1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010-2013, by Broadcom, Inc.
24 * All Rights Reserved.
25 */
26
27 /*
28 * Copyright (c) 2002, 2010, Oracle and/or its affiliates.
29 * All rights reserved.
30 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
31 */
32
33 #include "bge_impl.h"
34
35 #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset)))
36 #define APE_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->ape_regs+(offset)))
37
38 /*
39 * Future features ... ?
40 */
41 #define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */
42 #define BGE_IND_IO32 1 /* indirect access code */
43 #define BGE_SEE_IO32 1 /* SEEPROM access code */
44 #define BGE_FLASH_IO32 1 /* FLASH access code */
45
46 /*
47 * BGE MSI tunable:
48 *
49 * By default MSI is enabled on all supported platforms but it is disabled
50 * for some Broadcom chips due to known MSI hardware issues. Currently MSI
51 * is enabled only for 5714C A2 and 5715C A2 broadcom chips.
52 */
53 boolean_t bge_enable_msi = B_TRUE;
54
55 /*
56 * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver
57 */
58 boolean_t bge_relaxed_ordering = B_TRUE;
59
60 /*
61 * Patchable globals:
62 *
63 * bge_autorecover
64 * Enables/disables automatic recovery after fault detection
65 *
66 * bge_mlcr_default
67 * Value to program into the MLCR; controls the chip's GPIO pins
68 *
69 * bge_dma_{rd,wr}prio
70 * Relative priorities of DMA reads & DMA writes respectively.
71 * These may each be patched to any value 0-3. Equal values
72 * will give "fair" (round-robin) arbitration for PCI access.
73 * Unequal values will give one or the other function priority.
74 *
75 * bge_dma_rwctrl
76 * Value to put in the Read/Write DMA control register. See
77 * the Broadcom PRM for things you can fiddle with in this
78 * register ...
79 *
80 * bge_{tx,rx}_{count,ticks}_{norm,intr}
81 * Send/receive interrupt coalescing parameters. Counts are
82 * #s of descriptors, ticks are in microseconds. *norm* values
83 * apply between status updates/interrupts; the *intr* values
84 * refer to the 'during-interrupt' versions - see the PRM.
85 *
86 * NOTE: these values have been determined by measurement. They
87 * differ significantly from the values recommended in the PRM.
88 */
89 static uint32_t bge_autorecover = 1;
90 static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714;
91
92 static uint32_t bge_dma_rdprio = 1;
93 static uint32_t bge_dma_wrprio = 0;
94 static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT;
95 static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721;
96 static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714;
97 static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715;
98
99 uint32_t bge_rx_ticks_norm = 128;
100 uint32_t bge_tx_ticks_norm = 512;
101 uint32_t bge_rx_count_norm = 8;
102 uint32_t bge_tx_count_norm = 128;
103
104 static uint32_t bge_rx_ticks_intr = 128;
105 static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */
106 static uint32_t bge_rx_count_intr = 2;
107 static uint32_t bge_tx_count_intr = 0;
108
109 /*
110 * Memory pool configuration parameters.
111 *
112 * These are generally specific to each member of the chip family, since
113 * each one may have a different memory size/configuration.
114 *
115 * Setting the mbuf pool length for a specific type of chip to 0 inhibits
116 * the driver from programming the various registers; instead they are left
117 * at their hardware defaults. This is the preferred option for later chips
118 * (5705+), whereas the older chips *required* these registers to be set,
119 * since the h/w default was 0 ;-(
120 */
121 static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT;
122 static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704;
123 static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705;
124 static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721;
125 static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT;
126 static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704;
127 static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */
128 static uint32_t bge_mbuf_pool_len_5721 = 0;
129
130 /*
131 * Various high and low water marks, thresholds, etc ...
132 *
133 * Note: these are taken from revision 7 of the PRM, and some are different
134 * from both the values in earlier PRMs *and* those determined experimentally
135 * and used in earlier versions of this driver ...
136 */
137 static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT;
138 static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT;
139 static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT;
140
141 static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT;
142 static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT;
143 static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT;
144
145 static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT;
146 static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT;
147 static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT;
148
149 static uint32_t bge_watchdog_count = 1 << 16;
150 static uint16_t bge_dma_miss_limit = 20;
151
152 static uint32_t bge_stop_start_on_sync = 0;
153
154 /*
155 * bge_intr_max_loop controls the maximum loop number within bge_intr.
156 * When loading NIC with heavy network traffic, it is useful.
157 * Increasing this value could have positive effect to throughput,
158 * but it might also increase ticks of a bge ISR stick on CPU, which might
159 * lead to bad UI interactive experience. So tune this with caution.
160 */
161 static int bge_intr_max_loop = 1;
162
163 /*
164 * ========== Low-level chip & ring buffer manipulation ==========
165 */
166
167 #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */
168
169
170 /*
171 * Config space read-modify-write routines
172 */
173
174 #if BGE_CFG_IO8
175
176 static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits);
177 #pragma inline(bge_cfg_clr16)
178
179 static void
bge_cfg_clr16(bge_t * bgep,bge_regno_t regno,uint16_t bits)180 bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits)
181 {
182 uint16_t regval;
183
184 BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)",
185 (void *)bgep, regno, bits));
186
187 regval = pci_config_get16(bgep->cfg_handle, regno);
188
189 BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
190 (void *)bgep, regno, bits, regval, regval & ~bits));
191
192 regval &= ~bits;
193 pci_config_put16(bgep->cfg_handle, regno, regval);
194 }
195
196 #endif /* BGE_CFG_IO8 */
197
198 static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
199 #pragma inline(bge_cfg_clr32)
200
201 static void
bge_cfg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)202 bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
203 {
204 uint32_t regval;
205
206 BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)",
207 (void *)bgep, regno, bits));
208
209 regval = pci_config_get32(bgep->cfg_handle, regno);
210
211 BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x",
212 (void *)bgep, regno, bits, regval, regval & ~bits));
213
214 regval &= ~bits;
215 pci_config_put32(bgep->cfg_handle, regno, regval);
216 }
217
218 #if BGE_IND_IO32
219
220 /*
221 * Indirect access to registers & RISC scratchpads, using config space
222 * accesses only.
