xref: /linux/include/linux/vmw_vmci_defs.h (revision 13845bdc869f136f92ad3d40ea09b867bb4ce467)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * VMware VMCI Driver
4  *
5  * Copyright (C) 2012 VMware, Inc. All rights reserved.
6  */
7 
8 #ifndef _VMW_VMCI_DEF_H_
9 #define _VMW_VMCI_DEF_H_
10 
11 #include <linux/atomic.h>
12 #include <linux/bits.h>
13 
14 /* Register offsets. */
15 #define VMCI_STATUS_ADDR        0x00
16 #define VMCI_CONTROL_ADDR       0x04
17 #define VMCI_ICR_ADDR           0x08
18 #define VMCI_IMR_ADDR           0x0c
19 #define VMCI_DATA_OUT_ADDR      0x10
20 #define VMCI_DATA_IN_ADDR       0x14
21 #define VMCI_CAPS_ADDR          0x18
22 #define VMCI_RESULT_LOW_ADDR    0x1c
23 #define VMCI_RESULT_HIGH_ADDR   0x20
24 #define VMCI_DATA_OUT_LOW_ADDR  0x24
25 #define VMCI_DATA_OUT_HIGH_ADDR 0x28
26 #define VMCI_DATA_IN_LOW_ADDR   0x2c
27 #define VMCI_DATA_IN_HIGH_ADDR  0x30
28 #define VMCI_GUEST_PAGE_SHIFT   0x34
29 
30 /* Max number of devices. */
31 #define VMCI_MAX_DEVICES 1
32 
33 /* Status register bits. */
34 #define VMCI_STATUS_INT_ON     BIT(0)
35 
36 /* Control register bits. */
37 #define VMCI_CONTROL_RESET        BIT(0)
38 #define VMCI_CONTROL_INT_ENABLE   BIT(1)
39 #define VMCI_CONTROL_INT_DISABLE  BIT(2)
40 
41 /* Capabilities register bits. */
42 #define VMCI_CAPS_HYPERCALL     BIT(0)
43 #define VMCI_CAPS_GUESTCALL     BIT(1)
44 #define VMCI_CAPS_DATAGRAM      BIT(2)
45 #define VMCI_CAPS_NOTIFICATIONS BIT(3)
46 #define VMCI_CAPS_PPN64         BIT(4)
47 #define VMCI_CAPS_DMA_DATAGRAM  BIT(5)
48 
49 /* Interrupt Cause register bits. */
50 #define VMCI_ICR_DATAGRAM      BIT(0)
51 #define VMCI_ICR_NOTIFICATION  BIT(1)
52 #define VMCI_ICR_DMA_DATAGRAM  BIT(2)
53 
54 /* Interrupt Mask register bits. */
55 #define VMCI_IMR_DATAGRAM      BIT(0)
56 #define VMCI_IMR_NOTIFICATION  BIT(1)
57 #define VMCI_IMR_DMA_DATAGRAM  BIT(2)
58 
59 /*
60  * Maximum MSI/MSI-X interrupt vectors in the device.
61  * If VMCI_CAPS_DMA_DATAGRAM is supported by the device,
62  * VMCI_MAX_INTRS_DMA_DATAGRAM vectors are available,
63  * otherwise only VMCI_MAX_INTRS_NOTIFICATION.
64  */
65 #define VMCI_MAX_INTRS_NOTIFICATION 2
66 #define VMCI_MAX_INTRS_DMA_DATAGRAM 3
67 #define VMCI_MAX_INTRS              VMCI_MAX_INTRS_DMA_DATAGRAM
68 
69 /*
70  * Supported interrupt vectors.  There is one for each ICR value above,
71  * but here they indicate the position in the vector array/message ID.
72  */
73 enum {
74 	VMCI_INTR_DATAGRAM = 0,
75 	VMCI_INTR_NOTIFICATION = 1,
76 	VMCI_INTR_DMA_DATAGRAM = 2,
77 };
78 
79 /*
80  * A single VMCI device has an upper limit of 128MB on the amount of
81  * memory that can be used for queue pairs. Since each queue pair
82  * consists of at least two pages, the memory limit also dictates the
83  * number of queue pairs a guest can create.
84  */
85 #define VMCI_MAX_GUEST_QP_MEMORY ((size_t)(128 * 1024 * 1024))
86 #define VMCI_MAX_GUEST_QP_COUNT  (VMCI_MAX_GUEST_QP_MEMORY / PAGE_SIZE / 2)
87 
88 /*
89  * There can be at most PAGE_SIZE doorbells since there is one doorbell
90  * per byte in the doorbell bitmap page.
91  */
92 #define VMCI_MAX_GUEST_DOORBELL_COUNT PAGE_SIZE
93 
94 /*
95  * Queues with pre-mapped data pages must be small, so that we don't pin
96  * too much kernel memory (especially on vmkernel).  We limit a queuepair to
97  * 32 KB, or 16 KB per queue for symmetrical pairs.
