goto fail_stats;
452 lockdep_register_key(&q->io_lock_cls_key);
453 lockdep_register_key(&q->q_lock_cls_key);
454 lockdep_init_map(&q->io_lockdep_map, "&q->q_usage_counter(io)",
455 &q->io_lock_cls_key, 0);
456 lockdep_init_map(&q->q_lockdep_map, "&q->q_usage_counter(queue)",
457 &q->q_lock_cls_key, 0);
458
459 /* Teach lockdep about lock ordering (reclaim WRT queue freeze lock). */
460 fs_reclaim_acquire(GFP_KERNEL);
461 rwsem_acquire_read(&q->io_lockdep_map, 0, 0, _RET_IP_);
462 rwsem_release(&q->io_lockdep_map, _RET_IP_);
463 fs_reclaim_release(GFP_KERNEL);
464
465 q->nr_requests = BLKDEV_DEFAULT_RQ;
466
467 return q;
468
469 fail_stats:
470 blk_free_queue_stats(q->stats);
471 fail_id:
472 ida_free(&blk_queue_ida, q->id);
473 fail_q:
474 kmem_cache_free(blk_requestq_cachep, q);
475 return ERR_PTR(error);
476 }
477
478 /**
479 * blk_get_queue - increment the request_queue refcount
480 * @q: the request_queue structure to increment the refcount for
481 *
482 * Increment the refcount of the request_queue kobject.
483 *
484 * Context: Any context.
485 */
blk_get_queue(struct request_queue * q)486 bool blk_get_queue(struct request_queue *q)
487 {
488 if (unlikely(blk_queue_dying(q)))
489 return false;
490 refcount_inc(&q->refs);
491 return true;
492 }
493 EXPORT_SYMBOL(blk_get_queue);
494
495 #ifdef CONFIG_FAIL_MAKE_REQUEST
496
497 static DECLARE_FAULT_ATTR(fail_make_request);
498
setup_fail_make_request(char * str)499 static int __init setup_fail_make_request(char *str)
500 {
501 return setup_fault_attr(&fail_make_request, str);
502 }
503 __setup("fail_make_request=", setup_fail_make_request);
504
should_fail_request(struct block_device * part,unsigned int bytes)505 bool should_fail_request(struct block_device *part, unsigned int bytes)
506 {
507 return bdev_test_flag(part, BD_MAKE_IT_FAIL) &&
508 should_fail(&fail_make_request, bytes);
509 }
510
fail_make_request_debugfs(void)511 static int __init fail_make_request_debugfs(void)
512 {
513 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
514 NULL, &fail_make_request);
515
516 return PTR_ERR_OR_ZERO(dir);
517 }
518
519 late_initcall(fail_make_request_debugfs);
520 #endif /* CONFIG_FAIL_MAKE_REQUEST */
521
bio_check_ro(struct bio * bio)522 static inline void bio_check_ro(struct bio *bio)
523 {
524 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
525 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
526 return;
527
528 if (bdev_test_flag(bio->bi_bdev, BD_RO_WARNED))
529 return;
530
531 bdev_set_flag(bio->bi_bdev, BD_RO_WARNED);
532
533 /*
534 * Use ioctl to set underlying disk of raid/dm to read-only
535 * will trigger this.
536 */
537 pr_warn("Trying to write to read-only block-device %pg\n",
538 bio->bi_bdev);
539 }
540 }
541
should_fail_bio(struct bio * bio)542 static noinline int should_fail_bio(struct bio *bio)
543 {
544 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
545 return -EIO;
546 return 0;
547 }
548 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
549
550 /*
551 * Check whether this bio extends beyond the end of the device or partition.
552 * This may well happen - the kernel calls bread() without checking the size of
553 * the device, e.g., when mounting a file system.
554 */
bio_check_eod(struct bio * bio)555 static inline int bio_check_eod(struct bio *bio)
556 {
557 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
558 unsigned int nr_sectors = bio_sectors(bio);
559
560 if (nr_sectors &&
561 (nr_sectors > maxsector ||
562 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
563 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
564 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
565 current->comm, bio->bi_bdev, bio->bi_opf,
566 bio->bi_iter.bi_sector, nr_sectors, maxsector);
567 return -EIO;
568 }
569 return 0;
570 }
571
572 /*
573 * Remap block n of partition p to block n+start(p) of the disk.
