xref: /illumos-gate/usr/src/uts/common/io/bge/bge_send.c (revision fcdb3229a31dd4ff700c69238814e326aad49098)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010-2013, by Broadcom, Inc.
24  * All Rights Reserved.
25  */
26 
27 /*
28  * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29  * All rights reserved.
30  */
31 
32 #include "bge_impl.h"
33 
34 
35 /*
36  * The transmit-side code uses an allocation process which is similar
37  * to some theme park roller-coaster rides, where riders sit in cars
38  * that can go individually, but work better in a train.
39  *
40  * 1)	RESERVE a place - this doesn't refer to any specific car or
41  *	seat, just that you will get a ride.  The attempt to RESERVE a
42  *	place can fail if all spaces in all cars are already committed.
43  *
44  * 2)	Prepare yourself; this may take an arbitrary (but not unbounded)
45  *	time, and you can back out at this stage, in which case you must
46  *	give up (RENOUNCE) your place.
47  *
48  * 3)	CLAIM your space - a specific car (the next sequentially
49  *	numbered one) is allocated at this stage, and is guaranteed
50  *	to be part of the next train to depart.  Once you've done
51  *	this, you can't back out, nor wait for any external event
52  *	or resource.
53  *
54  * 4)	Occupy your car - when all CLAIMED cars are OCCUPIED, they
55  *	all depart together as a single train!
56  *
57  * 5)	At the end of the ride, you climb out of the car and RENOUNCE
58  *	your right to it, so that it can be recycled for another rider.
59  *
60  * For each rider, these have to occur in this order, but the riders
61  * don't have to stay in the same order at each stage.  In particular,
62  * they may overtake each other between RESERVING a place and CLAIMING
63  * it, or between CLAIMING and OCCUPYING a space.
64  *
65  * Once a car is CLAIMED, the train currently being assembled can't go
66  * without that car (this guarantees that the cars in a single train
67  * make up a consecutively-numbered set).  Therefore, when any train
68  * leaves, we know there can't be any riders in transit between CLAIMING
69  * and OCCUPYING their cars.  There can be some who have RESERVED but
70  * not yet CLAIMED their places.  That's OK, though, because they'll go
71  * into the next train.
72  */
73 
74 #define	BGE_DBG		BGE_DBG_SEND	/* debug flag for this code	*/
75 
76 /*
77  * ========== Send-side recycle routines ==========
78  */
79 
80 /*
81  * Recycle all the completed buffers in the specified send ring up to
82  * (but not including) the consumer index in the status block.
83  *
84  * This function must advance (srp->tc_next) AND adjust (srp->tx_free)
85  * to account for the packets it has recycled.
86  *
87  * This is a trivial version that just does that and nothing more, but
88  * it suffices while there's only one method for sending messages (by
89  * copying) and that method doesn't need any special per-buffer action
90  * for recycling.
91  */
92 static boolean_t
bge_recycle_ring(bge_t * bgep,send_ring_t * srp)93 bge_recycle_ring(bge_t *bgep, send_ring_t *srp)
94 {
95 	sw_sbd_t *ssbdp;
96 	bge_queue_item_t *buf_item;
97 	bge_queue_item_t *buf_item_head;
98 	bge_queue_item_t *buf_item_tail;
99 	bge_queue_t *txbuf_queue;
100 	uint64_t slot;
101 	uint64_t n;
102 
103 	ASSERT(mutex_owned(srp->tc_lock));
104 
105 	/*
106 	 * We're about to release one or more places :-)
107 	 * These ASSERTions check that our invariants still hold:
108 	 *	there must always be at least one free place
109 	 *	at this point, there must be at least one place NOT free
110 	 *	we're not about to free more places than were claimed!
111 	 */
112 	ASSERT(srp->tx_free <= srp->desc.nslots);
113 
114 	buf_item_head = buf_item_tail = NULL;
115 	for (n = 0, slot = srp->tc_next; slot != *srp->cons_index_p;
116 	    slot = NEXT(slot, srp->desc.nslots)) {
117 		ssbdp = &srp->sw_sbds[slot];
118 		ASSERT(ssbdp->pbuf != NULL);
119 		buf_item = ssbdp->pbuf;
120 		if (buf_item_head == NULL)
121 			buf_item_head = buf_item_tail = buf_item;
122 		else {
123 			buf_item_tail->next = buf_item;
124 			buf_item_tail = buf_item;
125 		}
126 		ssbdp->pbuf = NULL;
127 		n++;
128 	}
129 	if (n == 0)
130 		return (B_FALSE);
131 
132 	/*
133 	 * Reset the watchdog count: to 0 if all buffers are
134 	 * now free, or to 1 if some are still outstanding.
