1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
4 *
5 * bitmap_create - sets up the bitmap structure
6 * bitmap_destroy - destroys the bitmap structure
7 *
8 * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
9 * - added disk storage for bitmap
10 * - changes to allow various bitmap chunk sizes
11 */
12
13 /*
14 * Still to do:
15 *
16 * flush after percent set rather than just time based. (maybe both).
17 */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/timer.h>
25 #include <linux/sched.h>
26 #include <linux/list.h>
27 #include <linux/file.h>
28 #include <linux/mount.h>
29 #include <linux/buffer_head.h>
30 #include <linux/seq_file.h>
31 #include <trace/events/block.h>
32
33 #include "md.h"
34 #include "md-bitmap.h"
35 #include "md-cluster.h"
36
37 #define BITMAP_MAJOR_LO 3
38 /* version 4 insists the bitmap is in little-endian order
39 * with version 3, it is host-endian which is non-portable
40 * Version 5 is currently set only for clustered devices
41 */
42 #define BITMAP_MAJOR_HI 4
43 #define BITMAP_MAJOR_CLUSTERED 5
44 #define BITMAP_MAJOR_HOSTENDIAN 3
45
46 /*
47 * in-memory bitmap:
48 *
49 * Use 16 bit block counters to track pending writes to each "chunk".
50 * The 2 high order bits are special-purpose, the first is a flag indicating
51 * whether a resync is needed. The second is a flag indicating whether a
52 * resync is active.
53 * This means that the counter is actually 14 bits:
54 *
55 * +--------+--------+------------------------------------------------+
56 * | resync | resync | counter |
57 * | needed | active | |
58 * | (0-1) | (0-1) | (0-16383) |
59 * +--------+--------+------------------------------------------------+
60 *
61 * The "resync needed" bit is set when:
62 * a '1' bit is read from storage at startup.
63 * a write request fails on some drives
64 * a resync is aborted on a chunk with 'resync active' set
65 * It is cleared (and resync-active set) when a resync starts across all drives
66 * of the chunk.
67 *
68 *
69 * The "resync active" bit is set when:
70 * a resync is started on all drives, and resync_needed is set.
71 * resync_needed will be cleared (as long as resync_active wasn't already set).
72 * It is cleared when a resync completes.
73 *
74 * The counter counts pending write requests, plus the on-disk bit.
75 * When the counter is '1' and the resync bits are clear, the on-disk
76 * bit can be cleared as well, thus setting the counter to 0.
77 * When we set a bit, or in the counter (to start a write), if the fields is
78 * 0, we first set the disk bit and set the counter to 1.
79 *
80 * If the counter is 0, the on-disk bit is clear and the stripe is clean
81 * Anything that dirties the stripe pushes the counter to 2 (at least)
82 * and sets the on-disk bit (lazily).
83 * If a periodic sweep find the counter at 2, it is decremented to 1.
84 * If the sweep find the counter at 1, the on-disk bit is cleared and the
85 * counter goes to zero.
86 *
87 * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
88 * counters as a fallback when "page" memory cannot be allocated:
89 *
90 * Normal case (page memory allocated):
91 *
92 * page pointer (32-bit)
93 *
94 * [ ] ------+
95 * |
96 * +-------> [ ][ ]..[ ] (4096 byte page == 2048 counters)
97 * c1 c2 c2048
98 *
99 * Hijacked case (page memory allocation failed):
100 *
101 * hijacked page pointer (32-bit)
102 *
103 * [ ][ ] (no page memory allocated)
104 * counter #1 (16-bit) counter #2 (16-bit)
105 *
106 */
107
108 typedef __u16 bitmap_counter_t;
109
110 #define PAGE_BITS (PAGE_SIZE << 3)
111 #define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
112
113 #define COUNTER_BITS 16
114 #define COUNTER_BIT_SHIFT 4
115 #define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3)
116
117 #define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))
118 #define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))
119 #define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)
120
121 #define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
122 #define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
123 #define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
124
125 /* how many counters per page? */
126 #define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
127 /* same, except a shift value for more efficient bitops */
128 #define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
129 /* same, except a mask value for more efficient bitops */
130 #define PAGE_COUNTER_MASK (PAGE_COUNTER_RATIO - 1)
131
132 #define BITMAP_BLOCK_SHIFT 9
133
134 /*
135 * bitmap structures:
136 */
137
138 /* the in-memory bitmap is represented by bitmap_pages */
139 struct bitmap_page {
140 /*
141 * map points to the actual memory page
142 */
143 char *map;
144 /*
145 * in emergencies (when map cannot be alloced), hijack the map
146 * pointer and use it as two counters itself
147 */
148 unsigned int hijacked:1;
149 /*
150 * If any counter in this page is '1' or '2' - and so could be
151 * cleared then that page is marked as 'pending'
152 */
153 unsigned int pending:1;
154 /*
155 * count of dirty bits on the page
156 */
157 unsigned int count:30;
158 };
159
160 /* the main bitmap structure - one per mddev */
161 struct bitmap {
162
163 struct bitmap_counts {
164 spinlock_t lock;
165 struct bitmap_page *bp;
166 /* total number of pages in the bitmap */
167 unsigned long pages;
168 /* number of pages not yet allocated */
169 unsigned long missing_pages;
170 /* chunksize = 2^chunkshift (for bitops) */
171 unsigned long chunkshift;
172 /* total number of data chunks for the array */
173 unsigned long chunks;
174 } counts;
175
176 struct mddev *mddev; /* the md device that the bitmap is for */
177
178 __u64 events_cleared;
179 int need_sync;
180
181 struct bitmap_storage {
182 /* backing disk file */
183 struct file *file;
184 /* cached copy of the bitmap file superblock */
185 struct page *sb_page;
186 unsigned long sb_index;
187 /* list of cache pages for the file */
188 struct page **filemap;
189 /* attributes associated filemap pages */
190 unsigned long *filemap_attr;
191 /* number of pages in the file */
192 unsigned long file_pages;
193 /* total bytes in the bitmap */
194 unsigned long bytes;
195 } storage;
196
197 unsigned long flags;
198
199 int allclean;
200
201 atomic_t behind_writes;
202 /* highest actual value at runtime */
203 unsigned long behind_writes_used;
204
205 /*
206 * the bitmap daemon - periodically wakes up and sweeps the bitmap
207 * file, cleaning up bits and flushing out pages to disk as necessary
208 */
209 unsigned long daemon_lastrun; /* jiffies of last run */
210 /*
211 * when we lasted called end_sync to update bitmap with resync
212 * progress.
213 */
214 unsigned long last_end_sync;
215
216 /* pending writes to the bitmap file */
217 atomic_t pending_writes;
218 wait_queue_head_t write_wait;
219 wait_queue_head_t overflow_wait;
220 wait_queue_head_t behind_wait;
221
222 struct kernfs_node *sysfs_can_clear;
223 /* slot offset for clustered env */
224 int cluster_slot;
225 };
226
227 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks,
228 int chunksize, bool init);
229
bmname(struct bitmap * bitmap)230 static inline char *bmname(struct bitmap *bitmap)
231 {
232 return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
233 }
234
__bitmap_enabled(struct bitmap * bitmap)235 static bool __bitmap_enabled(struct bitmap *bitmap)
236 {
237 return bitmap->storage.filemap &&
238 !test_bit(BITMAP_STALE, &bitmap->flags);
239 }
240
bitmap_enabled(struct mddev * mddev)241 static bool bitmap_enabled(struct mddev *mddev)
242 {
243 struct bitmap *bitmap = mddev->bitmap;
244
245 if (!bitmap)
246 return false;
247
248 return __bitmap_enabled(bitmap);
249 }
250
251 /*
252 * check a page and, if necessary, allocate it (or hijack it if the alloc fails)
253 *
254 * 1) check to see if this page is allocated, if it's not then try to alloc
255 * 2) if the alloc fails, set the page's hijacked flag so we'll use the
256 * page pointer directly as a counter
257 *
258 * if we find our page, we increment the page's refcount so that it stays
259 * allocated while we're using it
260 */
md_bitmap_checkpage(struct bitmap_counts * bitmap,unsigned long page,int create,int no_hijack)261 static int md_bitmap_checkpage(struct bitmap_counts *bitmap,
262 unsigned long page, int create, int no_hijack)
263 __releases(bitmap->lock)
264 __acquires(bitmap->lock)
265 {
266 unsigned char *mappage;
267
268 WARN_ON_ONCE(page >= bitmap->pages);
269 if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
270 return 0;
271
272 if (bitmap->bp[page].map) /* page is already allocated, just return */
273 return 0;
274
275 if (!create)
276 return -ENOENT;
277
278 /* this page has not been allocated yet */
279
280 spin_unlock_irq(&bitmap->lock);
281 /* It is possible that this is being called inside a
282 * prepare_to_wait/finish_wait loop from raid5c:make_request().
283 * In general it is not permitted to sleep in that context as it
284 * can cause the loop to spin freely.
285 * That doesn't apply here as we can only reach this point
286 * once with any loop.
287 * When this function completes, either bp[page].map or
288 * bp[page].hijacked. In either case, this function will
289 * abort before getting to this point again. So there is
290 * no risk of a free-spin, and so it is safe to assert
291 * that sleeping here is allowed.
292 */
293 sched_annotate_sleep();
294 mappage = kzalloc(PAGE_SIZE, GFP_NOIO);
295 spin_lock_irq(&bitmap->lock);
296
297 if (mappage == NULL) {
298 pr_debug("md/bitmap: map page allocation failed, hijacking\n");
299 /* We don't support hijack for cluster raid */
300 if (no_hijack)
301 return -ENOMEM;
302 /* failed - set the hijacked flag so that we can use the
303 * pointer as a counter */
304 if (!bitmap->bp[page].map)
305 bitmap->bp[page].hijacked = 1;
306 } else if (bitmap->bp[page].map ||
307 bitmap->bp[page].hijacked) {
308 /* somebody beat us to getting the page */
309 kfree(mappage);
310 } else {
311
312 /* no page was in place and we have one, so install it */
313
314 bitmap->bp[page].map = mappage;
315 bitmap->missing_pages--;
316 }
317 return 0;
318 }
319
320 /* if page is completely empty, put it back on the free list, or dealloc it */
321 /* if page was hijacked, unmark the flag so it might get alloced next time */
322 /* Note: lock should be held when calling this */
md_bitmap_checkfree(struct bitmap_counts * bitmap,unsigned long page)323 static void md_bitmap_checkfree(struct bitmap_counts *bitmap, unsigned long page)
324 {
325 char *ptr;
326
327 if (bitmap->bp[page].count) /* page is still busy */
328 return;
329
330 /* page is no longer in use, it can be released */
331
332 if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
333 bitmap->bp[page].hijacked = 0;
334 bitmap->bp[page].map = NULL;
335 } else {
336 /* normal case, free the page */
337 ptr = bitmap->bp[page].map;
338 bitmap->bp[page].map = NULL;
339 bitmap->missing_pages++;
340 kfree(ptr);
341 }
342 }
343
344 /*
345 * bitmap file handling - read and write the bitmap file and its superblock
346 */
347
348 /*
349 * basic page I/O operations
350 */
351
352 /* IO operations when bitmap is stored near all superblocks */
353
354 /* choose a good rdev and read the page from there */
read_sb_page(struct mddev * mddev,loff_t offset,struct page * page,unsigned long index,int size)355 static int read_sb_page(struct mddev *mddev, loff_t offset,
356 struct page *page, unsigned long index, int size)
357 {
358
359 sector_t sector = mddev->bitmap_info.offset + offset +
360 index * (PAGE_SIZE / SECTOR_SIZE);
361 struct md_rdev *rdev;
362
363 rdev_for_each(rdev, mddev) {
364 u32 iosize = roundup(size, bdev_logical_block_size(rdev->bdev));
365
366 if (!test_bit(In_sync, &rdev->flags) ||
367 test_bit(Faulty, &rdev->flags) ||
368 test_bit(Bitmap_sync, &rdev->flags))
369 continue;
370
371 if (sync_page_io(rdev, sector, iosize, page, REQ_OP_READ, true))
372 return 0;
373 }
374 return -EIO;
375 }
376
next_active_rdev(struct md_rdev * rdev,struct mddev * mddev)377 static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev)
378 {
379 /* Iterate the disks of an mddev, using rcu to protect access to the
380 * linked list, and raising the refcount of devices we return to ensure
381 * they don't disappear while in use.
382 * As devices are only added or removed when raid_disk is < 0 and
383 * nr_pending is 0 and In_sync is clear, the entries we return will
384 * still be in the same position on the list when we re-enter
385 * list_for_each_entry_continue_rcu.
386 *
387 * Note that if entered with 'rdev == NULL' to start at the
388 * beginning, we temporarily assign 'rdev' to an address which
389 * isn't really an rdev, but which can be used by
390 * list_for_each_entry_continue_rcu() to find the first entry.
