1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010-2013, by Broadcom, Inc.
24 * All Rights Reserved.
25 */
26
27 /*
28 * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29 * All rights reserved.
30 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
31 */
32
33 #include "bge_impl.h"
34
35 #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset)))
36 #define APE_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->ape_regs+(offset)))
37
38 /*
39 * Future features ... ?
40 */
41 #define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */
42 #define BGE_IND_IO32 1 /* indirect access code */
43 #define BGE_SEE_IO32 1 /* SEEPROM access code */
44 #define BGE_FLASH_IO32 1 /* FLASH access code */
45
46 /*
47 * BGE MSI tunable:
48 *
49 * By default MSI is enabled on all supported platforms but it is disabled
50 * for some Broadcom chips due to known MSI hardware issues. Currently MSI
51 * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
52 */
53 boolean_t bge_enable_msi = B_TRUE;
54
55 /*
56 * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
57 */
58 boolean_t bge_relaxed_ordering = B_TRUE;
59
60 /*
61 * Patchable globals:
62 *
63 * bge_autorecover
64 * Enables/disables automatic recovery after fault detection
65 *
66 * bge_mlcr_default
67 * Value to program into the MLCR; controls the chip's GPIO pins
68 *
69 * bge_dma_{rd,wr}prio
70 * Relative priorities of DMA reads & DMA writes respectively.
71 * These may each be patched to any value 0-3. Equal values
72 * will give "fair" (round-robin) arbitration for PCI access.
73 * Unequal values will give one or the other function priority.
74 *
75 * bge_dma_rwctrl
76 * Value to put in the Read/Write DMA control register. See
77 * the Broadcom PRM for things you can fiddle with in this
78 * register ...
79 *
80 * bge_{tx,rx}_{count,ticks}_{norm,intr}
81 * Send/receive interrupt coalescing parameters. Counts are
82 * #s of descriptors, ticks are in microseconds. *norm* values
83 * apply between status updates/interrupts; the *intr* values
84 * refer to the 'during-interrupt' versions - see the PRM.
85 *
86 * NOTE: these values have been determined by measurement. They
87 * differ significantly from the values recommended in the PRM.
88 */
89 static uint32_t bge_autorecover = 1;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 512;
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108
109 /*
110 * Memory pool configuration parameters.
111 *
112 * These are generally specific to each member of the chip family, since
113 * each one may have a different memory size/configuration.
114 *
115 * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116 * the driver from programming the various registers; instead they are left
117 * at their hardware defaults. This is the preferred option for later chips
118 * (5705+), whereas the older chips *required* these registers to be set,
119 * since the h/w default was 0 ;-(
120 */
121 static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */
128 static uint32_t bge_mbuf_pool_len_5721 = 0;
129
130 /*
131 * Various high and low water marks, thresholds, etc ...
132 *
133 * Note: these are taken from revision 7 of the PRM, and some are different
134 * from both the values in earlier PRMs *and* those determined experimentally
135 * and used in earlier versions of this driver ...
136 */
137 static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT;
140
141 static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT;
144
145 static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT;
148
149 static uint32_t bge_watchdog_count = 1 << 16;
150 static uint16_t bge_dma_miss_limit = 20;
151
152 static uint32_t bge_stop_start_on_sync = 0;
153
154 /*
155 * bge_intr_max_loop controls the maximum loop number within bge_intr.
156 * When loading NIC with heavy network traffic, it is useful.
157 * Increasing this value could have positive effect to throughput,
158 * but it might also increase ticks of a bge ISR stick on CPU, which might
159 * lead to bad UI interactive experience. So tune this with caution.
160 */
161 static int bge_intr_max_loop = 1;
162
163 /*
164 * ========== Low-level chip & ring buffer manipulation ==========
165 */
166
167 #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */
168
169
170 /*
171 * Config space read-modify-write routines
172 */
173
174 #if BGE_CFG_IO8
175
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma inline(bge_cfg_clr16)
178
179 static void
bge_cfg_clr16(bge_t * bgep,bge_regno_t regno,uint16_t bits)180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 uint16_t regval;
183
184 BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 (void *)bgep, regno, bits));
186
187 regval = pci_config_get16(bgep->cfg_handle, regno);
188
189 BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 (void *)bgep, regno, bits, regval, regval & ~bits));
191
192 regval &= ~bits;
193 pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195
196 #endif /* BGE_CFG_IO8 */
197
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma inline(bge_cfg_clr32)
200
201 static void
bge_cfg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 uint32_t regval;
205
206 BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 (void *)bgep, regno, bits));
208
209 regval = pci_config_get32(bgep->cfg_handle, regno);
210
211 BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 (void *)bgep, regno, bits, regval, regval & ~bits));
213
214 regval &= ~bits;
215 pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217
218 #if BGE_IND_IO32
219
220 /*
221 * Indirect access to registers & RISC scratchpads, using config space
222 * accesses only.
223 *
224 * This isn't currently used, but someday we might want to use it for
225 * restoring the Subsystem Device/Vendor registers (which aren't directly
226 * writable in Config Space), or for downloading firmware into the RISCs
227 *
228 * In any case there are endian issues to be resolved before this code is
229 * enabled; the bizarre way that bytes get twisted by this chip AND by
230 * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231 * it's been thoroughly tested for all access sizes on all supported
232 * architectures (SPARC *and* x86!).
233 */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma inline(bge_ind_get32)
236
237 uint32_t
bge_ind_get32(bge_t * bgep,bge_regno_t regno)238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 uint32_t val;
241
242 BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243
244 #ifdef __sparc
245 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
246 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
247 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
248 regno = LE_32(regno);
249 }
250 #endif
251 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
252 val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
253
254 BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
255 (void *)bgep, regno, val));
256
257 val = LE_32(val);
258
259 return (val);
260 }
261
262 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
263 #pragma inline(bge_ind_put32)
264
265 void
bge_ind_put32(bge_t * bgep,bge_regno_t regno,uint32_t val)266 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
267 {
268 BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
269 (void *)bgep, regno, val));
270
271 val = LE_32(val);
272 #ifdef __sparc
273 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
274 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
275 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
276 regno = LE_32(regno);
277 }
278 #endif
279 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
280 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
281 }
282
283 #endif /* BGE_IND_IO32 */
284
285 #if BGE_DEBUGGING
286
287 static void bge_pci_check(bge_t *bgep);
288 #pragma no_inline(bge_pci_check)
289
290 static void
bge_pci_check(bge_t * bgep)291 bge_pci_check(bge_t *bgep)
292 {
293 uint16_t pcistatus;
294
295 pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
296 if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
297 BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
298 (void *)bgep, pcistatus));
299 }
300
301 #endif /* BGE_DEBUGGING */
302
303 /*
304 * Perform first-stage chip (re-)initialisation, using only config-space
305 * accesses:
306 *
307 * + Read the vendor/device/revision/subsystem/cache-line-size registers,
308 * returning the data in the structure pointed to by <idp>.
309 * + Configure the target-mode endianness (swap) options.
310 * + Disable interrupts and enable Memory Space accesses.
311 * + Enable or disable Bus Mastering according to the <enable_dma> flag.
312 *
313 * This sequence is adapted from Broadcom document 570X-PG102-R,
314 * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence
315 * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
316 *
317 * This function MUST be called before any non-config-space accesses
318 * are made; on this first call <enable_dma> is B_FALSE, and it
319 * effectively performs steps 3-1(!) of the initialisation sequence
320 * (the rest are not required but should be harmless).
321 *
322 * It MUST also be called after a chip reset, as this disables
323 * Memory Space cycles! In this case, <enable_dma> is B_TRUE, and
324 * it is effectively performing steps 6-8.
325 */
326 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
327 #pragma no_inline(bge_chip_cfg_init)
328
329 void
bge_chip_cfg_init(bge_t * bgep,chip_id_t * cidp,boolean_t enable_dma)330 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
331 {
332 ddi_acc_handle_t handle;
333 uint16_t command;
334 uint32_t mhcr;
335 uint32_t prodid;
336 uint32_t pci_state;
337 uint16_t value16;
338 int i;
339
340 BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
341 (void *)bgep, (void *)cidp, enable_dma));
342
343 /*
344 * Step 3: save PCI cache line size and subsystem vendor ID
345 *
346 * Read all the config-space registers that characterise the
347 * chip, specifically vendor/device/revision/subsystem vendor
348 * and subsystem device id. We expect (but don't check) that
349 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
350 *
351 * Also save all bus-transaction related registers (cache-line
352 * size, bus-grant/latency parameters, etc). Some of these are
353 * cleared by reset, so we'll have to restore them later. This
354 * comes from the Broadcom document 570X-PG102-R ...
355 *
356 * Note: Broadcom document 570X-PG102-R seems to be in error
357 * here w.r.t. the offsets of the Subsystem Vendor ID and
358 * Subsystem (Device) ID registers, which are the opposite way
359 * round according to the PCI standard. For good measure, we
360 * save/restore both anyway.
361 */
362 handle = bgep->cfg_handle;
363
364 /*
365 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
366 * has been set in PCI_CONF_COMM already, we need to write the
367 * byte-swapped value to it. So we just write zero first for simplicity.
368 */
369 cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
370 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
371 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
372 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
373 pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
374 }
375
376 mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
377 cidp->asic_rev = (mhcr & MHCR_CHIP_REV_MASK);
378 cidp->asic_rev_prod_id = 0;
379 if ((cidp->asic_rev & 0xf0000000) == CHIP_ASIC_REV_USE_PROD_ID_REG) {
380 prodid = CHIP_ASIC_REV_PROD_ID_REG;
381 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
382 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
383 prodid = CHIP_ASIC_REV_PROD_ID_GEN2_REG;
384 } else if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
385 prodid = CHIP_ASIC_REV_PROD_ID_GEN15_REG;
386 }
387 cidp->asic_rev_prod_id = pci_config_get32(handle, prodid);
388 }
389
390 cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
391 cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
392
393 cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
394 cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
395 cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
396 cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
397 cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
398 cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
399
400 /* 5717 C0 is treated just like 5720 A0 */
401 if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
402 DEVICE_ID_5717_C0) {
403 cidp->device = DEVICE_ID_5720;
404 }
405
406 BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
407 cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
408 cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
409 cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
410 cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
411 BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
412 cidp->vendor, cidp->device, cidp->revision));
413 BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
414 cidp->subven, cidp->subdev, cidp->asic_rev));
415 BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
416 cidp->clsize, cidp->latency, cidp->command));
417
418 /*
419 * Step 2 (also step 6): disable and clear interrupts.
420 * Steps 11-13: configure PIO endianness options, and enable
421 * indirect register access. We'll also select any other
422 * options controlled by the MHCR (e.g. tagged status, mask
423 * interrupt mode) at this stage ...
424 *
425 * Note: internally, the chip is 64-bit and BIG-endian, but
426 * since it talks to the host over a (LITTLE-endian) PCI bus,
427 * it normally swaps bytes around at the PCI interface.
428 * However, the PCI host bridge on SPARC systems normally
429 * swaps the byte lanes around too, since SPARCs are also
430 * BIG-endian. So it turns out that on SPARC, the right
431 * option is to tell the chip to swap (and the host bridge
432 * will swap back again), whereas on x86 we ask the chip
433 * NOT to swap, so the natural little-endianness of the
434 * PCI bus is assumed. Then the only thing that doesn't
435 * automatically work right is access to an 8-byte register
436 * by a little-endian host; but we don't want to set the
437 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
438 * accesses don't go where expected ;-( So we live with
439 * that, and perform word-swaps in software in the few cases
440 * where a chip register is defined as an 8-byte value --
441 * see the code below for details ...
442 *
443 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
444 * very clear in the register description in the PRM, but
445 * Broadcom document 570X-PG104-R page 248 explains a little
446 * more (under "Broadcom Mask Mode"). The bit changes the way
447 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
448 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
449 * way as the 5700 did, which isn't very convenient. Setting
450 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
451 * bit do just what its name says -- MASK the PCI #INTA output
452 * (i.e. deassert the signal at the pin) leaving all internal
453 * state unchanged. This is much more convenient for our
454 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
455 *
456 * Note: the inconvenient semantics of the interrupt mailbox
457 * (nonzero disables and acknowledges/clears the interrupt,
458 * zero enables AND CLEARS it) would make race conditions
459 * likely in the interrupt handler:
460 *
461 * (1) acknowledge & disable interrupts
462 * (2) while (more to do)
463 * process packets
464 * (3) enable interrupts -- also clears pending
465 *
466 * If the chip received more packets and internally generated
467 * an interrupt between the check at (2) and the mbox write
468 * at (3), this interrupt would be lost :-(
469 *
470 * The best way to avoid this is to use TAGGED STATUS mode,
471 * where the chip includes a unique tag in each status block
472 * update, and the host, when re-enabling interrupts, passes
473 * the last tag it saw back to the chip; then the chip can
474 * see whether the host is truly up to date, and regenerate
475 * its interrupt if not.
476 */
477 mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
478 MHCR_ENABLE_PCI_STATE_RW |
479 MHCR_ENABLE_TAGGED_STATUS_MODE |
480 MHCR_MASK_INTERRUPT_MODE |
481 MHCR_CLEAR_INTERRUPT_INTA;
482 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
483 mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
484
485 #ifdef _BIG_ENDIAN
486 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
487 #endif /* _BIG_ENDIAN */
488 pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
489
490 #ifdef BGE_IPMI_ASF
491 bgep->asf_wordswapped = B_FALSE;
492 #endif
493
494 pci_state = (PCISTATE_EXT_ROM_ENABLE | PCISTATE_EXT_ROM_RETRY);
495 /* allow reads and writes to the APE register and memory space */
496 if (bgep->ape_enabled) {
497 pci_state |= PCISTATE_ALLOW_APE_CTLSPC_WR |
498 PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
499 }
500 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PCISTATE, pci_state);
501
502 /*
503 * Step 1 (also step 7): Enable PCI Memory Space accesses
504 * Disable Memory Write/Invalidate
505 * Enable or disable Bus Mastering
506 *
507 * Note that all other bits are taken from the original value saved
508 * the first time through here, rather than from the current register
509 * value, 'cos that will have been cleared by a soft RESET since.
510 * In this way we preserve the OBP/nexus-parent's preferred settings
511 * of the parity-error and system-error enable bits across multiple
512 * chip RESETs.
513 */
514 command = bgep->chipid.command | PCI_COMM_MAE;
515 command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
516 if (enable_dma)
517 command |= PCI_COMM_ME;
518 /*
519 * on BCM5714 revision A0, false parity error gets generated
520 * due to a logic bug. Provide a workaround by disabling parity
521 * error.
522 */
523 if (((cidp->device == DEVICE_ID_5714C) ||
524 (cidp->device == DEVICE_ID_5714S)) &&
525 (cidp->revision == REVISION_ID_5714_A0)) {
526 command &= ~PCI_COMM_PARITY_DETECT;
527 }
528 pci_config_put16(handle, PCI_CONF_COMM, command);
529
530 /*
531 * On some PCI-E device, there were instances when
532 * the device was still link training.
533 */
534 if (bgep->chipid.pci_type == BGE_PCI_E) {
535 i = 0;
536 value16 = pci_config_get16(handle, PCI_CONF_COMM);
537 while ((value16 != command) && (i < 100)) {
538 drv_usecwait(200);
539 value16 = pci_config_get16(handle, PCI_CONF_COMM);
540 ++i;
541 }
542 }
543
544 /*
545 * Clear any remaining error status bits
546 */
547 pci_config_put16(handle, PCI_CONF_STAT, ~0);
548
549 /*
550 * Do following if and only if the device is NOT BCM5714C OR
551 * BCM5715C
552 */
553 if (!((cidp->device == DEVICE_ID_5714C) ||
554 (cidp->device == DEVICE_ID_5715C))) {
555 /*
556 * Make sure these indirect-access registers are sane
557 * rather than random after power-up or reset
558 */
559 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
560 pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
561 }
562 /*
563 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
564 */
565 bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
566
567 if (cidp->pci_type == BGE_PCI_E) {
568 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
569 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
570 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
571 } else if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
572 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
573 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
574 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
575 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
576 } else {
577 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
578 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
579 }
580 }
581 }
582
583 #ifdef __amd64
584 /*
585 * Distinguish CPU types
586 *
587 * These use to distinguish AMD64 or Intel EM64T of CPU running mode.
588 * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
589 * for PCI-Express based network interface card. This is the work-around
590 * for those nics.
591 */
592 static boolean_t bge_get_em64t_type(void);
593 #pragma inline(bge_get_em64t_type)
594
595 static boolean_t
bge_get_em64t_type(void)596 bge_get_em64t_type(void)
597 {
598
599 return (x86_vendor == X86_VENDOR_Intel);
600 }
601 #endif
602
603 /*
604 * Operating register get/set access routines
605 */
606
607 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
608 #pragma inline(bge_reg_get32)
609
610 uint32_t
bge_reg_get32(bge_t * bgep,bge_regno_t regno)611 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
612 {
613 BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
614 (void *)bgep, regno));
615
616 return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
617 }
618
619 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
620 #pragma inline(bge_reg_put32)
621
622 void
bge_reg_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)623 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
624 {
625 BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
626 (void *)bgep, regno, data));
627
628 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
629 BGE_PCICHK(bgep);
630 }
631
632 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
633 #pragma inline(bge_reg_set32)
634
635 void
bge_reg_set32(bge_t * bgep,bge_regno_t regno,uint32_t bits)636 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
637 {
638 uint32_t regval;
639
640 BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
641 (void *)bgep, regno, bits));
642
643 regval = bge_reg_get32(bgep, regno);
644 regval |= bits;
645 bge_reg_put32(bgep, regno, regval);
646 }
647
648 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
649 #pragma inline(bge_reg_clr32)
650
651 void
bge_reg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)652 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
653 {
654 uint32_t regval;
655
656 BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
657 (void *)bgep, regno, bits));
658
659 regval = bge_reg_get32(bgep, regno);
660 regval &= ~bits;
661 bge_reg_put32(bgep, regno, regval);
662 }
663
664 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
665 #pragma inline(bge_reg_get64)
666
667 static uint64_t
bge_reg_get64(bge_t * bgep,bge_regno_t regno)668 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
669 {
670 uint64_t regval;
671
672 #ifdef __amd64
673 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
674 bge_get_em64t_type() ||
675 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
676 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
677 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
678 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
679 regval <<= 32;
680 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
681 } else {
682 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
683 }
684 #elif defined(__sparc)
685 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
686 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
687 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
688 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
689 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
690 regval <<= 32;
691 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
692 } else {
693 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
694 }
695 #else
696 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
697 #endif
698
699 #ifdef _LITTLE_ENDIAN
700 regval = (regval >> 32) | (regval << 32);
701 #endif /* _LITTLE_ENDIAN */
702
703 BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
704 (void *)bgep, regno, regval));
705
706 return (regval);
707 }
708
709 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
710 #pragma inline(bge_reg_put64)
711
712 static void
bge_reg_put64(bge_t * bgep,bge_regno_t regno,uint64_t data)713 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
714 {
715 BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
716 (void *)bgep, regno, data));
717
718 #ifdef _LITTLE_ENDIAN
719 data = ((data >> 32) | (data << 32));
720 #endif /* _LITTLE_ENDIAN */
721
722 #ifdef __amd64
723 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
724 bge_get_em64t_type() ||
725 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
726 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
727 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
728 ddi_put32(bgep->io_handle,
729 PIO_ADDR(bgep, regno), (uint32_t)data);
730 BGE_PCICHK(bgep);
731 ddi_put32(bgep->io_handle,
732 PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
733
734 } else {
735 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
736 }
737 #elif defined(__sparc)
738 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
739 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
740 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
741 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
742 ddi_put32(bgep->io_handle,
743 PIO_ADDR(bgep, regno + 4), (uint32_t)data);
744 BGE_PCICHK(bgep);
745 ddi_put32(bgep->io_handle,
746 PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
747 } else {
748 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
749 }
750 #else
751 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
752 #endif
753
754 BGE_PCICHK(bgep);
755 }
756
757 /*
758 * The DDI doesn't provide get/put functions for 128 bit data
759 * so we put RCBs out as two 64-bit chunks instead.
760 */
761 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
762 #pragma inline(bge_reg_putrcb)
763
764 static void
bge_reg_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)765 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
766 {
767 uint64_t *p;
768
769 BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
770 (void *)bgep, addr, rcbp->host_ring_addr,
771 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
772
773 ASSERT((addr % sizeof (*rcbp)) == 0);
774
775 p = (void *)rcbp;
776 bge_reg_put64(bgep, addr, *p++);
777 bge_reg_put64(bgep, addr+8, *p);
778 }
779
780 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
781 #pragma inline(bge_mbx_put)
782
783 void
bge_mbx_put(bge_t * bgep,bge_regno_t regno,uint64_t data)784 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
785 {
786 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
787 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
788
789 BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
790 (void *)bgep, regno, data));
791
792 /*
793 * Mailbox registers are nominally 64 bits on the 5701, but
794 * the MSW isn't used. On the 5703, they're only 32 bits
795 * anyway. So here we just write the lower(!) 32 bits -
796 * remembering that the chip is big-endian, even though the
797 * PCI bus is little-endian ...
798 */
799 #ifdef _BIG_ENDIAN
800 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
801 #else
802 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
803 #endif /* _BIG_ENDIAN */
804 BGE_PCICHK(bgep);
805 }
806
807 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
808 #pragma inline(bge_mbx_get)
809
810 uint32_t
bge_mbx_get(bge_t * bgep,bge_regno_t regno)811 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
812 {
813 uint32_t val32;
814
815 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
816 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
817
818 BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
819 (void *)bgep, regno));
820
821 #ifdef _BIG_ENDIAN
822 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
823 #else
824 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
825 #endif /* _BIG_ENDIAN */
826 BGE_PCICHK(bgep);
827
828 BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
829 (void *)bgep, regno, val32));
830
831 return (val32);
832 }
833
834
835 #if BGE_DEBUGGING
836
837 void bge_led_mark(bge_t *bgep);
838 #pragma no_inline(bge_led_mark)
839
840 void
bge_led_mark(bge_t * bgep)841 bge_led_mark(bge_t *bgep)
842 {
843 uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
844 LED_CONTROL_1000MBPS_LED |
845 LED_CONTROL_100MBPS_LED |
846 LED_CONTROL_10MBPS_LED;
847
848 /*
849 * Blink all three LINK LEDs on simultaneously, then all off,
850 * then restore to automatic hardware control. This is used
851 * in laboratory testing to trigger a logic analyser or scope.
852 */
853 bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
854 led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
855 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
856 led_ctrl = LED_CONTROL_OVERRIDE_LINK;
857 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
858 }
859
860 #endif /* BGE_DEBUGGING */
861
862 /*
863 * NIC on-chip memory access routines
864 *
865 * Only 32K of NIC memory is visible at a time, controlled by the
866 * Memory Window Base Address Register (in PCI config space). Once
867 * this is set, the 32K region of NIC-local memory that it refers
868 * to can be directly addressed in the upper 32K of the 64K of PCI
869 * memory space used for the device.
870 */
871
872 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
873 #pragma inline(bge_nic_setwin)
874
875 static void
bge_nic_setwin(bge_t * bgep,bge_regno_t base)876 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
877 {
878 chip_id_t *cidp;
879
880 BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
881 (void *)bgep, base));
882
883 ASSERT((base & MWBAR_GRANULE_MASK) == 0);
884
885 /*
886 * Don't do repeated zero data writes,
887 * if the device is BCM5714C/15C.
888 */
889 cidp = &bgep->chipid;
890 if ((cidp->device == DEVICE_ID_5714C) ||
891 (cidp->device == DEVICE_ID_5715C)) {
892 if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
893 return;
894 /* Adjust lastWriteZeroData */
895 bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
896 B_TRUE : B_FALSE);
897 }
898 #ifdef __sparc
899 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
900 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
901 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
902 base = LE_32(base);
903 }
904 #endif
905 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
906 }
907
908 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
909 #pragma inline(bge_nic_get32)
910
911 static uint32_t
bge_nic_get32(bge_t * bgep,bge_regno_t addr)912 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
913 {
914 uint32_t data;
915
916 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
917 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
918 /* workaround for word swap error */
919 if (addr & 4)
920 addr = addr - 4;
921 else
922 addr = addr + 4;
923 }
924 #endif
925
926 #ifdef __sparc
927 data = bge_nic_read32(bgep, addr);
928 #else
929 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
930 addr &= MWBAR_GRANULE_MASK;
931 addr += NIC_MEM_WINDOW_OFFSET;
932
933 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
934 #endif
935
936 BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
937 (void *)bgep, addr, data));
938
939 return (data);
940 }
941
942 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
943 #pragma inline(bge_nic_put32)
944
945 void
bge_nic_put32(bge_t * bgep,bge_regno_t addr,uint32_t data)946 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
947 {
948 BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
949 (void *)bgep, addr, data));
950
951 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
952 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
953 /* workaround for word swap error */
954 if (addr & 4)
955 addr = addr - 4;
956 else
957 addr = addr + 4;
958 }
959 #endif
960
961 #ifdef __sparc
962 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
963 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
964 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
965 addr = LE_32(addr);
966 }
967 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
968 data = LE_32(data);
969 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
970 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
971 #else
972 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
973 addr &= MWBAR_GRANULE_MASK;
974 addr += NIC_MEM_WINDOW_OFFSET;
975 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
976 BGE_PCICHK(bgep);
977 #endif
978 }
979
980 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
981 #pragma inline(bge_nic_get64)
982
983 static uint64_t
bge_nic_get64(bge_t * bgep,bge_regno_t addr)984 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
985 {
986 uint64_t data;
987
988 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
989 addr &= MWBAR_GRANULE_MASK;
990 addr += NIC_MEM_WINDOW_OFFSET;
991
992 #ifdef __amd64
993 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
994 bge_get_em64t_type() ||
995 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
996 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
997 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
998 data = ddi_get32(bgep->io_handle,
999 PIO_ADDR(bgep, addr + 4));
1000 data <<= 32;
1001 data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
1002 } else {
1003 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1004 }
1005 #elif defined(__sparc)
1006 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1007 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1008 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1009 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1010 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
1011 data <<= 32;
1012 data |= ddi_get32(bgep->io_handle,
1013 PIO_ADDR(bgep, addr + 4));
1014 } else {
1015 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1016 }
1017 #else
1018 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1019 #endif
1020
1021 BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
1022 (void *)bgep, addr, data));
1023
1024 return (data);
1025 }
1026
1027 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
1028 #pragma inline(bge_nic_put64)
1029
1030 static void
bge_nic_put64(bge_t * bgep,bge_regno_t addr,uint64_t data)1031 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
1032 {
1033 BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
1034 (void *)bgep, addr, data));
1035
1036 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1037 addr &= MWBAR_GRANULE_MASK;
1038 addr += NIC_MEM_WINDOW_OFFSET;
1039
1040 #ifdef __amd64
1041 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1042 bge_get_em64t_type() ||
1043 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1044 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1045 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1046 ddi_put32(bgep->io_handle,
1047 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1048 BGE_PCICHK(bgep);
1049 ddi_put32(bgep->io_handle,
1050 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1051 } else {
1052 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1053 }
1054 #elif defined(__sparc)
1055 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1056 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1057 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1058 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1059 ddi_put32(bgep->io_handle,
1060 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1061 BGE_PCICHK(bgep);
1062 ddi_put32(bgep->io_handle,
1063 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1064 } else {
1065 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1066 }
1067 #else
1068 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1069 #endif
1070
1071 BGE_PCICHK(bgep);
1072 }
1073
1074 /*
1075 * The DDI doesn't provide get/put functions for 128 bit data
1076 * so we put RCBs out as two 64-bit chunks instead.
