xref: /linux/include/linux/bitmap.h (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/bitops.h>
9 #include <linux/cleanup.h>
10 #include <linux/errno.h>
11 #include <linux/find.h>
12 #include <linux/limits.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/bitmap-str.h>
16 
17 struct device;
18 
19 /*
20  * bitmaps provide bit arrays that consume one or more unsigned
21  * longs.  The bitmap interface and available operations are listed
22  * here, in bitmap.h
23  *
24  * Function implementations generic to all architectures are in
25  * lib/bitmap.c.  Functions implementations that are architecture
26  * specific are in various include/asm-<arch>/bitops.h headers
27  * and other arch/<arch> specific files.
28  *
29  * See lib/bitmap.c for more details.
30  */
31 
32 /**
33  * DOC: bitmap overview
34  *
35  * The available bitmap operations and their rough meaning in the
36  * case that the bitmap is a single unsigned long are thus:
37  *
38  * The generated code is more efficient when nbits is known at
39  * compile-time and at most BITS_PER_LONG.
40  *
41  * ::
42  *
43  *  bitmap_zero(dst, nbits)                     *dst = 0UL
44  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
45  *  bitmap_copy(dst, src, nbits)                *dst = *src
46  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
47  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
48  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
49  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
50  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
51  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
52  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
53  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
54  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
55  *  bitmap_full(src, nbits)                     Are all bits set in *src?
56  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
57  *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
58  *  bitmap_weight_andnot(src1, src2, nbits)     Hamming Weight of andnot'ed bitmap
59  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
60  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
61  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
62  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
63  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
64  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
65  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
66  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
67  *  bitmap_scatter(dst, src, mask, nbits)	*dst = map(dense, sparse)(src)
68  *  bitmap_gather(dst, src, mask, nbits)	*dst = map(sparse, dense)(src)
69  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
70  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
71  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
72  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
73  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
74  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
75  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
76  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
77  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
78  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
79  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
80  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
81  *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
82  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
83  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
84  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
85  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
86  *  bitmap_read(map, start, nbits)              Read an nbits-sized value from
87  *                                              map at start
88  *  bitmap_write(map, value, start, nbits)      Write an nbits-sized value to
89  *                                              map at start
90  *
91  * Note, bitmap_zero() and bitmap_fill() operate over the region of
92  * unsigned longs, that is, bits behind bitmap till the unsigned long
93  * boundary will be zeroed or filled as well. Consider to use
94  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
95  * respectively.
96  */
97 
98 /**
99  * DOC: bitmap bitops
100  *
101  * Also the following operations in asm/bitops.h apply to bitmaps.::
102  *
103  *  set_bit(bit, addr)                  *addr |= bit
104  *  clear_bit(bit, addr)                *addr &= ~bit
105  *  change_bit(bit, addr)               *addr ^= bit
106  *  test_bit(bit, addr)                 Is bit set in *addr?
107  *  test_and_set_bit(bit, addr)         Set bit and return old value
108  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
109  *  test_and_change_bit(bit, addr)      Change bit and return old value
110  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
111  *  find_first_bit(addr, nbits)         Position first set bit in *addr
112  *  find_next_zero_bit(addr, nbits, bit)
113  *                                      Position next zero bit in *addr >= bit
114  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
115  *  find_next_and_bit(addr1, addr2, nbits, bit)
116  *                                      Same as find_next_bit, but in
117  *                                      (*addr1 & *addr2)
118  *
119  */
120 
121 /**
122  * DOC: declare bitmap
123  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
124  * to declare an array named 'name' of just enough unsigned longs to
125  * contain all bit positions from 0 to 'bits' - 1.
126  */
127 
128 /*
129  * Allocation and deallocation of bitmap.
130  * Provided in lib/bitmap.c to avoid circular dependency.
