1 /*
2 * Compressed RAM block device
3 *
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
5 * 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
13 */
14
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/vmalloc.h>
30 #include <linux/err.h>
31 #include <linux/idr.h>
32 #include <linux/sysfs.h>
33 #include <linux/debugfs.h>
34 #include <linux/cpuhotplug.h>
35 #include <linux/part_stat.h>
36 #include <linux/kernel_read_file.h>
37
38 #include "zram_drv.h"
39
40 static DEFINE_IDR(zram_index_idr);
41 /* idr index must be protected */
42 static DEFINE_MUTEX(zram_index_mutex);
43
44 static int zram_major;
45 static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
46
47 /* Module params (documentation at end) */
48 static unsigned int num_devices = 1;
49 /*
50 * Pages that compress to sizes equals or greater than this are stored
51 * uncompressed in memory.
52 */
53 static size_t huge_class_size;
54
55 static const struct block_device_operations zram_devops;
56
57 static void zram_free_page(struct zram *zram, size_t index);
58 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
59 struct bio *parent);
60
zram_slot_trylock(struct zram * zram,u32 index)61 static int zram_slot_trylock(struct zram *zram, u32 index)
62 {
63 return spin_trylock(&zram->table[index].lock);
64 }
65
zram_slot_lock(struct zram * zram,u32 index)66 static void zram_slot_lock(struct zram *zram, u32 index)
67 {
68 spin_lock(&zram->table[index].lock);
69 }
70
zram_slot_unlock(struct zram * zram,u32 index)71 static void zram_slot_unlock(struct zram *zram, u32 index)
72 {
73 spin_unlock(&zram->table[index].lock);
74 }
75
init_done(struct zram * zram)76 static inline bool init_done(struct zram *zram)
77 {
78 return zram->disksize;
79 }
80
dev_to_zram(struct device * dev)81 static inline struct zram *dev_to_zram(struct device *dev)
82 {
83 return (struct zram *)dev_to_disk(dev)->private_data;
84 }
85
zram_get_handle(struct zram * zram,u32 index)86 static unsigned long zram_get_handle(struct zram *zram, u32 index)
87 {
88 return zram->table[index].handle;
89 }
90
zram_set_handle(struct zram * zram,u32 index,unsigned long handle)91 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
92 {
93 zram->table[index].handle = handle;
94 }
95
96 /* flag operations require table entry bit_spin_lock() being held */
zram_test_flag(struct zram * zram,u32 index,enum zram_pageflags flag)97 static bool zram_test_flag(struct zram *zram, u32 index,
98 enum zram_pageflags flag)
99 {
100 return zram->table[index].flags & BIT(flag);
101 }
102
zram_set_flag(struct zram * zram,u32 index,enum zram_pageflags flag)103 static void zram_set_flag(struct zram *zram, u32 index,
104 enum zram_pageflags flag)
105 {
106 zram->table[index].flags |= BIT(flag);
107 }
108
zram_clear_flag(struct zram * zram,u32 index,enum zram_pageflags flag)109 static void zram_clear_flag(struct zram *zram, u32 index,
110 enum zram_pageflags flag)
111 {
112 zram->table[index].flags &= ~BIT(flag);
113 }
114
zram_set_element(struct zram * zram,u32 index,unsigned long element)115 static inline void zram_set_element(struct zram *zram, u32 index,
116 unsigned long element)
117 {
118 zram->table[index].element = element;
119 }
120
zram_get_element(struct zram * zram,u32 index)121 static unsigned long zram_get_element(struct zram *zram, u32 index)
122 {
123 return zram->table[index].element;
124 }
125
zram_get_obj_size(struct zram * zram,u32 index)126 static size_t zram_get_obj_size(struct zram *zram, u32 index)
127 {
128 return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
129 }
130
zram_set_obj_size(struct zram * zram,u32 index,size_t size)131 static void zram_set_obj_size(struct zram *zram,
132 u32 index, size_t size)
133 {
134 unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
135
136 zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
137 }
138
zram_allocated(struct zram * zram,u32 index)139 static inline bool zram_allocated(struct zram *zram, u32 index)
140 {
141 return zram_get_obj_size(zram, index) ||
142 zram_test_flag(zram, index, ZRAM_SAME) ||
143 zram_test_flag(zram, index, ZRAM_WB);
144 }
145
146 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)147 static inline bool is_partial_io(struct bio_vec *bvec)
148 {
149 return bvec->bv_len != PAGE_SIZE;
150 }
151 #define ZRAM_PARTIAL_IO 1
152 #else
is_partial_io(struct bio_vec * bvec)153 static inline bool is_partial_io(struct bio_vec *bvec)
154 {
155 return false;
156 }
157 #endif
158
zram_set_priority(struct zram * zram,u32 index,u32 prio)159 static inline void zram_set_priority(struct zram *zram, u32 index, u32 prio)
160 {
161 prio &= ZRAM_COMP_PRIORITY_MASK;
162 /*
163 * Clear previous priority value first, in case if we recompress
164 * further an already recompressed page
165 */
166 zram->table[index].flags &= ~(ZRAM_COMP_PRIORITY_MASK <<
167 ZRAM_COMP_PRIORITY_BIT1);
168 zram->table[index].flags |= (prio << ZRAM_COMP_PRIORITY_BIT1);
169 }
170
zram_get_priority(struct zram * zram,u32 index)171 static inline u32 zram_get_priority(struct zram *zram, u32 index)
172 {
173 u32 prio = zram->table[index].flags >> ZRAM_COMP_PRIORITY_BIT1;
174
175 return prio & ZRAM_COMP_PRIORITY_MASK;
176 }
177
zram_accessed(struct zram * zram,u32 index)178 static void zram_accessed(struct zram *zram, u32 index)
179 {
180 zram_clear_flag(zram, index, ZRAM_IDLE);
181 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
182 zram->table[index].ac_time = ktime_get_boottime();
183 #endif
184 }
185
update_used_max(struct zram * zram,const unsigned long pages)186 static inline void update_used_max(struct zram *zram,
187 const unsigned long pages)
188 {
189 unsigned long cur_max = atomic_long_read(&zram->stats.max_used_pages);
190
191 do {
192 if (cur_max >= pages)
193 return;
194 } while (!atomic_long_try_cmpxchg(&zram->stats.max_used_pages,
195 &cur_max, pages));
196 }
197
zram_fill_page(void * ptr,unsigned long len,unsigned long value)198 static inline void zram_fill_page(void *ptr, unsigned long len,
199 unsigned long value)
200 {
201 WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
202 memset_l(ptr, value, len / sizeof(unsigned long));
203 }
204
page_same_filled(void * ptr,unsigned long * element)205 static bool page_same_filled(void *ptr, unsigned long *element)
206 {
207 unsigned long *page;
208 unsigned long val;
209 unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
210
211 page = (unsigned long *)ptr;
212 val = page[0];
213
214 if (val != page[last_pos])
215 return false;
216
217 for (pos = 1; pos < last_pos; pos++) {
218 if (val != page[pos])
219 return false;
220 }
221
222 *element = val;
223
224 return true;
225 }
226
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)227 static ssize_t initstate_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
229 {
230 u32 val;
231 struct zram *zram = dev_to_zram(dev);
232
233 down_read(&zram->init_lock);
234 val = init_done(zram);
235 up_read(&zram->init_lock);
236
237 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
238 }
239
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)240 static ssize_t disksize_show(struct device *dev,
241 struct device_attribute *attr, char *buf)
242 {
243 struct zram *zram = dev_to_zram(dev);
244
245 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
246 }
247
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)248 static ssize_t mem_limit_store(struct device *dev,
249 struct device_attribute *attr, const char *buf, size_t len)
250 {
251 u64 limit;
252 char *tmp;
253 struct zram *zram = dev_to_zram(dev);
254
255 limit = memparse(buf, &tmp);
256 if (buf == tmp) /* no chars parsed, invalid input */
257 return -EINVAL;
258
259 down_write(&zram->init_lock);
260 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
261 up_write(&zram->init_lock);
262
263 return len;
264 }
265
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)266 static ssize_t mem_used_max_store(struct device *dev,
267 struct device_attribute *attr, const char *buf, size_t len)
268 {
269 int err;
270 unsigned long val;
271 struct zram *zram = dev_to_zram(dev);
272
273 err = kstrtoul(buf, 10, &val);
274 if (err || val != 0)
275 return -EINVAL;
276
277 down_read(&zram->init_lock);
278 if (init_done(zram)) {
279 atomic_long_set(&zram->stats.max_used_pages,
280 zs_get_total_pages(zram->mem_pool));
281 }
282 up_read(&zram->init_lock);
283
284 return len;
285 }
286
287 /*
288 * Mark all pages which are older than or equal to cutoff as IDLE.
289 * Callers should hold the zram init lock in read mode
290 */
mark_idle(struct zram * zram,ktime_t cutoff)291 static void mark_idle(struct zram *zram, ktime_t cutoff)
292 {
293 int is_idle = 1;
294 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
295 int index;
296
297 for (index = 0; index < nr_pages; index++) {
298 /*
299 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
300 * See the comment in writeback_store.
301 */
302 zram_slot_lock(zram, index);
303 if (zram_allocated(zram, index) &&
304 !zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
305 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
306 is_idle = !cutoff || ktime_after(cutoff,
307 zram->table[index].ac_time);
308 #endif
309 if (is_idle)
310 zram_set_flag(zram, index, ZRAM_IDLE);
311 }
312 zram_slot_unlock(zram, index);
313 }
314 }
315
idle_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)316 static ssize_t idle_store(struct device *dev,
317 struct device_attribute *attr, const char *buf, size_t len)
318 {
319 struct zram *zram = dev_to_zram(dev);
320 ktime_t cutoff_time = 0;
321 ssize_t rv = -EINVAL;
322
323 if (!sysfs_streq(buf, "all")) {
324 /*
325 * If it did not parse as 'all' try to treat it as an integer
326 * when we have memory tracking enabled.
327 */
328 u64 age_sec;
329
330 if (IS_ENABLED(CONFIG_ZRAM_TRACK_ENTRY_ACTIME) && !kstrtoull(buf, 0, &age_sec))
331 cutoff_time = ktime_sub(ktime_get_boottime(),
332 ns_to_ktime(age_sec * NSEC_PER_SEC));
333 else
334 goto out;
335 }
336
337 down_read(&zram->init_lock);
338 if (!init_done(zram))
339 goto out_unlock;
340
341 /*
342 * A cutoff_time of 0 marks everything as idle, this is the
343 * "all" behavior.