1077 */
1078 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1079 #pragma inline(bge_nic_putrcb)
1080
1081 static void
bge_nic_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)1082 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1083 {
1084 uint64_t *p;
1085
1086 BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1087 (void *)bgep, addr, rcbp->host_ring_addr,
1088 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1089
1090 ASSERT((addr % sizeof (*rcbp)) == 0);
1091
1092 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1093 addr &= MWBAR_GRANULE_MASK;
1094 addr += NIC_MEM_WINDOW_OFFSET;
1095
1096 p = (void *)rcbp;
1097 #ifdef __amd64
1098 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1099 bge_get_em64t_type() ||
1100 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1101 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1102 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1103 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1104 (uint32_t)(*p));
1105 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1106 (uint32_t)(*p++ >> 32));
1107 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1108 (uint32_t)(*p));
1109 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1110 (uint32_t)(*p >> 32));
1111
1112 } else {
1113 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1114 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1115 }
1116 #elif defined(__sparc)
1117 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1118 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1119 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1120 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1121 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1122 (uint32_t)(*p));
1123 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1124 (uint32_t)(*p++ >> 32));
1125 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1126 (uint32_t)(*p));
1127 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1128 (uint32_t)(*p >> 32));
1129 } else {
1130 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1131 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1132 }
1133 #else
1134 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1135 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1136 #endif
1137
1138 BGE_PCICHK(bgep);
1139 }
1140
1141 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1142 #pragma inline(bge_nic_zero)
1143
1144 static void
bge_nic_zero(bge_t * bgep,bge_regno_t addr,uint32_t nbytes)1145 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1146 {
1147 BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1148 (void *)bgep, addr, nbytes));
1149
1150 ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1151 ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1152
1153 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1154 addr &= MWBAR_GRANULE_MASK;
1155 addr += NIC_MEM_WINDOW_OFFSET;
1156
1157 (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1158 nbytes, 1, DDI_DATA_SZ08_ACC);
1159 BGE_PCICHK(bgep);
1160 }
1161
1162 /*
1163 * MII (PHY) register get/set access routines
1164 *
1165 * These use the chip's MII auto-access method, controlled by the
1166 * MII Communication register at 0x044c, so the CPU doesn't have
1167 * to fiddle with the individual bits.
1168 */
1169
1170 #undef BGE_DBG
1171 #define BGE_DBG BGE_DBG_MII /* debug flag for this code */
1172
1173 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1174 uint16_t data, uint32_t cmd);
1175 #pragma no_inline(bge_mii_access)
1176
1177 static uint16_t
bge_mii_access(bge_t * bgep,bge_regno_t regno,uint16_t data,uint32_t cmd)1178 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1179 {
1180 uint32_t timeout;
1181 uint32_t regval1;
1182 uint32_t regval2;
1183
1184 BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1185 (void *)bgep, regno, data, cmd));
1186
1187 ASSERT(mutex_owned(bgep->genlock));
1188
1189 /*
1190 * Assemble the command ...
1191 */
1192 cmd |= data << MI_COMMS_DATA_SHIFT;
1193 cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1194 cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1195 cmd |= MI_COMMS_START;
1196
1197 /*
1198 * Wait for any command already in progress ...
1199 *
1200 * Note: this *shouldn't* ever find that there is a command
1201 * in progress, because we already hold the <genlock> mutex.
1202 * Nonetheless, we have sometimes seen the MI_COMMS_START
1203 * bit set here -- it seems that the chip can initiate MII
1204 * accesses internally, even with polling OFF.
1205 */
1206 regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1207 for (timeout = 100; ; ) {
1208 if ((regval2 & MI_COMMS_START) == 0) {
1209 bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1210 break;
1211 }
1212 if (--timeout == 0)
1213 break;
1214 drv_usecwait(10);
1215 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1216 }
1217
1218 if (timeout == 0)
1219 return ((uint16_t)~0u);
1220
1221 if (timeout != 100)
1222 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1223 "MI_COMMS_START set for %d us; 0x%x->0x%x",
1224 cmd, 10*(100-timeout), regval1, regval2));
1225
1226 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1227 for (timeout = 1000; ; ) {
1228 if ((regval1 & MI_COMMS_START) == 0)
1229 break;
1230 if (--timeout == 0)
1231 break;
1232 drv_usecwait(10);
1233 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1234 }
1235
1236 /*
1237 * Drop out early if the READ FAILED bit is set -- this chip
1238 * could be a 5703/4S, with a SerDes instead of a PHY!
1239 */
1240 if (regval2 & MI_COMMS_READ_FAILED)
1241 return ((uint16_t)~0u);
1242
1243 if (timeout == 0)
1244 return ((uint16_t)~0u);
1245
1246 /*
1247 * The PRM says to wait 5us after seeing the START bit clear
1248 * and then re-read the register to get the final value of the
1249 * data field, in order to avoid a race condition where the
1250 * START bit is clear but the data field isn't yet valid.
1251 *
1252 * Note: we don't actually seem to be encounter this race;
1253 * except when the START bit is seen set again (see below),
1254 * the data field doesn't change during this 5us interval.
1255 */
1256 drv_usecwait(5);
1257 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1258
1259 /*
1260 * Unfortunately, when following the PRMs instructions above,
1261 * we have occasionally seen the START bit set again(!) in the
1262 * value read after the 5us delay. This seems to be due to the
1263 * chip autonomously starting another MII access internally.
1264 * In such cases, the command/data/etc fields relate to the
1265 * internal command, rather than the one that we thought had
1266 * just finished. So in this case, we fall back to returning
1267 * the data from the original read that showed START clear.
1268 */
1269 if (regval2 & MI_COMMS_START) {
1270 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1271 "MI_COMMS_START set after transaction; 0x%x->0x%x",
1272 cmd, regval1, regval2));
1273 regval2 = regval1;
1274 }
1275
1276 if (regval2 & MI_COMMS_START)
1277 return ((uint16_t)~0u);
1278
1279 if (regval2 & MI_COMMS_READ_FAILED)
1280 return ((uint16_t)~0u);
1281
1282 return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1283 }
1284
1285 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1286 #pragma no_inline(bge_mii_get16)
1287
1288 uint16_t
bge_mii_get16(bge_t * bgep,bge_regno_t regno)1289 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1290 {
1291 BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1292 (void *)bgep, regno));
1293
1294 ASSERT(mutex_owned(bgep->genlock));
1295
1296 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1297 (regno == MII_MSCONTROL)))
1298 return (0);
1299
1300 return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1301 }
1302
1303 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1304 #pragma no_inline(bge_mii_put16)
1305
1306 void
bge_mii_put16(bge_t * bgep,bge_regno_t regno,uint16_t data)1307 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1308 {
1309 BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1310 (void *)bgep, regno, data));
1311
1312 ASSERT(mutex_owned(bgep->genlock));
1313
1314 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1315 (regno == MII_MSCONTROL)))
1316 return;
1317
1318 (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1319 }
1320
1321 uint16_t
bge_phydsp_read(bge_t * bgep,bge_regno_t regno)1322 bge_phydsp_read(bge_t *bgep, bge_regno_t regno)
1323 {
1324 BGE_TRACE(("bge_phydsp_read($%p, 0x%lx)",
1325 (void *)bgep, regno));
1326
1327 ASSERT(mutex_owned(bgep->genlock));
1328
1329 bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1330 return bge_mii_get16(bgep, MII_DSP_RW_PORT);
1331 }
1332
1333 #pragma no_inline(bge_phydsp_write)
1334
1335 void
bge_phydsp_write(bge_t * bgep,bge_regno_t regno,uint16_t data)1336 bge_phydsp_write(bge_t *bgep, bge_regno_t regno, uint16_t data)
1337 {
1338 BGE_TRACE(("bge_phydsp_write($%p, 0x%lx, 0x%x)",
1339 (void *)bgep, regno, data));
1340
1341 ASSERT(mutex_owned(bgep->genlock));
1342
1343 bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1344 bge_mii_put16(bgep, MII_DSP_RW_PORT, data);
1345 }
1346
1347 #undef BGE_DBG
1348 #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */
1349
1350 #if BGE_SEE_IO32 || BGE_FLASH_IO32
1351
1352 /*
1353 * Basic SEEPROM get/set access routine
1354 *
1355 * This uses the chip's SEEPROM auto-access method, controlled by the
1356 * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1357 * doesn't have to fiddle with the individual bits.
1358 *
1359 * The caller should hold <genlock> and *also* have already acquired
1360 * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1361 *
1362 * Return value:
1363 * 0 on success,
1364 * ENODATA on access timeout (maybe retryable: device may just be busy)
1365 * EPROTO on other h/w or s/w errors.
1366 *
1367 * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1368 * from a (successful) SEEPROM_ACCESS_READ.
1369 */
1370 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1371 uint32_t *dp);
1372 #pragma no_inline(bge_seeprom_access)
1373
1374 static int
bge_seeprom_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1375 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1376 {
1377 uint32_t tries;
1378 uint32_t regval;
1379
1380 ASSERT(mutex_owned(bgep->genlock));
1381
1382 /*
1383 * On the newer chips that support both SEEPROM & Flash, we need
1384 * to specifically enable SEEPROM access (Flash is the default).
1385 * On older chips, we don't; SEEPROM is the only NVtype supported,
1386 * and the NVM control registers don't exist ...
1387 */
1388 switch (bgep->chipid.nvtype) {
1389 case BGE_NVTYPE_NONE:
1390 case BGE_NVTYPE_UNKNOWN:
1391 _NOTE(NOTREACHED)
1392 case BGE_NVTYPE_SEEPROM:
1393 break;
1394
1395 case BGE_NVTYPE_LEGACY_SEEPROM:
1396 case BGE_NVTYPE_UNBUFFERED_FLASH:
1397 case BGE_NVTYPE_BUFFERED_FLASH:
1398 default:
1399 bge_reg_set32(bgep, NVM_CONFIG1_REG,
1400 NVM_CFG1_LEGACY_SEEPROM_MODE);
1401 break;
1402 }
1403
1404 /*
1405 * Check there's no command in progress.
1406 *
1407 * Note: this *shouldn't* ever find that there is a command
1408 * in progress, because we already hold the <genlock> mutex.
1409 * Also, to ensure we don't have a conflict with the chip's
1410 * internal firmware or a process accessing the same (shared)
1411 * SEEPROM through the other port of a 5704, we've already
1412 * been through the "software arbitration" protocol.
1413 * So this is just a final consistency check: we shouldn't
1414 * see EITHER the START bit (command started but not complete)
1415 * OR the COMPLETE bit (command completed but not cleared).
1416 */
1417 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1418 if (regval & SEEPROM_ACCESS_START)
1419 return (EPROTO);
1420 if (regval & SEEPROM_ACCESS_COMPLETE)
1421 return (EPROTO);
1422
1423 /*
1424 * Assemble the command ...
1425 */
1426 cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1427 addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1428 addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1429 cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1430 cmd |= SEEPROM_ACCESS_START;
1431 cmd |= SEEPROM_ACCESS_COMPLETE;
1432 cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1433
1434 bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1435 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1436
1437 /*
1438 * By observation, a successful access takes ~20us on a 5703/4,
1439 * but apparently much longer (up to 1000us) on the obsolescent
1440 * BCM5700/BCM5701. We want to be sure we don't get any false
1441 * timeouts here; but OTOH, we don't want a bogus access to lock
1442 * out interrupts for longer than necessary. So we'll allow up
1443 * to 1000us ...
1444 */
1445 for (tries = 0; tries < 1000; ++tries) {
1446 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1447 if (regval & SEEPROM_ACCESS_COMPLETE)
1448 break;
1449 drv_usecwait(1);
1450 }
1451
1452 if (regval & SEEPROM_ACCESS_COMPLETE) {
1453 /*
1454 * All OK; read the SEEPROM data register, then write back
1455 * the value read from the address register in order to
1456 * clear the <complete> bit and leave the SEEPROM access
1457 * state machine idle, ready for the next access ...
1458 */
1459 BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1460 *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1461 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1462 return (0);
1463 }
1464
1465 /*
1466 * Hmm ... what happened here?
1467 *
1468 * Most likely, the user addressed a non-existent SEEPROM. Or
1469 * maybe the SEEPROM was busy internally (e.g. processing a write)
1470 * and didn't respond to being addressed. Either way, it's left
1471 * the SEEPROM access state machine wedged. So we'll reset it
1472 * before we leave, so it's ready for next time ...
1473 */
1474 BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1475 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1476 return (ENODATA);
1477 }
1478
1479 /*
1480 * Basic Flash get/set access routine
1481 *
1482 * These use the chip's Flash auto-access method, controlled by the
1483 * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1484 * fiddle with the individual bits.
1485 *
1486 * The caller should hold <genlock> and *also* have already acquired
1487 * the right to access the Flash, via bge_nvmem_acquire() above.
1488 *
1489 * Return value:
1490 * 0 on success,
1491 * ENODATA on access timeout (maybe retryable: device may just be busy)
1492 * ENODEV if the NVmem device is missing or otherwise unusable
1493 *
1494 * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1495 * from a (successful) NVM_FLASH_CMD_RD.
1496 */
1497 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1498 uint32_t *dp);
1499 #pragma no_inline(bge_flash_access)
1500
1501 static int
bge_flash_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1502 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1503 {
1504 uint32_t tries;
1505 uint32_t regval;
1506
1507 ASSERT(mutex_owned(bgep->genlock));
1508
1509 /*
1510 * On the newer chips that support both SEEPROM & Flash, we need
1511 * to specifically disable SEEPROM access while accessing Flash.
1512 * The older chips don't support Flash, and the NVM registers don't
1513 * exist, so we shouldn't be here at all!
1514 */
1515 switch (bgep->chipid.nvtype) {
1516 case BGE_NVTYPE_NONE:
1517 case BGE_NVTYPE_UNKNOWN:
1518 _NOTE(NOTREACHED)
1519 case BGE_NVTYPE_SEEPROM:
1520 return (ENODEV);
1521
1522 case BGE_NVTYPE_LEGACY_SEEPROM:
1523 case BGE_NVTYPE_UNBUFFERED_FLASH:
1524 case BGE_NVTYPE_BUFFERED_FLASH:
1525 default:
1526 bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1527 NVM_CFG1_LEGACY_SEEPROM_MODE);
1528 break;
1529 }
1530
1531 /*
1532 * Assemble the command ...
1533 */
1534 addr &= NVM_FLASH_ADDR_MASK;
1535 cmd |= NVM_FLASH_CMD_DOIT;
1536 cmd |= NVM_FLASH_CMD_FIRST;
1537 cmd |= NVM_FLASH_CMD_LAST;
1538 cmd |= NVM_FLASH_CMD_DONE;
1539
1540 bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1541 bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1542 bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1543
1544 /*
1545 * Allow up to 1000ms ...
1546 */
1547 for (tries = 0; tries < 1000; ++tries) {
1548 regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1549 if (regval & NVM_FLASH_CMD_DONE)
1550 break;
1551 drv_usecwait(1);
1552 }
1553
1554 if (regval & NVM_FLASH_CMD_DONE) {
1555 /*
1556 * All OK; read the data from the Flash read register
1557 */
1558 BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1559 *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1560 return (0);
1561 }
1562
1563 /*
1564 * Hmm ... what happened here?
1565 *
1566 * Most likely, the user addressed a non-existent Flash. Or
1567 * maybe the Flash was busy internally (e.g. processing a write)
1568 * and didn't respond to being addressed. Either way, there's
1569 * nothing we can here ...
1570 */
1571 BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1572 return (ENODATA);
1573 }
1574
1575 /*
1576 * The next two functions regulate access to the NVram (if fitted).
1577 *
1578 * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1579 * (SPI) interface, but they can be accessed through either port. These
1580 * are managed by different instance of this driver and have no software
1581 * state in common.
1582 *
1583 * In addition (and even on a single core chip) the chip's internal
1584 * firmware can access the SEEPROM/Flash, most notably after a RESET
1585 * when it may download code to run internally.
1586 *
1587 * So we need to arbitrate between these various software agents. For
1588 * this purpose, the chip provides the Software Arbitration Register,
1589 * which implements hardware(!) arbitration.
1590 *
1591 * This functionality didn't exist on older (5700/5701) chips, so there's
1592 * nothing we can do by way of arbitration on those; also, if there's no
1593 * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1594 * nothing to do.
1595 *
1596 * The internal firmware appears to use Request 0, which is the highest
1597 * priority. So we'd like to use Request 2, leaving one higher and one
1598 * lower for any future developments ... but apparently this doesn't
1599 * always work. So for now, the code uses Request 1 ;-(
1600 */
1601
1602 #define NVM_READ_REQ NVM_READ_REQ1
1603 #define NVM_RESET_REQ NVM_RESET_REQ1
1604 #define NVM_SET_REQ NVM_SET_REQ1
1605
1606 static void bge_nvmem_relinquish(bge_t *bgep);
1607 #pragma no_inline(bge_nvmem_relinquish)
1608
1609 static void
bge_nvmem_relinquish(bge_t * bgep)1610 bge_nvmem_relinquish(bge_t *bgep)
1611 {
1612 ASSERT(mutex_owned(bgep->genlock));
1613
1614 switch (bgep->chipid.nvtype) {
1615 case BGE_NVTYPE_NONE:
1616 case BGE_NVTYPE_UNKNOWN:
1617 _NOTE(NOTREACHED)
1618 return;
1619
1620 case BGE_NVTYPE_SEEPROM:
1621 /*
1622 * No arbitration performed, no release needed
1623 */
1624 return;
1625
1626 case BGE_NVTYPE_LEGACY_SEEPROM:
1627 case BGE_NVTYPE_UNBUFFERED_FLASH:
1628 case BGE_NVTYPE_BUFFERED_FLASH:
1629 default:
1630 break;
1631 }
1632
1633 /*
1634 * Our own request should be present (whether or not granted) ...
1635 */
1636 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1637
1638 /*
1639 * ... this will make it go away.
1640 */
1641 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1642 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1643 }
1644
1645 /*
1646 * Arbitrate for access to the NVmem, if necessary
1647 *
1648 * Return value:
1649 * 0 on success
1650 * EAGAIN if the device is in use (retryable)
1651 * ENODEV if the NVmem device is missing or otherwise unusable
1652 */
1653 static int bge_nvmem_acquire(bge_t *bgep);
1654 #pragma no_inline(bge_nvmem_acquire)
1655
1656 static int
bge_nvmem_acquire(bge_t * bgep)1657 bge_nvmem_acquire(bge_t *bgep)
1658 {
1659 uint32_t regval;
1660 uint32_t tries;
1661
1662 ASSERT(mutex_owned(bgep->genlock));
1663
1664 switch (bgep->chipid.nvtype) {
1665 case BGE_NVTYPE_NONE:
1666 case BGE_NVTYPE_UNKNOWN:
1667 /*
1668 * Access denied: no (recognisable) device fitted
1669 */
1670 return (ENODEV);
1671
1672 case BGE_NVTYPE_SEEPROM:
1673 /*
1674 * Access granted: no arbitration needed (or possible)
1675 */
1676 return (0);
1677
1678 case BGE_NVTYPE_LEGACY_SEEPROM:
1679 case BGE_NVTYPE_UNBUFFERED_FLASH:
1680 case BGE_NVTYPE_BUFFERED_FLASH:
1681 default:
1682 /*
1683 * Access conditional: conduct arbitration protocol
1684 */
1685 break;
1686 }
1687
1688 /*
1689 * We're holding the per-port mutex <genlock>, so no-one other
1690 * thread can be attempting to access the NVmem through *this*
1691 * port. But it could be in use by the *other* port (of a 5704),
1692 * or by the chip's internal firmware, so we have to go through
1693 * the full (hardware) arbitration protocol ...
1694 *
1695 * Note that *because* we're holding <genlock>, the interrupt handler
1696 * won't be able to progress. So we're only willing to spin for a
1697 * fairly short time. Specifically:
1698 *
1699 * We *must* wait long enough for the hardware to resolve all
1700 * requests and determine the winner. Fortunately, this is
1701 * "almost instantaneous", even as observed by GHz CPUs.
1702 *
1703 * A successful access by another Solaris thread (via either
1704 * port) typically takes ~20us. So waiting a bit longer than
1705 * that will give a good chance of success, if the other user
1706 * *is* another thread on the other port.
1707 *
1708 * However, the internal firmware can hold on to the NVmem
1709 * for *much* longer: at least 10 milliseconds just after a
1710 * RESET, and maybe even longer if the NVmem actually contains
1711 * code to download and run on the internal CPUs.
1712 *
1713 * So, we'll allow 50us; if that's not enough then it's up to the
1714 * caller to retry later (hence the choice of return code EAGAIN).
1715 */
1716 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1717 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1718
1719 for (tries = 0; tries < 50; ++tries) {
1720 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1721 if (regval & NVM_WON_REQ1)
1722 break;
1723 drv_usecwait(1);
1724 }
1725
1726 if (regval & NVM_WON_REQ1) {
1727 BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1728 return (0);
1729 }
1730
1731 /*
1732 * Somebody else must be accessing the NVmem, so abandon our
1733 * attempt take control of it. The caller can try again later ...
1734 */
1735 BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1736 bge_nvmem_relinquish(bgep);
1737 return (EAGAIN);
1738 }
1739
1740 /*
1741 * This code assumes that the GPIO1 bit has been wired up to the NVmem
1742 * write protect line in such a way that the NVmem is protected when
1743 * GPIO1 is an input, or is an output but driven high. Thus, to make the
1744 * NVmem writable we have to change GPIO1 to an output AND drive it low.
1745 *
1746 * Note: there's only one set of GPIO pins on a 5704, even though they
1747 * can be accessed through either port. So the chip has to resolve what
1748 * happens if the two ports program a single pin differently ... the rule
1749 * it uses is that if the ports disagree about the *direction* of a pin,
1750 * "output" wins over "input", but if they disagree about its *value* as
1751 * an output, then the pin is TRISTATED instead! In such a case, no-one
1752 * wins, and the external signal does whatever the external circuitry
1753 * defines as the default -- which we've assumed is the PROTECTED state.
1754 * So, we always change GPIO1 back to being an *input* whenever we're not
1755 * specifically using it to unprotect the NVmem. This allows either port
1756 * to update the NVmem, although obviously only one at a time!
1757 *
1758 * The caller should hold <genlock> and *also* have already acquired the
1759 * right to access the NVmem, via bge_nvmem_acquire() above.
1760 */
1761 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1762 #pragma inline(bge_nvmem_protect)
1763
1764 static void
bge_nvmem_protect(bge_t * bgep,boolean_t protect)1765 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1766 {
1767 uint32_t regval;
1768
1769 ASSERT(mutex_owned(bgep->genlock));
1770
1771 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1772 if (protect) {
1773 regval |= MLCR_MISC_PINS_OUTPUT_1;
1774 regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1775 } else {
1776 regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1777 regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1778 }
1779 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1780 }
1781
1782 /*
1783 * Now put it all together ...
1784 *
1785 * Try to acquire control of the NVmem; if successful, then:
1786 * unprotect it (if we want to write to it)
1787 * perform the requested access
1788 * reprotect it (after a write)
1789 * relinquish control
1790 *
1791 * Return value:
1792 * 0 on success,
1793 * EAGAIN if the device is in use (retryable)
1794 * ENODATA on access timeout (maybe retryable: device may just be busy)
1795 * ENODEV if the NVmem device is missing or otherwise unusable
1796 * EPROTO on other h/w or s/w errors.
