xref: /linux/block/blk-merge.c (revision 11a299a7933e03c83818b431e6a1c53ad387423d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to segment and merge handling
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11 #include <linux/part_stat.h>
12 #include <linux/blk-cgroup.h>
13 
14 #include <trace/events/block.h>
15 
16 #include "blk.h"
17 #include "blk-mq-sched.h"
18 #include "blk-rq-qos.h"
19 #include "blk-throttle.h"
20 
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)21 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
22 {
23 	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
24 }
25 
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)26 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
27 {
28 	struct bvec_iter iter = bio->bi_iter;
29 	int idx;
30 
31 	bio_get_first_bvec(bio, bv);
32 	if (bv->bv_len == bio->bi_iter.bi_size)
33 		return;		/* this bio only has a single bvec */
34 
35 	bio_advance_iter(bio, &iter, iter.bi_size);
36 
37 	if (!iter.bi_bvec_done)
38 		idx = iter.bi_idx - 1;
39 	else	/* in the middle of bvec */
40 		idx = iter.bi_idx;
41 
42 	*bv = bio->bi_io_vec[idx];
43 
44 	/*
45 	 * iter.bi_bvec_done records actual length of the last bvec
46 	 * if this bio ends in the middle of one io vector
47 	 */
48 	if (iter.bi_bvec_done)
49 		bv->bv_len = iter.bi_bvec_done;
50 }
51 
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)52 static inline bool bio_will_gap(struct request_queue *q,
53 		struct request *prev_rq, struct bio *prev, struct bio *next)
54 {
55 	struct bio_vec pb, nb;
56 
57 	if (!bio_has_data(prev) || !queue_virt_boundary(q))
58 		return false;
59 
60 	/*
61 	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
62 	 * is quite difficult to respect the sg gap limit.  We work hard to
63 	 * merge a huge number of small single bios in case of mkfs.
64 	 */
65 	if (prev_rq)
66 		bio_get_first_bvec(prev_rq->bio, &pb);
67 	else
68 		bio_get_first_bvec(prev, &pb);
69 	if (pb.bv_offset & queue_virt_boundary(q))
70 		return true;
71 
72 	/*
73 	 * We don't need to worry about the situation that the merged segment
74 	 * ends in unaligned virt boundary:
75 	 *
76 	 * - if 'pb' ends aligned, the merged segment ends aligned
77 	 * - if 'pb' ends unaligned, the next bio must include
78 	 *   one single bvec of 'nb', otherwise the 'nb' can't
79 	 *   merge with 'pb'
80 	 */
81 	bio_get_last_bvec(prev, &pb);
82 	bio_get_first_bvec(next, &nb);
83 	if (biovec_phys_mergeable(q, &pb, &nb))
84 		return false;
85 	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
86 }
87 
req_gap_back_merge(struct request * req,struct bio * bio)88 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
89 {
90 	return bio_will_gap(req->q, req, req->biotail, bio);
91 }
92 
req_gap_front_merge(struct request * req,struct bio * bio)93 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
94 {
95 	return bio_will_gap(req->q, NULL, bio, req->bio);
96 }
97 
98 /*
99  * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
100  * is defined as 'unsigned int', meantime it has to be aligned to with the
101  * logical block size, which is the minimum accepted unit by hardware.
102  */
bio_allowed_max_sectors(const struct queue_limits * lim)103 static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
104 {
105 	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
106 }
107 
bio_submit_split(struct bio * bio,int split_sectors)108 static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
109 {
110 	if (unlikely(split_sectors < 0)) {
111 		bio->bi_status = errno_to_blk_status(split_sectors);
112 		bio_endio(bio);
113 		return NULL;
114 	}
115 
116 	if (split_sectors) {
117 		struct bio *split;
118 
119 		split = bio_split(bio, split_sectors, GFP_NOIO,
120 				&bio->bi_bdev->bd_disk->bio_split);
121 		split->bi_opf |= REQ_NOMERGE;
122 		blkcg_bio_issue_init(split);
123 		bio_chain(split, bio);
124 		trace_block_split(split, bio->bi_iter.bi_sector);
125 		WARN_ON_ONCE(bio_zone_write_plugging(bio));
126 		submit_bio_noacct(bio);
127 		return split;
128 	}
129 
130 	return bio;
131 }
132 
bio_split_discard(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)133 struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
134 		unsigned *nsegs)
135 {
136 	unsigned int max_discard_sectors, granularity;
137 	sector_t tmp;
138 	unsigned split_sectors;
139 
140 	*nsegs = 1;
141 
142 	granularity = max(lim->discard_granularity >> 9, 1U);
143 
144 	max_discard_sectors =
145 		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
146 	max_discard_sectors -= max_discard_sectors % granularity;
147 	if (unlikely(!max_discard_sectors))
148 		return bio;
149 
150 	if (bio_sectors(bio) <= max_discard_sectors)
151 		return bio;
152 
153 	split_sectors = max_discard_sectors;
154 
155 	/*
156 	 * If the next starting sector would be misaligned, stop the discard at
157 	 * the previous aligned sector.