98  */
99 #define VMCI_MAX_PINNED_QP_MEMORY ((size_t)(32 * 1024))
100 
101 /*
102  * The version of the VMCI device that supports MMIO access to registers
103  * requests 256KB for BAR1 whereas the version of VMCI that supports
104  * MSI/MSI-X only requests 8KB. The layout of the larger 256KB region is:
105  * - the first 128KB are used for MSI/MSI-X.
106  * - the following 64KB are used for MMIO register access.
107  * - the remaining 64KB are unused.
108  */
109 #define VMCI_WITH_MMIO_ACCESS_BAR_SIZE ((size_t)(256 * 1024))
110 #define VMCI_MMIO_ACCESS_OFFSET        ((size_t)(128 * 1024))
111 #define VMCI_MMIO_ACCESS_SIZE          ((size_t)(64 * 1024))
112 
113 /*
114  * For VMCI devices supporting the VMCI_CAPS_DMA_DATAGRAM capability, the
115  * sending and receiving of datagrams can be performed using DMA to/from
116  * a driver allocated buffer.
117  * Sending and receiving will be handled as follows:
118  * - when sending datagrams, the driver initializes the buffer where the
119  *   data part will refer to the outgoing VMCI datagram, sets the busy flag
120  *   to 1 and writes the address of the buffer to VMCI_DATA_OUT_HIGH_ADDR
121  *   and VMCI_DATA_OUT_LOW_ADDR. Writing to VMCI_DATA_OUT_LOW_ADDR triggers
122  *   the device processing of the buffer. When the device has processed the
123  *   buffer, it will write the result value to the buffer and then clear the
124  *   busy flag.
125  * - when receiving datagrams, the driver initializes the buffer where the
126  *   data part will describe the receive buffer, clears the busy flag and
127  *   writes the address of the buffer to VMCI_DATA_IN_HIGH_ADDR and
128  *   VMCI_DATA_IN_LOW_ADDR. Writing to VMCI_DATA_IN_LOW_ADDR triggers the
129  *   device processing of the buffer. The device will copy as many available
130  *   datagrams into the buffer as possible, and then sets the busy flag.
131  *   When the busy flag is set, the driver will process the datagrams in the
132  *   buffer.
133  */
134 struct vmci_data_in_out_header {
135 	uint32_t busy;
136 	uint32_t opcode;
137 	uint32_t size;
138 	uint32_t rsvd;
139 	uint64_t result;
140 };
141 
142 struct vmci_sg_elem {
143 	uint64_t addr;
144 	uint64_t size;
145 };
146 
147 /*
148  * We have a fixed set of resource IDs available in the VMX.
149  * This allows us to have a very simple implementation since we statically
150  * know how many will create datagram handles. If a new caller arrives and
151  * we have run out of slots we can manually increment the maximum size of
152  * available resource IDs.
153  *
154  * VMCI reserved hypervisor datagram resource IDs.
155  */
156 enum {
157 	VMCI_RESOURCES_QUERY = 0,
158 	VMCI_GET_CONTEXT_ID = 1,
159 	VMCI_SET_NOTIFY_BITMAP = 2,
160 	VMCI_DOORBELL_LINK = 3,
161 	VMCI_DOORBELL_UNLINK = 4,
162 	VMCI_DOORBELL_NOTIFY = 5,
163 	/*
164 	 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
165 	 * obsoleted by the removal of VM to VM communication.
166 	 */
167 	VMCI_DATAGRAM_REQUEST_MAP = 6,
168 	VMCI_DATAGRAM_REMOVE_MAP = 7,
169 	VMCI_EVENT_SUBSCRIBE = 8,
170 	VMCI_EVENT_UNSUBSCRIBE = 9,
171 	VMCI_QUEUEPAIR_ALLOC = 10,
172 	VMCI_QUEUEPAIR_DETACH = 11,
173 
174 	/*
175 	 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
176 	 * WS 7.0/7.1 and ESX 4.1
177 	 */
178 	VMCI_HGFS_TRANSPORT = 13,
179 	VMCI_UNITY_PBRPC_REGISTER = 14,
180 	VMCI_RPC_PRIVILEGED = 15,
181 	VMCI_RPC_UNPRIVILEGED = 16,
182 	VMCI_RESOURCE_MAX = 17,
183 };
184 
185 /*
186  * struct vmci_handle - Ownership information structure
187  * @context:    The VMX context ID.
188  * @resource:   The resource ID (used for locating in resource hash).
189  *
190  * The vmci_handle structure is used to track resources used within
191  * vmw_vmci.