223 *
224 * This isn't currently used, but someday we might want to use it for
225 * restoring the Subsystem Device/Vendor registers (which aren't directly
226 * writable in Config Space), or for downloading firmware into the RISCs
227 *
228 * In any case there are endian issues to be resolved before this code is
229 * enabled; the bizarre way that bytes get twisted by this chip AND by
230 * the PCI bridge in SPARC systems mean that we shouldn't enable it until
231 * it's been thoroughly tested for all access sizes on all supported
232 * architectures (SPARC *and* x86!).
233 */
234 uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno);
235 #pragma inline(bge_ind_get32)
236
237 uint32_t
bge_ind_get32(bge_t * bgep,bge_regno_t regno)238 bge_ind_get32(bge_t *bgep, bge_regno_t regno)
239 {
240 uint32_t val;
241
242 BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno));
243
244 #ifdef __sparc
245 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
246 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
247 regno = LE_32(regno);
248 }
249 #endif
250 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
251 val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR);
252
253 BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x",
254 (void *)bgep, regno, val));
255
256 val = LE_32(val);
257
258 return (val);
259 }
260
261 void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val);
262 #pragma inline(bge_ind_put32)
263
264 void
bge_ind_put32(bge_t * bgep,bge_regno_t regno,uint32_t val)265 bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val)
266 {
267 BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)",
268 (void *)bgep, regno, val));
269
270 val = LE_32(val);
271 #ifdef __sparc
272 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
273 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
274 regno = LE_32(regno);
275 }
276 #endif
277 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno);
278 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val);
279 }
280
281 #endif /* BGE_IND_IO32 */
282
283 #if BGE_DEBUGGING
284
285 static void bge_pci_check(bge_t *bgep);
286 #pragma no_inline(bge_pci_check)
287
288 static void
bge_pci_check(bge_t * bgep)289 bge_pci_check(bge_t *bgep)
290 {
291 uint16_t pcistatus;
292
293 pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT);
294 if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0)
295 BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x",
296 (void *)bgep, pcistatus));
297 }
298
299 #endif /* BGE_DEBUGGING */
300
301 /*
302 * Perform first-stage chip (re-)initialisation, using only config-space
303 * accesses:
304 *
305 * + Read the vendor/device/revision/subsystem/cache-line-size registers,
306 * returning the data in the structure pointed to by <idp>.
307 * + Configure the target-mode endianness (swap) options.
308 * + Disable interrupts and enable Memory Space accesses.
309 * + Enable or disable Bus Mastering according to the <enable_dma> flag.
310 *
311 * This sequence is adapted from Broadcom document 570X-PG102-R,
312 * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence
313 * are 4 and 5 (Reset Core and wait) which are handled elsewhere.
314 *
315 * This function MUST be called before any non-config-space accesses
316 * are made; on this first call <enable_dma> is B_FALSE, and it
317 * effectively performs steps 3-1(!) of the initialisation sequence
318 * (the rest are not required but should be harmless).
319 *
320 * It MUST also be called after a chip reset, as this disables
321 * Memory Space cycles! In this case, <enable_dma> is B_TRUE, and
322 * it is effectively performing steps 6-8.
323 */
324 void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma);
325 #pragma no_inline(bge_chip_cfg_init)
326
327 void
bge_chip_cfg_init(bge_t * bgep,chip_id_t * cidp,boolean_t enable_dma)328 bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma)
329 {
330 ddi_acc_handle_t handle;
331 uint16_t command;
332 uint32_t mhcr;
333 uint32_t prodid;
334 uint32_t pci_state;
335 uint16_t value16;
336 int i;
337
338 BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)",
339 (void *)bgep, (void *)cidp, enable_dma));
340
341 /*
342 * Step 3: save PCI cache line size and subsystem vendor ID
343 *
344 * Read all the config-space registers that characterise the
345 * chip, specifically vendor/device/revision/subsystem vendor
346 * and subsystem device id. We expect (but don't check) that
347 * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704)
348 *
349 * Also save all bus-transaction related registers (cache-line
350 * size, bus-grant/latency parameters, etc). Some of these are
351 * cleared by reset, so we'll have to restore them later. This
352 * comes from the Broadcom document 570X-PG102-R ...
353 *
354 * Note: Broadcom document 570X-PG102-R seems to be in error
355 * here w.r.t. the offsets of the Subsystem Vendor ID and
356 * Subsystem (Device) ID registers, which are the opposite way
357 * round according to the PCI standard. For good measure, we
358 * save/restore both anyway.
359 */
360 handle = bgep->cfg_handle;
361
362 /*
363 * For some chipsets (e.g., BCM5718), if MHCR_ENABLE_ENDIAN_BYTE_SWAP
364 * has been set in PCI_CONF_COMM already, we need to write the
365 * byte-swapped value to it. So we just write zero first for simplicity.
366 */
367 cidp->device = pci_config_get16(handle, PCI_CONF_DEVID);
368 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
369 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
370 pci_config_put32(handle, PCI_CONF_BGE_MHCR, 0);
371 }
372
373 mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR);
374 cidp->asic_rev = (mhcr & MHCR_CHIP_REV_MASK);
375 cidp->asic_rev_prod_id = 0;
376 if ((cidp->asic_rev & 0xf0000000) == CHIP_ASIC_REV_USE_PROD_ID_REG) {
377 prodid = CHIP_ASIC_REV_PROD_ID_REG;
378 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
379 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
380 prodid = CHIP_ASIC_REV_PROD_ID_GEN2_REG;
381 }
382 cidp->asic_rev_prod_id = pci_config_get32(handle, prodid);
383 }
384
385 cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE);
386 cidp->command = pci_config_get16(handle, PCI_CONF_COMM);
387
388 cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID);
389 cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID);
390 cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID);
391 cidp->revision = pci_config_get8(handle, PCI_CONF_REVID);
392 cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ);
393 cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER);
394
395 /* 5717 C0 is treated just like 5720 A0 */
396 if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
397 DEVICE_ID_5717_C0) {
398 cidp->device = DEVICE_ID_5720;
399 }
400
401 BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s",
402 cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X",
403 cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow",
404 cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide",
405 cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low"));
406 BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x",
407 cidp->vendor, cidp->device, cidp->revision));
408 BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x",
409 cidp->subven, cidp->subdev, cidp->asic_rev));
410 BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x",
411 cidp->clsize, cidp->latency, cidp->command));
412
413 /*
414 * Step 2 (also step 6): disable and clear interrupts.