391 */
392 rcu_read_lock();
393 if (rdev == NULL)
394 /* start at the beginning */
395 rdev = list_entry(&mddev->disks, struct md_rdev, same_set);
396 else {
397 /* release the previous rdev and start from there. */
398 rdev_dec_pending(rdev, mddev);
399 }
400 list_for_each_entry_continue_rcu(rdev, &mddev->disks, same_set) {
401 if (rdev->raid_disk >= 0 &&
402 !test_bit(Faulty, &rdev->flags)) {
403 /* this is a usable devices */
404 atomic_inc(&rdev->nr_pending);
405 rcu_read_unlock();
406 return rdev;
407 }
408 }
409 rcu_read_unlock();
410 return NULL;
411 }
412
optimal_io_size(struct block_device * bdev,unsigned int last_page_size,unsigned int io_size)413 static unsigned int optimal_io_size(struct block_device *bdev,
414 unsigned int last_page_size,
415 unsigned int io_size)
416 {
417 if (bdev_io_opt(bdev) > bdev_logical_block_size(bdev))
418 return roundup(last_page_size, bdev_io_opt(bdev));
419 return io_size;
420 }
421
bitmap_io_size(unsigned int io_size,unsigned int opt_size,loff_t start,loff_t boundary)422 static unsigned int bitmap_io_size(unsigned int io_size, unsigned int opt_size,
423 loff_t start, loff_t boundary)
424 {
425 if (io_size != opt_size &&
426 start + opt_size / SECTOR_SIZE <= boundary)
427 return opt_size;
428 if (start + io_size / SECTOR_SIZE <= boundary)
429 return io_size;
430
431 /* Overflows boundary */
432 return 0;
433 }
434
__write_sb_page(struct md_rdev * rdev,struct bitmap * bitmap,unsigned long pg_index,struct page * page)435 static int __write_sb_page(struct md_rdev *rdev, struct bitmap *bitmap,
436 unsigned long pg_index, struct page *page)
437 {
438 struct block_device *bdev;
439 struct mddev *mddev = bitmap->mddev;
440 struct bitmap_storage *store = &bitmap->storage;
441 unsigned long num_pages = bitmap->storage.file_pages;
442 unsigned int bitmap_limit = (num_pages - pg_index % num_pages) << PAGE_SHIFT;
443 loff_t sboff, offset = mddev->bitmap_info.offset;
444 sector_t ps = pg_index * PAGE_SIZE / SECTOR_SIZE;
445 unsigned int size = PAGE_SIZE;
446 unsigned int opt_size = PAGE_SIZE;
447 sector_t doff;
448
449 bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev;
450 /* we compare length (page numbers), not page offset. */
451 if ((pg_index - store->sb_index) == num_pages - 1) {
452 unsigned int last_page_size = store->bytes & (PAGE_SIZE - 1);
453
454 if (last_page_size == 0)
455 last_page_size = PAGE_SIZE;
456 size = roundup(last_page_size, bdev_logical_block_size(bdev));
457 opt_size = optimal_io_size(bdev, last_page_size, size);
458 }
459
460 sboff = rdev->sb_start + offset;
461 doff = rdev->data_offset;
462
463 /* Just make sure we aren't corrupting data or metadata */
464 if (mddev->external) {
465 /* Bitmap could be anywhere. */
466 if (sboff + ps > doff &&
467 sboff < (doff + mddev->dev_sectors + PAGE_SIZE / SECTOR_SIZE))
468 return -EINVAL;
469 } else if (offset < 0) {
470 /* DATA BITMAP METADATA */
471 size = bitmap_io_size(size, opt_size, offset + ps, 0);
472 if (size == 0)
473 /* bitmap runs in to metadata */
474 return -EINVAL;
475
476 if (doff + mddev->dev_sectors > sboff)
477 /* data runs in to bitmap */
478 return -EINVAL;
479 } else if (rdev->sb_start < rdev->data_offset) {
480 /* METADATA BITMAP DATA */
481 size = bitmap_io_size(size, opt_size, sboff + ps, doff);
482 if (size == 0)
483 /* bitmap runs in to data */
484 return -EINVAL;
485 }
486
487 md_super_write(mddev, rdev, sboff + ps, (int)min(size, bitmap_limit), page);
488 return 0;
489 }
490
write_sb_page(struct bitmap * bitmap,unsigned long pg_index,struct page * page,bool wait)491 static void write_sb_page(struct bitmap *bitmap, unsigned long pg_index,
492 struct page *page, bool wait)
493 {
494 struct mddev *mddev = bitmap->mddev;
495
496 do {
497 struct md_rdev *rdev = NULL;
498
499 while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
500 if (__write_sb_page(rdev, bitmap, pg_index, page) < 0) {
501 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
502 return;
503 }
504 }
505 } while (wait && md_super_wait(mddev) < 0);
506 }
507
508 static void md_bitmap_file_kick(struct bitmap *bitmap);
509
510 #ifdef CONFIG_MD_BITMAP_FILE
write_file_page(struct bitmap * bitmap,struct page * page,int wait)511 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait)
512 {
513 struct buffer_head *bh = page_buffers(page);
514
515 while (bh && bh->b_blocknr) {
516 atomic_inc(&bitmap->pending_writes);
517 set_buffer_locked(bh);
518 set_buffer_mapped(bh);
519 submit_bh(REQ_OP_WRITE | REQ_SYNC, bh);
520 bh = bh->b_this_page;
521 }
522
523 if (wait)
524 wait_event(bitmap->write_wait,
525 atomic_read(&bitmap->pending_writes) == 0);
526 }
527
end_bitmap_write(struct buffer_head * bh,int uptodate)528 static void end_bitmap_write(struct buffer_head *bh, int uptodate)
529 {
530 struct bitmap *bitmap = bh->b_private;
531
532 if (!uptodate)
533 set_bit(BITMAP_WRITE_ERROR, &bitmap->flags);
534 if (atomic_dec_and_test(&bitmap->pending_writes))
535 wake_up(&bitmap->write_wait);
536 }
537
free_buffers(struct page * page)538 static void free_buffers(struct page *page)
539 {
540 struct buffer_head *bh;
541
542 if (!PagePrivate(page))
543 return;
544
545 bh = page_buffers(page);
546 while (bh) {
547 struct buffer_head *next = bh->b_this_page;
548 free_buffer_head(bh);
549 bh = next;
550 }
551 detach_page_private(page);
552 put_page(page);
553 }
554
555 /* read a page from a file.
556 * We both read the page, and attach buffers to the page to record the
557 * address of each block (using bmap). These addresses will be used
558 * to write the block later, completely bypassing the filesystem.
559 * This usage is similar to how swap files are handled, and allows us
560 * to write to a file with no concerns of memory allocation failing.
561 */
read_file_page(struct file * file,unsigned long index,struct bitmap * bitmap,unsigned long count,struct page * page)562 static int read_file_page(struct file *file, unsigned long index,
563 struct bitmap *bitmap, unsigned long count, struct page *page)
564 {
565 int ret = 0;
566 struct inode *inode = file_inode(file);
567 struct buffer_head *bh;
568 sector_t block, blk_cur;
569 unsigned long blocksize = i_blocksize(inode);
570
571 pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE,
572 (unsigned long long)index << PAGE_SHIFT);
573
574 bh = alloc_page_buffers(page, blocksize);
575 if (!bh) {
576 ret = -ENOMEM;
577 goto out;
578 }
579 attach_page_private(page, bh);
580 blk_cur = index << (PAGE_SHIFT - inode->i_blkbits);
581 while (bh) {
582 block = blk_cur;
583
584 if (count == 0)
585 bh->b_blocknr = 0;
586 else {
587 ret = bmap(inode, &block);
588 if (ret || !block) {
589 ret = -EINVAL;
590 bh->b_blocknr = 0;
591 goto out;
592 }
593
594 bh->b_blocknr = block;
595 bh->b_bdev = inode->i_sb->s_bdev;
596 if (count < blocksize)
597 count = 0;
598 else
599 count -= blocksize;
600
601 bh->b_end_io = end_bitmap_write;
602 bh->b_private = bitmap;
603 atomic_inc(&bitmap->pending_writes);
604 set_buffer_locked(bh);
605 set_buffer_mapped(bh);
606 submit_bh(REQ_OP_READ, bh);
607 }
608 blk_cur++;
609 bh = bh->b_this_page;
610 }
611
612 wait_event(bitmap->write_wait,
613 atomic_read(&bitmap->pending_writes)==0);
614 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
615 ret = -EIO;
616 out:
617 if (ret)
618 pr_err("md: bitmap read error: (%dB @ %llu): %d\n",
619 (int)PAGE_SIZE,
620 (unsigned long long)index << PAGE_SHIFT,
621 ret);
622 return ret;
623 }
624 #else /* CONFIG_MD_BITMAP_FILE */
write_file_page(struct bitmap * bitmap,struct page * page,int wait)625 static void write_file_page(struct bitmap *bitmap, struct page *page, int wait)
626 {
627 }
read_file_page(struct file * file,unsigned long index,struct bitmap * bitmap,unsigned long count,struct page * page)628 static int read_file_page(struct file *file, unsigned long index,
629 struct bitmap *bitmap, unsigned long count, struct page *page)
630 {
631 return -EIO;
632 }
free_buffers(struct page * page)633 static void free_buffers(struct page *page)
634 {
635 put_page(page);
636 }
637 #endif /* CONFIG_MD_BITMAP_FILE */
638
639 /*
640 * bitmap file superblock operations
641 */
642
643 /*
644 * write out a page to a file
645 */
filemap_write_page(struct bitmap * bitmap,unsigned long pg_index,bool wait)646 static void filemap_write_page(struct bitmap *bitmap, unsigned long pg_index,
647 bool wait)
648 {
649 struct bitmap_storage *store = &bitmap->storage;
650 struct page *page = store->filemap[pg_index];
651
652 if (mddev_is_clustered(bitmap->mddev)) {
653 /* go to node bitmap area starting point */
654 pg_index += store->sb_index;
655 }
656
657 if (store->file)
658 write_file_page(bitmap, page, wait);
659 else
660 write_sb_page(bitmap, pg_index, page, wait);
661 }
662
663 /*
664 * md_bitmap_wait_writes() should be called before writing any bitmap
665 * blocks, to ensure previous writes, particularly from
666 * md_bitmap_daemon_work(), have completed.
667 */
md_bitmap_wait_writes(struct bitmap * bitmap)668 static void md_bitmap_wait_writes(struct bitmap *bitmap)
669 {
670 if (bitmap->storage.file)
671 wait_event(bitmap->write_wait,
672 atomic_read(&bitmap->pending_writes)==0);
673 else
674 /* Note that we ignore the return value. The writes
675 * might have failed, but that would just mean that
676 * some bits which should be cleared haven't been,
677 * which is safe. The relevant bitmap blocks will
678 * probably get written again, but there is no great
679 * loss if they aren't.
680 */
681 md_super_wait(bitmap->mddev);
682 }
683
684
685 /* update the event counter and sync the superblock to disk */
bitmap_update_sb(void * data)686 static void bitmap_update_sb(void *data)
687 {
688 bitmap_super_t *sb;
689 struct bitmap *bitmap = data;
690
691 if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
692 return;
693 if (bitmap->mddev->bitmap_info.external)
694 return;
695 if (!bitmap->storage.sb_page) /* no superblock */
696 return;
697 sb = kmap_local_page(bitmap->storage.sb_page);
698 sb->events = cpu_to_le64(bitmap->mddev->events);
699 if (bitmap->mddev->events < bitmap->events_cleared)
700 /* rocking back to read-only */
701 bitmap->events_cleared = bitmap->mddev->events;
702 sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
703 /*
704 * clear BITMAP_WRITE_ERROR bit to protect against the case that
705 * a bitmap write error occurred but the later writes succeeded.
706 */
707 sb->state = cpu_to_le32(bitmap->flags & ~BIT(BITMAP_WRITE_ERROR));
708 /* Just in case these have been changed via sysfs: */
709 sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ);
710 sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind);
711 /* This might have been changed by a reshape */
712 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
713 sb->chunksize = cpu_to_le32(bitmap->mddev->bitmap_info.chunksize);
714 sb->nodes = cpu_to_le32(bitmap->mddev->bitmap_info.nodes);
715 sb->sectors_reserved = cpu_to_le32(bitmap->mddev->
716 bitmap_info.space);
717 kunmap_local(sb);
718
719 if (bitmap->storage.file)
720 write_file_page(bitmap, bitmap->storage.sb_page, 1);
721 else
722 write_sb_page(bitmap, bitmap->storage.sb_index,
723 bitmap->storage.sb_page, 1);
724 }
725
bitmap_print_sb(struct bitmap * bitmap)726 static void bitmap_print_sb(struct bitmap *bitmap)
727 {
728 bitmap_super_t *sb;
729
730 if (!bitmap || !bitmap->storage.sb_page)
731 return;
732 sb = kmap_local_page(bitmap->storage.sb_page);
733 pr_debug("%s: bitmap file superblock:\n", bmname(bitmap));
734 pr_debug(" magic: %08x\n", le32_to_cpu(sb->magic));
735 pr_debug(" version: %u\n", le32_to_cpu(sb->version));
736 pr_debug(" uuid: %08x.%08x.%08x.%08x\n",
737 le32_to_cpu(*(__le32 *)(sb->uuid+0)),
738 le32_to_cpu(*(__le32 *)(sb->uuid+4)),
739 le32_to_cpu(*(__le32 *)(sb->uuid+8)),
740 le32_to_cpu(*(__le32 *)(sb->uuid+12)));
741 pr_debug(" events: %llu\n",
742 (unsigned long long) le64_to_cpu(sb->events));
743 pr_debug("events cleared: %llu\n",
744 (unsigned long long) le64_to_cpu(sb->events_cleared));
745 pr_debug(" state: %08x\n", le32_to_cpu(sb->state));
746 pr_debug(" chunksize: %u B\n", le32_to_cpu(sb->chunksize));
747 pr_debug(" daemon sleep: %us\n", le32_to_cpu(sb->daemon_sleep));
748 pr_debug(" sync size: %llu KB\n",
749 (unsigned long long)le64_to_cpu(sb->sync_size)/2);
750 pr_debug("max write behind: %u\n", le32_to_cpu(sb->write_behind));
751 kunmap_local(sb);
752 }
753
754 /*
755 * bitmap_new_disk_sb
756 * @bitmap
757 *
758 * This function is somewhat the reverse of bitmap_read_sb. bitmap_read_sb
759 * reads and verifies the on-disk bitmap superblock and populates bitmap_info.
760 * This function verifies 'bitmap_info' and populates the on-disk bitmap
761 * structure, which is to be written to disk.
762 *
763 * Returns: 0 on success, -Exxx on error
764 */
md_bitmap_new_disk_sb(struct bitmap * bitmap)765 static int md_bitmap_new_disk_sb(struct bitmap *bitmap)
766 {
767 bitmap_super_t *sb;
768 unsigned long chunksize, daemon_sleep, write_behind;
769
770 bitmap->storage.sb_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
771 if (bitmap->storage.sb_page == NULL)
772 return -ENOMEM;
773 bitmap->storage.sb_index = 0;
774
775 sb = kmap_local_page(bitmap->storage.sb_page);
776
777 sb->magic = cpu_to_le32(BITMAP_MAGIC);
778 sb->version = cpu_to_le32(BITMAP_MAJOR_HI);
779
780 chunksize = bitmap->mddev->bitmap_info.chunksize;
781 BUG_ON(!chunksize);
782 if (!is_power_of_2(chunksize)) {
783 kunmap_local(sb);
784 pr_warn("bitmap chunksize not a power of 2\n");
785 return -EINVAL;
786 }
787 sb->chunksize = cpu_to_le32(chunksize);
788
789 daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep;
790 if (!daemon_sleep || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) {
791 pr_debug("Choosing daemon_sleep default (5 sec)\n");
792 daemon_sleep = 5 * HZ;
793 }
794 sb->daemon_sleep = cpu_to_le32(daemon_sleep);
795 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
796
797 /*
798 * FIXME: write_behind for RAID1. If not specified, what
799 * is a good choice? We choose COUNTER_MAX / 2 arbitrarily.
