1 /* $NetBSD: print-ah.c,v 1.4 1996/05/20 00:41:16 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1988, 1989, 1990, 1991, 1992, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that: (1) source code distributions
9 * retain the above copyright notice and this paragraph in its entirety, (2)
10 * distributions including binary code include the above copyright notice and
11 * this paragraph in its entirety in the documentation or other materials
12 * provided with the distribution, and (3) all advertising materials mentioning
13 * features or use of this software display the following acknowledgement:
14 * ``This product includes software developed by the University of California,
15 * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
16 * the University nor the names of its contributors may be used to endorse
17 * or promote products derived from this software without specific prior
18 * written permission.
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
22 */
23
24 /* \summary: IPSEC Encapsulating Security Payload (ESP) printer */
25
26 #include <config.h>
27
28 #include "netdissect-stdinc.h"
29
30 #include <string.h>
31 #include <stdlib.h>
32
33 #ifdef HAVE_LIBCRYPTO
34 #include <openssl/evp.h>
35 #endif
36
37 #include "netdissect.h"
38 #include "extract.h"
39
40 #include "diag-control.h"
41
42 #ifdef HAVE_LIBCRYPTO
43 #include "strtoaddr.h"
44 #include "ascii_strcasecmp.h"
45 #endif
46
47 #include "ip.h"
48 #include "ip6.h"
49
50 /*
51 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
52 * All rights reserved.
53 *
54 * Redistribution and use in source and binary forms, with or without
55 * modification, are permitted provided that the following conditions
56 * are met:
57 * 1. Redistributions of source code must retain the above copyright
58 * notice, this list of conditions and the following disclaimer.
59 * 2. Redistributions in binary form must reproduce the above copyright
60 * notice, this list of conditions and the following disclaimer in the
61 * documentation and/or other materials provided with the distribution.
62 * 3. Neither the name of the project nor the names of its contributors
63 * may be used to endorse or promote products derived from this software
64 * without specific prior written permission.
65 *
66 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
67 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
68 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
69 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
70 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
74 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
75 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
76 * SUCH DAMAGE.
77 */
78
79 /*
80 * RFC1827/2406 Encapsulated Security Payload.
81 */
82
83 struct newesp {
84 nd_uint32_t esp_spi; /* ESP */
85 nd_uint32_t esp_seq; /* Sequence number */
86 /*variable size*/ /* (IV and) Payload data */
87 /*variable size*/ /* padding */
88 /*8bit*/ /* pad size */
89 /*8bit*/ /* next header */
90 /*8bit*/ /* next header */
91 /*variable size, 32bit bound*/ /* Authentication data */
92 };
93
94 #ifdef HAVE_LIBCRYPTO
95 union inaddr_u {
96 nd_ipv4 in4;
97 nd_ipv6 in6;
98 };
99 struct sa_list {
100 struct sa_list *next;
101 u_int daddr_version;
102 union inaddr_u daddr;
103 uint32_t spi; /* if == 0, then IKEv2 */
104 int initiator;
105 u_char spii[8]; /* for IKEv2 */
106 u_char spir[8];
107 const EVP_CIPHER *evp;
108 u_int ivlen;
109 int authlen;
110 u_char authsecret[256];
111 int authsecret_len;
112 u_char secret[256]; /* is that big enough for all secrets? */
113 int secretlen;
114 };
115
116 #ifndef HAVE_EVP_CIPHER_CTX_NEW
117 /*
118 * Allocate an EVP_CIPHER_CTX.
119 * Used if we have an older version of OpenSSL that doesn't provide
120 * routines to allocate and free them.