158 	 */
159 	tmp = bio->bi_iter.bi_sector + split_sectors -
160 		((lim->discard_alignment >> 9) % granularity);
161 	tmp = sector_div(tmp, granularity);
162 
163 	if (split_sectors > tmp)
164 		split_sectors -= tmp;
165 
166 	return bio_submit_split(bio, split_sectors);
167 }
168 
bio_split_write_zeroes(struct bio * bio,const struct queue_limits * lim,unsigned * nsegs)169 struct bio *bio_split_write_zeroes(struct bio *bio,
170 		const struct queue_limits *lim, unsigned *nsegs)
171 {
172 	*nsegs = 0;
173 	if (!lim->max_write_zeroes_sectors)
174 		return bio;
175 	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
176 		return bio;
177 	return bio_submit_split(bio, lim->max_write_zeroes_sectors);
178 }
179 
blk_boundary_sectors(const struct queue_limits * lim,bool is_atomic)180 static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
181 						bool is_atomic)
182 {
183 	/*
184 	 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
185 	 * both non-zero.
186 	 */
187 	if (is_atomic && lim->atomic_write_boundary_sectors)
188 		return lim->atomic_write_boundary_sectors;
189 
190 	return lim->chunk_sectors;
191 }
192 
193 /*
194  * Return the maximum number of sectors from the start of a bio that may be
195  * submitted as a single request to a block device. If enough sectors remain,
196  * align the end to the physical block size. Otherwise align the end to the
197  * logical block size. This approach minimizes the number of non-aligned
198  * requests that are submitted to a block device if the start of a bio is not
199  * aligned to a physical block boundary.
200  */
get_max_io_size(struct bio * bio,const struct queue_limits * lim)201 static inline unsigned get_max_io_size(struct bio *bio,
202 				       const struct queue_limits *lim)
203 {
204 	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
205 	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
206 	bool is_atomic = bio->bi_opf & REQ_ATOMIC;
207 	unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
208 	unsigned max_sectors, start, end;
209 
210 	/*
211 	 * We ignore lim->max_sectors for atomic writes because it may less
212 	 * than the actual bio size, which we cannot tolerate.
213 	 */
214 	if (is_atomic)
215 		max_sectors = lim->atomic_write_max_sectors;
216 	else
217 		max_sectors = lim->max_sectors;
218 
219 	if (boundary_sectors) {
220 		max_sectors = min(max_sectors,
221 			blk_boundary_sectors_left(bio->bi_iter.bi_sector,
222 					      boundary_sectors));
223 	}
224 
225 	start = bio->bi_iter.bi_sector & (pbs - 1);
226 	end = (start + max_sectors) & ~(pbs - 1);
227 	if (end > start)
228 		return end - start;
229 	return max_sectors & ~(lbs - 1);
230 }
231 
232 /**
233  * get_max_segment_size() - maximum number of bytes to add as a single segment
234  * @lim: Request queue limits.
235  * @paddr: address of the range to add
236  * @len: maximum length available to add at @paddr
237  *
238  * Returns the maximum number of bytes of the range starting at @paddr that can
239  * be added to a single segment.
240  */
get_max_segment_size(const struct queue_limits * lim,phys_addr_t paddr,unsigned int len)241 static inline unsigned get_max_segment_size(const struct queue_limits *lim,
242 		phys_addr_t paddr, unsigned int len)
243 {
244 	/*
245 	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
246 	 * after having calculated the minimum.
247 	 */
248 	return min_t(unsigned long, len,
249 		min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
250 		    (unsigned long)lim->max_segment_size - 1) + 1);
251 }
252 
253 /**
254  * bvec_split_segs - verify whether or not a bvec should be split in the middle
255  * @lim:      [in] queue limits to split based on
256  * @bv:       [in] bvec to examine
257  * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
258  *            by the number of segments from @bv that may be appended to that
259  *            bio without exceeding @max_segs
260  * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
261  *            by the number of bytes from @bv that may be appended to that
262  *            bio without exceeding @max_bytes
263  * @max_segs: [in] upper bound for *@nsegs
264  * @max_bytes: [in] upper bound for *@bytes
265  *
266  * When splitting a bio, it can happen that a bvec is encountered that is too
267  * big to fit in a single segment and hence that it has to be split in the
268  * middle. This function verifies whether or not that should happen. The value
269  * %true is returned if and only if appending the entire @bv to a bio with
270  * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
271  * the block driver.
272  */
bvec_split_segs(const struct queue_limits * lim,const struct bio_vec * bv,unsigned * nsegs,unsigned * bytes,unsigned max_segs,unsigned max_bytes)273 static bool bvec_split_segs(const struct queue_limits *lim,
274 		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
275 		unsigned max_segs, unsigned max_bytes)
276 {
277 	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
278 	unsigned len = min(bv->bv_len, max_len);
279 	unsigned total_len = 0;
280 	unsigned seg_size = 0;
281 
282 	while (len && *nsegs < max_segs) {
283 		seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
284 
285 		(*nsegs)++;
286 		total_len += seg_size;
287 		len -= seg_size;
288 
289 		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
290 			break;
291 	}
292 
293 	*bytes += total_len;
294 
295 	/* tell the caller to split the bvec if it is too big to fit */
296 	return len > 0 || bv->bv_len > max_len;
297 }
298 
299 /**
300  * bio_split_rw_at - check if and where to split a read/write bio
301  * @bio:  [in] bio to be split
302  * @lim:  [in] queue limits to split based on
303  * @segs: [out] number of segments in the bio with the first half of the sectors
304  * @max_bytes: [in] maximum number of bytes per bio
305  *
306  * Find out if @bio needs to be split to fit the queue limits in @lim and a
307  * maximum size of @max_bytes.  Returns a negative error number if @bio can't be
308  * split, 0 if the bio doesn't have to be split, or a positive sector offset if
309  * @bio needs to be split.