135 	 * Note: non-synchonised access here means we may get
136 	 * the "wrong" answer, but only in a harmless fashion
137 	 * (i.e. we deactivate the watchdog because all buffers
138 	 * are apparently free, even though another thread may
139 	 * have claimed one before we leave here; in this case
140 	 * the watchdog will restart on the next send() call).
141 	 */
142 	bgep->watchdog = (slot == srp->tx_next) ? 0 : 1;
143 
144 	/*
145 	 * Update recycle index and free tx BD number
146 	 */
147 	srp->tc_next = slot;
148 	ASSERT(srp->tx_free + n <= srp->desc.nslots);
149 	bge_atomic_renounce(&srp->tx_free, n);
150 
151 	/*
152 	 * Return tx buffers to buffer push queue
153 	 */
154 	txbuf_queue = srp->txbuf_push_queue;
155 	mutex_enter(txbuf_queue->lock);
156 	buf_item_tail->next = txbuf_queue->head;
157 	txbuf_queue->head = buf_item_head;
158 	txbuf_queue->count += n;
159 	mutex_exit(txbuf_queue->lock);
160 
161 	/*
162 	 * Check if we need exchange the tx buffer push and pop queue
163 	 */
164 	if ((srp->txbuf_pop_queue->count < srp->tx_buffers_low) &&
165 	    (srp->txbuf_pop_queue->count < txbuf_queue->count)) {
166 		srp->txbuf_push_queue = srp->txbuf_pop_queue;
167 		srp->txbuf_pop_queue = txbuf_queue;
168 	}
169 
170 	if (srp->tx_flow != 0 || bgep->tx_resched_needed)
171 		ddi_trigger_softintr(bgep->drain_id);
172 
173 	return (B_TRUE);
174 }
175 
176 /*
177  * Recycle all returned slots in all rings.
178  *
179  * To give priority to low-numbered rings, whenever we have recycled any
180  * slots in any ring except 0, we restart scanning again from ring 0.
181  * Thus, for example, if rings 0, 3, and 10 are carrying traffic, the
182  * pattern of recycles might go 0, 3, 10, 3, 0, 10, 0:
183  *
184  *	0	found some - recycle them
185  *	1..2					none found
186  *	3	found some - recycle them	and restart scan
187  *	0..9					none found
188  *	10	found some - recycle them	and restart scan
189  *	0..2					none found
190  *	3	found some more - recycle them	and restart scan
191  *	0	found some more - recycle them
192  *	0..9					none found
193  *	10	found some more - recycle them	and restart scan
194  *	0	found some more - recycle them
195  *	1..15					none found
196  *
197  * The routine returns only when a complete scan has been performed
198  * without finding any slots to recycle.
199  *
200  * Note: the expression (BGE_SEND_RINGS_USED > 1) yields a compile-time
201  * constant and allows the compiler to optimise away the outer do-loop
202  * if only one send ring is being used.
203  */
204 boolean_t bge_recycle(bge_t *bgep, bge_status_t *bsp);
205 
206 boolean_t
bge_recycle(bge_t * bgep,bge_status_t * bsp)207 bge_recycle(bge_t *bgep, bge_status_t *bsp)
208 {
209 	send_ring_t *srp;
210 	uint64_t ring;
211 	uint64_t tx_rings = bgep->chipid.tx_rings;
212 	boolean_t tx_done = B_FALSE;
213 
214 restart:
215 	ring = 0;
216 	srp = &bgep->send[ring];
217 	do {
218 		/*
219 		 * For each ring, (srp->cons_index_p) points to the
220 		 * proper index within the status block (which has
221 		 * already been sync'd by the caller).