121 */
122 static EVP_CIPHER_CTX *
EVP_CIPHER_CTX_new(void)123 EVP_CIPHER_CTX_new(void)
124 {
125 EVP_CIPHER_CTX *ctx;
126
127 ctx = malloc(sizeof(*ctx));
128 if (ctx == NULL)
129 return (NULL);
130 memset(ctx, 0, sizeof(*ctx));
131 return (ctx);
132 }
133
134 static void
EVP_CIPHER_CTX_free(EVP_CIPHER_CTX * ctx)135 EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx)
136 {
137 EVP_CIPHER_CTX_cleanup(ctx);
138 free(ctx);
139 }
140 #endif
141
142 #ifdef HAVE_EVP_DECRYPTINIT_EX
143 /*
144 * Initialize the cipher by calling EVP_DecryptInit_ex(), because
145 * calling EVP_DecryptInit() will reset the cipher context, clearing
146 * the cipher, so calling it twice, with the second call having a
147 * null cipher, will clear the already-set cipher. EVP_DecryptInit_ex(),
148 * however, won't reset the cipher context, so you can use it to specify
149 * the IV in a second call after a first call to EVP_DecryptInit_ex()
150 * to set the cipher and the key.
151 *
152 * XXX - is there some reason why we need to make two calls?
153 */
154 static int
set_cipher_parameters(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const unsigned char * key,const unsigned char * iv)155 set_cipher_parameters(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
156 const unsigned char *key,
157 const unsigned char *iv)
158 {
159 return EVP_DecryptInit_ex(ctx, cipher, NULL, key, iv);
160 }
161 #else
162 /*
163 * Initialize the cipher by calling EVP_DecryptInit(), because we don't
164 * have EVP_DecryptInit_ex(); we rely on it not trashing the context.
165 */
166 static int
set_cipher_parameters(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,const unsigned char * key,const unsigned char * iv)167 set_cipher_parameters(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
168 const unsigned char *key,
169 const unsigned char *iv)
170 {
171 return EVP_DecryptInit(ctx, cipher, key, iv);
172 }
173 #endif
174
175 static u_char *
do_decrypt(netdissect_options * ndo,const char * caller,struct sa_list * sa,const u_char * iv,const u_char * ct,unsigned int ctlen)176 do_decrypt(netdissect_options *ndo, const char *caller, struct sa_list *sa,
177 const u_char *iv, const u_char *ct, unsigned int ctlen)
178 {
179 EVP_CIPHER_CTX *ctx;
180 unsigned int block_size;
181 unsigned int ptlen;
182 u_char *pt;
183 int len;
184
185 ctx = EVP_CIPHER_CTX_new();
186 if (ctx == NULL) {
187 /*
188 * Failed to initialize the cipher context.
189 * From a look at the OpenSSL code, this appears to
190 * mean "couldn't allocate memory for the cipher context";
191 * note that we're not passing any parameters, so there's
192 * not much else it can mean.
193 */
194 (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
195 "%s: can't allocate memory for cipher context", caller);
196 return NULL;
197 }
198
199 if (set_cipher_parameters(ctx, sa->evp, sa->secret, NULL) < 0) {
200 EVP_CIPHER_CTX_free(ctx);
201 (*ndo->ndo_warning)(ndo, "%s: espkey init failed", caller);
202 return NULL;
203 }
204 if (set_cipher_parameters(ctx, NULL, NULL, iv) < 0) {
205 EVP_CIPHER_CTX_free(ctx);
206 (*ndo->ndo_warning)(ndo, "%s: IV init failed", caller);
207 return NULL;
208 }
209
210 /*
211 * At least as I read RFC 5996 section 3.14 and RFC 4303 section 2.4,
212 * if the cipher has a block size of which the ciphertext's size must
213 * be a multiple, the payload must be padded to make that happen, so
214 * the ciphertext length must be a multiple of the block size. Fail
215 * if that's not the case.
216 */
217 block_size = (unsigned int)EVP_CIPHER_CTX_block_size(ctx);
218 if ((ctlen % block_size) != 0) {
219 EVP_CIPHER_CTX_free(ctx);
220 (*ndo->ndo_warning)(ndo,
221 "%s: ciphertext size %u is not a multiple of the cipher block size %u",
222 caller, ctlen, block_size);
223 return NULL;
224 }
225
226 /*
227 * Attempt to allocate a buffer for the decrypted data, because
228 * we can't decrypt on top of the input buffer.
229 */
230 ptlen = ctlen;
231 pt = (u_char *)calloc(1, ptlen);
232 if (pt == NULL) {
233 EVP_CIPHER_CTX_free(ctx);
234 (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
235 "%s: can't allocate memory for decryption buffer", caller);
236 return NULL;
237 }
238
239 /*
240 * The size of the ciphertext handed to us is a multiple of the
241 * cipher block size, so we don't need to worry about padding.