310  */
bio_split_rw_at(struct bio * bio,const struct queue_limits * lim,unsigned * segs,unsigned max_bytes)311 int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
312 		unsigned *segs, unsigned max_bytes)
313 {
314 	struct bio_vec bv, bvprv, *bvprvp = NULL;
315 	struct bvec_iter iter;
316 	unsigned nsegs = 0, bytes = 0;
317 
318 	bio_for_each_bvec(bv, bio, iter) {
319 		/*
320 		 * If the queue doesn't support SG gaps and adding this
321 		 * offset would create a gap, disallow it.
322 		 */
323 		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
324 			goto split;
325 
326 		if (nsegs < lim->max_segments &&
327 		    bytes + bv.bv_len <= max_bytes &&
328 		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
329 			nsegs++;
330 			bytes += bv.bv_len;
331 		} else {
332 			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
333 					lim->max_segments, max_bytes))
334 				goto split;
335 		}
336 
337 		bvprv = bv;
338 		bvprvp = &bvprv;
339 	}
340 
341 	*segs = nsegs;
342 	return 0;
343 split:
344 	if (bio->bi_opf & REQ_ATOMIC)
345 		return -EINVAL;
346 
347 	/*
348 	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
349 	 * with EAGAIN if splitting is required and return an error pointer.
350 	 */
351 	if (bio->bi_opf & REQ_NOWAIT)
352 		return -EAGAIN;
353 
354 	*segs = nsegs;
355 
356 	/*
357 	 * Individual bvecs might not be logical block aligned. Round down the
358 	 * split size so that each bio is properly block size aligned, even if
359 	 * we do not use the full hardware limits.
360 	 */
361 	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
362 
363 	/*
364 	 * Bio splitting may cause subtle trouble such as hang when doing sync
365 	 * iopoll in direct IO routine. Given performance gain of iopoll for
366 	 * big IO can be trival, disable iopoll when split needed.
367 	 */
368 	bio_clear_polled(bio);
369 	return bytes >> SECTOR_SHIFT;
370 }
371 EXPORT_SYMBOL_GPL(bio_split_rw_at);
372 
bio_split_rw(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)373 struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
374 		unsigned *nr_segs)
375 {
376 	return bio_submit_split(bio,
377 		bio_split_rw_at(bio, lim, nr_segs,
378 			get_max_io_size(bio, lim) << SECTOR_SHIFT));
379 }
380 
381 /*
382  * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
383  *
384  * But we want the nr_segs calculation provided by bio_split_rw_at, and having
385  * a good sanity check that the submitter built the bio correctly is nice to
386  * have as well.
387  */
bio_split_zone_append(struct bio * bio,const struct queue_limits * lim,unsigned * nr_segs)388 struct bio *bio_split_zone_append(struct bio *bio,
389 		const struct queue_limits *lim, unsigned *nr_segs)
390 {
391 	unsigned int max_sectors = queue_limits_max_zone_append_sectors(lim);
392 	int split_sectors;
393 
394 	split_sectors = bio_split_rw_at(bio, lim, nr_segs,
395 			max_sectors << SECTOR_SHIFT);
396 	if (WARN_ON_ONCE(split_sectors > 0))
397 		split_sectors = -EINVAL;
398 	return bio_submit_split(bio, split_sectors);
399 }
400 
401 /**
402  * bio_split_to_limits - split a bio to fit the queue limits
403  * @bio:     bio to be split
404  *
405  * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
406  * if so split off a bio fitting the limits from the beginning of @bio and
407  * return it.  @bio is shortened to the remainder and re-submitted.
408  *
409  * The split bio is allocated from @q->bio_split, which is provided by the
410  * block layer.