131  */
132 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
133 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
134 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
135 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
136 void bitmap_free(const unsigned long *bitmap);
137 
138 DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
139 
140 /* Managed variants of the above. */
141 unsigned long *devm_bitmap_alloc(struct device *dev,
142 				 unsigned int nbits, gfp_t flags);
143 unsigned long *devm_bitmap_zalloc(struct device *dev,
144 				  unsigned int nbits, gfp_t flags);
145 
146 /*
147  * lib/bitmap.c provides these functions:
148  */
149 
150 bool __bitmap_equal(const unsigned long *bitmap1,
151 		    const unsigned long *bitmap2, unsigned int nbits);
152 bool __pure __bitmap_or_equal(const unsigned long *src1,
153 			      const unsigned long *src2,
154 			      const unsigned long *src3,
155 			      unsigned int nbits);
156 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
157 			 unsigned int nbits);
158 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
159 			  unsigned int shift, unsigned int nbits);
160 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
161 			 unsigned int shift, unsigned int nbits);
162 void bitmap_cut(unsigned long *dst, const unsigned long *src,
163 		unsigned int first, unsigned int cut, unsigned int nbits);
164 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
165 		 const unsigned long *bitmap2, unsigned int nbits);
166 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
167 		 const unsigned long *bitmap2, unsigned int nbits);
168 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
169 		  const unsigned long *bitmap2, unsigned int nbits);
170 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
171 		    const unsigned long *bitmap2, unsigned int nbits);
172 void __bitmap_replace(unsigned long *dst,
173 		      const unsigned long *old, const unsigned long *new,
174 		      const unsigned long *mask, unsigned int nbits);
175 bool __bitmap_intersects(const unsigned long *bitmap1,
176 			 const unsigned long *bitmap2, unsigned int nbits);
177 bool __bitmap_subset(const unsigned long *bitmap1,
178 		     const unsigned long *bitmap2, unsigned int nbits);
179 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
180 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
181 				 const unsigned long *bitmap2, unsigned int nbits);
182 unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
183 				    const unsigned long *bitmap2, unsigned int nbits);
184 void __bitmap_set(unsigned long *map, unsigned int start, int len);
185 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
186 
187 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
188 					     unsigned long size,
189 					     unsigned long start,
190 					     unsigned int nr,
191 					     unsigned long align_mask,
192 					     unsigned long align_offset);
193 
194 /**
195  * bitmap_find_next_zero_area - find a contiguous aligned zero area
196  * @map: The address to base the search on
197  * @size: The bitmap size in bits
198  * @start: The bitnumber to start searching at
199  * @nr: The number of zeroed bits we're looking for
200  * @align_mask: Alignment mask for zero area
201  *
202  * The @align_mask should be one less than a power of 2; the effect is that
203  * the bit offset of all zero areas this function finds is multiples of that
204  * power of 2. A @align_mask of 0 means no alignment is required.
205  */
206 static __always_inline
bitmap_find_next_zero_area(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask)207 unsigned long bitmap_find_next_zero_area(unsigned long *map,
208 					 unsigned long size,
209 					 unsigned long start,
210 					 unsigned int nr,
211 					 unsigned long align_mask)
212 {
213 	return bitmap_find_next_zero_area_off(map, size, start, nr,
214 					      align_mask, 0);
215 }
216 
217 void bitmap_remap(unsigned long *dst, const unsigned long *src,
218 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
219 int bitmap_bitremap(int oldbit,
220 		const unsigned long *old, const unsigned long *new, int bits);
221 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
222 		const unsigned long *relmap, unsigned int bits);
223 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
224 		unsigned int sz, unsigned int nbits);
225 
226 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
227 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
228 
229 #define bitmap_size(nbits)	(ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
230 
bitmap_zero(unsigned long * dst,unsigned int nbits)231 static __always_inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
232 {
233 	unsigned int len = bitmap_size(nbits);
234 
235 	if (small_const_nbits(nbits))
236 		*dst = 0;
237 	else
238 		memset(dst, 0, len);
239 }
240 
bitmap_fill(unsigned long * dst,unsigned int nbits)241 static __always_inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
242 {
243 	unsigned int len = bitmap_size(nbits);
244 
245 	if (small_const_nbits(nbits))
246 		*dst = ~0UL;
247 	else
248 		memset(dst, 0xff, len);
249 }
250 
251 static __always_inline
bitmap_copy(unsigned long * dst,const unsigned long * src,unsigned int nbits)252 void bitmap_copy(unsigned long *dst, const unsigned long *src, unsigned int nbits)
253 {
254 	unsigned int len = bitmap_size(nbits);
255 
256 	if (small_const_nbits(nbits))
257 		*dst = *src;
258 	else
259 		memcpy(dst, src, len);
260 }
261 
262 /*
263  * Copy bitmap and clear tail bits in last word.