192  */
193 struct vmci_handle {
194 	u32 context;
195 	u32 resource;
196 };
197 
198 #define vmci_make_handle(_cid, _rid) \
199 	(struct vmci_handle){ .context = _cid, .resource = _rid }
200 
201 static inline bool vmci_handle_is_equal(struct vmci_handle h1,
202 					struct vmci_handle h2)
203 {
204 	return h1.context == h2.context && h1.resource == h2.resource;
205 }
206 
207 #define VMCI_INVALID_ID ~0
208 static const struct vmci_handle VMCI_INVALID_HANDLE = {
209 	.context = VMCI_INVALID_ID,
210 	.resource = VMCI_INVALID_ID
211 };
212 
213 static inline bool vmci_handle_is_invalid(struct vmci_handle h)
214 {
215 	return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
216 }
217 
218 /*
219  * The below defines can be used to send anonymous requests.
220  * This also indicates that no response is expected.
221  */
222 #define VMCI_ANON_SRC_CONTEXT_ID   VMCI_INVALID_ID
223 #define VMCI_ANON_SRC_RESOURCE_ID  VMCI_INVALID_ID
224 static const struct vmci_handle __maybe_unused VMCI_ANON_SRC_HANDLE = {
225 	.context = VMCI_ANON_SRC_CONTEXT_ID,
226 	.resource = VMCI_ANON_SRC_RESOURCE_ID
227 };
228 
229 /* The lowest 16 context ids are reserved for internal use. */
230 #define VMCI_RESERVED_CID_LIMIT ((u32) 16)
231 
232 /*
233  * Hypervisor context id, used for calling into hypervisor
234  * supplied services from the VM.
235  */
236 #define VMCI_HYPERVISOR_CONTEXT_ID 0
237 
238 /*
239  * Well-known context id, a logical context that contains a set of
240  * well-known services. This context ID is now obsolete.
241  */
242 #define VMCI_WELL_KNOWN_CONTEXT_ID 1
243 
244 /*
245  * Context ID used by host endpoints.
246  */
247 #define VMCI_HOST_CONTEXT_ID  2
248 
249 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) &&		\
250 				  (_cid) > VMCI_HOST_CONTEXT_ID)
251 
252 /*
253  * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
254  * handles that refer to a specific context.
255  */
256 #define VMCI_CONTEXT_RESOURCE_ID 0
257 
258 /*
259  * VMCI error codes.
260  */
261 enum {
262 	VMCI_SUCCESS_QUEUEPAIR_ATTACH	= 5,
263 	VMCI_SUCCESS_QUEUEPAIR_CREATE	= 4,
264 	VMCI_SUCCESS_LAST_DETACH	= 3,
265 	VMCI_SUCCESS_ACCESS_GRANTED	= 2,
266 	VMCI_SUCCESS_ENTRY_DEAD		= 1,
267 	VMCI_SUCCESS			 = 0,
268 	VMCI_ERROR_INVALID_RESOURCE	 = (-1),
269 	VMCI_ERROR_INVALID_ARGS		 = (-2),
270 	VMCI_ERROR_NO_MEM		 = (-3),
271 	VMCI_ERROR_DATAGRAM_FAILED	 = (-4),
272 	VMCI_ERROR_MORE_DATA		 = (-5),
273 	VMCI_ERROR_NO_MORE_DATAGRAMS	 = (-6),
274 	VMCI_ERROR_NO_ACCESS		 = (-7),
275 	VMCI_ERROR_NO_HANDLE		 = (-8),
276 	VMCI_ERROR_DUPLICATE_ENTRY	 = (-9),
277 	VMCI_ERROR_DST_UNREACHABLE	 = (-10),
278 	VMCI_ERROR_PAYLOAD_TOO_LARGE	 = (-11),
279 	VMCI_ERROR_INVALID_PRIV		 = (-12),
280 	VMCI_ERROR_GENERIC		 = (-13),
281 	VMCI_ERROR_PAGE_ALREADY_SHARED	 = (-14),
282 	VMCI_ERROR_CANNOT_SHARE_PAGE	 = (-15),
283 	VMCI_ERROR_CANNOT_UNSHARE_PAGE	 = (-16),
284 	VMCI_ERROR_NO_PROCESS		 = (-17),
285 	VMCI_ERROR_NO_DATAGRAM		 = (-18),
286 	VMCI_ERROR_NO_RESOURCES		 = (-19),
287 	VMCI_ERROR_UNAVAILABLE		 = (-20),
288 	VMCI_ERROR_NOT_FOUND		 = (-21),
289 	VMCI_ERROR_ALREADY_EXISTS	 = (-22),
290 	VMCI_ERROR_NOT_PAGE_ALIGNED	 = (-23),
291 	VMCI_ERROR_INVALID_SIZE		 = (-24),
292 	VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
293 	VMCI_ERROR_TIMEOUT		 = (-26),
294 	VMCI_ERROR_DATAGRAM_INCOMPLETE	 = (-27),
295 	VMCI_ERROR_INCORRECT_IRQL	 = (-28),
296 	VMCI_ERROR_EVENT_UNKNOWN	 = (-29),
297 	VMCI_ERROR_OBSOLETE		 = (-30),
298 	VMCI_ERROR_QUEUEPAIR_MISMATCH	 = (-31),
299 	VMCI_ERROR_QUEUEPAIR_NOTSET	 = (-32),
300 	VMCI_ERROR_QUEUEPAIR_NOTOWNER	 = (-33),
301 	VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
302 	VMCI_ERROR_QUEUEPAIR_NOSPACE	 = (-35),
303 	VMCI_ERROR_QUEUEPAIR_NODATA	 = (-36),
304 	VMCI_ERROR_BUSMEM_INVALIDATION	 = (-37),
305 	VMCI_ERROR_MODULE_NOT_LOADED	 = (-38),
306 	VMCI_ERROR_DEVICE_NOT_FOUND	 = (-39),
307 	VMCI_ERROR_QUEUEPAIR_NOT_READY	 = (-40),