344 */
345 mark_idle(zram, cutoff_time);
346 rv = len;
347
348 out_unlock:
349 up_read(&zram->init_lock);
350 out:
351 return rv;
352 }
353
354 #ifdef CONFIG_ZRAM_WRITEBACK
writeback_limit_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)355 static ssize_t writeback_limit_enable_store(struct device *dev,
356 struct device_attribute *attr, const char *buf, size_t len)
357 {
358 struct zram *zram = dev_to_zram(dev);
359 u64 val;
360 ssize_t ret = -EINVAL;
361
362 if (kstrtoull(buf, 10, &val))
363 return ret;
364
365 down_read(&zram->init_lock);
366 spin_lock(&zram->wb_limit_lock);
367 zram->wb_limit_enable = val;
368 spin_unlock(&zram->wb_limit_lock);
369 up_read(&zram->init_lock);
370 ret = len;
371
372 return ret;
373 }
374
writeback_limit_enable_show(struct device * dev,struct device_attribute * attr,char * buf)375 static ssize_t writeback_limit_enable_show(struct device *dev,
376 struct device_attribute *attr, char *buf)
377 {
378 bool val;
379 struct zram *zram = dev_to_zram(dev);
380
381 down_read(&zram->init_lock);
382 spin_lock(&zram->wb_limit_lock);
383 val = zram->wb_limit_enable;
384 spin_unlock(&zram->wb_limit_lock);
385 up_read(&zram->init_lock);
386
387 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
388 }
389
writeback_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)390 static ssize_t writeback_limit_store(struct device *dev,
391 struct device_attribute *attr, const char *buf, size_t len)
392 {
393 struct zram *zram = dev_to_zram(dev);
394 u64 val;
395 ssize_t ret = -EINVAL;
396
397 if (kstrtoull(buf, 10, &val))
398 return ret;
399
400 down_read(&zram->init_lock);
401 spin_lock(&zram->wb_limit_lock);
402 zram->bd_wb_limit = val;
403 spin_unlock(&zram->wb_limit_lock);
404 up_read(&zram->init_lock);
405 ret = len;
406
407 return ret;
408 }
409
writeback_limit_show(struct device * dev,struct device_attribute * attr,char * buf)410 static ssize_t writeback_limit_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
412 {
413 u64 val;
414 struct zram *zram = dev_to_zram(dev);
415
416 down_read(&zram->init_lock);
417 spin_lock(&zram->wb_limit_lock);
418 val = zram->bd_wb_limit;
419 spin_unlock(&zram->wb_limit_lock);
420 up_read(&zram->init_lock);
421
422 return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
423 }
424
reset_bdev(struct zram * zram)425 static void reset_bdev(struct zram *zram)
426 {
427 if (!zram->backing_dev)
428 return;
429
430 /* hope filp_close flush all of IO */
431 filp_close(zram->backing_dev, NULL);
432 zram->backing_dev = NULL;
433 zram->bdev = NULL;
434 zram->disk->fops = &zram_devops;
435 kvfree(zram->bitmap);
436 zram->bitmap = NULL;
437 }
438
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)439 static ssize_t backing_dev_show(struct device *dev,
440 struct device_attribute *attr, char *buf)
441 {
442 struct file *file;
443 struct zram *zram = dev_to_zram(dev);
444 char *p;
445 ssize_t ret;
446
447 down_read(&zram->init_lock);
448 file = zram->backing_dev;
449 if (!file) {
450 memcpy(buf, "none\n", 5);
451 up_read(&zram->init_lock);
452 return 5;
453 }
454
455 p = file_path(file, buf, PAGE_SIZE - 1);
456 if (IS_ERR(p)) {
457 ret = PTR_ERR(p);
458 goto out;
459 }
460
461 ret = strlen(p);
462 memmove(buf, p, ret);
463 buf[ret++] = '\n';
464 out:
465 up_read(&zram->init_lock);
466 return ret;
467 }
468
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)469 static ssize_t backing_dev_store(struct device *dev,
470 struct device_attribute *attr, const char *buf, size_t len)
471 {
472 char *file_name;
473 size_t sz;
474 struct file *backing_dev = NULL;
475 struct inode *inode;
476 unsigned int bitmap_sz;
477 unsigned long nr_pages, *bitmap = NULL;
478 int err;
479 struct zram *zram = dev_to_zram(dev);
480
481 file_name = kmalloc(PATH_MAX, GFP_KERNEL);
482 if (!file_name)
483 return -ENOMEM;
484
485 down_write(&zram->init_lock);
486 if (init_done(zram)) {
487 pr_info("Can't setup backing device for initialized device\n");
488 err = -EBUSY;
489 goto out;
490 }
491
492 strscpy(file_name, buf, PATH_MAX);
493 /* ignore trailing newline */
494 sz = strlen(file_name);
495 if (sz > 0 && file_name[sz - 1] == '\n')
496 file_name[sz - 1] = 0x00;
497
498 backing_dev = filp_open(file_name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
499 if (IS_ERR(backing_dev)) {
500 err = PTR_ERR(backing_dev);
501 backing_dev = NULL;
502 goto out;
503 }
504
505 inode = backing_dev->f_mapping->host;
506
507 /* Support only block device in this moment */
508 if (!S_ISBLK(inode->i_mode)) {
509 err = -ENOTBLK;
510 goto out;
511 }
512
513 nr_pages = i_size_read(inode) >> PAGE_SHIFT;
514 bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
515 bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
516 if (!bitmap) {
517 err = -ENOMEM;
518 goto out;
519 }
520
521 reset_bdev(zram);
522
523 zram->bdev = I_BDEV(inode);
524 zram->backing_dev = backing_dev;
525 zram->bitmap = bitmap;
526 zram->nr_pages = nr_pages;
527 up_write(&zram->init_lock);
528
529 pr_info("setup backing device %s\n", file_name);
530 kfree(file_name);
531
532 return len;
533 out:
534 kvfree(bitmap);
535
536 if (backing_dev)
537 filp_close(backing_dev, NULL);
538
539 up_write(&zram->init_lock);
540
541 kfree(file_name);
542
543 return err;
544 }
545
alloc_block_bdev(struct zram * zram)546 static unsigned long alloc_block_bdev(struct zram *zram)
547 {
548 unsigned long blk_idx = 1;
549 retry:
550 /* skip 0 bit to confuse zram.handle = 0 */
551 blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
552 if (blk_idx == zram->nr_pages)
553 return 0;
554
555 if (test_and_set_bit(blk_idx, zram->bitmap))
556 goto retry;
557
558 atomic64_inc(&zram->stats.bd_count);
559 return blk_idx;
560 }
561
free_block_bdev(struct zram * zram,unsigned long blk_idx)562 static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
563 {
564 int was_set;
565
566 was_set = test_and_clear_bit(blk_idx, zram->bitmap);
567 WARN_ON_ONCE(!was_set);
568 atomic64_dec(&zram->stats.bd_count);
569 }
570
read_from_bdev_async(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)571 static void read_from_bdev_async(struct zram *zram, struct page *page,
572 unsigned long entry, struct bio *parent)
573 {
574 struct bio *bio;
575
576 bio = bio_alloc(zram->bdev, 1, parent->bi_opf, GFP_NOIO);
577 bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
578 __bio_add_page(bio, page, PAGE_SIZE, 0);
579 bio_chain(bio, parent);
580 submit_bio(bio);
581 }
582
583 #define PAGE_WB_SIG "page_index="
584
585 #define PAGE_WRITEBACK 0
586 #define HUGE_WRITEBACK (1<<0)
587 #define IDLE_WRITEBACK (1<<1)
588 #define INCOMPRESSIBLE_WRITEBACK (1<<2)
589
writeback_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)590 static ssize_t writeback_store(struct device *dev,
591 struct device_attribute *attr, const char *buf, size_t len)
592 {
593 struct zram *zram = dev_to_zram(dev);
594 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
595 unsigned long index = 0;
596 struct bio bio;
597 struct bio_vec bio_vec;
598 struct page *page;
599 ssize_t ret = len;
600 int mode, err;
601 unsigned long blk_idx = 0;
602
603 if (sysfs_streq(buf, "idle"))
604 mode = IDLE_WRITEBACK;
605 else if (sysfs_streq(buf, "huge"))
606 mode = HUGE_WRITEBACK;
607 else if (sysfs_streq(buf, "huge_idle"))
608 mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
609 else if (sysfs_streq(buf, "incompressible"))
610 mode = INCOMPRESSIBLE_WRITEBACK;
611 else {
612 if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
613 return -EINVAL;
614
615 if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
616 index >= nr_pages)
617 return -EINVAL;
618
619 nr_pages = 1;
620 mode = PAGE_WRITEBACK;
621 }
622
623 down_read(&zram->init_lock);
624 if (!init_done(zram)) {
625 ret = -EINVAL;
626 goto release_init_lock;
627 }
628
629 if (!zram->backing_dev) {
630 ret = -ENODEV;
631 goto release_init_lock;
632 }
633
634 page = alloc_page(GFP_KERNEL);
635 if (!page) {
636 ret = -ENOMEM;
637 goto release_init_lock;
638 }
639
640 for (; nr_pages != 0; index++, nr_pages--) {
641 spin_lock(&zram->wb_limit_lock);
642 if (zram->wb_limit_enable && !zram->bd_wb_limit) {
643 spin_unlock(&zram->wb_limit_lock);
644 ret = -EIO;
645 break;
646 }
647 spin_unlock(&zram->wb_limit_lock);
648
649 if (!blk_idx) {
650 blk_idx = alloc_block_bdev(zram);
651 if (!blk_idx) {
652 ret = -ENOSPC;
653 break;
654 }
655 }
656
657 zram_slot_lock(zram, index);
658 if (!zram_allocated(zram, index))
659 goto next;
660
661 if (zram_test_flag(zram, index, ZRAM_WB) ||
662 zram_test_flag(zram, index, ZRAM_SAME) ||
663 zram_test_flag(zram, index, ZRAM_UNDER_WB))
664 goto next;
665
666 if (mode & IDLE_WRITEBACK &&
667 !zram_test_flag(zram, index, ZRAM_IDLE))
668 goto next;
669 if (mode & HUGE_WRITEBACK &&
670 !zram_test_flag(zram, index, ZRAM_HUGE))
671 goto next;
672 if (mode & INCOMPRESSIBLE_WRITEBACK &&
673 !zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
674 goto next;
675
676 /*
677 * Clearing ZRAM_UNDER_WB is duty of caller.
678 * IOW, zram_free_page never clear it.
679 */
680 zram_set_flag(zram, index, ZRAM_UNDER_WB);
681 /* Need for hugepage writeback racing */
682 zram_set_flag(zram, index, ZRAM_IDLE);
683 zram_slot_unlock(zram, index);
684 if (zram_read_page(zram, page, index, NULL)) {
685 zram_slot_lock(zram, index);
686 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
687 zram_clear_flag(zram, index, ZRAM_IDLE);
688 zram_slot_unlock(zram, index);
689 continue;
690 }
691
692 bio_init(&bio, zram->bdev, &bio_vec, 1,
693 REQ_OP_WRITE | REQ_SYNC);
694 bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
695 __bio_add_page(&bio, page, PAGE_SIZE, 0);
696
697 /*
698 * XXX: A single page IO would be inefficient for write
699 * but it would be not bad as starter.