242 */
243 if (!EVP_CIPHER_CTX_set_padding(ctx, 0)) {
244 free(pt);
245 EVP_CIPHER_CTX_free(ctx);
246 (*ndo->ndo_warning)(ndo,
247 "%s: EVP_CIPHER_CTX_set_padding failed", caller);
248 return NULL;
249 }
250 if (!EVP_DecryptUpdate(ctx, pt, &len, ct, ctlen)) {
251 free(pt);
252 EVP_CIPHER_CTX_free(ctx);
253 (*ndo->ndo_warning)(ndo, "%s: EVP_DecryptUpdate failed",
254 caller);
255 return NULL;
256 }
257 EVP_CIPHER_CTX_free(ctx);
258 return pt;
259 }
260
261 /*
262 * This will allocate a new buffer containing the decrypted data.
263 * It returns 1 on success and 0 on failure.
264 *
265 * It will push the new buffer and the values of ndo->ndo_packetp and
266 * ndo->ndo_snapend onto the buffer stack, and change ndo->ndo_packetp
267 * and ndo->ndo_snapend to refer to the new buffer.
268 *
269 * Our caller must pop the buffer off the stack when it's finished
270 * dissecting anything in it and before it does any dissection of
271 * anything in the old buffer. That will free the new buffer.
272 */
273 DIAG_OFF_DEPRECATION
esp_decrypt_buffer_by_ikev2_print(netdissect_options * ndo,int initiator,const u_char spii[8],const u_char spir[8],const u_char * buf,const u_char * end)274 int esp_decrypt_buffer_by_ikev2_print(netdissect_options *ndo,
275 int initiator,
276 const u_char spii[8],
277 const u_char spir[8],
278 const u_char *buf, const u_char *end)
279 {
280 struct sa_list *sa;
281 const u_char *iv;
282 const u_char *ct;
283 unsigned int ctlen;
284 u_char *pt;
285
286 /* initiator arg is any non-zero value */
287 if(initiator) initiator=1;
288
289 /* see if we can find the SA, and if so, decode it */
290 for (sa = ndo->ndo_sa_list_head; sa != NULL; sa = sa->next) {
291 if (sa->spi == 0
292 && initiator == sa->initiator
293 && memcmp(spii, sa->spii, 8) == 0
294 && memcmp(spir, sa->spir, 8) == 0)
295 break;
296 }
297
298 if(sa == NULL) return 0;
299 if(sa->evp == NULL) return 0;
300
301 /*
302 * remove authenticator, and see if we still have something to
303 * work with
304 */
305 end = end - sa->authlen;
306 iv = buf;
307 ct = iv + sa->ivlen;
308 ctlen = end-ct;
309
310 if(end <= ct) return 0;
311
312 pt = do_decrypt(ndo, __func__, sa, iv,
313 ct, ctlen);
314 if (pt == NULL)
315 return 0;
316
317 /*
318 * Switch to the output buffer for dissection, and save it
319 * on the buffer stack so it can be freed; our caller must
320 * pop it when done.