411  */
bio_split_to_limits(struct bio * bio)412 struct bio *bio_split_to_limits(struct bio *bio)
413 {
414 	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
415 	unsigned int nr_segs;
416 
417 	return __bio_split_to_limits(bio, lim, &nr_segs);
418 }
419 EXPORT_SYMBOL(bio_split_to_limits);
420 
blk_recalc_rq_segments(struct request * rq)421 unsigned int blk_recalc_rq_segments(struct request *rq)
422 {
423 	unsigned int nr_phys_segs = 0;
424 	unsigned int bytes = 0;
425 	struct req_iterator iter;
426 	struct bio_vec bv;
427 
428 	if (!rq->bio)
429 		return 0;
430 
431 	switch (bio_op(rq->bio)) {
432 	case REQ_OP_DISCARD:
433 	case REQ_OP_SECURE_ERASE:
434 		if (queue_max_discard_segments(rq->q) > 1) {
435 			struct bio *bio = rq->bio;
436 
437 			for_each_bio(bio)
438 				nr_phys_segs++;
439 			return nr_phys_segs;
440 		}
441 		return 1;
442 	case REQ_OP_WRITE_ZEROES:
443 		return 0;
444 	default:
445 		break;
446 	}
447 
448 	rq_for_each_bvec(bv, rq, iter)
449 		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
450 				UINT_MAX, UINT_MAX);
451 	return nr_phys_segs;
452 }
453 
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)454 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
455 		struct scatterlist *sglist)
456 {
457 	if (!*sg)
458 		return sglist;
459 
460 	/*
461 	 * If the driver previously mapped a shorter list, we could see a
462 	 * termination bit prematurely unless it fully inits the sg table
463 	 * on each mapping. We KNOW that there must be more entries here
464 	 * or the driver would be buggy, so force clear the termination bit
465 	 * to avoid doing a full sg_init_table() in drivers for each command.
466 	 */
467 	sg_unmark_end(*sg);
468 	return sg_next(*sg);
469 }
470 
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)471 static unsigned blk_bvec_map_sg(struct request_queue *q,
472 		struct bio_vec *bvec, struct scatterlist *sglist,
473 		struct scatterlist **sg)
474 {
475 	unsigned nbytes = bvec->bv_len;
476 	unsigned nsegs = 0, total = 0;
477 
478 	while (nbytes > 0) {
479 		unsigned offset = bvec->bv_offset + total;
480 		unsigned len = get_max_segment_size(&q->limits,
481 				bvec_phys(bvec) + total, nbytes);
482 		struct page *page = bvec->bv_page;
483 
484 		/*
485 		 * Unfortunately a fair number of drivers barf on scatterlists
486 		 * that have an offset larger than PAGE_SIZE, despite other
487 		 * subsystems dealing with that invariant just fine.  For now
488 		 * stick to the legacy format where we never present those from
489 		 * the block layer, but the code below should be removed once
490 		 * these offenders (mostly MMC/SD drivers) are fixed.
491 		 */
492 		page += (offset >> PAGE_SHIFT);
493 		offset &= ~PAGE_MASK;
494 
495 		*sg = blk_next_sg(sg, sglist);
496 		sg_set_page(*sg, page, len, offset);
497 
498 		total += len;
499 		nbytes -= len;
500 		nsegs++;
501 	}
502 
503 	return nsegs;
504 }
505 
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)506 static inline int __blk_bvec_map_sg(struct bio_vec bv,
507 		struct scatterlist *sglist, struct scatterlist **sg)
508 {
509 	*sg = blk_next_sg(sg, sglist);
510 	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
511 	return 1;
512 }
513 
514 /* only try to merge bvecs into one sg if they are from two bios */
515 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)516 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
517 			   struct bio_vec *bvprv, struct scatterlist **sg)
518 {
519 
520 	int nbytes = bvec->bv_len;
521 
522 	if (!*sg)
523 		return false;
524 
525 	if ((*sg)->length + nbytes > queue_max_segment_size(q))
526 		return false;
527 
528 	if (!biovec_phys_mergeable(q, bvprv, bvec))
529 		return false;
530 
531 	(*sg)->length += nbytes;
532 
533 	return true;
534 }
535 
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)536 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
537 			     struct scatterlist *sglist,
538 			     struct scatterlist **sg)
539 {
540 	struct bio_vec bvec, bvprv = { NULL };
541 	struct bvec_iter iter;
542 	int nsegs = 0;
543 	bool new_bio = false;
544 
545 	for_each_bio(bio) {
546 		bio_for_each_bvec(bvec, bio, iter) {
547 			/*
548 			 * Only try to merge bvecs from two bios given we
549 			 * have done bio internal merge when adding pages
550 			 * to bio
551 			 */
552 			if (new_bio &&
553 			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
554 				goto next_bvec;
555 
556 			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
557 				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
558 			else
559 				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
560  next_bvec:
561 			new_bio = false;
562 		}
563 		if (likely(bio->bi_iter.bi_size)) {
564 			bvprv = bvec;
565 			new_bio = true;
566 		}
567 	}
568 
569 	return nsegs;
570 }
571 
572 /*
573  * map a request to scatterlist, return number of sg entries setup. Caller
574  * must make sure sg can hold rq->nr_phys_segments entries
575  */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)576 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
577 		struct scatterlist *sglist, struct scatterlist **last_sg)
578 {
579 	int nsegs = 0;
580 
581 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
582 		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
583 	else if (rq->bio)
584 		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
585 
586 	if (*last_sg)
587 		sg_mark_end(*last_sg);
588 
589 	/*
590 	 * Something must have been wrong if the figured number of
591 	 * segment is bigger than number of req's physical segments
592 	 */
593 	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
594 
595 	return nsegs;
596 }
597 EXPORT_SYMBOL(__blk_rq_map_sg);
598 
blk_rq_get_max_sectors(struct request * rq,sector_t offset)599 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
600 						  sector_t offset)
601 {
602 	struct request_queue *q = rq->q;
603 	struct queue_limits *lim = &q->limits;
604 	unsigned int max_sectors, boundary_sectors;
605 	bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
606 
607 	if (blk_rq_is_passthrough(rq))
608 		return q->limits.max_hw_sectors;
609 
610 	boundary_sectors = blk_boundary_sectors(lim, is_atomic);
611 	max_sectors = blk_queue_get_max_sectors(rq);
612 
613 	if (!boundary_sectors ||
614 	    req_op(rq) == REQ_OP_DISCARD ||
615 	    req_op(rq) == REQ_OP_SECURE_ERASE)
616 		return max_sectors;
617 	return min(max_sectors,
618 		   blk_boundary_sectors_left(offset, boundary_sectors));
619 }
620 
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)621 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
622 		unsigned int nr_phys_segs)
623 {
624 	if (!blk_cgroup_mergeable(req, bio))
625 		goto no_merge;
626 
627 	if (blk_integrity_merge_bio(req->q, req, bio) == false)
628 		goto no_merge;
629 
630 	/* discard request merge won't add new segment */
631 	if (req_op(req) == REQ_OP_DISCARD)
632 		return 1;
633 
634 	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
635 		goto no_merge;
636 
637 	/*
638 	 * This will form the start of a new hw segment.  Bump both
639 	 * counters.
