xref: /linux/include/linux/bitmap.h (revision a1460e457e7ae42f48d8490c1214fa29f23e4d58)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_BITMAP_H
3 #define __LINUX_BITMAP_H
4 
5 #ifndef __ASSEMBLY__
6 
7 #include <linux/align.h>
8 #include <linux/bitops.h>
9 #include <linux/cleanup.h>
10 #include <linux/errno.h>
11 #include <linux/find.h>
12 #include <linux/limits.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/bitmap-str.h>
16 
17 struct device;
18 
19 /*
20  * bitmaps provide bit arrays that consume one or more unsigned
21  * longs.  The bitmap interface and available operations are listed
22  * here, in bitmap.h
23  *
24  * Function implementations generic to all architectures are in
25  * lib/bitmap.c.  Functions implementations that are architecture
26  * specific are in various include/asm-<arch>/bitops.h headers
27  * and other arch/<arch> specific files.
28  *
29  * See lib/bitmap.c for more details.
30  */
31 
32 /**
33  * DOC: bitmap overview
34  *
35  * The available bitmap operations and their rough meaning in the
36  * case that the bitmap is a single unsigned long are thus:
37  *
38  * The generated code is more efficient when nbits is known at
39  * compile-time and at most BITS_PER_LONG.
40  *
41  * ::
42  *
43  *  bitmap_zero(dst, nbits)                     *dst = 0UL
44  *  bitmap_fill(dst, nbits)                     *dst = ~0UL
45  *  bitmap_copy(dst, src, nbits)                *dst = *src
46  *  bitmap_and(dst, src1, src2, nbits)          *dst = *src1 & *src2
47  *  bitmap_or(dst, src1, src2, nbits)           *dst = *src1 | *src2
48  *  bitmap_xor(dst, src1, src2, nbits)          *dst = *src1 ^ *src2
49  *  bitmap_andnot(dst, src1, src2, nbits)       *dst = *src1 & ~(*src2)
50  *  bitmap_complement(dst, src, nbits)          *dst = ~(*src)
51  *  bitmap_equal(src1, src2, nbits)             Are *src1 and *src2 equal?
52  *  bitmap_intersects(src1, src2, nbits)        Do *src1 and *src2 overlap?
53  *  bitmap_subset(src1, src2, nbits)            Is *src1 a subset of *src2?
54  *  bitmap_empty(src, nbits)                    Are all bits zero in *src?
55  *  bitmap_full(src, nbits)                     Are all bits set in *src?
56  *  bitmap_weight(src, nbits)                   Hamming Weight: number set bits
57  *  bitmap_weight_and(src1, src2, nbits)        Hamming Weight of and'ed bitmap
58  *  bitmap_weight_andnot(src1, src2, nbits)     Hamming Weight of andnot'ed bitmap
59  *  bitmap_set(dst, pos, nbits)                 Set specified bit area
60  *  bitmap_clear(dst, pos, nbits)               Clear specified bit area
61  *  bitmap_find_next_zero_area(buf, len, pos, n, mask)  Find bit free area
62  *  bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off)  as above
63  *  bitmap_shift_right(dst, src, n, nbits)      *dst = *src >> n
64  *  bitmap_shift_left(dst, src, n, nbits)       *dst = *src << n
65  *  bitmap_cut(dst, src, first, n, nbits)       Cut n bits from first, copy rest
66  *  bitmap_replace(dst, old, new, mask, nbits)  *dst = (*old & ~(*mask)) | (*new & *mask)
67  *  bitmap_scatter(dst, src, mask, nbits)	*dst = map(dense, sparse)(src)
68  *  bitmap_gather(dst, src, mask, nbits)	*dst = map(sparse, dense)(src)
69  *  bitmap_remap(dst, src, old, new, nbits)     *dst = map(old, new)(src)
70  *  bitmap_bitremap(oldbit, old, new, nbits)    newbit = map(old, new)(oldbit)
71  *  bitmap_onto(dst, orig, relmap, nbits)       *dst = orig relative to relmap
72  *  bitmap_fold(dst, orig, sz, nbits)           dst bits = orig bits mod sz
73  *  bitmap_parse(buf, buflen, dst, nbits)       Parse bitmap dst from kernel buf
74  *  bitmap_parse_user(ubuf, ulen, dst, nbits)   Parse bitmap dst from user buf
75  *  bitmap_parselist(buf, dst, nbits)           Parse bitmap dst from kernel buf
76  *  bitmap_parselist_user(buf, dst, nbits)      Parse bitmap dst from user buf
77  *  bitmap_find_free_region(bitmap, bits, order)  Find and allocate bit region
78  *  bitmap_release_region(bitmap, pos, order)   Free specified bit region
79  *  bitmap_allocate_region(bitmap, pos, order)  Allocate specified bit region