321 */
322 if (!nd_push_buffer(ndo, pt, pt, ctlen)) {
323 free(pt);
324 (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
325 "%s: can't push buffer on buffer stack", __func__);
326 }
327
328 return 1;
329 }
330 DIAG_ON_DEPRECATION
331
esp_print_addsa(netdissect_options * ndo,const struct sa_list * sa,int sa_def)332 static void esp_print_addsa(netdissect_options *ndo,
333 const struct sa_list *sa, int sa_def)
334 {
335 /* copy the "sa" */
336
337 struct sa_list *nsa;
338
339 /* malloc() return used in a 'struct sa_list': do not free() */
340 nsa = (struct sa_list *)malloc(sizeof(struct sa_list));
341 if (nsa == NULL)
342 (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
343 "%s: malloc", __func__);
344
345 *nsa = *sa;
346
347 if (sa_def)
348 ndo->ndo_sa_default = nsa;
349
350 nsa->next = ndo->ndo_sa_list_head;
351 ndo->ndo_sa_list_head = nsa;
352 }
353
354
hexdigit(netdissect_options * ndo,char hex)355 static u_int hexdigit(netdissect_options *ndo, char hex)
356 {
357 if (hex >= '0' && hex <= '9')
358 return (hex - '0');
359 else if (hex >= 'A' && hex <= 'F')
360 return (hex - 'A' + 10);
361 else if (hex >= 'a' && hex <= 'f')
362 return (hex - 'a' + 10);
363 else {
364 (*ndo->ndo_error)(ndo, S_ERR_ND_ESP_SECRET,
365 "invalid hex digit %c in espsecret\n", hex);
366 }
367 }
368
hex2byte(netdissect_options * ndo,char * hexstring)369 static u_int hex2byte(netdissect_options *ndo, char *hexstring)
370 {
371 u_int byte;
372
373 byte = (hexdigit(ndo, hexstring[0]) << 4) + hexdigit(ndo, hexstring[1]);
374 return byte;
375 }
376
377 /*
378 * returns size of binary, 0 on failure.
379 */
380 static int
espprint_decode_hex(netdissect_options * ndo,u_char * binbuf,unsigned int binbuf_len,char * hex)381 espprint_decode_hex(netdissect_options *ndo,
382 u_char *binbuf, unsigned int binbuf_len, char *hex)
383 {
384 unsigned int len;
385 int i;
386
387 len = strlen(hex) / 2;
388
389 if (len > binbuf_len) {
390 (*ndo->ndo_warning)(ndo, "secret is too big: %u\n", len);
391 return 0;
392 }
393
394 i = 0;
395 while (hex[0] != '\0' && hex[1]!='\0') {
396 binbuf[i] = hex2byte(ndo, hex);
397 hex += 2;
398 i++;
399 }
400
401 return i;
402 }
403
404 /*
405 * decode the form: SPINUM@IP <tab> ALGONAME:0xsecret
406 */
407
408 DIAG_OFF_DEPRECATION
409 static int
espprint_decode_encalgo(netdissect_options * ndo,char * decode,struct sa_list * sa)410 espprint_decode_encalgo(netdissect_options *ndo,
411 char *decode, struct sa_list *sa)
412 {
413 size_t i;
414 const EVP_CIPHER *evp;
415 int authlen = 0;
416 char *colon, *p;
417 const char *real_decode;
418
419 colon = strchr(decode, ':');
420 if (colon == NULL) {
421 (*ndo->ndo_warning)(ndo, "failed to decode espsecret: %s\n", decode);
422 return 0;
423 }
424 *colon = '\0';
425
426 if (strlen(decode) > strlen("-hmac96") &&
427 !strcmp(decode + strlen(decode) - strlen("-hmac96"),
428 "-hmac96")) {
429 p = strstr(decode, "-hmac96");
430 *p = '\0';
431 authlen = 12;
432 }
433 if (strlen(decode) > strlen("-cbc") &&
434 !strcmp(decode + strlen(decode) - strlen("-cbc"), "-cbc")) {
435 p = strstr(decode, "-cbc");
436 *p = '\0';
437 }
438 /*
439 * Not all versions of libcrypto support calls to add aliases
440 * to ciphers - newer versions of libressl don't - so, instead
441 * of making "3des" an alias for "des_ede3_cbc", if attempting
442 * to get the cipher fails and the name is "3des", we try
443 * "des_ede3_cbc".