574 */
blk_partition_remap(struct bio * bio)575 static int blk_partition_remap(struct bio *bio)
576 {
577 struct block_device *p = bio->bi_bdev;
578
579 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
580 return -EIO;
581 if (bio_sectors(bio)) {
582 bio->bi_iter.bi_sector += p->bd_start_sect;
583 trace_block_bio_remap(bio, p->bd_dev,
584 bio->bi_iter.bi_sector -
585 p->bd_start_sect);
586 }
587 bio_set_flag(bio, BIO_REMAPPED);
588 return 0;
589 }
590
591 /*
592 * Check write append to a zoned block device.
593 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)594 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
595 struct bio *bio)
596 {
597 int nr_sectors = bio_sectors(bio);
598
599 /* Only applicable to zoned block devices */
600 if (!bdev_is_zoned(bio->bi_bdev))
601 return BLK_STS_NOTSUPP;
602
603 /* The bio sector must point to the start of a sequential zone */
604 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector))
605 return BLK_STS_IOERR;
606
607 /*
608 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
609 * split and could result in non-contiguous sectors being written in
610 * different zones.
611 */
612 if (nr_sectors > q->limits.chunk_sectors)
613 return BLK_STS_IOERR;
614
615 /* Make sure the BIO is small enough and will not get split */
616 if (nr_sectors > q->limits.max_zone_append_sectors)
617 return BLK_STS_IOERR;
618
619 bio->bi_opf |= REQ_NOMERGE;
620
621 return BLK_STS_OK;
622 }
623
__submit_bio(struct bio * bio)624 static void __submit_bio(struct bio *bio)
625 {
626 /* If plug is not used, add new plug here to cache nsecs time. */
627 struct blk_plug plug;
628
629 if (unlikely(!blk_crypto_bio_prep(&bio)))
630 return;
631
632 blk_start_plug(&plug);
633
634 if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO)) {
635 blk_mq_submit_bio(bio);
636 } else if (likely(bio_queue_enter(bio) == 0)) {
637 struct gendisk *disk = bio->bi_bdev->bd_disk;
638
639 if ((bio->bi_opf & REQ_POLLED) &&
640 !(disk->queue->limits.features & BLK_FEAT_POLL)) {
641 bio->bi_status = BLK_STS_NOTSUPP;
642 bio_endio(bio);
643 } else {
644 disk->fops->submit_bio(bio);
645 }
646 blk_queue_exit(disk->queue);
647 }
648
649 blk_finish_plug(&plug);
650 }
651
652 /*
653 * The loop in this function may be a bit non-obvious, and so deserves some
654 * explanation:
655 *
656 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
657 * that), so we have a list with a single bio.
658 * - We pretend that we have just taken it off a longer list, so we assign
659 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
660 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
661 * bios through a recursive call to submit_bio_noacct. If it did, we find a
662 * non-NULL value in bio_list and re-enter the loop from the top.
663 * - In this case we really did just take the bio of the top of the list (no
664 * pretending) and so remove it from bio_list, and call into ->submit_bio()
665 * again.
666 *
667 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
668 * bio_list_on_stack[1] contains bios that were submitted before the current
669 * ->submit_bio, but that haven't been processed yet.
670 */
__submit_bio_noacct(struct bio * bio)671 static void __submit_bio_noacct(struct bio *bio)
672 {
673 struct bio_list bio_list_on_stack[2];
674
675 BUG_ON(bio->bi_next);
676
677 bio_list_init(&bio_list_on_stack[0]);
678 current->bio_list = bio_list_on_stack;
679
680 do {
681 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
682 struct bio_list lower, same;
683
684 /*
685 * Create a fresh bio_list for all subordinate requests.