800 */
801 write_behind = bitmap->mddev->bitmap_info.max_write_behind;
802 if (write_behind > COUNTER_MAX / 2)
803 write_behind = COUNTER_MAX / 2;
804 sb->write_behind = cpu_to_le32(write_behind);
805 bitmap->mddev->bitmap_info.max_write_behind = write_behind;
806
807 /* keep the array size field of the bitmap superblock up to date */
808 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
809
810 memcpy(sb->uuid, bitmap->mddev->uuid, 16);
811
812 set_bit(BITMAP_STALE, &bitmap->flags);
813 sb->state = cpu_to_le32(bitmap->flags);
814 bitmap->events_cleared = bitmap->mddev->events;
815 sb->events_cleared = cpu_to_le64(bitmap->mddev->events);
816 bitmap->mddev->bitmap_info.nodes = 0;
817
818 kunmap_local(sb);
819
820 return 0;
821 }
822
823 /* read the superblock from the bitmap file and initialize some bitmap fields */
md_bitmap_read_sb(struct bitmap * bitmap)824 static int md_bitmap_read_sb(struct bitmap *bitmap)
825 {
826 char *reason = NULL;
827 bitmap_super_t *sb;
828 unsigned long chunksize, daemon_sleep, write_behind;
829 unsigned long long events;
830 int nodes = 0;
831 unsigned long sectors_reserved = 0;
832 int err = -EINVAL;
833 struct page *sb_page;
834 loff_t offset = 0;
835
836 if (!bitmap->storage.file && !bitmap->mddev->bitmap_info.offset) {
837 chunksize = 128 * 1024 * 1024;
838 daemon_sleep = 5 * HZ;
839 write_behind = 0;
840 set_bit(BITMAP_STALE, &bitmap->flags);
841 err = 0;
842 goto out_no_sb;
843 }
844 /* page 0 is the superblock, read it... */
845 sb_page = alloc_page(GFP_KERNEL);
846 if (!sb_page)
847 return -ENOMEM;
848 bitmap->storage.sb_page = sb_page;
849
850 re_read:
851 /* If cluster_slot is set, the cluster is setup */
852 if (bitmap->cluster_slot >= 0) {
853 sector_t bm_blocks = bitmap->mddev->resync_max_sectors;
854
855 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks,
856 (bitmap->mddev->bitmap_info.chunksize >> 9));
857 /* bits to bytes */
858 bm_blocks = ((bm_blocks+7) >> 3) + sizeof(bitmap_super_t);
859 /* to 4k blocks */
860 bm_blocks = DIV_ROUND_UP_SECTOR_T(bm_blocks, 4096);
861 offset = bitmap->cluster_slot * (bm_blocks << 3);
862 pr_debug("%s:%d bm slot: %d offset: %llu\n", __func__, __LINE__,
863 bitmap->cluster_slot, offset);
864 }
865
866 if (bitmap->storage.file) {
867 loff_t isize = i_size_read(bitmap->storage.file->f_mapping->host);
868 int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
869
870 err = read_file_page(bitmap->storage.file, 0,
871 bitmap, bytes, sb_page);
872 } else {
873 err = read_sb_page(bitmap->mddev, offset, sb_page, 0,
874 sizeof(bitmap_super_t));
875 }
876 if (err)
877 return err;
878
879 err = -EINVAL;
880 sb = kmap_local_page(sb_page);
881
882 chunksize = le32_to_cpu(sb->chunksize);
883 daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ;
884 write_behind = le32_to_cpu(sb->write_behind);
885 sectors_reserved = le32_to_cpu(sb->sectors_reserved);
886
887 /* verify that the bitmap-specific fields are valid */
888 if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
889 reason = "bad magic";
890 else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
891 le32_to_cpu(sb->version) > BITMAP_MAJOR_CLUSTERED)
892 reason = "unrecognized superblock version";
893 else if (chunksize < 512)
894 reason = "bitmap chunksize too small";
895 else if (!is_power_of_2(chunksize))
896 reason = "bitmap chunksize not a power of 2";
897 else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT)
898 reason = "daemon sleep period out of range";
899 else if (write_behind > COUNTER_MAX)
900 reason = "write-behind limit out of range (0 - 16383)";
901 if (reason) {
902 pr_warn("%s: invalid bitmap file superblock: %s\n",
903 bmname(bitmap), reason);
904 goto out;
905 }
906
907 /*
908 * Setup nodes/clustername only if bitmap version is
909 * cluster-compatible
910 */
911 if (sb->version == cpu_to_le32(BITMAP_MAJOR_CLUSTERED)) {
912 nodes = le32_to_cpu(sb->nodes);
913 strscpy(bitmap->mddev->bitmap_info.cluster_name,
914 sb->cluster_name, 64);
915 }
916
917 /* keep the array size field of the bitmap superblock up to date */
918 sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
919
920 if (bitmap->mddev->persistent) {
921 /*
922 * We have a persistent array superblock, so compare the
923 * bitmap's UUID and event counter to the mddev's
924 */
925 if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
926 pr_warn("%s: bitmap superblock UUID mismatch\n",
927 bmname(bitmap));
928 goto out;
929 }
930 events = le64_to_cpu(sb->events);
931 if (!nodes && (events < bitmap->mddev->events)) {
932 pr_warn("%s: bitmap file is out of date (%llu < %llu) -- forcing full recovery\n",
933 bmname(bitmap), events,
934 (unsigned long long) bitmap->mddev->events);
935 set_bit(BITMAP_STALE, &bitmap->flags);
936 }
937 }
938
939 /* assign fields using values from superblock */
940 bitmap->flags |= le32_to_cpu(sb->state);
941 if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
942 set_bit(BITMAP_HOSTENDIAN, &bitmap->flags);
943 bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
944 err = 0;
945
946 out:
947 kunmap_local(sb);
948 if (err == 0 && nodes && (bitmap->cluster_slot < 0)) {
949 /* Assigning chunksize is required for "re_read" */
950 bitmap->mddev->bitmap_info.chunksize = chunksize;
951 err = md_setup_cluster(bitmap->mddev, nodes);
952 if (err) {
953 pr_warn("%s: Could not setup cluster service (%d)\n",
954 bmname(bitmap), err);
955 goto out_no_sb;
956 }
957 bitmap->cluster_slot = bitmap->mddev->cluster_ops->slot_number(bitmap->mddev);
958 goto re_read;
959 }
960
961 out_no_sb:
962 if (err == 0) {
963 if (test_bit(BITMAP_STALE, &bitmap->flags))
964 bitmap->events_cleared = bitmap->mddev->events;
965 bitmap->mddev->bitmap_info.chunksize = chunksize;
966 bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
967 bitmap->mddev->bitmap_info.max_write_behind = write_behind;
968 bitmap->mddev->bitmap_info.nodes = nodes;
969 if (bitmap->mddev->bitmap_info.space == 0 ||
970 bitmap->mddev->bitmap_info.space > sectors_reserved)
971 bitmap->mddev->bitmap_info.space = sectors_reserved;
972 } else {
973 bitmap_print_sb(bitmap);
974 if (bitmap->cluster_slot < 0)
975 md_cluster_stop(bitmap->mddev);
976 }
977 return err;
978 }
979
980 /*
981 * general bitmap file operations
982 */
983
984 /*
985 * on-disk bitmap:
986 *
987 * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap
988 * file a page at a time. There's a superblock at the start of the file.
989 */
990 /* calculate the index of the page that contains this bit */
file_page_index(struct bitmap_storage * store,unsigned long chunk)991 static inline unsigned long file_page_index(struct bitmap_storage *store,
992 unsigned long chunk)
993 {
994 if (store->sb_page)
995 chunk += sizeof(bitmap_super_t) << 3;
996 return chunk >> PAGE_BIT_SHIFT;
997 }
998
999 /* calculate the (bit) offset of this bit within a page */
file_page_offset(struct bitmap_storage * store,unsigned long chunk)1000 static inline unsigned long file_page_offset(struct bitmap_storage *store,
1001 unsigned long chunk)
1002 {
1003 if (store->sb_page)
1004 chunk += sizeof(bitmap_super_t) << 3;
1005 return chunk & (PAGE_BITS - 1);
1006 }
1007
1008 /*
1009 * return a pointer to the page in the filemap that contains the given bit
1010 *
1011 */
filemap_get_page(struct bitmap_storage * store,unsigned long chunk)1012 static inline struct page *filemap_get_page(struct bitmap_storage *store,
1013 unsigned long chunk)
1014 {
1015 if (file_page_index(store, chunk) >= store->file_pages)
1016 return NULL;
1017 return store->filemap[file_page_index(store, chunk)];
1018 }
1019
md_bitmap_storage_alloc(struct bitmap_storage * store,unsigned long chunks,int with_super,int slot_number)1020 static int md_bitmap_storage_alloc(struct bitmap_storage *store,
1021 unsigned long chunks, int with_super,
1022 int slot_number)
1023 {
1024 int pnum, offset = 0;
1025 unsigned long num_pages;
1026 unsigned long bytes;
1027
1028 bytes = DIV_ROUND_UP(chunks, 8);
1029 if (with_super)
1030 bytes += sizeof(bitmap_super_t);
1031
1032 num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
1033 offset = slot_number * num_pages;
1034
1035 store->filemap = kmalloc_array(num_pages, sizeof(struct page *),
1036 GFP_KERNEL);
1037 if (!store->filemap)
1038 return -ENOMEM;
1039
1040 if (with_super && !store->sb_page) {
1041 store->sb_page = alloc_page(GFP_KERNEL|__GFP_ZERO);
1042 if (store->sb_page == NULL)
1043 return -ENOMEM;
1044 }
1045
1046 pnum = 0;
1047 if (store->sb_page) {
1048 store->filemap[0] = store->sb_page;
1049 pnum = 1;
1050 store->sb_index = offset;
1051 }
1052
1053 for ( ; pnum < num_pages; pnum++) {
1054 store->filemap[pnum] = alloc_page(GFP_KERNEL|__GFP_ZERO);
1055 if (!store->filemap[pnum]) {
1056 store->file_pages = pnum;
1057 return -ENOMEM;
1058 }
1059 }
1060 store->file_pages = pnum;
1061
1062 /* We need 4 bits per page, rounded up to a multiple
1063 * of sizeof(unsigned long) */
1064 store->filemap_attr = kzalloc(
1065 roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
1066 GFP_KERNEL);
1067 if (!store->filemap_attr)
1068 return -ENOMEM;
1069
1070 store->bytes = bytes;
1071
1072 return 0;
1073 }
1074
md_bitmap_file_unmap(struct bitmap_storage * store)1075 static void md_bitmap_file_unmap(struct bitmap_storage *store)
1076 {
1077 struct file *file = store->file;
1078 struct page *sb_page = store->sb_page;
1079 struct page **map = store->filemap;
1080 int pages = store->file_pages;
1081
1082 while (pages--)
1083 if (map[pages] != sb_page) /* 0 is sb_page, release it below */
1084 free_buffers(map[pages]);
1085 kfree(map);
1086 kfree(store->filemap_attr);
1087
1088 if (sb_page)
1089 free_buffers(sb_page);
1090
1091 if (file) {
1092 struct inode *inode = file_inode(file);
1093 invalidate_mapping_pages(inode->i_mapping, 0, -1);
1094 fput(file);
1095 }
1096 }
1097
1098 /*
1099 * bitmap_file_kick - if an error occurs while manipulating the bitmap file
1100 * then it is no longer reliable, so we stop using it and we mark the file
1101 * as failed in the superblock
1102 */
md_bitmap_file_kick(struct bitmap * bitmap)1103 static void md_bitmap_file_kick(struct bitmap *bitmap)
1104 {
1105 if (!test_and_set_bit(BITMAP_STALE, &bitmap->flags)) {
1106 bitmap_update_sb(bitmap);
1107
1108 if (bitmap->storage.file) {
1109 pr_warn("%s: kicking failed bitmap file %pD4 from array!\n",
1110 bmname(bitmap), bitmap->storage.file);
1111
1112 } else
1113 pr_warn("%s: disabling internal bitmap due to errors\n",
1114 bmname(bitmap));