444 */
445 real_decode = decode;
446 if (strcmp(real_decode, "3des") == 0)
447 real_decode = "des-ede3-cbc";
448 evp = EVP_get_cipherbyname(real_decode);
449
450 if (!evp) {
451 if (decode != real_decode)
452 (*ndo->ndo_warning)(ndo, "failed to find cipher algo %s (%s)\n", real_decode, decode);
453 else
454 (*ndo->ndo_warning)(ndo, "failed to find cipher algo %s\n", decode);
455 sa->evp = NULL;
456 sa->authlen = 0;
457 sa->ivlen = 0;
458 return 0;
459 }
460
461 sa->evp = evp;
462 sa->authlen = authlen;
463 /* This returns an int, but it should never be negative */
464 sa->ivlen = EVP_CIPHER_iv_length(evp);
465
466 colon++;
467 if (colon[0] == '0' && colon[1] == 'x') {
468 /* decode some hex! */
469
470 colon += 2;
471 sa->secretlen = espprint_decode_hex(ndo, sa->secret, sizeof(sa->secret), colon);
472 if(sa->secretlen == 0) return 0;
473 } else {
474 i = strlen(colon);
475
476 if (i < sizeof(sa->secret)) {
477 memcpy(sa->secret, colon, i);
478 sa->secretlen = i;
479 } else {
480 memcpy(sa->secret, colon, sizeof(sa->secret));
481 sa->secretlen = sizeof(sa->secret);
482 }
483 }
484
485 return 1;
486 }
487 DIAG_ON_DEPRECATION
488
489 /*
490 * for the moment, ignore the auth algorithm, just hard code the authenticator
491 * length. Need to research how openssl looks up HMAC stuff.
492 */
493 static int
espprint_decode_authalgo(netdissect_options * ndo,char * decode,struct sa_list * sa)494 espprint_decode_authalgo(netdissect_options *ndo,
495 char *decode, struct sa_list *sa)
496 {
497 char *colon;
498
499 colon = strchr(decode, ':');
500 if (colon == NULL) {
501 (*ndo->ndo_warning)(ndo, "failed to decode espsecret: %s\n", decode);
502 return 0;
503 }
504 *colon = '\0';
505
506 if(ascii_strcasecmp(decode,"sha1") == 0 ||
507 ascii_strcasecmp(decode,"md5") == 0) {
508 sa->authlen = 12;
509 }
510 return 1;
511 }
512
esp_print_decode_ikeline(netdissect_options * ndo,char * line,const char * file,int lineno)513 static void esp_print_decode_ikeline(netdissect_options *ndo, char *line,
514 const char *file, int lineno)
515 {
516 /* it's an IKEv2 secret, store it instead */
517 struct sa_list sa1;
518
519 char *init;
520 char *icookie, *rcookie;
521 int ilen, rlen;
522 char *authkey;
523 char *enckey;
524
525 init = strsep(&line, " \t");
526 icookie = strsep(&line, " \t");
527 rcookie = strsep(&line, " \t");
528 authkey = strsep(&line, " \t");
529 enckey = strsep(&line, " \t");
530
531 /* if any fields are missing */
532 if(!init || !icookie || !rcookie || !authkey || !enckey) {
533 (*ndo->ndo_warning)(ndo, "print_esp: failed to find all fields for ikev2 at %s:%u",
534 file, lineno);
535
536 return;
537 }
538
539 ilen = strlen(icookie);
540 rlen = strlen(rcookie);
541
542 if((init[0]!='I' && init[0]!='R')
543 || icookie[0]!='0' || icookie[1]!='x'
544 || rcookie[0]!='0' || rcookie[1]!='x'
545 || ilen!=18
546 || rlen!=18) {
547 (*ndo->ndo_warning)(ndo, "print_esp: line %s:%u improperly formatted.",
548 file, lineno);
549
550 (*ndo->ndo_warning)(ndo, "init=%s icookie=%s(%u) rcookie=%s(%u)",
551 init, icookie, ilen, rcookie, rlen);
552
553 return;
554 }
555
556 sa1.spi = 0;
557 sa1.initiator = (init[0] == 'I');
558 if(espprint_decode_hex(ndo, sa1.spii, sizeof(sa1.spii), icookie+2)!=8)
559 return;
560
561 if(espprint_decode_hex(ndo, sa1.spir, sizeof(sa1.spir), rcookie+2)!=8)
562 return;
563
564 if(!espprint_decode_encalgo(ndo, enckey, &sa1)) return;
565
566 if(!espprint_decode_authalgo(ndo, authkey, &sa1)) return;
567
568 esp_print_addsa(ndo, &sa1, FALSE);
569 }
570
571 /*
572 *
573 * special form: file /name
574 * causes us to go read from this file instead.
