1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010-2013, by Broadcom, Inc.
24 * All Rights Reserved.
25 */
26
27 /*
28 * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29 * All rights reserved.
30 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
31 */
32
33 #include "bge_impl.h"
34
35 #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset)))
36 #define APE_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->ape_regs+(offset)))
37
38 /*
39 * Future features ... ?
40 */
41 #define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */
42 #define BGE_IND_IO32 1 /* indirect access code */
43 #define BGE_SEE_IO32 1 /* SEEPROM access code */
44 #define BGE_FLASH_IO32 1 /* FLASH access code */
45
46 /*
47 * BGE MSI tunable:
48 *
49 * By default MSI is enabled on all supported platforms but it is disabled
50 * for some Broadcom chips due to known MSI hardware issues. Currently MSI
51 * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
52 */
53 boolean_t bge_enable_msi = B_TRUE;
54
55 /*
56 * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
57 */
58 boolean_t bge_relaxed_ordering = B_TRUE;
59
60 /*
61 * Patchable globals:
62 *
63 * bge_autorecover
64 * Enables/disables automatic recovery after fault detection
65 *
66 * bge_mlcr_default
67 * Value to program into the MLCR; controls the chip's GPIO pins
68 *
69 * bge_dma_{rd,wr}prio
70 * Relative priorities of DMA reads & DMA writes respectively.
71 * These may each be patched to any value 0-3. Equal values
72 * will give "fair" (round-robin) arbitration for PCI access.
73 * Unequal values will give one or the other function priority.
74 *
75 * bge_dma_rwctrl
76 * Value to put in the Read/Write DMA control register. See
77 * the Broadcom PRM for things you can fiddle with in this
78 * register ...
79 *
80 * bge_{tx,rx}_{count,ticks}_{norm,intr}
81 * Send/receive interrupt coalescing parameters. Counts are
82 * #s of descriptors, ticks are in microseconds. *norm* values
83 * apply between status updates/interrupts; the *intr* values
84 * refer to the 'during-interrupt' versions - see the PRM.
85 *
86 * NOTE: these values have been determined by measurement. They
87 * differ significantly from the values recommended in the PRM.
88 */
89 static uint32_t bge_autorecover = 1;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 512;
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108
109 /*
110 * Memory pool configuration parameters.
111 *
112 * These are generally specific to each member of the chip family, since
113 * each one may have a different memory size/configuration.
114 *
115 * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116 * the driver from programming the various registers; instead they are left
117 * at their hardware defaults. This is the preferred option for later chips
118 * (5705+), whereas the older chips *required* these registers to be set,
119 * since the h/w default was 0 ;-(
120 */
121 static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */
128 static uint32_t bge_mbuf_pool_len_5721 = 0;
129
130 /*
131 * Various high and low water marks, thresholds, etc ...
132 *
133 * Note: these are taken from revision 7 of the PRM, and some are different
134 * from both the values in earlier PRMs *and* those determined experimentally
135 * and used in earlier versions of this driver ...
136 */
137 static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT;
140
141 static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT;
144
145 static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT;
148
149 static uint32_t bge_watchdog_count = 1 << 16;
150 static uint16_t bge_dma_miss_limit = 20;
151
152 static uint32_t bge_stop_start_on_sync = 0;
153
154 /*
155 * bge_intr_max_loop controls the maximum loop number within bge_intr.
156 * When loading NIC with heavy network traffic, it is useful.
157 * Increasing this value could have positive effect to throughput,
158 * but it might also increase ticks of a bge ISR stick on CPU, which might
159 * lead to bad UI interactive experience. So tune this with caution.
160 */
161 static int bge_intr_max_loop = 1;
162
163 /*
164 * ========== Low-level chip & ring buffer manipulation ==========
165 */
166
167 #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */
168
169
170 /*
171 * Config space read-modify-write routines
172 */
173
174 #if BGE_CFG_IO8
175
176 static void
bge_cfg_clr16(bge_t * bgep,bge_regno_t regno,uint16_t bits)177 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
178 {
179 uint16_t regval;
180
181 BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
182 (void *)bgep, regno, bits));
183
184 regval = pci_config_get16(bgep->cfg_handle, regno);
185
186 BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
187 (void *)bgep, regno, bits, regval, regval & ~bits));
188
189 regval &= ~bits;
190 pci_config_put16(bgep->cfg_handle, regno, regval);
191 }
192
193 #endif /* BGE_CFG_IO8 */
194
195 static void
bge_cfg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)196 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
197 {
198 uint32_t regval;
199
200 BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
201 (void *)bgep, regno, bits));
202
203 regval = pci_config_get32(bgep->cfg_handle, regno);
204
205 BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
206 (void *)bgep, regno, bits, regval, regval & ~bits));
207
208 regval &= ~bits;
209 pci_config_put32(bgep->cfg_handle, regno, regval);
210 }
211
212 #if BGE_IND_IO32
213
214 /*
215 * Indirect access to registers & RISC scratchpads, using config space
216 * accesses only.
217 *
218 * This isn't currently used, but someday we might want to use it for
219 * restoring the Subsystem Device/Vendor registers (which aren't directly
220 * writable in Config Space), or for downloading firmware into the RISCs
221 *
222 * In any case there are endian issues to be resolved before this code is
223 * enabled; the bizarre way that bytes get twisted by this chip AND by
224 * the PCI bridge in SPARC systems mean that we shouldn't enable it until
225 * it's been thoroughly tested for all access sizes on all supported
226 * architectures (SPARC *and* x86!).
227 */
228 uint32_t
bge_ind_get32(bge_t * bgep,bge_regno_t regno)229 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
230 {
231 uint32_t val;
232
233 BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
234
235 #ifdef __sparc
236 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
237 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
238 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
239 regno = LE_32(regno);
240 }
241 #endif
242 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
243 val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
244
245 BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
246 (void *)bgep, regno, val));
247
248 val = LE_32(val);
249
250 return (val);
251 }
252
253 void
bge_ind_put32(bge_t * bgep,bge_regno_t regno,uint32_t val)254 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
255 {
256 BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
257 (void *)bgep, regno, val));
258
259 val = LE_32(val);
260 #ifdef __sparc
261 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
262 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
263 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
264 regno = LE_32(regno);
265 }
266 #endif
267 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
268 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
269 }
270
271 #endif /* BGE_IND_IO32 */
272
273 #if BGE_DEBUGGING
274
275 static void
bge_pci_check(bge_t * bgep)276 bge_pci_check(bge_t *bgep)
277 {
278 uint16_t pcistatus;
279
280 pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
281 if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
282 BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
283 (void *)bgep, pcistatus));
284 }
285
286 #endif /* BGE_DEBUGGING */
287
288 /*
289 * Perform first-stage chip (re-)initialisation, using only config-space
290 * accesses:
291 *
292 * + Read the vendor/device/revision/subsystem/cache-line-size registers,
293 * returning the data in the structure pointed to by <idp>.
294 * + Configure the target-mode endianness (swap) options.
295 * + Disable interrupts and enable Memory Space accesses.
296 * + Enable or disable Bus Mastering according to the <enable_dma> flag.
297 *
298 * This sequence is adapted from Broadcom document 570X-PG102-R,
299 * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence
300 * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
301 *
302 * This function MUST be called before any non-config-space accesses
303 * are made; on this first call <enable_dma> is B_FALSE, and it
304 * effectively performs steps 3-1(!) of the initialisation sequence
305 * (the rest are not required but should be harmless).
306 *
307 * It MUST also be called after a chip reset, as this disables
308 * Memory Space cycles! In this case, <enable_dma> is B_TRUE, and
309 * it is effectively performing steps 6-8.
310 */
311 void
bge_chip_cfg_init(bge_t * bgep,chip_id_t * cidp,boolean_t enable_dma)312 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
313 {
314 ddi_acc_handle_t handle;
315 uint16_t command;
316 uint32_t mhcr;
317 uint32_t prodid;
318 uint32_t pci_state;
319 uint16_t value16;
320 int i;
321
322 BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
323 (void *)bgep, (void *)cidp, enable_dma));
324
325 /*
326 * Step 3: save PCI cache line size and subsystem vendor ID
327 *
328 * Read all the config-space registers that characterise the
329 * chip, specifically vendor/device/revision/subsystem vendor
330 * and subsystem device id. We expect (but don't check) that
331 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
332 *
333 * Also save all bus-transaction related registers (cache-line
334 * size, bus-grant/latency parameters, etc). Some of these are
335 * cleared by reset, so we'll have to restore them later. This
336 * comes from the Broadcom document 570X-PG102-R ...
337 *
338 * Note: Broadcom document 570X-PG102-R seems to be in error
339 * here w.r.t. the offsets of the Subsystem Vendor ID and
340 * Subsystem (Device) ID registers, which are the opposite way
341 * round according to the PCI standard. For good measure, we
342 * save/restore both anyway.
343 */
344 handle = bgep->cfg_handle;
345
346 /*
347 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
348 * has been set in PCI_CONF_COMM already, we need to write the
349 * byte-swapped value to it. So we just write zero first for simplicity.
350 */
351 cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
352 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
353 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
354 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
355 pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
356 }
357
358 mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
359 cidp->asic_rev = (mhcr & MHCR_CHIP_REV_MASK);
360 cidp->asic_rev_prod_id = 0;
361 if ((cidp->asic_rev & 0xf0000000) == CHIP_ASIC_REV_USE_PROD_ID_REG) {
362 prodid = CHIP_ASIC_REV_PROD_ID_REG;
363 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
364 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
365 prodid = CHIP_ASIC_REV_PROD_ID_GEN2_REG;
366 } else if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
367 prodid = CHIP_ASIC_REV_PROD_ID_GEN15_REG;
368 }
369 cidp->asic_rev_prod_id = pci_config_get32(handle, prodid);
370 }
371
372 cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
373 cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
374
375 cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
376 cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
377 cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
378 cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
379 cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
380 cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
381
382 /* 5717 C0 is treated just like 5720 A0 */
383 if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
384 DEVICE_ID_5717_C0) {
385 cidp->device = DEVICE_ID_5720;
386 }
387
388 BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
389 cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
390 cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
391 cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
392 cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
393 BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
394 cidp->vendor, cidp->device, cidp->revision));
395 BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
396 cidp->subven, cidp->subdev, cidp->asic_rev));
397 BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
398 cidp->clsize, cidp->latency, cidp->command));
399
400 /*
401 * Step 2 (also step 6): disable and clear interrupts.
402 * Steps 11-13: configure PIO endianness options, and enable
403 * indirect register access. We'll also select any other
404 * options controlled by the MHCR (e.g. tagged status, mask
405 * interrupt mode) at this stage ...
406 *
407 * Note: internally, the chip is 64-bit and BIG-endian, but
408 * since it talks to the host over a (LITTLE-endian) PCI bus,
409 * it normally swaps bytes around at the PCI interface.
410 * However, the PCI host bridge on SPARC systems normally
411 * swaps the byte lanes around too, since SPARCs are also
412 * BIG-endian. So it turns out that on SPARC, the right
413 * option is to tell the chip to swap (and the host bridge
414 * will swap back again), whereas on x86 we ask the chip
415 * NOT to swap, so the natural little-endianness of the
416 * PCI bus is assumed. Then the only thing that doesn't
417 * automatically work right is access to an 8-byte register
418 * by a little-endian host; but we don't want to set the
419 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
420 * accesses don't go where expected ;-( So we live with
421 * that, and perform word-swaps in software in the few cases
422 * where a chip register is defined as an 8-byte value --
423 * see the code below for details ...
424 *
425 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
426 * very clear in the register description in the PRM, but
427 * Broadcom document 570X-PG104-R page 248 explains a little
428 * more (under "Broadcom Mask Mode"). The bit changes the way
429 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
430 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
431 * way as the 5700 did, which isn't very convenient. Setting
432 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
433 * bit do just what its name says -- MASK the PCI #INTA output
434 * (i.e. deassert the signal at the pin) leaving all internal
435 * state unchanged. This is much more convenient for our
436 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
437 *
438 * Note: the inconvenient semantics of the interrupt mailbox
439 * (nonzero disables and acknowledges/clears the interrupt,
440 * zero enables AND CLEARS it) would make race conditions
441 * likely in the interrupt handler:
442 *
443 * (1) acknowledge & disable interrupts
444 * (2) while (more to do)
445 * process packets
446 * (3) enable interrupts -- also clears pending
447 *
448 * If the chip received more packets and internally generated
449 * an interrupt between the check at (2) and the mbox write
450 * at (3), this interrupt would be lost :-(
451 *
452 * The best way to avoid this is to use TAGGED STATUS mode,
453 * where the chip includes a unique tag in each status block
454 * update, and the host, when re-enabling interrupts, passes
455 * the last tag it saw back to the chip; then the chip can
456 * see whether the host is truly up to date, and regenerate
457 * its interrupt if not.
458 */
459 mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
460 MHCR_ENABLE_PCI_STATE_RW |
461 MHCR_ENABLE_TAGGED_STATUS_MODE |
462 MHCR_MASK_INTERRUPT_MODE |
463 MHCR_CLEAR_INTERRUPT_INTA;
464 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
465 mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
466
467 #ifdef _BIG_ENDIAN
468 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
469 #endif /* _BIG_ENDIAN */
470 pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
471
472 #ifdef BGE_IPMI_ASF
473 bgep->asf_wordswapped = B_FALSE;
474 #endif
475
476 pci_state = (PCISTATE_EXT_ROM_ENABLE | PCISTATE_EXT_ROM_RETRY);
477 /* allow reads and writes to the APE register and memory space */
478 if (bgep->ape_enabled) {
479 pci_state |= PCISTATE_ALLOW_APE_CTLSPC_WR |
480 PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
481 }
482 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PCISTATE, pci_state);
483
484 /*
485 * Step 1 (also step 7): Enable PCI Memory Space accesses
486 * Disable Memory Write/Invalidate
487 * Enable or disable Bus Mastering
488 *
489 * Note that all other bits are taken from the original value saved
490 * the first time through here, rather than from the current register
491 * value, 'cos that will have been cleared by a soft RESET since.
492 * In this way we preserve the OBP/nexus-parent's preferred settings
493 * of the parity-error and system-error enable bits across multiple
494 * chip RESETs.
495 */
496 command = bgep->chipid.command | PCI_COMM_MAE;
497 command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
498 if (enable_dma)
499 command |= PCI_COMM_ME;
500 /*
501 * on BCM5714 revision A0, false parity error gets generated
502 * due to a logic bug. Provide a workaround by disabling parity
503 * error.
504 */
505 if (((cidp->device == DEVICE_ID_5714C) ||
506 (cidp->device == DEVICE_ID_5714S)) &&
507 (cidp->revision == REVISION_ID_5714_A0)) {
508 command &= ~PCI_COMM_PARITY_DETECT;
509 }
510 pci_config_put16(handle, PCI_CONF_COMM, command);
511
512 /*
513 * On some PCI-E device, there were instances when
514 * the device was still link training.
515 */
516 if (bgep->chipid.pci_type == BGE_PCI_E) {
517 i = 0;
518 value16 = pci_config_get16(handle, PCI_CONF_COMM);
519 while ((value16 != command) && (i < 100)) {
520 drv_usecwait(200);
521 value16 = pci_config_get16(handle, PCI_CONF_COMM);
522 ++i;
523 }
524 }
525
526 /*
527 * Clear any remaining error status bits
528 */
529 pci_config_put16(handle, PCI_CONF_STAT, ~0);
530
531 /*
532 * Do following if and only if the device is NOT BCM5714C OR
533 * BCM5715C
534 */
535 if (!((cidp->device == DEVICE_ID_5714C) ||
536 (cidp->device == DEVICE_ID_5715C))) {
537 /*
538 * Make sure these indirect-access registers are sane
539 * rather than random after power-up or reset
540 */
541 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
542 pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
543 }
544 /*
545 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
546 */
547 bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
548
549 if (cidp->pci_type == BGE_PCI_E) {
550 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
551 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
552 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
553 } else if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
554 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
555 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
556 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
557 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
558 } else {
559 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
560 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
561 }
562 }
563 }
564
565 #ifdef __amd64
566 /*
567 * Distinguish CPU types
568 *
569 * These use to distinguish AMD64 or Intel EM64T of CPU running mode.
570 * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
571 * for PCI-Express based network interface card. This is the work-around
572 * for those nics.
573 */
574 static boolean_t
bge_get_em64t_type(void)575 bge_get_em64t_type(void)
576 {
577
578 return (x86_vendor == X86_VENDOR_Intel);
579 }
580 #endif
581
582 /*
583 * Operating register get/set access routines
584 */
585 uint32_t
bge_reg_get32(bge_t * bgep,bge_regno_t regno)586 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
587 {
588 BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
589 (void *)bgep, regno));
590
591 return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
592 }
593
594 void
bge_reg_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)595 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
596 {
597 BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
598 (void *)bgep, regno, data));
599
600 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
601 BGE_PCICHK(bgep);
602 }
603
604 void
bge_reg_set32(bge_t * bgep,bge_regno_t regno,uint32_t bits)605 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
606 {
607 uint32_t regval;
608
609 BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
610 (void *)bgep, regno, bits));
611
612 regval = bge_reg_get32(bgep, regno);
613 regval |= bits;
614 bge_reg_put32(bgep, regno, regval);
615 }
616
617 void
bge_reg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)618 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
619 {
620 uint32_t regval;
621
622 BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
623 (void *)bgep, regno, bits));
624
625 regval = bge_reg_get32(bgep, regno);
626 regval &= ~bits;
627 bge_reg_put32(bgep, regno, regval);
628 }
629
630 static uint64_t
bge_reg_get64(bge_t * bgep,bge_regno_t regno)631 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
632 {
633 uint64_t regval;
634
635 #ifdef __amd64
636 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
637 bge_get_em64t_type() ||
638 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
639 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
640 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
641 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
642 regval <<= 32;
643 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
644 } else {
645 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
646 }
647 #elif defined(__sparc)
648 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
649 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
650 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
651 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
652 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
653 regval <<= 32;
654 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
655 } else {
656 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
657 }
658 #else
659 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
660 #endif
661
662 #ifdef _LITTLE_ENDIAN
663 regval = (regval >> 32) | (regval << 32);
664 #endif /* _LITTLE_ENDIAN */
665
666 BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
667 (void *)bgep, regno, regval));
668
669 return (regval);
670 }
671
672 static void
bge_reg_put64(bge_t * bgep,bge_regno_t regno,uint64_t data)673 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
674 {
675 BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
676 (void *)bgep, regno, data));
677
678 #ifdef _LITTLE_ENDIAN
679 data = ((data >> 32) | (data << 32));
680 #endif /* _LITTLE_ENDIAN */
681
682 #ifdef __amd64
683 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
684 bge_get_em64t_type() ||
685 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
686 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
687 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
688 ddi_put32(bgep->io_handle,
689 PIO_ADDR(bgep, regno), (uint32_t)data);
690 BGE_PCICHK(bgep);
691 ddi_put32(bgep->io_handle,
692 PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
693
694 } else {
695 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
696 }
697 #elif defined(__sparc)
698 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
699 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
700 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
701 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
702 ddi_put32(bgep->io_handle,
703 PIO_ADDR(bgep, regno + 4), (uint32_t)data);
704 BGE_PCICHK(bgep);
705 ddi_put32(bgep->io_handle,
706 PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
707 } else {
708 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
709 }
710 #else
711 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
712 #endif
713
714 BGE_PCICHK(bgep);
715 }
716
717 /*
718 * The DDI doesn't provide get/put functions for 128 bit data
719 * so we put RCBs out as two 64-bit chunks instead.
720 */
721 static void
bge_reg_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)722 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
723 {
724 uint64_t *p;
725
726 BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
727 (void *)bgep, addr, rcbp->host_ring_addr,
728 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
729
730 ASSERT((addr % sizeof (*rcbp)) == 0);
731
732 p = (void *)rcbp;
733 bge_reg_put64(bgep, addr, *p++);
734 bge_reg_put64(bgep, addr+8, *p);
735 }
736
737 void
bge_mbx_put(bge_t * bgep,bge_regno_t regno,uint64_t data)738 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
739 {
740 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
741 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
742
743 BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
744 (void *)bgep, regno, data));
745
746 /*
747 * Mailbox registers are nominally 64 bits on the 5701, but
748 * the MSW isn't used. On the 5703, they're only 32 bits
749 * anyway. So here we just write the lower(!) 32 bits -
750 * remembering that the chip is big-endian, even though the
751 * PCI bus is little-endian ...
752 */
753 #ifdef _BIG_ENDIAN
754 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
755 #else
756 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
757 #endif /* _BIG_ENDIAN */
758 BGE_PCICHK(bgep);
759 }
760
761 uint32_t
bge_mbx_get(bge_t * bgep,bge_regno_t regno)762 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
763 {
764 uint32_t val32;
765
766 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
767 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
768
769 BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
770 (void *)bgep, regno));
771
772 #ifdef _BIG_ENDIAN
773 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
774 #else
775 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
776 #endif /* _BIG_ENDIAN */
777 BGE_PCICHK(bgep);
778
779 BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
780 (void *)bgep, regno, val32));
781
782 return (val32);
783 }
784
785
786 #if BGE_DEBUGGING
787
788 void
bge_led_mark(bge_t * bgep)789 bge_led_mark(bge_t *bgep)
790 {
791 uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
792 LED_CONTROL_1000MBPS_LED |
793 LED_CONTROL_100MBPS_LED |
794 LED_CONTROL_10MBPS_LED;
795
796 /*
797 * Blink all three LINK LEDs on simultaneously, then all off,
798 * then restore to automatic hardware control. This is used
799 * in laboratory testing to trigger a logic analyser or scope.
800 */
801 bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
802 led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
803 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
804 led_ctrl = LED_CONTROL_OVERRIDE_LINK;
805 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
806 }
807
808 #endif /* BGE_DEBUGGING */
809
810 /*
811 * NIC on-chip memory access routines
812 *
813 * Only 32K of NIC memory is visible at a time, controlled by the
814 * Memory Window Base Address Register (in PCI config space). Once
815 * this is set, the 32K region of NIC-local memory that it refers
816 * to can be directly addressed in the upper 32K of the 64K of PCI
817 * memory space used for the device.
818 */
819 static void
bge_nic_setwin(bge_t * bgep,bge_regno_t base)820 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
821 {
822 chip_id_t *cidp;
823
824 BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
825 (void *)bgep, base));
826
827 ASSERT((base & MWBAR_GRANULE_MASK) == 0);
828
829 /*
830 * Don't do repeated zero data writes,
831 * if the device is BCM5714C/15C.
832 */
833 cidp = &bgep->chipid;
834 if ((cidp->device == DEVICE_ID_5714C) ||
835 (cidp->device == DEVICE_ID_5715C)) {
836 if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
837 return;
838 /* Adjust lastWriteZeroData */
839 bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
840 B_TRUE : B_FALSE);
841 }
842 #ifdef __sparc
843 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
844 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
845 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
846 base = LE_32(base);
847 }
848 #endif
849 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
850 }
851
852 static uint32_t
bge_nic_get32(bge_t * bgep,bge_regno_t addr)853 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
854 {
855 uint32_t data;
856
857 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
858 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
859 /* workaround for word swap error */
860 if (addr & 4)
861 addr = addr - 4;
862 else
863 addr = addr + 4;
864 }
865 #endif
866
867 #ifdef __sparc
868 data = bge_nic_read32(bgep, addr);
869 #else
870 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
871 addr &= MWBAR_GRANULE_MASK;
872 addr += NIC_MEM_WINDOW_OFFSET;
873
874 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
875 #endif
876
877 BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
878 (void *)bgep, addr, data));
879
880 return (data);
881 }
882
883 void
bge_nic_put32(bge_t * bgep,bge_regno_t addr,uint32_t data)884 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
885 {
886 BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
887 (void *)bgep, addr, data));
888
889 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
890 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
891 /* workaround for word swap error */
892 if (addr & 4)
893 addr = addr - 4;
894 else
895 addr = addr + 4;
896 }
897 #endif
898
899 #ifdef __sparc
900 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
901 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
902 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
903 addr = LE_32(addr);
904 }
905 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
906 data = LE_32(data);
907 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
908 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
909 #else
910 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
911 addr &= MWBAR_GRANULE_MASK;
912 addr += NIC_MEM_WINDOW_OFFSET;
913 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
914 BGE_PCICHK(bgep);
915 #endif
916 }
917
918 static uint64_t
bge_nic_get64(bge_t * bgep,bge_regno_t addr)919 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
920 {
921 uint64_t data;
922
923 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
924 addr &= MWBAR_GRANULE_MASK;
925 addr += NIC_MEM_WINDOW_OFFSET;
926
927 #ifdef __amd64
928 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
929 bge_get_em64t_type() ||
930 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
931 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
932 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
933 data = ddi_get32(bgep->io_handle,
934 PIO_ADDR(bgep, addr + 4));
935 data <<= 32;
936 data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
937 } else {
938 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
939 }
940 #elif defined(__sparc)
941 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
942 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
943 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
944 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
945 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
946 data <<= 32;
947 data |= ddi_get32(bgep->io_handle,
948 PIO_ADDR(bgep, addr + 4));
949 } else {
950 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
951 }
952 #else
953 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
954 #endif
955
956 BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
957 (void *)bgep, addr, data));
958
959 return (data);
960 }
961
962 static void
bge_nic_put64(bge_t * bgep,bge_regno_t addr,uint64_t data)963 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
964 {
965 BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
966 (void *)bgep, addr, data));
967
968 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
969 addr &= MWBAR_GRANULE_MASK;
970 addr += NIC_MEM_WINDOW_OFFSET;
971
972 #ifdef __amd64
973 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
974 bge_get_em64t_type() ||
975 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
976 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
977 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
978 ddi_put32(bgep->io_handle,
979 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
980 BGE_PCICHK(bgep);
981 ddi_put32(bgep->io_handle,
982 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
983 } else {
984 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
985 }
986 #elif defined(__sparc)
987 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
988 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
989 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
990 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
991 ddi_put32(bgep->io_handle,
992 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
993 BGE_PCICHK(bgep);
994 ddi_put32(bgep->io_handle,
995 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
996 } else {
997 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
998 }
999 #else
1000 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1001 #endif
1002
1003 BGE_PCICHK(bgep);
1004 }
1005
1006 /*
1007 * The DDI doesn't provide get/put functions for 128 bit data
1008 * so we put RCBs out as two 64-bit chunks instead.