700 */
701 err = submit_bio_wait(&bio);
702 if (err) {
703 zram_slot_lock(zram, index);
704 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
705 zram_clear_flag(zram, index, ZRAM_IDLE);
706 zram_slot_unlock(zram, index);
707 /*
708 * BIO errors are not fatal, we continue and simply
709 * attempt to writeback the remaining objects (pages).
710 * At the same time we need to signal user-space that
711 * some writes (at least one, but also could be all of
712 * them) were not successful and we do so by returning
713 * the most recent BIO error.
714 */
715 ret = err;
716 continue;
717 }
718
719 atomic64_inc(&zram->stats.bd_writes);
720 /*
721 * We released zram_slot_lock so need to check if the slot was
722 * changed. If there is freeing for the slot, we can catch it
723 * easily by zram_allocated.
724 * A subtle case is the slot is freed/reallocated/marked as
725 * ZRAM_IDLE again. To close the race, idle_store doesn't
726 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
727 * Thus, we could close the race by checking ZRAM_IDLE bit.
728 */
729 zram_slot_lock(zram, index);
730 if (!zram_allocated(zram, index) ||
731 !zram_test_flag(zram, index, ZRAM_IDLE)) {
732 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
733 zram_clear_flag(zram, index, ZRAM_IDLE);
734 goto next;
735 }
736
737 zram_free_page(zram, index);
738 zram_clear_flag(zram, index, ZRAM_UNDER_WB);
739 zram_set_flag(zram, index, ZRAM_WB);
740 zram_set_element(zram, index, blk_idx);
741 blk_idx = 0;
742 atomic64_inc(&zram->stats.pages_stored);
743 spin_lock(&zram->wb_limit_lock);
744 if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
745 zram->bd_wb_limit -= 1UL << (PAGE_SHIFT - 12);
746 spin_unlock(&zram->wb_limit_lock);
747 next:
748 zram_slot_unlock(zram, index);
749 }
750
751 if (blk_idx)
752 free_block_bdev(zram, blk_idx);
753 __free_page(page);
754 release_init_lock:
755 up_read(&zram->init_lock);
756
757 return ret;
758 }
759
760 struct zram_work {
761 struct work_struct work;
762 struct zram *zram;
763 unsigned long entry;
764 struct page *page;
765 int error;
766 };
767
zram_sync_read(struct work_struct * work)768 static void zram_sync_read(struct work_struct *work)
769 {
770 struct zram_work *zw = container_of(work, struct zram_work, work);
771 struct bio_vec bv;
772 struct bio bio;
773
774 bio_init(&bio, zw->zram->bdev, &bv, 1, REQ_OP_READ);
775 bio.bi_iter.bi_sector = zw->entry * (PAGE_SIZE >> 9);
776 __bio_add_page(&bio, zw->page, PAGE_SIZE, 0);
777 zw->error = submit_bio_wait(&bio);
778 }
779
780 /*
781 * Block layer want one ->submit_bio to be active at a time, so if we use
782 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
783 * use a worker thread context.
784 */
read_from_bdev_sync(struct zram * zram,struct page * page,unsigned long entry)785 static int read_from_bdev_sync(struct zram *zram, struct page *page,
786 unsigned long entry)
787 {
788 struct zram_work work;
789
790 work.page = page;
791 work.zram = zram;
792 work.entry = entry;
793
794 INIT_WORK_ONSTACK(&work.work, zram_sync_read);
795 queue_work(system_unbound_wq, &work.work);
796 flush_work(&work.work);
797 destroy_work_on_stack(&work.work);
798
799 return work.error;
800 }
801
read_from_bdev(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)802 static int read_from_bdev(struct zram *zram, struct page *page,
803 unsigned long entry, struct bio *parent)
804 {
805 atomic64_inc(&zram->stats.bd_reads);
806 if (!parent) {
807 if (WARN_ON_ONCE(!IS_ENABLED(ZRAM_PARTIAL_IO)))
808 return -EIO;
809 return read_from_bdev_sync(zram, page, entry);
810 }
811 read_from_bdev_async(zram, page, entry, parent);
812 return 0;
813 }
814 #else
reset_bdev(struct zram * zram)815 static inline void reset_bdev(struct zram *zram) {};
read_from_bdev(struct zram * zram,struct page * page,unsigned long entry,struct bio * parent)816 static int read_from_bdev(struct zram *zram, struct page *page,
817 unsigned long entry, struct bio *parent)
818 {
819 return -EIO;
820 }
821
free_block_bdev(struct zram * zram,unsigned long blk_idx)822 static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
823 #endif
824
825 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
826
827 static struct dentry *zram_debugfs_root;
828
zram_debugfs_create(void)829 static void zram_debugfs_create(void)
830 {
831 zram_debugfs_root = debugfs_create_dir("zram", NULL);
832 }
833
zram_debugfs_destroy(void)834 static void zram_debugfs_destroy(void)
835 {
836 debugfs_remove_recursive(zram_debugfs_root);
837 }
838
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)839 static ssize_t read_block_state(struct file *file, char __user *buf,
840 size_t count, loff_t *ppos)
841 {
842 char *kbuf;
843 ssize_t index, written = 0;
844 struct zram *zram = file->private_data;
845 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
846 struct timespec64 ts;
847
848 kbuf = kvmalloc(count, GFP_KERNEL);
849 if (!kbuf)
850 return -ENOMEM;
851
852 down_read(&zram->init_lock);
853 if (!init_done(zram)) {
854 up_read(&zram->init_lock);
855 kvfree(kbuf);
856 return -EINVAL;
857 }
858
859 for (index = *ppos; index < nr_pages; index++) {
860 int copied;
861
862 zram_slot_lock(zram, index);
863 if (!zram_allocated(zram, index))
864 goto next;
865
866 ts = ktime_to_timespec64(zram->table[index].ac_time);
867 copied = snprintf(kbuf + written, count,
868 "%12zd %12lld.%06lu %c%c%c%c%c%c\n",
869 index, (s64)ts.tv_sec,
870 ts.tv_nsec / NSEC_PER_USEC,
871 zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
872 zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
873 zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
874 zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.',
875 zram_get_priority(zram, index) ? 'r' : '.',
876 zram_test_flag(zram, index,
877 ZRAM_INCOMPRESSIBLE) ? 'n' : '.');
878
879 if (count <= copied) {
880 zram_slot_unlock(zram, index);
881 break;
882 }
883 written += copied;
884 count -= copied;
885 next:
886 zram_slot_unlock(zram, index);
887 *ppos += 1;
888 }
889
890 up_read(&zram->init_lock);
891 if (copy_to_user(buf, kbuf, written))
892 written = -EFAULT;
893 kvfree(kbuf);
894
895 return written;
896 }
897
898 static const struct file_operations proc_zram_block_state_op = {
899 .open = simple_open,
900 .read = read_block_state,
901 .llseek = default_llseek,
902 };
903
zram_debugfs_register(struct zram * zram)904 static void zram_debugfs_register(struct zram *zram)
905 {
906 if (!zram_debugfs_root)
907 return;
908
909 zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
910 zram_debugfs_root);
911 debugfs_create_file("block_state", 0400, zram->debugfs_dir,
912 zram, &proc_zram_block_state_op);
913 }
914
zram_debugfs_unregister(struct zram * zram)915 static void zram_debugfs_unregister(struct zram *zram)
916 {
917 debugfs_remove_recursive(zram->debugfs_dir);
918 }
919 #else
zram_debugfs_create(void)920 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)921 static void zram_debugfs_destroy(void) {};
zram_debugfs_register(struct zram * zram)922 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)923 static void zram_debugfs_unregister(struct zram *zram) {};
924 #endif
925
926 /*
927 * We switched to per-cpu streams and this attr is not needed anymore.
928 * However, we will keep it around for some time, because:
929 * a) we may revert per-cpu streams in the future
930 * b) it's visible to user space and we need to follow our 2 years
931 * retirement rule; but we already have a number of 'soon to be
932 * altered' attrs, so max_comp_streams need to wait for the next
933 * layoff cycle.