686 */
687 bio_list_on_stack[1] = bio_list_on_stack[0];
688 bio_list_init(&bio_list_on_stack[0]);
689
690 __submit_bio(bio);
691
692 /*
693 * Sort new bios into those for a lower level and those for the
694 * same level.
695 */
696 bio_list_init(&lower);
697 bio_list_init(&same);
698 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
699 if (q == bdev_get_queue(bio->bi_bdev))
700 bio_list_add(&same, bio);
701 else
702 bio_list_add(&lower, bio);
703
704 /*
705 * Now assemble so we handle the lowest level first.
706 */
707 bio_list_merge(&bio_list_on_stack[0], &lower);
708 bio_list_merge(&bio_list_on_stack[0], &same);
709 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
710 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
711
712 current->bio_list = NULL;
713 }
714
__submit_bio_noacct_mq(struct bio * bio)715 static void __submit_bio_noacct_mq(struct bio *bio)
716 {
717 struct bio_list bio_list[2] = { };
718
719 current->bio_list = bio_list;
720
721 do {
722 __submit_bio(bio);
723 } while ((bio = bio_list_pop(&bio_list[0])));
724
725 current->bio_list = NULL;
726 }
727
submit_bio_noacct_nocheck(struct bio * bio)728 void submit_bio_noacct_nocheck(struct bio *bio)
729 {
730 blk_cgroup_bio_start(bio);
731 blkcg_bio_issue_init(bio);
732
733 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
734 trace_block_bio_queue(bio);
735 /*
736 * Now that enqueuing has been traced, we need to trace
737 * completion as well.
738 */
739 bio_set_flag(bio, BIO_TRACE_COMPLETION);
740 }
741
742 /*
743 * We only want one ->submit_bio to be active at a time, else stack
744 * usage with stacked devices could be a problem. Use current->bio_list
745 * to collect a list of requests submited by a ->submit_bio method while
746 * it is active, and then process them after it returned.
747 */
748 if (current->bio_list)
749 bio_list_add(¤t->bio_list[0], bio);
750 else if (!bdev_test_flag(bio->bi_bdev, BD_HAS_SUBMIT_BIO))
751 __submit_bio_noacct_mq(bio);
752 else
753 __submit_bio_noacct(bio);
754 }
755
blk_validate_atomic_write_op_size(struct request_queue * q,struct bio * bio)756 static blk_status_t blk_validate_atomic_write_op_size(struct request_queue *q,
757 struct bio *bio)
758 {
759 if (bio->bi_iter.bi_size > queue_atomic_write_unit_max_bytes(q))
760 return BLK_STS_INVAL;
761
762 if (bio->bi_iter.bi_size % queue_atomic_write_unit_min_bytes(q))
763 return BLK_STS_INVAL;
764
765 return BLK_STS_OK;
766 }
767
768 /**
769 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
770 * @bio: The bio describing the location in memory and on the device.
771 *
772 * This is a version of submit_bio() that shall only be used for I/O that is
773 * resubmitted to lower level drivers by stacking block drivers. All file
774 * systems and other upper level users of the block layer should use
775 * submit_bio() instead.
776 */
submit_bio_noacct(struct bio * bio)777 void submit_bio_noacct(struct bio *bio)
778 {
779 struct block_device *bdev = bio->bi_bdev;
780 struct request_queue *q = bdev_get_queue(bdev);
781 blk_status_t status = BLK_STS_IOERR;
782
783 might_sleep();
784
785 /*
786 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
787 * if queue does not support NOWAIT.
788 */
789 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
790 goto not_supported;
791
792 if (should_fail_bio(bio))
793 goto end_io;
794 bio_check_ro(bio);
795 if (!bio_flagged(bio, BIO_REMAPPED)) {
796 if (unlikely(bio_check_eod(bio)))
797 goto end_io;
798 if (bdev_is_partition(bdev) &&
799 unlikely(blk_partition_remap(bio)))
800 goto end_io;
801 }
802
803 /*
804 * Filter flush bio's early so that bio based drivers without flush
805 * support don't have to worry about them.