415 * Steps 11-13: configure PIO endianness options, and enable
416 * indirect register access. We'll also select any other
417 * options controlled by the MHCR (e.g. tagged status, mask
418 * interrupt mode) at this stage ...
419 *
420 * Note: internally, the chip is 64-bit and BIG-endian, but
421 * since it talks to the host over a (LITTLE-endian) PCI bus,
422 * it normally swaps bytes around at the PCI interface.
423 * However, the PCI host bridge on SPARC systems normally
424 * swaps the byte lanes around too, since SPARCs are also
425 * BIG-endian. So it turns out that on SPARC, the right
426 * option is to tell the chip to swap (and the host bridge
427 * will swap back again), whereas on x86 we ask the chip
428 * NOT to swap, so the natural little-endianness of the
429 * PCI bus is assumed. Then the only thing that doesn't
430 * automatically work right is access to an 8-byte register
431 * by a little-endian host; but we don't want to set the
432 * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte
433 * accesses don't go where expected ;-( So we live with
434 * that, and perform word-swaps in software in the few cases
435 * where a chip register is defined as an 8-byte value --
436 * see the code below for details ...
437 *
438 * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't
439 * very clear in the register description in the PRM, but
440 * Broadcom document 570X-PG104-R page 248 explains a little
441 * more (under "Broadcom Mask Mode"). The bit changes the way
442 * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE
443 * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same
444 * way as the 5700 did, which isn't very convenient. Setting
445 * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT
446 * bit do just what its name says -- MASK the PCI #INTA output
447 * (i.e. deassert the signal at the pin) leaving all internal
448 * state unchanged. This is much more convenient for our
449 * interrupt handler, so we set MASK_INTERRUPT_MODE here.
450 *
451 * Note: the inconvenient semantics of the interrupt mailbox
452 * (nonzero disables and acknowledges/clears the interrupt,
453 * zero enables AND CLEARS it) would make race conditions
454 * likely in the interrupt handler:
455 *
456 * (1) acknowledge & disable interrupts
457 * (2) while (more to do)
458 * process packets
459 * (3) enable interrupts -- also clears pending
460 *
461 * If the chip received more packets and internally generated
462 * an interrupt between the check at (2) and the mbox write
463 * at (3), this interrupt would be lost :-(
464 *
465 * The best way to avoid this is to use TAGGED STATUS mode,
466 * where the chip includes a unique tag in each status block
467 * update, and the host, when re-enabling interrupts, passes
468 * the last tag it saw back to the chip; then the chip can
469 * see whether the host is truly up to date, and regenerate
470 * its interrupt if not.
471 */
472 mhcr = MHCR_ENABLE_INDIRECT_ACCESS |
473 MHCR_ENABLE_PCI_STATE_RW |
474 MHCR_ENABLE_TAGGED_STATUS_MODE |
475 MHCR_MASK_INTERRUPT_MODE |
476 MHCR_CLEAR_INTERRUPT_INTA;
477 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
478 mhcr |= MHCR_MASK_PCI_INT_OUTPUT;
479
480 #ifdef _BIG_ENDIAN
481 mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP;
482 #endif /* _BIG_ENDIAN */
483 pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr);
484
485 #ifdef BGE_IPMI_ASF
486 bgep->asf_wordswapped = B_FALSE;
487 #endif
488
489 pci_state = (PCISTATE_EXT_ROM_ENABLE | PCISTATE_EXT_ROM_RETRY);
490 /* allow reads and writes to the APE register and memory space */
491 if (bgep->ape_enabled) {
492 pci_state |= PCISTATE_ALLOW_APE_CTLSPC_WR |
493 PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
494 }
495 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PCISTATE, pci_state);
496
497 /*
498 * Step 1 (also step 7): Enable PCI Memory Space accesses
499 * Disable Memory Write/Invalidate
500 * Enable or disable Bus Mastering
501 *
502 * Note that all other bits are taken from the original value saved
503 * the first time through here, rather than from the current register
504 * value, 'cos that will have been cleared by a soft RESET since.
505 * In this way we preserve the OBP/nexus-parent's preferred settings
506 * of the parity-error and system-error enable bits across multiple
507 * chip RESETs.
508 */
509 command = bgep->chipid.command | PCI_COMM_MAE;
510 command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL);
511 if (enable_dma)
512 command |= PCI_COMM_ME;
513 /*
514 * on BCM5714 revision A0, false parity error gets generated
515 * due to a logic bug. Provide a workaround by disabling parity
516 * error.
517 */
518 if (((cidp->device == DEVICE_ID_5714C) ||
519 (cidp->device == DEVICE_ID_5714S)) &&
520 (cidp->revision == REVISION_ID_5714_A0)) {
521 command &= ~PCI_COMM_PARITY_DETECT;
522 }
523 pci_config_put16(handle, PCI_CONF_COMM, command);
524
525 /*
526 * On some PCI-E device, there were instances when
527 * the device was still link training.