575 *
576 */
esp_print_decode_onesecret(netdissect_options * ndo,char * line,const char * file,int lineno)577 static void esp_print_decode_onesecret(netdissect_options *ndo, char *line,
578 const char *file, int lineno)
579 {
580 struct sa_list sa1;
581 int sa_def;
582
583 char *spikey;
584 char *decode;
585
586 spikey = strsep(&line, " \t");
587 sa_def = 0;
588 memset(&sa1, 0, sizeof(struct sa_list));
589
590 /* if there is only one token, then it is an algo:key token */
591 if (line == NULL) {
592 decode = spikey;
593 spikey = NULL;
594 /* sa1.daddr.version = 0; */
595 /* memset(&sa1.daddr, 0, sizeof(sa1.daddr)); */
596 /* sa1.spi = 0; */
597 sa_def = 1;
598 } else
599 decode = line;
600
601 if (spikey && ascii_strcasecmp(spikey, "file") == 0) {
602 /* open file and read it */
603 FILE *secretfile;
604 char fileline[1024];
605 int subfile_lineno=0;
606 char *nl;
607 char *filename = line;
608
609 secretfile = fopen(filename, FOPEN_READ_TXT);
610 if (secretfile == NULL) {
611 (*ndo->ndo_error)(ndo, S_ERR_ND_OPEN_FILE,
612 "%s: can't open %s: %s\n",
613 __func__, filename, strerror(errno));
614 }
615
616 while (fgets(fileline, sizeof(fileline)-1, secretfile) != NULL) {
617 subfile_lineno++;
618 /* remove newline from the line */
619 nl = strchr(fileline, '\n');
620 if (nl)
621 *nl = '\0';
622 if (fileline[0] == '#') continue;
623 if (fileline[0] == '\0') continue;
624
625 esp_print_decode_onesecret(ndo, fileline, filename, subfile_lineno);
626 }
627 fclose(secretfile);
628
629 return;
630 }
631
632 if (spikey && ascii_strcasecmp(spikey, "ikev2") == 0) {
633 esp_print_decode_ikeline(ndo, line, file, lineno);
634 return;
635 }
636
637 if (spikey) {
638
639 char *spistr, *foo;
640 uint32_t spino;
641
642 spistr = strsep(&spikey, "@");
643 if (spistr == NULL) {
644 (*ndo->ndo_warning)(ndo, "print_esp: failed to find the @ token");
645 return;
646 }
647
648 spino = strtoul(spistr, &foo, 0);
649 if (spistr == foo || !spikey) {
650 (*ndo->ndo_warning)(ndo, "print_esp: failed to decode spi# %s\n", foo);
651 return;
652 }
653
654 sa1.spi = spino;
655
656 if (strtoaddr6(spikey, &sa1.daddr.in6) == 1) {
657 sa1.daddr_version = 6;
658 } else if (strtoaddr(spikey, &sa1.daddr.in4) == 1) {
659 sa1.daddr_version = 4;
660 } else {
661 (*ndo->ndo_warning)(ndo, "print_esp: can not decode IP# %s\n", spikey);
662 return;
663 }
664 }
665
666 if (decode) {
667 /* skip any blank spaces */
668 while (*decode == ' ' || *decode == '\t' || *decode == '\r' || *decode == '\n')
669 decode++;
670
671 if(!espprint_decode_encalgo(ndo, decode, &sa1)) {
672 return;
673 }
674 }
675
676 esp_print_addsa(ndo, &sa1, sa_def);
677 }
678
679 DIAG_OFF_DEPRECATION
esp_init(netdissect_options * ndo _U_)680 static void esp_init(netdissect_options *ndo _U_)
681 {
682 /*
683 * 0.9.6 doesn't appear to define OPENSSL_API_COMPAT, so
684 * we check whether it's undefined or it's less than the
685 * value for 1.1.0.