806 */
807 if (op_is_flush(bio->bi_opf)) {
808 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
809 bio_op(bio) != REQ_OP_ZONE_APPEND))
810 goto end_io;
811 if (!bdev_write_cache(bdev)) {
812 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
813 if (!bio_sectors(bio)) {
814 status = BLK_STS_OK;
815 goto end_io;
816 }
817 }
818 }
819
820 switch (bio_op(bio)) {
821 case REQ_OP_READ:
822 break;
823 case REQ_OP_WRITE:
824 if (bio->bi_opf & REQ_ATOMIC) {
825 status = blk_validate_atomic_write_op_size(q, bio);
826 if (status != BLK_STS_OK)
827 goto end_io;
828 }
829 break;
830 case REQ_OP_FLUSH:
831 /*
832 * REQ_OP_FLUSH can't be submitted through bios, it is only
833 * synthetized in struct request by the flush state machine.
834 */
835 goto not_supported;
836 case REQ_OP_DISCARD:
837 if (!bdev_max_discard_sectors(bdev))
838 goto not_supported;
839 break;
840 case REQ_OP_SECURE_ERASE:
841 if (!bdev_max_secure_erase_sectors(bdev))
842 goto not_supported;
843 break;
844 case REQ_OP_ZONE_APPEND:
845 status = blk_check_zone_append(q, bio);
846 if (status != BLK_STS_OK)
847 goto end_io;
848 break;
849 case REQ_OP_WRITE_ZEROES:
850 if (!q->limits.max_write_zeroes_sectors)
851 goto not_supported;
852 break;
853 case REQ_OP_ZONE_RESET:
854 case REQ_OP_ZONE_OPEN:
855 case REQ_OP_ZONE_CLOSE:
856 case REQ_OP_ZONE_FINISH:
857 case REQ_OP_ZONE_RESET_ALL:
858 if (!bdev_is_zoned(bio->bi_bdev))
859 goto not_supported;
860 break;
861 case REQ_OP_DRV_IN:
862 case REQ_OP_DRV_OUT:
863 /*
864 * Driver private operations are only used with passthrough
865 * requests.
866 */
867 fallthrough;
868 default:
869 goto not_supported;
870 }
871
872 if (blk_throtl_bio(bio))
873 return;
874 submit_bio_noacct_nocheck(bio);
875 return;
876
877 not_supported:
878 status = BLK_STS_NOTSUPP;
879 end_io:
880 bio->bi_status = status;
881 bio_endio(bio);
882 }
883 EXPORT_SYMBOL(submit_bio_noacct);
884
bio_set_ioprio(struct bio * bio)885 static void bio_set_ioprio(struct bio *bio)
886 {
887 /* Nobody set ioprio so far? Initialize it based on task's nice value */
888 if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
889 bio->bi_ioprio = get_current_ioprio();
890 blkcg_set_ioprio(bio);
891 }
892
893 /**
894 * submit_bio - submit a bio to the block device layer for I/O
895 * @bio: The &struct bio which describes the I/O
896 *
897 * submit_bio() is used to submit I/O requests to block devices. It is passed a
898 * fully set up &struct bio that describes the I/O that needs to be done. The
899 * bio will be send to the device described by the bi_bdev field.
900 *
901 * The success/failure status of the request, along with notification of
902 * completion, is delivered asynchronously through the ->bi_end_io() callback
903 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has
904 * been called.
905 */
submit_bio(struct bio * bio)906 void submit_bio(struct bio *bio)
907 {
908 if (bio_op(bio) == REQ_OP_READ) {
909 task_io_account_read(bio->bi_iter.bi_size);
910 count_vm_events(PGPGIN, bio_sectors(bio));
911 } else if (bio_op(bio) == REQ_OP_WRITE) {
912 count_vm_events(PGPGOUT, bio_sectors(bio));
913 }
914
915 bio_set_ioprio(bio);
916 submit_bio_noacct(bio);
917 }
918 EXPORT_SYMBOL(submit_bio);
919
920 /**
921 * bio_poll - poll for BIO completions
922 * @bio: bio to poll for
923 * @iob: batches of IO
924 * @flags: BLK_POLL_* flags that control the behavior
925 *
926 * Poll for completions on queue associated with the bio. Returns number of
927 * completed entries found.