80  *  bitmap_from_arr32(dst, buf, nbits)          Copy nbits from u32[] buf to dst
81  *  bitmap_from_arr64(dst, buf, nbits)          Copy nbits from u64[] buf to dst
82  *  bitmap_to_arr32(buf, src, nbits)            Copy nbits from buf to u32[] dst
83  *  bitmap_to_arr64(buf, src, nbits)            Copy nbits from buf to u64[] dst
84  *  bitmap_get_value8(map, start)               Get 8bit value from map at start
85  *  bitmap_set_value8(map, value, start)        Set 8bit value to map at start
86  *  bitmap_read(map, start, nbits)              Read an nbits-sized value from
87  *                                              map at start
88  *  bitmap_write(map, value, start, nbits)      Write an nbits-sized value to
89  *                                              map at start
90  *
91  * Note, bitmap_zero() and bitmap_fill() operate over the region of
92  * unsigned longs, that is, bits behind bitmap till the unsigned long
93  * boundary will be zeroed or filled as well. Consider to use
94  * bitmap_clear() or bitmap_set() to make explicit zeroing or filling
95  * respectively.
96  */
97 
98 /**
99  * DOC: bitmap bitops
100  *
101  * Also the following operations in asm/bitops.h apply to bitmaps.::
102  *
103  *  set_bit(bit, addr)                  *addr |= bit
104  *  clear_bit(bit, addr)                *addr &= ~bit
105  *  change_bit(bit, addr)               *addr ^= bit
106  *  test_bit(bit, addr)                 Is bit set in *addr?
107  *  test_and_set_bit(bit, addr)         Set bit and return old value
108  *  test_and_clear_bit(bit, addr)       Clear bit and return old value
109  *  test_and_change_bit(bit, addr)      Change bit and return old value
110  *  find_first_zero_bit(addr, nbits)    Position first zero bit in *addr
111  *  find_first_bit(addr, nbits)         Position first set bit in *addr
112  *  find_next_zero_bit(addr, nbits, bit)
113  *                                      Position next zero bit in *addr >= bit
114  *  find_next_bit(addr, nbits, bit)     Position next set bit in *addr >= bit
115  *  find_next_and_bit(addr1, addr2, nbits, bit)
116  *                                      Same as find_next_bit, but in
117  *                                      (*addr1 & *addr2)
118  *
119  */
120 
121 /**
122  * DOC: declare bitmap
123  * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used
124  * to declare an array named 'name' of just enough unsigned longs to
125  * contain all bit positions from 0 to 'bits' - 1.
126  */
127 
128 /*
129  * Allocation and deallocation of bitmap.
130  * Provided in lib/bitmap.c to avoid circular dependency.
131  */
132 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags);
133 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags);
134 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node);
135 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node);
136 void bitmap_free(const unsigned long *bitmap);
137 
138 DEFINE_FREE(bitmap, unsigned long *, if (_T) bitmap_free(_T))
139 
140 /* Managed variants of the above. */
141 unsigned long *devm_bitmap_alloc(struct device *dev,
142 				 unsigned int nbits, gfp_t flags);
143 unsigned long *devm_bitmap_zalloc(struct device *dev,
144 				  unsigned int nbits, gfp_t flags);
145 
146 /*
147  * lib/bitmap.c provides these functions:
148  */
149 
150 bool __bitmap_equal(const unsigned long *bitmap1,
151 		    const unsigned long *bitmap2, unsigned int nbits);
152 bool __pure __bitmap_or_equal(const unsigned long *src1,
153 			      const unsigned long *src2,
154 			      const unsigned long *src3,
155 			      unsigned int nbits);
156 void __bitmap_complement(unsigned long *dst, const unsigned long *src,
157 			 unsigned int nbits);
158 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
159 			  unsigned int shift, unsigned int nbits);
160 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
161 			 unsigned int shift, unsigned int nbits);
162 void bitmap_cut(unsigned long *dst, const unsigned long *src,
163 		unsigned int first, unsigned int cut, unsigned int nbits);
164 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