640 	 */
641 	req->nr_phys_segments += nr_phys_segs;
642 	if (bio_integrity(bio))
643 		req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
644 									bio);
645 	return 1;
646 
647 no_merge:
648 	req_set_nomerge(req->q, req);
649 	return 0;
650 }
651 
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)652 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
653 {
654 	if (req_gap_back_merge(req, bio))
655 		return 0;
656 	if (blk_integrity_rq(req) &&
657 	    integrity_req_gap_back_merge(req, bio))
658 		return 0;
659 	if (!bio_crypt_ctx_back_mergeable(req, bio))
660 		return 0;
661 	if (blk_rq_sectors(req) + bio_sectors(bio) >
662 	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
663 		req_set_nomerge(req->q, req);
664 		return 0;
665 	}
666 
667 	return ll_new_hw_segment(req, bio, nr_segs);
668 }
669 
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)670 static int ll_front_merge_fn(struct request *req, struct bio *bio,
671 		unsigned int nr_segs)
672 {
673 	if (req_gap_front_merge(req, bio))
674 		return 0;
675 	if (blk_integrity_rq(req) &&
676 	    integrity_req_gap_front_merge(req, bio))
677 		return 0;
678 	if (!bio_crypt_ctx_front_mergeable(req, bio))
679 		return 0;
680 	if (blk_rq_sectors(req) + bio_sectors(bio) >
681 	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
682 		req_set_nomerge(req->q, req);
683 		return 0;
684 	}
685 
686 	return ll_new_hw_segment(req, bio, nr_segs);
687 }
688 
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)689 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
690 		struct request *next)
691 {
692 	unsigned short segments = blk_rq_nr_discard_segments(req);
693 
694 	if (segments >= queue_max_discard_segments(q))
695 		goto no_merge;
696 	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
697 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
698 		goto no_merge;
699 
700 	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
701 	return true;
702 no_merge:
703 	req_set_nomerge(q, req);
704 	return false;
705 }
706 
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)707 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
708 				struct request *next)
709 {
710 	int total_phys_segments;
711 
712 	if (req_gap_back_merge(req, next->bio))
713 		return 0;
714 
715 	/*
716 	 * Will it become too large?
717 	 */
718 	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
719 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
720 		return 0;
721 
722 	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
723 	if (total_phys_segments > blk_rq_get_max_segments(req))
724 		return 0;
725 
726 	if (!blk_cgroup_mergeable(req, next->bio))
727 		return 0;
728 
729 	if (blk_integrity_merge_rq(q, req, next) == false)
730 		return 0;
731 
732 	if (!bio_crypt_ctx_merge_rq(req, next))
733 		return 0;
734 
735 	/* Merge is OK... */
736 	req->nr_phys_segments = total_phys_segments;
737 	req->nr_integrity_segments += next->nr_integrity_segments;
738 	return 1;
739 }
740 
741 /**
742  * blk_rq_set_mixed_merge - mark a request as mixed merge
743  * @rq: request to mark as mixed merge
744  *
745  * Description:
746  *     @rq is about to be mixed merged.  Make sure the attributes
747  *     which can be mixed are set in each bio and mark @rq as mixed
748  *     merged.
749  */
blk_rq_set_mixed_merge(struct request * rq)750 static void blk_rq_set_mixed_merge(struct request *rq)
751 {
752 	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
753 	struct bio *bio;
754 
755 	if (rq->rq_flags & RQF_MIXED_MERGE)
756 		return;
757 
758 	/*
759 	 * @rq will no longer represent mixable attributes for all the
760 	 * contained bios.  It will just track those of the first one.
761 	 * Distributes the attributs to each bio.