928 *
929 * Note: the caller must either be the context that submitted @bio, or
930 * be in a RCU critical section to prevent freeing of @bio.
931 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)932 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
933 {
934 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
935 struct block_device *bdev;
936 struct request_queue *q;
937 int ret = 0;
938
939 bdev = READ_ONCE(bio->bi_bdev);
940 if (!bdev)
941 return 0;
942
943 q = bdev_get_queue(bdev);
944 if (cookie == BLK_QC_T_NONE)
945 return 0;
946
947 blk_flush_plug(current->plug, false);
948
949 /*
950 * We need to be able to enter a frozen queue, similar to how
951 * timeouts also need to do that. If that is blocked, then we can
952 * have pending IO when a queue freeze is started, and then the
953 * wait for the freeze to finish will wait for polled requests to
954 * timeout as the poller is preventer from entering the queue and
955 * completing them. As long as we prevent new IO from being queued,
956 * that should be all that matters.
957 */
958 if (!percpu_ref_tryget(&q->q_usage_counter))
959 return 0;
960 if (queue_is_mq(q)) {
961 ret = blk_mq_poll(q, cookie, iob, flags);
962 } else {
963 struct gendisk *disk = q->disk;
964
965 if ((q->limits.features & BLK_FEAT_POLL) && disk &&
966 disk->fops->poll_bio)
967 ret = disk->fops->poll_bio(bio, iob, flags);
968 }
969 blk_queue_exit(q);
970 return ret;
971 }
972 EXPORT_SYMBOL_GPL(bio_poll);
973
974 /*
975 * Helper to implement file_operations.iopoll. Requires the bio to be stored
976 * in iocb->private, and cleared before freeing the bio.
977 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)978 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
979 unsigned int flags)
980 {
981 struct bio *bio;
982 int ret = 0;
983
984 /*
985 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
986 * point to a freshly allocated bio at this point. If that happens
987 * we have a few cases to consider:
988 *
989 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
990 * simply nothing in this case
991 * 2) the bio points to a not poll enabled device. bio_poll will catch
992 * this and return 0
993 * 3) the bio points to a poll capable device, including but not
994 * limited to the one that the original bio pointed to. In this
995 * case we will call into the actual poll method and poll for I/O,
996 * even if we don't need to, but it won't cause harm either.
997 *
998 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
999 * is still allocated. Because partitions hold a reference to the whole
1000 * device bdev and thus disk, the disk is also still valid. Grabbing
1001 * a reference to the queue in bio_poll() ensures the hctxs and requests
1002 * are still valid as well.
1003 */
1004 rcu_read_lock();
1005 bio = READ_ONCE(kiocb->private);
1006 if (bio)
1007 ret = bio_poll(bio, iob, flags);
1008 rcu_read_unlock();
1009
1010 return ret;
1011 }
1012 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1013
update_io_ticks(struct block_device * part,unsigned long now,bool end)1014 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1015 {
1016 unsigned long stamp;
1017 again:
1018 stamp = READ_ONCE(part->bd_stamp);
1019 if (unlikely(time_after(now, stamp)) &&
1020 likely(try_cmpxchg(&part->bd_stamp, &stamp, now)) &&
1021 (end || part_in_flight(part)))
1022 __part_stat_add(part, io_ticks, now - stamp);
1023
1024 if (bdev_is_partition(part)) {
1025 part = bdev_whole(part);
1026 goto again;
1027 }
1028 }
1029
bdev_start_io_acct(struct block_device * bdev,enum req_op op,unsigned long start_time)1030 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1031 unsigned long start_time)
1032 {
1033 part_stat_lock();
1034 update_io_ticks(bdev, start_time, false);
1035 part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1036 part_stat_unlock();
1037
1038 return start_time;
1039 }
1040 EXPORT_SYMBOL(bdev_start_io_acct);
1041
1042 /**
1043 * bio_start_io_acct - start I/O accounting for bio based drivers
1044 * @bio: bio to start account for
1045 *
1046 * Returns the start time that should be passed back to bio_end_io_acct().