222 		 */
223 		ASSERT(srp->cons_index_p == SEND_INDEX_P(bsp, ring));
224 
225 		if (*srp->cons_index_p == srp->tc_next)
226 			continue;		/* no slots to recycle	*/
227 		if (mutex_tryenter(srp->tc_lock) == 0)
228 			continue;		/* already in process	*/
229 		tx_done |= bge_recycle_ring(bgep, srp);
230 		mutex_exit(srp->tc_lock);
231 
232 		/*
233 		 * Restart from ring 0, if we're not on ring 0 already.
234 		 * As H/W selects send BDs totally based on priority and
235 		 * available BDs on the higher priority ring are always
236 		 * selected first, driver should keep consistence with H/W
237 		 * and gives lower-numbered ring with higher priority.
238 		 */
239 		if (tx_rings > 1 && ring > 0)
240 			goto restart;
241 
242 		/*
243 		 * Loop over all rings (if there *are* multiple rings)
244 		 */
245 	} while (++srp, ++ring < tx_rings);
246 
247 	return (tx_done);
248 }
249 
250 
251 /*
252  * ========== Send-side transmit routines ==========
253  */
254 #define	TCP_CKSUM_OFFSET	16
255 #define	UDP_CKSUM_OFFSET	6
256 
257 static void
bge_pseudo_cksum(uint8_t * buf)258 bge_pseudo_cksum(uint8_t *buf)
259 {
260 	uint32_t cksum;
261 	uint16_t iphl;
262 	uint16_t proto;
263 
264 	/*
265 	 * Point it to the ip header.
266 	 */
267 	buf += sizeof (struct ether_header);
268 
269 	/*
270 	 * Calculate the pseudo-header checksum.
271 	 */
272 	iphl = 4 * (buf[0] & 0xF);
273 	cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl;
274 	cksum += proto = buf[9];
275 	cksum += (((uint16_t)buf[12])<<8) + buf[13];
276 	cksum += (((uint16_t)buf[14])<<8) + buf[15];
277 	cksum += (((uint16_t)buf[16])<<8) + buf[17];
278 	cksum += (((uint16_t)buf[18])<<8) + buf[19];
279 	cksum = (cksum>>16) + (cksum & 0xFFFF);
280 	cksum = (cksum>>16) + (cksum & 0xFFFF);
281 
282 	/*
283 	 * Point it to the TCP/UDP header, and
284 	 * update the checksum field.
285 	 */
286 	buf += iphl + ((proto == IPPROTO_TCP) ?
287 	    TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET);
288 
289 	/*
290 	 * A real possibility that pointer cast is a problem.
291 	 * Should be fixed when we know the code better.
292 	 * E_BAD_PTR_CAST_ALIGN is added to make it temporarily clean.
293 	 */
294 	*(uint16_t *)buf = htons((uint16_t)cksum);
295 }
296 
297 static bge_queue_item_t *
bge_get_txbuf(bge_t * bgep,send_ring_t * srp)298 bge_get_txbuf(bge_t *bgep, send_ring_t *srp)
299 {
300 	bge_queue_item_t *txbuf_item;
301 	bge_queue_t *txbuf_queue;
302 
303 	txbuf_queue = srp->txbuf_pop_queue;
304 	mutex_enter(txbuf_queue->lock);
305 	if (txbuf_queue->count == 0) {
306 		mutex_exit(txbuf_queue->lock);
307 		txbuf_queue = srp->txbuf_push_queue;
308 		mutex_enter(txbuf_queue->lock);
309 		if (txbuf_queue->count == 0) {
310 			mutex_exit(txbuf_queue->lock);
311 			/* Try to allocate more tx buffers */
312 			if (srp->tx_array < srp->tx_array_max) {