165 		 const unsigned long *bitmap2, unsigned int nbits);
166 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
167 		 const unsigned long *bitmap2, unsigned int nbits);
168 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
169 		  const unsigned long *bitmap2, unsigned int nbits);
170 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
171 		    const unsigned long *bitmap2, unsigned int nbits);
172 void __bitmap_replace(unsigned long *dst,
173 		      const unsigned long *old, const unsigned long *new,
174 		      const unsigned long *mask, unsigned int nbits);
175 bool __bitmap_intersects(const unsigned long *bitmap1,
176 			 const unsigned long *bitmap2, unsigned int nbits);
177 bool __bitmap_subset(const unsigned long *bitmap1,
178 		     const unsigned long *bitmap2, unsigned int nbits);
179 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits);
180 unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
181 				 const unsigned long *bitmap2, unsigned int nbits);
182 unsigned int __bitmap_weight_andnot(const unsigned long *bitmap1,
183 				    const unsigned long *bitmap2, unsigned int nbits);
184 void __bitmap_set(unsigned long *map, unsigned int start, int len);
185 void __bitmap_clear(unsigned long *map, unsigned int start, int len);
186 
187 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
188 					     unsigned long size,
189 					     unsigned long start,
190 					     unsigned int nr,
191 					     unsigned long align_mask,
192 					     unsigned long align_offset);
193 
194 /**
195  * bitmap_find_next_zero_area - find a contiguous aligned zero area
196  * @map: The address to base the search on
197  * @size: The bitmap size in bits
198  * @start: The bitnumber to start searching at
199  * @nr: The number of zeroed bits we're looking for
200  * @align_mask: Alignment mask for zero area
201  *
202  * The @align_mask should be one less than a power of 2; the effect is that
203  * the bit offset of all zero areas this function finds is multiples of that
204  * power of 2. A @align_mask of 0 means no alignment is required.
205  */
206 static inline unsigned long
bitmap_find_next_zero_area(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask)207 bitmap_find_next_zero_area(unsigned long *map,
208 			   unsigned long size,
209 			   unsigned long start,
210 			   unsigned int nr,
211 			   unsigned long align_mask)
212 {
213 	return bitmap_find_next_zero_area_off(map, size, start, nr,
214 					      align_mask, 0);
215 }
216 
217 void bitmap_remap(unsigned long *dst, const unsigned long *src,
218 		const unsigned long *old, const unsigned long *new, unsigned int nbits);
219 int bitmap_bitremap(int oldbit,
220 		const unsigned long *old, const unsigned long *new, int bits);
221 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
222 		const unsigned long *relmap, unsigned int bits);
223 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
224 		unsigned int sz, unsigned int nbits);
225 
226 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
227 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
228 
229 #define bitmap_size(nbits)	(ALIGN(nbits, BITS_PER_LONG) / BITS_PER_BYTE)
230 
bitmap_zero(unsigned long * dst,unsigned int nbits)231 static inline void bitmap_zero(unsigned long *dst, unsigned int nbits)
232 {
233 	unsigned int len = bitmap_size(nbits);
234 
235 	if (small_const_nbits(nbits))
236 		*dst = 0;
237 	else
238 		memset(dst, 0, len);
239 }
240 
bitmap_fill(unsigned long * dst,unsigned int nbits)241 static inline void bitmap_fill(unsigned long *dst, unsigned int nbits)
242 {
243 	unsigned int len = bitmap_size(nbits);
244 
245 	if (small_const_nbits(nbits))
246 		*dst = ~0UL;
247 	else
248 		memset(dst, 0xff, len);
249 }
250 
bitmap_copy(unsigned long * dst,const unsigned long * src,unsigned int nbits)251 static inline void bitmap_copy(unsigned long *dst, const unsigned long *src,
252 			unsigned int nbits)
253 {
254 	unsigned int len = bitmap_size(nbits);
255 
256 	if (small_const_nbits(nbits))
257 		*dst = *src;
258 	else
259 		memcpy(dst, src, len);
260 }
261 
262 /*
263  * Copy bitmap and clear tail bits in last word.