308 	VMCI_ERROR_WOULD_BLOCK		 = (-41),
309 
310 	/* VMCI clients should return error code within this range */
311 	VMCI_ERROR_CLIENT_MIN		 = (-500),
312 	VMCI_ERROR_CLIENT_MAX		 = (-550),
313 
314 	/* Internal error codes. */
315 	VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
316 };
317 
318 /* VMCI reserved events. */
319 enum {
320 	/* Only applicable to guest endpoints */
321 	VMCI_EVENT_CTX_ID_UPDATE  = 0,
322 
323 	/* Applicable to guest and host */
324 	VMCI_EVENT_CTX_REMOVED	  = 1,
325 
326 	/* Only applicable to guest endpoints */
327 	VMCI_EVENT_QP_RESUMED	  = 2,
328 
329 	/* Applicable to guest and host */
330 	VMCI_EVENT_QP_PEER_ATTACH = 3,
331 
332 	/* Applicable to guest and host */
333 	VMCI_EVENT_QP_PEER_DETACH = 4,
334 
335 	/*
336 	 * Applicable to VMX and vmk.  On vmk,
337 	 * this event has the Context payload type.
338 	 */
339 	VMCI_EVENT_MEM_ACCESS_ON  = 5,
340 
341 	/*
342 	 * Applicable to VMX and vmk.  Same as
343 	 * above for the payload type.
344 	 */
345 	VMCI_EVENT_MEM_ACCESS_OFF = 6,
346 	VMCI_EVENT_MAX		  = 7,
347 };
348 
349 /*
350  * Of the above events, a few are reserved for use in the VMX, and
351  * other endpoints (guest and host kernel) should not use them. For
352  * the rest of the events, we allow both host and guest endpoints to
353  * subscribe to them, to maintain the same API for host and guest
354  * endpoints.
355  */
356 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
357 				      (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
358 
359 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX &&		\
360 				  !VMCI_EVENT_VALID_VMX(_event))
361 
362 /* Reserved guest datagram resource ids. */
363 #define VMCI_EVENT_HANDLER 0
364 
365 /*
366  * VMCI coarse-grained privileges (per context or host
367  * process/endpoint. An entity with the restricted flag is only
368  * allowed to interact with the hypervisor and trusted entities.
369  */
370 enum {
371 	VMCI_NO_PRIVILEGE_FLAGS = 0,
372 	VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
373 	VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
374 	VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
375 				    VMCI_PRIVILEGE_FLAG_TRUSTED),
376 	VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
377 	VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
378 	VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
379 };
380 
381 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
382 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023
383 
384 /*
385  * Driver version.
386  *
387  * Increment major version when you make an incompatible change.
388  * Compatibility goes both ways (old driver with new executable
389  * as well as new driver with old executable).
390  */
391 
392 /* Never change VMCI_VERSION_SHIFT_WIDTH */
393 #define VMCI_VERSION_SHIFT_WIDTH 16
394 #define VMCI_MAKE_VERSION(_major, _minor)			\
395 	((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
396 
397 #define VMCI_VERSION_MAJOR(v)  ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
398 #define VMCI_VERSION_MINOR(v)  ((u16) (v))
399 
400 /*
401  * VMCI_VERSION is always the current version.  Subsequently listed
402  * versions are ways of detecting previous versions of the connecting
403  * application (i.e., VMX).
404  *
405  * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
406  * communication.
407  *
408  * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
409  * support.
410  *
411  * VMCI_VERSION_HOSTQP: This version introduced host end point support
412  * for hosted products.
413  *
414  * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
415  * support for host end-points.
416  *
417  * VMCI_VERSION_PREVERS2: This fictional version number is intended to
418  * represent the version of a VMX which doesn't call into the driver
419  * with ioctl VERSION2 and thus doesn't establish its version with the
420  * driver.
