xref: /linux/block/blk-merge.c (revision cfd47302ac64b595beb0a67a337b81942146448a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
bio_allowed_max_sectors(const struct queue_limits * lim)103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
bio_submit_split(struct bio * bio,int split_sectors)108 static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
109 {
110 	if (unlikely(split_sectors < 0))
111 		goto error;
112 
113 	if (split_sectors) {
114 		struct bio *split;
115 
116 		split = bio_split(bio, split_sectors, GFP_NOIO,
117 				&bio->bi_bdev->bd_disk->bio_split);
118 		if (IS_ERR(split)) {
119 			split_sectors = PTR_ERR(split);
120 			goto error;
121 		}
122 		split->bi_opf |= REQ_NOMERGE;
123 		blkcg_bio_issue_init(split);
124 		bio_chain(split, bio);
125 		trace_block_split(split, bio->bi_iter.bi_sector);
126 		WARN_ON_ONCE(bio_zone_write_plugging(bio));
127 		submit_bio_noacct(bio);
128 		return split;
129 	}
130 
131 	return bio;
132 error:
133 	bio->bi_status = errno_to_blk_status(split_sectors);
134 	bio_endio(bio);
135 	return NULL;
136 }
137 
bio_split_discard(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)138 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
139 		unsigned *nsegs)
140 {
141 	unsigned int max_discard_sectors, granularity;
142 	sector_t tmp;
143 	unsigned split_sectors;
144 
145 	*nsegs = 1;
146 
147 	granularity = max(lim->discard_granularity >> 9, 1U);
148 
149 	max_discard_sectors =
150 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
151 	max_discard_sectors -= max_discard_sectors % granularity;
152 	if (unlikely(!max_discard_sectors))
153 		return bio;
154 
155 	if (bio_sectors(bio) <= max_discard_sectors)
156 		return bio;
157 
158 	split_sectors = max_discard_sectors;
159 
160 	/*
161 	 * If the next starting sector would be misaligned, stop the discard at
162 	 * the previous aligned sector.
163 	 */
164 	tmp = bio->bi_iter.bi_sector + split_sectors -
165 		((lim->discard_alignment >> 9) % granularity);
166 	tmp = sector_div(tmp, granularity);
167 
168 	if (split_sectors > tmp)
169 		split_sectors -= tmp;
170 
171 	return bio_submit_split(bio, split_sectors);
172 }
173 
blk_boundary_sectors(const struct queue_limits * lim,bool is_atomic)174 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
175 						bool is_atomic)
176 {
177 	/*
178 	 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
179 	 * both non-zero.
180 	 */
181 	if (is_atomic && lim->atomic_write_boundary_sectors)
182 		return lim->atomic_write_boundary_sectors;
183 
184 	return lim->chunk_sectors;
185 }
186 
187 /*
188  * Return the maximum number of sectors from the start of a bio that may be
189  * submitted as a single request to a block device. If enough sectors remain,
190  * align the end to the physical block size. Otherwise align the end to the
191  * logical block size. This approach minimizes the number of non-aligned
192  * requests that are submitted to a block device if the start of a bio is not
193  * aligned to a physical block boundary.
194  */
get_max_io_size(struct bio * bio,const struct queue_limits * lim)195 static inline unsigned get_max_io_size(struct bio *bio,
196 				       const struct queue_limits *lim)
197 {
198 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
199 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
200 	bool is_atomic = bio->bi_opf & REQ_ATOMIC;
201 	unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
202 	unsigned max_sectors, start, end;
203 
204 	/*
205 	 * We ignore lim->max_sectors for atomic writes because it may less
206 	 * than the actual bio size, which we cannot tolerate.
207 	 */
208 	if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
209 		max_sectors = lim->max_write_zeroes_sectors;
210 	else if (is_atomic)
211 		max_sectors = lim->atomic_write_max_sectors;
212 	else
213 		max_sectors = lim->max_sectors;
214 
215 	if (boundary_sectors) {
216 		max_sectors = min(max_sectors,
217 			blk_boundary_sectors_left(bio->bi_iter.bi_sector,
218 					      boundary_sectors));
219 	}
220 
221 	start = bio->bi_iter.bi_sector & (pbs - 1);
222 	end = (start + max_sectors) & ~(pbs - 1);
223 	if (end > start)
224 		return end - start;
225 	return max_sectors & ~(lbs - 1);
226 }
227 
228 /**
229  * get_max_segment_size() - maximum number of bytes to add as a single segment
230  * @lim: Request queue limits.
231  * @paddr: address of the range to add
232  * @len: maximum length available to add at @paddr
233  *
234  * Returns the maximum number of bytes of the range starting at @paddr that can
235  * be added to a single segment.