264  */
265 static __always_inline
bitmap_copy_clear_tail(unsigned long * dst,const unsigned long * src,unsigned int nbits)266 void bitmap_copy_clear_tail(unsigned long *dst, const unsigned long *src, unsigned int nbits)
267 {
268 	bitmap_copy(dst, src, nbits);
269 	if (nbits % BITS_PER_LONG)
270 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
271 }
272 
bitmap_copy_and_extend(unsigned long * to,const unsigned long * from,unsigned int count,unsigned int size)273 static inline void bitmap_copy_and_extend(unsigned long *to,
274 					  const unsigned long *from,
275 					  unsigned int count, unsigned int size)
276 {
277 	unsigned int copy = BITS_TO_LONGS(count);
278 
279 	memcpy(to, from, copy * sizeof(long));
280 	if (count % BITS_PER_LONG)
281 		to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
282 	memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
283 }
284 
285 /*
286  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
287  * machines the order of hi and lo parts of numbers match the bitmap structure.
288  * In both cases conversion is not needed when copying data from/to arrays of
289  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
290  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
291  * architectures are not using bitmap_copy_clear_tail().
292  */
293 #if BITS_PER_LONG == 64
294 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
295 							unsigned int nbits);
296 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
297 							unsigned int nbits);
298 #else
299 #define bitmap_from_arr32(bitmap, buf, nbits)			\
300 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
301 			(const unsigned long *) (buf), (nbits))
302 #define bitmap_to_arr32(buf, bitmap, nbits)			\
303 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
304 			(const unsigned long *) (bitmap), (nbits))
305 #endif
306 
307 /*
308  * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
309  * the conversion is not needed when copying data from/to arrays of u64.
310  */
311 #if BITS_PER_LONG == 32
312 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
313 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
314 #else
315 #define bitmap_from_arr64(bitmap, buf, nbits)			\
316 	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
317 #define bitmap_to_arr64(buf, bitmap, nbits)			\
318 	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
319 #endif
320 
321 static __always_inline
bitmap_and(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)322 bool bitmap_and(unsigned long *dst, const unsigned long *src1,
323 		const unsigned long *src2, unsigned int nbits)
324 {
325 	if (small_const_nbits(nbits))
326 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
327 	return __bitmap_and(dst, src1, src2, nbits);
328 }
329 
330 static __always_inline
bitmap_or(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)331 void bitmap_or(unsigned long *dst, const unsigned long *src1,
332 	       const unsigned long *src2, unsigned int nbits)
333 {
334 	if (small_const_nbits(nbits))
335 		*dst = *src1 | *src2;
336 	else
337 		__bitmap_or(dst, src1, src2, nbits);
338 }
339 
340 static __always_inline
bitmap_xor(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)341 void bitmap_xor(unsigned long *dst, const unsigned long *src1,
342 		const unsigned long *src2, unsigned int nbits)
343 {
344 	if (small_const_nbits(nbits))
345 		*dst = *src1 ^ *src2;
346 	else
347 		__bitmap_xor(dst, src1, src2, nbits);
348 }
349 
350 static __always_inline
bitmap_andnot(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)351 bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
352 		   const unsigned long *src2, unsigned int nbits)
353 {
354 	if (small_const_nbits(nbits))
355 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
356 	return __bitmap_andnot(dst, src1, src2, nbits);
357 }
358 
359 static __always_inline
bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int nbits)360 void bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int nbits)
361 {
362 	if (small_const_nbits(nbits))
363 		*dst = ~(*src);
364 	else
365 		__bitmap_complement(dst, src, nbits);
366 }
367 
368 #ifdef __LITTLE_ENDIAN
369 #define BITMAP_MEM_ALIGNMENT 8
370 #else