313 				mutex_enter(srp->tx_lock);
314 				txbuf_item = bge_alloc_txbuf_array(bgep, srp);
315 				mutex_exit(srp->tx_lock);
316 			} else
317 				txbuf_item = NULL;
318 			return (txbuf_item);
319 		}
320 	}
321 	txbuf_item = txbuf_queue->head;
322 	txbuf_queue->head = (bge_queue_item_t *)txbuf_item->next;
323 	txbuf_queue->count--;
324 	mutex_exit(txbuf_queue->lock);
325 	txbuf_item->next = NULL;
326 
327 	return (txbuf_item);
328 }
329 
330 /*
331  * Send a message by copying it into a preallocated (and premapped) buffer
332  */
333 static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp);
334 
335 static void
bge_send_copy(bge_t * bgep,sw_txbuf_t * txbuf,mblk_t * mp)336 bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp)
337 {
338 	mblk_t *bp;
339 	uint32_t mblen;
340 	char *pbuf;
341 
342 	txbuf->copy_len = 0;
343 	pbuf = DMA_VPTR(txbuf->buf);
344 	for (bp = mp; bp != NULL; bp = bp->b_cont) {
345 		if ((mblen = MBLKL(bp)) == 0)
346 			continue;
347 		ASSERT(txbuf->copy_len + mblen <=
348 		    bgep->chipid.snd_buff_size);
349 		bcopy(bp->b_rptr, pbuf, mblen);
350 		pbuf += mblen;
351 		txbuf->copy_len += mblen;
352 	}
353 }
354 
355 /*
356  * Fill the Tx buffer descriptors and trigger the h/w transmission
357  */
358 static void
bge_send_serial(bge_t * bgep,send_ring_t * srp)359 bge_send_serial(bge_t *bgep, send_ring_t *srp)
360 {
361 	send_pkt_t *pktp;
362 	uint64_t txfill_next;
363 	uint32_t count;
364 	uint32_t tx_next;
365 	sw_sbd_t *ssbdp;
366 	bge_status_t *bsp;
367 	bge_sbd_t *hw_sbd_p;
368 	bge_queue_item_t *txbuf_item;
369 	sw_txbuf_t *txbuf;
370 
371 	/*
372 	 * Try to hold the tx lock:
373 	 *	If we are in an interrupt context, use mutex_enter() to
374 	 *	ensure quick response for tx in interrupt context;
375 	 *	Otherwise, use mutex_tryenter() to serialize this h/w tx
376 	 *	BD filling and transmission triggering task.
377 	 */
378 	if (servicing_interrupt() != 0)
379 		mutex_enter(srp->tx_lock);
380 	else if (mutex_tryenter(srp->tx_lock) == 0)
381 		return;		/* already in process	*/
382 
383 	bsp = DMA_VPTR(bgep->status_block);
384 	txfill_next = srp->txfill_next;
385 	tx_next = srp->tx_next;
386 start_tx:
387 	for (count = 0; count < bgep->param_drain_max; ++count) {
388 		pktp = &srp->pktp[txfill_next];
389 		if (!pktp->tx_ready) {
390 			if (count == 0)
391 				srp->tx_block++;
392 			break;
393 		}
394 
395 		/*
396 		 * If there are no enough BDs: try to recycle more
397 		 */
398 		if (srp->tx_free <= 1)
399 			(void) bge_recycle(bgep, bsp);
400 
401 		/*
402 		 * Reserved required BDs: 1 is enough
403 		 */
404 		if (!bge_atomic_reserve(&srp->tx_free, 1)) {
405 			srp->tx_nobd++;
406 			break;
407 		}
408 
409 		/*
410 		 * Filling the tx BD
411 		 */
412 
413 		/*
414 		 * Go straight to claiming our already-reserved places
415 		 * on the train!