236  */
get_max_segment_size(const struct queue_limits * lim,phys_addr_t paddr,unsigned int len)237 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
238 		phys_addr_t paddr, unsigned int len)
239 {
240 	/*
241 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
242 	 * after having calculated the minimum.
243 	 */
244 	return min_t(unsigned long, len,
245 		min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
246 		    (unsigned long)lim->max_segment_size - 1) + 1);
247 }
248 
249 /**
250  * bvec_split_segs - verify whether or not a bvec should be split in the middle
251  * @lim:      [in] queue limits to split based on
252  * @bv:       [in] bvec to examine
253  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
254  *            by the number of segments from @bv that may be appended to that
255  *            bio without exceeding @max_segs
256  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
257  *            by the number of bytes from @bv that may be appended to that
258  *            bio without exceeding @max_bytes
259  * @max_segs: [in] upper bound for *@nsegs
260  * @max_bytes: [in] upper bound for *@bytes
261  *
262  * When splitting a bio, it can happen that a bvec is encountered that is too
263  * big to fit in a single segment and hence that it has to be split in the
264  * middle. This function verifies whether or not that should happen. The value
265  * %true is returned if and only if appending the entire @bv to a bio with
266  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
267  * the block driver.
268  */
bvec_split_segs(const struct queue_limits * lim,const struct bio_vec * bv,unsigned * nsegs,unsigned * bytes,unsigned max_segs,unsigned max_bytes)269 static bool bvec_split_segs(const struct queue_limits *lim,
270 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
271 		unsigned max_segs, unsigned max_bytes)
272 {
273 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
274 	unsigned len = min(bv->bv_len, max_len);
275 	unsigned total_len = 0;
276 	unsigned seg_size = 0;
277 
278 	while (len && *nsegs < max_segs) {
279 		seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
280 
281 		(*nsegs)++;
282 		total_len += seg_size;
283 		len -= seg_size;
284 
285 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
286 			break;
287 	}
288 
289 	*bytes += total_len;
290 
291 	/* tell the caller to split the bvec if it is too big to fit */
292 	return len > 0 || bv->bv_len > max_len;
293 }
294 
bio_split_alignment(struct bio * bio,const struct queue_limits * lim)295 static unsigned int bio_split_alignment(struct bio *bio,
296 		const struct queue_limits *lim)
297 {
298 	if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
299 		return lim->zone_write_granularity;
300 	return lim->logical_block_size;
301 }
302 
303 /**
304  * bio_split_rw_at - check if and where to split a read/write bio
305  * @bio:  [in] bio to be split
306  * @lim:  [in] queue limits to split based on
307  * @segs: [out] number of segments in the bio with the first half of the sectors
308  * @max_bytes: [in] maximum number of bytes per bio
309  *
310  * Find out if @bio needs to be split to fit the queue limits in @lim and a
311  * maximum size of @max_bytes.  Returns a negative error number if @bio can't be
312  * split, 0 if the bio doesn't have to be split, or a positive sector offset if
313  * @bio needs to be split.
314  */
bio_split_rw_at(struct bio * bio,const struct queue_limits * lim,unsigned * segs,unsigned max_bytes)315 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
316 		unsigned *segs, unsigned max_bytes)
317 {
318 	struct bio_vec bv, bvprv, *bvprvp = NULL;
319 	struct bvec_iter iter;
320 	unsigned nsegs = 0, bytes = 0;
321 
322 	bio_for_each_bvec(bv, bio, iter) {
323 		/*
324 		 * If the queue doesn't support SG gaps and adding this
325 		 * offset would create a gap, disallow it.
326 		 */
327 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
328 			goto split;
329 
330 		if (nsegs < lim->max_segments &&
331 		    bytes + bv.bv_len <= max_bytes &&
332 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
333 			nsegs++;
334 			bytes += bv.bv_len;
335 		} else {
336 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
337 					lim->max_segments, max_bytes))
338 				goto split;
339 		}
340 
341 		bvprv = bv;
342 		bvprvp = &bvprv;
343 	}
344 
345 	*segs = nsegs;
346 	return 0;
347 split:
348 	if (bio->bi_opf & REQ_ATOMIC)
349 		return -EINVAL;
350 
351 	/*
352 	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
353 	 * with EAGAIN if splitting is required and return an error pointer.
354 	 */
355 	if (bio->bi_opf & REQ_NOWAIT)
356 		return -EAGAIN;
357 
358 	*segs = nsegs;
359 
360 	/*
361 	 * Individual bvecs might not be logical block aligned. Round down the
362 	 * split size so that each bio is properly block size aligned, even if
363 	 * we do not use the full hardware limits.