528 */
529 if (bgep->chipid.pci_type == BGE_PCI_E) {
530 i = 0;
531 value16 = pci_config_get16(handle, PCI_CONF_COMM);
532 while ((value16 != command) && (i < 100)) {
533 drv_usecwait(200);
534 value16 = pci_config_get16(handle, PCI_CONF_COMM);
535 ++i;
536 }
537 }
538
539 /*
540 * Clear any remaining error status bits
541 */
542 pci_config_put16(handle, PCI_CONF_STAT, ~0);
543
544 /*
545 * Do following if and only if the device is NOT BCM5714C OR
546 * BCM5715C
547 */
548 if (!((cidp->device == DEVICE_ID_5714C) ||
549 (cidp->device == DEVICE_ID_5715C))) {
550 /*
551 * Make sure these indirect-access registers are sane
552 * rather than random after power-up or reset
553 */
554 pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0);
555 pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0);
556 }
557 /*
558 * Step 8: Disable PCI-X/PCI-E Relaxed Ordering
559 */
560 bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED);
561
562 if (cidp->pci_type == BGE_PCI_E) {
563 if (DEVICE_5723_SERIES_CHIPSETS(bgep)) {
564 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5723,
565 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
566 } else if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
567 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
568 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
569 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
570 } else {
571 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL,
572 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
573 }
574 }
575 }
576
577 #ifdef __amd64
578 /*
579 * Distinguish CPU types
580 *
581 * These use to distinguish AMD64 or Intel EM64T of CPU running mode.
582 * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine
583 * for PCI-Express based network interface card. This is the work-around
584 * for those nics.
585 */
586 static boolean_t bge_get_em64t_type(void);
587 #pragma inline(bge_get_em64t_type)
588
589 static boolean_t
bge_get_em64t_type(void)590 bge_get_em64t_type(void)
591 {
592
593 return (x86_vendor == X86_VENDOR_Intel);
594 }
595 #endif
596
597 /*
598 * Operating register get/set access routines
599 */
600
601 uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno);
602 #pragma inline(bge_reg_get32)
603
604 uint32_t
bge_reg_get32(bge_t * bgep,bge_regno_t regno)605 bge_reg_get32(bge_t *bgep, bge_regno_t regno)
606 {
607 BGE_TRACE(("bge_reg_get32($%p, 0x%lx)",
608 (void *)bgep, regno));
609
610 return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)));
611 }
612
613 void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
614 #pragma inline(bge_reg_put32)
615
616 void
bge_reg_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)617 bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
618 {
619 BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)",
620 (void *)bgep, regno, data));
621
622 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data);
623 BGE_PCICHK(bgep);
624 }
625
626 void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
627 #pragma inline(bge_reg_set32)
628
629 void
bge_reg_set32(bge_t * bgep,bge_regno_t regno,uint32_t bits)630 bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
631 {
632 uint32_t regval;
633
634 BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)",
635 (void *)bgep, regno, bits));
636
637 regval = bge_reg_get32(bgep, regno);
638 regval |= bits;
639 bge_reg_put32(bgep, regno, regval);
640 }
641
642 void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits);
643 #pragma inline(bge_reg_clr32)
644
645 void
bge_reg_clr32(bge_t * bgep,bge_regno_t regno,uint32_t bits)646 bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits)
647 {
648 uint32_t regval;
649
650 BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)",
651 (void *)bgep, regno, bits));
652
653 regval = bge_reg_get32(bgep, regno);
654 regval &= ~bits;
655 bge_reg_put32(bgep, regno, regval);
656 }
657
658 static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno);
659 #pragma inline(bge_reg_get64)
660
661 static uint64_t
bge_reg_get64(bge_t * bgep,bge_regno_t regno)662 bge_reg_get64(bge_t *bgep, bge_regno_t regno)
663 {
664 uint64_t regval;
665
666 #ifdef __amd64
667 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
668 bge_get_em64t_type() ||
669 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
670 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
671 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
672 regval <<= 32;
673 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
674 } else {
675 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
676 }
677 #elif defined(__sparc)
678 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
679 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
680 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
681 regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
682 regval <<= 32;
683 regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4));
684 } else {
685 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
686 }
687 #else
688 regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno));
689 #endif
690
691 #ifdef _LITTLE_ENDIAN
692 regval = (regval >> 32) | (regval << 32);
693 #endif /* _LITTLE_ENDIAN */
694
695 BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx",
696 (void *)bgep, regno, regval));
697
698 return (regval);
699 }
700
701 static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data);
702 #pragma inline(bge_reg_put64)
703
704 static void
bge_reg_put64(bge_t * bgep,bge_regno_t regno,uint64_t data)705 bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data)
706 {
707 BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)",
708 (void *)bgep, regno, data));
709
710 #ifdef _LITTLE_ENDIAN
711 data = ((data >> 32) | (data << 32));
712 #endif /* _LITTLE_ENDIAN */
713
714 #ifdef __amd64
715 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
716 bge_get_em64t_type() ||
717 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
718 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
719 ddi_put32(bgep->io_handle,
720 PIO_ADDR(bgep, regno), (uint32_t)data);
721 BGE_PCICHK(bgep);
722 ddi_put32(bgep->io_handle,
723 PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32));
724
725 } else {
726 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
727 }
728 #elif defined(__sparc)
729 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
730 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
731 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
732 ddi_put32(bgep->io_handle,
733 PIO_ADDR(bgep, regno + 4), (uint32_t)data);
734 BGE_PCICHK(bgep);
735 ddi_put32(bgep->io_handle,
736 PIO_ADDR(bgep, regno), (uint32_t)(data >> 32));
737 } else {
738 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
739 }
740 #else
741 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data);
742 #endif
743
744 BGE_PCICHK(bgep);
745 }
746
747 /*
748 * The DDI doesn't provide get/put functions for 128 bit data
749 * so we put RCBs out as two 64-bit chunks instead.
750 */
751 static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
752 #pragma inline(bge_reg_putrcb)
753
754 static void
bge_reg_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)755 bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
756 {
757 uint64_t *p;
758
759 BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
760 (void *)bgep, addr, rcbp->host_ring_addr,
761 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
762
763 ASSERT((addr % sizeof (*rcbp)) == 0);
764
765 p = (void *)rcbp;
766 bge_reg_put64(bgep, addr, *p++);
767 bge_reg_put64(bgep, addr+8, *p);
768 }
769
770 void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data);
771 #pragma inline(bge_mbx_put)
772
773 void
bge_mbx_put(bge_t * bgep,bge_regno_t regno,uint64_t data)774 bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data)
775 {
776 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
777 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
778
779 BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)",
780 (void *)bgep, regno, data));
781
782 /*
783 * Mailbox registers are nominally 64 bits on the 5701, but
784 * the MSW isn't used. On the 5703, they're only 32 bits
785 * anyway. So here we just write the lower(!) 32 bits -
786 * remembering that the chip is big-endian, even though the
787 * PCI bus is little-endian ...