371 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
372 #endif
373 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
374 
375 static __always_inline
bitmap_equal(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)376 bool bitmap_equal(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
377 {
378 	if (small_const_nbits(nbits))
379 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
380 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
381 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
382 		return !memcmp(src1, src2, nbits / 8);
383 	return __bitmap_equal(src1, src2, nbits);
384 }
385 
386 /**
387  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
388  * @src1:	Pointer to bitmap 1
389  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
390  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
391  * @nbits:	number of bits in each of these bitmaps
392  *
393  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
394  */
395 static __always_inline
bitmap_or_equal(const unsigned long * src1,const unsigned long * src2,const unsigned long * src3,unsigned int nbits)396 bool bitmap_or_equal(const unsigned long *src1, const unsigned long *src2,
397 		     const unsigned long *src3, unsigned int nbits)
398 {
399 	if (!small_const_nbits(nbits))
400 		return __bitmap_or_equal(src1, src2, src3, nbits);
401 
402 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
403 }
404 
405 static __always_inline
bitmap_intersects(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)406 bool bitmap_intersects(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
407 {
408 	if (small_const_nbits(nbits))
409 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
410 	else
411 		return __bitmap_intersects(src1, src2, nbits);
412 }
413 
414 static __always_inline
bitmap_subset(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)415 bool bitmap_subset(const unsigned long *src1, const unsigned long *src2, unsigned int nbits)
416 {
417 	if (small_const_nbits(nbits))
418 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
419 	else
420 		return __bitmap_subset(src1, src2, nbits);
421 }
422 
423 static __always_inline
bitmap_empty(const unsigned long * src,unsigned nbits)424 bool bitmap_empty(const unsigned long *src, unsigned nbits)
425 {
426 	if (small_const_nbits(nbits))
427 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
428 
429 	return find_first_bit(src, nbits) == nbits;
430 }
431 
432 static __always_inline
bitmap_full(const unsigned long * src,unsigned int nbits)433 bool bitmap_full(const unsigned long *src, unsigned int nbits)
434 {
435 	if (small_const_nbits(nbits))
436 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
437 
438 	return find_first_zero_bit(src, nbits) == nbits;
439 }
440 
441 static __always_inline
bitmap_weight(const unsigned long * src,unsigned int nbits)442 unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
443 {
444 	if (small_const_nbits(nbits))
445 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
446 	return __bitmap_weight(src, nbits);
447 }
448 
449 static __always_inline
bitmap_weight_and(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)450 unsigned long bitmap_weight_and(const unsigned long *src1,
451 				const unsigned long *src2, unsigned int nbits)
452 {
453 	if (small_const_nbits(nbits))
454 		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
455 	return __bitmap_weight_and(src1, src2, nbits);
456 }
457 
458 static __always_inline
bitmap_weight_andnot(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)459 unsigned long bitmap_weight_andnot(const unsigned long *src1,
460 				   const unsigned long *src2, unsigned int nbits)
461 {
462 	if (small_const_nbits(nbits))
463 		return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
464 	return __bitmap_weight_andnot(src1, src2, nbits);
465 }
466 
467 static __always_inline
bitmap_set(unsigned long * map,unsigned int start,unsigned int nbits)468 void bitmap_set(unsigned long *map, unsigned int start, unsigned int nbits)
469 {
470 	if (__builtin_constant_p(nbits) && nbits == 1)
471 		__set_bit(start, map);
472 	else if (small_const_nbits(start + nbits))
473 		*map |= GENMASK(start + nbits - 1, start);