934 */
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)935 static ssize_t max_comp_streams_show(struct device *dev,
936 struct device_attribute *attr, char *buf)
937 {
938 return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
939 }
940
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)941 static ssize_t max_comp_streams_store(struct device *dev,
942 struct device_attribute *attr, const char *buf, size_t len)
943 {
944 return len;
945 }
946
comp_algorithm_set(struct zram * zram,u32 prio,const char * alg)947 static void comp_algorithm_set(struct zram *zram, u32 prio, const char *alg)
948 {
949 /* Do not free statically defined compression algorithms */
950 if (zram->comp_algs[prio] != default_compressor)
951 kfree(zram->comp_algs[prio]);
952
953 zram->comp_algs[prio] = alg;
954 }
955
__comp_algorithm_show(struct zram * zram,u32 prio,char * buf)956 static ssize_t __comp_algorithm_show(struct zram *zram, u32 prio, char *buf)
957 {
958 ssize_t sz;
959
960 down_read(&zram->init_lock);
961 sz = zcomp_available_show(zram->comp_algs[prio], buf);
962 up_read(&zram->init_lock);
963
964 return sz;
965 }
966
__comp_algorithm_store(struct zram * zram,u32 prio,const char * buf)967 static int __comp_algorithm_store(struct zram *zram, u32 prio, const char *buf)
968 {
969 char *compressor;
970 size_t sz;
971
972 sz = strlen(buf);
973 if (sz >= CRYPTO_MAX_ALG_NAME)
974 return -E2BIG;
975
976 compressor = kstrdup(buf, GFP_KERNEL);
977 if (!compressor)
978 return -ENOMEM;
979
980 /* ignore trailing newline */
981 if (sz > 0 && compressor[sz - 1] == '\n')
982 compressor[sz - 1] = 0x00;
983
984 if (!zcomp_available_algorithm(compressor)) {
985 kfree(compressor);
986 return -EINVAL;
987 }
988
989 down_write(&zram->init_lock);
990 if (init_done(zram)) {
991 up_write(&zram->init_lock);
992 kfree(compressor);
993 pr_info("Can't change algorithm for initialized device\n");
994 return -EBUSY;
995 }
996
997 comp_algorithm_set(zram, prio, compressor);
998 up_write(&zram->init_lock);
999 return 0;
1000 }
1001
comp_params_reset(struct zram * zram,u32 prio)1002 static void comp_params_reset(struct zram *zram, u32 prio)
1003 {
1004 struct zcomp_params *params = &zram->params[prio];
1005
1006 vfree(params->dict);
1007 params->level = ZCOMP_PARAM_NO_LEVEL;
1008 params->dict_sz = 0;
1009 params->dict = NULL;
1010 }
1011
comp_params_store(struct zram * zram,u32 prio,s32 level,const char * dict_path)1012 static int comp_params_store(struct zram *zram, u32 prio, s32 level,
1013 const char *dict_path)
1014 {
1015 ssize_t sz = 0;
1016
1017 comp_params_reset(zram, prio);
1018
1019 if (dict_path) {
1020 sz = kernel_read_file_from_path(dict_path, 0,
1021 &zram->params[prio].dict,
1022 INT_MAX,
1023 NULL,
1024 READING_POLICY);
1025 if (sz < 0)
1026 return -EINVAL;
1027 }
1028
1029 zram->params[prio].dict_sz = sz;
1030 zram->params[prio].level = level;
1031 return 0;
1032 }
1033
algorithm_params_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1034 static ssize_t algorithm_params_store(struct device *dev,
1035 struct device_attribute *attr,
1036 const char *buf,
1037 size_t len)
1038 {
1039 s32 prio = ZRAM_PRIMARY_COMP, level = ZCOMP_PARAM_NO_LEVEL;
1040 char *args, *param, *val, *algo = NULL, *dict_path = NULL;
1041 struct zram *zram = dev_to_zram(dev);
1042 int ret;
1043
1044 args = skip_spaces(buf);
1045 while (*args) {
1046 args = next_arg(args, ¶m, &val);
1047
1048 if (!val || !*val)
1049 return -EINVAL;
1050
1051 if (!strcmp(param, "priority")) {
1052 ret = kstrtoint(val, 10, &prio);
1053 if (ret)
1054 return ret;
1055 continue;
1056 }
1057
1058 if (!strcmp(param, "level")) {
1059 ret = kstrtoint(val, 10, &level);
1060 if (ret)
1061 return ret;
1062 continue;
1063 }
1064
1065 if (!strcmp(param, "algo")) {
1066 algo = val;
1067 continue;
1068 }
1069
1070 if (!strcmp(param, "dict")) {
1071 dict_path = val;
1072 continue;
1073 }
1074 }
1075
1076 /* Lookup priority by algorithm name */
1077 if (algo) {
1078 s32 p;
1079
1080 prio = -EINVAL;
1081 for (p = ZRAM_PRIMARY_COMP; p < ZRAM_MAX_COMPS; p++) {
1082 if (!zram->comp_algs[p])
1083 continue;
1084
1085 if (!strcmp(zram->comp_algs[p], algo)) {
1086 prio = p;
1087 break;
1088 }
1089 }
1090 }
1091
1092 if (prio < ZRAM_PRIMARY_COMP || prio >= ZRAM_MAX_COMPS)
1093 return -EINVAL;
1094
1095 ret = comp_params_store(zram, prio, level, dict_path);
1096 return ret ? ret : len;
1097 }
1098
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)1099 static ssize_t comp_algorithm_show(struct device *dev,
1100 struct device_attribute *attr,
1101 char *buf)
1102 {
1103 struct zram *zram = dev_to_zram(dev);
1104
1105 return __comp_algorithm_show(zram, ZRAM_PRIMARY_COMP, buf);
1106 }
1107
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1108 static ssize_t comp_algorithm_store(struct device *dev,
1109 struct device_attribute *attr,
1110 const char *buf,
1111 size_t len)
1112 {
1113 struct zram *zram = dev_to_zram(dev);
1114 int ret;
1115
1116 ret = __comp_algorithm_store(zram, ZRAM_PRIMARY_COMP, buf);
1117 return ret ? ret : len;
1118 }
1119
1120 #ifdef CONFIG_ZRAM_MULTI_COMP
recomp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)1121 static ssize_t recomp_algorithm_show(struct device *dev,
1122 struct device_attribute *attr,
1123 char *buf)
1124 {
1125 struct zram *zram = dev_to_zram(dev);
1126 ssize_t sz = 0;
1127 u32 prio;
1128
1129 for (prio = ZRAM_SECONDARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
1130 if (!zram->comp_algs[prio])
1131 continue;
1132
1133 sz += scnprintf(buf + sz, PAGE_SIZE - sz - 2, "#%d: ", prio);
1134 sz += __comp_algorithm_show(zram, prio, buf + sz);
1135 }
1136
1137 return sz;
1138 }
1139
recomp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1140 static ssize_t recomp_algorithm_store(struct device *dev,
1141 struct device_attribute *attr,
1142 const char *buf,
1143 size_t len)
1144 {
1145 struct zram *zram = dev_to_zram(dev);
1146 int prio = ZRAM_SECONDARY_COMP;
1147 char *args, *param, *val;
1148 char *alg = NULL;
1149 int ret;
1150
1151 args = skip_spaces(buf);
1152 while (*args) {
1153 args = next_arg(args, ¶m, &val);
1154
1155 if (!val || !*val)
1156 return -EINVAL;
1157
1158 if (!strcmp(param, "algo")) {
1159 alg = val;
1160 continue;
1161 }
1162
1163 if (!strcmp(param, "priority")) {
1164 ret = kstrtoint(val, 10, &prio);
1165 if (ret)
1166 return ret;
1167 continue;
1168 }
1169 }
1170
1171 if (!alg)
1172 return -EINVAL;
1173
1174 if (prio < ZRAM_SECONDARY_COMP || prio >= ZRAM_MAX_COMPS)
1175 return -EINVAL;
1176
1177 ret = __comp_algorithm_store(zram, prio, alg);
1178 return ret ? ret : len;
1179 }
1180 #endif
1181
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1182 static ssize_t compact_store(struct device *dev,
1183 struct device_attribute *attr, const char *buf, size_t len)
1184 {
1185 struct zram *zram = dev_to_zram(dev);
1186
1187 down_read(&zram->init_lock);
1188 if (!init_done(zram)) {
1189 up_read(&zram->init_lock);
1190 return -EINVAL;
1191 }
1192
1193 zs_compact(zram->mem_pool);
1194 up_read(&zram->init_lock);
1195
1196 return len;
1197 }
1198
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1199 static ssize_t io_stat_show(struct device *dev,
1200 struct device_attribute *attr, char *buf)
1201 {
1202 struct zram *zram = dev_to_zram(dev);
1203 ssize_t ret;
1204
1205 down_read(&zram->init_lock);
1206 ret = scnprintf(buf, PAGE_SIZE,
1207 "%8llu %8llu 0 %8llu\n",
1208 (u64)atomic64_read(&zram->stats.failed_reads),
1209 (u64)atomic64_read(&zram->stats.failed_writes),
1210 (u64)atomic64_read(&zram->stats.notify_free));
1211 up_read(&zram->init_lock);
1212
1213 return ret;
1214 }
1215
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1216 static ssize_t mm_stat_show(struct device *dev,
1217 struct device_attribute *attr, char *buf)
1218 {
1219 struct zram *zram = dev_to_zram(dev);
1220 struct zs_pool_stats pool_stats;
1221 u64 orig_size, mem_used = 0;
1222 long max_used;
1223 ssize_t ret;
1224
1225 memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
1226
1227 down_read(&zram->init_lock);
1228 if (init_done(zram)) {
1229 mem_used = zs_get_total_pages(zram->mem_pool);
1230 zs_pool_stats(zram->mem_pool, &pool_stats);
1231 }
1232
1233 orig_size = atomic64_read(&zram->stats.pages_stored);
1234 max_used = atomic_long_read(&zram->stats.max_used_pages);
1235
1236 ret = scnprintf(buf, PAGE_SIZE,
1237 "%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
1238 orig_size << PAGE_SHIFT,
1239 (u64)atomic64_read(&zram->stats.compr_data_size),
1240 mem_used << PAGE_SHIFT,
1241 zram->limit_pages << PAGE_SHIFT,
1242 max_used << PAGE_SHIFT,
1243 (u64)atomic64_read(&zram->stats.same_pages),
1244 atomic_long_read(&pool_stats.pages_compacted),
1245 (u64)atomic64_read(&zram->stats.huge_pages),
1246 (u64)atomic64_read(&zram->stats.huge_pages_since));
1247 up_read(&zram->init_lock);
1248
1249 return ret;
1250 }
1251
1252 #ifdef CONFIG_ZRAM_WRITEBACK
1253 #define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
bd_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1254 static ssize_t bd_stat_show(struct device *dev,
1255 struct device_attribute *attr, char *buf)
1256 {
1257 struct zram *zram = dev_to_zram(dev);
1258 ssize_t ret;
1259
1260 down_read(&zram->init_lock);
1261 ret = scnprintf(buf, PAGE_SIZE,
1262 "%8llu %8llu %8llu\n",
1263 FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
1264 FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
1265 FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
1266 up_read(&zram->init_lock);
1267
1268 return ret;
1269 }
1270 #endif
1271
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1272 static ssize_t debug_stat_show(struct device *dev,
1273 struct device_attribute *attr, char *buf)
1274 {
1275 int version = 1;
1276 struct zram *zram = dev_to_zram(dev);
1277 ssize_t ret;
1278
1279 down_read(&zram->init_lock);
1280 ret = scnprintf(buf, PAGE_SIZE,
1281 "version: %d\n%8llu %8llu\n",
1282 version,
1283 (u64)atomic64_read(&zram->stats.writestall),
1284 (u64)atomic64_read(&zram->stats.miss_free));
1285 up_read(&zram->init_lock);
1286
1287 return ret;
1288 }
1289
1290 static DEVICE_ATTR_RO(io_stat);
1291 static DEVICE_ATTR_RO(mm_stat);
1292 #ifdef CONFIG_ZRAM_WRITEBACK
1293 static DEVICE_ATTR_RO(bd_stat);
1294 #endif
1295 static DEVICE_ATTR_RO(debug_stat);
1296
zram_meta_free(struct zram * zram,u64 disksize)1297 static void zram_meta_free(struct zram *zram, u64 disksize)
1298 {
1299 size_t num_pages = disksize >> PAGE_SHIFT;
1300 size_t index;
1301
1302 /* Free all pages that are still in this zram device */
1303 for (index = 0; index < num_pages; index++)
1304 zram_free_page(zram, index);
1305
1306 zs_destroy_pool(zram->mem_pool);
1307 vfree(zram->table);
1308 }
1309
zram_meta_alloc(struct zram * zram,u64 disksize)1310 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
1311 {
1312 size_t num_pages, index;
1313
1314 num_pages = disksize >> PAGE_SHIFT;
1315 zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
1316 if (!zram->table)
1317 return false;
1318
1319 zram->mem_pool = zs_create_pool(zram->disk->disk_name);
1320 if (!zram->mem_pool) {
1321 vfree(zram->table);
1322 return false;
1323 }
1324
1325 if (!huge_class_size)
1326 huge_class_size = zs_huge_class_size(zram->mem_pool);
1327
1328 for (index = 0; index < num_pages; index++)
1329 spin_lock_init(&zram->table[index].lock);
1330 return true;
1331 }
1332
1333 /*
1334 * To protect concurrent access to the same index entry,
1335 * caller should hold this table index entry's bit_spinlock to
1336 * indicate this index entry is accessing.