762 	 */
763 	for (bio = rq->bio; bio; bio = bio->bi_next) {
764 		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
765 			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
766 		bio->bi_opf |= ff;
767 	}
768 	rq->rq_flags |= RQF_MIXED_MERGE;
769 }
770 
bio_failfast(const struct bio * bio)771 static inline blk_opf_t bio_failfast(const struct bio *bio)
772 {
773 	if (bio->bi_opf & REQ_RAHEAD)
774 		return REQ_FAILFAST_MASK;
775 
776 	return bio->bi_opf & REQ_FAILFAST_MASK;
777 }
778 
779 /*
780  * After we are marked as MIXED_MERGE, any new RA bio has to be updated
781  * as failfast, and request's failfast has to be updated in case of
782  * front merge.
783  */
blk_update_mixed_merge(struct request * req,struct bio * bio,bool front_merge)784 static inline void blk_update_mixed_merge(struct request *req,
785 		struct bio *bio, bool front_merge)
786 {
787 	if (req->rq_flags & RQF_MIXED_MERGE) {
788 		if (bio->bi_opf & REQ_RAHEAD)
789 			bio->bi_opf |= REQ_FAILFAST_MASK;
790 
791 		if (front_merge) {
792 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
793 			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
794 		}
795 	}
796 }
797 
blk_account_io_merge_request(struct request * req)798 static void blk_account_io_merge_request(struct request *req)
799 {
800 	if (blk_do_io_stat(req)) {
801 		part_stat_lock();
802 		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
803 		part_stat_local_dec(req->part,
804 				    in_flight[op_is_write(req_op(req))]);
805 		part_stat_unlock();
806 	}
807 }
808 
blk_try_req_merge(struct request * req,struct request * next)809 static enum elv_merge blk_try_req_merge(struct request *req,
810 					struct request *next)
811 {
812 	if (blk_discard_mergable(req))
813 		return ELEVATOR_DISCARD_MERGE;
814 	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
815 		return ELEVATOR_BACK_MERGE;
816 
817 	return ELEVATOR_NO_MERGE;
818 }
819 
blk_atomic_write_mergeable_rq_bio(struct request * rq,struct bio * bio)820 static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
821 					      struct bio *bio)
822 {
823 	return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
824 }
825 
blk_atomic_write_mergeable_rqs(struct request * rq,struct request * next)826 static bool blk_atomic_write_mergeable_rqs(struct request *rq,
827 					   struct request *next)
828 {
829 	return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
830 }
831 
832 /*
833  * For non-mq, this has to be called with the request spinlock acquired.
834  * For mq with scheduling, the appropriate queue wide lock should be held.
835  */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)836 static struct request *attempt_merge(struct request_queue *q,
837 				     struct request *req, struct request *next)
838 {
839 	if (!rq_mergeable(req) || !rq_mergeable(next))
840 		return NULL;
841 
842 	if (req_op(req) != req_op(next))
843 		return NULL;
844 
845 	if (rq_data_dir(req) != rq_data_dir(next))
846 		return NULL;
847 
848 	/* Don't merge requests with different write hints. */
849 	if (req->write_hint != next->write_hint)
850 		return NULL;
851 
852 	if (req->ioprio != next->ioprio)
853 		return NULL;
854 
855 	if (!blk_atomic_write_mergeable_rqs(req, next))
856 		return NULL;
857 
858 	/*
859 	 * If we are allowed to merge, then append bio list
860 	 * from next to rq and release next. merge_requests_fn
861 	 * will have updated segment counts, update sector
862 	 * counts here. Handle DISCARDs separately, as they
863 	 * have separate settings.
864 	 */
865 
866 	switch (blk_try_req_merge(req, next)) {
867 	case ELEVATOR_DISCARD_MERGE:
868 		if (!req_attempt_discard_merge(q, req, next))
869 			return NULL;
870 		break;
871 	case ELEVATOR_BACK_MERGE:
872 		if (!ll_merge_requests_fn(q, req, next))
873 			return NULL;
874 		break;
875 	default:
876 		return NULL;
877 	}
878 
879 	/*
880 	 * If failfast settings disagree or any of the two is already
881 	 * a mixed merge, mark both as mixed before proceeding.  This
882 	 * makes sure that all involved bios have mixable attributes
883 	 * set properly.
884 	 */
885 	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
886 	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
887 	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
888 		blk_rq_set_mixed_merge(req);
889 		blk_rq_set_mixed_merge(next);
890 	}
891 
892 	/*
893 	 * At this point we have either done a back merge or front merge. We
894 	 * need the smaller start_time_ns of the merged requests to be the
895 	 * current request for accounting purposes.