1009 */
1010 static void
bge_nic_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)1011 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1012 {
1013 uint64_t *p;
1014
1015 BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1016 (void *)bgep, addr, rcbp->host_ring_addr,
1017 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1018
1019 ASSERT((addr % sizeof (*rcbp)) == 0);
1020
1021 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1022 addr &= MWBAR_GRANULE_MASK;
1023 addr += NIC_MEM_WINDOW_OFFSET;
1024
1025 p = (void *)rcbp;
1026 #ifdef __amd64
1027 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1028 bge_get_em64t_type() ||
1029 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1030 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1031 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1032 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1033 (uint32_t)(*p));
1034 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1035 (uint32_t)(*p++ >> 32));
1036 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1037 (uint32_t)(*p));
1038 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1039 (uint32_t)(*p >> 32));
1040
1041 } else {
1042 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1043 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1044 }
1045 #elif defined(__sparc)
1046 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1047 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1048 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1049 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1050 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1051 (uint32_t)(*p));
1052 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1053 (uint32_t)(*p++ >> 32));
1054 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1055 (uint32_t)(*p));
1056 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1057 (uint32_t)(*p >> 32));
1058 } else {
1059 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1060 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1061 }
1062 #else
1063 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1064 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1065 #endif
1066
1067 BGE_PCICHK(bgep);
1068 }
1069
1070 static void
bge_nic_zero(bge_t * bgep,bge_regno_t addr,uint32_t nbytes)1071 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1072 {
1073 BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1074 (void *)bgep, addr, nbytes));
1075
1076 ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1077 ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1078
1079 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1080 addr &= MWBAR_GRANULE_MASK;
1081 addr += NIC_MEM_WINDOW_OFFSET;
1082
1083 (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1084 nbytes, 1, DDI_DATA_SZ08_ACC);
1085 BGE_PCICHK(bgep);
1086 }
1087
1088 /*
1089 * MII (PHY) register get/set access routines
1090 *
1091 * These use the chip's MII auto-access method, controlled by the
1092 * MII Communication register at 0x044c, so the CPU doesn't have
1093 * to fiddle with the individual bits.
1094 */
1095
1096 #undef BGE_DBG
1097 #define BGE_DBG BGE_DBG_MII /* debug flag for this code */
1098
1099 static uint16_t
bge_mii_access(bge_t * bgep,bge_regno_t regno,uint16_t data,uint32_t cmd)1100 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1101 {
1102 uint32_t timeout;
1103 uint32_t regval1;
1104 uint32_t regval2;
1105
1106 BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1107 (void *)bgep, regno, data, cmd));
1108
1109 ASSERT(mutex_owned(bgep->genlock));
1110
1111 /*
1112 * Assemble the command ...
1113 */
1114 cmd |= data << MI_COMMS_DATA_SHIFT;
1115 cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1116 cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1117 cmd |= MI_COMMS_START;
1118
1119 /*
1120 * Wait for any command already in progress ...
1121 *
1122 * Note: this *shouldn't* ever find that there is a command
1123 * in progress, because we already hold the <genlock> mutex.
1124 * Nonetheless, we have sometimes seen the MI_COMMS_START
1125 * bit set here -- it seems that the chip can initiate MII
1126 * accesses internally, even with polling OFF.
1127 */
1128 regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1129 for (timeout = 100; ; ) {
1130 if ((regval2 & MI_COMMS_START) == 0) {
1131 bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1132 break;
1133 }
1134 if (--timeout == 0)
1135 break;
1136 drv_usecwait(10);
1137 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1138 }
1139
1140 if (timeout == 0)
1141 return ((uint16_t)~0u);
1142
1143 if (timeout != 100)
1144 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1145 "MI_COMMS_START set for %d us; 0x%x->0x%x",
1146 cmd, 10*(100-timeout), regval1, regval2));
1147
1148 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1149 for (timeout = 1000; ; ) {
1150 if ((regval1 & MI_COMMS_START) == 0)
1151 break;
1152 if (--timeout == 0)
1153 break;
1154 drv_usecwait(10);
1155 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1156 }
1157
1158 /*
1159 * Drop out early if the READ FAILED bit is set -- this chip
1160 * could be a 5703/4S, with a SerDes instead of a PHY!
1161 */
1162 if (regval2 & MI_COMMS_READ_FAILED)
1163 return ((uint16_t)~0u);
1164
1165 if (timeout == 0)
1166 return ((uint16_t)~0u);
1167
1168 /*
1169 * The PRM says to wait 5us after seeing the START bit clear
1170 * and then re-read the register to get the final value of the
1171 * data field, in order to avoid a race condition where the
1172 * START bit is clear but the data field isn't yet valid.
1173 *
1174 * Note: we don't actually seem to be encounter this race;
1175 * except when the START bit is seen set again (see below),
1176 * the data field doesn't change during this 5us interval.
1177 */
1178 drv_usecwait(5);
1179 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1180
1181 /*
1182 * Unfortunately, when following the PRMs instructions above,
1183 * we have occasionally seen the START bit set again(!) in the
1184 * value read after the 5us delay. This seems to be due to the
1185 * chip autonomously starting another MII access internally.
1186 * In such cases, the command/data/etc fields relate to the
1187 * internal command, rather than the one that we thought had
1188 * just finished. So in this case, we fall back to returning
1189 * the data from the original read that showed START clear.
1190 */
1191 if (regval2 & MI_COMMS_START) {
1192 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1193 "MI_COMMS_START set after transaction; 0x%x->0x%x",
1194 cmd, regval1, regval2));
1195 regval2 = regval1;
1196 }
1197
1198 if (regval2 & MI_COMMS_START)
1199 return ((uint16_t)~0u);
1200
1201 if (regval2 & MI_COMMS_READ_FAILED)
1202 return ((uint16_t)~0u);
1203
1204 return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1205 }
1206
1207 uint16_t
bge_mii_get16(bge_t * bgep,bge_regno_t regno)1208 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1209 {
1210 BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1211 (void *)bgep, regno));
1212
1213 ASSERT(mutex_owned(bgep->genlock));
1214
1215 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1216 (regno == MII_MSCONTROL)))
1217 return (0);
1218
1219 return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1220 }
1221
1222 void
bge_mii_put16(bge_t * bgep,bge_regno_t regno,uint16_t data)1223 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1224 {
1225 BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1226 (void *)bgep, regno, data));
1227
1228 ASSERT(mutex_owned(bgep->genlock));
1229
1230 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1231 (regno == MII_MSCONTROL)))
1232 return;
1233
1234 (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1235 }
1236
1237 uint16_t
bge_phydsp_read(bge_t * bgep,bge_regno_t regno)1238 bge_phydsp_read(bge_t *bgep, bge_regno_t regno)
1239 {
1240 BGE_TRACE(("bge_phydsp_read($%p, 0x%lx)",
1241 (void *)bgep, regno));
1242
1243 ASSERT(mutex_owned(bgep->genlock));
1244
1245 bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1246 return bge_mii_get16(bgep, MII_DSP_RW_PORT);
1247 }
1248
1249 void
bge_phydsp_write(bge_t * bgep,bge_regno_t regno,uint16_t data)1250 bge_phydsp_write(bge_t *bgep, bge_regno_t regno, uint16_t data)
1251 {
1252 BGE_TRACE(("bge_phydsp_write($%p, 0x%lx, 0x%x)",
1253 (void *)bgep, regno, data));
1254
1255 ASSERT(mutex_owned(bgep->genlock));
1256
1257 bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1258 bge_mii_put16(bgep, MII_DSP_RW_PORT, data);
1259 }
1260
1261 #undef BGE_DBG
1262 #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */
1263
1264 #if BGE_SEE_IO32 || BGE_FLASH_IO32
1265
1266 /*
1267 * Basic SEEPROM get/set access routine
1268 *
1269 * This uses the chip's SEEPROM auto-access method, controlled by the
1270 * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1271 * doesn't have to fiddle with the individual bits.
1272 *
1273 * The caller should hold <genlock> and *also* have already acquired
1274 * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1275 *
1276 * Return value:
1277 * 0 on success,
1278 * ENODATA on access timeout (maybe retryable: device may just be busy)
1279 * EPROTO on other h/w or s/w errors.
1280 *
1281 * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1282 * from a (successful) SEEPROM_ACCESS_READ.
1283 */
1284 static int
bge_seeprom_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1285 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1286 {
1287 uint32_t tries;
1288 uint32_t regval;
1289
1290 ASSERT(mutex_owned(bgep->genlock));
1291
1292 /*
1293 * On the newer chips that support both SEEPROM & Flash, we need
1294 * to specifically enable SEEPROM access (Flash is the default).
1295 * On older chips, we don't; SEEPROM is the only NVtype supported,
1296 * and the NVM control registers don't exist ...
1297 */
1298 switch (bgep->chipid.nvtype) {
1299 case BGE_NVTYPE_NONE:
1300 case BGE_NVTYPE_UNKNOWN:
1301 _NOTE(NOTREACHED)
1302 case BGE_NVTYPE_SEEPROM:
1303 break;
1304
1305 case BGE_NVTYPE_LEGACY_SEEPROM:
1306 case BGE_NVTYPE_UNBUFFERED_FLASH:
1307 case BGE_NVTYPE_BUFFERED_FLASH:
1308 default:
1309 bge_reg_set32(bgep, NVM_CONFIG1_REG,
1310 NVM_CFG1_LEGACY_SEEPROM_MODE);
1311 break;
1312 }
1313
1314 /*
1315 * Check there's no command in progress.
1316 *
1317 * Note: this *shouldn't* ever find that there is a command
1318 * in progress, because we already hold the <genlock> mutex.
1319 * Also, to ensure we don't have a conflict with the chip's
1320 * internal firmware or a process accessing the same (shared)
1321 * SEEPROM through the other port of a 5704, we've already
1322 * been through the "software arbitration" protocol.
1323 * So this is just a final consistency check: we shouldn't
1324 * see EITHER the START bit (command started but not complete)
1325 * OR the COMPLETE bit (command completed but not cleared).
1326 */
1327 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1328 if (regval & SEEPROM_ACCESS_START)
1329 return (EPROTO);
1330 if (regval & SEEPROM_ACCESS_COMPLETE)
1331 return (EPROTO);
1332
1333 /*
1334 * Assemble the command ...
1335 */
1336 cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1337 addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1338 addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1339 cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1340 cmd |= SEEPROM_ACCESS_START;
1341 cmd |= SEEPROM_ACCESS_COMPLETE;
1342 cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1343
1344 bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1345 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1346
1347 /*
1348 * By observation, a successful access takes ~20us on a 5703/4,
1349 * but apparently much longer (up to 1000us) on the obsolescent
1350 * BCM5700/BCM5701. We want to be sure we don't get any false
1351 * timeouts here; but OTOH, we don't want a bogus access to lock
1352 * out interrupts for longer than necessary. So we'll allow up
1353 * to 1000us ...
1354 */
1355 for (tries = 0; tries < 1000; ++tries) {
1356 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1357 if (regval & SEEPROM_ACCESS_COMPLETE)
1358 break;
1359 drv_usecwait(1);
1360 }
1361
1362 if (regval & SEEPROM_ACCESS_COMPLETE) {
1363 /*
1364 * All OK; read the SEEPROM data register, then write back
1365 * the value read from the address register in order to
1366 * clear the <complete> bit and leave the SEEPROM access
1367 * state machine idle, ready for the next access ...
1368 */
1369 BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1370 *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1371 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1372 return (0);
1373 }
1374
1375 /*
1376 * Hmm ... what happened here?
1377 *
1378 * Most likely, the user addressed a non-existent SEEPROM. Or
1379 * maybe the SEEPROM was busy internally (e.g. processing a write)
1380 * and didn't respond to being addressed. Either way, it's left
1381 * the SEEPROM access state machine wedged. So we'll reset it
1382 * before we leave, so it's ready for next time ...
1383 */
1384 BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1385 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1386 return (ENODATA);
1387 }
1388
1389 /*
1390 * Basic Flash get/set access routine
1391 *
1392 * These use the chip's Flash auto-access method, controlled by the
1393 * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1394 * fiddle with the individual bits.
1395 *
1396 * The caller should hold <genlock> and *also* have already acquired
1397 * the right to access the Flash, via bge_nvmem_acquire() above.
1398 *
1399 * Return value:
1400 * 0 on success,
1401 * ENODATA on access timeout (maybe retryable: device may just be busy)
1402 * ENODEV if the NVmem device is missing or otherwise unusable
1403 *
1404 * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1405 * from a (successful) NVM_FLASH_CMD_RD.
1406 */
1407 static int
bge_flash_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1408 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1409 {
1410 uint32_t tries;
1411 uint32_t regval;
1412
1413 ASSERT(mutex_owned(bgep->genlock));
1414
1415 /*
1416 * On the newer chips that support both SEEPROM & Flash, we need
1417 * to specifically disable SEEPROM access while accessing Flash.
1418 * The older chips don't support Flash, and the NVM registers don't
1419 * exist, so we shouldn't be here at all!
1420 */
1421 switch (bgep->chipid.nvtype) {
1422 case BGE_NVTYPE_NONE:
1423 case BGE_NVTYPE_UNKNOWN:
1424 _NOTE(NOTREACHED)
1425 case BGE_NVTYPE_SEEPROM:
1426 return (ENODEV);
1427
1428 case BGE_NVTYPE_LEGACY_SEEPROM:
1429 case BGE_NVTYPE_UNBUFFERED_FLASH:
1430 case BGE_NVTYPE_BUFFERED_FLASH:
1431 default:
1432 bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1433 NVM_CFG1_LEGACY_SEEPROM_MODE);
1434 break;
1435 }
1436
1437 /*
1438 * Assemble the command ...
1439 */
1440 addr &= NVM_FLASH_ADDR_MASK;
1441 cmd |= NVM_FLASH_CMD_DOIT;
1442 cmd |= NVM_FLASH_CMD_FIRST;
1443 cmd |= NVM_FLASH_CMD_LAST;
1444 cmd |= NVM_FLASH_CMD_DONE;
1445
1446 bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1447 bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1448 bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1449
1450 /*
1451 * Allow up to 1000ms ...
1452 */
1453 for (tries = 0; tries < 1000; ++tries) {
1454 regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1455 if (regval & NVM_FLASH_CMD_DONE)
1456 break;
1457 drv_usecwait(1);
1458 }
1459
1460 if (regval & NVM_FLASH_CMD_DONE) {
1461 /*
1462 * All OK; read the data from the Flash read register
1463 */
1464 BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1465 *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1466 return (0);
1467 }
1468
1469 /*
1470 * Hmm ... what happened here?
1471 *
1472 * Most likely, the user addressed a non-existent Flash. Or
1473 * maybe the Flash was busy internally (e.g. processing a write)
1474 * and didn't respond to being addressed. Either way, there's
1475 * nothing we can here ...
1476 */
1477 BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1478 return (ENODATA);
1479 }
1480
1481 /*
1482 * The next two functions regulate access to the NVram (if fitted).
1483 *
1484 * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1485 * (SPI) interface, but they can be accessed through either port. These
1486 * are managed by different instance of this driver and have no software
1487 * state in common.
1488 *
1489 * In addition (and even on a single core chip) the chip's internal
1490 * firmware can access the SEEPROM/Flash, most notably after a RESET
1491 * when it may download code to run internally.
1492 *
1493 * So we need to arbitrate between these various software agents. For
1494 * this purpose, the chip provides the Software Arbitration Register,
1495 * which implements hardware(!) arbitration.
1496 *
1497 * This functionality didn't exist on older (5700/5701) chips, so there's
1498 * nothing we can do by way of arbitration on those; also, if there's no
1499 * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1500 * nothing to do.
1501 *
1502 * The internal firmware appears to use Request 0, which is the highest
1503 * priority. So we'd like to use Request 2, leaving one higher and one
1504 * lower for any future developments ... but apparently this doesn't
1505 * always work. So for now, the code uses Request 1 ;-(
1506 */
1507
1508 #define NVM_READ_REQ NVM_READ_REQ1
1509 #define NVM_RESET_REQ NVM_RESET_REQ1
1510 #define NVM_SET_REQ NVM_SET_REQ1
1511
1512 static void
bge_nvmem_relinquish(bge_t * bgep)1513 bge_nvmem_relinquish(bge_t *bgep)
1514 {
1515 ASSERT(mutex_owned(bgep->genlock));
1516
1517 switch (bgep->chipid.nvtype) {
1518 case BGE_NVTYPE_NONE:
1519 case BGE_NVTYPE_UNKNOWN:
1520 _NOTE(NOTREACHED)
1521 return;
1522
1523 case BGE_NVTYPE_SEEPROM:
1524 /*
1525 * No arbitration performed, no release needed
1526 */
1527 return;
1528
1529 case BGE_NVTYPE_LEGACY_SEEPROM:
1530 case BGE_NVTYPE_UNBUFFERED_FLASH:
1531 case BGE_NVTYPE_BUFFERED_FLASH:
1532 default:
1533 break;
1534 }
1535
1536 /*
1537 * Our own request should be present (whether or not granted) ...
1538 */
1539 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1540
1541 /*
1542 * ... this will make it go away.
1543 */
1544 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1545 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1546 }
1547
1548 /*
1549 * Arbitrate for access to the NVmem, if necessary
1550 *
1551 * Return value:
1552 * 0 on success
1553 * EAGAIN if the device is in use (retryable)
1554 * ENODEV if the NVmem device is missing or otherwise unusable
1555 */
1556 static int
bge_nvmem_acquire(bge_t * bgep)1557 bge_nvmem_acquire(bge_t *bgep)
1558 {
1559 uint32_t regval;
1560 uint32_t tries;
1561
1562 ASSERT(mutex_owned(bgep->genlock));
1563
1564 switch (bgep->chipid.nvtype) {
1565 case BGE_NVTYPE_NONE:
1566 case BGE_NVTYPE_UNKNOWN:
1567 /*
1568 * Access denied: no (recognisable) device fitted
1569 */
1570 return (ENODEV);
1571
1572 case BGE_NVTYPE_SEEPROM:
1573 /*
1574 * Access granted: no arbitration needed (or possible)
1575 */
1576 return (0);
1577
1578 case BGE_NVTYPE_LEGACY_SEEPROM:
1579 case BGE_NVTYPE_UNBUFFERED_FLASH:
1580 case BGE_NVTYPE_BUFFERED_FLASH:
1581 default:
1582 /*
1583 * Access conditional: conduct arbitration protocol
1584 */
1585 break;
1586 }
1587
1588 /*
1589 * We're holding the per-port mutex <genlock>, so no-one other
1590 * thread can be attempting to access the NVmem through *this*
1591 * port. But it could be in use by the *other* port (of a 5704),
1592 * or by the chip's internal firmware, so we have to go through
1593 * the full (hardware) arbitration protocol ...
1594 *
1595 * Note that *because* we're holding <genlock>, the interrupt handler
1596 * won't be able to progress. So we're only willing to spin for a
1597 * fairly short time. Specifically:
1598 *
1599 * We *must* wait long enough for the hardware to resolve all
1600 * requests and determine the winner. Fortunately, this is
1601 * "almost instantaneous", even as observed by GHz CPUs.
1602 *
1603 * A successful access by another Solaris thread (via either
1604 * port) typically takes ~20us. So waiting a bit longer than
1605 * that will give a good chance of success, if the other user
1606 * *is* another thread on the other port.
1607 *
1608 * However, the internal firmware can hold on to the NVmem
1609 * for *much* longer: at least 10 milliseconds just after a
1610 * RESET, and maybe even longer if the NVmem actually contains
1611 * code to download and run on the internal CPUs.
1612 *
1613 * So, we'll allow 50us; if that's not enough then it's up to the
1614 * caller to retry later (hence the choice of return code EAGAIN).
1615 */
1616 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1617 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1618
1619 for (tries = 0; tries < 50; ++tries) {
1620 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1621 if (regval & NVM_WON_REQ1)
1622 break;
1623 drv_usecwait(1);
1624 }
1625
1626 if (regval & NVM_WON_REQ1) {
1627 BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1628 return (0);
1629 }
1630
1631 /*
1632 * Somebody else must be accessing the NVmem, so abandon our
1633 * attempt take control of it. The caller can try again later ...
1634 */
1635 BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1636 bge_nvmem_relinquish(bgep);
1637 return (EAGAIN);
1638 }
1639
1640 /*
1641 * This code assumes that the GPIO1 bit has been wired up to the NVmem
1642 * write protect line in such a way that the NVmem is protected when
1643 * GPIO1 is an input, or is an output but driven high. Thus, to make the
1644 * NVmem writable we have to change GPIO1 to an output AND drive it low.
1645 *
1646 * Note: there's only one set of GPIO pins on a 5704, even though they
1647 * can be accessed through either port. So the chip has to resolve what
1648 * happens if the two ports program a single pin differently ... the rule
1649 * it uses is that if the ports disagree about the *direction* of a pin,
1650 * "output" wins over "input", but if they disagree about its *value* as
1651 * an output, then the pin is TRISTATED instead! In such a case, no-one
1652 * wins, and the external signal does whatever the external circuitry
1653 * defines as the default -- which we've assumed is the PROTECTED state.
1654 * So, we always change GPIO1 back to being an *input* whenever we're not
1655 * specifically using it to unprotect the NVmem. This allows either port
1656 * to update the NVmem, although obviously only one at a time!
1657 *
1658 * The caller should hold <genlock> and *also* have already acquired the
1659 * right to access the NVmem, via bge_nvmem_acquire() above.
1660 */
1661 static void
bge_nvmem_protect(bge_t * bgep,boolean_t protect)1662 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1663 {
1664 uint32_t regval;
1665
1666 ASSERT(mutex_owned(bgep->genlock));
1667
1668 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1669 if (protect) {
1670 regval |= MLCR_MISC_PINS_OUTPUT_1;
1671 regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1672 } else {
1673 regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1674 regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1675 }
1676 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1677 }
1678
1679 /*
1680 * Now put it all together ...
1681 *
1682 * Try to acquire control of the NVmem; if successful, then:
1683 * unprotect it (if we want to write to it)
1684 * perform the requested access
1685 * reprotect it (after a write)
1686 * relinquish control
1687 *
1688 * Return value:
1689 * 0 on success,
1690 * EAGAIN if the device is in use (retryable)
1691 * ENODATA on access timeout (maybe retryable: device may just be busy)
1692 * ENODEV if the NVmem device is missing or otherwise unusable
1693 * EPROTO on other h/w or s/w errors.