474 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
475 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
476 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
477 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
478 		memset((char *)map + start / 8, 0xff, nbits / 8);
479 	else
480 		__bitmap_set(map, start, nbits);
481 }
482 
483 static __always_inline
bitmap_clear(unsigned long * map,unsigned int start,unsigned int nbits)484 void bitmap_clear(unsigned long *map, unsigned int start, unsigned int nbits)
485 {
486 	if (__builtin_constant_p(nbits) && nbits == 1)
487 		__clear_bit(start, map);
488 	else if (small_const_nbits(start + nbits))
489 		*map &= ~GENMASK(start + nbits - 1, start);
490 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
491 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
492 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
493 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
494 		memset((char *)map + start / 8, 0, nbits / 8);
495 	else
496 		__bitmap_clear(map, start, nbits);
497 }
498 
499 static __always_inline
bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)500 void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
501 			unsigned int shift, unsigned int nbits)
502 {
503 	if (small_const_nbits(nbits))
504 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
505 	else
506 		__bitmap_shift_right(dst, src, shift, nbits);
507 }
508 
509 static __always_inline
bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)510 void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
511 		       unsigned int shift, unsigned int nbits)
512 {
513 	if (small_const_nbits(nbits))
514 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
515 	else
516 		__bitmap_shift_left(dst, src, shift, nbits);
517 }
518 
519 static __always_inline
bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)520 void bitmap_replace(unsigned long *dst,
521 		    const unsigned long *old,
522 		    const unsigned long *new,
523 		    const unsigned long *mask,
524 		    unsigned int nbits)
525 {
526 	if (small_const_nbits(nbits))
527 		*dst = (*old & ~(*mask)) | (*new & *mask);
528 	else
529 		__bitmap_replace(dst, old, new, mask, nbits);
530 }
531 
532 /**
533  * bitmap_scatter - Scatter a bitmap according to the given mask
534  * @dst: scattered bitmap
535  * @src: gathered bitmap
536  * @mask: mask representing bits to assign to in the scattered bitmap
537  * @nbits: number of bits in each of these bitmaps
538  *
539  * Scatters bitmap with sequential bits according to the given @mask.
540  *
541  * Example:
542  * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
543  *
544  * Or in binary form
545  * @src			@mask			@dst
546  * 0000000001011010	0001001100010011	0000001100000010
547  *
548  * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
549  *
550  * A more 'visual' description of the operation::
551  *
552  *	src:  0000000001011010
553  *	                ||||||
554  *	         +------+|||||
555  *	         |  +----+||||
556  *	         |  |+----+|||
557  *	         |  ||   +-+||
558  *	         |  ||   |  ||
559  *	mask: ...v..vv...v..vv
560  *	      ...0..11...0..10
561  *	dst:  0000001100000010
562  *
563  * A relationship exists between bitmap_scatter() and bitmap_gather().
564  * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
565  * See bitmap_scatter() for details related to this relationship.
566  */
567 static __always_inline
bitmap_scatter(unsigned long * dst,const unsigned long * src,const unsigned long * mask,unsigned int nbits)568 void bitmap_scatter(unsigned long *dst, const unsigned long *src,
569 		    const unsigned long *mask, unsigned int nbits)
570 {
571 	unsigned int n = 0;
572 	unsigned int bit;
573 
574 	bitmap_zero(dst, nbits);
575 
576 	for_each_set_bit(bit, mask, nbits)
577 		__assign_bit(bit, dst, test_bit(n++, src));
578 }
579 
580 /**
581  * bitmap_gather - Gather a bitmap according to given mask
582  * @dst: gathered bitmap
583  * @src: scattered bitmap
584  * @mask: mask representing bits to extract from in the scattered bitmap
585  * @nbits: number of bits in each of these bitmaps
586  *
587  * Gathers bitmap with sparse bits according to the given @mask.