364 	 */
365 	bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
366 
367 	/*
368 	 * Bio splitting may cause subtle trouble such as hang when doing sync
369 	 * iopoll in direct IO routine. Given performance gain of iopoll for
370 	 * big IO can be trival, disable iopoll when split needed.
371 	 */
372 	bio_clear_polled(bio);
373 	return bytes >> SECTOR_SHIFT;
374 }
375 EXPORT_SYMBOL_GPL(bio_split_rw_at);
376 
bio_split_rw(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)377 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
378 		unsigned *nr_segs)
379 {
380 	return bio_submit_split(bio,
381 		bio_split_rw_at(bio, lim, nr_segs,
382 			get_max_io_size(bio, lim) << SECTOR_SHIFT));
383 }
384 
385 /*
386  * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
387  *
388  * But we want the nr_segs calculation provided by bio_split_rw_at, and having
389  * a good sanity check that the submitter built the bio correctly is nice to
390  * have as well.
391  */
bio_split_zone_append(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)392 struct bio *bio_split_zone_append(struct bio *bio,
393 		const struct queue_limits *lim, unsigned *nr_segs)
394 {
395 	int split_sectors;
396 
397 	split_sectors = bio_split_rw_at(bio, lim, nr_segs,
398 			lim->max_zone_append_sectors << SECTOR_SHIFT);
399 	if (WARN_ON_ONCE(split_sectors > 0))
400 		split_sectors = -EINVAL;
401 	return bio_submit_split(bio, split_sectors);
402 }
403 
bio_split_write_zeroes(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)404 struct bio *bio_split_write_zeroes(struct bio *bio,
405 		const struct queue_limits *lim, unsigned *nsegs)
406 {
407 	unsigned int max_sectors = get_max_io_size(bio, lim);
408 
409 	*nsegs = 0;
410 
411 	/*
412 	 * An unset limit should normally not happen, as bio submission is keyed
413 	 * off having a non-zero limit.  But SCSI can clear the limit in the
414 	 * I/O completion handler, and we can race and see this.  Splitting to a
415 	 * zero limit obviously doesn't make sense, so band-aid it here.
416 	 */
417 	if (!max_sectors)
418 		return bio;
419 	if (bio_sectors(bio) <= max_sectors)
420 		return bio;
421 	return bio_submit_split(bio, max_sectors);
422 }
423 
424 /**
425  * bio_split_to_limits - split a bio to fit the queue limits
426  * @bio:     bio to be split
427  *
428  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
429  * if so split off a bio fitting the limits from the beginning of @bio and
430  * return it.  @bio is shortened to the remainder and re-submitted.
431  *
432  * The split bio is allocated from @q->bio_split, which is provided by the
433  * block layer.
434  */
bio_split_to_limits(struct bio * bio)435 struct bio *bio_split_to_limits(struct bio *bio)
436 {
437 	unsigned int nr_segs;
438 
439 	return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs);
440 }
441 EXPORT_SYMBOL(bio_split_to_limits);
442 
blk_recalc_rq_segments(struct request * rq)443 unsigned int blk_recalc_rq_segments(struct request *rq)
444 {
445 	unsigned int nr_phys_segs = 0;
446 	unsigned int bytes = 0;
447 	struct req_iterator iter;
448 	struct bio_vec bv;
449 
450 	if (!rq->bio)
451 		return 0;
452 
453 	switch (bio_op(rq->bio)) {
454 	case REQ_OP_DISCARD:
455 	case REQ_OP_SECURE_ERASE:
456 		if (queue_max_discard_segments(rq->q) > 1) {
457 			struct bio *bio = rq->bio;
458 
459 			for_each_bio(bio)
460 				nr_phys_segs++;
461 			return nr_phys_segs;
462 		}
463 		return 1;
464 	case REQ_OP_WRITE_ZEROES:
465 		return 0;
466 	default:
467 		break;
468 	}
469 
470 	rq_for_each_bvec(bv, rq, iter)
471 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
472 				UINT_MAX, UINT_MAX);
473 	return nr_phys_segs;
474 }
475 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)476 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
477 		struct scatterlist *sglist)
478 {
479 	if (!*sg)
480 		return sglist;
481 
482 	/*
483 	 * If the driver previously mapped a shorter list, we could see a
484 	 * termination bit prematurely unless it fully inits the sg table
485 	 * on each mapping. We KNOW that there must be more entries here
486 	 * or the driver would be buggy, so force clear the termination bit
487 	 * to avoid doing a full sg_init_table() in drivers for each command.