1694 */
1695 static int
bge_nvmem_rw32(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1696 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1697 {
1698 int err;
1699
1700 if ((err = bge_nvmem_acquire(bgep)) == 0) {
1701 switch (cmd) {
1702 case BGE_SEE_READ:
1703 err = bge_seeprom_access(bgep,
1704 SEEPROM_ACCESS_READ, addr, dp);
1705 break;
1706
1707 case BGE_SEE_WRITE:
1708 bge_nvmem_protect(bgep, B_FALSE);
1709 err = bge_seeprom_access(bgep,
1710 SEEPROM_ACCESS_WRITE, addr, dp);
1711 bge_nvmem_protect(bgep, B_TRUE);
1712 break;
1713
1714 case BGE_FLASH_READ:
1715 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1716 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1717 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1718 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1719 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1720 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1721 bge_reg_set32(bgep, NVM_ACCESS_REG,
1722 NVM_ACCESS_ENABLE);
1723 }
1724 err = bge_flash_access(bgep,
1725 NVM_FLASH_CMD_RD, addr, dp);
1726 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1727 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1728 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1729 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1730 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1731 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1732 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1733 NVM_ACCESS_ENABLE);
1734 }
1735 break;
1736
1737 case BGE_FLASH_WRITE:
1738 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1739 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1740 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1741 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1742 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1743 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1744 bge_reg_set32(bgep, NVM_ACCESS_REG,
1745 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1746 }
1747 bge_nvmem_protect(bgep, B_FALSE);
1748 err = bge_flash_access(bgep,
1749 NVM_FLASH_CMD_WR, addr, dp);
1750 bge_nvmem_protect(bgep, B_TRUE);
1751 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1752 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1753 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1754 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1755 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
1756 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
1757 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1758 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1759 }
1760
1761 break;
1762
1763 default:
1764 _NOTE(NOTREACHED)
1765 break;
1766 }
1767 bge_nvmem_relinquish(bgep);
1768 }
1769
1770 BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1771 return (err);
1772 }
1773
1774 static uint32_t
bge_nvmem_access_cmd(bge_t * bgep,boolean_t read)1775 bge_nvmem_access_cmd(bge_t *bgep, boolean_t read)
1776 {
1777 switch (bgep->chipid.nvtype) {
1778 case BGE_NVTYPE_NONE:
1779 case BGE_NVTYPE_UNKNOWN:
1780 default:
1781 return 0;
1782
1783 case BGE_NVTYPE_SEEPROM:
1784 case BGE_NVTYPE_LEGACY_SEEPROM:
1785 return (read ? BGE_SEE_READ : BGE_SEE_WRITE);
1786
1787 case BGE_NVTYPE_UNBUFFERED_FLASH:
1788 case BGE_NVTYPE_BUFFERED_FLASH:
1789 return (read ? BGE_FLASH_READ : BGE_FLASH_WRITE);
1790 }
1791 }
1792
1793
1794 int
bge_nvmem_read32(bge_t * bgep,bge_regno_t addr,uint32_t * dp)1795 bge_nvmem_read32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1796 {
1797 return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_TRUE),
1798 addr, dp));
1799 }
1800
1801
1802 int
bge_nvmem_write32(bge_t * bgep,bge_regno_t addr,uint32_t * dp)1803 bge_nvmem_write32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1804 {
1805 return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_FALSE),
1806 addr, dp));
1807 }
1808
1809
1810 /*
1811 * Attempt to get a MAC address from the SEEPROM or Flash, if any
1812 */
1813 static uint64_t
bge_get_nvmac(bge_t * bgep)1814 bge_get_nvmac(bge_t *bgep)
1815 {
1816 uint32_t mac_high;
1817 uint32_t mac_low;
1818 uint32_t addr;
1819 uint32_t cmd;
1820 uint64_t mac;
1821
1822 BGE_TRACE(("bge_get_nvmac($%p)",
1823 (void *)bgep));
1824
1825 switch (bgep->chipid.nvtype) {
1826 case BGE_NVTYPE_NONE:
1827 case BGE_NVTYPE_UNKNOWN:
1828 default:
1829 return (0ULL);
1830
1831 case BGE_NVTYPE_SEEPROM:
1832 case BGE_NVTYPE_LEGACY_SEEPROM:
1833 cmd = BGE_SEE_READ;
1834 break;
1835
1836 case BGE_NVTYPE_UNBUFFERED_FLASH:
1837 case BGE_NVTYPE_BUFFERED_FLASH:
1838 cmd = BGE_FLASH_READ;
1839 break;
1840 }
1841
1842 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1843 addr = NVMEM_DATA_MAC_ADDRESS_5906;
1844 else
1845 addr = NVMEM_DATA_MAC_ADDRESS;
1846
1847 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1848 return (0ULL);
1849 addr += 4;
1850 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1851 return (0ULL);
1852
1853 /*
1854 * The Broadcom chip is natively BIG-endian, so that's how the
1855 * MAC address is represented in NVmem. We may need to swap it
1856 * around on a little-endian host ...
1857 */
1858 #ifdef _BIG_ENDIAN
1859 mac = mac_high;
1860 mac = mac << 32;
1861 mac |= mac_low;
1862 #else
1863 mac = BGE_BSWAP_32(mac_high);
1864 mac = mac << 32;
1865 mac |= BGE_BSWAP_32(mac_low);
1866 #endif /* _BIG_ENDIAN */
1867
1868 return (mac);
1869 }
1870
1871 #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1872
1873 /*
1874 * Dummy version for when we're not supporting NVmem access
1875 */
1876 static uint64_t
bge_get_nvmac(bge_t * bgep)1877 bge_get_nvmac(bge_t *bgep)
1878 {
1879 _NOTE(ARGUNUSED(bgep))
1880 return (0ULL);
1881 }
1882
1883 #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1884
1885 /*
1886 * Determine the type of NVmem that is (or may be) attached to this chip,
1887 */
1888 static enum bge_nvmem_type
bge_nvmem_id(bge_t * bgep)1889 bge_nvmem_id(bge_t *bgep)
1890 {
1891 enum bge_nvmem_type nvtype;
1892 uint32_t config1;
1893
1894 BGE_TRACE(("bge_nvmem_id($%p)",
1895 (void *)bgep));
1896
1897 switch (bgep->chipid.device) {
1898 default:
1899 /*
1900 * We shouldn't get here; it means we don't recognise
1901 * the chip, which means we don't know how to determine
1902 * what sort of NVmem (if any) it has. So we'll say
1903 * NONE, to disable the NVmem access code ...
1904 */
1905 nvtype = BGE_NVTYPE_NONE;
1906 break;
1907
1908 case DEVICE_ID_5700:
1909 case DEVICE_ID_5700x:
1910 case DEVICE_ID_5701:
1911 /*
1912 * These devices support *only* SEEPROMs
1913 */
1914 nvtype = BGE_NVTYPE_SEEPROM;
1915 break;
1916
1917 case DEVICE_ID_5702:
1918 case DEVICE_ID_5702fe:
1919 case DEVICE_ID_5703C:
1920 case DEVICE_ID_5703S:
1921 case DEVICE_ID_5704C:
1922 case DEVICE_ID_5704S:
1923 case DEVICE_ID_5704:
1924 case DEVICE_ID_5705M:
1925 case DEVICE_ID_5705C:
1926 case DEVICE_ID_5705_2:
1927 case DEVICE_ID_5717:
1928 case DEVICE_ID_5718:
1929 case DEVICE_ID_5719:
1930 case DEVICE_ID_5720:
1931 case DEVICE_ID_5724:
1932 case DEVICE_ID_5725:
1933 case DEVICE_ID_5727:
1934 case DEVICE_ID_57780:
1935 case DEVICE_ID_5780:
1936 case DEVICE_ID_5782:
1937 case DEVICE_ID_5785:
1938 case DEVICE_ID_5787:
1939 case DEVICE_ID_5787M:
1940 case DEVICE_ID_5788:
1941 case DEVICE_ID_5789:
1942 case DEVICE_ID_5751:
1943 case DEVICE_ID_5751M:
1944 case DEVICE_ID_5752:
1945 case DEVICE_ID_5752M:
1946 case DEVICE_ID_5754:
1947 case DEVICE_ID_5755:
1948 case DEVICE_ID_5755M:
1949 case DEVICE_ID_5756M:
1950 case DEVICE_ID_5721:
1951 case DEVICE_ID_5722:
1952 case DEVICE_ID_5723:
1953 case DEVICE_ID_5761:
1954 case DEVICE_ID_5761E:
1955 case DEVICE_ID_5764:
1956 case DEVICE_ID_5714C:
1957 case DEVICE_ID_5714S:
1958 case DEVICE_ID_5715C:
1959 case DEVICE_ID_5715S:
1960 case DEVICE_ID_57761:
1961 case DEVICE_ID_57762:
1962 case DEVICE_ID_57765:
1963 case DEVICE_ID_57766:
1964 case DEVICE_ID_57781:
1965 case DEVICE_ID_57782:
1966 case DEVICE_ID_57785:
1967 case DEVICE_ID_57786:
1968 case DEVICE_ID_57791:
1969 case DEVICE_ID_57795:
1970 config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
1971 if (config1 & NVM_CFG1_FLASH_MODE)
1972 if (config1 & NVM_CFG1_BUFFERED_MODE)
1973 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1974 else
1975 nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
1976 else
1977 nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
1978 break;
1979 case DEVICE_ID_5906:
1980 case DEVICE_ID_5906M:
1981 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
1982 break;
1983 }
1984
1985 return (nvtype);
1986 }
1987
1988 #undef BGE_DBG
1989 #define BGE_DBG BGE_DBG_APE /* debug flag for this code */
1990
1991 uint32_t
bge_ape_get32(bge_t * bgep,bge_regno_t regno)1992 bge_ape_get32(bge_t *bgep, bge_regno_t regno)
1993 {
1994 BGE_TRACE(("bge_ape_get32($%p, 0x%lx)",
1995 (void *)bgep, regno));
1996
1997 return (ddi_get32(bgep->ape_handle, APE_ADDR(bgep, regno)));
1998 }
1999
2000 void
bge_ape_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)2001 bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
2002 {
2003 BGE_TRACE(("bge_ape_put32($%p, 0x%lx, 0x%x)",
2004 (void *)bgep, regno, data));
2005
2006 ddi_put32(bgep->ape_handle, APE_ADDR(bgep, regno), data);
2007 BGE_PCICHK(bgep);
2008 }
2009
2010 void
bge_ape_lock_init(bge_t * bgep)2011 bge_ape_lock_init(bge_t *bgep)
2012 {
2013 int i;
2014 uint32_t regbase;
2015 uint32_t bit;
2016
2017 BGE_TRACE(("bge_ape_lock_init($%p)", (void *)bgep));
2018
2019 if (bgep->chipid.device == DEVICE_ID_5761)
2020 regbase = BGE_APE_LOCK_GRANT;
2021 else
2022 regbase = BGE_APE_PER_LOCK_GRANT;
2023
2024 /* Make sure the driver hasn't any stale locks. */
2025 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
2026 switch (i) {
2027 case BGE_APE_LOCK_PHY0:
2028 case BGE_APE_LOCK_PHY1:
2029 case BGE_APE_LOCK_PHY2:
2030 case BGE_APE_LOCK_PHY3:
2031 bit = APE_LOCK_GRANT_DRIVER;
2032 break;
2033 default:
2034 if (!bgep->pci_func)
2035 bit = APE_LOCK_GRANT_DRIVER;
2036 else
2037 bit = 1 << bgep->pci_func;
2038 }
2039 bge_ape_put32(bgep, regbase + 4 * i, bit);
2040 }
2041 }
2042
2043 static int
bge_ape_lock(bge_t * bgep,int locknum)2044 bge_ape_lock(bge_t *bgep, int locknum)
2045 {
2046 int i, off;
2047 int ret = 0;
2048 uint32_t status;
2049 uint32_t req;
2050 uint32_t gnt;
2051 uint32_t bit;
2052
2053 BGE_TRACE(("bge_ape_lock($%p, 0x%x)", (void *)bgep, locknum));
2054
2055 if (!bgep->ape_enabled)
2056 return (0);
2057
2058 switch (locknum) {
2059 case BGE_APE_LOCK_GPIO:
2060 if (bgep->chipid.device == DEVICE_ID_5761)
2061 return (0);
2062 /* FALLTHROUGH */
2063 case BGE_APE_LOCK_GRC:
2064 case BGE_APE_LOCK_MEM:
2065 if (!bgep->pci_func)
2066 bit = APE_LOCK_REQ_DRIVER;
2067 else
2068 bit = 1 << bgep->pci_func;
2069 break;
2070 case BGE_APE_LOCK_PHY0:
2071 case BGE_APE_LOCK_PHY1:
2072 case BGE_APE_LOCK_PHY2:
2073 case BGE_APE_LOCK_PHY3:
2074 bit = APE_LOCK_REQ_DRIVER;
2075 break;
2076 default:
2077 return (-1);
2078 }
2079
2080 if (bgep->chipid.device == DEVICE_ID_5761) {
2081 req = BGE_APE_LOCK_REQ;
2082 gnt = BGE_APE_LOCK_GRANT;
2083 } else {
2084 req = BGE_APE_PER_LOCK_REQ;
2085 gnt = BGE_APE_PER_LOCK_GRANT;
2086 }
2087
2088 off = 4 * locknum;
2089
2090 bge_ape_put32(bgep, req + off, bit);
2091
2092 /* Wait for up to 1 millisecond to acquire lock. */
2093 for (i = 0; i < 100; i++) {
2094 status = bge_ape_get32(bgep, gnt + off);
2095 if (status == bit)
2096 break;
2097 drv_usecwait(10);
2098 }
2099
2100 if (status != bit) {
2101 /* Revoke the lock request. */
2102 bge_ape_put32(bgep, gnt + off, bit);
2103 ret = -1;
2104 }
2105
2106 return (ret);
2107 }
2108
2109 static void
bge_ape_unlock(bge_t * bgep,int locknum)2110 bge_ape_unlock(bge_t *bgep, int locknum)
2111 {
2112 uint32_t gnt;
2113 uint32_t bit;
2114
2115 BGE_TRACE(("bge_ape_unlock($%p, 0x%x)", (void *)bgep, locknum));
2116
2117 if (!bgep->ape_enabled)
2118 return;
2119
2120 switch (locknum) {
2121 case BGE_APE_LOCK_GPIO:
2122 if (bgep->chipid.device == DEVICE_ID_5761)
2123 return;
2124 /* FALLTHROUGH */
2125 case BGE_APE_LOCK_GRC:
2126 case BGE_APE_LOCK_MEM:
2127 if (!bgep->pci_func)
2128 bit = APE_LOCK_GRANT_DRIVER;
2129 else
2130 bit = 1 << bgep->pci_func;
2131 break;
2132 case BGE_APE_LOCK_PHY0:
2133 case BGE_APE_LOCK_PHY1:
2134 case BGE_APE_LOCK_PHY2:
2135 case BGE_APE_LOCK_PHY3:
2136 bit = APE_LOCK_GRANT_DRIVER;
2137 break;
2138 default:
2139 return;
2140 }
2141
2142 if (bgep->chipid.device == DEVICE_ID_5761)
2143 gnt = BGE_APE_LOCK_GRANT;
2144 else
2145 gnt = BGE_APE_PER_LOCK_GRANT;
2146
2147 bge_ape_put32(bgep, gnt + 4 * locknum, bit);
2148 }
2149
2150 /* wait for pending event to finish, if successful returns with MEM locked */
2151 static int
bge_ape_event_lock(bge_t * bgep,uint32_t timeout_us)2152 bge_ape_event_lock(bge_t *bgep, uint32_t timeout_us)
2153 {
2154 uint32_t apedata;
2155
2156 BGE_TRACE(("bge_ape_event_lock($%p, %d)", (void *)bgep, timeout_us));
2157
2158 ASSERT(timeout_us > 0);
2159
2160 while (timeout_us) {
2161 if (bge_ape_lock(bgep, BGE_APE_LOCK_MEM))
2162 return (-1);
2163
2164 apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2165 if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2166 break;
2167
2168 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2169
2170 drv_usecwait(10);
2171 timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
2172 }
2173
2174 return (timeout_us ? 0 : -1);
2175 }
2176
2177 /* wait for pending event to finish, returns non-zero if not finished */
2178 static int
bge_ape_wait_for_event(bge_t * bgep,uint32_t timeout_us)2179 bge_ape_wait_for_event(bge_t *bgep, uint32_t timeout_us)
2180 {
2181 uint32_t i;
2182 uint32_t apedata;
2183
2184 BGE_TRACE(("bge_ape_wait_for_event($%p, %d)", (void *)bgep, timeout_us));
2185
2186 ASSERT(timeout_us > 0);
2187
2188 for (i = 0; i < timeout_us / 10; i++) {
2189 apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2190
2191 if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2192 break;
2193
2194 drv_usecwait(10);
2195 }
2196
2197 return (i == timeout_us / 10);
2198 }
2199
2200 int
bge_ape_scratchpad_read(bge_t * bgep,uint32_t * data,uint32_t base_off,uint32_t lenToRead)2201 bge_ape_scratchpad_read(bge_t *bgep, uint32_t *data, uint32_t base_off,
2202 uint32_t lenToRead)
2203 {
2204 int err;
2205 uint32_t i;
2206 uint32_t bufoff;
2207 uint32_t msgoff;
2208 uint32_t maxlen;
2209 uint32_t apedata;
2210
2211 BGE_TRACE(("bge_ape_scratchpad_read($%p, %p, 0x%0x, %d)",
2212 (void *)bgep, (void*)data, base_off, lenToRead));
2213
2214 if (!bgep->ape_has_ncsi)
2215 return (0);
2216
2217 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2218 if (apedata != APE_SEG_SIG_MAGIC)
2219 return (-1);
2220
2221 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2222 if (!(apedata & APE_FW_STATUS_READY))
2223 return (-1);
2224
2225 bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2226 BGE_APE_SHMEM_BASE);
2227 msgoff = bufoff + 2 * sizeof(uint32_t);
2228 maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2229
2230 while (lenToRead) {
2231 uint32_t transferLen;
2232
2233 /* Cap xfer sizes to scratchpad limits. */
2234 transferLen = (lenToRead > maxlen) ? maxlen : lenToRead;
2235 lenToRead -= transferLen;
2236
2237 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2238 if (!(apedata & APE_FW_STATUS_READY))
2239 return (-1);
2240
2241 /* Wait for up to 1 millisecond for APE to service previous event. */
2242 err = bge_ape_event_lock(bgep, 1000);
2243 if (err)
2244 return (err);
2245
2246 apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2247 APE_EVENT_STATUS_SCRTCHPD_READ |
2248 APE_EVENT_STATUS_EVENT_PENDING);
2249 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2250
2251 bge_ape_put32(bgep, bufoff, base_off);
2252 bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2253
2254 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2255 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2256
2257 base_off += transferLen;
2258
2259 if (bge_ape_wait_for_event(bgep, 30000))
2260 return (-1);
2261
2262 for (i = 0; transferLen; i += 4, transferLen -= 4) {
2263 uint32_t val = bge_ape_get32(bgep, msgoff + i);
2264 memcpy(data, &val, sizeof(uint32_t));
2265 data++;
2266 }
2267 }
2268
2269 return (0);
2270 }
2271
2272 int
bge_ape_scratchpad_write(bge_t * bgep,uint32_t dstoff,uint32_t * data,uint32_t lenToWrite)2273 bge_ape_scratchpad_write(bge_t *bgep, uint32_t dstoff, uint32_t *data,
2274 uint32_t lenToWrite)
2275 {
2276 int err;
2277 uint32_t i;
2278 uint32_t bufoff;
2279 uint32_t msgoff;
2280 uint32_t maxlen;
2281 uint32_t apedata;
2282
2283 BGE_TRACE(("bge_ape_scratchpad_write($%p, %d, %p, %d)",
2284 (void *)bgep, dstoff, data, lenToWrite));
2285
2286 if (!bgep->ape_has_ncsi)
2287 return (0);
2288
2289 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2290 if (apedata != APE_SEG_SIG_MAGIC)
2291 return (-1);
2292
2293 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2294 if (!(apedata & APE_FW_STATUS_READY))
2295 return (-1);
2296
2297 bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2298 BGE_APE_SHMEM_BASE);
2299 msgoff = bufoff + 2 * sizeof(uint32_t);
2300 maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2301
2302 while (lenToWrite) {
2303 uint32_t transferLen;
2304
2305 /* Cap xfer sizes to scratchpad limits. */
2306 transferLen = (lenToWrite > maxlen) ? maxlen : lenToWrite;
2307 lenToWrite -= transferLen;
2308
2309 /* Wait for up to 1 millisecond for
2310 * APE to service previous event.
2311 */
2312 err = bge_ape_event_lock(bgep, 1000);
2313 if (err)
2314 return (err);
2315
2316 bge_ape_put32(bgep, bufoff, dstoff);
2317 bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2318 apedata = msgoff;
2319
2320 dstoff += transferLen;
2321
2322 for (i = 0; transferLen; i += 4, transferLen -= 4) {
2323 bge_ape_put32(bgep, apedata, *data++);
2324 apedata += sizeof(uint32_t);
2325 }
2326
2327 apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2328 APE_EVENT_STATUS_SCRTCHPD_WRITE |
2329 APE_EVENT_STATUS_EVENT_PENDING);
2330 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2331
2332 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2333 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2334 }
2335
2336 return (0);
2337 }
2338
2339 static int
bge_ape_send_event(bge_t * bgep,uint32_t event)2340 bge_ape_send_event(bge_t *bgep, uint32_t event)
2341 {
2342 int err;
2343 uint32_t apedata;
2344
2345 BGE_TRACE(("bge_ape_send_event($%p, %d)", (void *)bgep, event));
2346
2347 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2348 if (apedata != APE_SEG_SIG_MAGIC)
2349 return (-1);
2350
2351 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2352 if (!(apedata & APE_FW_STATUS_READY))
2353 return (-1);
2354
2355 /* Wait for up to 1 millisecond for APE to service previous event. */
2356 err = bge_ape_event_lock(bgep, 1000);
2357 if (err)
2358 return (err);
2359
2360 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS,
2361 event | APE_EVENT_STATUS_EVENT_PENDING);
2362
2363 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2364 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2365
2366 return 0;
2367 }
2368
2369 static void
bge_ape_driver_state_change(bge_t * bgep,int mode)2370 bge_ape_driver_state_change(bge_t *bgep, int mode)
2371 {
2372 uint32_t event;
2373 uint32_t apedata;
2374
2375 BGE_TRACE(("bge_ape_driver_state_change($%p, %d)",
2376 (void *)bgep, mode));
2377
2378 if (!bgep->ape_enabled)
2379 return;
2380
2381 switch (mode) {
2382 case BGE_INIT_RESET:
2383 bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG,
2384 APE_HOST_SEG_SIG_MAGIC);
2385 bge_ape_put32(bgep, BGE_APE_HOST_SEG_LEN,
2386 APE_HOST_SEG_LEN_MAGIC);
2387 apedata = bge_ape_get32(bgep, BGE_APE_HOST_INIT_COUNT);
2388 bge_ape_put32(bgep, BGE_APE_HOST_INIT_COUNT, ++apedata);
2389 bge_ape_put32(bgep, BGE_APE_HOST_DRIVER_ID,
2390 APE_HOST_DRIVER_ID_MAGIC(1, 0));
2391 bge_ape_put32(bgep, BGE_APE_HOST_BEHAVIOR,
2392 APE_HOST_BEHAV_NO_PHYLOCK);
2393 bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE,
2394 BGE_APE_HOST_DRVR_STATE_START);
2395
2396 event = APE_EVENT_STATUS_STATE_START;
2397 break;
2398 case BGE_SHUTDOWN_RESET:
2399 /* With the interface we are currently using,
2400 * APE does not track driver state. Wiping
2401 * out the HOST SEGMENT SIGNATURE forces
2402 * the APE to assume OS absent status.
2403 */
2404 bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG, 0x0);
2405
2406 #if 0
2407 if (WOL supported) {
2408 bge_ape_put32(bgep, BGE_APE_HOST_WOL_SPEED,
2409 BGE_APE_HOST_WOL_SPEED_AUTO);
2410 apedata = BGE_APE_HOST_DRVR_STATE_WOL;
2411 } else
2412 #endif
2413 apedata = BGE_APE_HOST_DRVR_STATE_UNLOAD;
2414
2415 bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE, apedata);
2416
2417 event = APE_EVENT_STATUS_STATE_UNLOAD;
2418 break;
2419 case BGE_SUSPEND_RESET:
2420 event = APE_EVENT_STATUS_STATE_SUSPEND;
2421 break;
2422 default:
2423 return;
2424 }
2425
2426 event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
2427
2428 bge_ape_send_event(bgep, event);
2429 }
2430
2431 #undef BGE_DBG
2432 #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */
2433
2434 static void
bge_init_recv_rule(bge_t * bgep)2435 bge_init_recv_rule(bge_t *bgep)
2436 {
2437 bge_recv_rule_t *rulep = bgep->recv_rules;
2438 uint32_t i;
2439
2440 /*
2441 * Initialize receive rule registers.
2442 * Note that rules may persist across each bge_m_start/stop() call.
2443 */
2444 for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
2445 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
2446 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
2447 }
2448 }
2449
2450 /*
2451 * Using the values captured by bge_chip_cfg_init(), and additional probes
2452 * as required, characterise the chip fully: determine the label by which
2453 * to refer to this chip, the correct settings for various registers, and
2454 * of course whether the device and/or subsystem are supported!
2455 */
2456 int
bge_chip_id_init(bge_t * bgep)2457 bge_chip_id_init(bge_t *bgep)
2458 {
2459 char buf[MAXPATHLEN]; /* any risk of stack overflow? */
2460 boolean_t dev_ok;
2461 chip_id_t *cidp;
2462 uint32_t subid;
2463 char *devname;
2464 char *sysname;
2465 int *ids;
2466 int err;
2467 uint_t i;
2468
2469 dev_ok = B_FALSE;
2470 cidp = &bgep->chipid;
2471
2472 /*
2473 * Check the PCI device ID to determine the generic chip type and
2474 * select parameters that depend on this.