1337 */
zram_free_page(struct zram * zram,size_t index)1338 static void zram_free_page(struct zram *zram, size_t index)
1339 {
1340 unsigned long handle;
1341
1342 #ifdef CONFIG_ZRAM_TRACK_ENTRY_ACTIME
1343 zram->table[index].ac_time = 0;
1344 #endif
1345 if (zram_test_flag(zram, index, ZRAM_IDLE))
1346 zram_clear_flag(zram, index, ZRAM_IDLE);
1347
1348 if (zram_test_flag(zram, index, ZRAM_HUGE)) {
1349 zram_clear_flag(zram, index, ZRAM_HUGE);
1350 atomic64_dec(&zram->stats.huge_pages);
1351 }
1352
1353 if (zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1354 zram_clear_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1355
1356 zram_set_priority(zram, index, 0);
1357
1358 if (zram_test_flag(zram, index, ZRAM_WB)) {
1359 zram_clear_flag(zram, index, ZRAM_WB);
1360 free_block_bdev(zram, zram_get_element(zram, index));
1361 goto out;
1362 }
1363
1364 /*
1365 * No memory is allocated for same element filled pages.
1366 * Simply clear same page flag.
1367 */
1368 if (zram_test_flag(zram, index, ZRAM_SAME)) {
1369 zram_clear_flag(zram, index, ZRAM_SAME);
1370 atomic64_dec(&zram->stats.same_pages);
1371 goto out;
1372 }
1373
1374 handle = zram_get_handle(zram, index);
1375 if (!handle)
1376 return;
1377
1378 zs_free(zram->mem_pool, handle);
1379
1380 atomic64_sub(zram_get_obj_size(zram, index),
1381 &zram->stats.compr_data_size);
1382 out:
1383 atomic64_dec(&zram->stats.pages_stored);
1384 zram_set_handle(zram, index, 0);
1385 zram_set_obj_size(zram, index, 0);
1386 WARN_ON_ONCE(zram->table[index].flags &
1387 ~(1UL << ZRAM_UNDER_WB));
1388 }
1389
1390 /*
1391 * Reads (decompresses if needed) a page from zspool (zsmalloc).
1392 * Corresponding ZRAM slot should be locked.
1393 */
zram_read_from_zspool(struct zram * zram,struct page * page,u32 index)1394 static int zram_read_from_zspool(struct zram *zram, struct page *page,
1395 u32 index)
1396 {
1397 struct zcomp_strm *zstrm;
1398 unsigned long handle;
1399 unsigned int size;
1400 void *src, *dst;
1401 u32 prio;
1402 int ret;
1403
1404 handle = zram_get_handle(zram, index);
1405 if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1406 unsigned long value;
1407 void *mem;
1408
1409 value = handle ? zram_get_element(zram, index) : 0;
1410 mem = kmap_local_page(page);
1411 zram_fill_page(mem, PAGE_SIZE, value);
1412 kunmap_local(mem);
1413 return 0;
1414 }
1415
1416 size = zram_get_obj_size(zram, index);
1417
1418 if (size != PAGE_SIZE) {
1419 prio = zram_get_priority(zram, index);
1420 zstrm = zcomp_stream_get(zram->comps[prio]);
1421 }
1422
1423 src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1424 if (size == PAGE_SIZE) {
1425 dst = kmap_local_page(page);
1426 copy_page(dst, src);
1427 kunmap_local(dst);
1428 ret = 0;
1429 } else {
1430 dst = kmap_local_page(page);
1431 ret = zcomp_decompress(zram->comps[prio], zstrm,
1432 src, size, dst);
1433 kunmap_local(dst);
1434 zcomp_stream_put(zram->comps[prio]);
1435 }
1436 zs_unmap_object(zram->mem_pool, handle);
1437 return ret;
1438 }
1439
zram_read_page(struct zram * zram,struct page * page,u32 index,struct bio * parent)1440 static int zram_read_page(struct zram *zram, struct page *page, u32 index,
1441 struct bio *parent)
1442 {
1443 int ret;
1444
1445 zram_slot_lock(zram, index);
1446 if (!zram_test_flag(zram, index, ZRAM_WB)) {
1447 /* Slot should be locked through out the function call */
1448 ret = zram_read_from_zspool(zram, page, index);
1449 zram_slot_unlock(zram, index);
1450 } else {
1451 /*
1452 * The slot should be unlocked before reading from the backing
1453 * device.
1454 */
1455 zram_slot_unlock(zram, index);
1456
1457 ret = read_from_bdev(zram, page, zram_get_element(zram, index),
1458 parent);
1459 }
1460
1461 /* Should NEVER happen. Return bio error if it does. */
1462 if (WARN_ON(ret < 0))
1463 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1464
1465 return ret;
1466 }
1467
1468 /*
1469 * Use a temporary buffer to decompress the page, as the decompressor
1470 * always expects a full page for the output.
1471 */
zram_bvec_read_partial(struct zram * zram,struct bio_vec * bvec,u32 index,int offset)1472 static int zram_bvec_read_partial(struct zram *zram, struct bio_vec *bvec,
1473 u32 index, int offset)
1474 {
1475 struct page *page = alloc_page(GFP_NOIO);
1476 int ret;
1477
1478 if (!page)
1479 return -ENOMEM;
1480 ret = zram_read_page(zram, page, index, NULL);
1481 if (likely(!ret))
1482 memcpy_to_bvec(bvec, page_address(page) + offset);
1483 __free_page(page);
1484 return ret;
1485 }
1486
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1487 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1488 u32 index, int offset, struct bio *bio)
1489 {
1490 if (is_partial_io(bvec))
1491 return zram_bvec_read_partial(zram, bvec, index, offset);
1492 return zram_read_page(zram, bvec->bv_page, index, bio);
1493 }
1494
zram_write_page(struct zram * zram,struct page * page,u32 index)1495 static int zram_write_page(struct zram *zram, struct page *page, u32 index)
1496 {
1497 int ret = 0;
1498 unsigned long alloced_pages;
1499 unsigned long handle = -ENOMEM;
1500 unsigned int comp_len = 0;
1501 void *src, *dst, *mem;
1502 struct zcomp_strm *zstrm;
1503 unsigned long element = 0;
1504 enum zram_pageflags flags = 0;
1505
1506 mem = kmap_local_page(page);
1507 if (page_same_filled(mem, &element)) {
1508 kunmap_local(mem);
1509 /* Free memory associated with this sector now. */
1510 flags = ZRAM_SAME;
1511 atomic64_inc(&zram->stats.same_pages);
1512 goto out;
1513 }
1514 kunmap_local(mem);
1515
1516 compress_again:
1517 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1518 src = kmap_local_page(page);
1519 ret = zcomp_compress(zram->comps[ZRAM_PRIMARY_COMP], zstrm,
1520 src, &comp_len);
1521 kunmap_local(src);
1522
1523 if (unlikely(ret)) {
1524 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1525 pr_err("Compression failed! err=%d\n", ret);
1526 zs_free(zram->mem_pool, handle);
1527 return ret;
1528 }
1529
1530 if (comp_len >= huge_class_size)
1531 comp_len = PAGE_SIZE;
1532 /*
1533 * handle allocation has 2 paths:
1534 * a) fast path is executed with preemption disabled (for
1535 * per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1536 * since we can't sleep;
1537 * b) slow path enables preemption and attempts to allocate
1538 * the page with __GFP_DIRECT_RECLAIM bit set. we have to
1539 * put per-cpu compression stream and, thus, to re-do
1540 * the compression once handle is allocated.
1541 *
1542 * if we have a 'non-null' handle here then we are coming
1543 * from the slow path and handle has already been allocated.
1544 */
1545 if (IS_ERR_VALUE(handle))
1546 handle = zs_malloc(zram->mem_pool, comp_len,
1547 __GFP_KSWAPD_RECLAIM |
1548 __GFP_NOWARN |
1549 __GFP_HIGHMEM |
1550 __GFP_MOVABLE);
1551 if (IS_ERR_VALUE(handle)) {
1552 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1553 atomic64_inc(&zram->stats.writestall);
1554 handle = zs_malloc(zram->mem_pool, comp_len,
1555 GFP_NOIO | __GFP_HIGHMEM |
1556 __GFP_MOVABLE);
1557 if (IS_ERR_VALUE(handle))
1558 return PTR_ERR((void *)handle);
1559
1560 if (comp_len != PAGE_SIZE)
1561 goto compress_again;
1562 /*
1563 * If the page is not compressible, you need to acquire the
1564 * lock and execute the code below. The zcomp_stream_get()
1565 * call is needed to disable the cpu hotplug and grab the
1566 * zstrm buffer back. It is necessary that the dereferencing
1567 * of the zstrm variable below occurs correctly.
1568 */
1569 zstrm = zcomp_stream_get(zram->comps[ZRAM_PRIMARY_COMP]);
1570 }
1571
1572 alloced_pages = zs_get_total_pages(zram->mem_pool);
1573 update_used_max(zram, alloced_pages);
1574
1575 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1576 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1577 zs_free(zram->mem_pool, handle);
1578 return -ENOMEM;
1579 }
1580
1581 dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1582
1583 src = zstrm->buffer;
1584 if (comp_len == PAGE_SIZE)
1585 src = kmap_local_page(page);
1586 memcpy(dst, src, comp_len);
1587 if (comp_len == PAGE_SIZE)
1588 kunmap_local(src);
1589
1590 zcomp_stream_put(zram->comps[ZRAM_PRIMARY_COMP]);
1591 zs_unmap_object(zram->mem_pool, handle);
1592 atomic64_add(comp_len, &zram->stats.compr_data_size);
1593 out:
1594 /*
1595 * Free memory associated with this sector
1596 * before overwriting unused sectors.
1597 */
1598 zram_slot_lock(zram, index);
1599 zram_free_page(zram, index);
1600
1601 if (comp_len == PAGE_SIZE) {
1602 zram_set_flag(zram, index, ZRAM_HUGE);
1603 atomic64_inc(&zram->stats.huge_pages);
1604 atomic64_inc(&zram->stats.huge_pages_since);
1605 }
1606
1607 if (flags) {
1608 zram_set_flag(zram, index, flags);
1609 zram_set_element(zram, index, element);
1610 } else {
1611 zram_set_handle(zram, index, handle);
1612 zram_set_obj_size(zram, index, comp_len);
1613 }
1614 zram_slot_unlock(zram, index);
1615
1616 /* Update stats */
1617 atomic64_inc(&zram->stats.pages_stored);
1618 return ret;
1619 }
1620
1621 /*
1622 * This is a partial IO. Read the full page before writing the changes.
1623 */
zram_bvec_write_partial(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1624 static int zram_bvec_write_partial(struct zram *zram, struct bio_vec *bvec,
1625 u32 index, int offset, struct bio *bio)
1626 {
1627 struct page *page = alloc_page(GFP_NOIO);
1628 int ret;
1629
1630 if (!page)
1631 return -ENOMEM;
1632
1633 ret = zram_read_page(zram, page, index, bio);
1634 if (!ret) {
1635 memcpy_from_bvec(page_address(page) + offset, bvec);
1636 ret = zram_write_page(zram, page, index);
1637 }
1638 __free_page(page);
1639 return ret;
1640 }
1641
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1642 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1643 u32 index, int offset, struct bio *bio)
1644 {
1645 if (is_partial_io(bvec))
1646 return zram_bvec_write_partial(zram, bvec, index, offset, bio);
1647 return zram_write_page(zram, bvec->bv_page, index);
1648 }
1649
1650 #ifdef CONFIG_ZRAM_MULTI_COMP
1651 /*
1652 * This function will decompress (unless it's ZRAM_HUGE) the page and then
1653 * attempt to compress it using provided compression algorithm priority
1654 * (which is potentially more effective).