1047 */
bio_start_io_acct(struct bio * bio)1048 unsigned long bio_start_io_acct(struct bio *bio)
1049 {
1050 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1051 }
1052 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1053
bdev_end_io_acct(struct block_device * bdev,enum req_op op,unsigned int sectors,unsigned long start_time)1054 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1055 unsigned int sectors, unsigned long start_time)
1056 {
1057 const int sgrp = op_stat_group(op);
1058 unsigned long now = READ_ONCE(jiffies);
1059 unsigned long duration = now - start_time;
1060
1061 part_stat_lock();
1062 update_io_ticks(bdev, now, true);
1063 part_stat_inc(bdev, ios[sgrp]);
1064 part_stat_add(bdev, sectors[sgrp], sectors);
1065 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1066 part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1067 part_stat_unlock();
1068 }
1069 EXPORT_SYMBOL(bdev_end_io_acct);
1070
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1071 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1072 struct block_device *orig_bdev)
1073 {
1074 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1075 }
1076 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1077
1078 /**
1079 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1080 * @q : the queue of the device being checked
1081 *
1082 * Description:
1083 * Check if underlying low-level drivers of a device are busy.
1084 * If the drivers want to export their busy state, they must set own
1085 * exporting function using blk_queue_lld_busy() first.
1086 *
1087 * Basically, this function is used only by request stacking drivers
1088 * to stop dispatching requests to underlying devices when underlying
1089 * devices are busy. This behavior helps more I/O merging on the queue
1090 * of the request stacking driver and prevents I/O throughput regression
1091 * on burst I/O load.
1092 *
1093 * Return:
1094 * 0 - Not busy (The request stacking driver should dispatch request)
1095 * 1 - Busy (The request stacking driver should stop dispatching request)
1096 */
blk_lld_busy(struct request_queue * q)1097 int blk_lld_busy(struct request_queue *q)
1098 {
1099 if (queue_is_mq(q) && q->mq_ops->busy)
1100 return q->mq_ops->busy(q);
1101
1102 return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(blk_lld_busy);
1105
kblockd_schedule_work(struct work_struct * work)1106 int kblockd_schedule_work(struct work_struct *work)
1107 {
1108 return queue_work(kblockd_workqueue, work);
1109 }
1110 EXPORT_SYMBOL(kblockd_schedule_work);
1111
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1112 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1113 unsigned long delay)
1114 {
1115 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1116 }
1117 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1118
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1119 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1120 {
1121 struct task_struct *tsk = current;
1122
1123 /*
1124 * If this is a nested plug, don't actually assign it.
1125 */
1126 if (tsk->plug)
1127 return;
1128
1129 plug->cur_ktime = 0;
1130 rq_list_init(&plug->mq_list);
1131 rq_list_init(&plug->cached_rqs);
1132 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1133 plug->rq_count = 0;
1134 plug->multiple_queues = false;
1135 plug->has_elevator = false;
1136 INIT_LIST_HEAD(&plug->cb_list);
1137
1138 /*
1139 * Store ordering should not be needed here, since a potential
1140 * preempt will imply a full memory barrier
1141 */
1142 tsk->plug = plug;
1143 }
1144
1145 /**
1146 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1147 * @plug: The &struct blk_plug that needs to be initialized
1148 *
1149 * Description:
1150 * blk_start_plug() indicates to the block layer an intent by the caller
1151 * to submit multiple I/O requests in a batch. The block layer may use
1152 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1153 * is called. However, the block layer may choose to submit requests
1154 * before a call to blk_finish_plug() if the number of queued I/Os
1155 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1156 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1157 * the task schedules (see below).
1158 *
1159 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1160 * pending I/O should the task end up blocking between blk_start_plug() and
1161 * blk_finish_plug(). This is important from a performance perspective, but
1162 * also ensures that we don't deadlock. For instance, if the task is blocking
1163 * for a memory allocation, memory reclaim could end up wanting to free a
1164 * page belonging to that request that is currently residing in our private
1165 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1166 * this kind of deadlock.