2475 *
2476 * Note: because the SPARC platforms in general don't fit the
2477 * SEEPROM 'behind' the chip, the PCI revision ID register reads
2478 * as zero - which is why we use <asic_rev> rather than <revision>
2479 * below ...
2480 *
2481 * Note: in general we can't distinguish between the Copper/SerDes
2482 * versions by ID alone, as some Copper devices (e.g. some but not
2483 * all 5703Cs) have the same ID as the SerDes equivalents. So we
2484 * treat them the same here, and the MII code works out the media
2485 * type later on ...
2486 */
2487 cidp->mbuf_base = bge_mbuf_pool_base;
2488 cidp->mbuf_length = bge_mbuf_pool_len;
2489 cidp->recv_slots = BGE_RECV_SLOTS_USED;
2490 cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2491 cidp->pci_type = BGE_PCI_X;
2492 cidp->statistic_type = BGE_STAT_BLK;
2493 cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2494 cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2495 cidp->mbuf_hi_water = bge_mbuf_hi_water;
2496 cidp->rx_ticks_norm = bge_rx_ticks_norm;
2497 cidp->rx_count_norm = bge_rx_count_norm;
2498 cidp->tx_ticks_norm = bge_tx_ticks_norm;
2499 cidp->tx_count_norm = bge_tx_count_norm;
2500 cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2501
2502 if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2503 cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2504 if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2505 cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2506
2507 cidp->msi_enabled = B_FALSE;
2508
2509 switch (cidp->device) {
2510 case DEVICE_ID_5717:
2511 case DEVICE_ID_5718:
2512 case DEVICE_ID_5719:
2513 case DEVICE_ID_5720:
2514 case DEVICE_ID_5724:
2515 case DEVICE_ID_5725:
2516 case DEVICE_ID_5727:
2517 case DEVICE_ID_57761:
2518 case DEVICE_ID_57762:
2519 case DEVICE_ID_57765:
2520 case DEVICE_ID_57766:
2521 case DEVICE_ID_57781:
2522 case DEVICE_ID_57782:
2523 case DEVICE_ID_57785:
2524 case DEVICE_ID_57786:
2525 case DEVICE_ID_57791:
2526 case DEVICE_ID_57795:
2527 if (cidp->device == DEVICE_ID_5717) {
2528 cidp->chip_label = 5717;
2529 } else if (cidp->device == DEVICE_ID_5718) {
2530 cidp->chip_label = 5718;
2531 } else if (cidp->device == DEVICE_ID_5719) {
2532 cidp->chip_label = 5719;
2533 } else if (cidp->device == DEVICE_ID_5720) {
2534 if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
2535 DEVICE_ID_5717_C0) {
2536 cidp->chip_label = 5717;
2537 } else {
2538 cidp->chip_label = 5720;
2539 }
2540 } else if (cidp->device == DEVICE_ID_5724) {
2541 cidp->chip_label = 5724;
2542 } else if (cidp->device == DEVICE_ID_5725) {
2543 cidp->chip_label = 5725;
2544 } else if (cidp->device == DEVICE_ID_5727) {
2545 cidp->chip_label = 5727;
2546 } else if (cidp->device == DEVICE_ID_57761) {
2547 cidp->chip_label = 57761;
2548 } else if (cidp->device == DEVICE_ID_57762) {
2549 cidp->chip_label = 57762;
2550 } else if (cidp->device == DEVICE_ID_57765) {
2551 cidp->chip_label = 57765;
2552 } else if (cidp->device == DEVICE_ID_57766) {
2553 cidp->chip_label = 57766;
2554 } else if (cidp->device == DEVICE_ID_57781) {
2555 cidp->chip_label = 57781;
2556 } else if (cidp->device == DEVICE_ID_57782) {
2557 cidp->chip_label = 57782;
2558 } else if (cidp->device == DEVICE_ID_57785) {
2559 cidp->chip_label = 57785;
2560 } else if (cidp->device == DEVICE_ID_57786) {
2561 cidp->chip_label = 57786;
2562 } else if (cidp->device == DEVICE_ID_57791) {
2563 cidp->chip_label = 57791;
2564 } else if (cidp->device == DEVICE_ID_57795) {
2565 cidp->chip_label = 57795;
2566 }
2567
2568 cidp->msi_enabled = bge_enable_msi;
2569 #ifdef __sparc
2570 cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2571 #endif
2572 cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2573 cidp->pci_type = BGE_PCI_E;
2574 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2575 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2576 cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2577 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2578 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2579 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2580 if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
2581 cidp->bge_mlcr_default = MLCR_DEFAULT_57765;
2582 } else {
2583 cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2584 }
2585 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2586 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2587 cidp->statistic_type = BGE_STAT_REG;
2588 dev_ok = B_TRUE;
2589 break;
2590
2591 case DEVICE_ID_5700:
2592 case DEVICE_ID_5700x:
2593 cidp->chip_label = 5700;
2594 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2595 break;
2596
2597 case DEVICE_ID_5701:
2598 cidp->chip_label = 5701;
2599 dev_ok = B_TRUE;
2600 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2601 break;
2602
2603 case DEVICE_ID_5702:
2604 case DEVICE_ID_5702fe:
2605 cidp->chip_label = 5702;
2606 dev_ok = B_TRUE;
2607 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2608 cidp->pci_type = BGE_PCI;
2609 break;
2610
2611 case DEVICE_ID_5703C:
2612 case DEVICE_ID_5703S:
2613 case DEVICE_ID_5703:
2614 /*
2615 * Revision A0 of the 5703/5793 had various errata
2616 * that we can't or don't work around, so it's not
2617 * supported, but all later versions are
2618 */
2619 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2620 if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2621 dev_ok = B_TRUE;
2622 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2623 break;
2624
2625 case DEVICE_ID_5704C:
2626 case DEVICE_ID_5704S:
2627 case DEVICE_ID_5704:
2628 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2629 cidp->mbuf_base = bge_mbuf_pool_base_5704;
2630 cidp->mbuf_length = bge_mbuf_pool_len_5704;
2631 dev_ok = B_TRUE;
2632 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2633 break;
2634
2635 case DEVICE_ID_5705C:
2636 case DEVICE_ID_5705M:
2637 case DEVICE_ID_5705MA3:
2638 case DEVICE_ID_5705F:
2639 case DEVICE_ID_5705_2:
2640 case DEVICE_ID_5754:
2641 if (cidp->device == DEVICE_ID_5754) {
2642 cidp->chip_label = 5754;
2643 cidp->pci_type = BGE_PCI_E;
2644 } else {
2645 cidp->chip_label = 5705;
2646 cidp->pci_type = BGE_PCI;
2647 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2648 }
2649 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2650 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2651 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2652 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2653 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2654 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2655 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2656 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2657 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2658 cidp->statistic_type = BGE_STAT_REG;
2659 dev_ok = B_TRUE;
2660 break;
2661
2662 case DEVICE_ID_5906:
2663 case DEVICE_ID_5906M:
2664 cidp->chip_label = 5906;
2665 cidp->pci_type = BGE_PCI_E;
2666 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2667 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2668 cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2669 cidp->mbuf_base = bge_mbuf_pool_base;
2670 cidp->mbuf_length = bge_mbuf_pool_len;
2671 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2672 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2673 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2674 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2675 cidp->statistic_type = BGE_STAT_REG;
2676 dev_ok = B_TRUE;
2677 break;
2678
2679 case DEVICE_ID_5753:
2680 cidp->chip_label = 5753;
2681 cidp->pci_type = BGE_PCI_E;
2682 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2683 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2684 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2685 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2686 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2687 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2688 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2689 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2690 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2691 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2692 cidp->statistic_type = BGE_STAT_REG;
2693 dev_ok = B_TRUE;
2694 break;
2695
2696 case DEVICE_ID_5755:
2697 case DEVICE_ID_5755M:
2698 cidp->chip_label = 5755;
2699 cidp->pci_type = BGE_PCI_E;
2700 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2701 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2702 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2703 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2704 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2705 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2706 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2707 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2708 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2709 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2710 if (cidp->device == DEVICE_ID_5755M)
2711 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2712 cidp->statistic_type = BGE_STAT_REG;
2713 dev_ok = B_TRUE;
2714 break;
2715
2716 case DEVICE_ID_5756M:
2717 /*
2718 * This is nearly identical to the 5755M.
2719 * (Actually reports the 5755 chip ID.)
2720 */
2721 cidp->chip_label = 5756;
2722 cidp->pci_type = BGE_PCI_E;
2723 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2724 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2725 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2726 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2727 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2728 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2729 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2730 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2731 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2732 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2733 cidp->statistic_type = BGE_STAT_REG;
2734 dev_ok = B_TRUE;
2735 break;
2736
2737 case DEVICE_ID_5787:
2738 case DEVICE_ID_5787M:
2739 cidp->chip_label = 5787;
2740 cidp->pci_type = BGE_PCI_E;
2741 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2742 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2743 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2744 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2745 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2746 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2747 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2748 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2749 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2750 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2751 cidp->statistic_type = BGE_STAT_REG;
2752 dev_ok = B_TRUE;
2753 break;
2754
2755 case DEVICE_ID_5723:
2756 case DEVICE_ID_5761:
2757 case DEVICE_ID_5761E:
2758 case DEVICE_ID_57780:
2759 cidp->msi_enabled = bge_enable_msi;
2760 /*
2761 * We don't use MSI for BCM5764 and BCM5785, as the
2762 * status block may fail to update when the network
2763 * traffic is heavy.
2764 */
2765 /* FALLTHRU */
2766 case DEVICE_ID_5785:
2767 case DEVICE_ID_5764:
2768 if (cidp->device == DEVICE_ID_5723)
2769 cidp->chip_label = 5723;
2770 else if (cidp->device == DEVICE_ID_5764)
2771 cidp->chip_label = 5764;
2772 else if (cidp->device == DEVICE_ID_5785)
2773 cidp->chip_label = 5785;
2774 else if (cidp->device == DEVICE_ID_57780)
2775 cidp->chip_label = 57780;
2776 else
2777 cidp->chip_label = 5761;
2778 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2779 cidp->pci_type = BGE_PCI_E;
2780 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2781 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2782 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2783 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2784 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2785 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2786 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2787 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2788 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2789 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2790 cidp->statistic_type = BGE_STAT_REG;
2791 dev_ok = B_TRUE;
2792 break;
2793
2794 /* PCI-X device, identical to 5714 */
2795 case DEVICE_ID_5780:
2796 cidp->chip_label = 5780;
2797 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2798 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2799 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2800 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2801 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2802 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2803 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2804 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2805 cidp->statistic_type = BGE_STAT_REG;
2806 dev_ok = B_TRUE;
2807 break;
2808
2809 case DEVICE_ID_5782:
2810 /*
2811 * Apart from the label, we treat this as a 5705(?)
2812 */
2813 cidp->chip_label = 5782;
2814 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2815 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2816 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2817 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2818 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2819 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2820 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2821 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2822 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2823 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2824 cidp->statistic_type = BGE_STAT_REG;
2825 dev_ok = B_TRUE;
2826 break;
2827
2828 case DEVICE_ID_5788:
2829 /*
2830 * Apart from the label, we treat this as a 5705(?)
2831 */
2832 cidp->chip_label = 5788;
2833 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2834 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2835 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2836 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2837 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2838 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2839 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2840 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2841 cidp->statistic_type = BGE_STAT_REG;
2842 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2843 dev_ok = B_TRUE;
2844 break;
2845
2846 case DEVICE_ID_5714C:
2847 if (cidp->revision >= REVISION_ID_5714_A2)
2848 cidp->msi_enabled = bge_enable_msi;
2849 /* FALLTHRU */
2850 case DEVICE_ID_5714S:
2851 cidp->chip_label = 5714;
2852 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2853 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2854 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2855 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2856 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2857 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2858 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2859 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2860 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2861 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2862 cidp->pci_type = BGE_PCI_E;
2863 cidp->statistic_type = BGE_STAT_REG;
2864 dev_ok = B_TRUE;
2865 break;
2866
2867 case DEVICE_ID_5715C:
2868 case DEVICE_ID_5715S:
2869 cidp->chip_label = 5715;
2870 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2871 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2872 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2873 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2874 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2875 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2876 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2877 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2878 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2879 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2880 cidp->pci_type = BGE_PCI_E;
2881 cidp->statistic_type = BGE_STAT_REG;
2882 if (cidp->revision >= REVISION_ID_5715_A2)
2883 cidp->msi_enabled = bge_enable_msi;
2884 dev_ok = B_TRUE;
2885 break;
2886
2887 case DEVICE_ID_5721:
2888 cidp->chip_label = 5721;
2889 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2890 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2891 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2892 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2893 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2894 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2895 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2896 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2897 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2898 cidp->pci_type = BGE_PCI_E;
2899 cidp->statistic_type = BGE_STAT_REG;
2900 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2901 dev_ok = B_TRUE;
2902 break;
2903
2904 case DEVICE_ID_5722:
2905 cidp->chip_label = 5722;
2906 cidp->pci_type = BGE_PCI_E;
2907 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2908 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2909 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2910 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2911 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2912 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2913 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2914 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2915 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2916 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2917 cidp->statistic_type = BGE_STAT_REG;
2918 dev_ok = B_TRUE;
2919 break;
2920
2921 case DEVICE_ID_5751:
2922 case DEVICE_ID_5751M:
2923 cidp->chip_label = 5751;
2924 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2925 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2926 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2927 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2928 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2929 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2930 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2931 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2932 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2933 cidp->pci_type = BGE_PCI_E;
2934 cidp->statistic_type = BGE_STAT_REG;
2935 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2936 dev_ok = B_TRUE;
2937 break;
2938
2939 case DEVICE_ID_5752:
2940 case DEVICE_ID_5752M:
2941 cidp->chip_label = 5752;
2942 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2943 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2944 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2945 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2946 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2947 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2948 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2949 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2950 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2951 cidp->pci_type = BGE_PCI_E;
2952 cidp->statistic_type = BGE_STAT_REG;
2953 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2954 dev_ok = B_TRUE;
2955 break;
2956
2957 case DEVICE_ID_5789:
2958 cidp->chip_label = 5789;
2959 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2960 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2961 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2962 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2963 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2964 cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
2965 cidp->pci_type = BGE_PCI_E;
2966 cidp->statistic_type = BGE_STAT_REG;
2967 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2968 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2969 cidp->msi_enabled = B_TRUE;
2970 dev_ok = B_TRUE;
2971 break;
2972
2973 }
2974
2975 /*
2976 * Setup the default jumbo parameter.
2977 */
2978 cidp->ethmax_size = ETHERMAX;
2979 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
2980 cidp->std_buf_size = BGE_STD_BUFF_SIZE;
2981
2982 /*
2983 * If jumbo is enabled and this kind of chipset supports jumbo feature,
2984 * setup below jumbo specific parameters.
2985 *
2986 * For BCM5714/5715, there is only one standard receive ring. So the
2987 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
2988 * feature is enabled.
2989 *
2990 * For the BCM5718 family we hijack the standard receive ring for
2991 * the jumboframe traffic, keeps it simple.
2992 */
2993 if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
2994 (cidp->default_mtu > BGE_DEFAULT_MTU)) {
2995 if (DEVICE_5714_SERIES_CHIPSETS(bgep) ||
2996 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
2997 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
2998 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
2999 cidp->mbuf_lo_water_rdma =
3000 RDMA_MBUF_LOWAT_5714_JUMBO;
3001 cidp->mbuf_lo_water_rmac =
3002 MAC_RX_MBUF_LOWAT_5714_JUMBO;
3003 cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
3004 cidp->jumbo_slots = 0;
3005 cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
3006 } else {
3007 cidp->mbuf_lo_water_rdma =
3008 RDMA_MBUF_LOWAT_JUMBO;
3009 cidp->mbuf_lo_water_rmac =
3010 MAC_RX_MBUF_LOWAT_JUMBO;
3011 cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
3012 cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
3013 }
3014 cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
3015 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
3016 cidp->ethmax_size = cidp->default_mtu +
3017 sizeof (struct ether_header);
3018 }
3019
3020 /*
3021 * Identify the NV memory type: SEEPROM or Flash?
3022 */
3023 cidp->nvtype = bge_nvmem_id(bgep);
3024
3025 /*
3026 * Now check what we've discovered: is this truly a supported
3027 * chip on (the motherboard of) a supported platform?
3028 *
3029 * Possible problems here:
3030 * 1) it's a completely unheard-of chip
3031 * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
3032 * 3) it's a chip we would support if it were on the motherboard
3033 * of a Sun platform, but this one isn't ;-(
3034 */
3035 if (cidp->chip_label == 0)
3036 bge_problem(bgep,
3037 "Device 'pci%04x,%04x' not recognized (%d?)",
3038 cidp->vendor, cidp->device, cidp->device);
3039 else if (!dev_ok)
3040 bge_problem(bgep,
3041 "Device 'pci%04x,%04x' (%d) revision %d not supported",
3042 cidp->vendor, cidp->device, cidp->chip_label,
3043 cidp->revision);
3044 else
3045 cidp->flags |= CHIP_FLAG_SUPPORTED;
3046
3047 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3048 return (EIO);
3049
3050 return (0);
3051 }
3052
3053 void
bge_chip_msi_trig(bge_t * bgep)3054 bge_chip_msi_trig(bge_t *bgep)
3055 {
3056 uint32_t regval;
3057
3058 regval = bgep->param_msi_cnt<<4;
3059 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
3060 BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
3061 }
3062
3063 /*
3064 * Various registers that control the chip's internal engines (state
3065 * machines) have a <reset> and <enable> bits (fortunately, in the
3066 * same place in each such register :-).
3067 *
3068 * To reset the state machine, the <reset> bit must be written with 1;
3069 * it will then read back as 1 while the reset is in progress, but
3070 * self-clear to 0 when the reset completes.
3071 *
3072 * To enable a state machine, one must set the <enable> bit, which
3073 * will continue to read back as 0 until the state machine is running.
3074 *
3075 * To disable a state machine, the <enable> bit must be cleared, but
3076 * it will continue to read back as 1 until the state machine actually
3077 * stops.
3078 *
3079 * This routine implements polling for completion of a reset, enable
3080 * or disable operation, returning B_TRUE on success (bit reached the
3081 * required state) or B_FALSE on timeout (200*100us == 20ms).
3082 */
3083 static boolean_t
bge_chip_poll_engine(bge_t * bgep,bge_regno_t regno,uint32_t mask,uint32_t val)3084 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3085 uint32_t mask, uint32_t val)
3086 {
3087 uint32_t regval;
3088 uint32_t n;
3089
3090 BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
3091 (void *)bgep, regno, mask, val));
3092
3093 for (n = 200; n; --n) {
3094 regval = bge_reg_get32(bgep, regno);
3095 if ((regval & mask) == val)
3096 return (B_TRUE);
3097 drv_usecwait(100);
3098 }
3099
3100 bge_problem(bgep, "bge_chip_poll_engine failed: regno = 0x%lx", regno);
3101 bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
3102 return (B_FALSE);
3103 }
3104
3105 /*
3106 * Various registers that control the chip's internal engines (state
3107 * machines) have a <reset> bit (fortunately, in the same place in
3108 * each such register :-). To reset the state machine, this bit must
3109 * be written with 1; it will then read back as 1 while the reset is
3110 * in progress, but self-clear to 0 when the reset completes.
3111 *
3112 * This code sets the bit, then polls for it to read back as zero.
3113 * The return value is B_TRUE on success (reset bit cleared itself),
3114 * or B_FALSE if the state machine didn't recover :(
3115 *
3116 * NOTE: the Core reset is similar to other resets, except that we
3117 * can't poll for completion, since the Core reset disables memory
3118 * access! So we just have to assume that it will all complete in
3119 * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5.
3120 */
3121 static boolean_t
bge_chip_reset_engine(bge_t * bgep,bge_regno_t regno)3122 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
3123 {
3124 uint32_t regval;
3125 uint16_t val16;
3126 uint32_t val32;
3127 uint32_t mhcr;
3128
3129 regval = bge_reg_get32(bgep, regno);
3130
3131 BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
3132 (void *)bgep, regno));
3133 BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
3134 regno, regval));
3135
3136 regval |= STATE_MACHINE_RESET_BIT;
3137
3138 switch (regno) {
3139 case MISC_CONFIG_REG:
3140 /*
3141 * BCM5714/5721/5751 pcie chip special case. In order to avoid
3142 * resetting PCIE block and bringing PCIE link down, bit 29
3143 * in the register needs to be set first, and then set it again
3144 * while the reset bit is written.
3145 * See:P500 of 57xx-PG102-RDS.pdf.
3146 */
3147 if (DEVICE_5705_SERIES_CHIPSETS(bgep) ||
3148 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3149 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3150 DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3151 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
3152 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3153 DEVICE_5906_SERIES_CHIPSETS(bgep) ||
3154 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3155 regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
3156 if (bgep->chipid.pci_type == BGE_PCI_E) {
3157 if (bgep->chipid.asic_rev ==
3158 MHCR_CHIP_REV_5751_A0 ||
3159 bgep->chipid.asic_rev ==
3160 MHCR_CHIP_REV_5721_A0 ||
3161 bgep->chipid.asic_rev ==
3162 MHCR_CHIP_REV_5755_A0) {
3163 val32 = bge_reg_get32(bgep,
3164 PHY_TEST_CTRL_REG);
3165 if (val32 == (PHY_PCIE_SCRAM_MODE |
3166 PHY_PCIE_LTASS_MODE))
3167 bge_reg_put32(bgep,
3168 PHY_TEST_CTRL_REG,
3169 PHY_PCIE_SCRAM_MODE);
3170 val32 = pci_config_get32
3171 (bgep->cfg_handle,
3172 PCI_CONF_BGE_CLKCTL);
3173 val32 |= CLKCTL_PCIE_A0_FIX;
3174 pci_config_put32(bgep->cfg_handle,
3175 PCI_CONF_BGE_CLKCTL, val32);
3176 }
3177 bge_reg_set32(bgep, regno,
3178 MISC_CONFIG_GRC_RESET_DISABLE);
3179 regval |= MISC_CONFIG_GRC_RESET_DISABLE;
3180 }
3181 }
3182
3183 /*
3184 * Special case - causes Core reset
3185 *
3186 * On SPARC v9 we want to ensure that we don't start
3187 * timing until the I/O access has actually reached
3188 * the chip, otherwise we might make the next access
3189 * too early. And we can't just force the write out
3190 * by following it with a read (even to config space)
3191 * because that would cause the fault we're trying
3192 * to avoid. Hence the need for membar_sync() here.
3193 */
3194 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
3195 #ifdef __sparcv9
3196 membar_sync();
3197 #endif /* __sparcv9 */
3198 /*
3199 * On some platforms,system need about 300us for
3200 * link setup.
3201 */
3202 drv_usecwait(300);
3203 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3204 bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
3205 bge_reg_clr32(
3206 bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
3207 }
3208
3209 if (bgep->chipid.pci_type == BGE_PCI_E) {
3210 /* PCI-E device need more reset time */
3211 drv_usecwait(120000);
3212
3213 /*
3214 * (re)Disable interrupts as the bit can be reset after a
3215 * core clock reset.
3216 */
3217 mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3218 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3219 mhcr | MHCR_MASK_PCI_INT_OUTPUT);
3220
3221 /* Set PCIE max payload size and clear error status. */
3222 if ((bgep->chipid.chip_label == 5721) ||
3223 (bgep->chipid.chip_label == 5751) ||
3224 (bgep->chipid.chip_label == 5752) ||
3225 (bgep->chipid.chip_label == 5789) ||
3226 (bgep->chipid.chip_label == 5906)) {
3227 pci_config_put16(bgep->cfg_handle,
3228 PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
3229 pci_config_put16(bgep->cfg_handle,
3230 PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
3231 }
3232
3233 if ((bgep->chipid.chip_label == 5723) ||
3234 (bgep->chipid.chip_label == 5761)) {
3235 pci_config_put16(bgep->cfg_handle,
3236 PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
3237 pci_config_put16(bgep->cfg_handle,
3238 PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
3239 }
3240
3241 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3242 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3243 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3244 val16 = pci_config_get16(bgep->cfg_handle,
3245 PCI_CONF_DEV_CTRL_5717);
3246 val16 &= ~READ_REQ_SIZE_MASK;
3247 val16 |= READ_REQ_SIZE_2K;
3248 pci_config_put16(bgep->cfg_handle,
3249 PCI_CONF_DEV_CTRL_5717, val16);
3250 }
3251 }
3252
3253 BGE_PCICHK(bgep);
3254 return (B_TRUE);
3255
3256 default:
3257 bge_reg_put32(bgep, regno, regval);
3258 return (bge_chip_poll_engine(bgep, regno,
3259 STATE_MACHINE_RESET_BIT, 0));
3260 }
3261 }
3262
3263 /*
3264 * Various registers that control the chip's internal engines (state
3265 * machines) have an <enable> bit (fortunately, in the same place in
3266 * each such register :-). To stop the state machine, this bit must
3267 * be written with 0, then polled to see when the state machine has
3268 * actually stopped.