1797 */
1798 static int
bge_nvmem_rw32(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1799 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1800 {
1801 int err;
1802
1803 if ((err = bge_nvmem_acquire(bgep)) == 0) {
1804 switch (cmd) {
1805 case BGE_SEE_READ:
1806 err = bge_seeprom_access(bgep,
1807 SEEPROM_ACCESS_READ, addr, dp);
1808 break;
1809
1810 case BGE_SEE_WRITE:
1811 bge_nvmem_protect(bgep, B_FALSE);
1812 err = bge_seeprom_access(bgep,
1813 SEEPROM_ACCESS_WRITE, addr, dp);
1814 bge_nvmem_protect(bgep, B_TRUE);
1815 break;
1816
1817 case BGE_FLASH_READ:
1818 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1819 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1820 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1821 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1822 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1823 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1824 bge_reg_set32(bgep, NVM_ACCESS_REG,
1825 NVM_ACCESS_ENABLE);
1826 }
1827 err = bge_flash_access(bgep,
1828 NVM_FLASH_CMD_RD, addr, dp);
1829 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1830 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1831 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1832 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1833 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1834 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1835 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1836 NVM_ACCESS_ENABLE);
1837 }
1838 break;
1839
1840 case BGE_FLASH_WRITE:
1841 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1842 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1843 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1844 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1845 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1846 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1847 bge_reg_set32(bgep, NVM_ACCESS_REG,
1848 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1849 }
1850 bge_nvmem_protect(bgep, B_FALSE);
1851 err = bge_flash_access(bgep,
1852 NVM_FLASH_CMD_WR, addr, dp);
1853 bge_nvmem_protect(bgep, B_TRUE);
1854 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1855 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1856 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1857 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1858 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1859 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1860 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1861 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1862 }
1863
1864 break;
1865
1866 default:
1867 _NOTE(NOTREACHED)
1868 break;
1869 }
1870 bge_nvmem_relinquish(bgep);
1871 }
1872
1873 BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1874 return (err);
1875 }
1876
1877 static uint32_t
bge_nvmem_access_cmd(bge_t * bgep,boolean_t read)1878 bge_nvmem_access_cmd(bge_t *bgep, boolean_t read)
1879 {
1880 switch (bgep->chipid.nvtype) {
1881 case BGE_NVTYPE_NONE:
1882 case BGE_NVTYPE_UNKNOWN:
1883 default:
1884 return 0;
1885
1886 case BGE_NVTYPE_SEEPROM:
1887 case BGE_NVTYPE_LEGACY_SEEPROM:
1888 return (read ? BGE_SEE_READ : BGE_SEE_WRITE);
1889
1890 case BGE_NVTYPE_UNBUFFERED_FLASH:
1891 case BGE_NVTYPE_BUFFERED_FLASH:
1892 return (read ? BGE_FLASH_READ : BGE_FLASH_WRITE);
1893 }
1894 }
1895
1896
1897 int
bge_nvmem_read32(bge_t * bgep,bge_regno_t addr,uint32_t * dp)1898 bge_nvmem_read32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1899 {
1900 return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_TRUE),
1901 addr, dp));
1902 }
1903
1904
1905 int
bge_nvmem_write32(bge_t * bgep,bge_regno_t addr,uint32_t * dp)1906 bge_nvmem_write32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1907 {
1908 return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_FALSE),
1909 addr, dp));
1910 }
1911
1912
1913 /*
1914 * Attempt to get a MAC address from the SEEPROM or Flash, if any
1915 */
1916 static uint64_t bge_get_nvmac(bge_t *bgep);
1917 #pragma no_inline(bge_get_nvmac)
1918
1919 static uint64_t
bge_get_nvmac(bge_t * bgep)1920 bge_get_nvmac(bge_t *bgep)
1921 {
1922 uint32_t mac_high;
1923 uint32_t mac_low;
1924 uint32_t addr;
1925 uint32_t cmd;
1926 uint64_t mac;
1927
1928 BGE_TRACE(("bge_get_nvmac($%p)",
1929 (void *)bgep));
1930
1931 switch (bgep->chipid.nvtype) {
1932 case BGE_NVTYPE_NONE:
1933 case BGE_NVTYPE_UNKNOWN:
1934 default:
1935 return (0ULL);
1936
1937 case BGE_NVTYPE_SEEPROM:
1938 case BGE_NVTYPE_LEGACY_SEEPROM:
1939 cmd = BGE_SEE_READ;
1940 break;
1941
1942 case BGE_NVTYPE_UNBUFFERED_FLASH:
1943 case BGE_NVTYPE_BUFFERED_FLASH:
1944 cmd = BGE_FLASH_READ;
1945 break;
1946 }
1947
1948 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1949 addr = NVMEM_DATA_MAC_ADDRESS_5906;
1950 else
1951 addr = NVMEM_DATA_MAC_ADDRESS;
1952
1953 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1954 return (0ULL);
1955 addr += 4;
1956 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1957 return (0ULL);
1958
1959 /*
1960 * The Broadcom chip is natively BIG-endian, so that's how the
1961 * MAC address is represented in NVmem. We may need to swap it
1962 * around on a little-endian host ...
1963 */
1964 #ifdef _BIG_ENDIAN
1965 mac = mac_high;
1966 mac = mac << 32;
1967 mac |= mac_low;
1968 #else
1969 mac = BGE_BSWAP_32(mac_high);
1970 mac = mac << 32;
1971 mac |= BGE_BSWAP_32(mac_low);
1972 #endif /* _BIG_ENDIAN */
1973
1974 return (mac);
1975 }
1976
1977 #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1978
1979 /*
1980 * Dummy version for when we're not supporting NVmem access
1981 */
1982 static uint64_t bge_get_nvmac(bge_t *bgep);
1983 #pragma inline(bge_get_nvmac)
1984
1985 static uint64_t
bge_get_nvmac(bge_t * bgep)1986 bge_get_nvmac(bge_t *bgep)
1987 {
1988 _NOTE(ARGUNUSED(bgep))
1989 return (0ULL);
1990 }
1991
1992 #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1993
1994 /*
1995 * Determine the type of NVmem that is (or may be) attached to this chip,
1996 */
1997 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1998 #pragma no_inline(bge_nvmem_id)
1999
2000 static enum bge_nvmem_type
bge_nvmem_id(bge_t * bgep)2001 bge_nvmem_id(bge_t *bgep)
2002 {
2003 enum bge_nvmem_type nvtype;
2004 uint32_t config1;
2005
2006 BGE_TRACE(("bge_nvmem_id($%p)",
2007 (void *)bgep));
2008
2009 switch (bgep->chipid.device) {
2010 default:
2011 /*
2012 * We shouldn't get here; it means we don't recognise
2013 * the chip, which means we don't know how to determine
2014 * what sort of NVmem (if any) it has. So we'll say
2015 * NONE, to disable the NVmem access code ...
2016 */
2017 nvtype = BGE_NVTYPE_NONE;
2018 break;
2019
2020 case DEVICE_ID_5700:
2021 case DEVICE_ID_5700x:
2022 case DEVICE_ID_5701:
2023 /*
2024 * These devices support *only* SEEPROMs
2025 */
2026 nvtype = BGE_NVTYPE_SEEPROM;
2027 break;
2028
2029 case DEVICE_ID_5702:
2030 case DEVICE_ID_5702fe:
2031 case DEVICE_ID_5703C:
2032 case DEVICE_ID_5703S:
2033 case DEVICE_ID_5704C:
2034 case DEVICE_ID_5704S:
2035 case DEVICE_ID_5704:
2036 case DEVICE_ID_5705M:
2037 case DEVICE_ID_5705C:
2038 case DEVICE_ID_5705_2:
2039 case DEVICE_ID_5717:
2040 case DEVICE_ID_5718:
2041 case DEVICE_ID_5719:
2042 case DEVICE_ID_5720:
2043 case DEVICE_ID_5724:
2044 case DEVICE_ID_5725:
2045 case DEVICE_ID_5727:
2046 case DEVICE_ID_57780:
2047 case DEVICE_ID_5780:
2048 case DEVICE_ID_5782:
2049 case DEVICE_ID_5785:
2050 case DEVICE_ID_5787:
2051 case DEVICE_ID_5787M:
2052 case DEVICE_ID_5788:
2053 case DEVICE_ID_5789:
2054 case DEVICE_ID_5751:
2055 case DEVICE_ID_5751M:
2056 case DEVICE_ID_5752:
2057 case DEVICE_ID_5752M:
2058 case DEVICE_ID_5754:
2059 case DEVICE_ID_5755:
2060 case DEVICE_ID_5755M:
2061 case DEVICE_ID_5756M:
2062 case DEVICE_ID_5721:
2063 case DEVICE_ID_5722:
2064 case DEVICE_ID_5723:
2065 case DEVICE_ID_5761:
2066 case DEVICE_ID_5761E:
2067 case DEVICE_ID_5764:
2068 case DEVICE_ID_5714C:
2069 case DEVICE_ID_5714S:
2070 case DEVICE_ID_5715C:
2071 case DEVICE_ID_5715S:
2072 case DEVICE_ID_57761:
2073 case DEVICE_ID_57762:
2074 case DEVICE_ID_57765:
2075 case DEVICE_ID_57766:
2076 case DEVICE_ID_57781:
2077 case DEVICE_ID_57782:
2078 case DEVICE_ID_57785:
2079 case DEVICE_ID_57786:
2080 case DEVICE_ID_57791:
2081 case DEVICE_ID_57795:
2082 config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
2083 if (config1 & NVM_CFG1_FLASH_MODE)
2084 if (config1 & NVM_CFG1_BUFFERED_MODE)
2085 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2086 else
2087 nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
2088 else
2089 nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
2090 break;
2091 case DEVICE_ID_5906:
2092 case DEVICE_ID_5906M:
2093 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2094 break;
2095 }
2096
2097 return (nvtype);
2098 }
2099
2100 #undef BGE_DBG
2101 #define BGE_DBG BGE_DBG_APE /* debug flag for this code */
2102
2103 uint32_t bge_ape_get32(bge_t *bgep, bge_regno_t regno);
2104 #pragma inline(bge_ape_get32)
2105
2106 uint32_t
bge_ape_get32(bge_t * bgep,bge_regno_t regno)2107 bge_ape_get32(bge_t *bgep, bge_regno_t regno)
2108 {
2109 BGE_TRACE(("bge_ape_get32($%p, 0x%lx)",
2110 (void *)bgep, regno));
2111
2112 return (ddi_get32(bgep->ape_handle, APE_ADDR(bgep, regno)));
2113 }
2114
2115 void bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
2116 #pragma inline(bge_ape_put32)
2117
2118 void
bge_ape_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)2119 bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
2120 {
2121 BGE_TRACE(("bge_ape_put32($%p, 0x%lx, 0x%x)",
2122 (void *)bgep, regno, data));
2123
2124 ddi_put32(bgep->ape_handle, APE_ADDR(bgep, regno), data);
2125 BGE_PCICHK(bgep);
2126 }
2127
2128 void
bge_ape_lock_init(bge_t * bgep)2129 bge_ape_lock_init(bge_t *bgep)
2130 {
2131 int i;
2132 uint32_t regbase;
2133 uint32_t bit;
2134
2135 BGE_TRACE(("bge_ape_lock_init($%p)", (void *)bgep));
2136
2137 if (bgep->chipid.device == DEVICE_ID_5761)
2138 regbase = BGE_APE_LOCK_GRANT;
2139 else
2140 regbase = BGE_APE_PER_LOCK_GRANT;
2141
2142 /* Make sure the driver hasn't any stale locks. */
2143 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
2144 switch (i) {
2145 case BGE_APE_LOCK_PHY0:
2146 case BGE_APE_LOCK_PHY1:
2147 case BGE_APE_LOCK_PHY2:
2148 case BGE_APE_LOCK_PHY3:
2149 bit = APE_LOCK_GRANT_DRIVER;
2150 break;
2151 default:
2152 if (!bgep->pci_func)
2153 bit = APE_LOCK_GRANT_DRIVER;
2154 else
2155 bit = 1 << bgep->pci_func;
2156 }
2157 bge_ape_put32(bgep, regbase + 4 * i, bit);
2158 }
2159 }
2160
2161 static int
bge_ape_lock(bge_t * bgep,int locknum)2162 bge_ape_lock(bge_t *bgep, int locknum)
2163 {
2164 int i, off;
2165 int ret = 0;
2166 uint32_t status;
2167 uint32_t req;
2168 uint32_t gnt;
2169 uint32_t bit;
2170
2171 BGE_TRACE(("bge_ape_lock($%p, 0x%x)", (void *)bgep, locknum));
2172
2173 if (!bgep->ape_enabled)
2174 return (0);
2175
2176 switch (locknum) {
2177 case BGE_APE_LOCK_GPIO:
2178 if (bgep->chipid.device == DEVICE_ID_5761)
2179 return (0);
2180 /* FALLTHROUGH */
2181 case BGE_APE_LOCK_GRC:
2182 case BGE_APE_LOCK_MEM:
2183 if (!bgep->pci_func)
2184 bit = APE_LOCK_REQ_DRIVER;
2185 else
2186 bit = 1 << bgep->pci_func;
2187 break;
2188 case BGE_APE_LOCK_PHY0:
2189 case BGE_APE_LOCK_PHY1:
2190 case BGE_APE_LOCK_PHY2:
2191 case BGE_APE_LOCK_PHY3:
2192 bit = APE_LOCK_REQ_DRIVER;
2193 break;
2194 default:
2195 return (-1);
2196 }
2197
2198 if (bgep->chipid.device == DEVICE_ID_5761) {
2199 req = BGE_APE_LOCK_REQ;
2200 gnt = BGE_APE_LOCK_GRANT;
2201 } else {
2202 req = BGE_APE_PER_LOCK_REQ;
2203 gnt = BGE_APE_PER_LOCK_GRANT;
2204 }
2205
2206 off = 4 * locknum;
2207
2208 bge_ape_put32(bgep, req + off, bit);
2209
2210 /* Wait for up to 1 millisecond to acquire lock. */
2211 for (i = 0; i < 100; i++) {
2212 status = bge_ape_get32(bgep, gnt + off);
2213 if (status == bit)
2214 break;
2215 drv_usecwait(10);
2216 }
2217
2218 if (status != bit) {
2219 /* Revoke the lock request. */
2220 bge_ape_put32(bgep, gnt + off, bit);
2221 ret = -1;
2222 }
2223
2224 return (ret);
2225 }
2226
2227 static void
bge_ape_unlock(bge_t * bgep,int locknum)2228 bge_ape_unlock(bge_t *bgep, int locknum)
2229 {
2230 uint32_t gnt;
2231 uint32_t bit;
2232
2233 BGE_TRACE(("bge_ape_unlock($%p, 0x%x)", (void *)bgep, locknum));
2234
2235 if (!bgep->ape_enabled)
2236 return;
2237
2238 switch (locknum) {
2239 case BGE_APE_LOCK_GPIO:
2240 if (bgep->chipid.device == DEVICE_ID_5761)
2241 return;
2242 /* FALLTHROUGH */
2243 case BGE_APE_LOCK_GRC:
2244 case BGE_APE_LOCK_MEM:
2245 if (!bgep->pci_func)
2246 bit = APE_LOCK_GRANT_DRIVER;
2247 else
2248 bit = 1 << bgep->pci_func;
2249 break;
2250 case BGE_APE_LOCK_PHY0:
2251 case BGE_APE_LOCK_PHY1:
2252 case BGE_APE_LOCK_PHY2:
2253 case BGE_APE_LOCK_PHY3:
2254 bit = APE_LOCK_GRANT_DRIVER;
2255 break;
2256 default:
2257 return;
2258 }
2259
2260 if (bgep->chipid.device == DEVICE_ID_5761)
2261 gnt = BGE_APE_LOCK_GRANT;
2262 else
2263 gnt = BGE_APE_PER_LOCK_GRANT;
2264
2265 bge_ape_put32(bgep, gnt + 4 * locknum, bit);
2266 }
2267
2268 /* wait for pending event to finish, if successful returns with MEM locked */
2269 static int
bge_ape_event_lock(bge_t * bgep,uint32_t timeout_us)2270 bge_ape_event_lock(bge_t *bgep, uint32_t timeout_us)
2271 {
2272 uint32_t apedata;
2273
2274 BGE_TRACE(("bge_ape_event_lock($%p, %d)", (void *)bgep, timeout_us));
2275
2276 ASSERT(timeout_us > 0);
2277
2278 while (timeout_us) {
2279 if (bge_ape_lock(bgep, BGE_APE_LOCK_MEM))
2280 return (-1);
2281
2282 apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2283 if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2284 break;
2285
2286 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2287
2288 drv_usecwait(10);
2289 timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
2290 }
2291
2292 return (timeout_us ? 0 : -1);
2293 }
2294
2295 /* wait for pending event to finish, returns non-zero if not finished */
2296 static int
bge_ape_wait_for_event(bge_t * bgep,uint32_t timeout_us)2297 bge_ape_wait_for_event(bge_t *bgep, uint32_t timeout_us)
2298 {
2299 uint32_t i;
2300 uint32_t apedata;
2301
2302 BGE_TRACE(("bge_ape_wait_for_event($%p, %d)", (void *)bgep, timeout_us));
2303
2304 ASSERT(timeout_us > 0);
2305
2306 for (i = 0; i < timeout_us / 10; i++) {
2307 apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2308
2309 if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2310 break;
2311
2312 drv_usecwait(10);
2313 }
2314
2315 return (i == timeout_us / 10);
2316 }
2317
2318 int
bge_ape_scratchpad_read(bge_t * bgep,uint32_t * data,uint32_t base_off,uint32_t lenToRead)2319 bge_ape_scratchpad_read(bge_t *bgep, uint32_t *data, uint32_t base_off,
2320 uint32_t lenToRead)
2321 {
2322 int err;
2323 uint32_t i;
2324 uint32_t bufoff;
2325 uint32_t msgoff;
2326 uint32_t maxlen;
2327 uint32_t apedata;
2328
2329 BGE_TRACE(("bge_ape_scratchpad_read($%p, %p, 0x%0x, %d)",
2330 (void *)bgep, (void*)data, base_off, lenToRead));
2331
2332 if (!bgep->ape_has_ncsi)
2333 return (0);
2334
2335 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2336 if (apedata != APE_SEG_SIG_MAGIC)
2337 return (-1);
2338
2339 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2340 if (!(apedata & APE_FW_STATUS_READY))
2341 return (-1);
2342
2343 bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2344 BGE_APE_SHMEM_BASE);
2345 msgoff = bufoff + 2 * sizeof(uint32_t);
2346 maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2347
2348 while (lenToRead) {
2349 uint32_t transferLen;
2350
2351 /* Cap xfer sizes to scratchpad limits. */
2352 transferLen = (lenToRead > maxlen) ? maxlen : lenToRead;
2353 lenToRead -= transferLen;
2354
2355 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2356 if (!(apedata & APE_FW_STATUS_READY))
2357 return (-1);
2358
2359 /* Wait for up to 1 millisecond for APE to service previous event. */
2360 err = bge_ape_event_lock(bgep, 1000);
2361 if (err)
2362 return (err);
2363
2364 apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2365 APE_EVENT_STATUS_SCRTCHPD_READ |
2366 APE_EVENT_STATUS_EVENT_PENDING);
2367 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2368
2369 bge_ape_put32(bgep, bufoff, base_off);
2370 bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2371
2372 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2373 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2374
2375 base_off += transferLen;
2376
2377 if (bge_ape_wait_for_event(bgep, 30000))
2378 return (-1);
2379
2380 for (i = 0; transferLen; i += 4, transferLen -= 4) {
2381 uint32_t val = bge_ape_get32(bgep, msgoff + i);
2382 memcpy(data, &val, sizeof(uint32_t));
2383 data++;
2384 }
2385 }
2386
2387 return (0);
2388 }
2389
2390 int
bge_ape_scratchpad_write(bge_t * bgep,uint32_t dstoff,uint32_t * data,uint32_t lenToWrite)2391 bge_ape_scratchpad_write(bge_t *bgep, uint32_t dstoff, uint32_t *data,
2392 uint32_t lenToWrite)
2393 {
2394 int err;
2395 uint32_t i;
2396 uint32_t bufoff;
2397 uint32_t msgoff;
2398 uint32_t maxlen;
2399 uint32_t apedata;
2400
2401 BGE_TRACE(("bge_ape_scratchpad_write($%p, %d, %p, %d)",
2402 (void *)bgep, dstoff, data, lenToWrite));
2403
2404 if (!bgep->ape_has_ncsi)
2405 return (0);
2406
2407 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2408 if (apedata != APE_SEG_SIG_MAGIC)
2409 return (-1);
2410
2411 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2412 if (!(apedata & APE_FW_STATUS_READY))
2413 return (-1);
2414
2415 bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2416 BGE_APE_SHMEM_BASE);
2417 msgoff = bufoff + 2 * sizeof(uint32_t);
2418 maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2419
2420 while (lenToWrite) {
2421 uint32_t transferLen;
2422
2423 /* Cap xfer sizes to scratchpad limits. */
2424 transferLen = (lenToWrite > maxlen) ? maxlen : lenToWrite;
2425 lenToWrite -= transferLen;
2426
2427 /* Wait for up to 1 millisecond for
2428 * APE to service previous event.
2429 */
2430 err = bge_ape_event_lock(bgep, 1000);
2431 if (err)
2432 return (err);
2433
2434 bge_ape_put32(bgep, bufoff, dstoff);
2435 bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2436 apedata = msgoff;
2437
2438 dstoff += transferLen;
2439
2440 for (i = 0; transferLen; i += 4, transferLen -= 4) {
2441 bge_ape_put32(bgep, apedata, *data++);
2442 apedata += sizeof(uint32_t);
2443 }
2444
2445 apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2446 APE_EVENT_STATUS_SCRTCHPD_WRITE |
2447 APE_EVENT_STATUS_EVENT_PENDING);
2448 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2449
2450 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2451 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2452 }
2453
2454 return (0);
2455 }
2456
2457 static int
bge_ape_send_event(bge_t * bgep,uint32_t event)2458 bge_ape_send_event(bge_t *bgep, uint32_t event)
2459 {
2460 int err;
2461 uint32_t apedata;
2462
2463 BGE_TRACE(("bge_ape_send_event($%p, %d)", (void *)bgep, event));
2464
2465 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2466 if (apedata != APE_SEG_SIG_MAGIC)
2467 return (-1);
2468
2469 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2470 if (!(apedata & APE_FW_STATUS_READY))
2471 return (-1);
2472
2473 /* Wait for up to 1 millisecond for APE to service previous event. */
2474 err = bge_ape_event_lock(bgep, 1000);
2475 if (err)
2476 return (err);
2477
2478 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS,
2479 event | APE_EVENT_STATUS_EVENT_PENDING);
2480
2481 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2482 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2483
2484 return 0;
2485 }
2486
2487 static void
bge_ape_driver_state_change(bge_t * bgep,int mode)2488 bge_ape_driver_state_change(bge_t *bgep, int mode)
2489 {
2490 uint32_t event;
2491 uint32_t apedata;
2492
2493 BGE_TRACE(("bge_ape_driver_state_change($%p, %d)",
2494 (void *)bgep, mode));
2495
2496 if (!bgep->ape_enabled)
2497 return;
2498
2499 switch (mode) {
2500 case BGE_INIT_RESET:
2501 bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG,
2502 APE_HOST_SEG_SIG_MAGIC);
2503 bge_ape_put32(bgep, BGE_APE_HOST_SEG_LEN,
2504 APE_HOST_SEG_LEN_MAGIC);
2505 apedata = bge_ape_get32(bgep, BGE_APE_HOST_INIT_COUNT);
2506 bge_ape_put32(bgep, BGE_APE_HOST_INIT_COUNT, ++apedata);
2507 bge_ape_put32(bgep, BGE_APE_HOST_DRIVER_ID,
2508 APE_HOST_DRIVER_ID_MAGIC(1, 0));
2509 bge_ape_put32(bgep, BGE_APE_HOST_BEHAVIOR,
2510 APE_HOST_BEHAV_NO_PHYLOCK);
2511 bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE,
2512 BGE_APE_HOST_DRVR_STATE_START);
2513
2514 event = APE_EVENT_STATUS_STATE_START;
2515 break;
2516 case BGE_SHUTDOWN_RESET:
2517 /* With the interface we are currently using,
2518 * APE does not track driver state. Wiping
2519 * out the HOST SEGMENT SIGNATURE forces
2520 * the APE to assume OS absent status.
2521 */
2522 bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG, 0x0);
2523
2524 #if 0
2525 if (WOL supported) {
2526 bge_ape_put32(bgep, BGE_APE_HOST_WOL_SPEED,
2527 BGE_APE_HOST_WOL_SPEED_AUTO);
2528 apedata = BGE_APE_HOST_DRVR_STATE_WOL;
2529 } else
2530 #endif
2531 apedata = BGE_APE_HOST_DRVR_STATE_UNLOAD;
2532
2533 bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE, apedata);
2534
2535 event = APE_EVENT_STATUS_STATE_UNLOAD;
2536 break;
2537 case BGE_SUSPEND_RESET:
2538 event = APE_EVENT_STATUS_STATE_SUSPEND;
2539 break;
2540 default:
2541 return;
2542 }
2543
2544 event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
2545
2546 bge_ape_send_event(bgep, event);
2547 }
2548
2549 #undef BGE_DBG
2550 #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */
2551
2552 static void
bge_init_recv_rule(bge_t * bgep)2553 bge_init_recv_rule(bge_t *bgep)
2554 {
2555 bge_recv_rule_t *rulep = bgep->recv_rules;
2556 uint32_t i;
2557
2558 /*
2559 * Initialize receive rule registers.
2560 * Note that rules may persist across each bge_m_start/stop() call.
2561 */
2562 for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
2563 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
2564 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
2565 }
2566 }
2567
2568 /*
2569 * Using the values captured by bge_chip_cfg_init(), and additional probes
2570 * as required, characterise the chip fully: determine the label by which
2571 * to refer to this chip, the correct settings for various registers, and
2572 * of course whether the device and/or subsystem are supported!
2573 */
2574 int bge_chip_id_init(bge_t *bgep);
2575 #pragma no_inline(bge_chip_id_init)
2576
2577 int
bge_chip_id_init(bge_t * bgep)2578 bge_chip_id_init(bge_t *bgep)
2579 {
2580 char buf[MAXPATHLEN]; /* any risk of stack overflow? */
2581 boolean_t dev_ok;
2582 chip_id_t *cidp;
2583 uint32_t subid;
2584 char *devname;
2585 char *sysname;
2586 int *ids;
2587 int err;
2588 uint_t i;
2589
2590 dev_ok = B_FALSE;
2591 cidp = &bgep->chipid;
2592
2593 /*
2594 * Check the PCI device ID to determine the generic chip type and
2595 * select parameters that depend on this.