588  *
589  * Example:
590  * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
591  *
592  * Or in binary form
593  * @src			@mask			@dst
594  * 0000001100000010	0001001100010011	0000000000011010
595  *
596  * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
597  *
598  * A more 'visual' description of the operation::
599  *
600  *	mask: ...v..vv...v..vv
601  *	src:  0000001100000010
602  *	         ^  ^^   ^   0
603  *	         |  ||   |  10
604  *	         |  ||   > 010
605  *	         |  |+--> 1010
606  *	         |  +--> 11010
607  *	         +----> 011010
608  *	dst:  0000000000011010
609  *
610  * A relationship exists between bitmap_gather() and bitmap_scatter(). See
611  * bitmap_scatter() for the bitmap scatter detailed operations.
612  * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
613  * The operation bitmap_gather(result, scattered, mask, n) leads to a result
614  * equal or equivalent to src.
615  *
616  * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
617  * are not bijective.
618  * The result and src values are equivalent in that sense that a call to
619  * bitmap_scatter(res, src, mask, n) and a call to
620  * bitmap_scatter(res, result, mask, n) will lead to the same res value.
621  */
622 static __always_inline
bitmap_gather(unsigned long * dst,const unsigned long * src,const unsigned long * mask,unsigned int nbits)623 void bitmap_gather(unsigned long *dst, const unsigned long *src,
624 		   const unsigned long *mask, unsigned int nbits)
625 {
626 	unsigned int n = 0;
627 	unsigned int bit;
628 
629 	bitmap_zero(dst, nbits);
630 
631 	for_each_set_bit(bit, mask, nbits)
632 		__assign_bit(n++, dst, test_bit(bit, src));
633 }
634 
635 static __always_inline
bitmap_next_set_region(unsigned long * bitmap,unsigned int * rs,unsigned int * re,unsigned int end)636 void bitmap_next_set_region(unsigned long *bitmap, unsigned int *rs,
637 			    unsigned int *re, unsigned int end)
638 {
639 	*rs = find_next_bit(bitmap, end, *rs);
640 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
641 }
642 
643 /**
644  * bitmap_release_region - release allocated bitmap region
645  *	@bitmap: array of unsigned longs corresponding to the bitmap
646  *	@pos: beginning of bit region to release
647  *	@order: region size (log base 2 of number of bits) to release
648  *
649  * This is the complement to __bitmap_find_free_region() and releases
650  * the found region (by clearing it in the bitmap).
651  */
652 static __always_inline
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)653 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
654 {
655 	bitmap_clear(bitmap, pos, BIT(order));
656 }
657 
658 /**
659  * bitmap_allocate_region - allocate bitmap region
660  *	@bitmap: array of unsigned longs corresponding to the bitmap
661  *	@pos: beginning of bit region to allocate
662  *	@order: region size (log base 2 of number of bits) to allocate
663  *
664  * Allocate (set bits in) a specified region of a bitmap.
665  *
666  * Returns: 0 on success, or %-EBUSY if specified region wasn't
667  * free (not all bits were zero).
668  */
669 static __always_inline
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)670 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
671 {
672 	unsigned int len = BIT(order);
673 
674 	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
675 		return -EBUSY;
676 	bitmap_set(bitmap, pos, len);
677 	return 0;
678 }
679 
680 /**
681  * bitmap_find_free_region - find a contiguous aligned mem region
682  *	@bitmap: array of unsigned longs corresponding to the bitmap
683  *	@bits: number of bits in the bitmap
684  *	@order: region size (log base 2 of number of bits) to find
685  *
686  * Find a region of free (zero) bits in a @bitmap of @bits bits and
687  * allocate them (set them to one).  Only consider regions of length
688  * a power (@order) of two, aligned to that power of two, which
689  * makes the search algorithm much faster.
690  *
691  * Returns: the bit offset in bitmap of the allocated region,
692  * or -errno on failure.
693  */
694 static __always_inline
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)695 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
696 {
697 	unsigned int pos, end;		/* scans bitmap by regions of size order */
698 
699 	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
700 		if (!bitmap_allocate_region(bitmap, pos, order))
701 			return pos;
702 	}
703 	return -ENOMEM;
704 }
705 
706 /**
707  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
708  * @n: u64 value
709  *
710  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
711  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
712  *
713  * There are four combinations of endianness and length of the word in linux
714  * ABIs: LE64, BE64, LE32 and BE32.