1115 }
1116 }
1117
1118 enum bitmap_page_attr {
1119 BITMAP_PAGE_DIRTY = 0, /* there are set bits that need to be synced */
1120 BITMAP_PAGE_PENDING = 1, /* there are bits that are being cleaned.
1121 * i.e. counter is 1 or 2. */
1122 BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */
1123 };
1124
set_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1125 static inline void set_page_attr(struct bitmap *bitmap, int pnum,
1126 enum bitmap_page_attr attr)
1127 {
1128 set_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
1129 }
1130
clear_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1131 static inline void clear_page_attr(struct bitmap *bitmap, int pnum,
1132 enum bitmap_page_attr attr)
1133 {
1134 clear_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
1135 }
1136
test_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1137 static inline int test_page_attr(struct bitmap *bitmap, int pnum,
1138 enum bitmap_page_attr attr)
1139 {
1140 return test_bit((pnum<<2) + attr, bitmap->storage.filemap_attr);
1141 }
1142
test_and_clear_page_attr(struct bitmap * bitmap,int pnum,enum bitmap_page_attr attr)1143 static inline int test_and_clear_page_attr(struct bitmap *bitmap, int pnum,
1144 enum bitmap_page_attr attr)
1145 {
1146 return test_and_clear_bit((pnum<<2) + attr,
1147 bitmap->storage.filemap_attr);
1148 }
1149 /*
1150 * bitmap_file_set_bit -- called before performing a write to the md device
1151 * to set (and eventually sync) a particular bit in the bitmap file
1152 *
1153 * we set the bit immediately, then we record the page number so that
1154 * when an unplug occurs, we can flush the dirty pages out to disk
1155 */
md_bitmap_file_set_bit(struct bitmap * bitmap,sector_t block)1156 static void md_bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
1157 {
1158 unsigned long bit;
1159 struct page *page;
1160 void *kaddr;
1161 unsigned long chunk = block >> bitmap->counts.chunkshift;
1162 struct bitmap_storage *store = &bitmap->storage;
1163 unsigned long index = file_page_index(store, chunk);
1164 unsigned long node_offset = 0;
1165
1166 index += store->sb_index;
1167 if (mddev_is_clustered(bitmap->mddev))
1168 node_offset = bitmap->cluster_slot * store->file_pages;
1169
1170 page = filemap_get_page(&bitmap->storage, chunk);
1171 if (!page)
1172 return;
1173 bit = file_page_offset(&bitmap->storage, chunk);
1174
1175 /* set the bit */
1176 kaddr = kmap_local_page(page);
1177 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1178 set_bit(bit, kaddr);
1179 else
1180 set_bit_le(bit, kaddr);
1181 kunmap_local(kaddr);
1182 pr_debug("set file bit %lu page %lu\n", bit, index);
1183 /* record page number so it gets flushed to disk when unplug occurs */
1184 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_DIRTY);
1185 }
1186
md_bitmap_file_clear_bit(struct bitmap * bitmap,sector_t block)1187 static void md_bitmap_file_clear_bit(struct bitmap *bitmap, sector_t block)
1188 {
1189 unsigned long bit;
1190 struct page *page;
1191 void *paddr;
1192 unsigned long chunk = block >> bitmap->counts.chunkshift;
1193 struct bitmap_storage *store = &bitmap->storage;
1194 unsigned long index = file_page_index(store, chunk);
1195 unsigned long node_offset = 0;
1196
1197 index += store->sb_index;
1198 if (mddev_is_clustered(bitmap->mddev))
1199 node_offset = bitmap->cluster_slot * store->file_pages;
1200
1201 page = filemap_get_page(&bitmap->storage, chunk);
1202 if (!page)
1203 return;
1204 bit = file_page_offset(&bitmap->storage, chunk);
1205 paddr = kmap_local_page(page);
1206 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1207 clear_bit(bit, paddr);
1208 else
1209 clear_bit_le(bit, paddr);
1210 kunmap_local(paddr);
1211 if (!test_page_attr(bitmap, index - node_offset, BITMAP_PAGE_NEEDWRITE)) {
1212 set_page_attr(bitmap, index - node_offset, BITMAP_PAGE_PENDING);
1213 bitmap->allclean = 0;
1214 }
1215 }
1216
md_bitmap_file_test_bit(struct bitmap * bitmap,sector_t block)1217 static int md_bitmap_file_test_bit(struct bitmap *bitmap, sector_t block)
1218 {
1219 unsigned long bit;
1220 struct page *page;
1221 void *paddr;
1222 unsigned long chunk = block >> bitmap->counts.chunkshift;
1223 int set = 0;
1224
1225 page = filemap_get_page(&bitmap->storage, chunk);
1226 if (!page)
1227 return -EINVAL;
1228 bit = file_page_offset(&bitmap->storage, chunk);
1229 paddr = kmap_local_page(page);
1230 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1231 set = test_bit(bit, paddr);
1232 else
1233 set = test_bit_le(bit, paddr);
1234 kunmap_local(paddr);
1235 return set;
1236 }
1237
1238 /* this gets called when the md device is ready to unplug its underlying
1239 * (slave) device queues -- before we let any writes go down, we need to
1240 * sync the dirty pages of the bitmap file to disk */
__bitmap_unplug(struct bitmap * bitmap)1241 static void __bitmap_unplug(struct bitmap *bitmap)
1242 {
1243 unsigned long i;
1244 int dirty, need_write;
1245 int writing = 0;
1246
1247 if (!__bitmap_enabled(bitmap))
1248 return;
1249
1250 /* look at each page to see if there are any set bits that need to be
1251 * flushed out to disk */
1252 for (i = 0; i < bitmap->storage.file_pages; i++) {
1253 dirty = test_and_clear_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
1254 need_write = test_and_clear_page_attr(bitmap, i,
1255 BITMAP_PAGE_NEEDWRITE);
1256 if (dirty || need_write) {
1257 if (!writing) {
1258 md_bitmap_wait_writes(bitmap);
1259 mddev_add_trace_msg(bitmap->mddev,
1260 "md bitmap_unplug");
1261 }
1262 clear_page_attr(bitmap, i, BITMAP_PAGE_PENDING);
1263 filemap_write_page(bitmap, i, false);
1264 writing = 1;
1265 }
1266 }
1267 if (writing)
1268 md_bitmap_wait_writes(bitmap);
1269
1270 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
1271 md_bitmap_file_kick(bitmap);
1272 }
1273
1274 struct bitmap_unplug_work {
1275 struct work_struct work;
1276 struct bitmap *bitmap;
1277 struct completion *done;
1278 };
1279
md_bitmap_unplug_fn(struct work_struct * work)1280 static void md_bitmap_unplug_fn(struct work_struct *work)
1281 {
1282 struct bitmap_unplug_work *unplug_work =
1283 container_of(work, struct bitmap_unplug_work, work);
1284
1285 __bitmap_unplug(unplug_work->bitmap);
1286 complete(unplug_work->done);
1287 }
1288
bitmap_unplug_async(struct bitmap * bitmap)1289 static void bitmap_unplug_async(struct bitmap *bitmap)
1290 {
1291 DECLARE_COMPLETION_ONSTACK(done);
1292 struct bitmap_unplug_work unplug_work;
1293
1294 INIT_WORK_ONSTACK(&unplug_work.work, md_bitmap_unplug_fn);
1295 unplug_work.bitmap = bitmap;
1296 unplug_work.done = &done;
1297
1298 queue_work(md_bitmap_wq, &unplug_work.work);
1299 wait_for_completion(&done);
1300 destroy_work_on_stack(&unplug_work.work);
1301 }
1302
bitmap_unplug(struct mddev * mddev,bool sync)1303 static void bitmap_unplug(struct mddev *mddev, bool sync)
1304 {
1305 struct bitmap *bitmap = mddev->bitmap;
1306
1307 if (!bitmap)
1308 return;
1309
1310 if (sync)
1311 __bitmap_unplug(bitmap);
1312 else
1313 bitmap_unplug_async(bitmap);
1314 }
1315
1316 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
1317
1318 /*
1319 * Initialize the in-memory bitmap from the on-disk bitmap and set up the memory
1320 * mapping of the bitmap file.
1321 *
1322 * Special case: If there's no bitmap file, or if the bitmap file had been
1323 * previously kicked from the array, we mark all the bits as 1's in order to
1324 * cause a full resync.
1325 *
1326 * We ignore all bits for sectors that end earlier than 'start'.
1327 * This is used when reading an out-of-date bitmap.
1328 */
md_bitmap_init_from_disk(struct bitmap * bitmap,sector_t start)1329 static int md_bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
1330 {
1331 bool outofdate = test_bit(BITMAP_STALE, &bitmap->flags);
1332 struct mddev *mddev = bitmap->mddev;
1333 unsigned long chunks = bitmap->counts.chunks;
1334 struct bitmap_storage *store = &bitmap->storage;
1335 struct file *file = store->file;
1336 unsigned long node_offset = 0;
1337 unsigned long bit_cnt = 0;
1338 unsigned long i;
1339 int ret;
1340
1341 if (!file && !mddev->bitmap_info.offset) {
1342 /* No permanent bitmap - fill with '1s'. */
1343 store->filemap = NULL;
1344 store->file_pages = 0;
1345 for (i = 0; i < chunks ; i++) {
1346 /* if the disk bit is set, set the memory bit */
1347 int needed = ((sector_t)(i+1) << (bitmap->counts.chunkshift)
1348 >= start);
1349 md_bitmap_set_memory_bits(bitmap,
1350 (sector_t)i << bitmap->counts.chunkshift,
1351 needed);
1352 }
1353 return 0;
1354 }
1355
1356 if (file && i_size_read(file->f_mapping->host) < store->bytes) {
1357 pr_warn("%s: bitmap file too short %lu < %lu\n",
1358 bmname(bitmap),
1359 (unsigned long) i_size_read(file->f_mapping->host),
1360 store->bytes);
1361 ret = -ENOSPC;
1362 goto err;
1363 }
1364
1365 if (mddev_is_clustered(mddev))
1366 node_offset = bitmap->cluster_slot * (DIV_ROUND_UP(store->bytes, PAGE_SIZE));
1367
1368 for (i = 0; i < store->file_pages; i++) {
1369 struct page *page = store->filemap[i];
1370 int count;
1371
1372 /* unmap the old page, we're done with it */
1373 if (i == store->file_pages - 1)
1374 count = store->bytes - i * PAGE_SIZE;
1375 else
1376 count = PAGE_SIZE;
1377
1378 if (file)
1379 ret = read_file_page(file, i, bitmap, count, page);
1380 else
1381 ret = read_sb_page(mddev, 0, page, i + node_offset,
1382 count);
1383 if (ret)
1384 goto err;
1385 }
1386
1387 if (outofdate) {
1388 pr_warn("%s: bitmap file is out of date, doing full recovery\n",
1389 bmname(bitmap));
1390
1391 for (i = 0; i < store->file_pages; i++) {
1392 struct page *page = store->filemap[i];
1393 unsigned long offset = 0;
1394 void *paddr;
1395
1396 if (i == 0 && !mddev->bitmap_info.external)
1397 offset = sizeof(bitmap_super_t);
1398
1399 /*
1400 * If the bitmap is out of date, dirty the whole page
1401 * and write it out
1402 */
1403 paddr = kmap_local_page(page);
1404 memset(paddr + offset, 0xff, PAGE_SIZE - offset);
1405 kunmap_local(paddr);
1406
1407 filemap_write_page(bitmap, i, true);
1408 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags)) {
1409 ret = -EIO;
1410 goto err;
1411 }
1412 }
1413 }
1414
1415 for (i = 0; i < chunks; i++) {
1416 struct page *page = filemap_get_page(&bitmap->storage, i);
1417 unsigned long bit = file_page_offset(&bitmap->storage, i);
1418 void *paddr;
1419 bool was_set;
1420
1421 paddr = kmap_local_page(page);
1422 if (test_bit(BITMAP_HOSTENDIAN, &bitmap->flags))
1423 was_set = test_bit(bit, paddr);
1424 else
1425 was_set = test_bit_le(bit, paddr);
1426 kunmap_local(paddr);
1427
1428 if (was_set) {
1429 /* if the disk bit is set, set the memory bit */
1430 int needed = ((sector_t)(i+1) << bitmap->counts.chunkshift
1431 >= start);
1432 md_bitmap_set_memory_bits(bitmap,
1433 (sector_t)i << bitmap->counts.chunkshift,
1434 needed);
1435 bit_cnt++;
1436 }
1437 }
1438
1439 pr_debug("%s: bitmap initialized from disk: read %lu pages, set %lu of %lu bits\n",
1440 bmname(bitmap), store->file_pages,
1441 bit_cnt, chunks);
1442
1443 return 0;
1444
1445 err:
1446 pr_warn("%s: bitmap initialisation failed: %d\n",
1447 bmname(bitmap), ret);
1448 return ret;
1449 }
1450
1451 /* just flag bitmap pages as needing to be written. */
bitmap_write_all(struct mddev * mddev)1452 static void bitmap_write_all(struct mddev *mddev)
1453 {
1454 int i;
1455 struct bitmap *bitmap = mddev->bitmap;
1456
1457 if (!bitmap || !bitmap->storage.filemap)
1458 return;
1459
1460 /* Only one copy, so nothing needed */
1461 if (bitmap->storage.file)
1462 return;
1463
1464 for (i = 0; i < bitmap->storage.file_pages; i++)
1465 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE);
1466 bitmap->allclean = 0;
1467 }
1468
md_bitmap_count_page(struct bitmap_counts * bitmap,sector_t offset,int inc)1469 static void md_bitmap_count_page(struct bitmap_counts *bitmap,
1470 sector_t offset, int inc)
1471 {
1472 sector_t chunk = offset >> bitmap->chunkshift;
1473 unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1474 bitmap->bp[page].count += inc;
1475 md_bitmap_checkfree(bitmap, page);
1476 }
1477
md_bitmap_set_pending(struct bitmap_counts * bitmap,sector_t offset)1478 static void md_bitmap_set_pending(struct bitmap_counts *bitmap, sector_t offset)
1479 {
1480 sector_t chunk = offset >> bitmap->chunkshift;
1481 unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1482 struct bitmap_page *bp = &bitmap->bp[page];
1483
1484 if (!bp->pending)
1485 bp->pending = 1;
1486 }
1487
1488 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
1489 sector_t offset, sector_t *blocks,
1490 int create);
1491
mddev_set_timeout(struct mddev * mddev,unsigned long timeout,bool force)1492 static void mddev_set_timeout(struct mddev *mddev, unsigned long timeout,
1493 bool force)
1494 {
1495 struct md_thread *thread;
1496
1497 rcu_read_lock();
1498 thread = rcu_dereference(mddev->thread);
1499
1500 if (!thread)
1501 goto out;
1502
1503 if (force || thread->timeout < MAX_SCHEDULE_TIMEOUT)
1504 thread->timeout = timeout;
1505
1506 out:
1507 rcu_read_unlock();
1508 }
1509
1510 /*
1511 * bitmap daemon -- periodically wakes up to clean bits and flush pages
1512 * out to disk
1513 */
bitmap_daemon_work(struct mddev * mddev)1514 static void bitmap_daemon_work(struct mddev *mddev)
1515 {
1516 struct bitmap *bitmap;
1517 unsigned long j;
1518 unsigned long nextpage;
1519 sector_t blocks;
1520 struct bitmap_counts *counts;
1521
1522 /* Use a mutex to guard daemon_work against
1523 * bitmap_destroy.
1524 */
1525 mutex_lock(&mddev->bitmap_info.mutex);
1526 bitmap = mddev->bitmap;
1527 if (bitmap == NULL) {
1528 mutex_unlock(&mddev->bitmap_info.mutex);
1529 return;
1530 }
1531 if (time_before(jiffies, bitmap->daemon_lastrun
1532 + mddev->bitmap_info.daemon_sleep))
1533 goto done;
1534
1535 bitmap->daemon_lastrun = jiffies;
1536 if (bitmap->allclean) {
1537 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true);
1538 goto done;
1539 }
1540 bitmap->allclean = 1;
1541
1542 mddev_add_trace_msg(bitmap->mddev, "md bitmap_daemon_work");
1543
1544 /* Any file-page which is PENDING now needs to be written.