3269 *
3270 * The return value is B_TRUE on success (enable bit cleared), or
3271 * B_FALSE if the state machine didn't stop :(
3272 */
3273 static boolean_t
bge_chip_disable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)3274 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3275 {
3276 uint32_t regval;
3277
3278 BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
3279 (void *)bgep, regno, morebits));
3280
3281 switch (regno) {
3282 case FTQ_RESET_REG:
3283 /*
3284 * For Schumacher's bugfix CR6490108
3285 */
3286 #ifdef BGE_IPMI_ASF
3287 #ifdef BGE_NETCONSOLE
3288 if (bgep->asf_enabled)
3289 return (B_TRUE);
3290 #endif
3291 #endif
3292 /*
3293 * Not quite like the others; it doesn't
3294 * have an <enable> bit, but instead we
3295 * have to set and then clear all the bits
3296 */
3297 bge_reg_put32(bgep, regno, ~(uint32_t)0);
3298 drv_usecwait(100);
3299 bge_reg_put32(bgep, regno, 0);
3300 return (B_TRUE);
3301
3302 default:
3303 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3304 break;
3305 }
3306
3307 if ((regno == RCV_LIST_SELECTOR_MODE_REG) ||
3308 (regno == DMA_COMPLETION_MODE_REG) ||
3309 (regno == MBUF_CLUSTER_FREE_MODE_REG) ||
3310 (regno == BUFFER_MANAGER_MODE_REG) ||
3311 (regno == MEMORY_ARBITER_MODE_REG)) {
3312 return B_TRUE;
3313 }
3314
3315 break;
3316 }
3317
3318 regval = bge_reg_get32(bgep, regno);
3319 regval &= ~STATE_MACHINE_ENABLE_BIT;
3320 regval &= ~morebits;
3321 bge_reg_put32(bgep, regno, regval);
3322
3323 return bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, 0);
3324 }
3325
3326 /*
3327 * Various registers that control the chip's internal engines (state
3328 * machines) have an <enable> bit (fortunately, in the same place in
3329 * each such register :-). To start the state machine, this bit must
3330 * be written with 1, then polled to see when the state machine has
3331 * actually started.
3332 *
3333 * The return value is B_TRUE on success (enable bit set), or
3334 * B_FALSE if the state machine didn't start :(
3335 */
3336 static boolean_t
bge_chip_enable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)3337 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3338 {
3339 uint32_t regval;
3340
3341 BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
3342 (void *)bgep, regno, morebits));
3343
3344 switch (regno) {
3345 case FTQ_RESET_REG:
3346 #ifdef BGE_IPMI_ASF
3347 #ifdef BGE_NETCONSOLE
3348 if (bgep->asf_enabled)
3349 return (B_TRUE);
3350 #endif
3351 #endif
3352 /*
3353 * Not quite like the others; it doesn't
3354 * have an <enable> bit, but instead we
3355 * have to set and then clear all the bits
3356 */
3357 bge_reg_put32(bgep, regno, ~(uint32_t)0);
3358 drv_usecwait(100);
3359 bge_reg_put32(bgep, regno, 0);
3360 return (B_TRUE);
3361
3362 default:
3363 regval = bge_reg_get32(bgep, regno);
3364 regval |= STATE_MACHINE_ENABLE_BIT;
3365 regval |= morebits;
3366 bge_reg_put32(bgep, regno, regval);
3367 return (bge_chip_poll_engine(bgep, regno,
3368 STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
3369 }
3370 }
3371
3372 /*
3373 * Reprogram the Ethernet, Transmit, and Receive MAC
3374 * modes to match the param_* variables
3375 */
3376 void
bge_sync_mac_modes(bge_t * bgep)3377 bge_sync_mac_modes(bge_t *bgep)
3378 {
3379 uint32_t macmode;
3380 uint32_t regval;
3381
3382 ASSERT(mutex_owned(bgep->genlock));
3383
3384 /*
3385 * Reprogram the Ethernet MAC mode ...
3386 */
3387 macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
3388 macmode &= ~ETHERNET_MODE_LINK_POLARITY;
3389 macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
3390 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
3391 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
3392 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3393 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3394 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3395 DEVICE_57765_SERIES_CHIPSETS(bgep))
3396 macmode |= ETHERNET_MODE_PORTMODE_GMII;
3397 else
3398 macmode |= ETHERNET_MODE_PORTMODE_TBI;
3399 } else if (bgep->param_link_speed == 10 ||
3400 bgep->param_link_speed == 100)
3401 macmode |= ETHERNET_MODE_PORTMODE_MII;
3402 else
3403 macmode |= ETHERNET_MODE_PORTMODE_GMII;
3404 if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
3405 macmode |= ETHERNET_MODE_HALF_DUPLEX;
3406 else
3407 macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
3408 if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
3409 macmode |= ETHERNET_MODE_MAC_LOOPBACK;
3410 else
3411 macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
3412 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
3413 BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
3414 (void *)bgep, regval, macmode));
3415
3416 /*
3417 * ... the Transmit MAC mode ...
3418 */
3419 macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
3420 if (bgep->param_link_tx_pause)
3421 macmode |= TRANSMIT_MODE_FLOW_CONTROL;
3422 else
3423 macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
3424 bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
3425 BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
3426 (void *)bgep, regval, macmode));
3427
3428 /*
3429 * ... and the Receive MAC mode
3430 */
3431 macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
3432 if (bgep->param_link_rx_pause)
3433 macmode |= RECEIVE_MODE_FLOW_CONTROL;
3434 else
3435 macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
3436 bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
3437 BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
3438 (void *)bgep, regval, macmode));
3439
3440 /*
3441 * For BCM5785, we need to configure the link status in the MI Status
3442 * register with a write command when auto-polling is disabled.
3443 */
3444 if (bgep->chipid.device == DEVICE_ID_5785)
3445 if (bgep->param_link_speed == 10)
3446 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
3447 | MI_STATUS_10MBPS);
3448 else
3449 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3450 }
3451
3452 /*
3453 * bge_chip_sync() -- program the chip with the unicast MAC address,
3454 * the multicast hash table, the required level of promiscuity, and
3455 * the current loopback mode ...
3456 */
3457 int
3458 #ifdef BGE_IPMI_ASF
bge_chip_sync(bge_t * bgep,boolean_t asf_keeplive)3459 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
3460 #else
3461 bge_chip_sync(bge_t *bgep)
3462 #endif
3463 {
3464 void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
3465 boolean_t promisc;
3466 uint64_t macaddr;
3467 uint32_t fill = 0;
3468 int i, j;
3469 int retval = DDI_SUCCESS;
3470
3471 BGE_TRACE(("bge_chip_sync($%p)",
3472 (void *)bgep));
3473
3474 ASSERT(mutex_owned(bgep->genlock));
3475
3476 promisc = B_FALSE;
3477 fill = ~(uint32_t)0;
3478
3479 if (bgep->promisc)
3480 promisc = B_TRUE;
3481 else
3482 fill = (uint32_t)0;
3483
3484 /*
3485 * If the TX/RX MAC engines are already running, we should stop
3486 * them (and reset the RX engine) before changing the parameters.
3487 * If they're not running, this will have no effect ...
3488 *
3489 * NOTE: this is currently disabled by default because stopping
3490 * and restarting the Tx engine may cause an outgoing packet in
3491 * transit to be truncated. Also, stopping and restarting the
3492 * Rx engine seems to not work correctly on the 5705. Testing
3493 * has not (yet!) revealed any problems with NOT stopping and
3494 * restarting these engines (and Broadcom say their drivers don't
3495 * do this), but if it is found to cause problems, this variable
3496 * can be patched to re-enable the old behaviour ...
3497 */
3498 if (bge_stop_start_on_sync) {
3499 #ifdef BGE_IPMI_ASF
3500 if (!bgep->asf_enabled) {
3501 if (!bge_chip_disable_engine(bgep,
3502 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3503 retval = DDI_FAILURE;
3504 } else {
3505 if (!bge_chip_disable_engine(bgep,
3506 RECEIVE_MAC_MODE_REG, 0))
3507 retval = DDI_FAILURE;
3508 }
3509 #else
3510 if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3511 RECEIVE_MODE_KEEP_VLAN_TAG))
3512 retval = DDI_FAILURE;
3513 #endif
3514 if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3515 retval = DDI_FAILURE;
3516 if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3517 retval = DDI_FAILURE;
3518 }
3519
3520 /*
3521 * Reprogram the hashed multicast address table ...
3522 */
3523 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3524 bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3525
3526 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3527 bge_reg_put32(bgep, MAC_HASH_REG(i),
3528 bgep->mcast_hash[i] | fill);
3529
3530 #ifdef BGE_IPMI_ASF
3531 if (!bgep->asf_enabled || !asf_keeplive) {
3532 #endif
3533 /*
3534 * Transform the MAC address(es) from host to chip format, then
3535 * reprogram the transmit random backoff seed and the unicast
3536 * MAC address(es) ...
3537 */
3538 for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3539 for (i = 0, macaddr = 0ull;
3540 i < ETHERADDRL; ++i) {
3541 macaddr <<= 8;
3542 macaddr |= bgep->curr_addr[j].addr[i];
3543 }
3544 fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3545 bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3546
3547 BGE_DEBUG(("bge_chip_sync($%p) "
3548 "setting MAC address %012llx",
3549 (void *)bgep, macaddr));
3550 }
3551 #ifdef BGE_IPMI_ASF
3552 }
3553 #endif
3554 /*
3555 * Set random seed of backoff interval
3556 * - Writing zero means no backoff interval
3557 */
3558 fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3559 if (fill == 0)
3560 fill = 1;
3561 bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3562
3563 /*
3564 * Set or clear the PROMISCUOUS mode bit
3565 */
3566 opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3567 (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3568
3569 /*
3570 * Sync the rest of the MAC modes too ...
3571 */
3572 bge_sync_mac_modes(bgep);
3573
3574 /*
3575 * Restart RX/TX MAC engines if required ...
3576 */
3577 if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3578 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3579 retval = DDI_FAILURE;
3580 #ifdef BGE_IPMI_ASF
3581 if (!bgep->asf_enabled) {
3582 if (!bge_chip_enable_engine(bgep,
3583 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3584 retval = DDI_FAILURE;
3585 } else {
3586 if (!bge_chip_enable_engine(bgep,
3587 RECEIVE_MAC_MODE_REG, 0))
3588 retval = DDI_FAILURE;
3589 }
3590 #else
3591 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3592 RECEIVE_MODE_KEEP_VLAN_TAG))
3593 retval = DDI_FAILURE;
3594 #endif
3595 }
3596 return (retval);
3597 }
3598
3599 #ifndef __sparc
3600 static bge_regno_t quiesce_regs[] = {
3601 READ_DMA_MODE_REG,
3602 DMA_COMPLETION_MODE_REG,
3603 WRITE_DMA_MODE_REG,
3604 BGE_REGNO_NONE
3605 };
3606
3607 /*
3608 * This function is called by bge_quiesce(). We
3609 * turn off all the DMA engines here.
3610 */
3611 void
bge_chip_stop_nonblocking(bge_t * bgep)3612 bge_chip_stop_nonblocking(bge_t *bgep)
3613 {
3614 bge_regno_t *rbp;
3615
3616 /*
3617 * Flag that no more activity may be initiated
3618 */
3619 bgep->progress &= ~PROGRESS_READY;
3620
3621 rbp = quiesce_regs;
3622 while (*rbp != BGE_REGNO_NONE) {
3623 (void) bge_chip_disable_engine(bgep, *rbp, 0);
3624 ++rbp;
3625 }
3626
3627 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3628 }
3629
3630 #endif
3631
3632 /*
3633 * bge_chip_stop() -- stop all chip processing
3634 *
3635 * If the <fault> parameter is B_TRUE, we're stopping the chip because
3636 * we've detected a problem internally; otherwise, this is a normal
3637 * (clean) stop (at user request i.e. the last STREAM has been closed).
3638 */
3639 void
bge_chip_stop(bge_t * bgep,boolean_t fault)3640 bge_chip_stop(bge_t *bgep, boolean_t fault)
3641 {
3642 bge_regno_t regno;
3643 bge_regno_t *rbp;
3644 boolean_t ok = B_TRUE;
3645
3646 BGE_TRACE(("bge_chip_stop($%p)",
3647 (void *)bgep));
3648
3649 ASSERT(mutex_owned(bgep->genlock));
3650
3651 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3652 (pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR) |
3653 MHCR_MASK_PCI_INT_OUTPUT));
3654
3655 ok &= bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 0);
3656 ok &= bge_chip_disable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 0);
3657 ok &= bge_chip_disable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0);
3658 ok &= bge_chip_disable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 0);
3659 ok &= bge_chip_disable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 0);
3660 ok &= bge_chip_disable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 0);
3661 ok &= bge_chip_disable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 0);
3662
3663 ok &= bge_chip_disable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 0);
3664 ok &= bge_chip_disable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 0);
3665 ok &= bge_chip_disable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0);
3666 ok &= bge_chip_disable_engine(bgep, READ_DMA_MODE_REG, 0);
3667 ok &= bge_chip_disable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0);
3668 ok &= bge_chip_disable_engine(bgep, DMA_COMPLETION_MODE_REG, 0);
3669 ok &= bge_chip_disable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 0);
3670 ok &= bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
3671
3672 bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_TDE);
3673 drv_usecwait(40);
3674
3675 ok &= bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, 0);
3676 ok &= bge_chip_disable_engine(bgep, WRITE_DMA_MODE_REG, 0);
3677 ok &= bge_chip_disable_engine(bgep, MBUF_CLUSTER_FREE_MODE_REG, 0);
3678 ok &= bge_chip_disable_engine(bgep, FTQ_RESET_REG, 0);
3679 ok &= bge_chip_disable_engine(bgep, BUFFER_MANAGER_MODE_REG, 0);
3680 ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3681 ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3682
3683 if (!ok && !fault)
3684 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3685
3686 /*
3687 * Finally, disable (all) MAC events & clear the MAC status
3688 */
3689 bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3690 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3691
3692 /*
3693 * if we're stopping the chip because of a detected fault then do
3694 * appropriate actions
3695 */
3696 if (fault) {
3697 if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3698 bgep->bge_chip_state = BGE_CHIP_FAULT;
3699 if (!bgep->manual_reset)
3700 ddi_fm_service_impact(bgep->devinfo,
3701 DDI_SERVICE_LOST);
3702 if (bgep->bge_dma_error) {
3703 /*
3704 * need to free buffers in case the fault was
3705 * due to a memory error in a buffer - got to
3706 * do a fair bit of tidying first
3707 */
3708 if (bgep->progress & PROGRESS_KSTATS) {
3709 bge_fini_kstats(bgep);
3710 bgep->progress &= ~PROGRESS_KSTATS;
3711 }
3712 if (bgep->progress & PROGRESS_INTR) {
3713 bge_intr_disable(bgep);
3714 rw_enter(bgep->errlock, RW_WRITER);
3715 bge_fini_rings(bgep);
3716 rw_exit(bgep->errlock);
3717 bgep->progress &= ~PROGRESS_INTR;
3718 }
3719 if (bgep->progress & PROGRESS_BUFS) {
3720 bge_free_bufs(bgep);
3721 bgep->progress &= ~PROGRESS_BUFS;
3722 }
3723 bgep->bge_dma_error = B_FALSE;
3724 }
3725 }
3726 } else
3727 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3728 }
3729
3730 /*
3731 * Poll for completion of chip's ROM firmware; also, at least on the
3732 * first time through, find and return the hardware MAC address, if any.
3733 */
3734 static uint64_t
bge_poll_firmware(bge_t * bgep)3735 bge_poll_firmware(bge_t *bgep)
3736 {
3737 uint64_t magic;
3738 uint64_t mac;
3739 uint32_t gen, val;
3740 uint32_t i;
3741
3742 /*
3743 * Step 19: poll for firmware completion (GENCOMM port set
3744 * to the ones complement of T3_MAGIC_NUMBER).
3745 *
3746 * While we're at it, we also read the MAC address register;
3747 * at some stage the firmware will load this with the
3748 * factory-set value.
3749 *
3750 * When both the magic number and the MAC address are set,
3751 * we're done; but we impose a time limit of one second
3752 * (1000*1000us) in case the firmware fails in some fashion
3753 * or the SEEPROM that provides that MAC address isn't fitted.
3754 *
3755 * After the first time through (chip state != INITIAL), we
3756 * don't need the MAC address to be set (we've already got it
3757 * or not, from the first time), so we don't wait for it, but
3758 * we still have to wait for the T3_MAGIC_NUMBER.
3759 *
3760 * Note: the magic number is only a 32-bit quantity, but the NIC
3761 * memory is 64-bit (and big-endian) internally. Addressing the
3762 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3763 * it work correctly on both big- and little-endian hosts.
3764 */
3765 if (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906) {
3766 for (i = 0; i < 1000; ++i) {
3767 drv_usecwait(1000);
3768 val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3769 if (val & VCPU_INIT_DONE)
3770 break;
3771 }
3772 BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3773 (void *)bgep, i));
3774 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3775 } else {
3776 for (i = 0; i < 1000; ++i) {
3777 drv_usecwait(1000);
3778 gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3779 if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3780 drv_usecwait(100000);
3781 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3782 #ifdef BGE_IPMI_ASF
3783 if (!bgep->asf_enabled) {
3784 #endif
3785 if (gen != ~T3_MAGIC_NUMBER)
3786 continue;
3787 #ifdef BGE_IPMI_ASF
3788 }
3789 #endif
3790 if (mac != 0ULL)
3791 break;
3792 if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3793 break;
3794 }
3795 }
3796
3797 magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3798 BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3799 (void *)bgep, gen, i));
3800 BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3801 mac, magic));
3802
3803 return (mac);
3804 }
3805
3806 /*
3807 * Maximum times of trying to get the NVRAM access lock
3808 * by calling bge_nvmem_acquire()
3809 */
3810 #define MAX_TRY_NVMEM_ACQUIRE 10000
3811
3812 int
3813 #ifdef BGE_IPMI_ASF
bge_chip_reset(bge_t * bgep,boolean_t enable_dma,uint_t asf_mode)3814 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3815 #else
3816 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3817 #endif
3818 {
3819 chip_id_t chipid;
3820 uint64_t mac;
3821 uint64_t magic;
3822 uint32_t tmp;
3823 uint32_t mhcr_base;
3824 uint32_t mhcr;
3825 uint32_t sx0;
3826 uint32_t i, tries;
3827 #ifdef BGE_IPMI_ASF
3828 uint32_t mailbox;
3829 #endif
3830 int retval = DDI_SUCCESS;
3831
3832 BGE_TRACE(("bge_chip_reset($%p, %d)",
3833 (void *)bgep, enable_dma));
3834
3835 ASSERT(mutex_owned(bgep->genlock));
3836
3837 BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3838 (void *)bgep, enable_dma, bgep->bge_chip_state));
3839
3840 /*
3841 * Do we need to stop the chip cleanly before resetting?
3842 */
3843 switch (bgep->bge_chip_state) {
3844 default:
3845 _NOTE(NOTREACHED)
3846 return (DDI_FAILURE);
3847
3848 case BGE_CHIP_INITIAL:
3849 case BGE_CHIP_STOPPED:
3850 case BGE_CHIP_RESET:
3851 break;
3852
3853 case BGE_CHIP_RUNNING:
3854 case BGE_CHIP_ERROR:
3855 case BGE_CHIP_FAULT:
3856 bge_chip_stop(bgep, B_FALSE);
3857 break;
3858 }
3859
3860 mhcr_base = MHCR_ENABLE_INDIRECT_ACCESS |
3861 MHCR_ENABLE_PCI_STATE_RW |
3862 MHCR_ENABLE_TAGGED_STATUS_MODE |
3863 MHCR_MASK_INTERRUPT_MODE |
3864 MHCR_MASK_PCI_INT_OUTPUT |
3865 MHCR_CLEAR_INTERRUPT_INTA;
3866
3867 #ifdef BGE_IPMI_ASF
3868 if (bgep->asf_enabled) {
3869 mhcr = mhcr_base;
3870 #ifdef _BIG_ENDIAN
3871 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3872 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3873 #endif
3874 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3875
3876 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3877 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3878 MEMORY_ARBITER_ENABLE);
3879
3880 if (asf_mode == ASF_MODE_INIT) {
3881 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3882 } else if (asf_mode == ASF_MODE_SHUTDOWN) {
3883 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3884 }
3885 }
3886 #endif
3887
3888 /*
3889 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3890 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3891 *
3892 * Before reset Core clock,it is
3893 * also required to initialize the Memory Arbiter as specified in step9
3894 * and Misc Host Control Register as specified in step-13
3895 * Step 4-5: reset Core clock & wait for completion
3896 * Steps 6-8: are done by bge_chip_cfg_init()
3897 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3898 */
3899 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3900 retval = DDI_FAILURE;
3901
3902 mhcr = mhcr_base;
3903 #ifdef _BIG_ENDIAN
3904 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3905 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3906 #endif
3907 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3908
3909 #ifdef BGE_IPMI_ASF
3910 if (bgep->asf_enabled)
3911 bgep->asf_wordswapped = B_FALSE;
3912 #endif
3913 /*
3914 * NVRAM Corruption Workaround
3915 */
3916 for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
3917 if (bge_nvmem_acquire(bgep) != EAGAIN)
3918 break;
3919 if (tries >= MAX_TRY_NVMEM_ACQUIRE)
3920 BGE_DEBUG(("%s: fail to acquire nvram lock",
3921 bgep->ifname));
3922
3923 bge_ape_lock(bgep, BGE_APE_LOCK_GRC);
3924
3925 #ifdef BGE_IPMI_ASF
3926 if (!bgep->asf_enabled) {
3927 #endif
3928 magic = (uint64_t)T3_MAGIC_NUMBER << 32;
3929 bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
3930 #ifdef BGE_IPMI_ASF
3931 }
3932 #endif
3933
3934 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3935 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3936 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
3937 bge_reg_set32(bgep, FAST_BOOT_PC, 0);
3938 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3939 retval = DDI_FAILURE;
3940 }
3941
3942 mhcr = mhcr_base;
3943 #ifdef _BIG_ENDIAN
3944 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3945 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3946 #endif
3947 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3948
3949 if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
3950 retval = DDI_FAILURE;
3951
3952 bge_chip_cfg_init(bgep, &chipid, enable_dma);
3953
3954 /*
3955 * Step 8a: This may belong elsewhere, but BCM5721 needs
3956 * a bit set to avoid a fifo overflow/underflow bug.
3957 */
3958 if ((bgep->chipid.chip_label == 5721) ||
3959 (bgep->chipid.chip_label == 5751) ||
3960 (bgep->chipid.chip_label == 5752) ||
3961 (bgep->chipid.chip_label == 5755) ||
3962 (bgep->chipid.chip_label == 5756) ||
3963 (bgep->chipid.chip_label == 5789) ||
3964 (bgep->chipid.chip_label == 5906))
3965 bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
3966
3967 /*
3968 * In the 57765 family of devices we need to work around an apparent
3969 * transmit hang by dorking with the PCIe serdes training clocks.
3970 */
3971 if (DEVICE_57765_SERIES_CHIPSETS(bgep) &&
3972 (CHIP_ASIC_REV_PROD_ID(bgep) >> 8) != CHIP_ASIC_REV_57765_AX) {
3973 tmp = bge_reg_get32(bgep, CPMU_PADRNG_CTL_REG);
3974 tmp |= CPMU_PADRNG_CTL_RDIV2;
3975 bge_reg_set32(bgep, CPMU_PADRNG_CTL_REG, tmp);
3976 }
3977
3978
3979 /*
3980 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
3981 * not be changed.
3982 */
3983 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3984 retval = DDI_FAILURE;
3985
3986 /*
3987 * Steps 10-11: configure PIO endianness options and
3988 * enable indirect register access -- already done
3989 * Steps 12-13: enable writing to the PCI state & clock
3990 * control registers -- not required; we aren't going to
3991 * use those features.
3992 * Steps 14-15: Configure DMA endianness options. See
3993 * the comments on the setting of the MHCR above.