715  *
716  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
717  * bitmaps and therefore don't require any special handling.
718  *
719  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
720  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
721  * other hand is represented as an array of 32-bit words and the position of
722  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
723  * word.  For example, bit #42 is located at 10th position of 2nd word.
724  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
725  * values in memory as it usually does. But for BE we need to swap hi and lo
726  * words manually.
727  *
728  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
729  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
730  * hi and lo words, as is expected by bitmap.
731  */
732 #if __BITS_PER_LONG == 64
733 #define BITMAP_FROM_U64(n) (n)
734 #else
735 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
736 				((unsigned long) ((u64)(n) >> 32))
737 #endif
738 
739 /**
740  * bitmap_from_u64 - Check and swap words within u64.
741  *  @mask: source bitmap
742  *  @dst:  destination bitmap
743  *
744  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
745  * to read u64 mask, we will get the wrong word.
746  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
747  * but we expect the lower 32-bits of u64.
748  */
bitmap_from_u64(unsigned long * dst,u64 mask)749 static __always_inline void bitmap_from_u64(unsigned long *dst, u64 mask)
750 {
751 	bitmap_from_arr64(dst, &mask, 64);
752 }
753 
754 /**
755  * bitmap_read - read a value of n-bits from the memory region
756  * @map: address to the bitmap memory region
757  * @start: bit offset of the n-bit value
758  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
759  *
760  * Returns: value of @nbits bits located at the @start bit offset within the
761  * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
762  * value is undefined.
763  */
764 static __always_inline
bitmap_read(const unsigned long * map,unsigned long start,unsigned long nbits)765 unsigned long bitmap_read(const unsigned long *map, unsigned long start, unsigned long nbits)
766 {
767 	size_t index = BIT_WORD(start);
768 	unsigned long offset = start % BITS_PER_LONG;
769 	unsigned long space = BITS_PER_LONG - offset;
770 	unsigned long value_low, value_high;
771 
772 	if (unlikely(!nbits || nbits > BITS_PER_LONG))
773 		return 0;
774 
775 	if (space >= nbits)
776 		return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
777 
778 	value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
779 	value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
780 	return (value_low >> offset) | (value_high << space);
781 }
782 
783 /**
784  * bitmap_write - write n-bit value within a memory region
785  * @map: address to the bitmap memory region
786  * @value: value to write, clamped to nbits
787  * @start: bit offset of the n-bit value
788  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
789  *
790  * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
791  * i.e. bits beyond @nbits are ignored:
792  *
793  *   for (bit = 0; bit < nbits; bit++)
794  *           __assign_bit(start + bit, bitmap, val & BIT(bit));
795  *
796  * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
797  */
798 static __always_inline
bitmap_write(unsigned long * map,unsigned long value,unsigned long start,unsigned long nbits)799 void bitmap_write(unsigned long *map, unsigned long value,
800 		  unsigned long start, unsigned long nbits)
801 {
802 	size_t index;
803 	unsigned long offset;
804 	unsigned long space;
805 	unsigned long mask;
806 	bool fit;
807 
808 	if (unlikely(!nbits || nbits > BITS_PER_LONG))
809 		return;
810 
811 	mask = BITMAP_LAST_WORD_MASK(nbits);
812 	value &= mask;
813 	offset = start % BITS_PER_LONG;
814 	space = BITS_PER_LONG - offset;
815 	fit = space >= nbits;
816 	index = BIT_WORD(start);
817 
818 	map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
819 	map[index] |= value << offset;
820 	if (fit)
821 		return;
822 
823 	map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
824 	map[index + 1] |= (value >> space);
825 }
826 
827 #define bitmap_get_value8(map, start)			\
828 	bitmap_read(map, start, BITS_PER_BYTE)
829 #define bitmap_set_value8(map, value, start)		\
830 	bitmap_write(map, value, start, BITS_PER_BYTE)
831 
832 #endif /* __ASSEMBLY__ */
833 
834 #endif /* __LINUX_BITMAP_H */
835