2596 *
2597 * Note: because the SPARC platforms in general don't fit the
2598 * SEEPROM 'behind' the chip, the PCI revision ID register reads
2599 * as zero - which is why we use <asic_rev> rather than <revision>
2600 * below ...
2601 *
2602 * Note: in general we can't distinguish between the Copper/SerDes
2603 * versions by ID alone, as some Copper devices (e.g. some but not
2604 * all 5703Cs) have the same ID as the SerDes equivalents. So we
2605 * treat them the same here, and the MII code works out the media
2606 * type later on ...
2607 */
2608 cidp->mbuf_base = bge_mbuf_pool_base;
2609 cidp->mbuf_length = bge_mbuf_pool_len;
2610 cidp->recv_slots = BGE_RECV_SLOTS_USED;
2611 cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2612 cidp->pci_type = BGE_PCI_X;
2613 cidp->statistic_type = BGE_STAT_BLK;
2614 cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2615 cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2616 cidp->mbuf_hi_water = bge_mbuf_hi_water;
2617 cidp->rx_ticks_norm = bge_rx_ticks_norm;
2618 cidp->rx_count_norm = bge_rx_count_norm;
2619 cidp->tx_ticks_norm = bge_tx_ticks_norm;
2620 cidp->tx_count_norm = bge_tx_count_norm;
2621 cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2622
2623 if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2624 cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2625 if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2626 cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2627
2628 cidp->msi_enabled = B_FALSE;
2629
2630 switch (cidp->device) {
2631 case DEVICE_ID_5717:
2632 case DEVICE_ID_5718:
2633 case DEVICE_ID_5719:
2634 case DEVICE_ID_5720:
2635 case DEVICE_ID_5724:
2636 case DEVICE_ID_5725:
2637 case DEVICE_ID_5727:
2638 case DEVICE_ID_57761:
2639 case DEVICE_ID_57762:
2640 case DEVICE_ID_57765:
2641 case DEVICE_ID_57766:
2642 case DEVICE_ID_57781:
2643 case DEVICE_ID_57782:
2644 case DEVICE_ID_57785:
2645 case DEVICE_ID_57786:
2646 case DEVICE_ID_57791:
2647 case DEVICE_ID_57795:
2648 if (cidp->device == DEVICE_ID_5717) {
2649 cidp->chip_label = 5717;
2650 } else if (cidp->device == DEVICE_ID_5718) {
2651 cidp->chip_label = 5718;
2652 } else if (cidp->device == DEVICE_ID_5719) {
2653 cidp->chip_label = 5719;
2654 } else if (cidp->device == DEVICE_ID_5720) {
2655 if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
2656 DEVICE_ID_5717_C0) {
2657 cidp->chip_label = 5717;
2658 } else {
2659 cidp->chip_label = 5720;
2660 }
2661 } else if (cidp->device == DEVICE_ID_5724) {
2662 cidp->chip_label = 5724;
2663 } else if (cidp->device == DEVICE_ID_5725) {
2664 cidp->chip_label = 5725;
2665 } else if (cidp->device == DEVICE_ID_5727) {
2666 cidp->chip_label = 5727;
2667 } else if (cidp->device == DEVICE_ID_57761) {
2668 cidp->chip_label = 57761;
2669 } else if (cidp->device == DEVICE_ID_57762) {
2670 cidp->chip_label = 57762;
2671 } else if (cidp->device == DEVICE_ID_57765) {
2672 cidp->chip_label = 57765;
2673 } else if (cidp->device == DEVICE_ID_57766) {
2674 cidp->chip_label = 57766;
2675 } else if (cidp->device == DEVICE_ID_57781) {
2676 cidp->chip_label = 57781;
2677 } else if (cidp->device == DEVICE_ID_57782) {
2678 cidp->chip_label = 57782;
2679 } else if (cidp->device == DEVICE_ID_57785) {
2680 cidp->chip_label = 57785;
2681 } else if (cidp->device == DEVICE_ID_57786) {
2682 cidp->chip_label = 57786;
2683 } else if (cidp->device == DEVICE_ID_57791) {
2684 cidp->chip_label = 57791;
2685 } else if (cidp->device == DEVICE_ID_57795) {
2686 cidp->chip_label = 57795;
2687 }
2688
2689 cidp->msi_enabled = bge_enable_msi;
2690 #ifdef __sparc
2691 cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2692 #endif
2693 cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2694 cidp->pci_type = BGE_PCI_E;
2695 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2696 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2697 cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2698 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2699 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2700 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2701 if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
2702 cidp->bge_mlcr_default = MLCR_DEFAULT_57765;
2703 } else {
2704 cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2705 }
2706 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2707 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2708 cidp->statistic_type = BGE_STAT_REG;
2709 dev_ok = B_TRUE;
2710 break;
2711
2712 case DEVICE_ID_5700:
2713 case DEVICE_ID_5700x:
2714 cidp->chip_label = 5700;
2715 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2716 break;
2717
2718 case DEVICE_ID_5701:
2719 cidp->chip_label = 5701;
2720 dev_ok = B_TRUE;
2721 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2722 break;
2723
2724 case DEVICE_ID_5702:
2725 case DEVICE_ID_5702fe:
2726 cidp->chip_label = 5702;
2727 dev_ok = B_TRUE;
2728 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2729 cidp->pci_type = BGE_PCI;
2730 break;
2731
2732 case DEVICE_ID_5703C:
2733 case DEVICE_ID_5703S:
2734 case DEVICE_ID_5703:
2735 /*
2736 * Revision A0 of the 5703/5793 had various errata
2737 * that we can't or don't work around, so it's not
2738 * supported, but all later versions are
2739 */
2740 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2741 if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2742 dev_ok = B_TRUE;
2743 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2744 break;
2745
2746 case DEVICE_ID_5704C:
2747 case DEVICE_ID_5704S:
2748 case DEVICE_ID_5704:
2749 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2750 cidp->mbuf_base = bge_mbuf_pool_base_5704;
2751 cidp->mbuf_length = bge_mbuf_pool_len_5704;
2752 dev_ok = B_TRUE;
2753 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2754 break;
2755
2756 case DEVICE_ID_5705C:
2757 case DEVICE_ID_5705M:
2758 case DEVICE_ID_5705MA3:
2759 case DEVICE_ID_5705F:
2760 case DEVICE_ID_5705_2:
2761 case DEVICE_ID_5754:
2762 if (cidp->device == DEVICE_ID_5754) {
2763 cidp->chip_label = 5754;
2764 cidp->pci_type = BGE_PCI_E;
2765 } else {
2766 cidp->chip_label = 5705;
2767 cidp->pci_type = BGE_PCI;
2768 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2769 }
2770 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2771 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2772 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2773 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2774 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2775 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2776 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2777 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2778 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2779 cidp->statistic_type = BGE_STAT_REG;
2780 dev_ok = B_TRUE;
2781 break;
2782
2783 case DEVICE_ID_5906:
2784 case DEVICE_ID_5906M:
2785 cidp->chip_label = 5906;
2786 cidp->pci_type = BGE_PCI_E;
2787 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2788 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2789 cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2790 cidp->mbuf_base = bge_mbuf_pool_base;
2791 cidp->mbuf_length = bge_mbuf_pool_len;
2792 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2793 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2794 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2795 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2796 cidp->statistic_type = BGE_STAT_REG;
2797 dev_ok = B_TRUE;
2798 break;
2799
2800 case DEVICE_ID_5753:
2801 cidp->chip_label = 5753;
2802 cidp->pci_type = BGE_PCI_E;
2803 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2804 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2805 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2806 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2807 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2808 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2809 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2810 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2811 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2812 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2813 cidp->statistic_type = BGE_STAT_REG;
2814 dev_ok = B_TRUE;
2815 break;
2816
2817 case DEVICE_ID_5755:
2818 case DEVICE_ID_5755M:
2819 cidp->chip_label = 5755;
2820 cidp->pci_type = BGE_PCI_E;
2821 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2822 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2823 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2824 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2825 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2826 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2827 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2828 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2829 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2830 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2831 if (cidp->device == DEVICE_ID_5755M)
2832 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2833 cidp->statistic_type = BGE_STAT_REG;
2834 dev_ok = B_TRUE;
2835 break;
2836
2837 case DEVICE_ID_5756M:
2838 /*
2839 * This is nearly identical to the 5755M.
2840 * (Actually reports the 5755 chip ID.)
2841 */
2842 cidp->chip_label = 5756;
2843 cidp->pci_type = BGE_PCI_E;
2844 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2845 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2846 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2847 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2848 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2849 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2850 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2851 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2852 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2853 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2854 cidp->statistic_type = BGE_STAT_REG;
2855 dev_ok = B_TRUE;
2856 break;
2857
2858 case DEVICE_ID_5787:
2859 case DEVICE_ID_5787M:
2860 cidp->chip_label = 5787;
2861 cidp->pci_type = BGE_PCI_E;
2862 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2863 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2864 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2865 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2866 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2867 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2868 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2869 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2870 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2871 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2872 cidp->statistic_type = BGE_STAT_REG;
2873 dev_ok = B_TRUE;
2874 break;
2875
2876 case DEVICE_ID_5723:
2877 case DEVICE_ID_5761:
2878 case DEVICE_ID_5761E:
2879 case DEVICE_ID_57780:
2880 cidp->msi_enabled = bge_enable_msi;
2881 /*
2882 * We don't use MSI for BCM5764 and BCM5785, as the
2883 * status block may fail to update when the network
2884 * traffic is heavy.
2885 */
2886 /* FALLTHRU */
2887 case DEVICE_ID_5785:
2888 case DEVICE_ID_5764:
2889 if (cidp->device == DEVICE_ID_5723)
2890 cidp->chip_label = 5723;
2891 else if (cidp->device == DEVICE_ID_5764)
2892 cidp->chip_label = 5764;
2893 else if (cidp->device == DEVICE_ID_5785)
2894 cidp->chip_label = 5785;
2895 else if (cidp->device == DEVICE_ID_57780)
2896 cidp->chip_label = 57780;
2897 else
2898 cidp->chip_label = 5761;
2899 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2900 cidp->pci_type = BGE_PCI_E;
2901 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2902 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2903 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2904 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2905 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2906 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2907 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2908 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2909 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2910 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2911 cidp->statistic_type = BGE_STAT_REG;
2912 dev_ok = B_TRUE;
2913 break;
2914
2915 /* PCI-X device, identical to 5714 */
2916 case DEVICE_ID_5780:
2917 cidp->chip_label = 5780;
2918 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2919 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2920 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2921 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2922 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2923 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2924 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2925 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2926 cidp->statistic_type = BGE_STAT_REG;
2927 dev_ok = B_TRUE;
2928 break;
2929
2930 case DEVICE_ID_5782:
2931 /*
2932 * Apart from the label, we treat this as a 5705(?)
2933 */
2934 cidp->chip_label = 5782;
2935 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2936 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2937 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2938 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2939 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2940 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2941 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2942 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2943 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2944 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2945 cidp->statistic_type = BGE_STAT_REG;
2946 dev_ok = B_TRUE;
2947 break;
2948
2949 case DEVICE_ID_5788:
2950 /*
2951 * Apart from the label, we treat this as a 5705(?)
2952 */
2953 cidp->chip_label = 5788;
2954 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2955 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2956 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2957 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2958 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2959 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2960 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2961 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2962 cidp->statistic_type = BGE_STAT_REG;
2963 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2964 dev_ok = B_TRUE;
2965 break;
2966
2967 case DEVICE_ID_5714C:
2968 if (cidp->revision >= REVISION_ID_5714_A2)
2969 cidp->msi_enabled = bge_enable_msi;
2970 /* FALLTHRU */
2971 case DEVICE_ID_5714S:
2972 cidp->chip_label = 5714;
2973 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2974 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2975 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2976 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2977 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2978 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2979 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2980 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2981 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2982 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2983 cidp->pci_type = BGE_PCI_E;
2984 cidp->statistic_type = BGE_STAT_REG;
2985 dev_ok = B_TRUE;
2986 break;
2987
2988 case DEVICE_ID_5715C:
2989 case DEVICE_ID_5715S:
2990 cidp->chip_label = 5715;
2991 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2992 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2993 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2994 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2995 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2996 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2997 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2998 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2999 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3000 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3001 cidp->pci_type = BGE_PCI_E;
3002 cidp->statistic_type = BGE_STAT_REG;
3003 if (cidp->revision >= REVISION_ID_5715_A2)
3004 cidp->msi_enabled = bge_enable_msi;
3005 dev_ok = B_TRUE;
3006 break;
3007
3008 case DEVICE_ID_5721:
3009 cidp->chip_label = 5721;
3010 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3011 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3012 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3013 cidp->mbuf_base = bge_mbuf_pool_base_5721;
3014 cidp->mbuf_length = bge_mbuf_pool_len_5721;
3015 cidp->recv_slots = BGE_RECV_SLOTS_5721;
3016 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3017 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3018 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3019 cidp->pci_type = BGE_PCI_E;
3020 cidp->statistic_type = BGE_STAT_REG;
3021 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3022 dev_ok = B_TRUE;
3023 break;
3024
3025 case DEVICE_ID_5722:
3026 cidp->chip_label = 5722;
3027 cidp->pci_type = BGE_PCI_E;
3028 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3029 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3030 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3031 cidp->mbuf_base = bge_mbuf_pool_base_5705;
3032 cidp->mbuf_length = bge_mbuf_pool_len_5705;
3033 cidp->recv_slots = BGE_RECV_SLOTS_5705;
3034 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
3035 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3036 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3037 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3038 cidp->statistic_type = BGE_STAT_REG;
3039 dev_ok = B_TRUE;
3040 break;
3041
3042 case DEVICE_ID_5751:
3043 case DEVICE_ID_5751M:
3044 cidp->chip_label = 5751;
3045 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3046 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3047 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3048 cidp->mbuf_base = bge_mbuf_pool_base_5721;
3049 cidp->mbuf_length = bge_mbuf_pool_len_5721;
3050 cidp->recv_slots = BGE_RECV_SLOTS_5721;
3051 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3052 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3053 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3054 cidp->pci_type = BGE_PCI_E;
3055 cidp->statistic_type = BGE_STAT_REG;
3056 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3057 dev_ok = B_TRUE;
3058 break;
3059
3060 case DEVICE_ID_5752:
3061 case DEVICE_ID_5752M:
3062 cidp->chip_label = 5752;
3063 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
3064 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
3065 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
3066 cidp->mbuf_base = bge_mbuf_pool_base_5721;
3067 cidp->mbuf_length = bge_mbuf_pool_len_5721;
3068 cidp->recv_slots = BGE_RECV_SLOTS_5721;
3069 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3070 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3071 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3072 cidp->pci_type = BGE_PCI_E;
3073 cidp->statistic_type = BGE_STAT_REG;
3074 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3075 dev_ok = B_TRUE;
3076 break;
3077
3078 case DEVICE_ID_5789:
3079 cidp->chip_label = 5789;
3080 cidp->mbuf_base = bge_mbuf_pool_base_5721;
3081 cidp->mbuf_length = bge_mbuf_pool_len_5721;
3082 cidp->recv_slots = BGE_RECV_SLOTS_5721;
3083 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3084 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3085 cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
3086 cidp->pci_type = BGE_PCI_E;
3087 cidp->statistic_type = BGE_STAT_REG;
3088 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
3089 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3090 cidp->msi_enabled = B_TRUE;
3091 dev_ok = B_TRUE;
3092 break;
3093
3094 }
3095
3096 /*
3097 * Setup the default jumbo parameter.
3098 */
3099 cidp->ethmax_size = ETHERMAX;
3100 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
3101 cidp->std_buf_size = BGE_STD_BUFF_SIZE;
3102
3103 /*
3104 * If jumbo is enabled and this kind of chipset supports jumbo feature,
3105 * setup below jumbo specific parameters.
3106 *
3107 * For BCM5714/5715, there is only one standard receive ring. So the
3108 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
3109 * feature is enabled.
3110 *
3111 * For the BCM5718 family we hijack the standard receive ring for
3112 * the jumboframe traffic, keeps it simple.
3113 */
3114 if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
3115 (cidp->default_mtu > BGE_DEFAULT_MTU)) {
3116 if (DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3117 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3118 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3119 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3120 cidp->mbuf_lo_water_rdma =
3121 RDMA_MBUF_LOWAT_5714_JUMBO;
3122 cidp->mbuf_lo_water_rmac =
3123 MAC_RX_MBUF_LOWAT_5714_JUMBO;
3124 cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
3125 cidp->jumbo_slots = 0;
3126 cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
3127 } else {
3128 cidp->mbuf_lo_water_rdma =
3129 RDMA_MBUF_LOWAT_JUMBO;
3130 cidp->mbuf_lo_water_rmac =
3131 MAC_RX_MBUF_LOWAT_JUMBO;
3132 cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
3133 cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
3134 }
3135 cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
3136 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
3137 cidp->ethmax_size = cidp->default_mtu +
3138 sizeof (struct ether_header);
3139 }
3140
3141 /*
3142 * Identify the NV memory type: SEEPROM or Flash?
3143 */
3144 cidp->nvtype = bge_nvmem_id(bgep);
3145
3146 /*
3147 * Now check what we've discovered: is this truly a supported
3148 * chip on (the motherboard of) a supported platform?
3149 *
3150 * Possible problems here:
3151 * 1) it's a completely unheard-of chip
3152 * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
3153 * 3) it's a chip we would support if it were on the motherboard
3154 * of a Sun platform, but this one isn't ;-(
3155 */
3156 if (cidp->chip_label == 0)
3157 bge_problem(bgep,
3158 "Device 'pci%04x,%04x' not recognized (%d?)",
3159 cidp->vendor, cidp->device, cidp->device);
3160 else if (!dev_ok)
3161 bge_problem(bgep,
3162 "Device 'pci%04x,%04x' (%d) revision %d not supported",
3163 cidp->vendor, cidp->device, cidp->chip_label,
3164 cidp->revision);
3165 else
3166 cidp->flags |= CHIP_FLAG_SUPPORTED;
3167
3168 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3169 return (EIO);
3170
3171 return (0);
3172 }
3173
3174 void
bge_chip_msi_trig(bge_t * bgep)3175 bge_chip_msi_trig(bge_t *bgep)
3176 {
3177 uint32_t regval;
3178
3179 regval = bgep->param_msi_cnt<<4;
3180 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
3181 BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
3182 }
3183
3184 /*
3185 * Various registers that control the chip's internal engines (state
3186 * machines) have a <reset> and <enable> bits (fortunately, in the
3187 * same place in each such register :-).
3188 *
3189 * To reset the state machine, the <reset> bit must be written with 1;
3190 * it will then read back as 1 while the reset is in progress, but
3191 * self-clear to 0 when the reset completes.
3192 *
3193 * To enable a state machine, one must set the <enable> bit, which
3194 * will continue to read back as 0 until the state machine is running.
3195 *
3196 * To disable a state machine, the <enable> bit must be cleared, but
3197 * it will continue to read back as 1 until the state machine actually
3198 * stops.
3199 *
3200 * This routine implements polling for completion of a reset, enable
3201 * or disable operation, returning B_TRUE on success (bit reached the
3202 * required state) or B_FALSE on timeout (200*100us == 20ms).
3203 */
3204 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3205 uint32_t mask, uint32_t val);
3206 #pragma no_inline(bge_chip_poll_engine)
3207
3208 static boolean_t
bge_chip_poll_engine(bge_t * bgep,bge_regno_t regno,uint32_t mask,uint32_t val)3209 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3210 uint32_t mask, uint32_t val)
3211 {
3212 uint32_t regval;
3213 uint32_t n;
3214
3215 BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
3216 (void *)bgep, regno, mask, val));
3217
3218 for (n = 200; n; --n) {
3219 regval = bge_reg_get32(bgep, regno);
3220 if ((regval & mask) == val)
3221 return (B_TRUE);
3222 drv_usecwait(100);
3223 }
3224
3225 bge_problem(bgep, "bge_chip_poll_engine failed: regno = 0x%lx", regno);
3226 bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
3227 return (B_FALSE);
3228 }
3229
3230 /*
3231 * Various registers that control the chip's internal engines (state
3232 * machines) have a <reset> bit (fortunately, in the same place in
3233 * each such register :-). To reset the state machine, this bit must
3234 * be written with 1; it will then read back as 1 while the reset is
3235 * in progress, but self-clear to 0 when the reset completes.
3236 *
3237 * This code sets the bit, then polls for it to read back as zero.
3238 * The return value is B_TRUE on success (reset bit cleared itself),
3239 * or B_FALSE if the state machine didn't recover :(
3240 *
3241 * NOTE: the Core reset is similar to other resets, except that we
3242 * can't poll for completion, since the Core reset disables memory
3243 * access! So we just have to assume that it will all complete in
3244 * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5.
3245 */
3246 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
3247 #pragma no_inline(bge_chip_reset_engine)
3248
3249 static boolean_t
bge_chip_reset_engine(bge_t * bgep,bge_regno_t regno)3250 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
3251 {
3252 uint32_t regval;
3253 uint16_t val16;
3254 uint32_t val32;
3255 uint32_t mhcr;
3256
3257 regval = bge_reg_get32(bgep, regno);
3258
3259 BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
3260 (void *)bgep, regno));
3261 BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
3262 regno, regval));
3263
3264 regval |= STATE_MACHINE_RESET_BIT;
3265
3266 switch (regno) {
3267 case MISC_CONFIG_REG:
3268 /*
3269 * BCM5714/5721/5751 pcie chip special case. In order to avoid
3270 * resetting PCIE block and bringing PCIE link down, bit 29
3271 * in the register needs to be set first, and then set it again
3272 * while the reset bit is written.
3273 * See:P500 of 57xx-PG102-RDS.pdf.
3274 */
3275 if (DEVICE_5705_SERIES_CHIPSETS(bgep) ||
3276 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3277 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3278 DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3279 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
3280 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3281 DEVICE_5906_SERIES_CHIPSETS(bgep) ||
3282 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3283 regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
3284 if (bgep->chipid.pci_type == BGE_PCI_E) {
3285 if (bgep->chipid.asic_rev ==
3286 MHCR_CHIP_REV_5751_A0 ||
3287 bgep->chipid.asic_rev ==
3288 MHCR_CHIP_REV_5721_A0 ||
3289 bgep->chipid.asic_rev ==
3290 MHCR_CHIP_REV_5755_A0) {
3291 val32 = bge_reg_get32(bgep,
3292 PHY_TEST_CTRL_REG);
3293 if (val32 == (PHY_PCIE_SCRAM_MODE |
3294 PHY_PCIE_LTASS_MODE))
3295 bge_reg_put32(bgep,
3296 PHY_TEST_CTRL_REG,
3297 PHY_PCIE_SCRAM_MODE);
3298 val32 = pci_config_get32
3299 (bgep->cfg_handle,
3300 PCI_CONF_BGE_CLKCTL);
3301 val32 |= CLKCTL_PCIE_A0_FIX;
3302 pci_config_put32(bgep->cfg_handle,
3303 PCI_CONF_BGE_CLKCTL, val32);
3304 }
3305 bge_reg_set32(bgep, regno,
3306 MISC_CONFIG_GRC_RESET_DISABLE);
3307 regval |= MISC_CONFIG_GRC_RESET_DISABLE;
3308 }
3309 }
3310
3311 /*
3312 * Special case - causes Core reset
3313 *
3314 * On SPARC v9 we want to ensure that we don't start
3315 * timing until the I/O access has actually reached
3316 * the chip, otherwise we might make the next access
3317 * too early. And we can't just force the write out
3318 * by following it with a read (even to config space)
3319 * because that would cause the fault we're trying
3320 * to avoid. Hence the need for membar_sync() here.
3321 */
3322 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
3323 #ifdef __sparcv9
3324 membar_sync();
3325 #endif /* __sparcv9 */
3326 /*
3327 * On some platforms,system need about 300us for
3328 * link setup.
3329 */
3330 drv_usecwait(300);
3331 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3332 bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
3333 bge_reg_clr32(
3334 bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
3335 }
3336
3337 if (bgep->chipid.pci_type == BGE_PCI_E) {
3338 /* PCI-E device need more reset time */
3339 drv_usecwait(120000);
3340
3341 /*
3342 * (re)Disable interrupts as the bit can be reset after a
3343 * core clock reset.
3344 */
3345 mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3346 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3347 mhcr | MHCR_MASK_PCI_INT_OUTPUT);
3348
3349 /* Set PCIE max payload size and clear error status. */
3350 if ((bgep->chipid.chip_label == 5721) ||
3351 (bgep->chipid.chip_label == 5751) ||
3352 (bgep->chipid.chip_label == 5752) ||
3353 (bgep->chipid.chip_label == 5789) ||
3354 (bgep->chipid.chip_label == 5906)) {
3355 pci_config_put16(bgep->cfg_handle,
3356 PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
3357 pci_config_put16(bgep->cfg_handle,
3358 PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
3359 }
3360
3361 if ((bgep->chipid.chip_label == 5723) ||
3362 (bgep->chipid.chip_label == 5761)) {
3363 pci_config_put16(bgep->cfg_handle,
3364 PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
3365 pci_config_put16(bgep->cfg_handle,
3366 PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
3367 }
3368
3369 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3370 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3371 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3372 val16 = pci_config_get16(bgep->cfg_handle,
3373 PCI_CONF_DEV_CTRL_5717);
3374 val16 &= ~READ_REQ_SIZE_MASK;
3375 val16 |= READ_REQ_SIZE_2K;
3376 pci_config_put16(bgep->cfg_handle,
3377 PCI_CONF_DEV_CTRL_5717, val16);
3378 }
3379 }
3380
3381 BGE_PCICHK(bgep);
3382 return (B_TRUE);
3383
3384 default:
3385 bge_reg_put32(bgep, regno, regval);
3386 return (bge_chip_poll_engine(bgep, regno,
3387 STATE_MACHINE_RESET_BIT, 0));
3388 }
3389 }
3390
3391 /*
3392 * Various registers that control the chip's internal engines (state
3393 * machines) have an <enable> bit (fortunately, in the same place in
3394 * each such register :-). To stop the state machine, this bit must
3395 * be written with 0, then polled to see when the state machine has
3396 * actually stopped.