3994 */
3995 tmp = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
3996 #ifdef _BIG_ENDIAN
3997 tmp |= (MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME);
3998 #endif
3999 #ifdef BGE_IPMI_ASF
4000 if (bgep->asf_enabled)
4001 tmp |= MODE_HOST_STACK_UP;
4002 #endif
4003 bge_reg_put32(bgep, MODE_CONTROL_REG, tmp);
4004
4005 #ifdef BGE_IPMI_ASF
4006 if (bgep->asf_enabled) {
4007 #ifdef __sparc
4008 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4009 MEMORY_ARBITER_ENABLE |
4010 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
4011 #endif
4012
4013 #ifdef BGE_NETCONSOLE
4014 if (!bgep->asf_newhandshake) {
4015 if ((asf_mode == ASF_MODE_INIT) ||
4016 (asf_mode == ASF_MODE_POST_INIT)) {
4017 bge_asf_post_reset_old_mode(bgep,
4018 BGE_INIT_RESET);
4019 } else {
4020 bge_asf_post_reset_old_mode(bgep,
4021 BGE_SHUTDOWN_RESET);
4022 }
4023 }
4024 #endif
4025
4026 /* Wait for NVRAM init */
4027 i = 0;
4028 drv_usecwait(5000);
4029 mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
4030
4031 while ((mailbox != (uint32_t)
4032 ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
4033 (i < 10000)) {
4034 drv_usecwait(100);
4035 mailbox = bge_nic_get32(bgep,
4036 BGE_FIRMWARE_MAILBOX);
4037 i++;
4038 }
4039
4040 #ifndef BGE_NETCONSOLE
4041 if (!bgep->asf_newhandshake) {
4042 if ((asf_mode == ASF_MODE_INIT) ||
4043 (asf_mode == ASF_MODE_POST_INIT)) {
4044
4045 bge_asf_post_reset_old_mode(bgep,
4046 BGE_INIT_RESET);
4047 } else {
4048 bge_asf_post_reset_old_mode(bgep,
4049 BGE_SHUTDOWN_RESET);
4050 }
4051 }
4052 #endif
4053 }
4054 #endif
4055
4056 bge_ape_unlock(bgep, BGE_APE_LOCK_GRC);
4057
4058 /*
4059 * Steps 16-17: poll for firmware completion
4060 */
4061 mac = bge_poll_firmware(bgep);
4062
4063 if (bgep->chipid.device == DEVICE_ID_5720) {
4064 tmp = bge_reg_get32(bgep, CPMU_CLCK_ORIDE_REG);
4065 bge_reg_put32(bgep, CPMU_CLCK_ORIDE_REG,
4066 (tmp & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN));
4067 }
4068
4069 /*
4070 * Step 18: enable external memory -- doesn't apply.
4071 *
4072 * However we take the opportunity to set the MLCR anyway, as
4073 * this register also controls the SEEPROM auto-access method
4074 * which we may want to use later ...
4075 *
4076 * The proper value here depends on the way the chip is wired
4077 * into the circuit board, as this register *also* controls which
4078 * of the "Miscellaneous I/O" pins are driven as outputs and the
4079 * values driven onto those pins!
4080 *
4081 * See also step 74 in the PRM ...
4082 */
4083 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
4084 bgep->chipid.bge_mlcr_default);
4085
4086 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
4087 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
4088 tmp = bge_reg_get32(bgep, SERDES_RX_CONTROL);
4089 tmp |= SERDES_RX_CONTROL_SIG_DETECT;
4090 bge_reg_put32(bgep, SERDES_RX_CONTROL, tmp);
4091 }
4092
4093 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
4094
4095 /*
4096 * Step 20: clear the Ethernet MAC mode register
4097 */
4098 if (bgep->ape_enabled)
4099 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4100 ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4101 else
4102 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
4103
4104 /*
4105 * Step 21: restore cache-line-size, latency timer, and
4106 * subsystem ID registers to their original values (not
4107 * those read into the local structure <chipid>, 'cos
4108 * that was after they were cleared by the RESET).
4109 *
4110 * Note: the Subsystem Vendor/Device ID registers are not
4111 * directly writable in config space, so we use the shadow
4112 * copy in "Page Zero" of register space to restore them
4113 * both in one go ...
4114 */
4115 pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
4116 bgep->chipid.clsize);
4117 pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
4118 bgep->chipid.latency);
4119 bge_reg_put32(bgep, PCI_CONF_SUBVENID,
4120 (bgep->chipid.subdev << 16) | bgep->chipid.subven);
4121
4122 /*
4123 * The SEND INDEX registers should be reset to zero by the
4124 * global chip reset; if they're not, there'll be trouble
4125 * later on.
4126 */
4127 sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
4128 if (sx0 != 0) {
4129 BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
4130 bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
4131 retval = DDI_FAILURE;
4132 }
4133
4134 /* Enable MSI code */
4135 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4136 bge_reg_set32(bgep, MSI_MODE_REG,
4137 MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
4138
4139 /*
4140 * On the first time through, save the factory-set MAC address
4141 * (if any). If bge_poll_firmware() above didn't return one
4142 * (from a chip register) consider looking in the attached NV
4143 * memory device, if any. Once we have it, we save it in both
4144 * register-image (64-bit) and byte-array forms. All-zero and
4145 * all-one addresses are not valid, and we refuse to stash those.
4146 */
4147 if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
4148 if (mac == 0ULL)
4149 mac = bge_get_nvmac(bgep);
4150 if (mac != 0ULL && mac != ~0ULL) {
4151 bgep->chipid.hw_mac_addr = mac;
4152 for (i = ETHERADDRL; i-- != 0; ) {
4153 bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
4154 mac >>= 8;
4155 }
4156 bgep->chipid.vendor_addr.set = B_TRUE;
4157 }
4158 }
4159
4160 #ifdef BGE_IPMI_ASF
4161 if (bgep->asf_enabled && bgep->asf_newhandshake) {
4162 if (asf_mode != ASF_MODE_NONE) {
4163 if ((asf_mode == ASF_MODE_INIT) ||
4164 (asf_mode == ASF_MODE_POST_INIT)) {
4165
4166 bge_asf_post_reset_new_mode(bgep,
4167 BGE_INIT_RESET);
4168 } else {
4169 bge_asf_post_reset_new_mode(bgep,
4170 BGE_SHUTDOWN_RESET);
4171 }
4172 }
4173 }
4174 #endif
4175
4176 /*
4177 * Record the new state
4178 */
4179 bgep->chip_resets += 1;
4180 bgep->bge_chip_state = BGE_CHIP_RESET;
4181 return (retval);
4182 }
4183
4184 /*
4185 * bge_chip_start() -- start the chip transmitting and/or receiving,
4186 * including enabling interrupts
4187 */
4188
4189 void
bge_chip_coalesce_update(bge_t * bgep)4190 bge_chip_coalesce_update(bge_t *bgep)
4191 {
4192 bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
4193 bgep->chipid.tx_count_norm);
4194 bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
4195 bgep->chipid.tx_ticks_norm);
4196 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
4197 bgep->chipid.rx_count_norm);
4198 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
4199 bgep->chipid.rx_ticks_norm);
4200 }
4201
4202 int
bge_chip_start(bge_t * bgep,boolean_t reset_phys)4203 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
4204 {
4205 uint32_t coalmode;
4206 uint32_t ledctl;
4207 uint32_t mtu;
4208 uint32_t maxring;
4209 uint32_t stats_mask;
4210 uint32_t dma_wrprio;
4211 uint64_t ring;
4212 uint32_t reg;
4213 uint32_t regval;
4214 uint32_t mhcr;
4215 int retval = DDI_SUCCESS;
4216 int i;
4217
4218 BGE_TRACE(("bge_chip_start($%p)",
4219 (void *)bgep));
4220
4221 ASSERT(mutex_owned(bgep->genlock));
4222 ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
4223
4224 /* Initialize EEE, enable MAC control of LPI */
4225 bge_eee_init(bgep);
4226
4227 if (bgep->ape_enabled) {
4228 /*
4229 * Allow reads and writes to the
4230 * APE register and memory space.
4231 */
4232 regval = pci_config_get32(bgep->cfg_handle,
4233 PCI_CONF_BGE_PCISTATE);
4234 regval |= PCISTATE_ALLOW_APE_CTLSPC_WR |
4235 PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
4236 pci_config_put32(bgep->cfg_handle,
4237 PCI_CONF_BGE_PCISTATE, regval);
4238 }
4239
4240 /*
4241 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
4242 * The document specifies 95 separate steps to fully
4243 * initialise the chip!!!!
4244 *
4245 * The reset code above has already got us as far as step
4246 * 21, so we continue with ...
4247 *
4248 * Step 22: clear the MAC statistics block
4249 * (0x0300-0x0aff in NIC-local memory)
4250 */
4251 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4252 bge_nic_zero(bgep, NIC_MEM_STATISTICS,
4253 NIC_MEM_STATISTICS_SIZE);
4254
4255 /*
4256 * Step 23: clear the status block (in host memory)
4257 */
4258 DMA_ZERO(bgep->status_block);
4259
4260 /*
4261 * Step 24: set DMA read/write control register
4262 */
4263 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
4264 bgep->chipid.bge_dma_rwctrl);
4265
4266 /*
4267 * Step 25: Configure DMA endianness -- already done (16/17)
4268 * Step 26: Configure Host-Based Send Rings
4269 * Step 27: Indicate Host Stack Up
4270 */
4271 bge_reg_set32(bgep, MODE_CONTROL_REG,
4272 MODE_HOST_SEND_BDS |
4273 MODE_HOST_STACK_UP);
4274
4275 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4276 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4277 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4278 reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4279 ? RDMA_RSRV_CTRL_REG2 : RDMA_RSRV_CTRL_REG;
4280 regval = bge_reg_get32(bgep, reg);
4281 if ((bgep->chipid.device == DEVICE_ID_5719) ||
4282 (bgep->chipid.device == DEVICE_ID_5720) ||
4283 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4284 regval &= ~(RDMA_RSRV_CTRL_TXMRGN_MASK |
4285 RDMA_RSRV_CTRL_FIFO_LWM_MASK |
4286 RDMA_RSRV_CTRL_FIFO_HWM_MASK);
4287 regval |= (RDMA_RSRV_CTRL_TXMRGN_320B |
4288 RDMA_RSRV_CTRL_FIFO_LWM_1_5K |
4289 RDMA_RSRV_CTRL_FIFO_HWM_1_5K);
4290 }
4291 /* Enable the DMA FIFO Overrun fix. */
4292 bge_reg_put32(bgep, reg,
4293 (regval | RDMA_RSRV_CTRL_FIFO_OFLW_FIX));
4294
4295 if ((CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5719) ||
4296 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5720) ||
4297 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4298 reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4299 ? RDMA_CORR_CTRL_REG2 : RDMA_CORR_CTRL_REG;
4300 regval = bge_reg_get32(bgep, reg);
4301 bge_reg_put32(bgep, reg, (regval |
4302 RDMA_CORR_CTRL_BLEN_BD_4K |
4303 RDMA_CORR_CTRL_BLEN_LSO_4K));
4304 }
4305 }
4306
4307 /*
4308 * Step 28: Configure checksum options:
4309 * Solaris supports the hardware default checksum options.
4310 *
4311 * Workaround for Incorrect pseudo-header checksum calculation.
4312 */
4313 if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
4314 bge_reg_set32(bgep, MODE_CONTROL_REG,
4315 MODE_SEND_NO_PSEUDO_HDR_CSUM);
4316
4317 /*
4318 * Step 29: configure Timer Prescaler. The value is always the
4319 * same: the Core Clock frequency in MHz (66), minus 1, shifted
4320 * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit
4321 * for the whole chip!
4322 */
4323 regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
4324 regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
4325 bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
4326
4327 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
4328 drv_usecwait(40);
4329 /* put PHY into ready state */
4330 bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
4331 (void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
4332 drv_usecwait(40);
4333 }
4334
4335 /*
4336 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
4337 *
4338 * If the mbuf_length is specified as 0, we just leave these at
4339 * their hardware defaults, rather than explicitly setting them.
4340 * As the Broadcom HRM,driver better not change the parameters
4341 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
4342 */
4343 if ((bgep->chipid.mbuf_length != 0) &&
4344 (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
4345 bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
4346 bgep->chipid.mbuf_base);
4347 bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
4348 bgep->chipid.mbuf_length);
4349 bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
4350 DMAD_POOL_BASE_DEFAULT);
4351 bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
4352 DMAD_POOL_LENGTH_DEFAULT);
4353 }
4354
4355 /*
4356 * Step 32: configure MAC memory pool watermarks
4357 */
4358 bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
4359 bgep->chipid.mbuf_lo_water_rdma);
4360 bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
4361 bgep->chipid.mbuf_lo_water_rmac);
4362 bge_reg_put32(bgep, MBUF_HIWAT_REG,
4363 bgep->chipid.mbuf_hi_water);
4364
4365 /*
4366 * Step 33: configure DMA resource watermarks
4367 */
4368 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4369 bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
4370 bge_dmad_lo_water);
4371 bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
4372 bge_dmad_hi_water);
4373 }
4374 bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
4375
4376 /*
4377 * Steps 34-36: enable buffer manager & internal h/w queues
4378 */
4379 regval = STATE_MACHINE_ATTN_ENABLE_BIT;
4380 if (bgep->chipid.device == DEVICE_ID_5719)
4381 regval |= BUFFER_MANAGER_MODE_NO_TX_UNDERRUN;
4382 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4383 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4384 DEVICE_57765_SERIES_CHIPSETS(bgep))
4385 regval |= BUFFER_MANAGER_MODE_MBLOW_ATTN_ENABLE;
4386 if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, regval))
4387 retval = DDI_FAILURE;
4388
4389 if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
4390 retval = DDI_FAILURE;
4391
4392 /*
4393 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
4394 */
4395 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4396 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4397 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4398 buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
4399 bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
4400 brp->desc.cookie.dmac_laddress);
4401 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
4402 (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
4403 if (DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4404 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4405 NIC_MEM_SHADOW_BUFF_STD);
4406 } else {
4407 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4408 NIC_MEM_SHADOW_BUFF_STD_5717);
4409 }
4410 } else {
4411 bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
4412 &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
4413 }
4414
4415 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4416 bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
4417 &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
4418 bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
4419 &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
4420 }
4421
4422 /*
4423 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
4424 */
4425 bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
4426 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4427 bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
4428 bge_replenish_jumbo);
4429 bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
4430 bge_replenish_mini);
4431 }
4432
4433 /*
4434 * Steps 41-43: clear Send Ring Producer Indices and initialise
4435 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
4436 */
4437 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4438 maxring = BGE_SEND_RINGS_MAX;
4439 else
4440 maxring = BGE_SEND_RINGS_MAX_5705;
4441 for (ring = 0; ring < maxring; ++ring) {
4442 bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
4443 bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
4444 bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
4445 &bgep->send[ring].hw_rcb);
4446 }
4447
4448 /*
4449 * Steps 44-45: initialise Receive Return Rings
4450 * (0x0200-0x02ff in NIC-local memory)
4451 */
4452 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4453 maxring = BGE_RECV_RINGS_MAX;
4454 else
4455 maxring = BGE_RECV_RINGS_MAX_5705;
4456 for (ring = 0; ring < maxring; ++ring)
4457 bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
4458 &bgep->recv[ring].hw_rcb);
4459
4460 /*
4461 * Step 46: initialise Receive Buffer (Producer) Ring indexes
4462 */
4463 bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
4464 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4465 bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
4466 bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
4467 }
4468 /*
4469 * Step 47: configure the MAC unicast address
4470 * Step 48: configure the random backoff seed
4471 * Step 96: set up multicast filters
4472 */
4473 #ifdef BGE_IPMI_ASF
4474 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
4475 #else
4476 if (bge_chip_sync(bgep) == DDI_FAILURE)
4477 #endif
4478 retval = DDI_FAILURE;
4479
4480 /*
4481 * Step 49: configure the MTU
4482 */
4483 mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
4484 bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
4485
4486 /*
4487 * Step 50: configure the IPG et al
4488 */
4489 bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
4490
4491 /*
4492 * Step 51: configure the default Rx Return Ring
4493 */
4494 bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
4495
4496 /*
4497 * Steps 52-54: configure Receive List Placement,
4498 * and enable Receive List Placement Statistics
4499 */
4500 bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
4501 RCV_LP_CONFIG(bgep->chipid.rx_rings));
4502 switch (MHCR_CHIP_ASIC_REV(bgep)) {
4503 case MHCR_CHIP_ASIC_REV_5700:
4504 case MHCR_CHIP_ASIC_REV_5701:
4505 case MHCR_CHIP_ASIC_REV_5703:
4506 case MHCR_CHIP_ASIC_REV_5704:
4507 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
4508 break;
4509 case MHCR_CHIP_ASIC_REV_5705:
4510 break;
4511 default:
4512 stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
4513 stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
4514 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
4515 break;
4516 }
4517 bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
4518
4519 if (bgep->chipid.rx_rings > 1)
4520 bge_init_recv_rule(bgep);
4521
4522 /*
4523 * Steps 55-56: enable Send Data Initiator Statistics
4524 */
4525 bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
4526 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4527 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4528 SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
4529 } else {
4530 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4531 SEND_INIT_STATS_ENABLE);
4532 }
4533 /*
4534 * Steps 57-58: stop (?) the Host Coalescing Engine
4535 */
4536 if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
4537 retval = DDI_FAILURE;
4538
4539 /*
4540 * Steps 59-62: initialise Host Coalescing parameters
4541 */
4542 bge_chip_coalesce_update(bgep);
4543 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4544 bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
4545 bge_tx_count_intr);
4546 bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
4547 bge_tx_ticks_intr);
4548 bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
4549 bge_rx_count_intr);
4550 bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
4551 bge_rx_ticks_intr);
4552 }
4553
4554 /*
4555 * Steps 63-64: initialise status block & statistics
4556 * host memory addresses
4557 * The statistic block does not exist in some chipsets
4558 * Step 65: initialise Statistics Coalescing Tick Counter
4559 */
4560 bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
4561 bgep->status_block.cookie.dmac_laddress);
4562
4563 /*
4564 * Steps 66-67: initialise status block & statistics
4565 * NIC-local memory addresses
4566 */
4567 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4568 bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
4569 bgep->statistics.cookie.dmac_laddress);
4570 bge_reg_put32(bgep, STATISTICS_TICKS_REG,
4571 STATISTICS_TICKS_DEFAULT);
4572 bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
4573 NIC_MEM_STATUS_BLOCK);
4574 bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
4575 NIC_MEM_STATISTICS);
4576 }
4577
4578 /*
4579 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
4580 * Completion Engine, the Receive List Placement Engine, and the
4581 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
4582 * and BCM5715.
4583 */
4584
4585 if (bgep->chipid.device == DEVICE_ID_5719) {
4586 for (i = 0; i < BGE_NUM_RDMA_CHANNELS; i++) {
4587 if (bge_reg_get32(bgep, (BGE_RDMA_LENGTH + (i << 2))) >
4588 bgep->chipid.default_mtu)
4589 break;
4590 }
4591 if (i < BGE_NUM_RDMA_CHANNELS) {
4592 regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
4593 regval |= RDMA_CORR_CTRL_TX_LENGTH_WA;
4594 bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
4595 bgep->rdma_length_bug_on_5719 = B_TRUE;
4596 }
4597 }
4598
4599 if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
4600 bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
4601 coalmode = COALESCE_64_BYTE_STATUS;
4602 else
4603 coalmode = 0;
4604 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4605 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4606 DEVICE_57765_SERIES_CHIPSETS(bgep))
4607 coalmode = COALESCE_CLR_TICKS_RX;
4608 if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4609 retval = DDI_FAILURE;
4610 if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4611 STATE_MACHINE_ATTN_ENABLE_BIT))
4612 retval = DDI_FAILURE;
4613 if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4614 retval = DDI_FAILURE;
4615
4616 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4617 if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4618 STATE_MACHINE_ATTN_ENABLE_BIT))
4619 retval = DDI_FAILURE;
4620
4621 /*
4622 * Step 72: Enable MAC DMA engines
4623 * Step 73: Clear & enable MAC statistics
4624 */
4625 if (bgep->ape_enabled) {
4626 /* XXX put32 instead of set32 ? */
4627 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4628 ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4629 }
4630 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4631 ETHERNET_MODE_ENABLE_FHDE |
4632 ETHERNET_MODE_ENABLE_RDE |
4633 ETHERNET_MODE_ENABLE_TDE);
4634 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4635 ETHERNET_MODE_ENABLE_TX_STATS |
4636 ETHERNET_MODE_ENABLE_RX_STATS |
4637 ETHERNET_MODE_CLEAR_TX_STATS |
4638 ETHERNET_MODE_CLEAR_RX_STATS);
4639
4640 drv_usecwait(140);
4641
4642 if (bgep->ape_enabled) {
4643 /* Write our heartbeat update interval to APE. */
4644 bge_ape_put32(bgep, BGE_APE_HOST_HEARTBEAT_INT_MS,
4645 APE_HOST_HEARTBEAT_INT_DISABLE);
4646 }
4647
4648 /*
4649 * Step 74: configure the MLCR (Miscellaneous Local Control
4650 * Register); not required, as we set up the MLCR in step 10
4651 * (part of the reset code) above.
4652 *
4653 * Step 75: clear Interrupt Mailbox 0
4654 */
4655 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4656
4657 /*
4658 * Steps 76-87: Gentlemen, start your engines ...
4659 *
4660 * Enable the DMA Completion Engine, the Write DMA Engine,
4661 * the Read DMA Engine, Receive Data Completion Engine,
4662 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4663 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4664 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4665 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4666 *
4667 * Beware exhaust fumes?
4668 */
4669 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4670 if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4671 retval = DDI_FAILURE;
4672 dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4673 ALL_DMA_ATTN_BITS;
4674 /* the 5723 check here covers all newer chip families (OK) */
4675 if ((MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5755) ||
4676 (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5723) ||
4677 (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906)) {
4678 dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4679 }
4680 if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4681 dma_wrprio))
4682 retval = DDI_FAILURE;
4683
4684 drv_usecwait(40);
4685
4686 /*
4687 * These chipsets no longer use the rdprio logic (bits 31:30 are
4688 * reserved).
4689 */
4690 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4691 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4692 DEVICE_5725_SERIES_CHIPSETS(bgep))
4693 bge_dma_rdprio = 0;
4694 if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4695 (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4696 retval = DDI_FAILURE;
4697
4698 drv_usecwait(40);
4699
4700 if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4701 STATE_MACHINE_ATTN_ENABLE_BIT))
4702 retval = DDI_FAILURE;
4703 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4704 if (!bge_chip_enable_engine(bgep,
4705 MBUF_CLUSTER_FREE_MODE_REG, 0))
4706 retval = DDI_FAILURE;
4707 if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4708 retval = DDI_FAILURE;
4709 if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4710 STATE_MACHINE_ATTN_ENABLE_BIT))
4711 retval = DDI_FAILURE;
4712 if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4713 RCV_BD_DISABLED_RING_ATTN))
4714 retval = DDI_FAILURE;
4715 if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4716 RCV_DATA_BD_ILL_RING_ATTN))
4717 retval = DDI_FAILURE;
4718 if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4719 retval = DDI_FAILURE;
4720 if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4721 STATE_MACHINE_ATTN_ENABLE_BIT))
4722 retval = DDI_FAILURE;
4723 if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4724 STATE_MACHINE_ATTN_ENABLE_BIT))
4725 retval = DDI_FAILURE;
4726
4727 drv_usecwait(40);
4728
4729 /*
4730 * Step 88: download firmware -- doesn't apply
4731 * Steps 89-90: enable Transmit & Receive MAC Engines
4732 */
4733 regval = 0;
4734 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4735 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4736 regval |= TRANSMIT_MODE_MBUF_LOCKUP_FIX;
4737 }
4738 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, regval))
4739 retval = DDI_FAILURE;
4740
4741 drv_usecwait(100);
4742
4743 #ifdef BGE_IPMI_ASF
4744 if (!bgep->asf_enabled) {
4745 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4746 RECEIVE_MODE_KEEP_VLAN_TAG))
4747 retval = DDI_FAILURE;
4748 } else {
4749 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4750 retval = DDI_FAILURE;
4751 }
4752 #else
4753 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4754 RECEIVE_MODE_KEEP_VLAN_TAG))
4755 retval = DDI_FAILURE;
4756 #endif
4757
4758 drv_usecwait(100);
4759
4760 /*
4761 * Step 91: disable auto-polling of PHY status
4762 */
4763 bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4764
4765 /*
4766 * Step 92: configure D0 power state (not required)
4767 * Step 93: initialise LED control register ()
4768 */
4769 ledctl = LED_CONTROL_DEFAULT;
4770 switch (bgep->chipid.device) {
4771 case DEVICE_ID_5700:
4772 case DEVICE_ID_5700x:
4773 case DEVICE_ID_5701:
4774 /*
4775 * Switch to 5700 (MAC) mode on these older chips
4776 */
4777 ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4778 ledctl |= LED_CONTROL_LED_MODE_5700;
4779 break;
4780
4781 default:
4782 break;
4783 }
4784 bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4785
4786 /*
4787 * Step 94: activate link
4788 */
4789 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4790
4791 /*
4792 * Step 95: set up physical layer (PHY/SerDes)
4793 * restart autoneg (if required)
4794 */
4795 if (reset_phys)
4796 {
4797 if (bge_phys_update(bgep) == DDI_FAILURE)
4798 retval = DDI_FAILURE;
4799 /* forcing a mac link update here */
4800 bge_phys_check(bgep);
4801 bgep->link_state = (bgep->param_link_up) ? LINK_STATE_UP :
4802 LINK_STATE_DOWN;
4803 bge_sync_mac_modes(bgep);
4804 mac_link_update(bgep->mh, bgep->link_state);
4805 }
4806
4807 /*
4808 * Extra step (DSG): hand over all the Receive Buffers to the chip
4809 */
4810 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4811 bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4812 bgep->buff[ring].rf_next);
4813
4814 /*
4815 * MSI bits:The least significant MSI 16-bit word.