421  */
422 
423 #define VMCI_VERSION                VMCI_VERSION_NOVMVM
424 #define VMCI_VERSION_NOVMVM         VMCI_MAKE_VERSION(11, 0)
425 #define VMCI_VERSION_NOTIFY         VMCI_MAKE_VERSION(10, 0)
426 #define VMCI_VERSION_HOSTQP         VMCI_MAKE_VERSION(9, 0)
427 #define VMCI_VERSION_PREHOSTQP      VMCI_MAKE_VERSION(8, 0)
428 #define VMCI_VERSION_PREVERS2       VMCI_MAKE_VERSION(1, 0)
429 
430 #define VMCI_SOCKETS_MAKE_VERSION(_p)					\
431 	((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
432 
433 /*
434  * The VMCI IOCTLs.  We use identity code 7, as noted in ioctl-number.rst,
435  * and we start at sequence 9f.  This gives us the same values that our
436  * shipping products use, starting at 1951, provided we leave out the
437  * direction and structure size.  Note that VMMon occupies the block
438  * following us, starting at 2001.
439  */
440 #define IOCTL_VMCI_VERSION			_IO(7, 0x9f)	/* 1951 */
441 #define IOCTL_VMCI_INIT_CONTEXT			_IO(7, 0xa0)
442 #define IOCTL_VMCI_QUEUEPAIR_SETVA		_IO(7, 0xa4)
443 #define IOCTL_VMCI_NOTIFY_RESOURCE		_IO(7, 0xa5)
444 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE	_IO(7, 0xa6)
445 #define IOCTL_VMCI_VERSION2			_IO(7, 0xa7)
446 #define IOCTL_VMCI_QUEUEPAIR_ALLOC		_IO(7, 0xa8)
447 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE	_IO(7, 0xa9)
448 #define IOCTL_VMCI_QUEUEPAIR_DETACH		_IO(7, 0xaa)
449 #define IOCTL_VMCI_DATAGRAM_SEND		_IO(7, 0xab)
450 #define IOCTL_VMCI_DATAGRAM_RECEIVE		_IO(7, 0xac)
451 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION		_IO(7, 0xaf)
452 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION	_IO(7, 0xb0)
453 #define IOCTL_VMCI_CTX_GET_CPT_STATE		_IO(7, 0xb1)
454 #define IOCTL_VMCI_CTX_SET_CPT_STATE		_IO(7, 0xb2)
455 #define IOCTL_VMCI_GET_CONTEXT_ID		_IO(7, 0xb3)
456 /*IOCTL_VM_SOCKETS_GET_LOCAL_CID		_IO(7, 0xb9)*/
457 #define IOCTL_VMCI_SET_NOTIFY			_IO(7, 0xcb)	/* 1995 */
458 /*IOCTL_VMMON_START				_IO(7, 0xd1)*/	/* 2001 */
459 
460 /*
461  * struct vmci_queue_header - VMCI Queue Header information.
462  *
463  * A Queue cannot stand by itself as designed.  Each Queue's header
464  * contains a pointer into itself (the producer_tail) and into its peer
465  * (consumer_head).  The reason for the separation is one of
466  * accessibility: Each end-point can modify two things: where the next
467  * location to enqueue is within its produce_q (producer_tail); and
468  * where the next dequeue location is in its consume_q (consumer_head).
469  *
470  * An end-point cannot modify the pointers of its peer (guest to
471  * guest; NOTE that in the host both queue headers are mapped r/w).
472  * But, each end-point needs read access to both Queue header
473  * structures in order to determine how much space is used (or left)
474  * in the Queue.  This is because for an end-point to know how full
475  * its produce_q is, it needs to use the consumer_head that points into
476  * the produce_q but -that- consumer_head is in the Queue header for
477  * that end-points consume_q.
478  *
479  * Thoroughly confused?  Sorry.
480  *
481  * producer_tail: the point to enqueue new entrants.  When you approach
482  * a line in a store, for example, you walk up to the tail.
483  *
484  * consumer_head: the point in the queue from which the next element is
485  * dequeued.  In other words, who is next in line is he who is at the
486  * head of the line.
487  *
488  * Also, producer_tail points to an empty byte in the Queue, whereas
489  * consumer_head points to a valid byte of data (unless producer_tail ==
490  * consumer_head in which case consumer_head does not point to a valid
491  * byte of data).
492  *
493  * For a queue of buffer 'size' bytes, the tail and head pointers will be in
494  * the range [0, size-1].
495  *
496  * If produce_q_header->producer_tail == consume_q_header->consumer_head
497  * then the produce_q is empty.
498  */
499 struct vmci_queue_header {
500 	/* All fields are 64bit and aligned. */
501 	struct vmci_handle handle;	/* Identifier. */
502 	u64 producer_tail;	/* Offset in this queue. */
503 	u64 consumer_head;	/* Offset in peer queue. */
504 };
505 
506 /*
507  * struct vmci_datagram - Base struct for vmci datagrams.
508  * @dst:        A vmci_handle that tracks the destination of the datagram.
509  * @src:        A vmci_handle that tracks the source of the datagram.
510  * @payload_size:       The size of the payload.
511  *
512  * vmci_datagram structs are used when sending vmci datagrams.  They include
513  * the necessary source and destination information to properly route
514  * the information along with the size of the package.