264  */
bitmap_copy_clear_tail(unsigned long * dst,const unsigned long * src,unsigned int nbits)265 static inline void bitmap_copy_clear_tail(unsigned long *dst,
266 		const unsigned long *src, unsigned int nbits)
267 {
268 	bitmap_copy(dst, src, nbits);
269 	if (nbits % BITS_PER_LONG)
270 		dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits);
271 }
272 
bitmap_copy_and_extend(unsigned long * to,const unsigned long * from,unsigned int count,unsigned int size)273 static inline void bitmap_copy_and_extend(unsigned long *to,
274 					  const unsigned long *from,
275 					  unsigned int count, unsigned int size)
276 {
277 	unsigned int copy = BITS_TO_LONGS(count);
278 
279 	memcpy(to, from, copy * sizeof(long));
280 	if (count % BITS_PER_LONG)
281 		to[copy - 1] &= BITMAP_LAST_WORD_MASK(count);
282 	memset(to + copy, 0, bitmap_size(size) - copy * sizeof(long));
283 }
284 
285 /*
286  * On 32-bit systems bitmaps are represented as u32 arrays internally. On LE64
287  * machines the order of hi and lo parts of numbers match the bitmap structure.
288  * In both cases conversion is not needed when copying data from/to arrays of
289  * u32. But in LE64 case, typecast in bitmap_copy_clear_tail() may lead
290  * to out-of-bound access. To avoid that, both LE and BE variants of 64-bit
291  * architectures are not using bitmap_copy_clear_tail().
292  */
293 #if BITS_PER_LONG == 64
294 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf,
295 							unsigned int nbits);
296 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap,
297 							unsigned int nbits);
298 #else
299 #define bitmap_from_arr32(bitmap, buf, nbits)			\
300 	bitmap_copy_clear_tail((unsigned long *) (bitmap),	\
301 			(const unsigned long *) (buf), (nbits))
302 #define bitmap_to_arr32(buf, bitmap, nbits)			\
303 	bitmap_copy_clear_tail((unsigned long *) (buf),		\
304 			(const unsigned long *) (bitmap), (nbits))
305 #endif
306 
307 /*
308  * On 64-bit systems bitmaps are represented as u64 arrays internally. So,
309  * the conversion is not needed when copying data from/to arrays of u64.
310  */
311 #if BITS_PER_LONG == 32
312 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits);
313 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits);
314 #else
315 #define bitmap_from_arr64(bitmap, buf, nbits)			\
316 	bitmap_copy_clear_tail((unsigned long *)(bitmap), (const unsigned long *)(buf), (nbits))
317 #define bitmap_to_arr64(buf, bitmap, nbits)			\
318 	bitmap_copy_clear_tail((unsigned long *)(buf), (const unsigned long *)(bitmap), (nbits))
319 #endif
320 
bitmap_and(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)321 static inline bool bitmap_and(unsigned long *dst, const unsigned long *src1,
322 			const unsigned long *src2, unsigned int nbits)
323 {
324 	if (small_const_nbits(nbits))
325 		return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0;
326 	return __bitmap_and(dst, src1, src2, nbits);
327 }
328 
bitmap_or(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)329 static inline void bitmap_or(unsigned long *dst, const unsigned long *src1,
330 			const unsigned long *src2, unsigned int nbits)
331 {
332 	if (small_const_nbits(nbits))
333 		*dst = *src1 | *src2;
334 	else
335 		__bitmap_or(dst, src1, src2, nbits);
336 }
337 
bitmap_xor(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)338 static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1,
339 			const unsigned long *src2, unsigned int nbits)
340 {
341 	if (small_const_nbits(nbits))
342 		*dst = *src1 ^ *src2;
343 	else
344 		__bitmap_xor(dst, src1, src2, nbits);
345 }
346 
bitmap_andnot(unsigned long * dst,const unsigned long * src1,const unsigned long * src2,unsigned int nbits)347 static inline bool bitmap_andnot(unsigned long *dst, const unsigned long *src1,
348 			const unsigned long *src2, unsigned int nbits)
349 {
350 	if (small_const_nbits(nbits))
351 		return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
352 	return __bitmap_andnot(dst, src1, src2, nbits);
353 }
354 
bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int nbits)355 static inline void bitmap_complement(unsigned long *dst, const unsigned long *src,
356 			unsigned int nbits)
357 {
358 	if (small_const_nbits(nbits))
359 		*dst = ~(*src);
360 	else
361 		__bitmap_complement(dst, src, nbits);
362 }
363 
364 #ifdef __LITTLE_ENDIAN
365 #define BITMAP_MEM_ALIGNMENT 8
366 #else
367 #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long))
368 #endif
369 #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1)
370 
bitmap_equal(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)371 static inline bool bitmap_equal(const unsigned long *src1,