686 */
687 #if !defined(OPENSSL_API_COMPAT) || OPENSSL_API_COMPAT < 0x10100000L
688 OpenSSL_add_all_algorithms();
689 #endif
690 }
691 DIAG_ON_DEPRECATION
692
esp_decodesecret_print(netdissect_options * ndo)693 void esp_decodesecret_print(netdissect_options *ndo)
694 {
695 char *line;
696 char *p;
697 static int initialized = 0;
698
699 if (!initialized) {
700 esp_init(ndo);
701 initialized = 1;
702 }
703
704 p = ndo->ndo_espsecret;
705
706 while (p && p[0] != '\0') {
707 /* pick out the first line or first thing until a comma */
708 if ((line = strsep(&p, "\n,")) == NULL) {
709 line = p;
710 p = NULL;
711 }
712
713 esp_print_decode_onesecret(ndo, line, "cmdline", 0);
714 }
715
716 ndo->ndo_espsecret = NULL;
717 }
718
719 #endif
720
721 #ifdef HAVE_LIBCRYPTO
722 #define USED_IF_LIBCRYPTO
723 #else
724 #define USED_IF_LIBCRYPTO _U_
725 #endif
726
727 #ifdef HAVE_LIBCRYPTO
728 DIAG_OFF_DEPRECATION
729 #endif
730 void
esp_print(netdissect_options * ndo,const u_char * bp,u_int length,const u_char * bp2 USED_IF_LIBCRYPTO,u_int ver USED_IF_LIBCRYPTO,int fragmented USED_IF_LIBCRYPTO,u_int ttl_hl USED_IF_LIBCRYPTO)731 esp_print(netdissect_options *ndo,
732 const u_char *bp, u_int length,
733 const u_char *bp2 USED_IF_LIBCRYPTO,
734 u_int ver USED_IF_LIBCRYPTO,
735 int fragmented USED_IF_LIBCRYPTO,
736 u_int ttl_hl USED_IF_LIBCRYPTO)
737 {
738 const struct newesp *esp;
739 const u_char *ep;
740 #ifdef HAVE_LIBCRYPTO
741 const struct ip *ip;
742 struct sa_list *sa = NULL;
743 const struct ip6_hdr *ip6 = NULL;
744 const u_char *iv;
745 u_int ivlen;
746 u_int payloadlen;
747 const u_char *ct;
748 u_char *pt;
749 u_int padlen;
750 u_int nh;
751 #endif
752
753 ndo->ndo_protocol = "esp";
754 esp = (const struct newesp *)bp;
755
756 /* 'ep' points to the end of available data. */
757 ep = ndo->ndo_snapend;
758
759 if ((const u_char *)(esp + 1) >= ep) {
760 nd_print_trunc(ndo);
761 return;
762 }
763 ND_PRINT("ESP(spi=0x%08x", GET_BE_U_4(esp->esp_spi));
764 ND_PRINT(",seq=0x%x)", GET_BE_U_4(esp->esp_seq));
765 ND_PRINT(", length %u", length);
766
767 #ifdef HAVE_LIBCRYPTO
768 /* initialize SAs */
769 if (ndo->ndo_sa_list_head == NULL) {
770 if (!ndo->ndo_espsecret)
771 return;
772
773 esp_decodesecret_print(ndo);
774 }
775
776 if (ndo->ndo_sa_list_head == NULL)
777 return;
778
779 ip = (const struct ip *)bp2;
780 switch (ver) {
781 case 6:
782 ip6 = (const struct ip6_hdr *)bp2;
783 /* we do not attempt to decrypt jumbograms */
784 if (!GET_BE_U_2(ip6->ip6_plen))
785 return;
786 /* XXX - check whether it's fragmented? */
787 /* if we can't get nexthdr, we do not need to decrypt it */
788
789 /* see if we can find the SA, and if so, decode it */
790 for (sa = ndo->ndo_sa_list_head; sa != NULL; sa = sa->next) {
791 if (sa->spi == GET_BE_U_4(esp->esp_spi) &&
792 sa->daddr_version == 6 &&
793 UNALIGNED_MEMCMP(&sa->daddr.in6, &ip6->ip6_dst,
794 sizeof(nd_ipv6)) == 0) {
795 break;
796 }
797 }
798 break;
799 case 4:
800 /* nexthdr & padding are in the last fragment */
801 if (fragmented)
802 return;
803
804 /* see if we can find the SA, and if so, decode it */
805 for (sa = ndo->ndo_sa_list_head; sa != NULL; sa = sa->next) {
806 if (sa->spi == GET_BE_U_4(esp->esp_spi) &&
807 sa->daddr_version == 4 &&
808 UNALIGNED_MEMCMP(&sa->daddr.in4, &ip->ip_dst,
809 sizeof(nd_ipv4)) == 0) {
810 break;
811 }
812 }
813 break;
814 default:
815 return;
816 }
817
818 /* if we didn't find the specific one, then look for
819 * an unspecified one.