1545 * So set NEEDWRITE now, then after we make any last-minute changes
1546 * we will write it.
1547 */
1548 for (j = 0; j < bitmap->storage.file_pages; j++)
1549 if (test_and_clear_page_attr(bitmap, j,
1550 BITMAP_PAGE_PENDING))
1551 set_page_attr(bitmap, j,
1552 BITMAP_PAGE_NEEDWRITE);
1553
1554 if (bitmap->need_sync &&
1555 mddev->bitmap_info.external == 0) {
1556 /* Arrange for superblock update as well as
1557 * other changes */
1558 bitmap_super_t *sb;
1559 bitmap->need_sync = 0;
1560 if (bitmap->storage.filemap) {
1561 sb = kmap_local_page(bitmap->storage.sb_page);
1562 sb->events_cleared =
1563 cpu_to_le64(bitmap->events_cleared);
1564 kunmap_local(sb);
1565 set_page_attr(bitmap, 0,
1566 BITMAP_PAGE_NEEDWRITE);
1567 }
1568 }
1569 /* Now look at the bitmap counters and if any are '2' or '1',
1570 * decrement and handle accordingly.
1571 */
1572 counts = &bitmap->counts;
1573 spin_lock_irq(&counts->lock);
1574 nextpage = 0;
1575 for (j = 0; j < counts->chunks; j++) {
1576 bitmap_counter_t *bmc;
1577 sector_t block = (sector_t)j << counts->chunkshift;
1578
1579 if (j == nextpage) {
1580 nextpage += PAGE_COUNTER_RATIO;
1581 if (!counts->bp[j >> PAGE_COUNTER_SHIFT].pending) {
1582 j |= PAGE_COUNTER_MASK;
1583 continue;
1584 }
1585 counts->bp[j >> PAGE_COUNTER_SHIFT].pending = 0;
1586 }
1587
1588 bmc = md_bitmap_get_counter(counts, block, &blocks, 0);
1589 if (!bmc) {
1590 j |= PAGE_COUNTER_MASK;
1591 continue;
1592 }
1593 if (*bmc == 1 && !bitmap->need_sync) {
1594 /* We can clear the bit */
1595 *bmc = 0;
1596 md_bitmap_count_page(counts, block, -1);
1597 md_bitmap_file_clear_bit(bitmap, block);
1598 } else if (*bmc && *bmc <= 2) {
1599 *bmc = 1;
1600 md_bitmap_set_pending(counts, block);
1601 bitmap->allclean = 0;
1602 }
1603 }
1604 spin_unlock_irq(&counts->lock);
1605
1606 md_bitmap_wait_writes(bitmap);
1607 /* Now start writeout on any page in NEEDWRITE that isn't DIRTY.
1608 * DIRTY pages need to be written by bitmap_unplug so it can wait
1609 * for them.
1610 * If we find any DIRTY page we stop there and let bitmap_unplug
1611 * handle all the rest. This is important in the case where
1612 * the first blocking holds the superblock and it has been updated.
1613 * We mustn't write any other blocks before the superblock.
1614 */
1615 for (j = 0;
1616 j < bitmap->storage.file_pages
1617 && !test_bit(BITMAP_STALE, &bitmap->flags);
1618 j++) {
1619 if (test_page_attr(bitmap, j,
1620 BITMAP_PAGE_DIRTY))
1621 /* bitmap_unplug will handle the rest */
1622 break;
1623 if (bitmap->storage.filemap &&
1624 test_and_clear_page_attr(bitmap, j,
1625 BITMAP_PAGE_NEEDWRITE))
1626 filemap_write_page(bitmap, j, false);
1627 }
1628
1629 done:
1630 if (bitmap->allclean == 0)
1631 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true);
1632 mutex_unlock(&mddev->bitmap_info.mutex);
1633 }
1634
md_bitmap_get_counter(struct bitmap_counts * bitmap,sector_t offset,sector_t * blocks,int create)1635 static bitmap_counter_t *md_bitmap_get_counter(struct bitmap_counts *bitmap,
1636 sector_t offset, sector_t *blocks,
1637 int create)
1638 __releases(bitmap->lock)
1639 __acquires(bitmap->lock)
1640 {
1641 /* If 'create', we might release the lock and reclaim it.
1642 * The lock must have been taken with interrupts enabled.
1643 * If !create, we don't release the lock.
1644 */
1645 sector_t chunk = offset >> bitmap->chunkshift;
1646 unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
1647 unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
1648 sector_t csize = ((sector_t)1) << bitmap->chunkshift;
1649 int err;
1650
1651 if (page >= bitmap->pages) {
1652 /*
1653 * This can happen if bitmap_start_sync goes beyond
1654 * End-of-device while looking for a whole page or
1655 * user set a huge number to sysfs bitmap_set_bits.
1656 */
1657 *blocks = csize - (offset & (csize - 1));
1658 return NULL;
1659 }
1660 err = md_bitmap_checkpage(bitmap, page, create, 0);
1661
1662 if (bitmap->bp[page].hijacked ||
1663 bitmap->bp[page].map == NULL)
1664 csize = ((sector_t)1) << (bitmap->chunkshift +
1665 PAGE_COUNTER_SHIFT);
1666
1667 *blocks = csize - (offset & (csize - 1));
1668
1669 if (err < 0)
1670 return NULL;
1671
1672 /* now locked ... */
1673
1674 if (bitmap->bp[page].hijacked) { /* hijacked pointer */
1675 /* should we use the first or second counter field
1676 * of the hijacked pointer? */
1677 int hi = (pageoff > PAGE_COUNTER_MASK);
1678 return &((bitmap_counter_t *)
1679 &bitmap->bp[page].map)[hi];
1680 } else /* page is allocated */
1681 return (bitmap_counter_t *)
1682 &(bitmap->bp[page].map[pageoff]);
1683 }
1684
bitmap_start_write(struct mddev * mddev,sector_t offset,unsigned long sectors)1685 static void bitmap_start_write(struct mddev *mddev, sector_t offset,
1686 unsigned long sectors)
1687 {
1688 struct bitmap *bitmap = mddev->bitmap;
1689
1690 if (!bitmap)
1691 return;
1692
1693 while (sectors) {
1694 sector_t blocks;
1695 bitmap_counter_t *bmc;
1696
1697 spin_lock_irq(&bitmap->counts.lock);
1698 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 1);
1699 if (!bmc) {
1700 spin_unlock_irq(&bitmap->counts.lock);
1701 return;
1702 }
1703
1704 if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) {
1705 DEFINE_WAIT(__wait);
1706 /* note that it is safe to do the prepare_to_wait
1707 * after the test as long as we do it before dropping
1708 * the spinlock.
1709 */
1710 prepare_to_wait(&bitmap->overflow_wait, &__wait,
1711 TASK_UNINTERRUPTIBLE);
1712 spin_unlock_irq(&bitmap->counts.lock);
1713 schedule();
1714 finish_wait(&bitmap->overflow_wait, &__wait);
1715 continue;
1716 }
1717
1718 switch (*bmc) {
1719 case 0:
1720 md_bitmap_file_set_bit(bitmap, offset);
1721 md_bitmap_count_page(&bitmap->counts, offset, 1);
1722 fallthrough;
1723 case 1:
1724 *bmc = 2;
1725 }
1726
1727 (*bmc)++;
1728
1729 spin_unlock_irq(&bitmap->counts.lock);
1730
1731 offset += blocks;
1732 if (sectors > blocks)
1733 sectors -= blocks;
1734 else
1735 sectors = 0;
1736 }
1737 }
1738
bitmap_end_write(struct mddev * mddev,sector_t offset,unsigned long sectors)1739 static void bitmap_end_write(struct mddev *mddev, sector_t offset,
1740 unsigned long sectors)
1741 {
1742 struct bitmap *bitmap = mddev->bitmap;
1743
1744 if (!bitmap)
1745 return;
1746
1747 while (sectors) {
1748 sector_t blocks;
1749 unsigned long flags;
1750 bitmap_counter_t *bmc;
1751
1752 spin_lock_irqsave(&bitmap->counts.lock, flags);
1753 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &blocks, 0);
1754 if (!bmc) {
1755 spin_unlock_irqrestore(&bitmap->counts.lock, flags);
1756 return;
1757 }
1758
1759 if (!bitmap->mddev->degraded) {
1760 if (bitmap->events_cleared < bitmap->mddev->events) {
1761 bitmap->events_cleared = bitmap->mddev->events;
1762 bitmap->need_sync = 1;
1763 sysfs_notify_dirent_safe(
1764 bitmap->sysfs_can_clear);
1765 }
1766 } else if (!NEEDED(*bmc)) {
1767 *bmc |= NEEDED_MASK;
1768 }
1769
1770 if (COUNTER(*bmc) == COUNTER_MAX)
1771 wake_up(&bitmap->overflow_wait);
1772
1773 (*bmc)--;
1774 if (*bmc <= 2) {
1775 md_bitmap_set_pending(&bitmap->counts, offset);
1776 bitmap->allclean = 0;
1777 }
1778 spin_unlock_irqrestore(&bitmap->counts.lock, flags);
1779 offset += blocks;
1780 if (sectors > blocks)
1781 sectors -= blocks;
1782 else
1783 sectors = 0;
1784 }
1785 }
1786
__bitmap_start_sync(struct bitmap * bitmap,sector_t offset,sector_t * blocks,bool degraded)1787 static bool __bitmap_start_sync(struct bitmap *bitmap, sector_t offset,
1788 sector_t *blocks, bool degraded)
1789 {
1790 bitmap_counter_t *bmc;
1791 bool rv;
1792
1793 if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
1794 *blocks = 1024;
1795 return true; /* always resync if no bitmap */
1796 }
1797 spin_lock_irq(&bitmap->counts.lock);
1798
1799 rv = false;
1800 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
1801 if (bmc) {
1802 /* locked */
1803 if (RESYNC(*bmc)) {
1804 rv = true;
1805 } else if (NEEDED(*bmc)) {
1806 rv = true;
1807 if (!degraded) { /* don't set/clear bits if degraded */
1808 *bmc |= RESYNC_MASK;
1809 *bmc &= ~NEEDED_MASK;
1810 }
1811 }
1812 }
1813 spin_unlock_irq(&bitmap->counts.lock);
1814
1815 return rv;
1816 }
1817
bitmap_start_sync(struct mddev * mddev,sector_t offset,sector_t * blocks,bool degraded)1818 static bool bitmap_start_sync(struct mddev *mddev, sector_t offset,
1819 sector_t *blocks, bool degraded)
1820 {
1821 /* bitmap_start_sync must always report on multiples of whole
1822 * pages, otherwise resync (which is very PAGE_SIZE based) will
1823 * get confused.
1824 * So call __bitmap_start_sync repeatedly (if needed) until
1825 * At least PAGE_SIZE>>9 blocks are covered.
1826 * Return the 'or' of the result.