372 				const unsigned long *src2, unsigned int nbits)
373 {
374 	if (small_const_nbits(nbits))
375 		return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits));
376 	if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
377 	    IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
378 		return !memcmp(src1, src2, nbits / 8);
379 	return __bitmap_equal(src1, src2, nbits);
380 }
381 
382 /**
383  * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third
384  * @src1:	Pointer to bitmap 1
385  * @src2:	Pointer to bitmap 2 will be or'ed with bitmap 1
386  * @src3:	Pointer to bitmap 3. Compare to the result of *@src1 | *@src2
387  * @nbits:	number of bits in each of these bitmaps
388  *
389  * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise
390  */
bitmap_or_equal(const unsigned long * src1,const unsigned long * src2,const unsigned long * src3,unsigned int nbits)391 static inline bool bitmap_or_equal(const unsigned long *src1,
392 				   const unsigned long *src2,
393 				   const unsigned long *src3,
394 				   unsigned int nbits)
395 {
396 	if (!small_const_nbits(nbits))
397 		return __bitmap_or_equal(src1, src2, src3, nbits);
398 
399 	return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits));
400 }
401 
bitmap_intersects(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)402 static inline bool bitmap_intersects(const unsigned long *src1,
403 				     const unsigned long *src2,
404 				     unsigned int nbits)
405 {
406 	if (small_const_nbits(nbits))
407 		return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0;
408 	else
409 		return __bitmap_intersects(src1, src2, nbits);
410 }
411 
bitmap_subset(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)412 static inline bool bitmap_subset(const unsigned long *src1,
413 				 const unsigned long *src2, unsigned int nbits)
414 {
415 	if (small_const_nbits(nbits))
416 		return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits));
417 	else
418 		return __bitmap_subset(src1, src2, nbits);
419 }
420 
bitmap_empty(const unsigned long * src,unsigned nbits)421 static inline bool bitmap_empty(const unsigned long *src, unsigned nbits)
422 {
423 	if (small_const_nbits(nbits))
424 		return ! (*src & BITMAP_LAST_WORD_MASK(nbits));
425 
426 	return find_first_bit(src, nbits) == nbits;
427 }
428 
bitmap_full(const unsigned long * src,unsigned int nbits)429 static inline bool bitmap_full(const unsigned long *src, unsigned int nbits)
430 {
431 	if (small_const_nbits(nbits))
432 		return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits));
433 
434 	return find_first_zero_bit(src, nbits) == nbits;
435 }
436 
437 static __always_inline
bitmap_weight(const unsigned long * src,unsigned int nbits)438 unsigned int bitmap_weight(const unsigned long *src, unsigned int nbits)
439 {
440 	if (small_const_nbits(nbits))
441 		return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits));
442 	return __bitmap_weight(src, nbits);
443 }
444 
445 static __always_inline
bitmap_weight_and(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)446 unsigned long bitmap_weight_and(const unsigned long *src1,
447 				const unsigned long *src2, unsigned int nbits)
448 {
449 	if (small_const_nbits(nbits))
450 		return hweight_long(*src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits));
451 	return __bitmap_weight_and(src1, src2, nbits);
452 }
453 
454 static __always_inline
bitmap_weight_andnot(const unsigned long * src1,const unsigned long * src2,unsigned int nbits)455 unsigned long bitmap_weight_andnot(const unsigned long *src1,
456 				   const unsigned long *src2, unsigned int nbits)
457 {
458 	if (small_const_nbits(nbits))
459 		return hweight_long(*src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits));
460 	return __bitmap_weight_andnot(src1, src2, nbits);
461 }
462 
bitmap_set(unsigned long * map,unsigned int start,unsigned int nbits)463 static __always_inline void bitmap_set(unsigned long *map, unsigned int start,
464 		unsigned int nbits)
465 {
466 	if (__builtin_constant_p(nbits) && nbits == 1)
467 		__set_bit(start, map);
468 	else if (small_const_nbits(start + nbits))
469 		*map |= GENMASK(start + nbits - 1, start);
470 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
471 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
472 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
473 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
474 		memset((char *)map + start / 8, 0xff, nbits / 8);
475 	else
476 		__bitmap_set(map, start, nbits);
477 }
478 
bitmap_clear(unsigned long * map,unsigned int start,unsigned int nbits)479 static __always_inline void bitmap_clear(unsigned long *map, unsigned int start,