4816 * ISR will be triggered different.
4817 */
4818 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4819 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4820
4821 /*
4822 * Extra step (DSG): select which interrupts are enabled
4823 *
4824 * Program the Ethernet MAC engine to signal attention on
4825 * Link Change events, then enable interrupts on MAC, DMA,
4826 * and FLOW attention signals.
4827 */
4828 bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4829 ETHERNET_EVENT_LINK_INT |
4830 ETHERNET_STATUS_PCS_ERROR_INT);
4831 #ifdef BGE_IPMI_ASF
4832 if (bgep->asf_enabled) {
4833 bge_reg_set32(bgep, MODE_CONTROL_REG,
4834 MODE_INT_ON_FLOW_ATTN |
4835 MODE_INT_ON_DMA_ATTN |
4836 MODE_HOST_STACK_UP|
4837 MODE_INT_ON_MAC_ATTN);
4838 } else {
4839 #endif
4840 bge_reg_set32(bgep, MODE_CONTROL_REG,
4841 MODE_INT_ON_FLOW_ATTN |
4842 MODE_INT_ON_DMA_ATTN |
4843 MODE_INT_ON_MAC_ATTN);
4844 #ifdef BGE_IPMI_ASF
4845 }
4846 #endif
4847
4848 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4849 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
4850 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
4851 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
4852 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
4853 #if 0
4854 mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
4855 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
4856 (mhcr | MHCR_TLP_MINOR_ERR_TOLERANCE));
4857 #endif
4858 }
4859
4860 /*
4861 * Step 97: enable PCI interrupts!!!
4862 */
4863 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4864 bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4865 bgep->chipid.mask_pci_int);
4866
4867 /*
4868 * All done!
4869 */
4870 bgep->bge_chip_state = BGE_CHIP_RUNNING;
4871 return (retval);
4872 }
4873
4874
4875 /*
4876 * ========== Hardware interrupt handler ==========
4877 */
4878
4879 #undef BGE_DBG
4880 #define BGE_DBG BGE_DBG_INT /* debug flag for this code */
4881
4882 /*
4883 * Sync the status block, then atomically clear the specified bits in
4884 * the <flags-and-tag> field of the status block.
4885 * the <flags> word of the status block, returning the value of the
4886 * <tag> and the <flags> before the bits were cleared.
4887 */
4888 static int
bge_status_sync(bge_t * bgep,uint64_t bits,uint64_t * flags)4889 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4890 {
4891 bge_status_t *bsp;
4892 int retval;
4893
4894 BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4895 (void *)bgep, bits));
4896
4897 ASSERT(bgep->bge_guard == BGE_GUARD);
4898
4899 DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4900 retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4901 if (retval != DDI_FM_OK)
4902 return (retval);
4903
4904 bsp = DMA_VPTR(bgep->status_block);
4905 *flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4906
4907 BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4908 (void *)bgep, bits, *flags));
4909
4910 return (retval);
4911 }
4912
4913 void
bge_wake_factotum(bge_t * bgep)4914 bge_wake_factotum(bge_t *bgep)
4915 {
4916 mutex_enter(bgep->softintrlock);
4917 if (bgep->factotum_flag == 0) {
4918 bgep->factotum_flag = 1;
4919 ddi_trigger_softintr(bgep->factotum_id);
4920 }
4921 mutex_exit(bgep->softintrlock);
4922 }
4923
4924 static void
bge_intr_error_handler(bge_t * bgep)4925 bge_intr_error_handler(bge_t *bgep)
4926 {
4927 uint32_t flow;
4928 uint32_t rdma;
4929 uint32_t wdma;
4930 uint32_t tmac;
4931 uint32_t rmac;
4932 uint32_t rxrs;
4933 uint32_t emac;
4934 uint32_t msis;
4935 uint32_t txrs = 0;
4936
4937 ASSERT(mutex_owned(bgep->genlock));
4938
4939 /*
4940 * Read all the registers that show the possible
4941 * reasons for the ERROR bit to be asserted
4942 */
4943 flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
4944 rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
4945 wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
4946 tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
4947 rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
4948 rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
4949 emac = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
4950 msis = bge_reg_get32(bgep, MSI_STATUS_REG);
4951 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4952 txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
4953
4954 BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x emac 0x%x msis 0x%x",
4955 (void *)bgep, flow, rdma, wdma, emac, msis));
4956 BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
4957 (void *)bgep, tmac, rmac, rxrs, txrs));
4958
4959 /*
4960 * For now, just clear all the errors ...
4961 */
4962 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4963 bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
4964 bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
4965 bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
4966 bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
4967 bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
4968 bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
4969 }
4970
4971 /*
4972 * bge_intr() -- handle chip interrupts
4973 */
4974 uint_t
bge_intr(caddr_t arg1,caddr_t arg2)4975 bge_intr(caddr_t arg1, caddr_t arg2)
4976 {
4977 bge_t *bgep = (void *)arg1; /* private device info */
4978 bge_status_t *bsp;
4979 uint64_t flags;
4980 uint32_t regval;
4981 uint_t result;
4982 int retval, loop_cnt = 0;
4983
4984 BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
4985
4986 /*
4987 * GLD v2 checks that s/w setup is complete before passing
4988 * interrupts to this routine, thus eliminating the old
4989 * (and well-known) race condition around ddi_add_intr()
4990 */
4991 ASSERT(bgep->progress & PROGRESS_HWINT);
4992
4993 result = DDI_INTR_UNCLAIMED;
4994 mutex_enter(bgep->genlock);
4995
4996 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
4997 /*
4998 * Check whether chip's says it's asserting #INTA;
4999 * if not, don't process or claim the interrupt.
5000 *
5001 * Note that the PCI signal is active low, so the
5002 * bit is *zero* when the interrupt is asserted.
5003 */
5004 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
5005 if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5006 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
5007 DEVICE_57765_SERIES_CHIPSETS(bgep)) &&
5008 (regval & MLCR_INTA_STATE)) {
5009 if (bge_check_acc_handle(bgep, bgep->io_handle)
5010 != DDI_FM_OK)
5011 goto chip_stop;
5012 mutex_exit(bgep->genlock);
5013 return (result);
5014 }
5015
5016 /*
5017 * Block further PCI interrupts ...
5018 */
5019 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
5020 bgep->chipid.mask_pci_int);
5021
5022 } else {
5023 /*
5024 * Check MSI status
5025 */
5026 regval = bge_reg_get32(bgep, MSI_STATUS_REG);
5027 if (regval & MSI_ERROR_ATTENTION) {
5028 BGE_REPORT((bgep, "msi error attention,"
5029 " status=0x%x", regval));
5030 bge_reg_put32(bgep, MSI_STATUS_REG, regval);
5031 }
5032 }
5033
5034 result = DDI_INTR_CLAIMED;
5035
5036 BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
5037
5038 /*
5039 * Sync the status block and grab the flags-n-tag from it.
5040 * We count the number of interrupts where there doesn't
5041 * seem to have been a DMA update of the status block; if
5042 * it *has* been updated, the counter will be cleared in
5043 * the while() loop below ...
5044 */
5045 bgep->missed_dmas += 1;
5046 bsp = DMA_VPTR(bgep->status_block);
5047 for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
5048 if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
5049 /*
5050 * bge_chip_stop() may have freed dma area etc
5051 * while we were in this interrupt handler -
5052 * better not call bge_status_sync()
5053 */
5054 (void) bge_check_acc_handle(bgep,
5055 bgep->io_handle);
5056 mutex_exit(bgep->genlock);
5057 return (DDI_INTR_CLAIMED);
5058 }
5059
5060 retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED |
5061 STATUS_FLAG_LINK_CHANGED | STATUS_FLAG_ERROR, &flags);
5062 if (retval != DDI_FM_OK) {
5063 bgep->bge_dma_error = B_TRUE;
5064 goto chip_stop;
5065 }
5066
5067 if (!(flags & STATUS_FLAG_UPDATED))
5068 break;
5069
5070 /*
5071 * Tell the chip that we're processing the interrupt
5072 */
5073 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5074 INTERRUPT_MBOX_DISABLE(flags));
5075 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5076 DDI_FM_OK)
5077 goto chip_stop;
5078
5079 if (flags & STATUS_FLAG_LINK_CHANGED) {
5080 BGE_DEBUG(("bge_intr($%p) ($%p) link event", arg1, arg2));
5081 if (bge_phys_check(bgep)) {
5082 bgep->link_state = bgep->param_link_up ?
5083 LINK_STATE_UP : LINK_STATE_DOWN;
5084 bge_sync_mac_modes(bgep);
5085 mac_link_update(bgep->mh, bgep->link_state);
5086 }
5087
5088 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5089 DDI_FM_OK)
5090 goto chip_stop;
5091 }
5092
5093 if (flags & STATUS_FLAG_ERROR) {
5094 bge_intr_error_handler(bgep);
5095
5096 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5097 DDI_FM_OK)
5098 goto chip_stop;
5099 }
5100
5101 /*
5102 * Drop the mutex while we:
5103 * Receive any newly-arrived packets
5104 * Recycle any newly-finished send buffers
5105 */
5106 bgep->bge_intr_running = B_TRUE;
5107 mutex_exit(bgep->genlock);
5108 bge_receive(bgep, bsp);
5109 (void) bge_recycle(bgep, bsp);
5110 mutex_enter(bgep->genlock);
5111 bgep->bge_intr_running = B_FALSE;
5112
5113 /*
5114 * Tell the chip we've finished processing, and
5115 * give it the tag that we got from the status
5116 * block earlier, so that it knows just how far
5117 * we've gone. If it's got more for us to do,
5118 * it will now update the status block and try
5119 * to assert an interrupt (but we've got the
5120 * #INTA blocked at present). If we see the
5121 * update, we'll loop around to do some more.
5122 * Eventually we'll get out of here ...
5123 */
5124 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5125 INTERRUPT_MBOX_ENABLE(flags));
5126 if (bgep->chipid.pci_type == BGE_PCI_E)
5127 (void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
5128 bgep->missed_dmas = 0;
5129 }
5130
5131 if (bgep->missed_dmas) {
5132 /*
5133 * Probably due to the internal status tag not
5134 * being reset. Force a status block update now;
5135 * this should ensure that we get an update and
5136 * a new interrupt. After that, we should be in
5137 * sync again ...
5138 */
5139 BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
5140 "not updated?", flags));
5141 bgep->missed_updates++;
5142 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
5143 COALESCE_NOW);
5144
5145 if (bgep->missed_dmas >= bge_dma_miss_limit) {
5146 /*
5147 * If this happens multiple times in a row,
5148 * it means DMA is just not working. Maybe
5149 * the chip's failed, or maybe there's a
5150 * problem on the PCI bus or in the host-PCI
5151 * bridge (Tomatillo).
5152 *
5153 * At all events, we want to stop further
5154 * interrupts and let the recovery code take
5155 * over to see whether anything can be done
5156 * about it ...
5157 */
5158 bge_fm_ereport(bgep,
5159 DDI_FM_DEVICE_BADINT_LIMIT);
5160 goto chip_stop;
5161 }
5162 }
5163
5164 /*
5165 * Reenable assertion of #INTA, unless there's a DMA fault
5166 */
5167 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5168 bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
5169 bgep->chipid.mask_pci_int);
5170 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5171 DDI_FM_OK)
5172 goto chip_stop;
5173 }
5174
5175 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5176 goto chip_stop;
5177
5178 mutex_exit(bgep->genlock);
5179 return (result);
5180
5181 chip_stop:
5182
5183 #ifdef BGE_IPMI_ASF
5184 if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
5185 /*
5186 * We must stop ASF heart beat before
5187 * bge_chip_stop(), otherwise some
5188 * computers (ex. IBM HS20 blade
5189 * server) may crash.
5190 */
5191 bge_asf_update_status(bgep);
5192 bge_asf_stop_timer(bgep);
5193 bgep->asf_status = ASF_STAT_STOP;
5194
5195 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5196 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5197 }
5198 #endif
5199 bge_chip_stop(bgep, B_TRUE);
5200 (void) bge_check_acc_handle(bgep, bgep->io_handle);
5201 mutex_exit(bgep->genlock);
5202 return (result);
5203 }
5204
5205 /*
5206 * ========== Factotum, implemented as a softint handler ==========
5207 */
5208
5209 #undef BGE_DBG
5210 #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */
5211
5212 /*
5213 * Factotum routine to check for Tx stall, using the 'watchdog' counter
5214 */
5215 static boolean_t
bge_factotum_stall_check(bge_t * bgep)5216 bge_factotum_stall_check(bge_t *bgep)
5217 {
5218 uint32_t dogval;
5219 bge_status_t *bsp;
5220 uint64_t now = gethrtime();
5221
5222 if ((now - bgep->timestamp) < BGE_CYCLIC_PERIOD)
5223 return (B_FALSE);
5224
5225 bgep->timestamp = now;
5226
5227 ASSERT(mutex_owned(bgep->genlock));
5228
5229 /*
5230 * Specific check for Tx stall ...
5231 *
5232 * The 'watchdog' counter is incremented whenever a packet
5233 * is queued, reset to 1 when some (but not all) buffers
5234 * are reclaimed, reset to 0 (disabled) when all buffers
5235 * are reclaimed, and shifted left here. If it exceeds the
5236 * threshold value, the chip is assumed to have stalled and
5237 * is put into the ERROR state. The factotum will then reset
5238 * it on the next pass.
5239 *
5240 * All of which should ensure that we don't get into a state
5241 * where packets are left pending indefinitely!
5242 */
5243 dogval = bge_atomic_shl32(&bgep->watchdog, 1);
5244 bsp = DMA_VPTR(bgep->status_block);
5245 if (dogval < bge_watchdog_count || bge_recycle(bgep, bsp))
5246 return (B_FALSE);
5247
5248 #if !defined(BGE_NETCONSOLE)
5249 BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
5250 #endif
5251 bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
5252 return (B_TRUE);
5253 }
5254
5255 /*
5256 * The factotum is woken up when there's something to do that we'd rather
5257 * not do from inside a hardware interrupt handler or high-level cyclic.
5258 * Its main task is to reset & restart the chip after an error.
5259 */
5260 uint_t
bge_chip_factotum(caddr_t arg)5261 bge_chip_factotum(caddr_t arg)
5262 {
5263 bge_t *bgep;
5264 uint_t result;
5265 boolean_t error;
5266 int dma_state;
5267
5268 bgep = (void *)arg;
5269
5270 BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
5271
5272 mutex_enter(bgep->softintrlock);
5273 if (bgep->factotum_flag == 0) {
5274 mutex_exit(bgep->softintrlock);
5275 return (DDI_INTR_UNCLAIMED);
5276 }
5277 bgep->factotum_flag = 0;
5278 mutex_exit(bgep->softintrlock);
5279
5280 result = DDI_INTR_CLAIMED;
5281 error = B_FALSE;
5282
5283 mutex_enter(bgep->genlock);
5284 switch (bgep->bge_chip_state) {
5285 default:
5286 break;
5287
5288 case BGE_CHIP_RUNNING:
5289
5290 if (bgep->chipid.device == DEVICE_ID_5700) {
5291 if (bge_phys_check(bgep)) {
5292 bgep->link_state = (bgep->param_link_up) ?
5293 LINK_STATE_UP : LINK_STATE_DOWN;
5294 bge_sync_mac_modes(bgep);
5295 mac_link_update(bgep->mh, bgep->link_state);
5296 }
5297 }
5298
5299 error = bge_factotum_stall_check(bgep);
5300 if (dma_state != DDI_FM_OK) {
5301 bgep->bge_dma_error = B_TRUE;
5302 error = B_TRUE;
5303 }
5304 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5305 error = B_TRUE;
5306 if (error)
5307 bgep->bge_chip_state = BGE_CHIP_ERROR;
5308 break;
5309
5310 case BGE_CHIP_ERROR:
5311 error = B_TRUE;
5312 break;
5313
5314 case BGE_CHIP_FAULT:
5315 /*
5316 * Fault detected, time to reset ...
5317 */
5318 if (bge_autorecover) {
5319 if (!(bgep->progress & PROGRESS_BUFS)) {
5320 /*
5321 * if we can't allocate the ring buffers,
5322 * try later
5323 */
5324 if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
5325 mutex_exit(bgep->genlock);
5326 return (result);
5327 }
5328 bgep->progress |= PROGRESS_BUFS;
5329 }
5330 if (!(bgep->progress & PROGRESS_INTR)) {
5331 bge_init_rings(bgep);
5332 bge_intr_enable(bgep);
5333 bgep->progress |= PROGRESS_INTR;
5334 }
5335 if (!(bgep->progress & PROGRESS_KSTATS)) {
5336 bge_init_kstats(bgep,
5337 ddi_get_instance(bgep->devinfo));
5338 bgep->progress |= PROGRESS_KSTATS;
5339 }
5340
5341 BGE_REPORT((bgep, "automatic recovery activated"));
5342
5343 if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
5344 bgep->bge_chip_state = BGE_CHIP_ERROR;
5345 error = B_TRUE;
5346 }
5347 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5348 DDI_FM_OK) {
5349 bgep->bge_chip_state = BGE_CHIP_ERROR;
5350 error = B_TRUE;
5351 }
5352 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5353 DDI_FM_OK) {
5354 bgep->bge_chip_state = BGE_CHIP_ERROR;
5355 error = B_TRUE;
5356 }
5357 if (error == B_FALSE) {
5358 #ifdef BGE_IPMI_ASF
5359 if (bgep->asf_enabled &&
5360 bgep->asf_status != ASF_STAT_RUN) {
5361 bgep->asf_timeout_id = timeout(
5362 bge_asf_heartbeat, (void *)bgep,
5363 drv_usectohz(
5364 BGE_ASF_HEARTBEAT_INTERVAL));
5365 bgep->asf_status = ASF_STAT_RUN;
5366 }
5367 #endif
5368 if (!bgep->manual_reset) {
5369 ddi_fm_service_impact(bgep->devinfo,
5370 DDI_SERVICE_RESTORED);
5371 }
5372 }
5373 }
5374 break;
5375 }
5376
5377 /*
5378 * If an error is detected, stop the chip now, marking it as
5379 * faulty, so that it will be reset next time through ...
5380 *
5381 * Note that if intr_running is set, then bge_intr() has dropped
5382 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
5383 * this point so have to wait until the next time the factotum runs.
5384 */
5385 if (error && !bgep->bge_intr_running) {
5386 #ifdef BGE_IPMI_ASF
5387 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
5388 /*
5389 * We must stop ASF heart beat before bge_chip_stop(),
5390 * otherwise some computers (ex. IBM HS20 blade server)
5391 * may crash.
5392 */
5393 bge_asf_update_status(bgep);
5394 bge_asf_stop_timer(bgep);
5395 bgep->asf_status = ASF_STAT_STOP;
5396
5397 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5398 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5399 }
5400 #endif
5401 bge_chip_stop(bgep, B_TRUE);
5402 (void) bge_check_acc_handle(bgep, bgep->io_handle);
5403 }
5404 mutex_exit(bgep->genlock);
5405
5406 return (result);
5407 }
5408
5409 /*
5410 * High-level cyclic handler
5411 *
5412 * This routine schedules a (low-level) softint callback to the
5413 * factotum, and prods the chip to update the status block (which
5414 * will cause a hardware interrupt when complete).