488 	 */
489 	sg_unmark_end(*sg);
490 	return sg_next(*sg);
491 }
492 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)493 static unsigned blk_bvec_map_sg(struct request_queue *q,
494 		struct bio_vec *bvec, struct scatterlist *sglist,
495 		struct scatterlist **sg)
496 {
497 	unsigned nbytes = bvec->bv_len;
498 	unsigned nsegs = 0, total = 0;
499 
500 	while (nbytes > 0) {
501 		unsigned offset = bvec->bv_offset + total;
502 		unsigned len = get_max_segment_size(&q->limits,
503 				bvec_phys(bvec) + total, nbytes);
504 		struct page *page = bvec->bv_page;
505 
506 		/*
507 		 * Unfortunately a fair number of drivers barf on scatterlists
508 		 * that have an offset larger than PAGE_SIZE, despite other
509 		 * subsystems dealing with that invariant just fine.  For now
510 		 * stick to the legacy format where we never present those from
511 		 * the block layer, but the code below should be removed once
512 		 * these offenders (mostly MMC/SD drivers) are fixed.
513 		 */
514 		page += (offset >> PAGE_SHIFT);
515 		offset &= ~PAGE_MASK;
516 
517 		*sg = blk_next_sg(sg, sglist);
518 		sg_set_page(*sg, page, len, offset);
519 
520 		total += len;
521 		nbytes -= len;
522 		nsegs++;
523 	}
524 
525 	return nsegs;
526 }
527 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)528 static inline int __blk_bvec_map_sg(struct bio_vec bv,
529 		struct scatterlist *sglist, struct scatterlist **sg)
530 {
531 	*sg = blk_next_sg(sg, sglist);
532 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
533 	return 1;
534 }
535 
536 /* only try to merge bvecs into one sg if they are from two bios */
537 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)538 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
539 			   struct bio_vec *bvprv, struct scatterlist **sg)
540 {
541 
542 	int nbytes = bvec->bv_len;
543 
544 	if (!*sg)
545 		return false;
546 
547 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
548 		return false;
549 
550 	if (!biovec_phys_mergeable(q, bvprv, bvec))
551 		return false;
552 
553 	(*sg)->length += nbytes;
554 
555 	return true;
556 }
557 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)558 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
559 			     struct scatterlist *sglist,
560 			     struct scatterlist **sg)
561 {
562 	struct bio_vec bvec, bvprv = { NULL };
563 	struct bvec_iter iter;
564 	int nsegs = 0;
565 	bool new_bio = false;
566 
567 	for_each_bio(bio) {
568 		bio_for_each_bvec(bvec, bio, iter) {
569 			/*
570 			 * Only try to merge bvecs from two bios given we
571 			 * have done bio internal merge when adding pages
572 			 * to bio
573 			 */
574 			if (new_bio &&
575 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
576 				goto next_bvec;
577 
578 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
579 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
580 			else
581 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
582  next_bvec:
583 			new_bio = false;
584 		}
585 		if (likely(bio->bi_iter.bi_size)) {
586 			bvprv = bvec;
587 			new_bio = true;
588 		}
589 	}
590 
591 	return nsegs;
592 }
593 
594 /*
595  * map a request to scatterlist, return number of sg entries setup. Caller
596  * must make sure sg can hold rq->nr_phys_segments entries
597  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)598 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
599 		struct scatterlist *sglist, struct scatterlist **last_sg)
600 {
601 	int nsegs = 0;
602 
603 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
604 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
605 	else if (rq->bio)
606 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
607 
608 	if (*last_sg)
609 		sg_mark_end(*last_sg);
610 
611 	/*
612 	 * Something must have been wrong if the figured number of
613 	 * segment is bigger than number of req's physical segments
614 	 */
615 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
616 
617 	return nsegs;
618 }
619 EXPORT_SYMBOL(__blk_rq_map_sg);
620 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)621 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
622 						  sector_t offset)
623 {
624 	struct request_queue *q = rq->q;
625 	struct queue_limits *lim = &q->limits;
626 	unsigned int max_sectors, boundary_sectors;
627 	bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
628 
629 	if (blk_rq_is_passthrough(rq))
630 		return q->limits.max_hw_sectors;
631 
632 	boundary_sectors = blk_boundary_sectors(lim, is_atomic);
633 	max_sectors = blk_queue_get_max_sectors(rq);
634 
635 	if (!boundary_sectors ||
636 	    req_op(rq) == REQ_OP_DISCARD ||
637 	    req_op(rq) == REQ_OP_SECURE_ERASE)
638 		return max_sectors;
639 	return min(max_sectors,
640 		   blk_boundary_sectors_left(offset, boundary_sectors));
641 }
642 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)643 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
644 		unsigned int nr_phys_segs)
645 {
646 	if (!blk_cgroup_mergeable(req, bio))
647 		goto no_merge;
648 
649 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
650 		goto no_merge;
651 
652 	/* discard request merge won't add new segment */
653 	if (req_op(req) == REQ_OP_DISCARD)
654 		return 1;
655 
656 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
657 		goto no_merge;
658 
659 	/*
660 	 * This will form the start of a new hw segment.  Bump both
661 	 * counters.