480 		unsigned int nbits)
481 {
482 	if (__builtin_constant_p(nbits) && nbits == 1)
483 		__clear_bit(start, map);
484 	else if (small_const_nbits(start + nbits))
485 		*map &= ~GENMASK(start + nbits - 1, start);
486 	else if (__builtin_constant_p(start & BITMAP_MEM_MASK) &&
487 		 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) &&
488 		 __builtin_constant_p(nbits & BITMAP_MEM_MASK) &&
489 		 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT))
490 		memset((char *)map + start / 8, 0, nbits / 8);
491 	else
492 		__bitmap_clear(map, start, nbits);
493 }
494 
bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)495 static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src,
496 				unsigned int shift, unsigned int nbits)
497 {
498 	if (small_const_nbits(nbits))
499 		*dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift;
500 	else
501 		__bitmap_shift_right(dst, src, shift, nbits);
502 }
503 
bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)504 static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src,
505 				unsigned int shift, unsigned int nbits)
506 {
507 	if (small_const_nbits(nbits))
508 		*dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits);
509 	else
510 		__bitmap_shift_left(dst, src, shift, nbits);
511 }
512 
bitmap_replace(unsigned long * dst,const unsigned long * old,const unsigned long * new,const unsigned long * mask,unsigned int nbits)513 static inline void bitmap_replace(unsigned long *dst,
514 				  const unsigned long *old,
515 				  const unsigned long *new,
516 				  const unsigned long *mask,
517 				  unsigned int nbits)
518 {
519 	if (small_const_nbits(nbits))
520 		*dst = (*old & ~(*mask)) | (*new & *mask);
521 	else
522 		__bitmap_replace(dst, old, new, mask, nbits);
523 }
524 
525 /**
526  * bitmap_scatter - Scatter a bitmap according to the given mask
527  * @dst: scattered bitmap
528  * @src: gathered bitmap
529  * @mask: mask representing bits to assign to in the scattered bitmap
530  * @nbits: number of bits in each of these bitmaps
531  *
532  * Scatters bitmap with sequential bits according to the given @mask.
533  *
534  * Example:
535  * If @src bitmap = 0x005a, with @mask = 0x1313, @dst will be 0x0302.
536  *
537  * Or in binary form
538  * @src			@mask			@dst
539  * 0000000001011010	0001001100010011	0000001100000010
540  *
541  * (Bits 0, 1, 2, 3, 4, 5 are copied to the bits 0, 1, 4, 8, 9, 12)
542  *
543  * A more 'visual' description of the operation::
544  *
545  *	src:  0000000001011010
546  *	                ||||||
547  *	         +------+|||||
548  *	         |  +----+||||
549  *	         |  |+----+|||
550  *	         |  ||   +-+||
551  *	         |  ||   |  ||
552  *	mask: ...v..vv...v..vv
553  *	      ...0..11...0..10
554  *	dst:  0000001100000010
555  *
556  * A relationship exists between bitmap_scatter() and bitmap_gather().
557  * bitmap_gather() can be seen as the 'reverse' bitmap_scatter() operation.
558  * See bitmap_scatter() for details related to this relationship.
559  */
bitmap_scatter(unsigned long * dst,const unsigned long * src,const unsigned long * mask,unsigned int nbits)560 static inline void bitmap_scatter(unsigned long *dst, const unsigned long *src,
561 				  const unsigned long *mask, unsigned int nbits)
562 {
563 	unsigned int n = 0;
564 	unsigned int bit;
565 
566 	bitmap_zero(dst, nbits);
567 
568 	for_each_set_bit(bit, mask, nbits)
569 		__assign_bit(bit, dst, test_bit(n++, src));
570 }
571 
572 /**
573  * bitmap_gather - Gather a bitmap according to given mask
574  * @dst: gathered bitmap
575  * @src: scattered bitmap
576  * @mask: mask representing bits to extract from in the scattered bitmap
577  * @nbits: number of bits in each of these bitmaps
578  *
579  * Gathers bitmap with sparse bits according to the given @mask.
580  *
581  * Example:
582  * If @src bitmap = 0x0302, with @mask = 0x1313, @dst will be 0x001a.
583  *
584  * Or in binary form
585  * @src			@mask			@dst
586  * 0000001100000010	0001001100010011	0000000000011010
587  *
588  * (Bits 0, 1, 4, 8, 9, 12 are copied to the bits 0, 1, 2, 3, 4, 5)
589  *
590  * A more 'visual' description of the operation::
591  *
592  *	mask: ...v..vv...v..vv
593  *	src:  0000001100000010
594  *	         ^  ^^   ^   0
595  *	         |  ||   |  10
596  *	         |  ||   > 010
597  *	         |  |+--> 1010
598  *	         |  +--> 11010
599  *	         +----> 011010
600  *	dst:  0000000000011010
601  *
602  * A relationship exists between bitmap_gather() and bitmap_scatter(). See
603  * bitmap_scatter() for the bitmap scatter detailed operations.