1827 */
1828 bool rv = false;
1829 sector_t blocks1;
1830
1831 *blocks = 0;
1832 while (*blocks < (PAGE_SIZE>>9)) {
1833 rv |= __bitmap_start_sync(mddev->bitmap, offset,
1834 &blocks1, degraded);
1835 offset += blocks1;
1836 *blocks += blocks1;
1837 }
1838
1839 return rv;
1840 }
1841
__bitmap_end_sync(struct bitmap * bitmap,sector_t offset,sector_t * blocks,bool aborted)1842 static void __bitmap_end_sync(struct bitmap *bitmap, sector_t offset,
1843 sector_t *blocks, bool aborted)
1844 {
1845 bitmap_counter_t *bmc;
1846 unsigned long flags;
1847
1848 if (bitmap == NULL) {
1849 *blocks = 1024;
1850 return;
1851 }
1852 spin_lock_irqsave(&bitmap->counts.lock, flags);
1853 bmc = md_bitmap_get_counter(&bitmap->counts, offset, blocks, 0);
1854 if (bmc == NULL)
1855 goto unlock;
1856 /* locked */
1857 if (RESYNC(*bmc)) {
1858 *bmc &= ~RESYNC_MASK;
1859
1860 if (!NEEDED(*bmc) && aborted)
1861 *bmc |= NEEDED_MASK;
1862 else {
1863 if (*bmc <= 2) {
1864 md_bitmap_set_pending(&bitmap->counts, offset);
1865 bitmap->allclean = 0;
1866 }
1867 }
1868 }
1869 unlock:
1870 spin_unlock_irqrestore(&bitmap->counts.lock, flags);
1871 }
1872
bitmap_end_sync(struct mddev * mddev,sector_t offset,sector_t * blocks)1873 static void bitmap_end_sync(struct mddev *mddev, sector_t offset,
1874 sector_t *blocks)
1875 {
1876 __bitmap_end_sync(mddev->bitmap, offset, blocks, true);
1877 }
1878
bitmap_close_sync(struct mddev * mddev)1879 static void bitmap_close_sync(struct mddev *mddev)
1880 {
1881 /* Sync has finished, and any bitmap chunks that weren't synced
1882 * properly have been aborted. It remains to us to clear the
1883 * RESYNC bit wherever it is still on
1884 */
1885 sector_t sector = 0;
1886 sector_t blocks;
1887 struct bitmap *bitmap = mddev->bitmap;
1888
1889 if (!bitmap)
1890 return;
1891
1892 while (sector < bitmap->mddev->resync_max_sectors) {
1893 __bitmap_end_sync(bitmap, sector, &blocks, false);
1894 sector += blocks;
1895 }
1896 }
1897
bitmap_cond_end_sync(struct mddev * mddev,sector_t sector,bool force)1898 static void bitmap_cond_end_sync(struct mddev *mddev, sector_t sector,
1899 bool force)
1900 {
1901 sector_t s = 0;
1902 sector_t blocks;
1903 struct bitmap *bitmap = mddev->bitmap;
1904
1905 if (!bitmap)
1906 return;
1907 if (sector == 0) {
1908 bitmap->last_end_sync = jiffies;
1909 return;
1910 }
1911 if (!force && time_before(jiffies, (bitmap->last_end_sync
1912 + bitmap->mddev->bitmap_info.daemon_sleep)))
1913 return;
1914 wait_event(bitmap->mddev->recovery_wait,
1915 atomic_read(&bitmap->mddev->recovery_active) == 0);
1916
1917 bitmap->mddev->curr_resync_completed = sector;
1918 set_bit(MD_SB_CHANGE_CLEAN, &bitmap->mddev->sb_flags);
1919 sector &= ~((1ULL << bitmap->counts.chunkshift) - 1);
1920 s = 0;
1921 while (s < sector && s < bitmap->mddev->resync_max_sectors) {
1922 __bitmap_end_sync(bitmap, s, &blocks, false);
1923 s += blocks;
1924 }
1925 bitmap->last_end_sync = jiffies;
1926 sysfs_notify_dirent_safe(bitmap->mddev->sysfs_completed);
1927 }
1928
bitmap_sync_with_cluster(struct mddev * mddev,sector_t old_lo,sector_t old_hi,sector_t new_lo,sector_t new_hi)1929 static void bitmap_sync_with_cluster(struct mddev *mddev,
1930 sector_t old_lo, sector_t old_hi,
1931 sector_t new_lo, sector_t new_hi)
1932 {
1933 struct bitmap *bitmap = mddev->bitmap;
1934 sector_t sector, blocks = 0;
1935
1936 for (sector = old_lo; sector < new_lo; ) {
1937 __bitmap_end_sync(bitmap, sector, &blocks, false);
1938 sector += blocks;
1939 }
1940 WARN((blocks > new_lo) && old_lo, "alignment is not correct for lo\n");
1941
1942 for (sector = old_hi; sector < new_hi; ) {
1943 bitmap_start_sync(mddev, sector, &blocks, false);
1944 sector += blocks;
1945 }
1946 WARN((blocks > new_hi) && old_hi, "alignment is not correct for hi\n");
1947 }
1948
md_bitmap_set_memory_bits(struct bitmap * bitmap,sector_t offset,int needed)1949 static void md_bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
1950 {
1951 /* For each chunk covered by any of these sectors, set the
1952 * counter to 2 and possibly set resync_needed. They should all
1953 * be 0 at this point
1954 */
1955
1956 sector_t secs;
1957 bitmap_counter_t *bmc;
1958 spin_lock_irq(&bitmap->counts.lock);
1959 bmc = md_bitmap_get_counter(&bitmap->counts, offset, &secs, 1);
1960 if (!bmc) {
1961 spin_unlock_irq(&bitmap->counts.lock);
1962 return;
1963 }
1964 if (!*bmc) {
1965 *bmc = 2;
1966 md_bitmap_count_page(&bitmap->counts, offset, 1);
1967 md_bitmap_set_pending(&bitmap->counts, offset);
1968 bitmap->allclean = 0;
1969 }
1970 if (needed)
1971 *bmc |= NEEDED_MASK;
1972 spin_unlock_irq(&bitmap->counts.lock);
1973 }
1974
1975 /* dirty the memory and file bits for bitmap chunks "s" to "e" */
bitmap_dirty_bits(struct mddev * mddev,unsigned long s,unsigned long e)1976 static void bitmap_dirty_bits(struct mddev *mddev, unsigned long s,
1977 unsigned long e)
1978 {
1979 unsigned long chunk;
1980 struct bitmap *bitmap = mddev->bitmap;
1981
1982 if (!bitmap)
1983 return;
1984
1985 for (chunk = s; chunk <= e; chunk++) {
1986 sector_t sec = (sector_t)chunk << bitmap->counts.chunkshift;
1987
1988 md_bitmap_set_memory_bits(bitmap, sec, 1);
1989 md_bitmap_file_set_bit(bitmap, sec);
1990 if (sec < bitmap->mddev->recovery_cp)
1991 /* We are asserting that the array is dirty,
1992 * so move the recovery_cp address back so
1993 * that it is obvious that it is dirty
1994 */
1995 bitmap->mddev->recovery_cp = sec;
1996 }
1997 }
1998
bitmap_flush(struct mddev * mddev)1999 static void bitmap_flush(struct mddev *mddev)
2000 {
2001 struct bitmap *bitmap = mddev->bitmap;
2002 long sleep;
2003
2004 if (!bitmap) /* there was no bitmap */
2005 return;
2006
2007 /* run the daemon_work three time to ensure everything is flushed
2008 * that can be
2009 */
2010 sleep = mddev->bitmap_info.daemon_sleep * 2;
2011 bitmap->daemon_lastrun -= sleep;
2012 bitmap_daemon_work(mddev);
2013 bitmap->daemon_lastrun -= sleep;
2014 bitmap_daemon_work(mddev);
2015 bitmap->daemon_lastrun -= sleep;
2016 bitmap_daemon_work(mddev);
2017 if (mddev->bitmap_info.external)
2018 md_super_wait(mddev);
2019 bitmap_update_sb(bitmap);
2020 }
2021
md_bitmap_free(void * data)2022 static void md_bitmap_free(void *data)
2023 {
2024 unsigned long k, pages;
2025 struct bitmap_page *bp;
2026 struct bitmap *bitmap = data;
2027
2028 if (!bitmap) /* there was no bitmap */
2029 return;
2030
2031 if (bitmap->sysfs_can_clear)
2032 sysfs_put(bitmap->sysfs_can_clear);
2033
2034 if (mddev_is_clustered(bitmap->mddev) && bitmap->mddev->cluster_info &&
2035 bitmap->cluster_slot == bitmap->mddev->cluster_ops->slot_number(bitmap->mddev))
2036 md_cluster_stop(bitmap->mddev);
2037
2038 /* Shouldn't be needed - but just in case.... */
2039 wait_event(bitmap->write_wait,
2040 atomic_read(&bitmap->pending_writes) == 0);
2041
2042 /* release the bitmap file */
2043 md_bitmap_file_unmap(&bitmap->storage);
2044
2045 bp = bitmap->counts.bp;
2046 pages = bitmap->counts.pages;
2047
2048 /* free all allocated memory */
2049
2050 if (bp) /* deallocate the page memory */
2051 for (k = 0; k < pages; k++)
2052 if (bp[k].map && !bp[k].hijacked)
2053 kfree(bp[k].map);
2054 kfree(bp);
2055 kfree(bitmap);
2056 }
2057
bitmap_start_behind_write(struct mddev * mddev)2058 static void bitmap_start_behind_write(struct mddev *mddev)
2059 {
2060 struct bitmap *bitmap = mddev->bitmap;
2061 int bw;
2062
2063 if (!bitmap)
2064 return;
2065
2066 atomic_inc(&bitmap->behind_writes);
2067 bw = atomic_read(&bitmap->behind_writes);
2068 if (bw > bitmap->behind_writes_used)
2069 bitmap->behind_writes_used = bw;
2070
2071 pr_debug("inc write-behind count %d/%lu\n",
2072 bw, bitmap->mddev->bitmap_info.max_write_behind);
2073 }
2074
bitmap_end_behind_write(struct mddev * mddev)2075 static void bitmap_end_behind_write(struct mddev *mddev)
2076 {
2077 struct bitmap *bitmap = mddev->bitmap;
2078
2079 if (!bitmap)
2080 return;
2081
2082 if (atomic_dec_and_test(&bitmap->behind_writes))
2083 wake_up(&bitmap->behind_wait);
2084 pr_debug("dec write-behind count %d/%lu\n",
2085 atomic_read(&bitmap->behind_writes),
2086 bitmap->mddev->bitmap_info.max_write_behind);
2087 }
2088
bitmap_wait_behind_writes(struct mddev * mddev)2089 static void bitmap_wait_behind_writes(struct mddev *mddev)
2090 {
2091 struct bitmap *bitmap = mddev->bitmap;
2092
2093 /* wait for behind writes to complete */
2094 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2095 pr_debug("md:%s: behind writes in progress - waiting to stop.\n",
2096 mdname(mddev));
2097 /* need to kick something here to make sure I/O goes? */
2098 wait_event(bitmap->behind_wait,
2099 atomic_read(&bitmap->behind_writes) == 0);
2100 }
2101 }
2102
bitmap_destroy(struct mddev * mddev)2103 static void bitmap_destroy(struct mddev *mddev)
2104 {
2105 struct bitmap *bitmap = mddev->bitmap;
2106
2107 if (!bitmap) /* there was no bitmap */
2108 return;
2109
2110 bitmap_wait_behind_writes(mddev);
2111 if (!mddev->serialize_policy)
2112 mddev_destroy_serial_pool(mddev, NULL);
2113
2114 mutex_lock(&mddev->bitmap_info.mutex);
2115 spin_lock(&mddev->lock);
2116 mddev->bitmap = NULL; /* disconnect from the md device */
2117 spin_unlock(&mddev->lock);
2118 mutex_unlock(&mddev->bitmap_info.mutex);
2119 mddev_set_timeout(mddev, MAX_SCHEDULE_TIMEOUT, true);
2120
2121 md_bitmap_free(bitmap);
2122 }
2123
2124 /*
2125 * initialize the bitmap structure
2126 * if this returns an error, bitmap_destroy must be called to do clean up
2127 * once mddev->bitmap is set
2128 */
__bitmap_create(struct mddev * mddev,int slot)2129 static struct bitmap *__bitmap_create(struct mddev *mddev, int slot)
2130 {
2131 struct bitmap *bitmap;
2132 sector_t blocks = mddev->resync_max_sectors;
2133 struct file *file = mddev->bitmap_info.file;
2134 int err;
2135 struct kernfs_node *bm = NULL;
2136
2137 BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
2138
2139 BUG_ON(file && mddev->bitmap_info.offset);
2140
2141 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
2142 pr_notice("md/raid:%s: array with journal cannot have bitmap\n",
2143 mdname(mddev));
2144 return ERR_PTR(-EBUSY);
2145 }
2146
2147 bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
2148 if (!bitmap)
2149 return ERR_PTR(-ENOMEM);
2150
2151 spin_lock_init(&bitmap->counts.lock);
2152 atomic_set(&bitmap->pending_writes, 0);
2153 init_waitqueue_head(&bitmap->write_wait);
2154 init_waitqueue_head(&bitmap->overflow_wait);
2155 init_waitqueue_head(&bitmap->behind_wait);
2156
2157 bitmap->mddev = mddev;
2158 bitmap->cluster_slot = slot;
2159
2160 if (mddev->kobj.sd)
2161 bm = sysfs_get_dirent(mddev->kobj.sd, "bitmap");
2162 if (bm) {
2163 bitmap->sysfs_can_clear = sysfs_get_dirent(bm, "can_clear");
2164 sysfs_put(bm);
2165 } else
2166 bitmap->sysfs_can_clear = NULL;
2167
2168 bitmap->storage.file = file;
2169 if (file) {
2170 get_file(file);
2171 /* As future accesses to this file will use bmap,
2172 * and bypass the page cache, we must sync the file
2173 * first.
2174 */
2175 vfs_fsync(file, 1);
2176 }
2177 /* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */
2178 if (!mddev->bitmap_info.external) {
2179 /*
2180 * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is
2181 * instructing us to create a new on-disk bitmap instance.
2182 */
2183 if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags))
2184 err = md_bitmap_new_disk_sb(bitmap);
2185 else
2186 err = md_bitmap_read_sb(bitmap);
2187 } else {
2188 err = 0;
2189 if (mddev->bitmap_info.chunksize == 0 ||
2190 mddev->bitmap_info.daemon_sleep == 0)
2191 /* chunksize and time_base need to be
2192 * set first. */
2193 err = -EINVAL;
2194 }
2195 if (err)
2196 goto error;
2197
2198 bitmap->daemon_lastrun = jiffies;
2199 err = __bitmap_resize(bitmap, blocks, mddev->bitmap_info.chunksize,
2200 true);
2201 if (err)
2202 goto error;
2203
2204 pr_debug("created bitmap (%lu pages) for device %s\n",
2205 bitmap->counts.pages, bmname(bitmap));
2206
2207 err = test_bit(BITMAP_WRITE_ERROR, &bitmap->flags) ? -EIO : 0;
2208 if (err)
2209 goto error;
2210
2211 return bitmap;
2212 error:
2213 md_bitmap_free(bitmap);
2214 return ERR_PTR(err);
2215 }
2216
bitmap_create(struct mddev * mddev)2217 static int bitmap_create(struct mddev *mddev)
2218 {
2219 struct bitmap *bitmap = __bitmap_create(mddev, -1);
2220
2221 if (IS_ERR(bitmap))
2222 return PTR_ERR(bitmap);
2223
2224 mddev->bitmap = bitmap;
2225 return 0;
2226 }
2227
bitmap_load(struct mddev * mddev)2228 static int bitmap_load(struct mddev *mddev)
2229 {
2230 int err = 0;
2231 sector_t start = 0;
2232 sector_t sector = 0;
2233 struct bitmap *bitmap = mddev->bitmap;
2234 struct md_rdev *rdev;
2235
2236 if (!bitmap)
2237 goto out;
2238
2239 rdev_for_each(rdev, mddev)
2240 mddev_create_serial_pool(mddev, rdev);
2241
2242 if (mddev_is_clustered(mddev))
2243 mddev->cluster_ops->load_bitmaps(mddev, mddev->bitmap_info.nodes);
2244
2245 /* Clear out old bitmap info first: Either there is none, or we
2246 * are resuming after someone else has possibly changed things,
2247 * so we should forget old cached info.
2248 * All chunks should be clean, but some might need_sync.