1655 *
1656 * Corresponding ZRAM slot should be locked.
1657 */
zram_recompress(struct zram * zram,u32 index,struct page * page,u64 * num_recomp_pages,u32 threshold,u32 prio,u32 prio_max)1658 static int zram_recompress(struct zram *zram, u32 index, struct page *page,
1659 u64 *num_recomp_pages, u32 threshold, u32 prio,
1660 u32 prio_max)
1661 {
1662 struct zcomp_strm *zstrm = NULL;
1663 unsigned long handle_old;
1664 unsigned long handle_new;
1665 unsigned int comp_len_old;
1666 unsigned int comp_len_new;
1667 unsigned int class_index_old;
1668 unsigned int class_index_new;
1669 u32 num_recomps = 0;
1670 void *src, *dst;
1671 int ret;
1672
1673 handle_old = zram_get_handle(zram, index);
1674 if (!handle_old)
1675 return -EINVAL;
1676
1677 comp_len_old = zram_get_obj_size(zram, index);
1678 /*
1679 * Do not recompress objects that are already "small enough".
1680 */
1681 if (comp_len_old < threshold)
1682 return 0;
1683
1684 ret = zram_read_from_zspool(zram, page, index);
1685 if (ret)
1686 return ret;
1687
1688 class_index_old = zs_lookup_class_index(zram->mem_pool, comp_len_old);
1689 /*
1690 * Iterate the secondary comp algorithms list (in order of priority)
1691 * and try to recompress the page.
1692 */
1693 for (; prio < prio_max; prio++) {
1694 if (!zram->comps[prio])
1695 continue;
1696
1697 /*
1698 * Skip if the object is already re-compressed with a higher
1699 * priority algorithm (or same algorithm).
1700 */
1701 if (prio <= zram_get_priority(zram, index))
1702 continue;
1703
1704 num_recomps++;
1705 zstrm = zcomp_stream_get(zram->comps[prio]);
1706 src = kmap_local_page(page);
1707 ret = zcomp_compress(zram->comps[prio], zstrm,
1708 src, &comp_len_new);
1709 kunmap_local(src);
1710
1711 if (ret) {
1712 zcomp_stream_put(zram->comps[prio]);
1713 return ret;
1714 }
1715
1716 class_index_new = zs_lookup_class_index(zram->mem_pool,
1717 comp_len_new);
1718
1719 /* Continue until we make progress */
1720 if (class_index_new >= class_index_old ||
1721 (threshold && comp_len_new >= threshold)) {
1722 zcomp_stream_put(zram->comps[prio]);
1723 continue;
1724 }
1725
1726 /* Recompression was successful so break out */
1727 break;
1728 }
1729
1730 /*
1731 * We did not try to recompress, e.g. when we have only one
1732 * secondary algorithm and the page is already recompressed
1733 * using that algorithm
1734 */
1735 if (!zstrm)
1736 return 0;
1737
1738 /*
1739 * Decrement the limit (if set) on pages we can recompress, even
1740 * when current recompression was unsuccessful or did not compress
1741 * the page below the threshold, because we still spent resources
1742 * on it.
1743 */
1744 if (*num_recomp_pages)
1745 *num_recomp_pages -= 1;
1746
1747 if (class_index_new >= class_index_old) {
1748 /*
1749 * Secondary algorithms failed to re-compress the page
1750 * in a way that would save memory, mark the object as
1751 * incompressible so that we will not try to compress
1752 * it again.
1753 *
1754 * We need to make sure that all secondary algorithms have
1755 * failed, so we test if the number of recompressions matches
1756 * the number of active secondary algorithms.
1757 */
1758 if (num_recomps == zram->num_active_comps - 1)
1759 zram_set_flag(zram, index, ZRAM_INCOMPRESSIBLE);
1760 return 0;
1761 }
1762
1763 /* Successful recompression but above threshold */
1764 if (threshold && comp_len_new >= threshold)
1765 return 0;
1766
1767 /*
1768 * No direct reclaim (slow path) for handle allocation and no
1769 * re-compression attempt (unlike in zram_write_bvec()) since
1770 * we already have stored that object in zsmalloc. If we cannot
1771 * alloc memory for recompressed object then we bail out and
1772 * simply keep the old (existing) object in zsmalloc.
1773 */
1774 handle_new = zs_malloc(zram->mem_pool, comp_len_new,
1775 __GFP_KSWAPD_RECLAIM |
1776 __GFP_NOWARN |
1777 __GFP_HIGHMEM |
1778 __GFP_MOVABLE);
1779 if (IS_ERR_VALUE(handle_new)) {
1780 zcomp_stream_put(zram->comps[prio]);
1781 return PTR_ERR((void *)handle_new);
1782 }
1783
1784 dst = zs_map_object(zram->mem_pool, handle_new, ZS_MM_WO);
1785 memcpy(dst, zstrm->buffer, comp_len_new);
1786 zcomp_stream_put(zram->comps[prio]);
1787
1788 zs_unmap_object(zram->mem_pool, handle_new);
1789
1790 zram_free_page(zram, index);
1791 zram_set_handle(zram, index, handle_new);
1792 zram_set_obj_size(zram, index, comp_len_new);
1793 zram_set_priority(zram, index, prio);
1794
1795 atomic64_add(comp_len_new, &zram->stats.compr_data_size);
1796 atomic64_inc(&zram->stats.pages_stored);
1797
1798 return 0;
1799 }
1800
1801 #define RECOMPRESS_IDLE (1 << 0)
1802 #define RECOMPRESS_HUGE (1 << 1)
1803
recompress_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1804 static ssize_t recompress_store(struct device *dev,
1805 struct device_attribute *attr,
1806 const char *buf, size_t len)
1807 {
1808 u32 prio = ZRAM_SECONDARY_COMP, prio_max = ZRAM_MAX_COMPS;
1809 struct zram *zram = dev_to_zram(dev);
1810 unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
1811 char *args, *param, *val, *algo = NULL;
1812 u64 num_recomp_pages = ULLONG_MAX;
1813 u32 mode = 0, threshold = 0;
1814 unsigned long index;
1815 struct page *page;
1816 ssize_t ret;
1817
1818 args = skip_spaces(buf);
1819 while (*args) {
1820 args = next_arg(args, ¶m, &val);
1821
1822 if (!val || !*val)
1823 return -EINVAL;
1824
1825 if (!strcmp(param, "type")) {
1826 if (!strcmp(val, "idle"))
1827 mode = RECOMPRESS_IDLE;
1828 if (!strcmp(val, "huge"))
1829 mode = RECOMPRESS_HUGE;
1830 if (!strcmp(val, "huge_idle"))
1831 mode = RECOMPRESS_IDLE | RECOMPRESS_HUGE;
1832 continue;
1833 }
1834
1835 if (!strcmp(param, "max_pages")) {
1836 /*
1837 * Limit the number of entries (pages) we attempt to
1838 * recompress.
1839 */
1840 ret = kstrtoull(val, 10, &num_recomp_pages);
1841 if (ret)
1842 return ret;
1843 continue;
1844 }
1845
1846 if (!strcmp(param, "threshold")) {
1847 /*
1848 * We will re-compress only idle objects equal or
1849 * greater in size than watermark.
1850 */
1851 ret = kstrtouint(val, 10, &threshold);
1852 if (ret)
1853 return ret;
1854 continue;
1855 }
1856
1857 if (!strcmp(param, "algo")) {
1858 algo = val;
1859 continue;
1860 }
1861
1862 if (!strcmp(param, "priority")) {
1863 ret = kstrtouint(val, 10, &prio);
1864 if (ret)
1865 return ret;
1866
1867 if (prio == ZRAM_PRIMARY_COMP)
1868 prio = ZRAM_SECONDARY_COMP;
1869
1870 prio_max = min(prio + 1, ZRAM_MAX_COMPS);
1871 continue;
1872 }
1873 }
1874
1875 if (threshold >= huge_class_size)
1876 return -EINVAL;
1877
1878 down_read(&zram->init_lock);
1879 if (!init_done(zram)) {
1880 ret = -EINVAL;
1881 goto release_init_lock;
1882 }
1883
1884 if (algo) {
1885 bool found = false;
1886
1887 for (; prio < ZRAM_MAX_COMPS; prio++) {
1888 if (!zram->comp_algs[prio])
1889 continue;
1890
1891 if (!strcmp(zram->comp_algs[prio], algo)) {
1892 prio_max = min(prio + 1, ZRAM_MAX_COMPS);
1893 found = true;
1894 break;
1895 }
1896 }
1897
1898 if (!found) {
1899 ret = -EINVAL;
1900 goto release_init_lock;
1901 }
1902 }
1903
1904 page = alloc_page(GFP_KERNEL);
1905 if (!page) {
1906 ret = -ENOMEM;
1907 goto release_init_lock;
1908 }
1909
1910 ret = len;
1911 for (index = 0; index < nr_pages; index++) {
1912 int err = 0;
1913
1914 if (!num_recomp_pages)
1915 break;
1916
1917 zram_slot_lock(zram, index);
1918
1919 if (!zram_allocated(zram, index))
1920 goto next;
1921
1922 if (mode & RECOMPRESS_IDLE &&
1923 !zram_test_flag(zram, index, ZRAM_IDLE))
1924 goto next;
1925
1926 if (mode & RECOMPRESS_HUGE &&
1927 !zram_test_flag(zram, index, ZRAM_HUGE))
1928 goto next;
1929
1930 if (zram_test_flag(zram, index, ZRAM_WB) ||
1931 zram_test_flag(zram, index, ZRAM_UNDER_WB) ||
1932 zram_test_flag(zram, index, ZRAM_SAME) ||
1933 zram_test_flag(zram, index, ZRAM_INCOMPRESSIBLE))
1934 goto next;
1935
1936 err = zram_recompress(zram, index, page, &num_recomp_pages,
1937 threshold, prio, prio_max);
1938 next:
1939 zram_slot_unlock(zram, index);
1940 if (err) {
1941 ret = err;
1942 break;
1943 }
1944
1945 cond_resched();
1946 }
1947
1948 __free_page(page);
1949
1950 release_init_lock:
1951 up_read(&zram->init_lock);
1952 return ret;
1953 }
1954 #endif
1955
zram_bio_discard(struct zram * zram,struct bio * bio)1956 static void zram_bio_discard(struct zram *zram, struct bio *bio)
1957 {
1958 size_t n = bio->bi_iter.bi_size;
1959 u32 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1960 u32 offset = (bio->bi_iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
1961 SECTOR_SHIFT;
1962
1963 /*
1964 * zram manages data in physical block size units. Because logical block
1965 * size isn't identical with physical block size on some arch, we
1966 * could get a discard request pointing to a specific offset within a
1967 * certain physical block. Although we can handle this request by
1968 * reading that physiclal block and decompressing and partially zeroing
1969 * and re-compressing and then re-storing it, this isn't reasonable
1970 * because our intent with a discard request is to save memory. So
1971 * skipping this logical block is appropriate here.