3397 *
3398 * The return value is B_TRUE on success (enable bit cleared), or
3399 * B_FALSE if the state machine didn't stop :(
3400 */
3401 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
3402 uint32_t morebits);
3403 #pragma no_inline(bge_chip_disable_engine)
3404
3405 static boolean_t
bge_chip_disable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)3406 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3407 {
3408 uint32_t regval;
3409
3410 BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
3411 (void *)bgep, regno, morebits));
3412
3413 switch (regno) {
3414 case FTQ_RESET_REG:
3415 /*
3416 * For Schumacher's bugfix CR6490108
3417 */
3418 #ifdef BGE_IPMI_ASF
3419 #ifdef BGE_NETCONSOLE
3420 if (bgep->asf_enabled)
3421 return (B_TRUE);
3422 #endif
3423 #endif
3424 /*
3425 * Not quite like the others; it doesn't
3426 * have an <enable> bit, but instead we
3427 * have to set and then clear all the bits
3428 */
3429 bge_reg_put32(bgep, regno, ~(uint32_t)0);
3430 drv_usecwait(100);
3431 bge_reg_put32(bgep, regno, 0);
3432 return (B_TRUE);
3433
3434 default:
3435 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3436 break;
3437 }
3438
3439 if ((regno == RCV_LIST_SELECTOR_MODE_REG) ||
3440 (regno == DMA_COMPLETION_MODE_REG) ||
3441 (regno == MBUF_CLUSTER_FREE_MODE_REG) ||
3442 (regno == BUFFER_MANAGER_MODE_REG) ||
3443 (regno == MEMORY_ARBITER_MODE_REG)) {
3444 return B_TRUE;
3445 }
3446
3447 break;
3448 }
3449
3450 regval = bge_reg_get32(bgep, regno);
3451 regval &= ~STATE_MACHINE_ENABLE_BIT;
3452 regval &= ~morebits;
3453 bge_reg_put32(bgep, regno, regval);
3454
3455 return bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, 0);
3456 }
3457
3458 /*
3459 * Various registers that control the chip's internal engines (state
3460 * machines) have an <enable> bit (fortunately, in the same place in
3461 * each such register :-). To start the state machine, this bit must
3462 * be written with 1, then polled to see when the state machine has
3463 * actually started.
3464 *
3465 * The return value is B_TRUE on success (enable bit set), or
3466 * B_FALSE if the state machine didn't start :(
3467 */
3468 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
3469 uint32_t morebits);
3470 #pragma no_inline(bge_chip_enable_engine)
3471
3472 static boolean_t
bge_chip_enable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)3473 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3474 {
3475 uint32_t regval;
3476
3477 BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
3478 (void *)bgep, regno, morebits));
3479
3480 switch (regno) {
3481 case FTQ_RESET_REG:
3482 #ifdef BGE_IPMI_ASF
3483 #ifdef BGE_NETCONSOLE
3484 if (bgep->asf_enabled)
3485 return (B_TRUE);
3486 #endif
3487 #endif
3488 /*
3489 * Not quite like the others; it doesn't
3490 * have an <enable> bit, but instead we
3491 * have to set and then clear all the bits
3492 */
3493 bge_reg_put32(bgep, regno, ~(uint32_t)0);
3494 drv_usecwait(100);
3495 bge_reg_put32(bgep, regno, 0);
3496 return (B_TRUE);
3497
3498 default:
3499 regval = bge_reg_get32(bgep, regno);
3500 regval |= STATE_MACHINE_ENABLE_BIT;
3501 regval |= morebits;
3502 bge_reg_put32(bgep, regno, regval);
3503 return (bge_chip_poll_engine(bgep, regno,
3504 STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
3505 }
3506 }
3507
3508 /*
3509 * Reprogram the Ethernet, Transmit, and Receive MAC
3510 * modes to match the param_* variables
3511 */
3512 void bge_sync_mac_modes(bge_t *bgep);
3513 #pragma no_inline(bge_sync_mac_modes)
3514
3515 void
bge_sync_mac_modes(bge_t * bgep)3516 bge_sync_mac_modes(bge_t *bgep)
3517 {
3518 uint32_t macmode;
3519 uint32_t regval;
3520
3521 ASSERT(mutex_owned(bgep->genlock));
3522
3523 /*
3524 * Reprogram the Ethernet MAC mode ...
3525 */
3526 macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
3527 macmode &= ~ETHERNET_MODE_LINK_POLARITY;
3528 macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
3529 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
3530 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
3531 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3532 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3533 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3534 DEVICE_57765_SERIES_CHIPSETS(bgep))
3535 macmode |= ETHERNET_MODE_PORTMODE_GMII;
3536 else
3537 macmode |= ETHERNET_MODE_PORTMODE_TBI;
3538 } else if (bgep->param_link_speed == 10 ||
3539 bgep->param_link_speed == 100)
3540 macmode |= ETHERNET_MODE_PORTMODE_MII;
3541 else
3542 macmode |= ETHERNET_MODE_PORTMODE_GMII;
3543 if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
3544 macmode |= ETHERNET_MODE_HALF_DUPLEX;
3545 else
3546 macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
3547 if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
3548 macmode |= ETHERNET_MODE_MAC_LOOPBACK;
3549 else
3550 macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
3551 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
3552 BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
3553 (void *)bgep, regval, macmode));
3554
3555 /*
3556 * ... the Transmit MAC mode ...
3557 */
3558 macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
3559 if (bgep->param_link_tx_pause)
3560 macmode |= TRANSMIT_MODE_FLOW_CONTROL;
3561 else
3562 macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
3563 bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
3564 BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
3565 (void *)bgep, regval, macmode));
3566
3567 /*
3568 * ... and the Receive MAC mode
3569 */
3570 macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
3571 if (bgep->param_link_rx_pause)
3572 macmode |= RECEIVE_MODE_FLOW_CONTROL;
3573 else
3574 macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
3575 bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
3576 BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
3577 (void *)bgep, regval, macmode));
3578
3579 /*
3580 * For BCM5785, we need to configure the link status in the MI Status
3581 * register with a write command when auto-polling is disabled.
3582 */
3583 if (bgep->chipid.device == DEVICE_ID_5785)
3584 if (bgep->param_link_speed == 10)
3585 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
3586 | MI_STATUS_10MBPS);
3587 else
3588 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3589 }
3590
3591 /*
3592 * bge_chip_sync() -- program the chip with the unicast MAC address,
3593 * the multicast hash table, the required level of promiscuity, and
3594 * the current loopback mode ...
3595 */
3596 #ifdef BGE_IPMI_ASF
3597 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
3598 #else
3599 int bge_chip_sync(bge_t *bgep);
3600 #endif
3601 #pragma no_inline(bge_chip_sync)
3602
3603 int
3604 #ifdef BGE_IPMI_ASF
bge_chip_sync(bge_t * bgep,boolean_t asf_keeplive)3605 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
3606 #else
3607 bge_chip_sync(bge_t *bgep)
3608 #endif
3609 {
3610 void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
3611 boolean_t promisc;
3612 uint64_t macaddr;
3613 uint32_t fill = 0;
3614 int i, j;
3615 int retval = DDI_SUCCESS;
3616
3617 BGE_TRACE(("bge_chip_sync($%p)",
3618 (void *)bgep));
3619
3620 ASSERT(mutex_owned(bgep->genlock));
3621
3622 promisc = B_FALSE;
3623 fill = ~(uint32_t)0;
3624
3625 if (bgep->promisc)
3626 promisc = B_TRUE;
3627 else
3628 fill = (uint32_t)0;
3629
3630 /*
3631 * If the TX/RX MAC engines are already running, we should stop
3632 * them (and reset the RX engine) before changing the parameters.
3633 * If they're not running, this will have no effect ...
3634 *
3635 * NOTE: this is currently disabled by default because stopping
3636 * and restarting the Tx engine may cause an outgoing packet in
3637 * transit to be truncated. Also, stopping and restarting the
3638 * Rx engine seems to not work correctly on the 5705. Testing
3639 * has not (yet!) revealed any problems with NOT stopping and
3640 * restarting these engines (and Broadcom say their drivers don't
3641 * do this), but if it is found to cause problems, this variable
3642 * can be patched to re-enable the old behaviour ...
3643 */
3644 if (bge_stop_start_on_sync) {
3645 #ifdef BGE_IPMI_ASF
3646 if (!bgep->asf_enabled) {
3647 if (!bge_chip_disable_engine(bgep,
3648 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3649 retval = DDI_FAILURE;
3650 } else {
3651 if (!bge_chip_disable_engine(bgep,
3652 RECEIVE_MAC_MODE_REG, 0))
3653 retval = DDI_FAILURE;
3654 }
3655 #else
3656 if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3657 RECEIVE_MODE_KEEP_VLAN_TAG))
3658 retval = DDI_FAILURE;
3659 #endif
3660 if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3661 retval = DDI_FAILURE;
3662 if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3663 retval = DDI_FAILURE;
3664 }
3665
3666 /*
3667 * Reprogram the hashed multicast address table ...
3668 */
3669 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3670 bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3671
3672 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3673 bge_reg_put32(bgep, MAC_HASH_REG(i),
3674 bgep->mcast_hash[i] | fill);
3675
3676 #ifdef BGE_IPMI_ASF
3677 if (!bgep->asf_enabled || !asf_keeplive) {
3678 #endif
3679 /*
3680 * Transform the MAC address(es) from host to chip format, then
3681 * reprogram the transmit random backoff seed and the unicast
3682 * MAC address(es) ...
3683 */
3684 for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3685 for (i = 0, macaddr = 0ull;
3686 i < ETHERADDRL; ++i) {
3687 macaddr <<= 8;
3688 macaddr |= bgep->curr_addr[j].addr[i];
3689 }
3690 fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3691 bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3692
3693 BGE_DEBUG(("bge_chip_sync($%p) "
3694 "setting MAC address %012llx",
3695 (void *)bgep, macaddr));
3696 }
3697 #ifdef BGE_IPMI_ASF
3698 }
3699 #endif
3700 /*
3701 * Set random seed of backoff interval
3702 * - Writing zero means no backoff interval
3703 */
3704 fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3705 if (fill == 0)
3706 fill = 1;
3707 bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3708
3709 /*
3710 * Set or clear the PROMISCUOUS mode bit
3711 */
3712 opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3713 (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3714
3715 /*
3716 * Sync the rest of the MAC modes too ...
3717 */
3718 bge_sync_mac_modes(bgep);
3719
3720 /*
3721 * Restart RX/TX MAC engines if required ...
3722 */
3723 if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3724 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3725 retval = DDI_FAILURE;
3726 #ifdef BGE_IPMI_ASF
3727 if (!bgep->asf_enabled) {
3728 if (!bge_chip_enable_engine(bgep,
3729 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3730 retval = DDI_FAILURE;
3731 } else {
3732 if (!bge_chip_enable_engine(bgep,
3733 RECEIVE_MAC_MODE_REG, 0))
3734 retval = DDI_FAILURE;
3735 }
3736 #else
3737 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3738 RECEIVE_MODE_KEEP_VLAN_TAG))
3739 retval = DDI_FAILURE;
3740 #endif
3741 }
3742 return (retval);
3743 }
3744
3745 #ifndef __sparc
3746 static bge_regno_t quiesce_regs[] = {
3747 READ_DMA_MODE_REG,
3748 DMA_COMPLETION_MODE_REG,
3749 WRITE_DMA_MODE_REG,
3750 BGE_REGNO_NONE
3751 };
3752
3753 void bge_chip_stop_nonblocking(bge_t *bgep);
3754 #pragma no_inline(bge_chip_stop_nonblocking)
3755
3756 /*
3757 * This function is called by bge_quiesce(). We
3758 * turn off all the DMA engines here.
3759 */
3760 void
bge_chip_stop_nonblocking(bge_t * bgep)3761 bge_chip_stop_nonblocking(bge_t *bgep)
3762 {
3763 bge_regno_t *rbp;
3764
3765 /*
3766 * Flag that no more activity may be initiated
3767 */
3768 bgep->progress &= ~PROGRESS_READY;
3769
3770 rbp = quiesce_regs;
3771 while (*rbp != BGE_REGNO_NONE) {
3772 (void) bge_chip_disable_engine(bgep, *rbp, 0);
3773 ++rbp;
3774 }
3775
3776 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3777 }
3778
3779 #endif
3780
3781 /*
3782 * bge_chip_stop() -- stop all chip processing
3783 *
3784 * If the <fault> parameter is B_TRUE, we're stopping the chip because
3785 * we've detected a problem internally; otherwise, this is a normal
3786 * (clean) stop (at user request i.e. the last STREAM has been closed).
3787 */
3788 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3789 #pragma no_inline(bge_chip_stop)
3790
3791 void
bge_chip_stop(bge_t * bgep,boolean_t fault)3792 bge_chip_stop(bge_t *bgep, boolean_t fault)
3793 {
3794 bge_regno_t regno;
3795 bge_regno_t *rbp;
3796 boolean_t ok = B_TRUE;
3797
3798 BGE_TRACE(("bge_chip_stop($%p)",
3799 (void *)bgep));
3800
3801 ASSERT(mutex_owned(bgep->genlock));
3802
3803 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3804 (pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR) |
3805 MHCR_MASK_PCI_INT_OUTPUT));
3806
3807 ok &= bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 0);
3808 ok &= bge_chip_disable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 0);
3809 ok &= bge_chip_disable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0);
3810 ok &= bge_chip_disable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 0);
3811 ok &= bge_chip_disable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 0);
3812 ok &= bge_chip_disable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 0);
3813 ok &= bge_chip_disable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 0);
3814
3815 ok &= bge_chip_disable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 0);
3816 ok &= bge_chip_disable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 0);
3817 ok &= bge_chip_disable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0);
3818 ok &= bge_chip_disable_engine(bgep, READ_DMA_MODE_REG, 0);
3819 ok &= bge_chip_disable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0);
3820 ok &= bge_chip_disable_engine(bgep, DMA_COMPLETION_MODE_REG, 0);
3821 ok &= bge_chip_disable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 0);
3822 ok &= bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
3823
3824 bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_TDE);
3825 drv_usecwait(40);
3826
3827 ok &= bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, 0);
3828 ok &= bge_chip_disable_engine(bgep, WRITE_DMA_MODE_REG, 0);
3829 ok &= bge_chip_disable_engine(bgep, MBUF_CLUSTER_FREE_MODE_REG, 0);
3830 ok &= bge_chip_disable_engine(bgep, FTQ_RESET_REG, 0);
3831 ok &= bge_chip_disable_engine(bgep, BUFFER_MANAGER_MODE_REG, 0);
3832 ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3833 ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3834
3835 if (!ok && !fault)
3836 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3837
3838 /*
3839 * Finally, disable (all) MAC events & clear the MAC status
3840 */
3841 bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3842 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3843
3844 /*
3845 * if we're stopping the chip because of a detected fault then do
3846 * appropriate actions
3847 */
3848 if (fault) {
3849 if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3850 bgep->bge_chip_state = BGE_CHIP_FAULT;
3851 if (!bgep->manual_reset)
3852 ddi_fm_service_impact(bgep->devinfo,
3853 DDI_SERVICE_LOST);
3854 if (bgep->bge_dma_error) {
3855 /*
3856 * need to free buffers in case the fault was
3857 * due to a memory error in a buffer - got to
3858 * do a fair bit of tidying first
3859 */
3860 if (bgep->progress & PROGRESS_KSTATS) {
3861 bge_fini_kstats(bgep);
3862 bgep->progress &= ~PROGRESS_KSTATS;
3863 }
3864 if (bgep->progress & PROGRESS_INTR) {
3865 bge_intr_disable(bgep);
3866 rw_enter(bgep->errlock, RW_WRITER);
3867 bge_fini_rings(bgep);
3868 rw_exit(bgep->errlock);
3869 bgep->progress &= ~PROGRESS_INTR;
3870 }
3871 if (bgep->progress & PROGRESS_BUFS) {
3872 bge_free_bufs(bgep);
3873 bgep->progress &= ~PROGRESS_BUFS;
3874 }
3875 bgep->bge_dma_error = B_FALSE;
3876 }
3877 }
3878 } else
3879 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3880 }
3881
3882 /*
3883 * Poll for completion of chip's ROM firmware; also, at least on the
3884 * first time through, find and return the hardware MAC address, if any.
3885 */
3886 static uint64_t bge_poll_firmware(bge_t *bgep);
3887 #pragma no_inline(bge_poll_firmware)
3888
3889 static uint64_t
bge_poll_firmware(bge_t * bgep)3890 bge_poll_firmware(bge_t *bgep)
3891 {
3892 uint64_t magic;
3893 uint64_t mac;
3894 uint32_t gen, val;
3895 uint32_t i;
3896
3897 /*
3898 * Step 19: poll for firmware completion (GENCOMM port set
3899 * to the ones complement of T3_MAGIC_NUMBER).
3900 *
3901 * While we're at it, we also read the MAC address register;
3902 * at some stage the firmware will load this with the
3903 * factory-set value.
3904 *
3905 * When both the magic number and the MAC address are set,
3906 * we're done; but we impose a time limit of one second
3907 * (1000*1000us) in case the firmware fails in some fashion
3908 * or the SEEPROM that provides that MAC address isn't fitted.
3909 *
3910 * After the first time through (chip state != INITIAL), we
3911 * don't need the MAC address to be set (we've already got it
3912 * or not, from the first time), so we don't wait for it, but
3913 * we still have to wait for the T3_MAGIC_NUMBER.
3914 *
3915 * Note: the magic number is only a 32-bit quantity, but the NIC
3916 * memory is 64-bit (and big-endian) internally. Addressing the
3917 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3918 * it work correctly on both big- and little-endian hosts.
3919 */
3920 if (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906) {
3921 for (i = 0; i < 1000; ++i) {
3922 drv_usecwait(1000);
3923 val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3924 if (val & VCPU_INIT_DONE)
3925 break;
3926 }
3927 BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3928 (void *)bgep, i));
3929 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3930 } else {
3931 for (i = 0; i < 1000; ++i) {
3932 drv_usecwait(1000);
3933 gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3934 if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3935 drv_usecwait(100000);
3936 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3937 #ifdef BGE_IPMI_ASF
3938 if (!bgep->asf_enabled) {
3939 #endif
3940 if (gen != ~T3_MAGIC_NUMBER)
3941 continue;
3942 #ifdef BGE_IPMI_ASF
3943 }
3944 #endif
3945 if (mac != 0ULL)
3946 break;
3947 if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3948 break;
3949 }
3950 }
3951
3952 magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3953 BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3954 (void *)bgep, gen, i));
3955 BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3956 mac, magic));
3957
3958 return (mac);
3959 }
3960
3961 /*
3962 * Maximum times of trying to get the NVRAM access lock
3963 * by calling bge_nvmem_acquire()
3964 */
3965 #define MAX_TRY_NVMEM_ACQUIRE 10000
3966
3967 #ifdef BGE_IPMI_ASF
3968 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3969 #else
3970 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3971 #endif
3972 #pragma no_inline(bge_chip_reset)
3973
3974 int
3975 #ifdef BGE_IPMI_ASF
bge_chip_reset(bge_t * bgep,boolean_t enable_dma,uint_t asf_mode)3976 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3977 #else
3978 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3979 #endif
3980 {
3981 chip_id_t chipid;
3982 uint64_t mac;
3983 uint64_t magic;
3984 uint32_t tmp;
3985 uint32_t mhcr_base;
3986 uint32_t mhcr;
3987 uint32_t sx0;
3988 uint32_t i, tries;
3989 #ifdef BGE_IPMI_ASF
3990 uint32_t mailbox;
3991 #endif
3992 int retval = DDI_SUCCESS;
3993
3994 BGE_TRACE(("bge_chip_reset($%p, %d)",
3995 (void *)bgep, enable_dma));
3996
3997 ASSERT(mutex_owned(bgep->genlock));
3998
3999 BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
4000 (void *)bgep, enable_dma, bgep->bge_chip_state));
4001
4002 /*
4003 * Do we need to stop the chip cleanly before resetting?
4004 */
4005 switch (bgep->bge_chip_state) {
4006 default:
4007 _NOTE(NOTREACHED)
4008 return (DDI_FAILURE);
4009
4010 case BGE_CHIP_INITIAL:
4011 case BGE_CHIP_STOPPED:
4012 case BGE_CHIP_RESET:
4013 break;
4014
4015 case BGE_CHIP_RUNNING:
4016 case BGE_CHIP_ERROR:
4017 case BGE_CHIP_FAULT:
4018 bge_chip_stop(bgep, B_FALSE);
4019 break;
4020 }
4021
4022 mhcr_base = MHCR_ENABLE_INDIRECT_ACCESS |
4023 MHCR_ENABLE_PCI_STATE_RW |
4024 MHCR_ENABLE_TAGGED_STATUS_MODE |
4025 MHCR_MASK_INTERRUPT_MODE |
4026 MHCR_MASK_PCI_INT_OUTPUT |
4027 MHCR_CLEAR_INTERRUPT_INTA;
4028
4029 #ifdef BGE_IPMI_ASF
4030 if (bgep->asf_enabled) {
4031 mhcr = mhcr_base;
4032 #ifdef _BIG_ENDIAN
4033 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4034 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4035 #endif
4036 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4037
4038 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4039 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
4040 MEMORY_ARBITER_ENABLE);
4041
4042 if (asf_mode == ASF_MODE_INIT) {
4043 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
4044 } else if (asf_mode == ASF_MODE_SHUTDOWN) {
4045 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
4046 }
4047 }
4048 #endif
4049
4050 /*
4051 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
4052 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
4053 *
4054 * Before reset Core clock,it is
4055 * also required to initialize the Memory Arbiter as specified in step9
4056 * and Misc Host Control Register as specified in step-13
4057 * Step 4-5: reset Core clock & wait for completion
4058 * Steps 6-8: are done by bge_chip_cfg_init()
4059 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
4060 */
4061 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4062 retval = DDI_FAILURE;
4063
4064 mhcr = mhcr_base;
4065 #ifdef _BIG_ENDIAN
4066 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4067 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4068 #endif
4069 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4070
4071 #ifdef BGE_IPMI_ASF
4072 if (bgep->asf_enabled)
4073 bgep->asf_wordswapped = B_FALSE;
4074 #endif
4075 /*
4076 * NVRAM Corruption Workaround
4077 */
4078 for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
4079 if (bge_nvmem_acquire(bgep) != EAGAIN)
4080 break;
4081 if (tries >= MAX_TRY_NVMEM_ACQUIRE)
4082 BGE_DEBUG(("%s: fail to acquire nvram lock",
4083 bgep->ifname));
4084
4085 bge_ape_lock(bgep, BGE_APE_LOCK_GRC);
4086
4087 #ifdef BGE_IPMI_ASF
4088 if (!bgep->asf_enabled) {
4089 #endif
4090 magic = (uint64_t)T3_MAGIC_NUMBER << 32;
4091 bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
4092 #ifdef BGE_IPMI_ASF
4093 }
4094 #endif
4095
4096 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4097 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4098 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4099 bge_reg_set32(bgep, FAST_BOOT_PC, 0);
4100 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4101 retval = DDI_FAILURE;
4102 }
4103
4104 mhcr = mhcr_base;
4105 #ifdef _BIG_ENDIAN
4106 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4107 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4108 #endif
4109 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4110
4111 if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
4112 retval = DDI_FAILURE;
4113
4114 bge_chip_cfg_init(bgep, &chipid, enable_dma);
4115
4116 /*
4117 * Step 8a: This may belong elsewhere, but BCM5721 needs
4118 * a bit set to avoid a fifo overflow/underflow bug.
4119 */
4120 if ((bgep->chipid.chip_label == 5721) ||
4121 (bgep->chipid.chip_label == 5751) ||
4122 (bgep->chipid.chip_label == 5752) ||
4123 (bgep->chipid.chip_label == 5755) ||
4124 (bgep->chipid.chip_label == 5756) ||
4125 (bgep->chipid.chip_label == 5789) ||
4126 (bgep->chipid.chip_label == 5906))
4127 bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
4128
4129 /*
4130 * In the 57765 family of devices we need to work around an apparent
4131 * transmit hang by dorking with the PCIe serdes training clocks.
4132 */
4133 if (DEVICE_57765_SERIES_CHIPSETS(bgep) &&
4134 (CHIP_ASIC_REV_PROD_ID(bgep) >> 8) != CHIP_ASIC_REV_57765_AX) {
4135 tmp = bge_reg_get32(bgep, CPMU_PADRNG_CTL_REG);
4136 tmp |= CPMU_PADRNG_CTL_RDIV2;
4137 bge_reg_set32(bgep, CPMU_PADRNG_CTL_REG, tmp);
4138 }
4139
4140
4141 /*
4142 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
4143 * not be changed.
4144 */
4145 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4146 retval = DDI_FAILURE;
4147
4148 /*
4149 * Steps 10-11: configure PIO endianness options and
4150 * enable indirect register access -- already done
4151 * Steps 12-13: enable writing to the PCI state & clock
4152 * control registers -- not required; we aren't going to
4153 * use those features.
4154 * Steps 14-15: Configure DMA endianness options. See
4155 * the comments on the setting of the MHCR above.