515  */
516 struct vmci_datagram {
517 	struct vmci_handle dst;
518 	struct vmci_handle src;
519 	u64 payload_size;
520 };
521 
522 /*
523  * Second flag is for creating a well-known handle instead of a per context
524  * handle.  Next flag is for deferring datagram delivery, so that the
525  * datagram callback is invoked in a delayed context (not interrupt context).
526  */
527 #define VMCI_FLAG_DG_NONE          0
528 #define VMCI_FLAG_WELLKNOWN_DG_HND BIT(0)
529 #define VMCI_FLAG_ANYCID_DG_HND    BIT(1)
530 #define VMCI_FLAG_DG_DELAYED_CB    BIT(2)
531 
532 /*
533  * Maximum supported size of a VMCI datagram for routable datagrams.
534  * Datagrams going to the hypervisor are allowed to be larger.
535  */
536 #define VMCI_MAX_DG_SIZE (17 * 4096)
537 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
538 				  sizeof(struct vmci_datagram))
539 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) +			\
540 				      sizeof(struct vmci_datagram))
541 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
542 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
543 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
544 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
545 
546 struct vmci_event_payload_qp {
547 	struct vmci_handle handle;  /* queue_pair handle. */
548 	u32 peer_id;		    /* Context id of attaching/detaching VM. */
549 	u32 _pad;
550 };
551 
552 /* Flags for VMCI queue_pair API. */
553 enum {
554 	/* Fail alloc if QP not created by peer. */
555 	VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
556 
557 	/* Only allow attaches from local context. */
558 	VMCI_QPFLAG_LOCAL = 1 << 1,
559 
560 	/* Host won't block when guest is quiesced. */
561 	VMCI_QPFLAG_NONBLOCK = 1 << 2,
562 
563 	/* Pin data pages in ESX.  Used with NONBLOCK */
564 	VMCI_QPFLAG_PINNED = 1 << 3,
565 
566 	/* Update the following flag when adding new flags. */
567 	VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
568 			     VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
569 
570 	/* Convenience flags */
571 	VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
572 	VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
573 };
574 
575 /*
576  * We allow at least 1024 more event datagrams from the hypervisor past the
577  * normally allowed datagrams pending for a given context.  We define this
578  * limit on event datagrams from the hypervisor to guard against DoS attack
579  * from a malicious VM which could repeatedly attach to and detach from a queue
580  * pair, causing events to be queued at the destination VM.  However, the rate
581  * at which such events can be generated is small since it requires a VM exit
582  * and handling of queue pair attach/detach call at the hypervisor.  Event
583  * datagrams may be queued up at the destination VM if it has interrupts
584  * disabled or if it is not draining events for some other reason.  1024
585  * datagrams is a grossly conservative estimate of the time for which
586  * interrupts may be disabled in the destination VM, but at the same time does
587  * not exacerbate the memory pressure problem on the host by much (size of each
588  * event datagram is small).
589  */
590 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE				\
591 	(VMCI_MAX_DATAGRAM_QUEUE_SIZE +					\
592 	 1024 * (sizeof(struct vmci_datagram) +				\
593 		 sizeof(struct vmci_event_data_max)))
594 
595 /*
596  * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
597  * hypervisor resources.  Struct size is 16 bytes. All fields in struct are
598  * aligned to their natural alignment.
599  */
600 struct vmci_resource_query_hdr {
601 	struct vmci_datagram hdr;
602 	u32 num_resources;
603 	u32 _padding;
604 };
605 
606 /*
607  * Convenience struct for negotiating vectors. Must match layout of
608  * VMCIResourceQueryHdr minus the struct vmci_datagram header.
609  */
610 struct vmci_resource_query_msg {
611 	u32 num_resources;
612 	u32 _padding;
613 	u32 resources[1];
614 };
615 
616 /*
617  * The maximum number of resources that can be queried using
618  * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
619  * bits of a positive return value. Negative values are reserved for
620  * errors.
621  */
622 #define VMCI_RESOURCE_QUERY_MAX_NUM 31
623 
624 /* Maximum size for the VMCI_RESOURCE_QUERY request. */
625 #define VMCI_RESOURCE_QUERY_MAX_SIZE				\
626 	(sizeof(struct vmci_resource_query_hdr) +		\
627 	 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
628 
629 /*
630  * Struct used for setting the notification bitmap.  All fields in
631  * struct are aligned to their natural alignment.
632  */
633 struct vmci_notify_bm_set_msg {
634 	struct vmci_datagram hdr;
635 	union {
636 		u32 bitmap_ppn32;
637 		u64 bitmap_ppn64;
638 	};
639 };
640 
641 /*
642  * Struct used for linking a doorbell handle with an index in the
643  * notify bitmap. All fields in struct are aligned to their natural
644  * alignment.