662 	 */
663 	req->nr_phys_segments += nr_phys_segs;
664 	if (bio_integrity(bio))
665 		req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
666 									bio);
667 	return 1;
668 
669 no_merge:
670 	req_set_nomerge(req->q, req);
671 	return 0;
672 }
673 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)674 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
675 {
676 	if (req_gap_back_merge(req, bio))
677 		return 0;
678 	if (blk_integrity_rq(req) &&
679 	    integrity_req_gap_back_merge(req, bio))
680 		return 0;
681 	if (!bio_crypt_ctx_back_mergeable(req, bio))
682 		return 0;
683 	if (blk_rq_sectors(req) + bio_sectors(bio) >
684 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
685 		req_set_nomerge(req->q, req);
686 		return 0;
687 	}
688 
689 	return ll_new_hw_segment(req, bio, nr_segs);
690 }
691 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)692 static int ll_front_merge_fn(struct request *req, struct bio *bio,
693 		unsigned int nr_segs)
694 {
695 	if (req_gap_front_merge(req, bio))
696 		return 0;
697 	if (blk_integrity_rq(req) &&
698 	    integrity_req_gap_front_merge(req, bio))
699 		return 0;
700 	if (!bio_crypt_ctx_front_mergeable(req, bio))
701 		return 0;
702 	if (blk_rq_sectors(req) + bio_sectors(bio) >
703 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
704 		req_set_nomerge(req->q, req);
705 		return 0;
706 	}
707 
708 	return ll_new_hw_segment(req, bio, nr_segs);
709 }
710 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)711 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
712 		struct request *next)
713 {
714 	unsigned short segments = blk_rq_nr_discard_segments(req);
715 
716 	if (segments >= queue_max_discard_segments(q))
717 		goto no_merge;
718 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
719 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
720 		goto no_merge;
721 
722 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
723 	return true;
724 no_merge:
725 	req_set_nomerge(q, req);
726 	return false;
727 }
728 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)729 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
730 				struct request *next)
731 {
732 	int total_phys_segments;
733 
734 	if (req_gap_back_merge(req, next->bio))
735 		return 0;
736 
737 	/*
738 	 * Will it become too large?
739 	 */
740 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
741 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
742 		return 0;
743 
744 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
745 	if (total_phys_segments > blk_rq_get_max_segments(req))
746 		return 0;
747 
748 	if (!blk_cgroup_mergeable(req, next->bio))
749 		return 0;
750 
751 	if (blk_integrity_merge_rq(q, req, next) == false)
752 		return 0;
753 
754 	if (!bio_crypt_ctx_merge_rq(req, next))
755 		return 0;
756 
757 	/* Merge is OK... */
758 	req->nr_phys_segments = total_phys_segments;
759 	req->nr_integrity_segments += next->nr_integrity_segments;
760 	return 1;
761 }
762 
763 /**
764  * blk_rq_set_mixed_merge - mark a request as mixed merge
765  * @rq: request to mark as mixed merge
766  *
767  * Description:
768  *     @rq is about to be mixed merged.  Make sure the attributes
769  *     which can be mixed are set in each bio and mark @rq as mixed
770  *     merged.
771  */
blk_rq_set_mixed_merge(struct request * rq)772 static void blk_rq_set_mixed_merge(struct request *rq)
773 {
774 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
775 	struct bio *bio;
776 
777 	if (rq->rq_flags & RQF_MIXED_MERGE)
778 		return;
779 
780 	/*
781 	 * @rq will no longer represent mixable attributes for all the
782 	 * contained bios.  It will just track those of the first one.
783 	 * Distributes the attributs to each bio.
784 	 */
785 	for (bio = rq->bio; bio; bio = bio->bi_next) {
786 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
787 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
788 		bio->bi_opf |= ff;
789 	}
790 	rq->rq_flags |= RQF_MIXED_MERGE;
791 }
792 
bio_failfast(const struct bio * bio)793 static inline blk_opf_t bio_failfast(const struct bio *bio)
794 {
795 	if (bio->bi_opf & REQ_RAHEAD)
796 		return REQ_FAILFAST_MASK;
797 
798 	return bio->bi_opf & REQ_FAILFAST_MASK;
799 }
800 
801 /*
802  * After we are marked as MIXED_MERGE, any new RA bio has to be updated
803  * as failfast, and request's failfast has to be updated in case of
804  * front merge.