820 */
821 if (sa == NULL)
822 sa = ndo->ndo_sa_default;
823
824 /* if not found fail */
825 if (sa == NULL)
826 return;
827
828 /* pointer to the IV, if there is one */
829 iv = (const u_char *)(esp + 1) + 0;
830 /* length of the IV, if there is one; 0, if there isn't */
831 ivlen = sa->ivlen;
832
833 /*
834 * Get a pointer to the ciphertext.
835 *
836 * p points to the beginning of the payload, i.e. to the
837 * initialization vector, so if we skip past the initialization
838 * vector, it points to the beginning of the ciphertext.
839 */
840 ct = iv + ivlen;
841
842 /*
843 * Make sure the authentication data/integrity check value length
844 * isn't bigger than the total amount of data available after
845 * the ESP header and initialization vector is removed and,
846 * if not, slice the authentication data/ICV off.
847 */
848 if (ep - ct < sa->authlen) {
849 nd_print_trunc(ndo);
850 return;
851 }
852 ep = ep - sa->authlen;
853
854 /*
855 * Calculate the length of the ciphertext. ep points to
856 * the beginning of the authentication data/integrity check
857 * value, i.e. right past the end of the ciphertext;
858 */
859 payloadlen = ep - ct;
860
861 if (sa->evp == NULL)
862 return;
863
864 /*
865 * If the next header value is past the end of the available
866 * data, we won't be able to fetch it once we've decrypted
867 * the ciphertext, so there's no point in decrypting the data.
868 *
869 * Report it as truncation.
870 */
871 if (!ND_TTEST_1(ep - 1)) {
872 nd_print_trunc(ndo);
873 return;
874 }
875
876 pt = do_decrypt(ndo, __func__, sa, iv, ct, payloadlen);
877 if (pt == NULL)
878 return;
879
880 /*
881 * Switch to the output buffer for dissection, and
882 * save it on the buffer stack so it can be freed.
883 */
884 if (!nd_push_buffer(ndo, pt, pt, payloadlen)) {
885 free(pt);
886 (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
887 "%s: can't push buffer on buffer stack", __func__);
888 }
889
890 /*
891 * Sanity check for pad length; if it, plus 2 for the pad
892 * length and next header fields, is bigger than the ciphertext
893 * length (which is also the plaintext length), it's too big.
894 *
895 * XXX - the check can fail if the packet is corrupt *or* if
896 * it was not decrypted with the correct key, so that the
897 * "plaintext" is not what was being sent.
898 */
899 padlen = GET_U_1(pt + payloadlen - 2);
900 if (padlen + 2 > payloadlen) {
901 nd_print_trunc(ndo);
902 return;
903 }
904
905 /* Get the next header */
906 nh = GET_U_1(pt + payloadlen - 1);
907
908 ND_PRINT(": ");
909
910 /*
911 * Don't put padding + padding length(1 byte) + next header(1 byte)
912 * in the buffer because they are not part of the plaintext to decode.
913 */
914 if (!nd_push_snaplen(ndo, pt, payloadlen - (padlen + 2))) {
915 (*ndo->ndo_error)(ndo, S_ERR_ND_MEM_ALLOC,
916 "%s: can't push snaplen on buffer stack", __func__);
917 }
918
919 /* Now dissect the plaintext. */
920 ip_demux_print(ndo, pt, payloadlen - (padlen + 2), ver, fragmented,
921 ttl_hl, nh, bp2);
922
923 /* Pop the buffer, freeing it. */
924 nd_pop_packet_info(ndo);
925 /* Pop the nd_push_snaplen */
926 nd_pop_packet_info(ndo);
927 #endif
928 }
929 #ifdef HAVE_LIBCRYPTO
930 DIAG_ON_DEPRECATION
931 #endif
932