645  */
646 struct vmci_doorbell_link_msg {
647 	struct vmci_datagram hdr;
648 	struct vmci_handle handle;
649 	u64 notify_idx;
650 };
651 
652 /*
653  * Struct used for unlinking a doorbell handle from an index in the
654  * notify bitmap. All fields in struct are aligned to their natural
655  * alignment.
656  */
657 struct vmci_doorbell_unlink_msg {
658 	struct vmci_datagram hdr;
659 	struct vmci_handle handle;
660 };
661 
662 /*
663  * Struct used for generating a notification on a doorbell handle. All
664  * fields in struct are aligned to their natural alignment.
665  */
666 struct vmci_doorbell_notify_msg {
667 	struct vmci_datagram hdr;
668 	struct vmci_handle handle;
669 };
670 
671 /*
672  * This struct is used to contain data for events.  Size of this struct is a
673  * multiple of 8 bytes, and all fields are aligned to their natural alignment.
674  */
675 struct vmci_event_data {
676 	u32 event;		/* 4 bytes. */
677 	u32 _pad;
678 	/* Event payload is put here. */
679 };
680 
681 /*
682  * Define the different VMCI_EVENT payload data types here.  All structs must
683  * be a multiple of 8 bytes, and fields must be aligned to their natural
684  * alignment.
685  */
686 struct vmci_event_payld_ctx {
687 	u32 context_id;	/* 4 bytes. */
688 	u32 _pad;
689 };
690 
691 struct vmci_event_payld_qp {
692 	struct vmci_handle handle;  /* queue_pair handle. */
693 	u32 peer_id;	    /* Context id of attaching/detaching VM. */
694 	u32 _pad;
695 };
696 
697 /*
698  * We define the following struct to get the size of the maximum event
699  * data the hypervisor may send to the guest.  If adding a new event
700  * payload type above, add it to the following struct too (inside the
701  * union).
702  */
703 struct vmci_event_data_max {
704 	struct vmci_event_data event_data;
705 	union {
706 		struct vmci_event_payld_ctx context_payload;
707 		struct vmci_event_payld_qp qp_payload;
708 	} ev_data_payload;
709 };
710 
711 /*
712  * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
713  * VMCI_EVENT_HANDLER messages.  Struct size is 32 bytes.  All fields
714  * in struct are aligned to their natural alignment.
715  */
716 struct vmci_event_msg {
717 	struct vmci_datagram hdr;
718 
719 	/* Has event type and payload. */
720 	struct vmci_event_data event_data;
721 
722 	/* Payload gets put here. */
723 };
724 
725 /* Event with context payload. */
726 struct vmci_event_ctx {
727 	struct vmci_event_msg msg;
728 	struct vmci_event_payld_ctx payload;
729 };
730 
731 /* Event with QP payload. */
732 struct vmci_event_qp {
733 	struct vmci_event_msg msg;
734 	struct vmci_event_payld_qp payload;
735 };
736 
737 /*
738  * Structs used for queue_pair alloc and detach messages.  We align fields of
739  * these structs to 64bit boundaries.
740  */
741 struct vmci_qp_alloc_msg {
742 	struct vmci_datagram hdr;
743 	struct vmci_handle handle;
744 	u32 peer;
745 	u32 flags;
746 	u64 produce_size;
747 	u64 consume_size;
748 	u64 num_ppns;
749 
750 	/* List of PPNs placed here. */
751 };
752 
753 struct vmci_qp_detach_msg {
754 	struct vmci_datagram hdr;
755 	struct vmci_handle handle;
756 };
757 
758 /* VMCI Doorbell API. */
759 #define VMCI_FLAG_DELAYED_CB BIT(0)
760 
761 typedef void (*vmci_callback) (void *client_data);
762 
763 /*
764  * struct vmci_qp - A vmw_vmci queue pair handle.
765  *
766  * This structure is used as a handle to a queue pair created by
767  * VMCI.  It is intentionally left opaque to clients.
768  */
769 struct vmci_qp;
770 
771 /* Callback needed for correctly waiting on events. */
772 typedef int (*vmci_datagram_recv_cb) (void *client_data,
773 				      struct vmci_datagram *msg);
774 
775 /* VMCI Event API. */
776 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
777 			       void *client_data);
778 
779 /*
780  * We use the following inline function to access the payload data
781  * associated with an event data.
782  */
783 static inline const void *
784 vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
785 {
786 	return (const char *)ev_data + sizeof(*ev_data);
787 }
788 
789 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
790 {
791 	return (void *)vmci_event_data_const_payload(ev_data);
792 }
793 
794 /*
795  * Helper to read a value from a head or tail pointer. For X86_32, the
796  * pointer is treated as a 32bit value, since the pointer value
797  * never exceeds a 32bit value in this case. Also, doing an
798  * atomic64_read on X86_32 uniprocessor systems may be implemented
799  * as a non locked cmpxchg8b, that may end up overwriting updates done
800  * by the VMCI device to the memory location. On 32bit SMP, the lock
801  * prefix will be used, so correctness isn't an issue, but using a
802  * 64bit operation still adds unnecessary overhead.