4156 */
4157 tmp = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
4158 #ifdef _BIG_ENDIAN
4159 tmp |= (MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME);
4160 #endif
4161 #ifdef BGE_IPMI_ASF
4162 if (bgep->asf_enabled)
4163 tmp |= MODE_HOST_STACK_UP;
4164 #endif
4165 bge_reg_put32(bgep, MODE_CONTROL_REG, tmp);
4166
4167 #ifdef BGE_IPMI_ASF
4168 if (bgep->asf_enabled) {
4169 #ifdef __sparc
4170 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4171 MEMORY_ARBITER_ENABLE |
4172 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
4173 #endif
4174
4175 #ifdef BGE_NETCONSOLE
4176 if (!bgep->asf_newhandshake) {
4177 if ((asf_mode == ASF_MODE_INIT) ||
4178 (asf_mode == ASF_MODE_POST_INIT)) {
4179 bge_asf_post_reset_old_mode(bgep,
4180 BGE_INIT_RESET);
4181 } else {
4182 bge_asf_post_reset_old_mode(bgep,
4183 BGE_SHUTDOWN_RESET);
4184 }
4185 }
4186 #endif
4187
4188 /* Wait for NVRAM init */
4189 i = 0;
4190 drv_usecwait(5000);
4191 mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
4192
4193 while ((mailbox != (uint32_t)
4194 ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
4195 (i < 10000)) {
4196 drv_usecwait(100);
4197 mailbox = bge_nic_get32(bgep,
4198 BGE_FIRMWARE_MAILBOX);
4199 i++;
4200 }
4201
4202 #ifndef BGE_NETCONSOLE
4203 if (!bgep->asf_newhandshake) {
4204 if ((asf_mode == ASF_MODE_INIT) ||
4205 (asf_mode == ASF_MODE_POST_INIT)) {
4206
4207 bge_asf_post_reset_old_mode(bgep,
4208 BGE_INIT_RESET);
4209 } else {
4210 bge_asf_post_reset_old_mode(bgep,
4211 BGE_SHUTDOWN_RESET);
4212 }
4213 }
4214 #endif
4215 }
4216 #endif
4217
4218 bge_ape_unlock(bgep, BGE_APE_LOCK_GRC);
4219
4220 /*
4221 * Steps 16-17: poll for firmware completion
4222 */
4223 mac = bge_poll_firmware(bgep);
4224
4225 if (bgep->chipid.device == DEVICE_ID_5720) {
4226 tmp = bge_reg_get32(bgep, CPMU_CLCK_ORIDE_REG);
4227 bge_reg_put32(bgep, CPMU_CLCK_ORIDE_REG,
4228 (tmp & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN));
4229 }
4230
4231 /*
4232 * Step 18: enable external memory -- doesn't apply.
4233 *
4234 * However we take the opportunity to set the MLCR anyway, as
4235 * this register also controls the SEEPROM auto-access method
4236 * which we may want to use later ...
4237 *
4238 * The proper value here depends on the way the chip is wired
4239 * into the circuit board, as this register *also* controls which
4240 * of the "Miscellaneous I/O" pins are driven as outputs and the
4241 * values driven onto those pins!
4242 *
4243 * See also step 74 in the PRM ...
4244 */
4245 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
4246 bgep->chipid.bge_mlcr_default);
4247
4248 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
4249 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
4250 tmp = bge_reg_get32(bgep, SERDES_RX_CONTROL);
4251 tmp |= SERDES_RX_CONTROL_SIG_DETECT;
4252 bge_reg_put32(bgep, SERDES_RX_CONTROL, tmp);
4253 }
4254
4255 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
4256
4257 /*
4258 * Step 20: clear the Ethernet MAC mode register
4259 */
4260 if (bgep->ape_enabled)
4261 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4262 ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4263 else
4264 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
4265
4266 /*
4267 * Step 21: restore cache-line-size, latency timer, and
4268 * subsystem ID registers to their original values (not
4269 * those read into the local structure <chipid>, 'cos
4270 * that was after they were cleared by the RESET).
4271 *
4272 * Note: the Subsystem Vendor/Device ID registers are not
4273 * directly writable in config space, so we use the shadow
4274 * copy in "Page Zero" of register space to restore them
4275 * both in one go ...
4276 */
4277 pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
4278 bgep->chipid.clsize);
4279 pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
4280 bgep->chipid.latency);
4281 bge_reg_put32(bgep, PCI_CONF_SUBVENID,
4282 (bgep->chipid.subdev << 16) | bgep->chipid.subven);
4283
4284 /*
4285 * The SEND INDEX registers should be reset to zero by the
4286 * global chip reset; if they're not, there'll be trouble
4287 * later on.
4288 */
4289 sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
4290 if (sx0 != 0) {
4291 BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
4292 bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
4293 retval = DDI_FAILURE;
4294 }
4295
4296 /* Enable MSI code */
4297 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4298 bge_reg_set32(bgep, MSI_MODE_REG,
4299 MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
4300
4301 /*
4302 * On the first time through, save the factory-set MAC address
4303 * (if any). If bge_poll_firmware() above didn't return one
4304 * (from a chip register) consider looking in the attached NV
4305 * memory device, if any. Once we have it, we save it in both
4306 * register-image (64-bit) and byte-array forms. All-zero and
4307 * all-one addresses are not valid, and we refuse to stash those.
4308 */
4309 if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
4310 if (mac == 0ULL)
4311 mac = bge_get_nvmac(bgep);
4312 if (mac != 0ULL && mac != ~0ULL) {
4313 bgep->chipid.hw_mac_addr = mac;
4314 for (i = ETHERADDRL; i-- != 0; ) {
4315 bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
4316 mac >>= 8;
4317 }
4318 bgep->chipid.vendor_addr.set = B_TRUE;
4319 }
4320 }
4321
4322 #ifdef BGE_IPMI_ASF
4323 if (bgep->asf_enabled && bgep->asf_newhandshake) {
4324 if (asf_mode != ASF_MODE_NONE) {
4325 if ((asf_mode == ASF_MODE_INIT) ||
4326 (asf_mode == ASF_MODE_POST_INIT)) {
4327
4328 bge_asf_post_reset_new_mode(bgep,
4329 BGE_INIT_RESET);
4330 } else {
4331 bge_asf_post_reset_new_mode(bgep,
4332 BGE_SHUTDOWN_RESET);
4333 }
4334 }
4335 }
4336 #endif
4337
4338 /*
4339 * Record the new state
4340 */
4341 bgep->chip_resets += 1;
4342 bgep->bge_chip_state = BGE_CHIP_RESET;
4343 return (retval);
4344 }
4345
4346 /*
4347 * bge_chip_start() -- start the chip transmitting and/or receiving,
4348 * including enabling interrupts
4349 */
4350 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
4351 #pragma no_inline(bge_chip_start)
4352
4353 void
bge_chip_coalesce_update(bge_t * bgep)4354 bge_chip_coalesce_update(bge_t *bgep)
4355 {
4356 bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
4357 bgep->chipid.tx_count_norm);
4358 bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
4359 bgep->chipid.tx_ticks_norm);
4360 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
4361 bgep->chipid.rx_count_norm);
4362 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
4363 bgep->chipid.rx_ticks_norm);
4364 }
4365
4366 int
bge_chip_start(bge_t * bgep,boolean_t reset_phys)4367 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
4368 {
4369 uint32_t coalmode;
4370 uint32_t ledctl;
4371 uint32_t mtu;
4372 uint32_t maxring;
4373 uint32_t stats_mask;
4374 uint32_t dma_wrprio;
4375 uint64_t ring;
4376 uint32_t reg;
4377 uint32_t regval;
4378 uint32_t mhcr;
4379 int retval = DDI_SUCCESS;
4380 int i;
4381
4382 BGE_TRACE(("bge_chip_start($%p)",
4383 (void *)bgep));
4384
4385 ASSERT(mutex_owned(bgep->genlock));
4386 ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
4387
4388 /* Initialize EEE, enable MAC control of LPI */
4389 bge_eee_init(bgep);
4390
4391 if (bgep->ape_enabled) {
4392 /*
4393 * Allow reads and writes to the
4394 * APE register and memory space.
4395 */
4396 regval = pci_config_get32(bgep->cfg_handle,
4397 PCI_CONF_BGE_PCISTATE);
4398 regval |= PCISTATE_ALLOW_APE_CTLSPC_WR |
4399 PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
4400 pci_config_put32(bgep->cfg_handle,
4401 PCI_CONF_BGE_PCISTATE, regval);
4402 }
4403
4404 /*
4405 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
4406 * The document specifies 95 separate steps to fully
4407 * initialise the chip!!!!
4408 *
4409 * The reset code above has already got us as far as step
4410 * 21, so we continue with ...
4411 *
4412 * Step 22: clear the MAC statistics block
4413 * (0x0300-0x0aff in NIC-local memory)
4414 */
4415 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4416 bge_nic_zero(bgep, NIC_MEM_STATISTICS,
4417 NIC_MEM_STATISTICS_SIZE);
4418
4419 /*
4420 * Step 23: clear the status block (in host memory)
4421 */
4422 DMA_ZERO(bgep->status_block);
4423
4424 /*
4425 * Step 24: set DMA read/write control register
4426 */
4427 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
4428 bgep->chipid.bge_dma_rwctrl);
4429
4430 /*
4431 * Step 25: Configure DMA endianness -- already done (16/17)
4432 * Step 26: Configure Host-Based Send Rings
4433 * Step 27: Indicate Host Stack Up
4434 */
4435 bge_reg_set32(bgep, MODE_CONTROL_REG,
4436 MODE_HOST_SEND_BDS |
4437 MODE_HOST_STACK_UP);
4438
4439 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4440 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4441 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4442 reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4443 ? RDMA_RSRV_CTRL_REG2 : RDMA_RSRV_CTRL_REG;
4444 regval = bge_reg_get32(bgep, reg);
4445 if ((bgep->chipid.device == DEVICE_ID_5719) ||
4446 (bgep->chipid.device == DEVICE_ID_5720) ||
4447 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4448 regval &= ~(RDMA_RSRV_CTRL_TXMRGN_MASK |
4449 RDMA_RSRV_CTRL_FIFO_LWM_MASK |
4450 RDMA_RSRV_CTRL_FIFO_HWM_MASK);
4451 regval |= (RDMA_RSRV_CTRL_TXMRGN_320B |
4452 RDMA_RSRV_CTRL_FIFO_LWM_1_5K |
4453 RDMA_RSRV_CTRL_FIFO_HWM_1_5K);
4454 }
4455 /* Enable the DMA FIFO Overrun fix. */
4456 bge_reg_put32(bgep, reg,
4457 (regval | RDMA_RSRV_CTRL_FIFO_OFLW_FIX));
4458
4459 if ((CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5719) ||
4460 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5720) ||
4461 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4462 reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4463 ? RDMA_CORR_CTRL_REG2 : RDMA_CORR_CTRL_REG;
4464 regval = bge_reg_get32(bgep, reg);
4465 bge_reg_put32(bgep, reg, (regval |
4466 RDMA_CORR_CTRL_BLEN_BD_4K |
4467 RDMA_CORR_CTRL_BLEN_LSO_4K));
4468 }
4469 }
4470
4471 /*
4472 * Step 28: Configure checksum options:
4473 * Solaris supports the hardware default checksum options.
4474 *
4475 * Workaround for Incorrect pseudo-header checksum calculation.
4476 */
4477 if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
4478 bge_reg_set32(bgep, MODE_CONTROL_REG,
4479 MODE_SEND_NO_PSEUDO_HDR_CSUM);
4480
4481 /*
4482 * Step 29: configure Timer Prescaler. The value is always the
4483 * same: the Core Clock frequency in MHz (66), minus 1, shifted
4484 * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit
4485 * for the whole chip!
4486 */
4487 regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
4488 regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
4489 bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
4490
4491 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
4492 drv_usecwait(40);
4493 /* put PHY into ready state */
4494 bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
4495 (void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
4496 drv_usecwait(40);
4497 }
4498
4499 /*
4500 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
4501 *
4502 * If the mbuf_length is specified as 0, we just leave these at
4503 * their hardware defaults, rather than explicitly setting them.
4504 * As the Broadcom HRM,driver better not change the parameters
4505 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
4506 */
4507 if ((bgep->chipid.mbuf_length != 0) &&
4508 (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
4509 bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
4510 bgep->chipid.mbuf_base);
4511 bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
4512 bgep->chipid.mbuf_length);
4513 bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
4514 DMAD_POOL_BASE_DEFAULT);
4515 bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
4516 DMAD_POOL_LENGTH_DEFAULT);
4517 }
4518
4519 /*
4520 * Step 32: configure MAC memory pool watermarks
4521 */
4522 bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
4523 bgep->chipid.mbuf_lo_water_rdma);
4524 bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
4525 bgep->chipid.mbuf_lo_water_rmac);
4526 bge_reg_put32(bgep, MBUF_HIWAT_REG,
4527 bgep->chipid.mbuf_hi_water);
4528
4529 /*
4530 * Step 33: configure DMA resource watermarks
4531 */
4532 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4533 bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
4534 bge_dmad_lo_water);
4535 bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
4536 bge_dmad_hi_water);
4537 }
4538 bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
4539
4540 /*
4541 * Steps 34-36: enable buffer manager & internal h/w queues
4542 */
4543 regval = STATE_MACHINE_ATTN_ENABLE_BIT;
4544 if (bgep->chipid.device == DEVICE_ID_5719)
4545 regval |= BUFFER_MANAGER_MODE_NO_TX_UNDERRUN;
4546 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4547 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4548 DEVICE_57765_SERIES_CHIPSETS(bgep))
4549 regval |= BUFFER_MANAGER_MODE_MBLOW_ATTN_ENABLE;
4550 if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, regval))
4551 retval = DDI_FAILURE;
4552
4553 if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
4554 retval = DDI_FAILURE;
4555
4556 /*
4557 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
4558 */
4559 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4560 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4561 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4562 buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
4563 bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
4564 brp->desc.cookie.dmac_laddress);
4565 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
4566 (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
4567 if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4568 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4569 NIC_MEM_SHADOW_BUFF_STD);
4570 } else {
4571 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4572 NIC_MEM_SHADOW_BUFF_STD_5717);
4573 }
4574 } else {
4575 bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
4576 &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
4577 }
4578
4579 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4580 bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
4581 &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
4582 bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
4583 &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
4584 }
4585
4586 /*
4587 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
4588 */
4589 bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
4590 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4591 bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
4592 bge_replenish_jumbo);
4593 bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
4594 bge_replenish_mini);
4595 }
4596
4597 /*
4598 * Steps 41-43: clear Send Ring Producer Indices and initialise
4599 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
4600 */
4601 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4602 maxring = BGE_SEND_RINGS_MAX;
4603 else
4604 maxring = BGE_SEND_RINGS_MAX_5705;
4605 for (ring = 0; ring < maxring; ++ring) {
4606 bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
4607 bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
4608 bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
4609 &bgep->send[ring].hw_rcb);
4610 }
4611
4612 /*
4613 * Steps 44-45: initialise Receive Return Rings
4614 * (0x0200-0x02ff in NIC-local memory)
4615 */
4616 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4617 maxring = BGE_RECV_RINGS_MAX;
4618 else
4619 maxring = BGE_RECV_RINGS_MAX_5705;
4620 for (ring = 0; ring < maxring; ++ring)
4621 bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
4622 &bgep->recv[ring].hw_rcb);
4623
4624 /*
4625 * Step 46: initialise Receive Buffer (Producer) Ring indexes
4626 */
4627 bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
4628 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4629 bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
4630 bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
4631 }
4632 /*
4633 * Step 47: configure the MAC unicast address
4634 * Step 48: configure the random backoff seed
4635 * Step 96: set up multicast filters
4636 */
4637 #ifdef BGE_IPMI_ASF
4638 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
4639 #else
4640 if (bge_chip_sync(bgep) == DDI_FAILURE)
4641 #endif
4642 retval = DDI_FAILURE;
4643
4644 /*
4645 * Step 49: configure the MTU
4646 */
4647 mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
4648 bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
4649
4650 /*
4651 * Step 50: configure the IPG et al
4652 */
4653 bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
4654
4655 /*
4656 * Step 51: configure the default Rx Return Ring
4657 */
4658 bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
4659
4660 /*
4661 * Steps 52-54: configure Receive List Placement,
4662 * and enable Receive List Placement Statistics
4663 */
4664 bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
4665 RCV_LP_CONFIG(bgep->chipid.rx_rings));
4666 switch (MHCR_CHIP_ASIC_REV(bgep)) {
4667 case MHCR_CHIP_ASIC_REV_5700:
4668 case MHCR_CHIP_ASIC_REV_5701:
4669 case MHCR_CHIP_ASIC_REV_5703:
4670 case MHCR_CHIP_ASIC_REV_5704:
4671 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
4672 break;
4673 case MHCR_CHIP_ASIC_REV_5705:
4674 break;
4675 default:
4676 stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
4677 stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
4678 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
4679 break;
4680 }
4681 bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
4682
4683 if (bgep->chipid.rx_rings > 1)
4684 bge_init_recv_rule(bgep);
4685
4686 /*
4687 * Steps 55-56: enable Send Data Initiator Statistics
4688 */
4689 bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
4690 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4691 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4692 SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
4693 } else {
4694 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4695 SEND_INIT_STATS_ENABLE);
4696 }
4697 /*
4698 * Steps 57-58: stop (?) the Host Coalescing Engine
4699 */
4700 if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
4701 retval = DDI_FAILURE;
4702
4703 /*
4704 * Steps 59-62: initialise Host Coalescing parameters
4705 */
4706 bge_chip_coalesce_update(bgep);
4707 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4708 bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
4709 bge_tx_count_intr);
4710 bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
4711 bge_tx_ticks_intr);
4712 bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
4713 bge_rx_count_intr);
4714 bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
4715 bge_rx_ticks_intr);
4716 }
4717
4718 /*
4719 * Steps 63-64: initialise status block & statistics
4720 * host memory addresses
4721 * The statistic block does not exist in some chipsets
4722 * Step 65: initialise Statistics Coalescing Tick Counter
4723 */
4724 bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
4725 bgep->status_block.cookie.dmac_laddress);
4726
4727 /*
4728 * Steps 66-67: initialise status block & statistics
4729 * NIC-local memory addresses
4730 */
4731 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4732 bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
4733 bgep->statistics.cookie.dmac_laddress);
4734 bge_reg_put32(bgep, STATISTICS_TICKS_REG,
4735 STATISTICS_TICKS_DEFAULT);
4736 bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
4737 NIC_MEM_STATUS_BLOCK);
4738 bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
4739 NIC_MEM_STATISTICS);
4740 }
4741
4742 /*
4743 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
4744 * Completion Engine, the Receive List Placement Engine, and the
4745 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
4746 * and BCM5715.
4747 */
4748
4749 if (bgep->chipid.device == DEVICE_ID_5719) {
4750 for (i = 0; i < BGE_NUM_RDMA_CHANNELS; i++) {
4751 if (bge_reg_get32(bgep, (BGE_RDMA_LENGTH + (i << 2))) >
4752 bgep->chipid.default_mtu)
4753 break;
4754 }
4755 if (i < BGE_NUM_RDMA_CHANNELS) {
4756 regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
4757 regval |= RDMA_CORR_CTRL_TX_LENGTH_WA;
4758 bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
4759 bgep->rdma_length_bug_on_5719 = B_TRUE;
4760 }
4761 }
4762
4763 if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
4764 bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
4765 coalmode = COALESCE_64_BYTE_STATUS;
4766 else
4767 coalmode = 0;
4768 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4769 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4770 DEVICE_57765_SERIES_CHIPSETS(bgep))
4771 coalmode = COALESCE_CLR_TICKS_RX;
4772 if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4773 retval = DDI_FAILURE;
4774 if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4775 STATE_MACHINE_ATTN_ENABLE_BIT))
4776 retval = DDI_FAILURE;
4777 if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4778 retval = DDI_FAILURE;
4779
4780 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4781 if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4782 STATE_MACHINE_ATTN_ENABLE_BIT))
4783 retval = DDI_FAILURE;
4784
4785 /*
4786 * Step 72: Enable MAC DMA engines
4787 * Step 73: Clear & enable MAC statistics
4788 */
4789 if (bgep->ape_enabled) {
4790 /* XXX put32 instead of set32 ? */
4791 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4792 ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4793 }
4794 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4795 ETHERNET_MODE_ENABLE_FHDE |
4796 ETHERNET_MODE_ENABLE_RDE |
4797 ETHERNET_MODE_ENABLE_TDE);
4798 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4799 ETHERNET_MODE_ENABLE_TX_STATS |
4800 ETHERNET_MODE_ENABLE_RX_STATS |
4801 ETHERNET_MODE_CLEAR_TX_STATS |
4802 ETHERNET_MODE_CLEAR_RX_STATS);
4803
4804 drv_usecwait(140);
4805
4806 if (bgep->ape_enabled) {
4807 /* Write our heartbeat update interval to APE. */
4808 bge_ape_put32(bgep, BGE_APE_HOST_HEARTBEAT_INT_MS,
4809 APE_HOST_HEARTBEAT_INT_DISABLE);
4810 }
4811
4812 /*
4813 * Step 74: configure the MLCR (Miscellaneous Local Control
4814 * Register); not required, as we set up the MLCR in step 10
4815 * (part of the reset code) above.
4816 *
4817 * Step 75: clear Interrupt Mailbox 0
4818 */
4819 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4820
4821 /*
4822 * Steps 76-87: Gentlemen, start your engines ...
4823 *
4824 * Enable the DMA Completion Engine, the Write DMA Engine,
4825 * the Read DMA Engine, Receive Data Completion Engine,
4826 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4827 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4828 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4829 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4830 *
4831 * Beware exhaust fumes?
4832 */
4833 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4834 if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4835 retval = DDI_FAILURE;
4836 dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4837 ALL_DMA_ATTN_BITS;
4838 /* the 5723 check here covers all newer chip families (OK) */
4839 if ((MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5755) ||
4840 (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5723) ||
4841 (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906)) {
4842 dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4843 }
4844 if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4845 dma_wrprio))
4846 retval = DDI_FAILURE;
4847
4848 drv_usecwait(40);
4849
4850 /*
4851 * These chipsets no longer use the rdprio logic (bits 31:30 are
4852 * reserved).
4853 */
4854 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4855 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4856 DEVICE_5725_SERIES_CHIPSETS(bgep))
4857 bge_dma_rdprio = 0;
4858 if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4859 (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4860 retval = DDI_FAILURE;
4861
4862 drv_usecwait(40);
4863
4864 if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4865 STATE_MACHINE_ATTN_ENABLE_BIT))
4866 retval = DDI_FAILURE;
4867 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4868 if (!bge_chip_enable_engine(bgep,
4869 MBUF_CLUSTER_FREE_MODE_REG, 0))
4870 retval = DDI_FAILURE;
4871 if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4872 retval = DDI_FAILURE;
4873 if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4874 STATE_MACHINE_ATTN_ENABLE_BIT))
4875 retval = DDI_FAILURE;
4876 if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4877 RCV_BD_DISABLED_RING_ATTN))
4878 retval = DDI_FAILURE;
4879 if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4880 RCV_DATA_BD_ILL_RING_ATTN))
4881 retval = DDI_FAILURE;
4882 if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4883 retval = DDI_FAILURE;
4884 if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4885 STATE_MACHINE_ATTN_ENABLE_BIT))
4886 retval = DDI_FAILURE;
4887 if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4888 STATE_MACHINE_ATTN_ENABLE_BIT))
4889 retval = DDI_FAILURE;
4890
4891 drv_usecwait(40);
4892
4893 /*
4894 * Step 88: download firmware -- doesn't apply
4895 * Steps 89-90: enable Transmit & Receive MAC Engines
4896 */
4897 regval = 0;
4898 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4899 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4900 regval |= TRANSMIT_MODE_MBUF_LOCKUP_FIX;
4901 }
4902 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, regval))
4903 retval = DDI_FAILURE;
4904
4905 drv_usecwait(100);
4906
4907 #ifdef BGE_IPMI_ASF
4908 if (!bgep->asf_enabled) {
4909 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4910 RECEIVE_MODE_KEEP_VLAN_TAG))
4911 retval = DDI_FAILURE;
4912 } else {
4913 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4914 retval = DDI_FAILURE;
4915 }
4916 #else
4917 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4918 RECEIVE_MODE_KEEP_VLAN_TAG))
4919 retval = DDI_FAILURE;
4920 #endif
4921
4922 drv_usecwait(100);
4923
4924 /*
4925 * Step 91: disable auto-polling of PHY status
4926 */
4927 bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4928
4929 /*
4930 * Step 92: configure D0 power state (not required)
4931 * Step 93: initialise LED control register ()
4932 */
4933 ledctl = LED_CONTROL_DEFAULT;
4934 switch (bgep->chipid.device) {
4935 case DEVICE_ID_5700:
4936 case DEVICE_ID_5700x:
4937 case DEVICE_ID_5701:
4938 /*
4939 * Switch to 5700 (MAC) mode on these older chips
4940 */
4941 ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4942 ledctl |= LED_CONTROL_LED_MODE_5700;
4943 break;
4944
4945 default:
4946 break;
4947 }
4948 bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4949
4950 /*
4951 * Step 94: activate link
4952 */
4953 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4954
4955 /*
4956 * Step 95: set up physical layer (PHY/SerDes)
4957 * restart autoneg (if required)
4958 */
4959 if (reset_phys)
4960 {
4961 if (bge_phys_update(bgep) == DDI_FAILURE)
4962 retval = DDI_FAILURE;
4963 /* forcing a mac link update here */
4964 bge_phys_check(bgep);
4965 bgep->link_state = (bgep->param_link_up) ? LINK_STATE_UP :
4966 LINK_STATE_DOWN;
4967 bge_sync_mac_modes(bgep);
4968 mac_link_update(bgep->mh, bgep->link_state);
4969 }
4970
4971 /*
4972 * Extra step (DSG): hand over all the Receive Buffers to the chip
4973 */
4974 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4975 bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4976 bgep->buff[ring].rf_next);
4977
4978 /*
4979 * MSI bits:The least significant MSI 16-bit word.
4980 * ISR will be triggered different.