2249 */
2250 while (sector < mddev->resync_max_sectors) {
2251 sector_t blocks;
2252 bitmap_start_sync(mddev, sector, &blocks, false);
2253 sector += blocks;
2254 }
2255 bitmap_close_sync(mddev);
2256
2257 if (mddev->degraded == 0
2258 || bitmap->events_cleared == mddev->events)
2259 /* no need to keep dirty bits to optimise a
2260 * re-add of a missing device */
2261 start = mddev->recovery_cp;
2262
2263 mutex_lock(&mddev->bitmap_info.mutex);
2264 err = md_bitmap_init_from_disk(bitmap, start);
2265 mutex_unlock(&mddev->bitmap_info.mutex);
2266
2267 if (err)
2268 goto out;
2269 clear_bit(BITMAP_STALE, &bitmap->flags);
2270
2271 /* Kick recovery in case any bits were set */
2272 set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
2273
2274 mddev_set_timeout(mddev, mddev->bitmap_info.daemon_sleep, true);
2275 md_wakeup_thread(mddev->thread);
2276
2277 bitmap_update_sb(bitmap);
2278
2279 if (test_bit(BITMAP_WRITE_ERROR, &bitmap->flags))
2280 err = -EIO;
2281 out:
2282 return err;
2283 }
2284
2285 /* caller need to free returned bitmap with md_bitmap_free() */
bitmap_get_from_slot(struct mddev * mddev,int slot)2286 static void *bitmap_get_from_slot(struct mddev *mddev, int slot)
2287 {
2288 int rv = 0;
2289 struct bitmap *bitmap;
2290
2291 bitmap = __bitmap_create(mddev, slot);
2292 if (IS_ERR(bitmap)) {
2293 rv = PTR_ERR(bitmap);
2294 return ERR_PTR(rv);
2295 }
2296
2297 rv = md_bitmap_init_from_disk(bitmap, 0);
2298 if (rv) {
2299 md_bitmap_free(bitmap);
2300 return ERR_PTR(rv);
2301 }
2302
2303 return bitmap;
2304 }
2305
2306 /* Loads the bitmap associated with slot and copies the resync information
2307 * to our bitmap
2308 */
bitmap_copy_from_slot(struct mddev * mddev,int slot,sector_t * low,sector_t * high,bool clear_bits)2309 static int bitmap_copy_from_slot(struct mddev *mddev, int slot, sector_t *low,
2310 sector_t *high, bool clear_bits)
2311 {
2312 int rv = 0, i, j;
2313 sector_t block, lo = 0, hi = 0;
2314 struct bitmap_counts *counts;
2315 struct bitmap *bitmap;
2316
2317 bitmap = bitmap_get_from_slot(mddev, slot);
2318 if (IS_ERR(bitmap)) {
2319 pr_err("%s can't get bitmap from slot %d\n", __func__, slot);
2320 return -1;
2321 }
2322
2323 counts = &bitmap->counts;
2324 for (j = 0; j < counts->chunks; j++) {
2325 block = (sector_t)j << counts->chunkshift;
2326 if (md_bitmap_file_test_bit(bitmap, block)) {
2327 if (!lo)
2328 lo = block;
2329 hi = block;
2330 md_bitmap_file_clear_bit(bitmap, block);
2331 md_bitmap_set_memory_bits(mddev->bitmap, block, 1);
2332 md_bitmap_file_set_bit(mddev->bitmap, block);
2333 }
2334 }
2335
2336 if (clear_bits) {
2337 bitmap_update_sb(bitmap);
2338 /* BITMAP_PAGE_PENDING is set, but bitmap_unplug needs
2339 * BITMAP_PAGE_DIRTY or _NEEDWRITE to write ... */
2340 for (i = 0; i < bitmap->storage.file_pages; i++)
2341 if (test_page_attr(bitmap, i, BITMAP_PAGE_PENDING))
2342 set_page_attr(bitmap, i, BITMAP_PAGE_NEEDWRITE);
2343 __bitmap_unplug(bitmap);
2344 }
2345 __bitmap_unplug(mddev->bitmap);
2346 *low = lo;
2347 *high = hi;
2348 md_bitmap_free(bitmap);
2349
2350 return rv;
2351 }
2352
bitmap_set_pages(void * data,unsigned long pages)2353 static void bitmap_set_pages(void *data, unsigned long pages)
2354 {
2355 struct bitmap *bitmap = data;
2356
2357 bitmap->counts.pages = pages;
2358 }
2359
bitmap_get_stats(void * data,struct md_bitmap_stats * stats)2360 static int bitmap_get_stats(void *data, struct md_bitmap_stats *stats)
2361 {
2362 struct bitmap_storage *storage;
2363 struct bitmap_counts *counts;
2364 struct bitmap *bitmap = data;
2365 bitmap_super_t *sb;
2366
2367 if (!bitmap)
2368 return -ENOENT;
2369 if (!bitmap->mddev->bitmap_info.external &&
2370 !bitmap->storage.sb_page)
2371 return -EINVAL;
2372 sb = kmap_local_page(bitmap->storage.sb_page);
2373 stats->sync_size = le64_to_cpu(sb->sync_size);
2374 kunmap_local(sb);
2375
2376 counts = &bitmap->counts;
2377 stats->missing_pages = counts->missing_pages;
2378 stats->pages = counts->pages;
2379
2380 storage = &bitmap->storage;
2381 stats->file_pages = storage->file_pages;
2382 stats->file = storage->file;
2383
2384 stats->behind_writes = atomic_read(&bitmap->behind_writes);
2385 stats->behind_wait = wq_has_sleeper(&bitmap->behind_wait);
2386 stats->events_cleared = bitmap->events_cleared;
2387 return 0;
2388 }
2389
__bitmap_resize(struct bitmap * bitmap,sector_t blocks,int chunksize,bool init)2390 static int __bitmap_resize(struct bitmap *bitmap, sector_t blocks,
2391 int chunksize, bool init)
2392 {
2393 /* If chunk_size is 0, choose an appropriate chunk size.
2394 * Then possibly allocate new storage space.
2395 * Then quiesce, copy bits, replace bitmap, and re-start
2396 *
2397 * This function is called both to set up the initial bitmap
2398 * and to resize the bitmap while the array is active.
2399 * If this happens as a result of the array being resized,
2400 * chunksize will be zero, and we need to choose a suitable
2401 * chunksize, otherwise we use what we are given.
2402 */
2403 struct bitmap_storage store;
2404 struct bitmap_counts old_counts;
2405 unsigned long chunks;
2406 sector_t block;
2407 sector_t old_blocks, new_blocks;
2408 int chunkshift;
2409 int ret = 0;
2410 long pages;
2411 struct bitmap_page *new_bp;
2412
2413 if (bitmap->storage.file && !init) {
2414 pr_info("md: cannot resize file-based bitmap\n");
2415 return -EINVAL;
2416 }
2417
2418 if (chunksize == 0) {
2419 /* If there is enough space, leave the chunk size unchanged,
2420 * else increase by factor of two until there is enough space.
2421 */
2422 long bytes;
2423 long space = bitmap->mddev->bitmap_info.space;
2424
2425 if (space == 0) {
2426 /* We don't know how much space there is, so limit
2427 * to current size - in sectors.
2428 */
2429 bytes = DIV_ROUND_UP(bitmap->counts.chunks, 8);
2430 if (!bitmap->mddev->bitmap_info.external)
2431 bytes += sizeof(bitmap_super_t);
2432 space = DIV_ROUND_UP(bytes, 512);
2433 bitmap->mddev->bitmap_info.space = space;
2434 }
2435 chunkshift = bitmap->counts.chunkshift;
2436 chunkshift--;
2437 do {
2438 /* 'chunkshift' is shift from block size to chunk size */
2439 chunkshift++;
2440 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
2441 bytes = DIV_ROUND_UP(chunks, 8);
2442 if (!bitmap->mddev->bitmap_info.external)
2443 bytes += sizeof(bitmap_super_t);
2444 } while (bytes > (space << 9) && (chunkshift + BITMAP_BLOCK_SHIFT) <
2445 (BITS_PER_BYTE * sizeof(((bitmap_super_t *)0)->chunksize) - 1));
2446 } else
2447 chunkshift = ffz(~chunksize) - BITMAP_BLOCK_SHIFT;
2448
2449 chunks = DIV_ROUND_UP_SECTOR_T(blocks, 1 << chunkshift);
2450 memset(&store, 0, sizeof(store));
2451 if (bitmap->mddev->bitmap_info.offset || bitmap->mddev->bitmap_info.file)
2452 ret = md_bitmap_storage_alloc(&store, chunks,
2453 !bitmap->mddev->bitmap_info.external,
2454 mddev_is_clustered(bitmap->mddev)
2455 ? bitmap->cluster_slot : 0);
2456 if (ret) {
2457 md_bitmap_file_unmap(&store);
2458 goto err;
2459 }
2460
2461 pages = DIV_ROUND_UP(chunks, PAGE_COUNTER_RATIO);
2462
2463 new_bp = kcalloc(pages, sizeof(*new_bp), GFP_KERNEL);
2464 ret = -ENOMEM;
2465 if (!new_bp) {
2466 md_bitmap_file_unmap(&store);
2467 goto err;
2468 }
2469
2470 if (!init)
2471 bitmap->mddev->pers->quiesce(bitmap->mddev, 1);
2472
2473 store.file = bitmap->storage.file;
2474 bitmap->storage.file = NULL;
2475
2476 if (store.sb_page && bitmap->storage.sb_page)
2477 memcpy(page_address(store.sb_page),
2478 page_address(bitmap->storage.sb_page),
2479 sizeof(bitmap_super_t));
2480 spin_lock_irq(&bitmap->counts.lock);
2481 md_bitmap_file_unmap(&bitmap->storage);
2482 bitmap->storage = store;
2483
2484 old_counts = bitmap->counts;
2485 bitmap->counts.bp = new_bp;
2486 bitmap->counts.pages = pages;
2487 bitmap->counts.missing_pages = pages;
2488 bitmap->counts.chunkshift = chunkshift;
2489 bitmap->counts.chunks = chunks;
2490 bitmap->mddev->bitmap_info.chunksize = 1UL << (chunkshift +
2491 BITMAP_BLOCK_SHIFT);
2492
2493 blocks = min(old_counts.chunks << old_counts.chunkshift,
2494 chunks << chunkshift);
2495
2496 /* For cluster raid, need to pre-allocate bitmap */
2497 if (mddev_is_clustered(bitmap->mddev)) {
2498 unsigned long page;
2499 for (page = 0; page < pages; page++) {
2500 ret = md_bitmap_checkpage(&bitmap->counts, page, 1, 1);
2501 if (ret) {
2502 unsigned long k;
2503
2504 /* deallocate the page memory */
2505 for (k = 0; k < page; k++) {
2506 kfree(new_bp[k].map);
2507 }
2508 kfree(new_bp);
2509
2510 /* restore some fields from old_counts */
2511 bitmap->counts.bp = old_counts.bp;
2512 bitmap->counts.pages = old_counts.pages;
2513 bitmap->counts.missing_pages = old_counts.pages;
2514 bitmap->counts.chunkshift = old_counts.chunkshift;
2515 bitmap->counts.chunks = old_counts.chunks;
2516 bitmap->mddev->bitmap_info.chunksize =
2517 1UL << (old_counts.chunkshift + BITMAP_BLOCK_SHIFT);
2518 blocks = old_counts.chunks << old_counts.chunkshift;
2519 pr_warn("Could not pre-allocate in-memory bitmap for cluster raid\n");
2520 break;
2521 } else
2522 bitmap->counts.bp[page].count += 1;
2523 }
2524 }
2525
2526 for (block = 0; block < blocks; ) {
2527 bitmap_counter_t *bmc_old, *bmc_new;
2528 int set;
2529
2530 bmc_old = md_bitmap_get_counter(&old_counts, block, &old_blocks, 0);
2531 set = bmc_old && NEEDED(*bmc_old);
2532
2533 if (set) {
2534 bmc_new = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
2535 if (bmc_new) {
2536 if (*bmc_new == 0) {
2537 /* need to set on-disk bits too. */
2538 sector_t end = block + new_blocks;
2539 sector_t start = block >> chunkshift;
2540
2541 start <<= chunkshift;
2542 while (start < end) {
2543 md_bitmap_file_set_bit(bitmap, block);
2544 start += 1 << chunkshift;
2545 }
2546 *bmc_new = 2;
2547 md_bitmap_count_page(&bitmap->counts, block, 1);
2548 md_bitmap_set_pending(&bitmap->counts, block);
2549 }
2550 *bmc_new |= NEEDED_MASK;
2551 }
2552 if (new_blocks < old_blocks)
2553 old_blocks = new_blocks;
2554 }
2555 block += old_blocks;
2556 }
2557
2558 if (bitmap->counts.bp != old_counts.bp) {
2559 unsigned long k;
2560 for (k = 0; k < old_counts.pages; k++)
2561 if (!old_counts.bp[k].hijacked)
2562 kfree(old_counts.bp[k].map);
2563 kfree(old_counts.bp);
2564 }
2565
2566 if (!init) {
2567 int i;
2568 while (block < (chunks << chunkshift)) {
2569 bitmap_counter_t *bmc;
2570 bmc = md_bitmap_get_counter(&bitmap->counts, block, &new_blocks, 1);
2571 if (bmc) {
2572 /* new space. It needs to be resynced, so
2573 * we set NEEDED_MASK.
2574 */
2575 if (*bmc == 0) {
2576 *bmc = NEEDED_MASK | 2;
2577 md_bitmap_count_page(&bitmap->counts, block, 1);
2578 md_bitmap_set_pending(&bitmap->counts, block);
2579 }
2580 }
2581 block += new_blocks;
2582 }
2583 for (i = 0; i < bitmap->storage.file_pages; i++)
2584 set_page_attr(bitmap, i, BITMAP_PAGE_DIRTY);
2585 }
2586 spin_unlock_irq(&bitmap->counts.lock);
2587
2588 if (!init) {
2589 __bitmap_unplug(bitmap);
2590 bitmap->mddev->pers->quiesce(bitmap->mddev, 0);
2591 }
2592 ret = 0;
2593 err:
2594 return ret;
2595 }
2596
bitmap_resize(struct mddev * mddev,sector_t blocks,int chunksize,bool init)2597 static int bitmap_resize(struct mddev *mddev, sector_t blocks, int chunksize,
2598 bool init)
2599 {
2600 struct bitmap *bitmap = mddev->bitmap;
2601
2602 if (!bitmap)
2603 return 0;
2604
2605 return __bitmap_resize(bitmap, blocks, chunksize, init);
2606 }
2607
2608 static ssize_t
location_show(struct mddev * mddev,char * page)2609 location_show(struct mddev *mddev, char *page)
2610 {
2611 ssize_t len;
2612 if (mddev->bitmap_info.file)
2613 len = sprintf(page, "file");
2614 else if (mddev->bitmap_info.offset)
2615 len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset);
2616 else
2617 len = sprintf(page, "none");
2618 len += sprintf(page+len, "\n");
2619 return len;
2620 }
2621
2622 static ssize_t
location_store(struct mddev * mddev,const char * buf,size_t len)2623 location_store(struct mddev *mddev, const char *buf, size_t len)
2624 {
2625 int rv;
2626
2627 rv = mddev_suspend_and_lock(mddev);
2628 if (rv)
2629 return rv;
2630
2631 if (mddev->pers) {
2632 if (mddev->recovery || mddev->sync_thread) {
2633 rv = -EBUSY;
2634 goto out;
2635 }
2636 }
2637
2638 if (mddev->bitmap || mddev->bitmap_info.file ||
2639 mddev->bitmap_info.offset) {
2640 /* bitmap already configured. Only option is to clear it */
2641 if (strncmp(buf, "none", 4) != 0) {
2642 rv = -EBUSY;
2643 goto out;
2644 }
2645
2646 bitmap_destroy(mddev);
2647 mddev->bitmap_info.offset = 0;
2648 if (mddev->bitmap_info.file) {
2649 struct file *f = mddev->bitmap_info.file;
2650 mddev->bitmap_info.file = NULL;
2651 fput(f);
2652 }
2653 } else {
2654 /* No bitmap, OK to set a location */
2655 long long offset;
2656
2657 if (strncmp(buf, "none", 4) == 0)
2658 /* nothing to be done */;
2659 else if (strncmp(buf, "file:", 5) == 0) {
2660 /* Not supported yet */
2661 rv = -EINVAL;
2662 goto out;
2663 } else {
2664 if (buf[0] == '+')
2665 rv = kstrtoll(buf+1, 10, &offset);
2666 else
2667 rv = kstrtoll(buf, 10, &offset);
2668 if (rv)
2669 goto out;
2670 if (offset == 0) {
2671 rv = -EINVAL;
2672 goto out;
2673 }
2674 if (mddev->bitmap_info.external == 0 &&
2675 mddev->major_version == 0 &&
2676 offset != mddev->bitmap_info.default_offset) {
2677 rv = -EINVAL;
2678 goto out;
2679 }
2680
2681 mddev->bitmap_info.offset = offset;
2682 rv = bitmap_create(mddev);
2683 if (rv)
2684 goto out;
2685
2686 rv = bitmap_load(mddev);
2687 if (rv) {
2688 mddev->bitmap_info.offset = 0;
2689 bitmap_destroy(mddev);
2690 goto out;
2691 }
2692 }
2693 }
2694 if (!mddev->external) {
2695 /* Ensure new bitmap info is stored in
2696 * metadata promptly.