803  */
804 static inline u64 vmci_q_read_pointer(u64 *var)
805 {
806 	return READ_ONCE(*(unsigned long *)var);
807 }
808 
809 /*
810  * Helper to set the value of a head or tail pointer. For X86_32, the
811  * pointer is treated as a 32bit value, since the pointer value
812  * never exceeds a 32bit value in this case. On 32bit SMP, using a
813  * locked cmpxchg8b adds unnecessary overhead.
814  */
815 static inline void vmci_q_set_pointer(u64 *var, u64 new_val)
816 {
817 	/* XXX buggered on big-endian */
818 	WRITE_ONCE(*(unsigned long *)var, (unsigned long)new_val);
819 }
820 
821 /*
822  * Helper to add a given offset to a head or tail pointer. Wraps the
823  * value of the pointer around the max size of the queue.
824  */
825 static inline void vmci_qp_add_pointer(u64 *var, size_t add, u64 size)
826 {
827 	u64 new_val = vmci_q_read_pointer(var);
828 
829 	if (new_val >= size - add)
830 		new_val -= size;
831 
832 	new_val += add;
833 
834 	vmci_q_set_pointer(var, new_val);
835 }
836 
837 /*
838  * Helper routine to get the Producer Tail from the supplied queue.
839  */
840 static inline u64
841 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
842 {
843 	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
844 	return vmci_q_read_pointer(&qh->producer_tail);
845 }
846 
847 /*
848  * Helper routine to get the Consumer Head from the supplied queue.
849  */
850 static inline u64
851 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
852 {
853 	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
854 	return vmci_q_read_pointer(&qh->consumer_head);
855 }
856 
857 /*
858  * Helper routine to increment the Producer Tail.  Fundamentally,
859  * vmci_qp_add_pointer() is used to manipulate the tail itself.
860  */
861 static inline void
862 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
863 				size_t add,
864 				u64 queue_size)
865 {
866 	vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
867 }
868 
869 /*
870  * Helper routine to increment the Consumer Head.  Fundamentally,
871  * vmci_qp_add_pointer() is used to manipulate the head itself.
872  */
873 static inline void
874 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
875 				size_t add,
876 				u64 queue_size)
877 {
878 	vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
879 }
880 
881 /*
882  * Helper routine for getting the head and the tail pointer for a queue.
883  * Both the VMCIQueues are needed to get both the pointers for one queue.
884  */
885 static inline void
886 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
887 			   const struct vmci_queue_header *consume_q_header,
888 			   u64 *producer_tail,
889 			   u64 *consumer_head)
890 {
891 	if (producer_tail)
892 		*producer_tail = vmci_q_header_producer_tail(produce_q_header);
893 
894 	if (consumer_head)
895 		*consumer_head = vmci_q_header_consumer_head(consume_q_header);
896 }
897 
898 static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
899 				      const struct vmci_handle handle)
900 {
901 	q_header->handle = handle;
902 	q_header->producer_tail = 0;
903 	q_header->consumer_head = 0;
904 }
905 
906 /*
907  * Finds available free space in a produce queue to enqueue more
908  * data or reports an error if queue pair corruption is detected.
909  */
910 static s64
911 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
912 			 const struct vmci_queue_header *consume_q_header,
913 			 const u64 produce_q_size)
914 {
915 	u64 tail;
916 	u64 head;
917 	u64 free_space;
918 
919 	tail = vmci_q_header_producer_tail(produce_q_header);
920 	head = vmci_q_header_consumer_head(consume_q_header);
921 
922 	if (tail >= produce_q_size || head >= produce_q_size)
923 		return VMCI_ERROR_INVALID_SIZE;
924 
925 	/*
926 	 * Deduct 1 to avoid tail becoming equal to head which causes
927 	 * ambiguity. If head and tail are equal it means that the
928 	 * queue is empty.
929 	 */
930 	if (tail >= head)
931 		free_space = produce_q_size - (tail - head) - 1;
932 	else
933 		free_space = head - tail - 1;
934 
935 	return free_space;
936 }
937 
938 /*
939  * vmci_q_header_free_space() does all the heavy lifting of
940  * determing the number of free bytes in a Queue.  This routine,
941  * then subtracts that size from the full size of the Queue so
942  * the caller knows how many bytes are ready to be dequeued.
943  * Results:
944  * On success, available data size in bytes (up to MAX_INT64).
945  * On failure, appropriate error code.
946  */
947 static inline s64
948 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
949 			const struct vmci_queue_header *produce_q_header,
950 			const u64 consume_q_size)
951 {
952 	s64 free_space;
953 
954 	free_space = vmci_q_header_free_space(consume_q_header,
955 					      produce_q_header, consume_q_size);
956 	if (free_space < VMCI_SUCCESS)
957 		return free_space;
958 
959 	return consume_q_size - free_space - 1;
960 }
961 
962 
963 #endif /* _VMW_VMCI_DEF_H_ */
964