805  */
blk_update_mixed_merge(struct request * req,struct bio * bio,bool front_merge)806 static inline void blk_update_mixed_merge(struct request *req,
807 		struct bio *bio, bool front_merge)
808 {
809 	if (req->rq_flags & RQF_MIXED_MERGE) {
810 		if (bio->bi_opf & REQ_RAHEAD)
811 			bio->bi_opf |= REQ_FAILFAST_MASK;
812 
813 		if (front_merge) {
814 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
815 			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
816 		}
817 	}
818 }
819 
blk_account_io_merge_request(struct request * req)820 static void blk_account_io_merge_request(struct request *req)
821 {
822 	if (req->rq_flags & RQF_IO_STAT) {
823 		part_stat_lock();
824 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
825 		part_stat_local_dec(req->part,
826 				    in_flight[op_is_write(req_op(req))]);
827 		part_stat_unlock();
828 	}
829 }
830 
blk_try_req_merge(struct request * req,struct request * next)831 static enum elv_merge blk_try_req_merge(struct request *req,
832 					struct request *next)
833 {
834 	if (blk_discard_mergable(req))
835 		return ELEVATOR_DISCARD_MERGE;
836 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
837 		return ELEVATOR_BACK_MERGE;
838 
839 	return ELEVATOR_NO_MERGE;
840 }
841 
blk_atomic_write_mergeable_rq_bio(struct request * rq,struct bio * bio)842 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
843 					      struct bio *bio)
844 {
845 	return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
846 }
847 
blk_atomic_write_mergeable_rqs(struct request * rq,struct request * next)848 static bool blk_atomic_write_mergeable_rqs(struct request *rq,
849 					   struct request *next)
850 {
851 	return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
852 }
853 
854 /*
855  * For non-mq, this has to be called with the request spinlock acquired.
856  * For mq with scheduling, the appropriate queue wide lock should be held.
857  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)858 static struct request *attempt_merge(struct request_queue *q,
859 				     struct request *req, struct request *next)
860 {
861 	if (!rq_mergeable(req) || !rq_mergeable(next))
862 		return NULL;
863 
864 	if (req_op(req) != req_op(next))
865 		return NULL;
866 
867 	if (req->bio->bi_write_hint != next->bio->bi_write_hint)
868 		return NULL;
869 	if (req->bio->bi_ioprio != next->bio->bi_ioprio)
870 		return NULL;
871 	if (!blk_atomic_write_mergeable_rqs(req, next))
872 		return NULL;
873 
874 	/*
875 	 * If we are allowed to merge, then append bio list
876 	 * from next to rq and release next. merge_requests_fn
877 	 * will have updated segment counts, update sector
878 	 * counts here. Handle DISCARDs separately, as they
879 	 * have separate settings.
880 	 */
881 
882 	switch (blk_try_req_merge(req, next)) {
883 	case ELEVATOR_DISCARD_MERGE:
884 		if (!req_attempt_discard_merge(q, req, next))
885 			return NULL;
886 		break;
887 	case ELEVATOR_BACK_MERGE:
888 		if (!ll_merge_requests_fn(q, req, next))
889 			return NULL;
890 		break;
891 	default:
892 		return NULL;
893 	}
894 
895 	/*
896 	 * If failfast settings disagree or any of the two is already
897 	 * a mixed merge, mark both as mixed before proceeding.  This
898 	 * makes sure that all involved bios have mixable attributes
899 	 * set properly.
900 	 */
901 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
902 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
903 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
904 		blk_rq_set_mixed_merge(req);
905 		blk_rq_set_mixed_merge(next);
906 	}
907 
908 	/*
909 	 * At this point we have either done a back merge or front merge. We
910 	 * need the smaller start_time_ns of the merged requests to be the
911 	 * current request for accounting purposes.
912 	 */
913 	if (next->start_time_ns < req->start_time_ns)
914 		req->start_time_ns = next->start_time_ns;
915 
916 	req->biotail->bi_next = next->bio;
917 	req->biotail = next->biotail;
918 
919 	req->__data_len += blk_rq_bytes(next);
920 
921 	if (!blk_discard_mergable(req))
922 		elv_merge_requests(q, req, next);
923 
924 	blk_crypto_rq_put_keyslot(next);
925 
926 	/*
927 	 * 'next' is going away, so update stats accordingly
928 	 */
929 	blk_account_io_merge_request(next);
930 
931 	trace_block_rq_merge(next);
932 
933 	/*
934 	 * ownership of bio passed from next to req, return 'next' for
935 	 * the caller to free
936 	 */
937 	next->bio = NULL;
938 	return next;
939 }
940 
attempt_back_merge(struct request_queue * q,struct request * rq)941 static struct request *attempt_back_merge(struct request_queue *q,
942 		struct request *rq)
943 {
944 	struct request *next = elv_latter_request(q, rq);
945 
946 	if (next)
947 		return attempt_merge(q, rq, next);
948 
949 	return NULL;
950 }
951 
attempt_front_merge(struct request_queue * q,struct request * rq)952 static struct request *attempt_front_merge(struct request_queue *q,
953 		struct request *rq)
954 {
955 	struct request *prev = elv_former_request(q, rq);
956 
957 	if (prev)
958 		return attempt_merge(q, prev, rq);
959 
960 	return NULL;
961 }
962 
963 /*
964  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
965  * otherwise. The caller is responsible for freeing 'next' if the merge
966  * happened.