1972 */
1973 if (offset) {
1974 if (n <= (PAGE_SIZE - offset))
1975 return;
1976
1977 n -= (PAGE_SIZE - offset);
1978 index++;
1979 }
1980
1981 while (n >= PAGE_SIZE) {
1982 zram_slot_lock(zram, index);
1983 zram_free_page(zram, index);
1984 zram_slot_unlock(zram, index);
1985 atomic64_inc(&zram->stats.notify_free);
1986 index++;
1987 n -= PAGE_SIZE;
1988 }
1989
1990 bio_endio(bio);
1991 }
1992
zram_bio_read(struct zram * zram,struct bio * bio)1993 static void zram_bio_read(struct zram *zram, struct bio *bio)
1994 {
1995 unsigned long start_time = bio_start_io_acct(bio);
1996 struct bvec_iter iter = bio->bi_iter;
1997
1998 do {
1999 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2000 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2001 SECTOR_SHIFT;
2002 struct bio_vec bv = bio_iter_iovec(bio, iter);
2003
2004 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2005
2006 if (zram_bvec_read(zram, &bv, index, offset, bio) < 0) {
2007 atomic64_inc(&zram->stats.failed_reads);
2008 bio->bi_status = BLK_STS_IOERR;
2009 break;
2010 }
2011 flush_dcache_page(bv.bv_page);
2012
2013 zram_slot_lock(zram, index);
2014 zram_accessed(zram, index);
2015 zram_slot_unlock(zram, index);
2016
2017 bio_advance_iter_single(bio, &iter, bv.bv_len);
2018 } while (iter.bi_size);
2019
2020 bio_end_io_acct(bio, start_time);
2021 bio_endio(bio);
2022 }
2023
zram_bio_write(struct zram * zram,struct bio * bio)2024 static void zram_bio_write(struct zram *zram, struct bio *bio)
2025 {
2026 unsigned long start_time = bio_start_io_acct(bio);
2027 struct bvec_iter iter = bio->bi_iter;
2028
2029 do {
2030 u32 index = iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
2031 u32 offset = (iter.bi_sector & (SECTORS_PER_PAGE - 1)) <<
2032 SECTOR_SHIFT;
2033 struct bio_vec bv = bio_iter_iovec(bio, iter);
2034
2035 bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
2036
2037 if (zram_bvec_write(zram, &bv, index, offset, bio) < 0) {
2038 atomic64_inc(&zram->stats.failed_writes);
2039 bio->bi_status = BLK_STS_IOERR;
2040 break;
2041 }
2042
2043 zram_slot_lock(zram, index);
2044 zram_accessed(zram, index);
2045 zram_slot_unlock(zram, index);
2046
2047 bio_advance_iter_single(bio, &iter, bv.bv_len);
2048 } while (iter.bi_size);
2049
2050 bio_end_io_acct(bio, start_time);
2051 bio_endio(bio);
2052 }
2053
2054 /*
2055 * Handler function for all zram I/O requests.
2056 */
zram_submit_bio(struct bio * bio)2057 static void zram_submit_bio(struct bio *bio)
2058 {
2059 struct zram *zram = bio->bi_bdev->bd_disk->private_data;
2060
2061 switch (bio_op(bio)) {
2062 case REQ_OP_READ:
2063 zram_bio_read(zram, bio);
2064 break;
2065 case REQ_OP_WRITE:
2066 zram_bio_write(zram, bio);
2067 break;
2068 case REQ_OP_DISCARD:
2069 case REQ_OP_WRITE_ZEROES:
2070 zram_bio_discard(zram, bio);
2071 break;
2072 default:
2073 WARN_ON_ONCE(1);
2074 bio_endio(bio);
2075 }
2076 }
2077
zram_slot_free_notify(struct block_device * bdev,unsigned long index)2078 static void zram_slot_free_notify(struct block_device *bdev,
2079 unsigned long index)
2080 {
2081 struct zram *zram;
2082
2083 zram = bdev->bd_disk->private_data;
2084
2085 atomic64_inc(&zram->stats.notify_free);
2086 if (!zram_slot_trylock(zram, index)) {
2087 atomic64_inc(&zram->stats.miss_free);
2088 return;
2089 }
2090
2091 zram_free_page(zram, index);
2092 zram_slot_unlock(zram, index);
2093 }
2094
zram_comp_params_reset(struct zram * zram)2095 static void zram_comp_params_reset(struct zram *zram)
2096 {
2097 u32 prio;
2098
2099 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2100 comp_params_reset(zram, prio);
2101 }
2102 }
2103
zram_destroy_comps(struct zram * zram)2104 static void zram_destroy_comps(struct zram *zram)
2105 {
2106 u32 prio;
2107
2108 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2109 struct zcomp *comp = zram->comps[prio];
2110
2111 zram->comps[prio] = NULL;
2112 if (!comp)
2113 continue;
2114 zcomp_destroy(comp);
2115 zram->num_active_comps--;
2116 }
2117
2118 for (prio = ZRAM_PRIMARY_COMP; prio < ZRAM_MAX_COMPS; prio++) {
2119 /* Do not free statically defined compression algorithms */
2120 if (zram->comp_algs[prio] != default_compressor)
2121 kfree(zram->comp_algs[prio]);
2122 zram->comp_algs[prio] = NULL;
2123 }
2124
2125 zram_comp_params_reset(zram);
2126 }
2127
zram_reset_device(struct zram * zram)2128 static void zram_reset_device(struct zram *zram)
2129 {
2130 down_write(&zram->init_lock);
2131
2132 zram->limit_pages = 0;
2133
2134 if (!init_done(zram)) {
2135 up_write(&zram->init_lock);
2136 return;
2137 }
2138
2139 set_capacity_and_notify(zram->disk, 0);
2140 part_stat_set_all(zram->disk->part0, 0);
2141
2142 /* I/O operation under all of CPU are done so let's free */
2143 zram_meta_free(zram, zram->disksize);
2144 zram->disksize = 0;
2145 zram_destroy_comps(zram);
2146 memset(&zram->stats, 0, sizeof(zram->stats));
2147 reset_bdev(zram);
2148
2149 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2150 up_write(&zram->init_lock);
2151 }
2152
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2153 static ssize_t disksize_store(struct device *dev,
2154 struct device_attribute *attr, const char *buf, size_t len)
2155 {
2156 u64 disksize;
2157 struct zcomp *comp;
2158 struct zram *zram = dev_to_zram(dev);
2159 int err;
2160 u32 prio;
2161
2162 disksize = memparse(buf, NULL);
2163 if (!disksize)
2164 return -EINVAL;
2165
2166 down_write(&zram->init_lock);
2167 if (init_done(zram)) {
2168 pr_info("Cannot change disksize for initialized device\n");
2169 err = -EBUSY;
2170 goto out_unlock;
2171 }
2172
2173 disksize = PAGE_ALIGN(disksize);
2174 if (!zram_meta_alloc(zram, disksize)) {
2175 err = -ENOMEM;
2176 goto out_unlock;
2177 }
2178
2179 for (prio = 0; prio < ZRAM_MAX_COMPS; prio++) {
2180 if (!zram->comp_algs[prio])
2181 continue;
2182
2183 comp = zcomp_create(zram->comp_algs[prio],
2184 &zram->params[prio]);
2185 if (IS_ERR(comp)) {
2186 pr_err("Cannot initialise %s compressing backend\n",
2187 zram->comp_algs[prio]);
2188 err = PTR_ERR(comp);
2189 goto out_free_comps;
2190 }
2191
2192 zram->comps[prio] = comp;
2193 zram->num_active_comps++;
2194 }
2195 zram->disksize = disksize;
2196 set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
2197 up_write(&zram->init_lock);
2198
2199 return len;
2200
2201 out_free_comps:
2202 zram_destroy_comps(zram);
2203 zram_meta_free(zram, disksize);
2204 out_unlock:
2205 up_write(&zram->init_lock);
2206 return err;
2207 }
2208
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)2209 static ssize_t reset_store(struct device *dev,
2210 struct device_attribute *attr, const char *buf, size_t len)
2211 {
2212 int ret;
2213 unsigned short do_reset;
2214 struct zram *zram;
2215 struct gendisk *disk;
2216
2217 ret = kstrtou16(buf, 10, &do_reset);
2218 if (ret)
2219 return ret;
2220
2221 if (!do_reset)
2222 return -EINVAL;
2223
2224 zram = dev_to_zram(dev);
2225 disk = zram->disk;
2226
2227 mutex_lock(&disk->open_mutex);
2228 /* Do not reset an active device or claimed device */
2229 if (disk_openers(disk) || zram->claim) {
2230 mutex_unlock(&disk->open_mutex);
2231 return -EBUSY;
2232 }
2233
2234 /* From now on, anyone can't open /dev/zram[0-9] */
2235 zram->claim = true;
2236 mutex_unlock(&disk->open_mutex);
2237
2238 /* Make sure all the pending I/O are finished */
2239 sync_blockdev(disk->part0);
2240 zram_reset_device(zram);
2241
2242 mutex_lock(&disk->open_mutex);
2243 zram->claim = false;
2244 mutex_unlock(&disk->open_mutex);
2245
2246 return len;
2247 }
2248
zram_open(struct gendisk * disk,blk_mode_t mode)2249 static int zram_open(struct gendisk *disk, blk_mode_t mode)
2250 {
2251 struct zram *zram = disk->private_data;
2252
2253 WARN_ON(!mutex_is_locked(&disk->open_mutex));
2254
2255 /* zram was claimed to reset so open request fails */
2256 if (zram->claim)
2257 return -EBUSY;
2258 return 0;
2259 }
2260
2261 static const struct block_device_operations zram_devops = {
2262 .open = zram_open,
2263 .submit_bio = zram_submit_bio,
2264 .swap_slot_free_notify = zram_slot_free_notify,
2265 .owner = THIS_MODULE
2266 };
2267
2268 static DEVICE_ATTR_WO(compact);
2269 static DEVICE_ATTR_RW(disksize);
2270 static DEVICE_ATTR_RO(initstate);
2271 static DEVICE_ATTR_WO(reset);
2272 static DEVICE_ATTR_WO(mem_limit);
2273 static DEVICE_ATTR_WO(mem_used_max);
2274 static DEVICE_ATTR_WO(idle);
2275 static DEVICE_ATTR_RW(max_comp_streams);
2276 static DEVICE_ATTR_RW(comp_algorithm);
2277 #ifdef CONFIG_ZRAM_WRITEBACK
2278 static DEVICE_ATTR_RW(backing_dev);
2279 static DEVICE_ATTR_WO(writeback);
2280 static DEVICE_ATTR_RW(writeback_limit);
2281 static DEVICE_ATTR_RW(writeback_limit_enable);
2282 #endif
2283 #ifdef CONFIG_ZRAM_MULTI_COMP
2284 static DEVICE_ATTR_RW(recomp_algorithm);
2285 static DEVICE_ATTR_WO(recompress);
2286 #endif
2287 static DEVICE_ATTR_WO(algorithm_params);
2288
2289 static struct attribute *zram_disk_attrs[] = {
2290 &dev_attr_disksize.attr,
2291 &dev_attr_initstate.attr,
2292 &dev_attr_reset.attr,
2293 &dev_attr_compact.attr,
2294 &dev_attr_mem_limit.attr,
2295 &dev_attr_mem_used_max.attr,
2296 &dev_attr_idle.attr,
2297 &dev_attr_max_comp_streams.attr,
2298 &dev_attr_comp_algorithm.attr,
2299 #ifdef CONFIG_ZRAM_WRITEBACK
2300 &dev_attr_backing_dev.attr,
2301 &dev_attr_writeback.attr,
2302 &dev_attr_writeback_limit.attr,
2303 &dev_attr_writeback_limit_enable.attr,
2304 #endif
2305 &dev_attr_io_stat.attr,
2306 &dev_attr_mm_stat.attr,
2307 #ifdef CONFIG_ZRAM_WRITEBACK
2308 &dev_attr_bd_stat.attr,
2309 #endif
2310 &dev_attr_debug_stat.attr,
2311 #ifdef CONFIG_ZRAM_MULTI_COMP
2312 &dev_attr_recomp_algorithm.attr,
2313 &dev_attr_recompress.attr,
2314 #endif
2315 &dev_attr_algorithm_params.attr,
2316 NULL,
2317 };
2318
2319 ATTRIBUTE_GROUPS(zram_disk);
2320
2321 /*
2322 * Allocate and initialize new zram device. the function returns
2323 * '>= 0' device_id upon success, and negative value otherwise.