896 	 */
897 	if (next->start_time_ns < req->start_time_ns)
898 		req->start_time_ns = next->start_time_ns;
899 
900 	req->biotail->bi_next = next->bio;
901 	req->biotail = next->biotail;
902 
903 	req->__data_len += blk_rq_bytes(next);
904 
905 	if (!blk_discard_mergable(req))
906 		elv_merge_requests(q, req, next);
907 
908 	blk_crypto_rq_put_keyslot(next);
909 
910 	/*
911 	 * 'next' is going away, so update stats accordingly
912 	 */
913 	blk_account_io_merge_request(next);
914 
915 	trace_block_rq_merge(next);
916 
917 	/*
918 	 * ownership of bio passed from next to req, return 'next' for
919 	 * the caller to free
920 	 */
921 	next->bio = NULL;
922 	return next;
923 }
924 
attempt_back_merge(struct request_queue * q,struct request * rq)925 static struct request *attempt_back_merge(struct request_queue *q,
926 		struct request *rq)
927 {
928 	struct request *next = elv_latter_request(q, rq);
929 
930 	if (next)
931 		return attempt_merge(q, rq, next);
932 
933 	return NULL;
934 }
935 
attempt_front_merge(struct request_queue * q,struct request * rq)936 static struct request *attempt_front_merge(struct request_queue *q,
937 		struct request *rq)
938 {
939 	struct request *prev = elv_former_request(q, rq);
940 
941 	if (prev)
942 		return attempt_merge(q, prev, rq);
943 
944 	return NULL;
945 }
946 
947 /*
948  * Try to merge 'next' into 'rq'. Return true if the merge happened, false
949  * otherwise. The caller is responsible for freeing 'next' if the merge
950  * happened.
951  */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)952 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
953 			   struct request *next)
954 {
955 	return attempt_merge(q, rq, next);
956 }
957 
blk_rq_merge_ok(struct request * rq,struct bio * bio)958 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
959 {
960 	if (!rq_mergeable(rq) || !bio_mergeable(bio))
961 		return false;
962 
963 	if (req_op(rq) != bio_op(bio))
964 		return false;
965 
966 	/* different data direction or already started, don't merge */
967 	if (bio_data_dir(bio) != rq_data_dir(rq))
968 		return false;
969 
970 	/* don't merge across cgroup boundaries */
971 	if (!blk_cgroup_mergeable(rq, bio))
972 		return false;
973 
974 	/* only merge integrity protected bio into ditto rq */
975 	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
976 		return false;
977 
978 	/* Only merge if the crypt contexts are compatible */
979 	if (!bio_crypt_rq_ctx_compatible(rq, bio))
980 		return false;
981 
982 	/* Don't merge requests with different write hints. */
983 	if (rq->write_hint != bio->bi_write_hint)
984 		return false;
985 
986 	if (rq->ioprio != bio_prio(bio))
987 		return false;
988 
989 	if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
990 		return false;
991 
992 	return true;
993 }
994 
blk_try_merge(struct request * rq,struct bio * bio)995 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
996 {
997 	if (blk_discard_mergable(rq))
998 		return ELEVATOR_DISCARD_MERGE;
999 	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
1000 		return ELEVATOR_BACK_MERGE;
1001 	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
1002 		return ELEVATOR_FRONT_MERGE;
1003 	return ELEVATOR_NO_MERGE;
1004 }
1005 
blk_account_io_merge_bio(struct request * req)1006 static void blk_account_io_merge_bio(struct request *req)
1007 {
1008 	if (!blk_do_io_stat(req))
1009 		return;
1010 
1011 	part_stat_lock();
1012 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
1013 	part_stat_unlock();
1014 }
1015 
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1016 enum bio_merge_status bio_attempt_back_merge(struct request *req,
1017 		struct bio *bio, unsigned int nr_segs)
1018 {
1019 	const blk_opf_t ff = bio_failfast(bio);
1020 
1021 	if (!ll_back_merge_fn(req, bio, nr_segs))
1022 		return BIO_MERGE_FAILED;
1023 
1024 	trace_block_bio_backmerge(bio);
1025 	rq_qos_merge(req->q, req, bio);
1026 
1027 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1028 		blk_rq_set_mixed_merge(req);
1029 
1030 	blk_update_mixed_merge(req, bio, false);
1031 
1032 	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1033 		blk_zone_write_plug_bio_merged(bio);
1034 
1035 	req->biotail->bi_next = bio;
1036 	req->biotail = bio;
1037 	req->__data_len += bio->bi_iter.bi_size;
1038 
1039 	bio_crypt_free_ctx(bio);
1040 
1041 	blk_account_io_merge_bio(req);
1042 	return BIO_MERGE_OK;
1043 }
1044 
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)1045 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
1046 		struct bio *bio, unsigned int nr_segs)
1047 {
1048 	const blk_opf_t ff = bio_failfast(bio);
1049 
1050 	/*
1051 	 * A front merge for writes to sequential zones of a zoned block device
1052 	 * can happen only if the user submitted writes out of order. Do not
1053 	 * merge such write to let it fail.