416 		 */
417 		ASSERT(pktp->txbuf_item != NULL);
418 		txbuf_item = pktp->txbuf_item;
419 		pktp->txbuf_item = NULL;
420 		pktp->tx_ready = B_FALSE;
421 
422 		txbuf = txbuf_item->item;
423 		ASSERT(txbuf->copy_len != 0);
424 		(void) ddi_dma_sync(txbuf->buf.dma_hdl,  0,
425 		    txbuf->copy_len, DDI_DMA_SYNC_FORDEV);
426 
427 		ssbdp = &srp->sw_sbds[tx_next];
428 		ASSERT(ssbdp->pbuf == NULL);
429 		ssbdp->pbuf = txbuf_item;
430 
431 		/*
432 		 * Setting hardware send buffer descriptor
433 		 */
434 		hw_sbd_p = DMA_VPTR(ssbdp->desc);
435 		hw_sbd_p->flags = 0;
436 		hw_sbd_p->host_buf_addr = txbuf->buf.cookie.dmac_laddress;
437 		hw_sbd_p->len = txbuf->copy_len;
438 		if (pktp->vlan_tci != 0) {
439 			hw_sbd_p->vlan_tci = pktp->vlan_tci;
440 			hw_sbd_p->host_buf_addr += VLAN_TAGSZ;
441 			hw_sbd_p->flags |= SBD_FLAG_VLAN_TAG;
442 		}
443 		if (pktp->pflags & HCK_IPV4_HDRCKSUM)
444 			hw_sbd_p->flags |= SBD_FLAG_IP_CKSUM;
445 		if (pktp->pflags & HCK_FULLCKSUM)
446 			hw_sbd_p->flags |= SBD_FLAG_TCP_UDP_CKSUM;
447 		if (!(bgep->chipid.flags & CHIP_FLAG_NO_JUMBO) &&
448 		    (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
449 		     DEVICE_5725_SERIES_CHIPSETS(bgep) ||
450 		     DEVICE_57765_SERIES_CHIPSETS(bgep)) &&
451 		    (txbuf->copy_len > ETHERMAX))
452 			hw_sbd_p->flags |= SBD_FLAG_JMB_PKT;
453 		hw_sbd_p->flags |= SBD_FLAG_PACKET_END;
454 
455 		txfill_next = NEXT(txfill_next, BGE_SEND_BUF_MAX);
456 		tx_next = NEXT(tx_next, srp->desc.nslots);
457 	}
458 
459 	/*
460 	 * Trigger h/w to start transmission.
461 	 */
462 	if (count != 0) {
463 		bge_atomic_sub64(&srp->tx_flow, count);
464 		srp->txfill_next = txfill_next;
465 
466 		if (srp->tx_next > tx_next) {
467 			(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
468 			    (srp->desc.nslots - srp->tx_next) *
469 			    sizeof (bge_sbd_t),
470 			    DDI_DMA_SYNC_FORDEV);
471 			count -= srp->desc.nslots - srp->tx_next;
472 			ssbdp = &srp->sw_sbds[0];
473 		}
474 		(void) ddi_dma_sync(ssbdp->desc.dma_hdl,  0,
475 		    count*sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV);
476 		bge_mbx_put(bgep, srp->chip_mbx_reg, tx_next);
477 		srp->tx_next = tx_next;
478 		atomic_or_32(&bgep->watchdog, 1);
479 
480 		if (srp->tx_flow != 0 && srp->tx_free > 1)
481 			goto start_tx;
482 	}
483 
484 	mutex_exit(srp->tx_lock);
485 }
486 
487 mblk_t *
bge_ring_tx(void * arg,mblk_t * mp)488 bge_ring_tx(void *arg, mblk_t *mp)
489 {
490 	send_ring_t *srp = arg;
491 	bge_t *bgep = srp->bgep;
492 	struct ether_vlan_header *ehp;
493 	bge_queue_item_t *txbuf_item;
494 	sw_txbuf_t *txbuf;
495 	send_pkt_t *pktp;
496 	uint64_t pkt_slot;
497 	uint16_t vlan_tci;
498 	uint32_t pflags;
499 	char *pbuf;
500 
501 	ASSERT(mp->b_next == NULL);
502 
503 	/*
504 	 * Get a s/w tx buffer first
505 	 */
506 	txbuf_item = bge_get_txbuf(bgep, srp);
507 	if (txbuf_item == NULL) {
508 		/* no tx buffer available */
509 		srp->tx_nobuf++;
510 		bgep->tx_resched_needed = B_TRUE;
511 		bge_send_serial(bgep, srp);
512 		return (mp);
513 	}
514 
515 	/*
516 	 * Copy all mp fragments to the pkt buffer
517 	 */
518 	txbuf = txbuf_item->item;
519 	bge_send_copy(bgep, txbuf, mp);
520 
521 	/*
522 	 * Determine if the packet is VLAN tagged.
523 	 */
524 	ASSERT(txbuf->copy_len >= sizeof (struct ether_header));
525 	pbuf = DMA_VPTR(txbuf->buf);
526 
527 	ehp = (void *)pbuf;
528 	if (ehp->ether_tpid == htons(ETHERTYPE_VLAN)) {
529 		/* Strip the vlan tag */
530 		vlan_tci = ntohs(ehp->ether_tci);
531 		pbuf = memmove(pbuf + VLAN_TAGSZ, pbuf, 2 * ETHERADDRL);
532 		txbuf->copy_len -= VLAN_TAGSZ;
533 	} else
534 		vlan_tci = 0;
535 
536 	/*
537 	 * Retrieve checksum offloading info.