604  * Suppose scattered computed using bitmap_scatter(scattered, src, mask, n).
605  * The operation bitmap_gather(result, scattered, mask, n) leads to a result
606  * equal or equivalent to src.
607  *
608  * The result can be 'equivalent' because bitmap_scatter() and bitmap_gather()
609  * are not bijective.
610  * The result and src values are equivalent in that sense that a call to
611  * bitmap_scatter(res, src, mask, n) and a call to
612  * bitmap_scatter(res, result, mask, n) will lead to the same res value.
613  */
bitmap_gather(unsigned long * dst,const unsigned long * src,const unsigned long * mask,unsigned int nbits)614 static inline void bitmap_gather(unsigned long *dst, const unsigned long *src,
615 				 const unsigned long *mask, unsigned int nbits)
616 {
617 	unsigned int n = 0;
618 	unsigned int bit;
619 
620 	bitmap_zero(dst, nbits);
621 
622 	for_each_set_bit(bit, mask, nbits)
623 		__assign_bit(n++, dst, test_bit(bit, src));
624 }
625 
bitmap_next_set_region(unsigned long * bitmap,unsigned int * rs,unsigned int * re,unsigned int end)626 static inline void bitmap_next_set_region(unsigned long *bitmap,
627 					  unsigned int *rs, unsigned int *re,
628 					  unsigned int end)
629 {
630 	*rs = find_next_bit(bitmap, end, *rs);
631 	*re = find_next_zero_bit(bitmap, end, *rs + 1);
632 }
633 
634 /**
635  * bitmap_release_region - release allocated bitmap region
636  *	@bitmap: array of unsigned longs corresponding to the bitmap
637  *	@pos: beginning of bit region to release
638  *	@order: region size (log base 2 of number of bits) to release
639  *
640  * This is the complement to __bitmap_find_free_region() and releases
641  * the found region (by clearing it in the bitmap).
642  */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)643 static inline void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
644 {
645 	bitmap_clear(bitmap, pos, BIT(order));
646 }
647 
648 /**
649  * bitmap_allocate_region - allocate bitmap region
650  *	@bitmap: array of unsigned longs corresponding to the bitmap
651  *	@pos: beginning of bit region to allocate
652  *	@order: region size (log base 2 of number of bits) to allocate
653  *
654  * Allocate (set bits in) a specified region of a bitmap.
655  *
656  * Returns: 0 on success, or %-EBUSY if specified region wasn't
657  * free (not all bits were zero).
658  */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)659 static inline int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
660 {
661 	unsigned int len = BIT(order);
662 
663 	if (find_next_bit(bitmap, pos + len, pos) < pos + len)
664 		return -EBUSY;
665 	bitmap_set(bitmap, pos, len);
666 	return 0;
667 }
668 
669 /**
670  * bitmap_find_free_region - find a contiguous aligned mem region
671  *	@bitmap: array of unsigned longs corresponding to the bitmap
672  *	@bits: number of bits in the bitmap
673  *	@order: region size (log base 2 of number of bits) to find
674  *
675  * Find a region of free (zero) bits in a @bitmap of @bits bits and
676  * allocate them (set them to one).  Only consider regions of length
677  * a power (@order) of two, aligned to that power of two, which
678  * makes the search algorithm much faster.
679  *
680  * Returns: the bit offset in bitmap of the allocated region,
681  * or -errno on failure.
682  */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)683 static inline int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
684 {
685 	unsigned int pos, end;		/* scans bitmap by regions of size order */
686 
687 	for (pos = 0; (end = pos + BIT(order)) <= bits; pos = end) {
688 		if (!bitmap_allocate_region(bitmap, pos, order))
689 			return pos;
690 	}
691 	return -ENOMEM;
692 }
693 
694 /**
695  * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap.
696  * @n: u64 value
697  *
698  * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit
699  * integers in 32-bit environment, and 64-bit integers in 64-bit one.
700  *
701  * There are four combinations of endianness and length of the word in linux
702  * ABIs: LE64, BE64, LE32 and BE32.
703  *
704  * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in
705  * bitmaps and therefore don't require any special handling.
706  *
707  * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory
708  * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the
709  * other hand is represented as an array of 32-bit words and the position of
710  * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that
711  * word.  For example, bit #42 is located at 10th position of 2nd word.
712  * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit
713  * values in memory as it usually does. But for BE we need to swap hi and lo
714  * words manually.