4981 */
4982 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4983 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4984
4985 /*
4986 * Extra step (DSG): select which interrupts are enabled
4987 *
4988 * Program the Ethernet MAC engine to signal attention on
4989 * Link Change events, then enable interrupts on MAC, DMA,
4990 * and FLOW attention signals.
4991 */
4992 bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4993 ETHERNET_EVENT_LINK_INT |
4994 ETHERNET_STATUS_PCS_ERROR_INT);
4995 #ifdef BGE_IPMI_ASF
4996 if (bgep->asf_enabled) {
4997 bge_reg_set32(bgep, MODE_CONTROL_REG,
4998 MODE_INT_ON_FLOW_ATTN |
4999 MODE_INT_ON_DMA_ATTN |
5000 MODE_HOST_STACK_UP|
5001 MODE_INT_ON_MAC_ATTN);
5002 } else {
5003 #endif
5004 bge_reg_set32(bgep, MODE_CONTROL_REG,
5005 MODE_INT_ON_FLOW_ATTN |
5006 MODE_INT_ON_DMA_ATTN |
5007 MODE_INT_ON_MAC_ATTN);
5008 #ifdef BGE_IPMI_ASF
5009 }
5010 #endif
5011
5012 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5013 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
5014 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
5015 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
5016 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
5017 #if 0
5018 mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
5019 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
5020 (mhcr | MHCR_TLP_MINOR_ERR_TOLERANCE));
5021 #endif
5022 }
5023
5024 /*
5025 * Step 97: enable PCI interrupts!!!
5026 */
5027 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
5028 bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
5029 bgep->chipid.mask_pci_int);
5030
5031 /*
5032 * All done!
5033 */
5034 bgep->bge_chip_state = BGE_CHIP_RUNNING;
5035 return (retval);
5036 }
5037
5038
5039 /*
5040 * ========== Hardware interrupt handler ==========
5041 */
5042
5043 #undef BGE_DBG
5044 #define BGE_DBG BGE_DBG_INT /* debug flag for this code */
5045
5046 /*
5047 * Sync the status block, then atomically clear the specified bits in
5048 * the <flags-and-tag> field of the status block.
5049 * the <flags> word of the status block, returning the value of the
5050 * <tag> and the <flags> before the bits were cleared.
5051 */
5052 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
5053 #pragma inline(bge_status_sync)
5054
5055 static int
bge_status_sync(bge_t * bgep,uint64_t bits,uint64_t * flags)5056 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
5057 {
5058 bge_status_t *bsp;
5059 int retval;
5060
5061 BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
5062 (void *)bgep, bits));
5063
5064 ASSERT(bgep->bge_guard == BGE_GUARD);
5065
5066 DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
5067 retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
5068 if (retval != DDI_FM_OK)
5069 return (retval);
5070
5071 bsp = DMA_VPTR(bgep->status_block);
5072 *flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
5073
5074 BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
5075 (void *)bgep, bits, *flags));
5076
5077 return (retval);
5078 }
5079
5080 void bge_wake_factotum(bge_t *bgep);
5081 #pragma inline(bge_wake_factotum)
5082
5083 void
bge_wake_factotum(bge_t * bgep)5084 bge_wake_factotum(bge_t *bgep)
5085 {
5086 mutex_enter(bgep->softintrlock);
5087 if (bgep->factotum_flag == 0) {
5088 bgep->factotum_flag = 1;
5089 ddi_trigger_softintr(bgep->factotum_id);
5090 }
5091 mutex_exit(bgep->softintrlock);
5092 }
5093
5094 static void
bge_intr_error_handler(bge_t * bgep)5095 bge_intr_error_handler(bge_t *bgep)
5096 {
5097 uint32_t flow;
5098 uint32_t rdma;
5099 uint32_t wdma;
5100 uint32_t tmac;
5101 uint32_t rmac;
5102 uint32_t rxrs;
5103 uint32_t emac;
5104 uint32_t msis;
5105 uint32_t txrs = 0;
5106
5107 ASSERT(mutex_owned(bgep->genlock));
5108
5109 /*
5110 * Read all the registers that show the possible
5111 * reasons for the ERROR bit to be asserted
5112 */
5113 flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
5114 rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
5115 wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
5116 tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
5117 rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
5118 rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
5119 emac = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
5120 msis = bge_reg_get32(bgep, MSI_STATUS_REG);
5121 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5122 txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
5123
5124 BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x emac 0x%x msis 0x%x",
5125 (void *)bgep, flow, rdma, wdma, emac, msis));
5126 BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
5127 (void *)bgep, tmac, rmac, rxrs, txrs));
5128
5129 /*
5130 * For now, just clear all the errors ...
5131 */
5132 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5133 bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
5134 bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
5135 bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
5136 bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
5137 bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
5138 bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
5139 }
5140
5141 /*
5142 * bge_intr() -- handle chip interrupts
5143 */
5144 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
5145 #pragma no_inline(bge_intr)
5146
5147 uint_t
bge_intr(caddr_t arg1,caddr_t arg2)5148 bge_intr(caddr_t arg1, caddr_t arg2)
5149 {
5150 bge_t *bgep = (void *)arg1; /* private device info */
5151 bge_status_t *bsp;
5152 uint64_t flags;
5153 uint32_t regval;
5154 uint_t result;
5155 int retval, loop_cnt = 0;
5156
5157 BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
5158
5159 /*
5160 * GLD v2 checks that s/w setup is complete before passing
5161 * interrupts to this routine, thus eliminating the old
5162 * (and well-known) race condition around ddi_add_intr()
5163 */
5164 ASSERT(bgep->progress & PROGRESS_HWINT);
5165
5166 result = DDI_INTR_UNCLAIMED;
5167 mutex_enter(bgep->genlock);
5168
5169 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5170 /*
5171 * Check whether chip's says it's asserting #INTA;
5172 * if not, don't process or claim the interrupt.
5173 *
5174 * Note that the PCI signal is active low, so the
5175 * bit is *zero* when the interrupt is asserted.
5176 */
5177 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
5178 if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5179 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
5180 DEVICE_57765_SERIES_CHIPSETS(bgep)) &&
5181 (regval & MLCR_INTA_STATE)) {
5182 if (bge_check_acc_handle(bgep, bgep->io_handle)
5183 != DDI_FM_OK)
5184 goto chip_stop;
5185 mutex_exit(bgep->genlock);
5186 return (result);
5187 }
5188
5189 /*
5190 * Block further PCI interrupts ...
5191 */
5192 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
5193 bgep->chipid.mask_pci_int);
5194
5195 } else {
5196 /*
5197 * Check MSI status
5198 */
5199 regval = bge_reg_get32(bgep, MSI_STATUS_REG);
5200 if (regval & MSI_ERROR_ATTENTION) {
5201 BGE_REPORT((bgep, "msi error attention,"
5202 " status=0x%x", regval));
5203 bge_reg_put32(bgep, MSI_STATUS_REG, regval);
5204 }
5205 }
5206
5207 result = DDI_INTR_CLAIMED;
5208
5209 BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
5210
5211 /*
5212 * Sync the status block and grab the flags-n-tag from it.
5213 * We count the number of interrupts where there doesn't
5214 * seem to have been a DMA update of the status block; if
5215 * it *has* been updated, the counter will be cleared in
5216 * the while() loop below ...
5217 */
5218 bgep->missed_dmas += 1;
5219 bsp = DMA_VPTR(bgep->status_block);
5220 for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
5221 if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
5222 /*
5223 * bge_chip_stop() may have freed dma area etc
5224 * while we were in this interrupt handler -
5225 * better not call bge_status_sync()
5226 */
5227 (void) bge_check_acc_handle(bgep,
5228 bgep->io_handle);
5229 mutex_exit(bgep->genlock);
5230 return (DDI_INTR_CLAIMED);
5231 }
5232
5233 retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED |
5234 STATUS_FLAG_LINK_CHANGED | STATUS_FLAG_ERROR, &flags);
5235 if (retval != DDI_FM_OK) {
5236 bgep->bge_dma_error = B_TRUE;
5237 goto chip_stop;
5238 }
5239
5240 if (!(flags & STATUS_FLAG_UPDATED))
5241 break;
5242
5243 /*
5244 * Tell the chip that we're processing the interrupt
5245 */
5246 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5247 INTERRUPT_MBOX_DISABLE(flags));
5248 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5249 DDI_FM_OK)
5250 goto chip_stop;
5251
5252 if (flags & STATUS_FLAG_LINK_CHANGED) {
5253 BGE_DEBUG(("bge_intr($%p) ($%p) link event", arg1, arg2));
5254 if (bge_phys_check(bgep)) {
5255 bgep->link_state = bgep->param_link_up ?
5256 LINK_STATE_UP : LINK_STATE_DOWN;
5257 bge_sync_mac_modes(bgep);
5258 mac_link_update(bgep->mh, bgep->link_state);
5259 }
5260
5261 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5262 DDI_FM_OK)
5263 goto chip_stop;
5264 }
5265
5266 if (flags & STATUS_FLAG_ERROR) {
5267 bge_intr_error_handler(bgep);
5268
5269 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5270 DDI_FM_OK)
5271 goto chip_stop;
5272 }
5273
5274 /*
5275 * Drop the mutex while we:
5276 * Receive any newly-arrived packets
5277 * Recycle any newly-finished send buffers
5278 */
5279 bgep->bge_intr_running = B_TRUE;
5280 mutex_exit(bgep->genlock);
5281 bge_receive(bgep, bsp);
5282 (void) bge_recycle(bgep, bsp);
5283 mutex_enter(bgep->genlock);
5284 bgep->bge_intr_running = B_FALSE;
5285
5286 /*
5287 * Tell the chip we've finished processing, and
5288 * give it the tag that we got from the status
5289 * block earlier, so that it knows just how far
5290 * we've gone. If it's got more for us to do,
5291 * it will now update the status block and try
5292 * to assert an interrupt (but we've got the
5293 * #INTA blocked at present). If we see the
5294 * update, we'll loop around to do some more.
5295 * Eventually we'll get out of here ...
5296 */
5297 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5298 INTERRUPT_MBOX_ENABLE(flags));
5299 if (bgep->chipid.pci_type == BGE_PCI_E)
5300 (void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
5301 bgep->missed_dmas = 0;
5302 }
5303
5304 if (bgep->missed_dmas) {
5305 /*
5306 * Probably due to the internal status tag not
5307 * being reset. Force a status block update now;
5308 * this should ensure that we get an update and
5309 * a new interrupt. After that, we should be in
5310 * sync again ...
5311 */
5312 BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
5313 "not updated?", flags));
5314 bgep->missed_updates++;
5315 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
5316 COALESCE_NOW);
5317
5318 if (bgep->missed_dmas >= bge_dma_miss_limit) {
5319 /*
5320 * If this happens multiple times in a row,
5321 * it means DMA is just not working. Maybe
5322 * the chip's failed, or maybe there's a
5323 * problem on the PCI bus or in the host-PCI
5324 * bridge (Tomatillo).
5325 *
5326 * At all events, we want to stop further
5327 * interrupts and let the recovery code take
5328 * over to see whether anything can be done
5329 * about it ...
5330 */
5331 bge_fm_ereport(bgep,
5332 DDI_FM_DEVICE_BADINT_LIMIT);
5333 goto chip_stop;
5334 }
5335 }
5336
5337 /*
5338 * Reenable assertion of #INTA, unless there's a DMA fault
5339 */
5340 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5341 bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
5342 bgep->chipid.mask_pci_int);
5343 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5344 DDI_FM_OK)
5345 goto chip_stop;
5346 }
5347
5348 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5349 goto chip_stop;
5350
5351 mutex_exit(bgep->genlock);
5352 return (result);
5353
5354 chip_stop:
5355
5356 #ifdef BGE_IPMI_ASF
5357 if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
5358 /*
5359 * We must stop ASF heart beat before
5360 * bge_chip_stop(), otherwise some
5361 * computers (ex. IBM HS20 blade
5362 * server) may crash.
5363 */
5364 bge_asf_update_status(bgep);
5365 bge_asf_stop_timer(bgep);
5366 bgep->asf_status = ASF_STAT_STOP;
5367
5368 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5369 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5370 }
5371 #endif
5372 bge_chip_stop(bgep, B_TRUE);
5373 (void) bge_check_acc_handle(bgep, bgep->io_handle);
5374 mutex_exit(bgep->genlock);
5375 return (result);
5376 }
5377
5378 /*
5379 * ========== Factotum, implemented as a softint handler ==========
5380 */
5381
5382 #undef BGE_DBG
5383 #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */
5384
5385 /*
5386 * Factotum routine to check for Tx stall, using the 'watchdog' counter
5387 */
5388 static boolean_t bge_factotum_stall_check(bge_t *bgep);
5389 #pragma no_inline(bge_factotum_stall_check)
5390
5391 static boolean_t
bge_factotum_stall_check(bge_t * bgep)5392 bge_factotum_stall_check(bge_t *bgep)
5393 {
5394 uint32_t dogval;
5395 bge_status_t *bsp;
5396 uint64_t now = gethrtime();
5397
5398 if ((now - bgep->timestamp) < BGE_CYCLIC_PERIOD)
5399 return (B_FALSE);
5400
5401 bgep->timestamp = now;
5402
5403 ASSERT(mutex_owned(bgep->genlock));
5404
5405 /*
5406 * Specific check for Tx stall ...
5407 *
5408 * The 'watchdog' counter is incremented whenever a packet
5409 * is queued, reset to 1 when some (but not all) buffers
5410 * are reclaimed, reset to 0 (disabled) when all buffers
5411 * are reclaimed, and shifted left here. If it exceeds the
5412 * threshold value, the chip is assumed to have stalled and
5413 * is put into the ERROR state. The factotum will then reset
5414 * it on the next pass.
5415 *
5416 * All of which should ensure that we don't get into a state
5417 * where packets are left pending indefinitely!
5418 */
5419 dogval = bge_atomic_shl32(&bgep->watchdog, 1);
5420 bsp = DMA_VPTR(bgep->status_block);
5421 if (dogval < bge_watchdog_count || bge_recycle(bgep, bsp))
5422 return (B_FALSE);
5423
5424 #if !defined(BGE_NETCONSOLE)
5425 BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
5426 #endif
5427 bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
5428 return (B_TRUE);
5429 }
5430
5431 /*
5432 * The factotum is woken up when there's something to do that we'd rather
5433 * not do from inside a hardware interrupt handler or high-level cyclic.
5434 * Its main task is to reset & restart the chip after an error.
5435 */
5436 uint_t bge_chip_factotum(caddr_t arg);
5437 #pragma no_inline(bge_chip_factotum)
5438
5439 uint_t
bge_chip_factotum(caddr_t arg)5440 bge_chip_factotum(caddr_t arg)
5441 {
5442 bge_t *bgep;
5443 uint_t result;
5444 boolean_t error;
5445 int dma_state;
5446
5447 bgep = (void *)arg;
5448
5449 BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
5450
5451 mutex_enter(bgep->softintrlock);
5452 if (bgep->factotum_flag == 0) {
5453 mutex_exit(bgep->softintrlock);
5454 return (DDI_INTR_UNCLAIMED);
5455 }
5456 bgep->factotum_flag = 0;
5457 mutex_exit(bgep->softintrlock);
5458
5459 result = DDI_INTR_CLAIMED;
5460 error = B_FALSE;
5461
5462 mutex_enter(bgep->genlock);
5463 switch (bgep->bge_chip_state) {
5464 default:
5465 break;
5466
5467 case BGE_CHIP_RUNNING:
5468
5469 if (bgep->chipid.device == DEVICE_ID_5700) {
5470 if (bge_phys_check(bgep)) {
5471 bgep->link_state = (bgep->param_link_up) ?
5472 LINK_STATE_UP : LINK_STATE_DOWN;
5473 bge_sync_mac_modes(bgep);
5474 mac_link_update(bgep->mh, bgep->link_state);
5475 }
5476 }
5477
5478 error = bge_factotum_stall_check(bgep);
5479 if (dma_state != DDI_FM_OK) {
5480 bgep->bge_dma_error = B_TRUE;
5481 error = B_TRUE;
5482 }
5483 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5484 error = B_TRUE;
5485 if (error)
5486 bgep->bge_chip_state = BGE_CHIP_ERROR;
5487 break;
5488
5489 case BGE_CHIP_ERROR:
5490 error = B_TRUE;
5491 break;
5492
5493 case BGE_CHIP_FAULT:
5494 /*
5495 * Fault detected, time to reset ...
5496 */
5497 if (bge_autorecover) {
5498 if (!(bgep->progress & PROGRESS_BUFS)) {
5499 /*
5500 * if we can't allocate the ring buffers,
5501 * try later
5502 */
5503 if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
5504 mutex_exit(bgep->genlock);
5505 return (result);
5506 }
5507 bgep->progress |= PROGRESS_BUFS;
5508 }
5509 if (!(bgep->progress & PROGRESS_INTR)) {
5510 bge_init_rings(bgep);
5511 bge_intr_enable(bgep);
5512 bgep->progress |= PROGRESS_INTR;
5513 }
5514 if (!(bgep->progress & PROGRESS_KSTATS)) {
5515 bge_init_kstats(bgep,
5516 ddi_get_instance(bgep->devinfo));
5517 bgep->progress |= PROGRESS_KSTATS;
5518 }
5519
5520 BGE_REPORT((bgep, "automatic recovery activated"));
5521
5522 if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
5523 bgep->bge_chip_state = BGE_CHIP_ERROR;
5524 error = B_TRUE;
5525 }
5526 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5527 DDI_FM_OK) {
5528 bgep->bge_chip_state = BGE_CHIP_ERROR;
5529 error = B_TRUE;
5530 }
5531 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5532 DDI_FM_OK) {
5533 bgep->bge_chip_state = BGE_CHIP_ERROR;
5534 error = B_TRUE;
5535 }
5536 if (error == B_FALSE) {
5537 #ifdef BGE_IPMI_ASF
5538 if (bgep->asf_enabled &&
5539 bgep->asf_status != ASF_STAT_RUN) {
5540 bgep->asf_timeout_id = timeout(
5541 bge_asf_heartbeat, (void *)bgep,
5542 drv_usectohz(
5543 BGE_ASF_HEARTBEAT_INTERVAL));
5544 bgep->asf_status = ASF_STAT_RUN;
5545 }
5546 #endif
5547 if (!bgep->manual_reset) {
5548 ddi_fm_service_impact(bgep->devinfo,
5549 DDI_SERVICE_RESTORED);
5550 }
5551 }
5552 }
5553 break;
5554 }
5555
5556 /*
5557 * If an error is detected, stop the chip now, marking it as
5558 * faulty, so that it will be reset next time through ...
5559 *
5560 * Note that if intr_running is set, then bge_intr() has dropped
5561 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
5562 * this point so have to wait until the next time the factotum runs.
5563 */
5564 if (error && !bgep->bge_intr_running) {
5565 #ifdef BGE_IPMI_ASF
5566 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
5567 /*
5568 * We must stop ASF heart beat before bge_chip_stop(),
5569 * otherwise some computers (ex. IBM HS20 blade server)
5570 * may crash.
5571 */
5572 bge_asf_update_status(bgep);
5573 bge_asf_stop_timer(bgep);
5574 bgep->asf_status = ASF_STAT_STOP;
5575
5576 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5577 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5578 }
5579 #endif
5580 bge_chip_stop(bgep, B_TRUE);
5581 (void) bge_check_acc_handle(bgep, bgep->io_handle);
5582 }
5583 mutex_exit(bgep->genlock);
5584
5585 return (result);
5586 }
5587
5588 /*
5589 * High-level cyclic handler
5590 *
5591 * This routine schedules a (low-level) softint callback to the
5592 * factotum, and prods the chip to update the status block (which
5593 * will cause a hardware interrupt when complete).