1054 	 */
1055 	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
1056 		return BIO_MERGE_FAILED;
1057 
1058 	if (!ll_front_merge_fn(req, bio, nr_segs))
1059 		return BIO_MERGE_FAILED;
1060 
1061 	trace_block_bio_frontmerge(bio);
1062 	rq_qos_merge(req->q, req, bio);
1063 
1064 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1065 		blk_rq_set_mixed_merge(req);
1066 
1067 	blk_update_mixed_merge(req, bio, true);
1068 
1069 	bio->bi_next = req->bio;
1070 	req->bio = bio;
1071 
1072 	req->__sector = bio->bi_iter.bi_sector;
1073 	req->__data_len += bio->bi_iter.bi_size;
1074 
1075 	bio_crypt_do_front_merge(req, bio);
1076 
1077 	blk_account_io_merge_bio(req);
1078 	return BIO_MERGE_OK;
1079 }
1080 
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1081 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1082 		struct request *req, struct bio *bio)
1083 {
1084 	unsigned short segments = blk_rq_nr_discard_segments(req);
1085 
1086 	if (segments >= queue_max_discard_segments(q))
1087 		goto no_merge;
1088 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1089 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1090 		goto no_merge;
1091 
1092 	rq_qos_merge(q, req, bio);
1093 
1094 	req->biotail->bi_next = bio;
1095 	req->biotail = bio;
1096 	req->__data_len += bio->bi_iter.bi_size;
1097 	req->nr_phys_segments = segments + 1;
1098 
1099 	blk_account_io_merge_bio(req);
1100 	return BIO_MERGE_OK;
1101 no_merge:
1102 	req_set_nomerge(q, req);
1103 	return BIO_MERGE_FAILED;
1104 }
1105 
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1106 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1107 						   struct request *rq,
1108 						   struct bio *bio,
1109 						   unsigned int nr_segs,
1110 						   bool sched_allow_merge)
1111 {
1112 	if (!blk_rq_merge_ok(rq, bio))
1113 		return BIO_MERGE_NONE;
1114 
1115 	switch (blk_try_merge(rq, bio)) {
1116 	case ELEVATOR_BACK_MERGE:
1117 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1118 			return bio_attempt_back_merge(rq, bio, nr_segs);
1119 		break;
1120 	case ELEVATOR_FRONT_MERGE:
1121 		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1122 			return bio_attempt_front_merge(rq, bio, nr_segs);
1123 		break;
1124 	case ELEVATOR_DISCARD_MERGE:
1125 		return bio_attempt_discard_merge(q, rq, bio);
1126 	default:
1127 		return BIO_MERGE_NONE;
1128 	}
1129 
1130 	return BIO_MERGE_FAILED;
1131 }
1132 
1133 /**
1134  * blk_attempt_plug_merge - try to merge with %current's plugged list
1135  * @q: request_queue new bio is being queued at
1136  * @bio: new bio being queued
1137  * @nr_segs: number of segments in @bio
1138  * from the passed in @q already in the plug list
1139  *
1140  * Determine whether @bio being queued on @q can be merged with the previous
1141  * request on %current's plugged list.  Returns %true if merge was successful,
1142  * otherwise %false.
1143  *
1144  * Plugging coalesces IOs from the same issuer for the same purpose without
1145  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1146  * than scheduling, and the request, while may have elvpriv data, is not
1147  * added on the elevator at this point.  In addition, we don't have
1148  * reliable access to the elevator outside queue lock.  Only check basic
1149  * merging parameters without querying the elevator.
1150  *
1151  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1152  */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)1153 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1154 		unsigned int nr_segs)
1155 {
1156 	struct blk_plug *plug = current->plug;
1157 	struct request *rq;
1158 
1159 	if (!plug || rq_list_empty(plug->mq_list))
1160 		return false;
1161 
1162 	rq_list_for_each(&plug->mq_list, rq) {
1163 		if (rq->q == q) {
1164 			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1165 			    BIO_MERGE_OK)
1166 				return true;
1167 			break;
1168 		}
1169 
1170 		/*
1171 		 * Only keep iterating plug list for merges if we have multiple
1172 		 * queues
1173 		 */
1174 		if (!plug->multiple_queues)
1175 			break;
1176 	}
1177 	return false;
1178 }
1179 
1180 /*
1181  * Iterate list of requests and see if we can merge this bio with any
1182  * of them.
1183  */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1184 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1185 			struct bio *bio, unsigned int nr_segs)
1186 {
1187 	struct request *rq;
1188 	int checked = 8;
1189 
1190 	list_for_each_entry_reverse(rq, list, queuelist) {
1191 		if (!checked--)
1192 			break;
1193 
1194 		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1195 		case BIO_MERGE_NONE:
1196 			continue;
1197 		case BIO_MERGE_OK:
1198 			return true;
1199 		case BIO_MERGE_FAILED:
1200 			return false;
1201 		}
1202 
1203 	}
1204 
1205 	return false;
1206 }
1207 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1208 
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1209 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1210 		unsigned int nr_segs, struct request **merged_request)
1211 {
1212 	struct request *rq;
1213 
1214 	switch (elv_merge(q, &rq, bio)) {
1215 	case ELEVATOR_BACK_MERGE:
1216 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1217 			return false;
1218 		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1219 			return false;
1220 		*merged_request = attempt_back_merge(q, rq);
1221 		if (!*merged_request)
1222 			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1223 		return true;
1224 	case ELEVATOR_FRONT_MERGE:
1225 		if (!blk_mq_sched_allow_merge(q, rq, bio))
1226 			return false;
1227 		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1228 			return false;
1229 		*merged_request = attempt_front_merge(q, rq);
1230 		if (!*merged_request)
1231 			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1232 		return true;
1233 	case ELEVATOR_DISCARD_MERGE:
1234 		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1235 	default:
1236 		return false;
1237 	}
1238 }
1239 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1240