715  *
716  * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and
717  * lo parts of u64.  For LE32 it does nothing, and for BE environment it swaps
718  * hi and lo words, as is expected by bitmap.
719  */
720 #if __BITS_PER_LONG == 64
721 #define BITMAP_FROM_U64(n) (n)
722 #else
723 #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \
724 				((unsigned long) ((u64)(n) >> 32))
725 #endif
726 
727 /**
728  * bitmap_from_u64 - Check and swap words within u64.
729  *  @mask: source bitmap
730  *  @dst:  destination bitmap
731  *
732  * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]``
733  * to read u64 mask, we will get the wrong word.
734  * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits,
735  * but we expect the lower 32-bits of u64.
736  */
bitmap_from_u64(unsigned long * dst,u64 mask)737 static inline void bitmap_from_u64(unsigned long *dst, u64 mask)
738 {
739 	bitmap_from_arr64(dst, &mask, 64);
740 }
741 
742 /**
743  * bitmap_read - read a value of n-bits from the memory region
744  * @map: address to the bitmap memory region
745  * @start: bit offset of the n-bit value
746  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG
747  *
748  * Returns: value of @nbits bits located at the @start bit offset within the
749  * @map memory region. For @nbits = 0 and @nbits > BITS_PER_LONG the return
750  * value is undefined.
751  */
bitmap_read(const unsigned long * map,unsigned long start,unsigned long nbits)752 static inline unsigned long bitmap_read(const unsigned long *map,
753 					unsigned long start,
754 					unsigned long nbits)
755 {
756 	size_t index = BIT_WORD(start);
757 	unsigned long offset = start % BITS_PER_LONG;
758 	unsigned long space = BITS_PER_LONG - offset;
759 	unsigned long value_low, value_high;
760 
761 	if (unlikely(!nbits || nbits > BITS_PER_LONG))
762 		return 0;
763 
764 	if (space >= nbits)
765 		return (map[index] >> offset) & BITMAP_LAST_WORD_MASK(nbits);
766 
767 	value_low = map[index] & BITMAP_FIRST_WORD_MASK(start);
768 	value_high = map[index + 1] & BITMAP_LAST_WORD_MASK(start + nbits);
769 	return (value_low >> offset) | (value_high << space);
770 }
771 
772 /**
773  * bitmap_write - write n-bit value within a memory region
774  * @map: address to the bitmap memory region
775  * @value: value to write, clamped to nbits
776  * @start: bit offset of the n-bit value
777  * @nbits: size of value in bits, nonzero, up to BITS_PER_LONG.
778  *
779  * bitmap_write() behaves as-if implemented as @nbits calls of __assign_bit(),
780  * i.e. bits beyond @nbits are ignored:
781  *
782  *   for (bit = 0; bit < nbits; bit++)
783  *           __assign_bit(start + bit, bitmap, val & BIT(bit));
784  *
785  * For @nbits == 0 and @nbits > BITS_PER_LONG no writes are performed.
786  */
bitmap_write(unsigned long * map,unsigned long value,unsigned long start,unsigned long nbits)787 static inline void bitmap_write(unsigned long *map, unsigned long value,
788 				unsigned long start, unsigned long nbits)
789 {
790 	size_t index;
791 	unsigned long offset;
792 	unsigned long space;
793 	unsigned long mask;
794 	bool fit;
795 
796 	if (unlikely(!nbits || nbits > BITS_PER_LONG))
797 		return;
798 
799 	mask = BITMAP_LAST_WORD_MASK(nbits);
800 	value &= mask;
801 	offset = start % BITS_PER_LONG;
802 	space = BITS_PER_LONG - offset;
803 	fit = space >= nbits;
804 	index = BIT_WORD(start);
805 
806 	map[index] &= (fit ? (~(mask << offset)) : ~BITMAP_FIRST_WORD_MASK(start));
807 	map[index] |= value << offset;
808 	if (fit)
809 		return;
810 
811 	map[index + 1] &= BITMAP_FIRST_WORD_MASK(start + nbits);
812 	map[index + 1] |= (value >> space);
813 }
814 
815 #define bitmap_get_value8(map, start)			\
816 	bitmap_read(map, start, BITS_PER_BYTE)
817 #define bitmap_set_value8(map, value, start)		\
818 	bitmap_write(map, value, start, BITS_PER_BYTE)
819 
820 #endif /* __ASSEMBLY__ */
821 
822 #endif /* __LINUX_BITMAP_H */
823