967  */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)968 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
969 			   struct request *next)
970 {
971 	return attempt_merge(q, rq, next);
972 }
973 
blk_rq_merge_ok(struct request * rq,struct bio * bio)974 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
975 {
976 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
977 		return false;
978 
979 	if (req_op(rq) != bio_op(bio))
980 		return false;
981 
982 	if (!blk_cgroup_mergeable(rq, bio))
983 		return false;
984 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
985 		return false;
986 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
987 		return false;
988 	if (rq->bio->bi_write_hint != bio->bi_write_hint)
989 		return false;
990 	if (rq->bio->bi_ioprio != bio->bi_ioprio)
991 		return false;
992 	if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
993 		return false;
994 
995 	return true;
996 }
997 
blk_try_merge(struct request * rq,struct bio * bio)998 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
999 {
1000 	if (blk_discard_mergable(rq))
1001 		return ELEVATOR_DISCARD_MERGE;
1002 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
1003 		return ELEVATOR_BACK_MERGE;
1004 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
1005 		return ELEVATOR_FRONT_MERGE;
1006 	return ELEVATOR_NO_MERGE;
1007 }
1008 
blk_account_io_merge_bio(struct request * req)1009 static void blk_account_io_merge_bio(struct request *req)
1010 {
1011 	if (req->rq_flags & RQF_IO_STAT) {
1012 		part_stat_lock();
1013 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
1014 		part_stat_unlock();
1015 	}
1016 }
1017 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1018 enum bio_merge_status bio_attempt_back_merge(struct request *req,
1019 		struct bio *bio, unsigned int nr_segs)
1020 {
1021 	const blk_opf_t ff = bio_failfast(bio);
1022 
1023 	if (!ll_back_merge_fn(req, bio, nr_segs))
1024 		return BIO_MERGE_FAILED;
1025 
1026 	trace_block_bio_backmerge(bio);
1027 	rq_qos_merge(req->q, req, bio);
1028 
1029 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1030 		blk_rq_set_mixed_merge(req);
1031 
1032 	blk_update_mixed_merge(req, bio, false);
1033 
1034 	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1035 		blk_zone_write_plug_bio_merged(bio);
1036 
1037 	req->biotail->bi_next = bio;
1038 	req->biotail = bio;
1039 	req->__data_len += bio->bi_iter.bi_size;
1040 
1041 	bio_crypt_free_ctx(bio);
1042 
1043 	blk_account_io_merge_bio(req);
1044 	return BIO_MERGE_OK;
1045 }
1046 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1047 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1048 		struct bio *bio, unsigned int nr_segs)
1049 {
1050 	const blk_opf_t ff = bio_failfast(bio);
1051 
1052 	/*
1053 	 * A front merge for writes to sequential zones of a zoned block device
1054 	 * can happen only if the user submitted writes out of order. Do not
1055 	 * merge such write to let it fail.