538 	 */
539 	mac_hcksum_get(mp, NULL, NULL, NULL, NULL, &pflags);
540 
541 	/*
542 	 * Calculate pseudo checksum if needed.
543 	 */
544 	if ((pflags & HCK_FULLCKSUM) &&
545 	    (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM))
546 		bge_pseudo_cksum((uint8_t *)pbuf);
547 
548 	/*
549 	 * Packet buffer is ready to send: get and fill pkt info
550 	 */
551 	pkt_slot = bge_atomic_next(&srp->txpkt_next, BGE_SEND_BUF_MAX);
552 	pktp = &srp->pktp[pkt_slot];
553 	ASSERT(pktp->txbuf_item == NULL);
554 	pktp->txbuf_item = txbuf_item;
555 	pktp->vlan_tci = vlan_tci;
556 	pktp->pflags = pflags;
557 	atomic_inc_64(&srp->tx_flow);
558 	ASSERT(pktp->tx_ready == B_FALSE);
559 	pktp->tx_ready = B_TRUE;
560 
561 	/*
562 	 * Filling the h/w bd and trigger the h/w to start transmission
563 	 */
564 	bge_send_serial(bgep, srp);
565 
566 	srp->pushed_bytes += MBLKL(mp);
567 
568 	/*
569 	 * We've copied the contents, the message can be freed right away
570 	 */
571 	freemsg(mp);
572 	return (NULL);
573 }
574 
575 static mblk_t *
bge_send(bge_t * bgep,mblk_t * mp)576 bge_send(bge_t *bgep, mblk_t *mp)
577 {
578 	send_ring_t *ring;
579 
580 	ring = &bgep->send[0];	/* ring 0 */
581 
582 	return (bge_ring_tx(ring, mp));
583 }
584 
585 uint_t
bge_send_drain(caddr_t arg)586 bge_send_drain(caddr_t arg)
587 {
588 	uint_t ring = 0;	/* use ring 0 */
589 	bge_t *bgep;
590 	send_ring_t *srp;
591 
592 	bgep = (void *)arg;
593 	BGE_TRACE(("bge_send_drain($%p)", (void *)bgep));
594 
595 	srp = &bgep->send[ring];
596 	bge_send_serial(bgep, srp);
597 
598 	if (bgep->tx_resched_needed &&
599 	    (srp->tx_flow < srp->tx_buffers_low) &&
600 	    (bgep->bge_mac_state == BGE_MAC_STARTED)) {
601 		mac_tx_update(bgep->mh);
602 		bgep->tx_resched_needed = B_FALSE;
603 		bgep->tx_resched++;
604 	}
605 
606 	return (DDI_INTR_CLAIMED);
607 }
608 
609 /*
610  * bge_m_tx() - send a chain of packets
611  */
612 mblk_t *
bge_m_tx(void * arg,mblk_t * mp)613 bge_m_tx(void *arg, mblk_t *mp)
614 {
615 	bge_t *bgep = arg;		/* private device info	*/
616 	mblk_t *next;
617 
618 	BGE_TRACE(("bge_m_tx($%p, $%p)", arg, (void *)mp));
619 
620 	ASSERT(mp != NULL);
621 	ASSERT(bgep->bge_mac_state == BGE_MAC_STARTED);
622 
623 	rw_enter(bgep->errlock, RW_READER);
624 	if ((bgep->bge_chip_state != BGE_CHIP_RUNNING) ||
625 	    !(bgep->param_link_up)) {
626 		BGE_DEBUG(("bge_m_tx: chip not running or link down"));
627 		freemsgchain(mp);
628 		mp = NULL;
629 	}
630 
631 	while (mp != NULL) {
632 		next = mp->b_next;
633 		mp->b_next = NULL;
634 
635 		if ((mp = bge_send(bgep, mp)) != NULL) {
636 			mp->b_next = next;
637 			break;
638 		}
639 
640 		mp = next;
641 	}
642 	rw_exit(bgep->errlock);
643 
644 	return (mp);
645 }
646