2324 */
zram_add(void)2325 static int zram_add(void)
2326 {
2327 struct queue_limits lim = {
2328 .logical_block_size = ZRAM_LOGICAL_BLOCK_SIZE,
2329 /*
2330 * To ensure that we always get PAGE_SIZE aligned and
2331 * n*PAGE_SIZED sized I/O requests.
2332 */
2333 .physical_block_size = PAGE_SIZE,
2334 .io_min = PAGE_SIZE,
2335 .io_opt = PAGE_SIZE,
2336 .max_hw_discard_sectors = UINT_MAX,
2337 /*
2338 * zram_bio_discard() will clear all logical blocks if logical
2339 * block size is identical with physical block size(PAGE_SIZE).
2340 * But if it is different, we will skip discarding some parts of
2341 * logical blocks in the part of the request range which isn't
2342 * aligned to physical block size. So we can't ensure that all
2343 * discarded logical blocks are zeroed.
2344 */
2345 #if ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE
2346 .max_write_zeroes_sectors = UINT_MAX,
2347 #endif
2348 .features = BLK_FEAT_STABLE_WRITES |
2349 BLK_FEAT_SYNCHRONOUS,
2350 };
2351 struct zram *zram;
2352 int ret, device_id;
2353
2354 zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
2355 if (!zram)
2356 return -ENOMEM;
2357
2358 ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
2359 if (ret < 0)
2360 goto out_free_dev;
2361 device_id = ret;
2362
2363 init_rwsem(&zram->init_lock);
2364 #ifdef CONFIG_ZRAM_WRITEBACK
2365 spin_lock_init(&zram->wb_limit_lock);
2366 #endif
2367
2368 /* gendisk structure */
2369 zram->disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2370 if (IS_ERR(zram->disk)) {
2371 pr_err("Error allocating disk structure for device %d\n",
2372 device_id);
2373 ret = PTR_ERR(zram->disk);
2374 goto out_free_idr;
2375 }
2376
2377 zram->disk->major = zram_major;
2378 zram->disk->first_minor = device_id;
2379 zram->disk->minors = 1;
2380 zram->disk->flags |= GENHD_FL_NO_PART;
2381 zram->disk->fops = &zram_devops;
2382 zram->disk->private_data = zram;
2383 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
2384
2385 /* Actual capacity set using sysfs (/sys/block/zram<id>/disksize */
2386 set_capacity(zram->disk, 0);
2387 ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
2388 if (ret)
2389 goto out_cleanup_disk;
2390
2391 zram_comp_params_reset(zram);
2392 comp_algorithm_set(zram, ZRAM_PRIMARY_COMP, default_compressor);
2393
2394 zram_debugfs_register(zram);
2395 pr_info("Added device: %s\n", zram->disk->disk_name);
2396 return device_id;
2397
2398 out_cleanup_disk:
2399 put_disk(zram->disk);
2400 out_free_idr:
2401 idr_remove(&zram_index_idr, device_id);
2402 out_free_dev:
2403 kfree(zram);
2404 return ret;
2405 }
2406
zram_remove(struct zram * zram)2407 static int zram_remove(struct zram *zram)
2408 {
2409 bool claimed;
2410
2411 mutex_lock(&zram->disk->open_mutex);
2412 if (disk_openers(zram->disk)) {
2413 mutex_unlock(&zram->disk->open_mutex);
2414 return -EBUSY;
2415 }
2416
2417 claimed = zram->claim;
2418 if (!claimed)
2419 zram->claim = true;
2420 mutex_unlock(&zram->disk->open_mutex);
2421
2422 zram_debugfs_unregister(zram);
2423
2424 if (claimed) {
2425 /*
2426 * If we were claimed by reset_store(), del_gendisk() will
2427 * wait until reset_store() is done, so nothing need to do.
2428 */
2429 ;
2430 } else {
2431 /* Make sure all the pending I/O are finished */
2432 sync_blockdev(zram->disk->part0);
2433 zram_reset_device(zram);
2434 }
2435
2436 pr_info("Removed device: %s\n", zram->disk->disk_name);
2437
2438 del_gendisk(zram->disk);
2439
2440 /* del_gendisk drains pending reset_store */
2441 WARN_ON_ONCE(claimed && zram->claim);
2442
2443 /*
2444 * disksize_store() may be called in between zram_reset_device()
2445 * and del_gendisk(), so run the last reset to avoid leaking
2446 * anything allocated with disksize_store()
2447 */
2448 zram_reset_device(zram);
2449
2450 put_disk(zram->disk);
2451 kfree(zram);
2452 return 0;
2453 }
2454
2455 /* zram-control sysfs attributes */
2456
2457 /*
2458 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
2459 * sense that reading from this file does alter the state of your system -- it
2460 * creates a new un-initialized zram device and returns back this device's
2461 * device_id (or an error code if it fails to create a new device).
2462 */
hot_add_show(const struct class * class,const struct class_attribute * attr,char * buf)2463 static ssize_t hot_add_show(const struct class *class,
2464 const struct class_attribute *attr,
2465 char *buf)
2466 {
2467 int ret;
2468
2469 mutex_lock(&zram_index_mutex);
2470 ret = zram_add();
2471 mutex_unlock(&zram_index_mutex);
2472
2473 if (ret < 0)
2474 return ret;
2475 return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
2476 }
2477 /* This attribute must be set to 0400, so CLASS_ATTR_RO() can not be used */
2478 static struct class_attribute class_attr_hot_add =
2479 __ATTR(hot_add, 0400, hot_add_show, NULL);
2480
hot_remove_store(const struct class * class,const struct class_attribute * attr,const char * buf,size_t count)2481 static ssize_t hot_remove_store(const struct class *class,
2482 const struct class_attribute *attr,
2483 const char *buf,
2484 size_t count)
2485 {
2486 struct zram *zram;
2487 int ret, dev_id;
2488
2489 /* dev_id is gendisk->first_minor, which is `int' */
2490 ret = kstrtoint(buf, 10, &dev_id);
2491 if (ret)
2492 return ret;
2493 if (dev_id < 0)
2494 return -EINVAL;
2495
2496 mutex_lock(&zram_index_mutex);
2497
2498 zram = idr_find(&zram_index_idr, dev_id);
2499 if (zram) {
2500 ret = zram_remove(zram);
2501 if (!ret)
2502 idr_remove(&zram_index_idr, dev_id);
2503 } else {
2504 ret = -ENODEV;
2505 }
2506
2507 mutex_unlock(&zram_index_mutex);
2508 return ret ? ret : count;
2509 }
2510 static CLASS_ATTR_WO(hot_remove);
2511
2512 static struct attribute *zram_control_class_attrs[] = {
2513 &class_attr_hot_add.attr,
2514 &class_attr_hot_remove.attr,
2515 NULL,
2516 };
2517 ATTRIBUTE_GROUPS(zram_control_class);
2518
2519 static struct class zram_control_class = {
2520 .name = "zram-control",
2521 .class_groups = zram_control_class_groups,
2522 };
2523
zram_remove_cb(int id,void * ptr,void * data)2524 static int zram_remove_cb(int id, void *ptr, void *data)
2525 {
2526 WARN_ON_ONCE(zram_remove(ptr));
2527 return 0;
2528 }
2529
destroy_devices(void)2530 static void destroy_devices(void)
2531 {
2532 class_unregister(&zram_control_class);
2533 idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
2534 zram_debugfs_destroy();
2535 idr_destroy(&zram_index_idr);
2536 unregister_blkdev(zram_major, "zram");
2537 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2538 }
2539
zram_init(void)2540 static int __init zram_init(void)
2541 {
2542 struct zram_table_entry zram_te;
2543 int ret;
2544
2545 BUILD_BUG_ON(__NR_ZRAM_PAGEFLAGS > sizeof(zram_te.flags) * 8);
2546
2547 ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
2548 zcomp_cpu_up_prepare, zcomp_cpu_dead);
2549 if (ret < 0)
2550 return ret;
2551
2552 ret = class_register(&zram_control_class);
2553 if (ret) {
2554 pr_err("Unable to register zram-control class\n");
2555 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2556 return ret;
2557 }
2558
2559 zram_debugfs_create();
2560 zram_major = register_blkdev(0, "zram");
2561 if (zram_major <= 0) {
2562 pr_err("Unable to get major number\n");
2563 class_unregister(&zram_control_class);
2564 cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
2565 return -EBUSY;
2566 }
2567
2568 while (num_devices != 0) {
2569 mutex_lock(&zram_index_mutex);
2570 ret = zram_add();
2571 mutex_unlock(&zram_index_mutex);
2572 if (ret < 0)
2573 goto out_error;
2574 num_devices--;
2575 }
2576
2577 return 0;
2578
2579 out_error:
2580 destroy_devices();
2581 return ret;
2582 }
2583
zram_exit(void)2584 static void __exit zram_exit(void)
2585 {
2586 destroy_devices();
2587 }
2588
2589 module_init(zram_init);
2590 module_exit(zram_exit);
2591
2592 module_param(num_devices, uint, 0);
2593 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
2594
2595 MODULE_LICENSE("Dual BSD/GPL");
2596 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2597 MODULE_DESCRIPTION("Compressed RAM Block Device");
2598