2697 */
2698 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2699 md_wakeup_thread(mddev->thread);
2700 }
2701 rv = 0;
2702 out:
2703 mddev_unlock_and_resume(mddev);
2704 if (rv)
2705 return rv;
2706 return len;
2707 }
2708
2709 static struct md_sysfs_entry bitmap_location =
2710 __ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store);
2711
2712 /* 'bitmap/space' is the space available at 'location' for the
2713 * bitmap. This allows the kernel to know when it is safe to
2714 * resize the bitmap to match a resized array.
2715 */
2716 static ssize_t
space_show(struct mddev * mddev,char * page)2717 space_show(struct mddev *mddev, char *page)
2718 {
2719 return sprintf(page, "%lu\n", mddev->bitmap_info.space);
2720 }
2721
2722 static ssize_t
space_store(struct mddev * mddev,const char * buf,size_t len)2723 space_store(struct mddev *mddev, const char *buf, size_t len)
2724 {
2725 struct bitmap *bitmap;
2726 unsigned long sectors;
2727 int rv;
2728
2729 rv = kstrtoul(buf, 10, §ors);
2730 if (rv)
2731 return rv;
2732
2733 if (sectors == 0)
2734 return -EINVAL;
2735
2736 bitmap = mddev->bitmap;
2737 if (bitmap && sectors < (bitmap->storage.bytes + 511) >> 9)
2738 return -EFBIG; /* Bitmap is too big for this small space */
2739
2740 /* could make sure it isn't too big, but that isn't really
2741 * needed - user-space should be careful.
2742 */
2743 mddev->bitmap_info.space = sectors;
2744 return len;
2745 }
2746
2747 static struct md_sysfs_entry bitmap_space =
2748 __ATTR(space, S_IRUGO|S_IWUSR, space_show, space_store);
2749
2750 static ssize_t
timeout_show(struct mddev * mddev,char * page)2751 timeout_show(struct mddev *mddev, char *page)
2752 {
2753 ssize_t len;
2754 unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ;
2755 unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ;
2756
2757 len = sprintf(page, "%lu", secs);
2758 if (jifs)
2759 len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs));
2760 len += sprintf(page+len, "\n");
2761 return len;
2762 }
2763
2764 static ssize_t
timeout_store(struct mddev * mddev,const char * buf,size_t len)2765 timeout_store(struct mddev *mddev, const char *buf, size_t len)
2766 {
2767 /* timeout can be set at any time */
2768 unsigned long timeout;
2769 int rv = strict_strtoul_scaled(buf, &timeout, 4);
2770 if (rv)
2771 return rv;
2772
2773 /* just to make sure we don't overflow... */
2774 if (timeout >= LONG_MAX / HZ)
2775 return -EINVAL;
2776
2777 timeout = timeout * HZ / 10000;
2778
2779 if (timeout >= MAX_SCHEDULE_TIMEOUT)
2780 timeout = MAX_SCHEDULE_TIMEOUT-1;
2781 if (timeout < 1)
2782 timeout = 1;
2783
2784 mddev->bitmap_info.daemon_sleep = timeout;
2785 mddev_set_timeout(mddev, timeout, false);
2786 md_wakeup_thread(mddev->thread);
2787
2788 return len;
2789 }
2790
2791 static struct md_sysfs_entry bitmap_timeout =
2792 __ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store);
2793
2794 static ssize_t
backlog_show(struct mddev * mddev,char * page)2795 backlog_show(struct mddev *mddev, char *page)
2796 {
2797 return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind);
2798 }
2799
2800 static ssize_t
backlog_store(struct mddev * mddev,const char * buf,size_t len)2801 backlog_store(struct mddev *mddev, const char *buf, size_t len)
2802 {
2803 unsigned long backlog;
2804 unsigned long old_mwb = mddev->bitmap_info.max_write_behind;
2805 struct md_rdev *rdev;
2806 bool has_write_mostly = false;
2807 int rv = kstrtoul(buf, 10, &backlog);
2808 if (rv)
2809 return rv;
2810 if (backlog > COUNTER_MAX)
2811 return -EINVAL;
2812
2813 rv = mddev_suspend_and_lock(mddev);
2814 if (rv)
2815 return rv;
2816
2817 /*
2818 * Without write mostly device, it doesn't make sense to set
2819 * backlog for max_write_behind.
2820 */
2821 rdev_for_each(rdev, mddev) {
2822 if (test_bit(WriteMostly, &rdev->flags)) {
2823 has_write_mostly = true;
2824 break;
2825 }
2826 }
2827 if (!has_write_mostly) {
2828 pr_warn_ratelimited("%s: can't set backlog, no write mostly device available\n",
2829 mdname(mddev));
2830 mddev_unlock(mddev);
2831 return -EINVAL;
2832 }
2833
2834 mddev->bitmap_info.max_write_behind = backlog;
2835 if (!backlog && mddev->serial_info_pool) {
2836 /* serial_info_pool is not needed if backlog is zero */
2837 if (!mddev->serialize_policy)
2838 mddev_destroy_serial_pool(mddev, NULL);
2839 } else if (backlog && !mddev->serial_info_pool) {
2840 /* serial_info_pool is needed since backlog is not zero */
2841 rdev_for_each(rdev, mddev)
2842 mddev_create_serial_pool(mddev, rdev);
2843 }
2844 if (old_mwb != backlog)
2845 bitmap_update_sb(mddev->bitmap);
2846
2847 mddev_unlock_and_resume(mddev);
2848 return len;
2849 }
2850
2851 static struct md_sysfs_entry bitmap_backlog =
2852 __ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store);
2853
2854 static ssize_t
chunksize_show(struct mddev * mddev,char * page)2855 chunksize_show(struct mddev *mddev, char *page)
2856 {
2857 return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize);
2858 }
2859
2860 static ssize_t
chunksize_store(struct mddev * mddev,const char * buf,size_t len)2861 chunksize_store(struct mddev *mddev, const char *buf, size_t len)
2862 {
2863 /* Can only be changed when no bitmap is active */
2864 int rv;
2865 unsigned long csize;
2866 if (mddev->bitmap)
2867 return -EBUSY;
2868 rv = kstrtoul(buf, 10, &csize);
2869 if (rv)
2870 return rv;
2871 if (csize < 512 ||
2872 !is_power_of_2(csize))
2873 return -EINVAL;
2874 if (BITS_PER_LONG > 32 && csize >= (1ULL << (BITS_PER_BYTE *
2875 sizeof(((bitmap_super_t *)0)->chunksize))))
2876 return -EOVERFLOW;
2877 mddev->bitmap_info.chunksize = csize;
2878 return len;
2879 }
2880
2881 static struct md_sysfs_entry bitmap_chunksize =
2882 __ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store);
2883
metadata_show(struct mddev * mddev,char * page)2884 static ssize_t metadata_show(struct mddev *mddev, char *page)
2885 {
2886 if (mddev_is_clustered(mddev))
2887 return sprintf(page, "clustered\n");
2888 return sprintf(page, "%s\n", (mddev->bitmap_info.external
2889 ? "external" : "internal"));
2890 }
2891
metadata_store(struct mddev * mddev,const char * buf,size_t len)2892 static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len)
2893 {
2894 if (mddev->bitmap ||
2895 mddev->bitmap_info.file ||
2896 mddev->bitmap_info.offset)
2897 return -EBUSY;
2898 if (strncmp(buf, "external", 8) == 0)
2899 mddev->bitmap_info.external = 1;
2900 else if ((strncmp(buf, "internal", 8) == 0) ||
2901 (strncmp(buf, "clustered", 9) == 0))
2902 mddev->bitmap_info.external = 0;
2903 else
2904 return -EINVAL;
2905 return len;
2906 }
2907
2908 static struct md_sysfs_entry bitmap_metadata =
2909 __ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2910
can_clear_show(struct mddev * mddev,char * page)2911 static ssize_t can_clear_show(struct mddev *mddev, char *page)
2912 {
2913 int len;
2914 struct bitmap *bitmap;
2915
2916 spin_lock(&mddev->lock);
2917 bitmap = mddev->bitmap;
2918 if (bitmap)
2919 len = sprintf(page, "%s\n", (bitmap->need_sync ? "false" :
2920 "true"));
2921 else
2922 len = sprintf(page, "\n");
2923 spin_unlock(&mddev->lock);
2924 return len;
2925 }
2926
can_clear_store(struct mddev * mddev,const char * buf,size_t len)2927 static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len)
2928 {
2929 struct bitmap *bitmap = mddev->bitmap;
2930
2931 if (!bitmap)
2932 return -ENOENT;
2933
2934 if (strncmp(buf, "false", 5) == 0) {
2935 bitmap->need_sync = 1;
2936 return len;
2937 }
2938
2939 if (strncmp(buf, "true", 4) == 0) {
2940 if (mddev->degraded)
2941 return -EBUSY;
2942 bitmap->need_sync = 0;
2943 return len;
2944 }
2945
2946 return -EINVAL;
2947 }
2948
2949 static struct md_sysfs_entry bitmap_can_clear =
2950 __ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store);
2951
2952 static ssize_t
behind_writes_used_show(struct mddev * mddev,char * page)2953 behind_writes_used_show(struct mddev *mddev, char *page)
2954 {
2955 ssize_t ret;
2956 struct bitmap *bitmap;
2957
2958 spin_lock(&mddev->lock);
2959 bitmap = mddev->bitmap;
2960 if (!bitmap)
2961 ret = sprintf(page, "0\n");
2962 else
2963 ret = sprintf(page, "%lu\n", bitmap->behind_writes_used);
2964 spin_unlock(&mddev->lock);
2965
2966 return ret;
2967 }
2968
2969 static ssize_t
behind_writes_used_reset(struct mddev * mddev,const char * buf,size_t len)2970 behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len)
2971 {
2972 struct bitmap *bitmap = mddev->bitmap;
2973
2974 if (bitmap)
2975 bitmap->behind_writes_used = 0;
2976 return len;
2977 }
2978
2979 static struct md_sysfs_entry max_backlog_used =
2980 __ATTR(max_backlog_used, S_IRUGO | S_IWUSR,
2981 behind_writes_used_show, behind_writes_used_reset);
2982
2983 static struct attribute *md_bitmap_attrs[] = {
2984 &bitmap_location.attr,
2985 &bitmap_space.attr,
2986 &bitmap_timeout.attr,
2987 &bitmap_backlog.attr,
2988 &bitmap_chunksize.attr,
2989 &bitmap_metadata.attr,
2990 &bitmap_can_clear.attr,
2991 &max_backlog_used.attr,
2992 NULL
2993 };
2994 const struct attribute_group md_bitmap_group = {
2995 .name = "bitmap",
2996 .attrs = md_bitmap_attrs,
2997 };
2998
2999 static struct bitmap_operations bitmap_ops = {
3000 .enabled = bitmap_enabled,
3001 .create = bitmap_create,
3002 .resize = bitmap_resize,
3003 .load = bitmap_load,
3004 .destroy = bitmap_destroy,
3005 .flush = bitmap_flush,
3006 .write_all = bitmap_write_all,
3007 .dirty_bits = bitmap_dirty_bits,
3008 .unplug = bitmap_unplug,
3009 .daemon_work = bitmap_daemon_work,
3010
3011 .start_behind_write = bitmap_start_behind_write,
3012 .end_behind_write = bitmap_end_behind_write,
3013 .wait_behind_writes = bitmap_wait_behind_writes,
3014
3015 .start_write = bitmap_start_write,
3016 .end_write = bitmap_end_write,
3017 .start_sync = bitmap_start_sync,
3018 .end_sync = bitmap_end_sync,
3019 .cond_end_sync = bitmap_cond_end_sync,
3020 .close_sync = bitmap_close_sync,
3021
3022 .update_sb = bitmap_update_sb,
3023 .get_stats = bitmap_get_stats,
3024
3025 .sync_with_cluster = bitmap_sync_with_cluster,
3026 .get_from_slot = bitmap_get_from_slot,
3027 .copy_from_slot = bitmap_copy_from_slot,
3028 .set_pages = bitmap_set_pages,
3029 .free = md_bitmap_free,
3030 };
3031
mddev_set_bitmap_ops(struct mddev * mddev)3032 void mddev_set_bitmap_ops(struct mddev *mddev)
3033 {
3034 mddev->bitmap_ops = &bitmap_ops;
3035 }
3036