788 */
789 #ifdef _BIG_ENDIAN
790 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data);
791 #else
792 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data);
793 #endif /* _BIG_ENDIAN */
794 BGE_PCICHK(bgep);
795 }
796
797 uint32_t bge_mbx_get(bge_t *bgep, bge_regno_t regno);
798 #pragma inline(bge_mbx_get)
799
800 uint32_t
bge_mbx_get(bge_t * bgep,bge_regno_t regno)801 bge_mbx_get(bge_t *bgep, bge_regno_t regno)
802 {
803 uint32_t val32;
804
805 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
806 regno += INTERRUPT_LP_MBOX_0_REG - INTERRUPT_MBOX_0_REG + 4;
807
808 BGE_TRACE(("bge_mbx_get($%p, 0x%lx)",
809 (void *)bgep, regno));
810
811 #ifdef _BIG_ENDIAN
812 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno+4));
813 #else
814 val32 = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno));
815 #endif /* _BIG_ENDIAN */
816 BGE_PCICHK(bgep);
817
818 BGE_DEBUG(("bge_mbx_get($%p, 0x%lx) => 0x%08x",
819 (void *)bgep, regno, val32));
820
821 return (val32);
822 }
823
824
825 #if BGE_DEBUGGING
826
827 void bge_led_mark(bge_t *bgep);
828 #pragma no_inline(bge_led_mark)
829
830 void
bge_led_mark(bge_t * bgep)831 bge_led_mark(bge_t *bgep)
832 {
833 uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK |
834 LED_CONTROL_1000MBPS_LED |
835 LED_CONTROL_100MBPS_LED |
836 LED_CONTROL_10MBPS_LED;
837
838 /*
839 * Blink all three LINK LEDs on simultaneously, then all off,
840 * then restore to automatic hardware control. This is used
841 * in laboratory testing to trigger a logic analyser or scope.
842 */
843 bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
844 led_ctrl ^= LED_CONTROL_OVERRIDE_LINK;
845 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
846 led_ctrl = LED_CONTROL_OVERRIDE_LINK;
847 bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl);
848 }
849
850 #endif /* BGE_DEBUGGING */
851
852 /*
853 * NIC on-chip memory access routines
854 *
855 * Only 32K of NIC memory is visible at a time, controlled by the
856 * Memory Window Base Address Register (in PCI config space). Once
857 * this is set, the 32K region of NIC-local memory that it refers
858 * to can be directly addressed in the upper 32K of the 64K of PCI
859 * memory space used for the device.
860 */
861
862 static void bge_nic_setwin(bge_t *bgep, bge_regno_t base);
863 #pragma inline(bge_nic_setwin)
864
865 static void
bge_nic_setwin(bge_t * bgep,bge_regno_t base)866 bge_nic_setwin(bge_t *bgep, bge_regno_t base)
867 {
868 chip_id_t *cidp;
869
870 BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)",
871 (void *)bgep, base));
872
873 ASSERT((base & MWBAR_GRANULE_MASK) == 0);
874
875 /*
876 * Don't do repeated zero data writes,
877 * if the device is BCM5714C/15C.
878 */
879 cidp = &bgep->chipid;
880 if ((cidp->device == DEVICE_ID_5714C) ||
881 (cidp->device == DEVICE_ID_5715C)) {
882 if (bgep->lastWriteZeroData && (base == (bge_regno_t)0))
883 return;
884 /* Adjust lastWriteZeroData */
885 bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ?
886 B_TRUE : B_FALSE);
887 }
888 #ifdef __sparc
889 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
890 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
891 base = LE_32(base);
892 }
893 #endif
894 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base);
895 }
896
897 static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr);
898 #pragma inline(bge_nic_get32)
899
900 static uint32_t
bge_nic_get32(bge_t * bgep,bge_regno_t addr)901 bge_nic_get32(bge_t *bgep, bge_regno_t addr)
902 {
903 uint32_t data;
904
905 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
906 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
907 /* workaround for word swap error */
908 if (addr & 4)
909 addr = addr - 4;
910 else
911 addr = addr + 4;
912 }
913 #endif
914
915 #ifdef __sparc
916 data = bge_nic_read32(bgep, addr);
917 #else
918 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
919 addr &= MWBAR_GRANULE_MASK;
920 addr += NIC_MEM_WINDOW_OFFSET;
921
922 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
923 #endif
924
925 BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x",
926 (void *)bgep, addr, data));
927
928 return (data);
929 }
930
931 void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data);
932 #pragma inline(bge_nic_put32)
933
934 void
bge_nic_put32(bge_t * bgep,bge_regno_t addr,uint32_t data)935 bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data)
936 {
937 BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)",
938 (void *)bgep, addr, data));
939
940 #if defined(BGE_IPMI_ASF) && !defined(__sparc)
941 if (bgep->asf_enabled && !bgep->asf_wordswapped) {
942 /* workaround for word swap error */
943 if (addr & 4)
944 addr = addr - 4;
945 else
946 addr = addr + 4;
947 }
948 #endif
949
950 #ifdef __sparc
951 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
952 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
953 addr = LE_32(addr);
954 }
955 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
956 data = LE_32(data);
957 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR, data);
958 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
959 #else
960 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
961 addr &= MWBAR_GRANULE_MASK;
962 addr += NIC_MEM_WINDOW_OFFSET;
963 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data);
964 BGE_PCICHK(bgep);
965 #endif
966 }
967
968 static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr);
969 #pragma inline(bge_nic_get64)
970
971 static uint64_t
bge_nic_get64(bge_t * bgep,bge_regno_t addr)972 bge_nic_get64(bge_t *bgep, bge_regno_t addr)
973 {
974 uint64_t data;
975
976 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
977 addr &= MWBAR_GRANULE_MASK;
978 addr += NIC_MEM_WINDOW_OFFSET;
979
980 #ifdef __amd64
981 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
982 bge_get_em64t_type() ||
983 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
984 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
985 data = ddi_get32(bgep->io_handle,
986 PIO_ADDR(bgep, addr + 4));
987 data <<= 32;
988 data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
989 } else {
990 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
991 }
992 #elif defined(__sparc)
993 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
994 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
995 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
996 data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr));
997 data <<= 32;
998 data |= ddi_get32(bgep->io_handle,