1167 */
blk_start_plug(struct blk_plug * plug)1168 void blk_start_plug(struct blk_plug *plug)
1169 {
1170 blk_start_plug_nr_ios(plug, 1);
1171 }
1172 EXPORT_SYMBOL(blk_start_plug);
1173
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1174 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1175 {
1176 LIST_HEAD(callbacks);
1177
1178 while (!list_empty(&plug->cb_list)) {
1179 list_splice_init(&plug->cb_list, &callbacks);
1180
1181 while (!list_empty(&callbacks)) {
1182 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1183 struct blk_plug_cb,
1184 list);
1185 list_del(&cb->list);
1186 cb->callback(cb, from_schedule);
1187 }
1188 }
1189 }
1190
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1191 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1192 int size)
1193 {
1194 struct blk_plug *plug = current->plug;
1195 struct blk_plug_cb *cb;
1196
1197 if (!plug)
1198 return NULL;
1199
1200 list_for_each_entry(cb, &plug->cb_list, list)
1201 if (cb->callback == unplug && cb->data == data)
1202 return cb;
1203
1204 /* Not currently on the callback list */
1205 BUG_ON(size < sizeof(*cb));
1206 cb = kzalloc(size, GFP_ATOMIC);
1207 if (cb) {
1208 cb->data = data;
1209 cb->callback = unplug;
1210 list_add(&cb->list, &plug->cb_list);
1211 }
1212 return cb;
1213 }
1214 EXPORT_SYMBOL(blk_check_plugged);
1215
__blk_flush_plug(struct blk_plug * plug,bool from_schedule)1216 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1217 {
1218 if (!list_empty(&plug->cb_list))
1219 flush_plug_callbacks(plug, from_schedule);
1220 blk_mq_flush_plug_list(plug, from_schedule);
1221 /*
1222 * Unconditionally flush out cached requests, even if the unplug
1223 * event came from schedule. Since we know hold references to the
1224 * queue for cached requests, we don't want a blocked task holding
1225 * up a queue freeze/quiesce event.
1226 */
1227 if (unlikely(!rq_list_empty(&plug->cached_rqs)))
1228 blk_mq_free_plug_rqs(plug);
1229
1230 plug->cur_ktime = 0;
1231 current->flags &= ~PF_BLOCK_TS;
1232 }
1233
1234 /**
1235 * blk_finish_plug - mark the end of a batch of submitted I/O
1236 * @plug: The &struct blk_plug passed to blk_start_plug()
1237 *
1238 * Description:
1239 * Indicate that a batch of I/O submissions is complete. This function
1240 * must be paired with an initial call to blk_start_plug(). The intent
1241 * is to allow the block layer to optimize I/O submission. See the
1242 * documentation for blk_start_plug() for more information.
1243 */
blk_finish_plug(struct blk_plug * plug)1244 void blk_finish_plug(struct blk_plug *plug)
1245 {
1246 if (plug == current->plug) {
1247 __blk_flush_plug(plug, false);
1248 current->plug = NULL;
1249 }
1250 }
1251 EXPORT_SYMBOL(blk_finish_plug);
1252
blk_io_schedule(void)1253 void blk_io_schedule(void)
1254 {
1255 /* Prevent hang_check timer from firing at us during very long I/O */
1256 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1257
1258 if (timeout)
1259 io_schedule_timeout(timeout);
1260 else
1261 io_schedule();
1262 }
1263 EXPORT_SYMBOL_GPL(blk_io_schedule);
1264
blk_dev_init(void)1265 int __init blk_dev_init(void)
1266 {
1267 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1268 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1269 sizeof_field(struct request, cmd_flags));
1270 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1271 sizeof_field(struct bio, bi_opf));
1272
1273 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1274 kblockd_workqueue = alloc_workqueue("kblockd",
1275 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1276 if (!kblockd_workqueue)
1277 panic("Failed to create kblockd\n");
1278
1279 blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1280
1281 blk_debugfs_root = debugfs_create_dir("block", NULL);
1282
1283 return 0;
1284 }
1285