1056 	 */
1057 	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1058 		return BIO_MERGE_FAILED;
1059 
1060 	if (!ll_front_merge_fn(req, bio, nr_segs))
1061 		return BIO_MERGE_FAILED;
1062 
1063 	trace_block_bio_frontmerge(bio);
1064 	rq_qos_merge(req->q, req, bio);
1065 
1066 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1067 		blk_rq_set_mixed_merge(req);
1068 
1069 	blk_update_mixed_merge(req, bio, true);
1070 
1071 	bio->bi_next = req->bio;
1072 	req->bio = bio;
1073 
1074 	req->__sector = bio->bi_iter.bi_sector;
1075 	req->__data_len += bio->bi_iter.bi_size;
1076 
1077 	bio_crypt_do_front_merge(req, bio);
1078 
1079 	blk_account_io_merge_bio(req);
1080 	return BIO_MERGE_OK;
1081 }
1082 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1083 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1084 		struct request *req, struct bio *bio)
1085 {
1086 	unsigned short segments = blk_rq_nr_discard_segments(req);
1087 
1088 	if (segments >= queue_max_discard_segments(q))
1089 		goto no_merge;
1090 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1091 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1092 		goto no_merge;
1093 
1094 	rq_qos_merge(q, req, bio);
1095 
1096 	req->biotail->bi_next = bio;
1097 	req->biotail = bio;
1098 	req->__data_len += bio->bi_iter.bi_size;
1099 	req->nr_phys_segments = segments + 1;
1100 
1101 	blk_account_io_merge_bio(req);
1102 	return BIO_MERGE_OK;
1103 no_merge:
1104 	req_set_nomerge(q, req);
1105 	return BIO_MERGE_FAILED;
1106 }
1107 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1108 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1109 						   struct request *rq,
1110 						   struct bio *bio,
1111 						   unsigned int nr_segs,
1112 						   bool sched_allow_merge)
1113 {
1114 	if (!blk_rq_merge_ok(rq, bio))
1115 		return BIO_MERGE_NONE;
1116 
1117 	switch (blk_try_merge(rq, bio)) {
1118 	case ELEVATOR_BACK_MERGE:
1119 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1120 			return bio_attempt_back_merge(rq, bio, nr_segs);
1121 		break;
1122 	case ELEVATOR_FRONT_MERGE:
1123 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1124 			return bio_attempt_front_merge(rq, bio, nr_segs);
1125 		break;
1126 	case ELEVATOR_DISCARD_MERGE:
1127 		return bio_attempt_discard_merge(q, rq, bio);
1128 	default:
1129 		return BIO_MERGE_NONE;
1130 	}
1131 
1132 	return BIO_MERGE_FAILED;
1133 }
1134 
1135 /**
1136  * blk_attempt_plug_merge - try to merge with %current's plugged list
1137  * @q: request_queue new bio is being queued at
1138  * @bio: new bio being queued
1139  * @nr_segs: number of segments in @bio
1140  * from the passed in @q already in the plug list
1141  *
1142  * Determine whether @bio being queued on @q can be merged with the previous
1143  * request on %current's plugged list.  Returns %true if merge was successful,
1144  * otherwise %false.
1145  *
1146  * Plugging coalesces IOs from the same issuer for the same purpose without
1147  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1148  * than scheduling, and the request, while may have elvpriv data, is not
1149  * added on the elevator at this point.  In addition, we don't have
1150  * reliable access to the elevator outside queue lock.  Only check basic
1151  * merging parameters without querying the elevator.
1152  *
1153  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1154  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1155 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1156 		unsigned int nr_segs)
1157 {
1158 	struct blk_plug *plug = current->plug;
1159 	struct request *rq;
1160 
1161 	if (!plug || rq_list_empty(&plug->mq_list))
1162 		return false;
1163 
1164 	rq_list_for_each(&plug->mq_list, rq) {
1165 		if (rq->q == q) {
1166 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1167 			    BIO_MERGE_OK)
1168 				return true;
1169 			break;
1170 		}
1171 
1172 		/*
1173 		 * Only keep iterating plug list for merges if we have multiple
1174 		 * queues
1175 		 */
1176 		if (!plug->multiple_queues)
1177 			break;
1178 	}
1179 	return false;
1180 }
1181 
1182 /*
1183  * Iterate list of requests and see if we can merge this bio with any
1184  * of them.
1185  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1186 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1187 			struct bio *bio, unsigned int nr_segs)
1188 {
1189 	struct request *rq;
1190 	int checked = 8;
1191 
1192 	list_for_each_entry_reverse(rq, list, queuelist) {
1193 		if (!checked--)
1194 			break;
1195 
1196 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1197 		case BIO_MERGE_NONE:
1198 			continue;
1199 		case BIO_MERGE_OK:
1200 			return true;
1201 		case BIO_MERGE_FAILED:
1202 			return false;
1203 		}
1204 
1205 	}
1206 
1207 	return false;
1208 }
1209 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1210 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1211 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1212 		unsigned int nr_segs, struct request **merged_request)
1213 {
1214 	struct request *rq;
1215 
1216 	switch (elv_merge(q, &rq, bio)) {
1217 	case ELEVATOR_BACK_MERGE:
1218 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1219 			return false;
1220 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1221 			return false;
1222 		*merged_request = attempt_back_merge(q, rq);
1223 		if (!*merged_request)
1224 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1225 		return true;
1226 	case ELEVATOR_FRONT_MERGE:
1227 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1228 			return false;
1229 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1230 			return false;
1231 		*merged_request = attempt_front_merge(q, rq);
1232 		if (!*merged_request)
1233 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1234 		return true;
1235 	case ELEVATOR_DISCARD_MERGE:
1236 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1237 	default:
1238 		return false;
1239 	}
1240 }
1241 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1242