999 PIO_ADDR(bgep, addr + 4));
1000 } else {
1001 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1002 }
1003 #else
1004 data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr));
1005 #endif
1006
1007 BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx",
1008 (void *)bgep, addr, data));
1009
1010 return (data);
1011 }
1012
1013 static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data);
1014 #pragma inline(bge_nic_put64)
1015
1016 static void
bge_nic_put64(bge_t * bgep,bge_regno_t addr,uint64_t data)1017 bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data)
1018 {
1019 BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)",
1020 (void *)bgep, addr, data));
1021
1022 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1023 addr &= MWBAR_GRANULE_MASK;
1024 addr += NIC_MEM_WINDOW_OFFSET;
1025
1026 #ifdef __amd64
1027 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1028 bge_get_em64t_type() ||
1029 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1030 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1031 ddi_put32(bgep->io_handle,
1032 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1033 BGE_PCICHK(bgep);
1034 ddi_put32(bgep->io_handle,
1035 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1036 } else {
1037 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1038 }
1039 #elif defined(__sparc)
1040 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1041 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1042 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1043 ddi_put32(bgep->io_handle,
1044 PIO_ADDR(bgep, addr + 4), (uint32_t)data);
1045 BGE_PCICHK(bgep);
1046 ddi_put32(bgep->io_handle,
1047 PIO_ADDR(bgep, addr), (uint32_t)(data >> 32));
1048 } else {
1049 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1050 }
1051 #else
1052 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data);
1053 #endif
1054
1055 BGE_PCICHK(bgep);
1056 }
1057
1058 /*
1059 * The DDI doesn't provide get/put functions for 128 bit data
1060 * so we put RCBs out as two 64-bit chunks instead.
1061 */
1062 static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp);
1063 #pragma inline(bge_nic_putrcb)
1064
1065 static void
bge_nic_putrcb(bge_t * bgep,bge_regno_t addr,bge_rcb_t * rcbp)1066 bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp)
1067 {
1068 uint64_t *p;
1069
1070 BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)",
1071 (void *)bgep, addr, rcbp->host_ring_addr,
1072 rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr));
1073
1074 ASSERT((addr % sizeof (*rcbp)) == 0);
1075
1076 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1077 addr &= MWBAR_GRANULE_MASK;
1078 addr += NIC_MEM_WINDOW_OFFSET;
1079
1080 p = (void *)rcbp;
1081 #ifdef __amd64
1082 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1083 bge_get_em64t_type() ||
1084 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1085 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1086 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1087 (uint32_t)(*p));
1088 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1089 (uint32_t)(*p++ >> 32));
1090 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1091 (uint32_t)(*p));
1092 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1093 (uint32_t)(*p >> 32));
1094
1095 } else {
1096 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1097 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p);
1098 }
1099 #elif defined(__sparc)
1100 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1101 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1102 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
1103 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4),
1104 (uint32_t)(*p));
1105 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr),
1106 (uint32_t)(*p++ >> 32));
1107 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12),
1108 (uint32_t)(*p));
1109 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8),
1110 (uint32_t)(*p >> 32));
1111 } else {
1112 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1113 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1114 }
1115 #else
1116 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++);
1117 ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p);
1118 #endif
1119
1120 BGE_PCICHK(bgep);
1121 }
1122
1123 static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes);
1124 #pragma inline(bge_nic_zero)
1125
1126 static void
bge_nic_zero(bge_t * bgep,bge_regno_t addr,uint32_t nbytes)1127 bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes)
1128 {
1129 BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)",
1130 (void *)bgep, addr, nbytes));
1131
1132 ASSERT((addr & ~MWBAR_GRANULE_MASK) ==
1133 ((addr+nbytes) & ~MWBAR_GRANULE_MASK));
1134
1135 bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK);
1136 addr &= MWBAR_GRANULE_MASK;
1137 addr += NIC_MEM_WINDOW_OFFSET;
1138
1139 (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr),
1140 nbytes, 1, DDI_DATA_SZ08_ACC);
1141 BGE_PCICHK(bgep);
1142 }
1143
1144 /*
1145 * MII (PHY) register get/set access routines
1146 *
1147 * These use the chip's MII auto-access method, controlled by the
1148 * MII Communication register at 0x044c, so the CPU doesn't have
1149 * to fiddle with the individual bits.
1150 */
1151
1152 #undef BGE_DBG
1153 #define BGE_DBG BGE_DBG_MII /* debug flag for this code */
1154
1155 static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno,
1156 uint16_t data, uint32_t cmd);
1157 #pragma no_inline(bge_mii_access)
1158
1159 static uint16_t
bge_mii_access(bge_t * bgep,bge_regno_t regno,uint16_t data,uint32_t cmd)1160 bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd)
1161 {
1162 uint32_t timeout;
1163 uint32_t regval1;
1164 uint32_t regval2;
1165
1166 BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)",
1167 (void *)bgep, regno, data, cmd));
1168
1169 ASSERT(mutex_owned(bgep->genlock));
1170
1171 /*
1172 * Assemble the command ...
1173 */
1174 cmd |= data << MI_COMMS_DATA_SHIFT;
1175 cmd |= regno << MI_COMMS_REGISTER_SHIFT;
1176 cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT;
1177 cmd |= MI_COMMS_START;
1178
1179 /*
1180 * Wait for any command already in progress ...
1181 *
1182 * Note: this *shouldn't* ever find that there is a command
1183 * in progress, because we already hold the <genlock> mutex.
1184 * Nonetheless, we have sometimes seen the MI_COMMS_START
1185 * bit set here -- it seems that the chip can initiate MII
1186 * accesses internally, even with polling OFF.