5594 */
5595 void bge_chip_cyclic(void *arg);
5596 #pragma no_inline(bge_chip_cyclic)
5597
5598 void
bge_chip_cyclic(void * arg)5599 bge_chip_cyclic(void *arg)
5600 {
5601 bge_t *bgep;
5602 uint32_t regval;
5603
5604 bgep = arg;
5605
5606 switch (bgep->bge_chip_state) {
5607 default:
5608 return;
5609
5610 case BGE_CHIP_RUNNING:
5611
5612 /* XXX I really don't like this forced interrupt... */
5613 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
5614 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5615 ddi_fm_service_impact(bgep->devinfo,
5616 DDI_SERVICE_UNAFFECTED);
5617
5618 break;
5619
5620 case BGE_CHIP_FAULT:
5621 case BGE_CHIP_ERROR:
5622
5623 break;
5624 }
5625
5626 mutex_enter(bgep->genlock);
5627
5628 if (bgep->eee_lpi_wait && !--bgep->eee_lpi_wait) {
5629 BGE_DEBUG(("eee cyclic, lpi enabled"));
5630 bge_eee_enable(bgep);
5631 }
5632
5633 if (bgep->rdma_length_bug_on_5719) {
5634 if ((bge_reg_get32(bgep, STAT_IFHCOUT_UPKGS_REG) +
5635 bge_reg_get32(bgep, STAT_IFHCOUT_MPKGS_REG) +
5636 bge_reg_get32(bgep, STAT_IFHCOUT_BPKGS_REG)) >
5637 BGE_NUM_RDMA_CHANNELS) {
5638 regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
5639 regval &= ~RDMA_CORR_CTRL_TX_LENGTH_WA;
5640 bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
5641 bgep->rdma_length_bug_on_5719 = B_FALSE;
5642 }
5643 }
5644
5645 mutex_exit(bgep->genlock);
5646
5647 bge_wake_factotum(bgep);
5648
5649 }
5650
5651
5652 /*
5653 * ========== Ioctl subfunctions ==========
5654 */
5655
5656 #undef BGE_DBG
5657 #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */
5658
5659 #if BGE_DEBUGGING || BGE_DO_PPIO
5660
5661 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5662 #pragma no_inline(bge_chip_peek_cfg)
5663
5664 static void
bge_chip_peek_cfg(bge_t * bgep,bge_peekpoke_t * ppd)5665 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5666 {
5667 uint64_t regval;
5668 uint64_t regno;
5669
5670 BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
5671 (void *)bgep, (void *)ppd));
5672
5673 regno = ppd->pp_acc_offset;
5674
5675 switch (ppd->pp_acc_size) {
5676 case 1:
5677 regval = pci_config_get8(bgep->cfg_handle, regno);
5678 break;
5679
5680 case 2:
5681 regval = pci_config_get16(bgep->cfg_handle, regno);
5682 break;
5683
5684 case 4:
5685 regval = pci_config_get32(bgep->cfg_handle, regno);
5686 break;
5687
5688 case 8:
5689 regval = pci_config_get64(bgep->cfg_handle, regno);
5690 break;
5691 }
5692
5693 ppd->pp_acc_data = regval;
5694 }
5695
5696 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5697 #pragma no_inline(bge_chip_poke_cfg)
5698
5699 static void
bge_chip_poke_cfg(bge_t * bgep,bge_peekpoke_t * ppd)5700 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5701 {
5702 uint64_t regval;
5703 uint64_t regno;
5704
5705 BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
5706 (void *)bgep, (void *)ppd));
5707
5708 regno = ppd->pp_acc_offset;
5709 regval = ppd->pp_acc_data;
5710
5711 switch (ppd->pp_acc_size) {
5712 case 1:
5713 pci_config_put8(bgep->cfg_handle, regno, regval);
5714 break;
5715
5716 case 2:
5717 pci_config_put16(bgep->cfg_handle, regno, regval);
5718 break;
5719
5720 case 4:
5721 pci_config_put32(bgep->cfg_handle, regno, regval);
5722 break;
5723
5724 case 8:
5725 pci_config_put64(bgep->cfg_handle, regno, regval);
5726 break;
5727 }
5728 }
5729
5730 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5731 #pragma no_inline(bge_chip_peek_reg)
5732
5733 static void
bge_chip_peek_reg(bge_t * bgep,bge_peekpoke_t * ppd)5734 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5735 {
5736 uint64_t regval;
5737 void *regaddr;
5738
5739 BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
5740 (void *)bgep, (void *)ppd));
5741
5742 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5743
5744 switch (ppd->pp_acc_size) {
5745 case 1:
5746 regval = ddi_get8(bgep->io_handle, regaddr);
5747 break;
5748
5749 case 2:
5750 regval = ddi_get16(bgep->io_handle, regaddr);
5751 break;
5752
5753 case 4:
5754 regval = ddi_get32(bgep->io_handle, regaddr);
5755 break;
5756
5757 case 8:
5758 regval = ddi_get64(bgep->io_handle, regaddr);
5759 break;
5760 }
5761
5762 ppd->pp_acc_data = regval;
5763 }
5764
5765 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5766 #pragma no_inline(bge_chip_peek_reg)
5767
5768 static void
bge_chip_poke_reg(bge_t * bgep,bge_peekpoke_t * ppd)5769 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5770 {
5771 uint64_t regval;
5772 void *regaddr;
5773
5774 BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5775 (void *)bgep, (void *)ppd));
5776
5777 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5778 regval = ppd->pp_acc_data;
5779
5780 switch (ppd->pp_acc_size) {
5781 case 1:
5782 ddi_put8(bgep->io_handle, regaddr, regval);
5783 break;
5784
5785 case 2:
5786 ddi_put16(bgep->io_handle, regaddr, regval);
5787 break;
5788
5789 case 4:
5790 ddi_put32(bgep->io_handle, regaddr, regval);
5791 break;
5792
5793 case 8:
5794 ddi_put64(bgep->io_handle, regaddr, regval);
5795 break;
5796 }
5797 BGE_PCICHK(bgep);
5798 }
5799
5800 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5801 #pragma no_inline(bge_chip_peek_nic)
5802
5803 static void
bge_chip_peek_nic(bge_t * bgep,bge_peekpoke_t * ppd)5804 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5805 {
5806 uint64_t regoff;
5807 uint64_t regval;
5808 void *regaddr;
5809
5810 BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5811 (void *)bgep, (void *)ppd));
5812
5813 regoff = ppd->pp_acc_offset;
5814 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5815 regoff &= MWBAR_GRANULE_MASK;
5816 regoff += NIC_MEM_WINDOW_OFFSET;
5817 regaddr = PIO_ADDR(bgep, regoff);
5818
5819 switch (ppd->pp_acc_size) {
5820 case 1:
5821 regval = ddi_get8(bgep->io_handle, regaddr);
5822 break;
5823
5824 case 2:
5825 regval = ddi_get16(bgep->io_handle, regaddr);
5826 break;
5827
5828 case 4:
5829 regval = ddi_get32(bgep->io_handle, regaddr);
5830 break;
5831
5832 case 8:
5833 regval = ddi_get64(bgep->io_handle, regaddr);
5834 break;
5835 }
5836
5837 ppd->pp_acc_data = regval;
5838 }
5839
5840 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5841 #pragma no_inline(bge_chip_poke_nic)
5842
5843 static void
bge_chip_poke_nic(bge_t * bgep,bge_peekpoke_t * ppd)5844 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5845 {
5846 uint64_t regoff;
5847 uint64_t regval;
5848 void *regaddr;
5849
5850 BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5851 (void *)bgep, (void *)ppd));
5852
5853 regoff = ppd->pp_acc_offset;
5854 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5855 regoff &= MWBAR_GRANULE_MASK;
5856 regoff += NIC_MEM_WINDOW_OFFSET;
5857 regaddr = PIO_ADDR(bgep, regoff);
5858 regval = ppd->pp_acc_data;
5859
5860 switch (ppd->pp_acc_size) {
5861 case 1:
5862 ddi_put8(bgep->io_handle, regaddr, regval);
5863 break;
5864
5865 case 2:
5866 ddi_put16(bgep->io_handle, regaddr, regval);
5867 break;
5868
5869 case 4:
5870 ddi_put32(bgep->io_handle, regaddr, regval);
5871 break;
5872
5873 case 8:
5874 ddi_put64(bgep->io_handle, regaddr, regval);
5875 break;
5876 }
5877 BGE_PCICHK(bgep);
5878 }
5879
5880 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5881 #pragma no_inline(bge_chip_peek_mii)
5882
5883 static void
bge_chip_peek_mii(bge_t * bgep,bge_peekpoke_t * ppd)5884 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5885 {
5886 BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5887 (void *)bgep, (void *)ppd));
5888
5889 ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5890 }
5891
5892 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5893 #pragma no_inline(bge_chip_poke_mii)
5894
5895 static void
bge_chip_poke_mii(bge_t * bgep,bge_peekpoke_t * ppd)5896 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5897 {
5898 BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5899 (void *)bgep, (void *)ppd));
5900
5901 bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5902 }
5903
5904 #if BGE_SEE_IO32
5905
5906 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5907 #pragma no_inline(bge_chip_peek_seeprom)
5908
5909 static void
bge_chip_peek_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5910 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5911 {
5912 uint32_t data;
5913 int err;
5914
5915 BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5916 (void *)bgep, (void *)ppd));
5917
5918 err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5919 ppd->pp_acc_data = err ? ~0ull : data;
5920 }
5921
5922 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5923 #pragma no_inline(bge_chip_poke_seeprom)
5924
5925 static void
bge_chip_poke_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5926 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5927 {
5928 uint32_t data;
5929
5930 BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5931 (void *)bgep, (void *)ppd));
5932
5933 data = ppd->pp_acc_data;
5934 (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5935 }
5936 #endif /* BGE_SEE_IO32 */
5937
5938 #if BGE_FLASH_IO32
5939
5940 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5941 #pragma no_inline(bge_chip_peek_flash)
5942
5943 static void
bge_chip_peek_flash(bge_t * bgep,bge_peekpoke_t * ppd)5944 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5945 {
5946 uint32_t data;
5947 int err;
5948
5949 BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5950 (void *)bgep, (void *)ppd));
5951
5952 err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5953 ppd->pp_acc_data = err ? ~0ull : data;
5954 }
5955
5956 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5957 #pragma no_inline(bge_chip_poke_flash)
5958
5959 static void
bge_chip_poke_flash(bge_t * bgep,bge_peekpoke_t * ppd)5960 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5961 {
5962 uint32_t data;
5963
5964 BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5965 (void *)bgep, (void *)ppd));
5966
5967 data = ppd->pp_acc_data;
5968 (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5969 ppd->pp_acc_offset, &data);
5970 }
5971 #endif /* BGE_FLASH_IO32 */
5972
5973 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5974 #pragma no_inline(bge_chip_peek_mem)
5975
5976 static void
bge_chip_peek_mem(bge_t * bgep,bge_peekpoke_t * ppd)5977 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5978 {
5979 uint64_t regval;
5980 void *vaddr;
5981
5982 BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5983 (void *)bgep, (void *)ppd));
5984
5985 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5986
5987 switch (ppd->pp_acc_size) {
5988 case 1:
5989 regval = *(uint8_t *)vaddr;
5990 break;
5991
5992 case 2:
5993 regval = *(uint16_t *)vaddr;
5994 break;
5995
5996 case 4:
5997 regval = *(uint32_t *)vaddr;
5998 break;
5999
6000 case 8:
6001 regval = *(uint64_t *)vaddr;
6002 break;
6003 }
6004
6005 BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
6006 (void *)bgep, (void *)ppd, regval, vaddr));
6007
6008 ppd->pp_acc_data = regval;
6009 }
6010
6011 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
6012 #pragma no_inline(bge_chip_poke_mem)
6013
6014 static void
bge_chip_poke_mem(bge_t * bgep,bge_peekpoke_t * ppd)6015 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
6016 {
6017 uint64_t regval;
6018 void *vaddr;
6019
6020 BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
6021 (void *)bgep, (void *)ppd));
6022
6023 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
6024 regval = ppd->pp_acc_data;
6025
6026 BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
6027 (void *)bgep, (void *)ppd, regval, vaddr));
6028
6029 switch (ppd->pp_acc_size) {
6030 case 1:
6031 *(uint8_t *)vaddr = (uint8_t)regval;
6032 break;
6033
6034 case 2:
6035 *(uint16_t *)vaddr = (uint16_t)regval;
6036 break;
6037
6038 case 4:
6039 *(uint32_t *)vaddr = (uint32_t)regval;
6040 break;
6041
6042 case 8:
6043 *(uint64_t *)vaddr = (uint64_t)regval;
6044 break;
6045 }
6046 }
6047
6048 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6049 struct iocblk *iocp);
6050 #pragma no_inline(bge_pp_ioctl)
6051
6052 static enum ioc_reply
bge_pp_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6053 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6054 {
6055 void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
6056 bge_peekpoke_t *ppd;
6057 dma_area_t *areap;
6058 uint64_t sizemask;
6059 uint64_t mem_va;
6060 uint64_t maxoff;
6061 boolean_t peek;
6062
6063 switch (cmd) {
6064 default:
6065 /* NOTREACHED */
6066 bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
6067 return (IOC_INVAL);
6068
6069 case BGE_PEEK:
6070 peek = B_TRUE;
6071 break;
6072
6073 case BGE_POKE:
6074 peek = B_FALSE;
6075 break;
6076 }
6077
6078 /*
6079 * Validate format of ioctl
6080 */
6081 if (iocp->ioc_count != sizeof (bge_peekpoke_t))
6082 return (IOC_INVAL);
6083 if (mp->b_cont == NULL)
6084 return (IOC_INVAL);
6085 ppd = (void *)mp->b_cont->b_rptr;
6086
6087 /*
6088 * Validate request parameters
6089 */
6090 switch (ppd->pp_acc_space) {
6091 default:
6092 return (IOC_INVAL);
6093
6094 case BGE_PP_SPACE_CFG:
6095 /*
6096 * Config space
6097 */
6098 sizemask = 8|4|2|1;
6099 mem_va = 0;
6100 maxoff = PCI_CONF_HDR_SIZE;
6101 ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
6102 break;
6103
6104 case BGE_PP_SPACE_REG:
6105 /*
6106 * Memory-mapped I/O space
6107 */
6108 sizemask = 8|4|2|1;
6109 mem_va = 0;
6110 maxoff = RIAAR_REGISTER_MAX;
6111 ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
6112 break;
6113
6114 case BGE_PP_SPACE_NIC:
6115 /*
6116 * NIC on-chip memory
6117 */
6118 sizemask = 8|4|2|1;
6119 mem_va = 0;
6120 maxoff = MWBAR_ONCHIP_MAX;
6121 ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
6122 break;
6123
6124 case BGE_PP_SPACE_MII:
6125 /*
6126 * PHY's MII registers
6127 * NB: all PHY registers are two bytes, but the
6128 * addresses increment in ones (word addressing).
6129 * So we scale the address here, then undo the
6130 * transformation inside the peek/poke functions.
6131 */
6132 ppd->pp_acc_offset *= 2;
6133 sizemask = 2;
6134 mem_va = 0;
6135 maxoff = (MII_MAXREG+1)*2;
6136 ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
6137 break;
6138
6139 #if BGE_SEE_IO32
6140 case BGE_PP_SPACE_SEEPROM:
6141 /*
6142 * Attached SEEPROM(s), if any.
6143 * NB: we use the high-order bits of the 'address' as
6144 * a device select to accommodate multiple SEEPROMS,
6145 * If each one is the maximum size (64kbytes), this
6146 * makes them appear contiguous. Otherwise, there may
6147 * be holes in the mapping. ENxS doesn't have any
6148 * SEEPROMs anyway ...
6149 */
6150 sizemask = 4;
6151 mem_va = 0;
6152 maxoff = SEEPROM_DEV_AND_ADDR_MASK;
6153 ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
6154 break;
6155 #endif /* BGE_SEE_IO32 */
6156
6157 #if BGE_FLASH_IO32
6158 case BGE_PP_SPACE_FLASH:
6159 /*
6160 * Attached Flash device (if any); a maximum of one device
6161 * is currently supported. But it can be up to 1MB (unlike
6162 * the 64k limit on SEEPROMs) so why would you need more ;-)
6163 */
6164 sizemask = 4;
6165 mem_va = 0;
6166 maxoff = NVM_FLASH_ADDR_MASK;
6167 ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
6168 break;
6169 #endif /* BGE_FLASH_IO32 */
6170
6171 case BGE_PP_SPACE_BGE:
6172 /*
6173 * BGE data structure!
6174 */
6175 sizemask = 8|4|2|1;
6176 mem_va = (uintptr_t)bgep;
6177 maxoff = sizeof (*bgep);
6178 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6179 break;
6180
6181 case BGE_PP_SPACE_STATUS:
6182 case BGE_PP_SPACE_STATISTICS:
6183 case BGE_PP_SPACE_TXDESC:
6184 case BGE_PP_SPACE_TXBUFF:
6185 case BGE_PP_SPACE_RXDESC:
6186 case BGE_PP_SPACE_RXBUFF:
6187 /*
6188 * Various DMA_AREAs
6189 */
6190 switch (ppd->pp_acc_space) {
6191 case BGE_PP_SPACE_TXDESC:
6192 areap = &bgep->tx_desc;
6193 break;
6194 case BGE_PP_SPACE_TXBUFF:
6195 areap = &bgep->tx_buff[0];
6196 break;
6197 case BGE_PP_SPACE_RXDESC:
6198 areap = &bgep->rx_desc[0];
6199 break;
6200 case BGE_PP_SPACE_RXBUFF:
6201 areap = &bgep->rx_buff[0];
6202 break;
6203 case BGE_PP_SPACE_STATUS:
6204 areap = &bgep->status_block;
6205 break;
6206 case BGE_PP_SPACE_STATISTICS:
6207 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
6208 areap = &bgep->statistics;
6209 break;
6210 }
6211
6212 sizemask = 8|4|2|1;
6213 mem_va = (uintptr_t)areap->mem_va;
6214 maxoff = areap->alength;
6215 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6216 break;
6217 }
6218
6219 switch (ppd->pp_acc_size) {
6220 default:
6221 return (IOC_INVAL);
6222
6223 case 8:
6224 case 4:
6225 case 2:
6226 case 1:
6227 if ((ppd->pp_acc_size & sizemask) == 0)
6228 return (IOC_INVAL);
6229 break;
6230 }
6231
6232 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
6233 return (IOC_INVAL);
6234
6235 if (ppd->pp_acc_offset >= maxoff)
6236 return (IOC_INVAL);
6237
6238 if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
6239 return (IOC_INVAL);
6240
6241 /*
6242 * All OK - go do it!
6243 */
6244 ppd->pp_acc_offset += mem_va;
6245 (*ppfn)(bgep, ppd);
6246 return (peek ? IOC_REPLY : IOC_ACK);
6247 }
6248
6249 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6250 struct iocblk *iocp);
6251 #pragma no_inline(bge_diag_ioctl)
6252
6253 static enum ioc_reply
bge_diag_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6254 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6255 {
6256 ASSERT(mutex_owned(bgep->genlock));
6257
6258 switch (cmd) {
6259 default:
6260 /* NOTREACHED */
6261 bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
6262 return (IOC_INVAL);
6263
6264 case BGE_DIAG:
6265 /*
6266 * Currently a no-op
6267 */
6268 return (IOC_ACK);
6269
6270 case BGE_PEEK:
6271 case BGE_POKE:
6272 return (bge_pp_ioctl(bgep, cmd, mp, iocp));
6273
6274 case BGE_PHY_RESET:
6275 return (IOC_RESTART_ACK);
6276
6277 case BGE_SOFT_RESET:
6278 case BGE_HARD_RESET:
6279 /*
6280 * Reset and reinitialise the 570x hardware
6281 */
6282 bgep->bge_chip_state = BGE_CHIP_FAULT;
6283 ddi_trigger_softintr(bgep->factotum_id);
6284 (void) bge_restart(bgep, cmd == BGE_HARD_RESET);
6285 return (IOC_ACK);
6286 }
6287
6288 /* NOTREACHED */
6289 }
6290
6291 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
6292
6293 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6294 struct iocblk *iocp);
6295 #pragma no_inline(bge_mii_ioctl)
6296
6297 static enum ioc_reply
bge_mii_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6298 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6299 {
6300 struct bge_mii_rw *miirwp;
6301
6302 /*
6303 * Validate format of ioctl
6304 */
6305 if (iocp->ioc_count != sizeof (struct bge_mii_rw))
6306 return (IOC_INVAL);
6307 if (mp->b_cont == NULL)
6308 return (IOC_INVAL);
6309 miirwp = (void *)mp->b_cont->b_rptr;
6310
6311 /*
6312 * Validate request parameters ...
6313 */
6314 if (miirwp->mii_reg > MII_MAXREG)
6315 return (IOC_INVAL);
6316
6317 switch (cmd) {
6318 default:
6319 /* NOTREACHED */
6320 bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
6321 return (IOC_INVAL);
6322
6323 case BGE_MII_READ:
6324 miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
6325 return (IOC_REPLY);
6326
6327 case BGE_MII_WRITE:
6328 bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
6329 return (IOC_ACK);
6330 }
6331
6332 /* NOTREACHED */
6333 }
6334
6335 #if BGE_SEE_IO32
6336
6337 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6338 struct iocblk *iocp);
6339 #pragma no_inline(bge_see_ioctl)
6340
6341 static enum ioc_reply
bge_see_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6342 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6343 {
6344 struct bge_see_rw *seerwp;
6345
6346 /*
6347 * Validate format of ioctl
6348 */
6349 if (iocp->ioc_count != sizeof (struct bge_see_rw))
6350 return (IOC_INVAL);
6351 if (mp->b_cont == NULL)
6352 return (IOC_INVAL);
6353 seerwp = (void *)mp->b_cont->b_rptr;
6354
6355 /*
6356 * Validate request parameters ...
6357 */
6358 if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
6359 return (IOC_INVAL);
6360
6361 switch (cmd) {
6362 default:
6363 /* NOTREACHED */
6364 bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
6365 return (IOC_INVAL);
6366
6367 case BGE_SEE_READ:
6368 case BGE_SEE_WRITE:
6369 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6370 seerwp->see_addr, &seerwp->see_data);
6371 return (IOC_REPLY);
6372 }
6373
6374 /* NOTREACHED */
6375 }
6376
6377 #endif /* BGE_SEE_IO32 */
6378
6379 #if BGE_FLASH_IO32
6380
6381 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6382 struct iocblk *iocp);
6383 #pragma no_inline(bge_flash_ioctl)
6384
6385 static enum ioc_reply
bge_flash_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6386 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6387 {
6388 struct bge_flash_rw *flashrwp;
6389
6390 /*
6391 * Validate format of ioctl
6392 */
6393 if (iocp->ioc_count != sizeof (struct bge_flash_rw))
6394 return (IOC_INVAL);
6395 if (mp->b_cont == NULL)
6396 return (IOC_INVAL);
6397 flashrwp = (void *)mp->b_cont->b_rptr;
6398
6399 /*
6400 * Validate request parameters ...
6401 */
6402 if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
6403 return (IOC_INVAL);
6404
6405 switch (cmd) {
6406 default:
6407 /* NOTREACHED */
6408 bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
6409 return (IOC_INVAL);
6410
6411 case BGE_FLASH_READ:
6412 case BGE_FLASH_WRITE:
6413 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6414 flashrwp->flash_addr, &flashrwp->flash_data);
6415 return (IOC_REPLY);
6416 }
6417
6418 /* NOTREACHED */
6419 }
6420
6421 #endif /* BGE_FLASH_IO32 */
6422
6423 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
6424 struct iocblk *iocp);
6425 #pragma no_inline(bge_chip_ioctl)
6426
6427 enum ioc_reply
bge_chip_ioctl(bge_t * bgep,queue_t * wq,mblk_t * mp,struct iocblk * iocp)6428 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
6429 {
6430 int cmd;
6431
6432 BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
6433 (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
6434
6435 ASSERT(mutex_owned(bgep->genlock));
6436
6437 cmd = iocp->ioc_cmd;
6438 switch (cmd) {
6439 default:
6440 /* NOTREACHED */
6441 bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
6442 return (IOC_INVAL);
6443
6444 case BGE_DIAG:
6445 case BGE_PEEK:
6446 case BGE_POKE:
6447 case BGE_PHY_RESET:
6448 case BGE_SOFT_RESET:
6449 case BGE_HARD_RESET:
6450 #if BGE_DEBUGGING || BGE_DO_PPIO
6451 return (bge_diag_ioctl(bgep, cmd, mp, iocp));
6452 #else
6453 return (IOC_INVAL);
6454 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
6455
6456 case BGE_MII_READ:
6457 case BGE_MII_WRITE:
6458 return (bge_mii_ioctl(bgep, cmd, mp, iocp));
6459
6460 #if BGE_SEE_IO32
6461 case BGE_SEE_READ:
6462 case BGE_SEE_WRITE:
6463 return (bge_see_ioctl(bgep, cmd, mp, iocp));
6464 #endif /* BGE_SEE_IO32 */
6465
6466 #if BGE_FLASH_IO32
6467 case BGE_FLASH_READ:
6468 case BGE_FLASH_WRITE:
6469 return (bge_flash_ioctl(bgep, cmd, mp, iocp));
6470 #endif /* BGE_FLASH_IO32 */
6471 }
6472
6473 /* NOTREACHED */
6474 }
6475
6476 /* ARGSUSED */
6477 void
bge_chip_blank(void * arg,time_t ticks,uint_t count,int flag)6478 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
6479 {
6480 recv_ring_t *rrp = arg;
6481 bge_t *bgep = rrp->bgep;
6482
6483 mutex_enter(bgep->genlock);
6484 rrp->poll_flag = flag;
6485 #ifdef NOT_YET
6486 /*
6487 * XXX-Sunay: Since most broadcom cards support only one
6488 * interrupt but multiple rx rings, we can't disable the
6489 * physical interrupt. This need to be done via capability
6490 * negotiation depending on the NIC.
6491 */
6492 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
6493 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
6494 #endif
6495 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6496 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
6497 mutex_exit(bgep->genlock);
6498 }
6499
6500 #ifdef BGE_IPMI_ASF
6501
6502 uint32_t
bge_nic_read32(bge_t * bgep,bge_regno_t addr)6503 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
6504 {
6505 uint32_t data;
6506
6507 #ifndef __sparc
6508 if (!bgep->asf_wordswapped) {
6509 /* a workaround word swap error */
6510 if (addr & 4)
6511 addr = addr - 4;
6512 else
6513 addr = addr + 4;
6514 }
6515 #else
6516 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
6517 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
6518 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
6519 addr = LE_32(addr);
6520 }
6521 #endif
6522
6523 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
6524 data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
6525 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
6526
6527 data = LE_32(data);
6528
6529 BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
6530 (void *)bgep, addr, data));
6531
6532 return (data);
6533 }
6534
6535 void
bge_asf_update_status(bge_t * bgep)6536 bge_asf_update_status(bge_t *bgep)
6537 {
6538 uint32_t event;
6539
6540 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
6541 bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
6542 bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3);
6543
6544 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6545 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6546 }
6547
6548
6549 /*
6550 * The driver is supposed to notify ASF that the OS is still running
6551 * every three seconds, otherwise the management server may attempt
6552 * to reboot the machine. If it hasn't actually failed, this is
6553 * not a desirable result. However, this isn't running as a real-time
6554 * thread, and even if it were, it might not be able to generate the
6555 * heartbeat in a timely manner due to system load. As it isn't a
6556 * significant strain on the machine, we will set the interval to half
6557 * of the required value.
6558 */
6559 void
bge_asf_heartbeat(void * arg)6560 bge_asf_heartbeat(void *arg)
6561 {
6562 bge_t *bgep = (bge_t *)arg;
6563
6564 mutex_enter(bgep->genlock);
6565 bge_asf_update_status((bge_t *)bgep);
6566 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6567 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6568 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
6569 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6570 mutex_exit(bgep->genlock);
6571 ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
6572 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
6573 }
6574
6575
6576 void
bge_asf_stop_timer(bge_t * bgep)6577 bge_asf_stop_timer(bge_t *bgep)
6578 {
6579 timeout_id_t tmp_id = 0;
6580
6581 while ((bgep->asf_timeout_id != 0) &&
6582 (tmp_id != bgep->asf_timeout_id)) {
6583 tmp_id = bgep->asf_timeout_id;
6584 (void) untimeout(tmp_id);
6585 }
6586 bgep->asf_timeout_id = 0;
6587 }
6588
6589
6590
6591 /*
6592 * This function should be placed at the earliest position of bge_attach().
6593 */
6594 void
bge_asf_get_config(bge_t * bgep)6595 bge_asf_get_config(bge_t *bgep)
6596 {
6597 uint32_t nicsig;
6598 uint32_t niccfg;
6599
6600 bgep->asf_enabled = B_FALSE;
6601
6602 /* No ASF if APE present. */
6603 if (bgep->ape_enabled)
6604 return;
6605
6606 nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
6607 if (nicsig == BGE_NIC_DATA_SIG) {
6608 niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
6609 if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
6610 /*
6611 * Here, we don't consider BAXTER, because BGE haven't
6612 * supported BAXTER (that is 5752). Also, as I know,
6613 * BAXTER doesn't support ASF feature.
6614 */
6615 bgep->asf_enabled = B_TRUE;
6616 else
6617 bgep->asf_enabled = B_FALSE;
6618 } else
6619 bgep->asf_enabled = B_FALSE;
6620 }
6621
6622
6623 void
bge_asf_pre_reset_operations(bge_t * bgep,uint32_t mode)6624 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
6625 {
6626 uint32_t tries;
6627 uint32_t event;
6628
6629 ASSERT(bgep->asf_enabled);
6630
6631 /* Issues "pause firmware" command and wait for ACK */
6632 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
6633 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6634 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6635
6636 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6637 tries = 0;
6638 while ((event & RRER_ASF_EVENT) && (tries < 100)) {
6639 drv_usecwait(1);
6640 tries ++;
6641 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6642 }
6643
6644 bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
6645 BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
6646
6647 if (bgep->asf_newhandshake) {
6648 switch (mode) {
6649 case BGE_INIT_RESET:
6650 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6651 BGE_DRV_STATE_START);
6652 break;
6653 case BGE_SHUTDOWN_RESET:
6654 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6655 BGE_DRV_STATE_UNLOAD);
6656 break;
6657 case BGE_SUSPEND_RESET:
6658 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6659 BGE_DRV_STATE_SUSPEND);
6660 break;
6661 default:
6662 break;
6663 }
6664 }
6665
6666 if (mode == BGE_INIT_RESET ||
6667 mode == BGE_SUSPEND_RESET)
6668 bge_ape_driver_state_change(bgep, mode);
6669 }
6670
6671
6672 void
bge_asf_post_reset_old_mode(bge_t * bgep,uint32_t mode)6673 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
6674 {
6675 switch (mode) {
6676 case BGE_INIT_RESET:
6677 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6678 BGE_DRV_STATE_START);
6679 break;
6680 case BGE_SHUTDOWN_RESET:
6681 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6682 BGE_DRV_STATE_UNLOAD);
6683 break;
6684 case BGE_SUSPEND_RESET:
6685 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6686 BGE_DRV_STATE_SUSPEND);
6687 break;
6688 default:
6689 break;
6690 }
6691 }
6692
6693
6694 void
bge_asf_post_reset_new_mode(bge_t * bgep,uint32_t mode)6695 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
6696 {
6697 switch (mode) {
6698 case BGE_INIT_RESET:
6699 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6700 BGE_DRV_STATE_START_DONE);
6701 break;
6702 case BGE_SHUTDOWN_RESET:
6703 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6704 BGE_DRV_STATE_UNLOAD_DONE);
6705 break;
6706 default:
6707 break;
6708 }
6709
6710 if (mode == BGE_SHUTDOWN_RESET)
6711 bge_ape_driver_state_change(bgep, mode);
6712 }
6713
6714 #endif /* BGE_IPMI_ASF */
6715