5415 */
5416 void
bge_chip_cyclic(void * arg)5417 bge_chip_cyclic(void *arg)
5418 {
5419 bge_t *bgep;
5420 uint32_t regval;
5421
5422 bgep = arg;
5423
5424 switch (bgep->bge_chip_state) {
5425 default:
5426 return;
5427
5428 case BGE_CHIP_RUNNING:
5429
5430 /* XXX I really don't like this forced interrupt... */
5431 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
5432 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5433 ddi_fm_service_impact(bgep->devinfo,
5434 DDI_SERVICE_UNAFFECTED);
5435
5436 break;
5437
5438 case BGE_CHIP_FAULT:
5439 case BGE_CHIP_ERROR:
5440
5441 break;
5442 }
5443
5444 mutex_enter(bgep->genlock);
5445
5446 if (bgep->eee_lpi_wait && !--bgep->eee_lpi_wait) {
5447 BGE_DEBUG(("eee cyclic, lpi enabled"));
5448 bge_eee_enable(bgep);
5449 }
5450
5451 if (bgep->rdma_length_bug_on_5719) {
5452 if ((bge_reg_get32(bgep, STAT_IFHCOUT_UPKGS_REG) +
5453 bge_reg_get32(bgep, STAT_IFHCOUT_MPKGS_REG) +
5454 bge_reg_get32(bgep, STAT_IFHCOUT_BPKGS_REG)) >
5455 BGE_NUM_RDMA_CHANNELS) {
5456 regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
5457 regval &= ~RDMA_CORR_CTRL_TX_LENGTH_WA;
5458 bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
5459 bgep->rdma_length_bug_on_5719 = B_FALSE;
5460 }
5461 }
5462
5463 mutex_exit(bgep->genlock);
5464
5465 bge_wake_factotum(bgep);
5466
5467 }
5468
5469
5470 /*
5471 * ========== Ioctl subfunctions ==========
5472 */
5473
5474 #undef BGE_DBG
5475 #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */
5476
5477 #if BGE_DEBUGGING || BGE_DO_PPIO
5478
5479 static void
bge_chip_peek_cfg(bge_t * bgep,bge_peekpoke_t * ppd)5480 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5481 {
5482 uint64_t regval;
5483 uint64_t regno;
5484
5485 BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
5486 (void *)bgep, (void *)ppd));
5487
5488 regno = ppd->pp_acc_offset;
5489
5490 switch (ppd->pp_acc_size) {
5491 case 1:
5492 regval = pci_config_get8(bgep->cfg_handle, regno);
5493 break;
5494
5495 case 2:
5496 regval = pci_config_get16(bgep->cfg_handle, regno);
5497 break;
5498
5499 case 4:
5500 regval = pci_config_get32(bgep->cfg_handle, regno);
5501 break;
5502
5503 case 8:
5504 regval = pci_config_get64(bgep->cfg_handle, regno);
5505 break;
5506 }
5507
5508 ppd->pp_acc_data = regval;
5509 }
5510
5511 static void
bge_chip_poke_cfg(bge_t * bgep,bge_peekpoke_t * ppd)5512 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5513 {
5514 uint64_t regval;
5515 uint64_t regno;
5516
5517 BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
5518 (void *)bgep, (void *)ppd));
5519
5520 regno = ppd->pp_acc_offset;
5521 regval = ppd->pp_acc_data;
5522
5523 switch (ppd->pp_acc_size) {
5524 case 1:
5525 pci_config_put8(bgep->cfg_handle, regno, regval);
5526 break;
5527
5528 case 2:
5529 pci_config_put16(bgep->cfg_handle, regno, regval);
5530 break;
5531
5532 case 4:
5533 pci_config_put32(bgep->cfg_handle, regno, regval);
5534 break;
5535
5536 case 8:
5537 pci_config_put64(bgep->cfg_handle, regno, regval);
5538 break;
5539 }
5540 }
5541
5542 static void
bge_chip_peek_reg(bge_t * bgep,bge_peekpoke_t * ppd)5543 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5544 {
5545 uint64_t regval;
5546 void *regaddr;
5547
5548 BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
5549 (void *)bgep, (void *)ppd));
5550
5551 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5552
5553 switch (ppd->pp_acc_size) {
5554 case 1:
5555 regval = ddi_get8(bgep->io_handle, regaddr);
5556 break;
5557
5558 case 2:
5559 regval = ddi_get16(bgep->io_handle, regaddr);
5560 break;
5561
5562 case 4:
5563 regval = ddi_get32(bgep->io_handle, regaddr);
5564 break;
5565
5566 case 8:
5567 regval = ddi_get64(bgep->io_handle, regaddr);
5568 break;
5569 }
5570
5571 ppd->pp_acc_data = regval;
5572 }
5573
5574 static void
bge_chip_poke_reg(bge_t * bgep,bge_peekpoke_t * ppd)5575 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5576 {
5577 uint64_t regval;
5578 void *regaddr;
5579
5580 BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5581 (void *)bgep, (void *)ppd));
5582
5583 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5584 regval = ppd->pp_acc_data;
5585
5586 switch (ppd->pp_acc_size) {
5587 case 1:
5588 ddi_put8(bgep->io_handle, regaddr, regval);
5589 break;
5590
5591 case 2:
5592 ddi_put16(bgep->io_handle, regaddr, regval);
5593 break;
5594
5595 case 4:
5596 ddi_put32(bgep->io_handle, regaddr, regval);
5597 break;
5598
5599 case 8:
5600 ddi_put64(bgep->io_handle, regaddr, regval);
5601 break;
5602 }
5603 BGE_PCICHK(bgep);
5604 }
5605
5606 static void
bge_chip_peek_nic(bge_t * bgep,bge_peekpoke_t * ppd)5607 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5608 {
5609 uint64_t regoff;
5610 uint64_t regval;
5611 void *regaddr;
5612
5613 BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5614 (void *)bgep, (void *)ppd));
5615
5616 regoff = ppd->pp_acc_offset;
5617 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5618 regoff &= MWBAR_GRANULE_MASK;
5619 regoff += NIC_MEM_WINDOW_OFFSET;
5620 regaddr = PIO_ADDR(bgep, regoff);
5621
5622 switch (ppd->pp_acc_size) {
5623 case 1:
5624 regval = ddi_get8(bgep->io_handle, regaddr);
5625 break;
5626
5627 case 2:
5628 regval = ddi_get16(bgep->io_handle, regaddr);
5629 break;
5630
5631 case 4:
5632 regval = ddi_get32(bgep->io_handle, regaddr);
5633 break;
5634
5635 case 8:
5636 regval = ddi_get64(bgep->io_handle, regaddr);
5637 break;
5638 }
5639
5640 ppd->pp_acc_data = regval;
5641 }
5642
5643 static void
bge_chip_poke_nic(bge_t * bgep,bge_peekpoke_t * ppd)5644 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5645 {
5646 uint64_t regoff;
5647 uint64_t regval;
5648 void *regaddr;
5649
5650 BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5651 (void *)bgep, (void *)ppd));
5652
5653 regoff = ppd->pp_acc_offset;
5654 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5655 regoff &= MWBAR_GRANULE_MASK;
5656 regoff += NIC_MEM_WINDOW_OFFSET;
5657 regaddr = PIO_ADDR(bgep, regoff);
5658 regval = ppd->pp_acc_data;
5659
5660 switch (ppd->pp_acc_size) {
5661 case 1:
5662 ddi_put8(bgep->io_handle, regaddr, regval);
5663 break;
5664
5665 case 2:
5666 ddi_put16(bgep->io_handle, regaddr, regval);
5667 break;
5668
5669 case 4:
5670 ddi_put32(bgep->io_handle, regaddr, regval);
5671 break;
5672
5673 case 8:
5674 ddi_put64(bgep->io_handle, regaddr, regval);
5675 break;
5676 }
5677 BGE_PCICHK(bgep);
5678 }
5679
5680 static void
bge_chip_peek_mii(bge_t * bgep,bge_peekpoke_t * ppd)5681 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5682 {
5683 BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5684 (void *)bgep, (void *)ppd));
5685
5686 ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5687 }
5688
5689 static void
bge_chip_poke_mii(bge_t * bgep,bge_peekpoke_t * ppd)5690 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5691 {
5692 BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5693 (void *)bgep, (void *)ppd));
5694
5695 bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5696 }
5697
5698 #if BGE_SEE_IO32
5699
5700 static void
bge_chip_peek_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5701 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5702 {
5703 uint32_t data;
5704 int err;
5705
5706 BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5707 (void *)bgep, (void *)ppd));
5708
5709 err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5710 ppd->pp_acc_data = err ? ~0ull : data;
5711 }
5712
5713 static void
bge_chip_poke_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5714 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5715 {
5716 uint32_t data;
5717
5718 BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5719 (void *)bgep, (void *)ppd));
5720
5721 data = ppd->pp_acc_data;
5722 (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5723 }
5724 #endif /* BGE_SEE_IO32 */
5725
5726 #if BGE_FLASH_IO32
5727
5728 static void
bge_chip_peek_flash(bge_t * bgep,bge_peekpoke_t * ppd)5729 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5730 {
5731 uint32_t data;
5732 int err;
5733
5734 BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5735 (void *)bgep, (void *)ppd));
5736
5737 err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5738 ppd->pp_acc_data = err ? ~0ull : data;
5739 }
5740
5741 static void
bge_chip_poke_flash(bge_t * bgep,bge_peekpoke_t * ppd)5742 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5743 {
5744 uint32_t data;
5745
5746 BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5747 (void *)bgep, (void *)ppd));
5748
5749 data = ppd->pp_acc_data;
5750 (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5751 ppd->pp_acc_offset, &data);
5752 }
5753 #endif /* BGE_FLASH_IO32 */
5754
5755 static void
bge_chip_peek_mem(bge_t * bgep,bge_peekpoke_t * ppd)5756 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5757 {
5758 uint64_t regval;
5759 void *vaddr;
5760
5761 BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5762 (void *)bgep, (void *)ppd));
5763
5764 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5765
5766 switch (ppd->pp_acc_size) {
5767 case 1:
5768 regval = *(uint8_t *)vaddr;
5769 break;
5770
5771 case 2:
5772 regval = *(uint16_t *)vaddr;
5773 break;
5774
5775 case 4:
5776 regval = *(uint32_t *)vaddr;
5777 break;
5778
5779 case 8:
5780 regval = *(uint64_t *)vaddr;
5781 break;
5782 }
5783
5784 BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5785 (void *)bgep, (void *)ppd, regval, vaddr));
5786
5787 ppd->pp_acc_data = regval;
5788 }
5789
5790 static void
bge_chip_poke_mem(bge_t * bgep,bge_peekpoke_t * ppd)5791 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5792 {
5793 uint64_t regval;
5794 void *vaddr;
5795
5796 BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5797 (void *)bgep, (void *)ppd));
5798
5799 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5800 regval = ppd->pp_acc_data;
5801
5802 BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5803 (void *)bgep, (void *)ppd, regval, vaddr));
5804
5805 switch (ppd->pp_acc_size) {
5806 case 1:
5807 *(uint8_t *)vaddr = (uint8_t)regval;
5808 break;
5809
5810 case 2:
5811 *(uint16_t *)vaddr = (uint16_t)regval;
5812 break;
5813
5814 case 4:
5815 *(uint32_t *)vaddr = (uint32_t)regval;
5816 break;
5817
5818 case 8:
5819 *(uint64_t *)vaddr = (uint64_t)regval;
5820 break;
5821 }
5822 }
5823
5824 static enum ioc_reply
bge_pp_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5825 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5826 {
5827 void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5828 bge_peekpoke_t *ppd;
5829 dma_area_t *areap;
5830 uint64_t sizemask;
5831 uint64_t mem_va;
5832 uint64_t maxoff;
5833 boolean_t peek;
5834
5835 switch (cmd) {
5836 default:
5837 /* NOTREACHED */
5838 bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5839 return (IOC_INVAL);
5840
5841 case BGE_PEEK:
5842 peek = B_TRUE;
5843 break;
5844
5845 case BGE_POKE:
5846 peek = B_FALSE;
5847 break;
5848 }
5849
5850 /*
5851 * Validate format of ioctl
5852 */
5853 if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5854 return (IOC_INVAL);
5855 if (mp->b_cont == NULL)
5856 return (IOC_INVAL);
5857 ppd = (void *)mp->b_cont->b_rptr;
5858
5859 /*
5860 * Validate request parameters
5861 */
5862 switch (ppd->pp_acc_space) {
5863 default:
5864 return (IOC_INVAL);
5865
5866 case BGE_PP_SPACE_CFG:
5867 /*
5868 * Config space
5869 */
5870 sizemask = 8|4|2|1;
5871 mem_va = 0;
5872 maxoff = PCI_CONF_HDR_SIZE;
5873 ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5874 break;
5875
5876 case BGE_PP_SPACE_REG:
5877 /*
5878 * Memory-mapped I/O space
5879 */
5880 sizemask = 8|4|2|1;
5881 mem_va = 0;
5882 maxoff = RIAAR_REGISTER_MAX;
5883 ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
5884 break;
5885
5886 case BGE_PP_SPACE_NIC:
5887 /*
5888 * NIC on-chip memory
5889 */
5890 sizemask = 8|4|2|1;
5891 mem_va = 0;
5892 maxoff = MWBAR_ONCHIP_MAX;
5893 ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
5894 break;
5895
5896 case BGE_PP_SPACE_MII:
5897 /*
5898 * PHY's MII registers
5899 * NB: all PHY registers are two bytes, but the
5900 * addresses increment in ones (word addressing).
5901 * So we scale the address here, then undo the
5902 * transformation inside the peek/poke functions.
5903 */
5904 ppd->pp_acc_offset *= 2;
5905 sizemask = 2;
5906 mem_va = 0;
5907 maxoff = (MII_MAXREG+1)*2;
5908 ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
5909 break;
5910
5911 #if BGE_SEE_IO32
5912 case BGE_PP_SPACE_SEEPROM:
5913 /*
5914 * Attached SEEPROM(s), if any.
5915 * NB: we use the high-order bits of the 'address' as
5916 * a device select to accommodate multiple SEEPROMS,
5917 * If each one is the maximum size (64kbytes), this
5918 * makes them appear contiguous. Otherwise, there may
5919 * be holes in the mapping. ENxS doesn't have any
5920 * SEEPROMs anyway ...
5921 */
5922 sizemask = 4;
5923 mem_va = 0;
5924 maxoff = SEEPROM_DEV_AND_ADDR_MASK;
5925 ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
5926 break;
5927 #endif /* BGE_SEE_IO32 */
5928
5929 #if BGE_FLASH_IO32
5930 case BGE_PP_SPACE_FLASH:
5931 /*
5932 * Attached Flash device (if any); a maximum of one device
5933 * is currently supported. But it can be up to 1MB (unlike
5934 * the 64k limit on SEEPROMs) so why would you need more ;-)
5935 */
5936 sizemask = 4;
5937 mem_va = 0;
5938 maxoff = NVM_FLASH_ADDR_MASK;
5939 ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
5940 break;
5941 #endif /* BGE_FLASH_IO32 */
5942
5943 case BGE_PP_SPACE_BGE:
5944 /*
5945 * BGE data structure!
5946 */
5947 sizemask = 8|4|2|1;
5948 mem_va = (uintptr_t)bgep;
5949 maxoff = sizeof (*bgep);
5950 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5951 break;
5952
5953 case BGE_PP_SPACE_STATUS:
5954 case BGE_PP_SPACE_STATISTICS:
5955 case BGE_PP_SPACE_TXDESC:
5956 case BGE_PP_SPACE_TXBUFF:
5957 case BGE_PP_SPACE_RXDESC:
5958 case BGE_PP_SPACE_RXBUFF:
5959 /*
5960 * Various DMA_AREAs
5961 */
5962 switch (ppd->pp_acc_space) {
5963 case BGE_PP_SPACE_TXDESC:
5964 areap = &bgep->tx_desc;
5965 break;
5966 case BGE_PP_SPACE_TXBUFF:
5967 areap = &bgep->tx_buff[0];
5968 break;
5969 case BGE_PP_SPACE_RXDESC:
5970 areap = &bgep->rx_desc[0];
5971 break;
5972 case BGE_PP_SPACE_RXBUFF:
5973 areap = &bgep->rx_buff[0];
5974 break;
5975 case BGE_PP_SPACE_STATUS:
5976 areap = &bgep->status_block;
5977 break;
5978 case BGE_PP_SPACE_STATISTICS:
5979 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
5980 areap = &bgep->statistics;
5981 break;
5982 }
5983
5984 sizemask = 8|4|2|1;
5985 mem_va = (uintptr_t)areap->mem_va;
5986 maxoff = areap->alength;
5987 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
5988 break;
5989 }
5990
5991 switch (ppd->pp_acc_size) {
5992 default:
5993 return (IOC_INVAL);
5994
5995 case 8:
5996 case 4:
5997 case 2:
5998 case 1:
5999 if ((ppd->pp_acc_size & sizemask) == 0)
6000 return (IOC_INVAL);
6001 break;
6002 }
6003
6004 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
6005 return (IOC_INVAL);
6006
6007 if (ppd->pp_acc_offset >= maxoff)
6008 return (IOC_INVAL);
6009
6010 if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
6011 return (IOC_INVAL);
6012
6013 /*
6014 * All OK - go do it!
6015 */
6016 ppd->pp_acc_offset += mem_va;
6017 (*ppfn)(bgep, ppd);
6018 return (peek ? IOC_REPLY : IOC_ACK);
6019 }
6020
6021 static enum ioc_reply
bge_diag_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6022 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6023 {
6024 ASSERT(mutex_owned(bgep->genlock));
6025
6026 switch (cmd) {
6027 default:
6028 /* NOTREACHED */
6029 bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
6030 return (IOC_INVAL);
6031
6032 case BGE_DIAG:
6033 /*
6034 * Currently a no-op
6035 */
6036 return (IOC_ACK);
6037
6038 case BGE_PEEK:
6039 case BGE_POKE:
6040 return (bge_pp_ioctl(bgep, cmd, mp, iocp));
6041
6042 case BGE_PHY_RESET:
6043 return (IOC_RESTART_ACK);
6044
6045 case BGE_SOFT_RESET:
6046 case BGE_HARD_RESET:
6047 /*
6048 * Reset and reinitialise the 570x hardware
6049 */
6050 bgep->bge_chip_state = BGE_CHIP_FAULT;
6051 ddi_trigger_softintr(bgep->factotum_id);
6052 (void) bge_restart(bgep, cmd == BGE_HARD_RESET);
6053 return (IOC_ACK);
6054 }
6055
6056 /* NOTREACHED */
6057 }
6058
6059 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
6060
6061 static enum ioc_reply
bge_mii_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6062 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6063 {
6064 struct bge_mii_rw *miirwp;
6065
6066 /*
6067 * Validate format of ioctl
6068 */
6069 if (iocp->ioc_count != sizeof (struct bge_mii_rw))
6070 return (IOC_INVAL);
6071 if (mp->b_cont == NULL)
6072 return (IOC_INVAL);
6073 miirwp = (void *)mp->b_cont->b_rptr;
6074
6075 /*
6076 * Validate request parameters ...
6077 */
6078 if (miirwp->mii_reg > MII_MAXREG)
6079 return (IOC_INVAL);
6080
6081 switch (cmd) {
6082 default:
6083 /* NOTREACHED */
6084 bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
6085 return (IOC_INVAL);
6086
6087 case BGE_MII_READ:
6088 miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
6089 return (IOC_REPLY);
6090
6091 case BGE_MII_WRITE:
6092 bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
6093 return (IOC_ACK);
6094 }
6095
6096 /* NOTREACHED */
6097 }
6098
6099 #if BGE_SEE_IO32
6100
6101 static enum ioc_reply
bge_see_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6102 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6103 {
6104 struct bge_see_rw *seerwp;
6105
6106 /*
6107 * Validate format of ioctl
6108 */
6109 if (iocp->ioc_count != sizeof (struct bge_see_rw))
6110 return (IOC_INVAL);
6111 if (mp->b_cont == NULL)
6112 return (IOC_INVAL);
6113 seerwp = (void *)mp->b_cont->b_rptr;
6114
6115 /*
6116 * Validate request parameters ...
6117 */
6118 if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
6119 return (IOC_INVAL);
6120
6121 switch (cmd) {
6122 default:
6123 /* NOTREACHED */
6124 bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
6125 return (IOC_INVAL);
6126
6127 case BGE_SEE_READ:
6128 case BGE_SEE_WRITE:
6129 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6130 seerwp->see_addr, &seerwp->see_data);
6131 return (IOC_REPLY);
6132 }
6133
6134 /* NOTREACHED */
6135 }
6136
6137 #endif /* BGE_SEE_IO32 */
6138
6139 #if BGE_FLASH_IO32
6140
6141 static enum ioc_reply
bge_flash_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6142 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6143 {
6144 struct bge_flash_rw *flashrwp;
6145
6146 /*
6147 * Validate format of ioctl
6148 */
6149 if (iocp->ioc_count != sizeof (struct bge_flash_rw))
6150 return (IOC_INVAL);
6151 if (mp->b_cont == NULL)
6152 return (IOC_INVAL);
6153 flashrwp = (void *)mp->b_cont->b_rptr;
6154
6155 /*
6156 * Validate request parameters ...
6157 */
6158 if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
6159 return (IOC_INVAL);
6160
6161 switch (cmd) {
6162 default:
6163 /* NOTREACHED */
6164 bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
6165 return (IOC_INVAL);
6166
6167 case BGE_FLASH_READ:
6168 case BGE_FLASH_WRITE:
6169 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6170 flashrwp->flash_addr, &flashrwp->flash_data);
6171 return (IOC_REPLY);
6172 }
6173
6174 /* NOTREACHED */
6175 }
6176
6177 #endif /* BGE_FLASH_IO32 */
6178
6179 enum ioc_reply
bge_chip_ioctl(bge_t * bgep,queue_t * wq,mblk_t * mp,struct iocblk * iocp)6180 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
6181 {
6182 int cmd;
6183
6184 BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
6185 (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
6186
6187 ASSERT(mutex_owned(bgep->genlock));
6188
6189 cmd = iocp->ioc_cmd;
6190 switch (cmd) {
6191 default:
6192 /* NOTREACHED */
6193 bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
6194 return (IOC_INVAL);
6195
6196 case BGE_DIAG:
6197 case BGE_PEEK:
6198 case BGE_POKE:
6199 case BGE_PHY_RESET:
6200 case BGE_SOFT_RESET:
6201 case BGE_HARD_RESET:
6202 #if BGE_DEBUGGING || BGE_DO_PPIO
6203 return (bge_diag_ioctl(bgep, cmd, mp, iocp));
6204 #else
6205 return (IOC_INVAL);
6206 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
6207
6208 case BGE_MII_READ:
6209 case BGE_MII_WRITE:
6210 return (bge_mii_ioctl(bgep, cmd, mp, iocp));
6211
6212 #if BGE_SEE_IO32
6213 case BGE_SEE_READ:
6214 case BGE_SEE_WRITE:
6215 return (bge_see_ioctl(bgep, cmd, mp, iocp));
6216 #endif /* BGE_SEE_IO32 */
6217
6218 #if BGE_FLASH_IO32
6219 case BGE_FLASH_READ:
6220 case BGE_FLASH_WRITE:
6221 return (bge_flash_ioctl(bgep, cmd, mp, iocp));
6222 #endif /* BGE_FLASH_IO32 */
6223 }
6224
6225 /* NOTREACHED */
6226 }
6227
6228 /* ARGSUSED */
6229 void
bge_chip_blank(void * arg,time_t ticks,uint_t count,int flag)6230 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
6231 {
6232 recv_ring_t *rrp = arg;
6233 bge_t *bgep = rrp->bgep;
6234
6235 mutex_enter(bgep->genlock);
6236 rrp->poll_flag = flag;
6237 #ifdef NOT_YET
6238 /*
6239 * XXX-Sunay: Since most broadcom cards support only one
6240 * interrupt but multiple rx rings, we can't disable the
6241 * physical interrupt. This need to be done via capability
6242 * negotiation depending on the NIC.
6243 */
6244 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
6245 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
6246 #endif
6247 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6248 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
6249 mutex_exit(bgep->genlock);
6250 }
6251
6252 #ifdef BGE_IPMI_ASF
6253
6254 uint32_t
bge_nic_read32(bge_t * bgep,bge_regno_t addr)6255 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
6256 {
6257 uint32_t data;
6258
6259 #ifndef __sparc
6260 if (!bgep->asf_wordswapped) {
6261 /* a workaround word swap error */
6262 if (addr & 4)
6263 addr = addr - 4;
6264 else
6265 addr = addr + 4;
6266 }
6267 #else
6268 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
6269 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
6270 DEVICE_57765_SERIES_CHIPSETS(bgep)) {
6271 addr = LE_32(addr);
6272 }
6273 #endif
6274
6275 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
6276 data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
6277 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
6278
6279 data = LE_32(data);
6280
6281 BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
6282 (void *)bgep, addr, data));
6283
6284 return (data);
6285 }
6286
6287 void
bge_asf_update_status(bge_t * bgep)6288 bge_asf_update_status(bge_t *bgep)
6289 {
6290 uint32_t event;
6291
6292 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
6293 bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
6294 bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3);
6295
6296 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6297 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6298 }
6299
6300
6301 /*
6302 * The driver is supposed to notify ASF that the OS is still running
6303 * every three seconds, otherwise the management server may attempt
6304 * to reboot the machine. If it hasn't actually failed, this is
6305 * not a desirable result. However, this isn't running as a real-time
6306 * thread, and even if it were, it might not be able to generate the
6307 * heartbeat in a timely manner due to system load. As it isn't a
6308 * significant strain on the machine, we will set the interval to half
6309 * of the required value.
6310 */
6311 void
bge_asf_heartbeat(void * arg)6312 bge_asf_heartbeat(void *arg)
6313 {
6314 bge_t *bgep = (bge_t *)arg;
6315
6316 mutex_enter(bgep->genlock);
6317 bge_asf_update_status((bge_t *)bgep);
6318 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6319 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6320 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
6321 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6322 mutex_exit(bgep->genlock);
6323 ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
6324 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
6325 }
6326
6327
6328 void
bge_asf_stop_timer(bge_t * bgep)6329 bge_asf_stop_timer(bge_t *bgep)
6330 {
6331 timeout_id_t tmp_id = 0;
6332
6333 while ((bgep->asf_timeout_id != 0) &&
6334 (tmp_id != bgep->asf_timeout_id)) {
6335 tmp_id = bgep->asf_timeout_id;
6336 (void) untimeout(tmp_id);
6337 }
6338 bgep->asf_timeout_id = 0;
6339 }
6340
6341
6342
6343 /*
6344 * This function should be placed at the earliest position of bge_attach().
6345 */
6346 void
bge_asf_get_config(bge_t * bgep)6347 bge_asf_get_config(bge_t *bgep)
6348 {
6349 uint32_t nicsig;
6350 uint32_t niccfg;
6351
6352 bgep->asf_enabled = B_FALSE;
6353
6354 /* No ASF if APE present. */
6355 if (bgep->ape_enabled)
6356 return;
6357
6358 nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
6359 if (nicsig == BGE_NIC_DATA_SIG) {
6360 niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
6361 if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
6362 /*
6363 * Here, we don't consider BAXTER, because BGE haven't
6364 * supported BAXTER (that is 5752). Also, as I know,
6365 * BAXTER doesn't support ASF feature.
6366 */
6367 bgep->asf_enabled = B_TRUE;
6368 else
6369 bgep->asf_enabled = B_FALSE;
6370 } else
6371 bgep->asf_enabled = B_FALSE;
6372 }
6373
6374
6375 void
bge_asf_pre_reset_operations(bge_t * bgep,uint32_t mode)6376 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
6377 {
6378 uint32_t tries;
6379 uint32_t event;
6380
6381 ASSERT(bgep->asf_enabled);
6382
6383 /* Issues "pause firmware" command and wait for ACK */
6384 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
6385 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6386 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6387
6388 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6389 tries = 0;
6390 while ((event & RRER_ASF_EVENT) && (tries < 100)) {
6391 drv_usecwait(1);
6392 tries ++;
6393 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6394 }
6395
6396 bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
6397 BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
6398
6399 if (bgep->asf_newhandshake) {
6400 switch (mode) {
6401 case BGE_INIT_RESET:
6402 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6403 BGE_DRV_STATE_START);
6404 break;
6405 case BGE_SHUTDOWN_RESET:
6406 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6407 BGE_DRV_STATE_UNLOAD);
6408 break;
6409 case BGE_SUSPEND_RESET:
6410 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6411 BGE_DRV_STATE_SUSPEND);
6412 break;
6413 default:
6414 break;
6415 }
6416 }
6417
6418 if (mode == BGE_INIT_RESET ||
6419 mode == BGE_SUSPEND_RESET)
6420 bge_ape_driver_state_change(bgep, mode);
6421 }
6422
6423
6424 void
bge_asf_post_reset_old_mode(bge_t * bgep,uint32_t mode)6425 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
6426 {
6427 switch (mode) {
6428 case BGE_INIT_RESET:
6429 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6430 BGE_DRV_STATE_START);
6431 break;
6432 case BGE_SHUTDOWN_RESET:
6433 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6434 BGE_DRV_STATE_UNLOAD);
6435 break;
6436 case BGE_SUSPEND_RESET:
6437 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6438 BGE_DRV_STATE_SUSPEND);
6439 break;
6440 default:
6441 break;
6442 }
6443 }
6444
6445
6446 void
bge_asf_post_reset_new_mode(bge_t * bgep,uint32_t mode)6447 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
6448 {
6449 switch (mode) {
6450 case BGE_INIT_RESET:
6451 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6452 BGE_DRV_STATE_START_DONE);
6453 break;
6454 case BGE_SHUTDOWN_RESET:
6455 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6456 BGE_DRV_STATE_UNLOAD_DONE);
6457 break;
6458 default:
6459 break;
6460 }
6461
6462 if (mode == BGE_SHUTDOWN_RESET)
6463 bge_ape_driver_state_change(bgep, mode);
6464 }
6465
6466 #endif /* BGE_IPMI_ASF */
6467