1187 */
1188 regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1189 for (timeout = 100; ; ) {
1190 if ((regval2 & MI_COMMS_START) == 0) {
1191 bge_reg_put32(bgep, MI_COMMS_REG, cmd);
1192 break;
1193 }
1194 if (--timeout == 0)
1195 break;
1196 drv_usecwait(10);
1197 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1198 }
1199
1200 if (timeout == 0)
1201 return ((uint16_t)~0u);
1202
1203 if (timeout != 100)
1204 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1205 "MI_COMMS_START set for %d us; 0x%x->0x%x",
1206 cmd, 10*(100-timeout), regval1, regval2));
1207
1208 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1209 for (timeout = 1000; ; ) {
1210 if ((regval1 & MI_COMMS_START) == 0)
1211 break;
1212 if (--timeout == 0)
1213 break;
1214 drv_usecwait(10);
1215 regval1 = bge_reg_get32(bgep, MI_COMMS_REG);
1216 }
1217
1218 /*
1219 * Drop out early if the READ FAILED bit is set -- this chip
1220 * could be a 5703/4S, with a SerDes instead of a PHY!
1221 */
1222 if (regval2 & MI_COMMS_READ_FAILED)
1223 return ((uint16_t)~0u);
1224
1225 if (timeout == 0)
1226 return ((uint16_t)~0u);
1227
1228 /*
1229 * The PRM says to wait 5us after seeing the START bit clear
1230 * and then re-read the register to get the final value of the
1231 * data field, in order to avoid a race condition where the
1232 * START bit is clear but the data field isn't yet valid.
1233 *
1234 * Note: we don't actually seem to be encounter this race;
1235 * except when the START bit is seen set again (see below),
1236 * the data field doesn't change during this 5us interval.
1237 */
1238 drv_usecwait(5);
1239 regval2 = bge_reg_get32(bgep, MI_COMMS_REG);
1240
1241 /*
1242 * Unfortunately, when following the PRMs instructions above,
1243 * we have occasionally seen the START bit set again(!) in the
1244 * value read after the 5us delay. This seems to be due to the
1245 * chip autonomously starting another MII access internally.
1246 * In such cases, the command/data/etc fields relate to the
1247 * internal command, rather than the one that we thought had
1248 * just finished. So in this case, we fall back to returning
1249 * the data from the original read that showed START clear.
1250 */
1251 if (regval2 & MI_COMMS_START) {
1252 BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- "
1253 "MI_COMMS_START set after transaction; 0x%x->0x%x",
1254 cmd, regval1, regval2));
1255 regval2 = regval1;
1256 }
1257
1258 if (regval2 & MI_COMMS_START)
1259 return ((uint16_t)~0u);
1260
1261 if (regval2 & MI_COMMS_READ_FAILED)
1262 return ((uint16_t)~0u);
1263
1264 return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT);
1265 }
1266
1267 uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno);
1268 #pragma no_inline(bge_mii_get16)
1269
1270 uint16_t
bge_mii_get16(bge_t * bgep,bge_regno_t regno)1271 bge_mii_get16(bge_t *bgep, bge_regno_t regno)
1272 {
1273 BGE_TRACE(("bge_mii_get16($%p, 0x%lx)",
1274 (void *)bgep, regno));
1275
1276 ASSERT(mutex_owned(bgep->genlock));
1277
1278 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1279 (regno == MII_MSCONTROL)))
1280 return (0);
1281
1282 return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ));
1283 }
1284
1285 void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data);
1286 #pragma no_inline(bge_mii_put16)
1287
1288 void
bge_mii_put16(bge_t * bgep,bge_regno_t regno,uint16_t data)1289 bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data)
1290 {
1291 BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)",
1292 (void *)bgep, regno, data));
1293
1294 ASSERT(mutex_owned(bgep->genlock));
1295
1296 if (DEVICE_5906_SERIES_CHIPSETS(bgep) && ((regno == MII_AUX_CONTROL) ||
1297 (regno == MII_MSCONTROL)))
1298 return;
1299
1300 (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE);
1301 }
1302
1303 uint16_t
bge_phydsp_read(bge_t * bgep,bge_regno_t regno)1304 bge_phydsp_read(bge_t *bgep, bge_regno_t regno)
1305 {
1306 BGE_TRACE(("bge_phydsp_read($%p, 0x%lx)",
1307 (void *)bgep, regno));
1308
1309 ASSERT(mutex_owned(bgep->genlock));
1310
1311 bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1312 return bge_mii_get16(bgep, MII_DSP_RW_PORT);
1313 }
1314
1315 #pragma no_inline(bge_phydsp_write)
1316
1317 void
bge_phydsp_write(bge_t * bgep,bge_regno_t regno,uint16_t data)1318 bge_phydsp_write(bge_t *bgep, bge_regno_t regno, uint16_t data)
1319 {
1320 BGE_TRACE(("bge_phydsp_write($%p, 0x%lx, 0x%x)",
1321 (void *)bgep, regno, data));
1322
1323 ASSERT(mutex_owned(bgep->genlock));
1324
1325 bge_mii_put16(bgep, MII_DSP_ADDRESS, regno);
1326 bge_mii_put16(bgep, MII_DSP_RW_PORT, data);
1327 }
1328
1329 #undef BGE_DBG
1330 #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */
1331
1332 #if BGE_SEE_IO32 || BGE_FLASH_IO32
1333
1334 /*
1335 * Basic SEEPROM get/set access routine
1336 *
1337 * This uses the chip's SEEPROM auto-access method, controlled by the
1338 * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU
1339 * doesn't have to fiddle with the individual bits.
1340 *
1341 * The caller should hold <genlock> and *also* have already acquired
1342 * the right to access the SEEPROM, via bge_nvmem_acquire() above.
1343 *
1344 * Return value:
1345 * 0 on success,
1346 * ENODATA on access timeout (maybe retryable: device may just be busy)
1347 * EPROTO on other h/w or s/w errors.
1348 *
1349 * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output
1350 * from a (successful) SEEPROM_ACCESS_READ.
1351 */
1352 static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1353 uint32_t *dp);
1354 #pragma no_inline(bge_seeprom_access)
1355
1356 static int
bge_seeprom_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1357 bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1358 {
1359 uint32_t tries;
1360 uint32_t regval;
1361
1362 ASSERT(mutex_owned(bgep->genlock));
1363
1364 /*
1365 * On the newer chips that support both SEEPROM & Flash, we need
1366 * to specifically enable SEEPROM access (Flash is the default).
1367 * On older chips, we don't; SEEPROM is the only NVtype supported,
1368 * and the NVM control registers don't exist ...
1369 */
1370 switch (bgep->chipid.nvtype) {
1371 case BGE_NVTYPE_NONE:
1372 case BGE_NVTYPE_UNKNOWN:
1373 _NOTE(NOTREACHED)
1374 case BGE_NVTYPE_SEEPROM:
1375 break;
1376
1377 case BGE_NVTYPE_LEGACY_SEEPROM:
1378 case BGE_NVTYPE_UNBUFFERED_FLASH:
1379 case BGE_NVTYPE_BUFFERED_FLASH:
1380 default:
1381 bge_reg_set32(bgep, NVM_CONFIG1_REG,
1382 NVM_CFG1_LEGACY_SEEPROM_MODE);
1383 break;
1384 }
1385
1386 /*
1387 * Check there's no command in progress.
1388 *
1389 * Note: this *shouldn't* ever find that there is a command
1390 * in progress, because we already hold the <genlock> mutex.
1391 * Also, to ensure we don't have a conflict with the chip's
1392 * internal firmware or a process accessing the same (shared)
1393 * SEEPROM through the other port of a 5704, we've already
1394 * been through the "software arbitration" protocol.
1395 * So this is just a final consistency check: we shouldn't
1396 * see EITHER the START bit (command started but not complete)
1397 * OR the COMPLETE bit (command completed but not cleared).
1398 */
1399 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1400 if (regval & SEEPROM_ACCESS_START)
1401 return (EPROTO);
1402 if (regval & SEEPROM_ACCESS_COMPLETE)
1403 return (EPROTO);
1404
1405 /*
1406 * Assemble the command ...
1407 */
1408 cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK;
1409 addr >>= SEEPROM_ACCESS_ADDRESS_SIZE;
1410 addr <<= SEEPROM_ACCESS_DEVID_SHIFT;
1411 cmd |= addr & SEEPROM_ACCESS_DEVID_MASK;
1412 cmd |= SEEPROM_ACCESS_START;
1413 cmd |= SEEPROM_ACCESS_COMPLETE;
1414 cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK;
1415
1416 bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp);
1417 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd);
1418
1419 /*
1420 * By observation, a successful access takes ~20us on a 5703/4,
1421 * but apparently much longer (up to 1000us) on the obsolescent
1422 * BCM5700/BCM5701. We want to be sure we don't get any false
1423 * timeouts here; but OTOH, we don't want a bogus access to lock
1424 * out interrupts for longer than necessary. So we'll allow up
1425 * to 1000us ...
1426 */
1427 for (tries = 0; tries < 1000; ++tries) {
1428 regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG);
1429 if (regval & SEEPROM_ACCESS_COMPLETE)
1430 break;
1431 drv_usecwait(1);
1432 }
1433
1434 if (regval & SEEPROM_ACCESS_COMPLETE) {
1435 /*
1436 * All OK; read the SEEPROM data register, then write back
1437 * the value read from the address register in order to
1438 * clear the <complete> bit and leave the SEEPROM access
1439 * state machine idle, ready for the next access ...
1440 */
1441 BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries));
1442 *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG);
1443 bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval);
1444 return (0);
1445 }
1446
1447 /*
1448 * Hmm ... what happened here?
1449 *
1450 * Most likely, the user addressed a non-existent SEEPROM. Or
1451 * maybe the SEEPROM was busy internally (e.g. processing a write)
1452 * and didn't respond to being addressed. Either way, it's left
1453 * the SEEPROM access state machine wedged. So we'll reset it
1454 * before we leave, so it's ready for next time ...
1455 */
1456 BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries));
1457 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
1458 return (ENODATA);
1459 }
1460
1461 /*
1462 * Basic Flash get/set access routine
1463 *
1464 * These use the chip's Flash auto-access method, controlled by the
1465 * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to
1466 * fiddle with the individual bits.
1467 *
1468 * The caller should hold <genlock> and *also* have already acquired
1469 * the right to access the Flash, via bge_nvmem_acquire() above.
1470 *
1471 * Return value:
1472 * 0 on success,
1473 * ENODATA on access timeout (maybe retryable: device may just be busy)
1474 * ENODEV if the NVmem device is missing or otherwise unusable
1475 *
1476 * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output
1477 * from a (successful) NVM_FLASH_CMD_RD.
1478 */
1479 static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr,
1480 uint32_t *dp);
1481 #pragma no_inline(bge_flash_access)
1482
1483 static int
bge_flash_access(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1484 bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1485 {
1486 uint32_t tries;
1487 uint32_t regval;
1488
1489 ASSERT(mutex_owned(bgep->genlock));
1490
1491 /*
1492 * On the newer chips that support both SEEPROM & Flash, we need
1493 * to specifically disable SEEPROM access while accessing Flash.
1494 * The older chips don't support Flash, and the NVM registers don't
1495 * exist, so we shouldn't be here at all!
1496 */
1497 switch (bgep->chipid.nvtype) {
1498 case BGE_NVTYPE_NONE:
1499 case BGE_NVTYPE_UNKNOWN:
1500 _NOTE(NOTREACHED)
1501 case BGE_NVTYPE_SEEPROM:
1502 return (ENODEV);
1503
1504 case BGE_NVTYPE_LEGACY_SEEPROM:
1505 case BGE_NVTYPE_UNBUFFERED_FLASH:
1506 case BGE_NVTYPE_BUFFERED_FLASH:
1507 default:
1508 bge_reg_clr32(bgep, NVM_CONFIG1_REG,
1509 NVM_CFG1_LEGACY_SEEPROM_MODE);
1510 break;
1511 }
1512
1513 /*
1514 * Assemble the command ...
1515 */
1516 addr &= NVM_FLASH_ADDR_MASK;
1517 cmd |= NVM_FLASH_CMD_DOIT;
1518 cmd |= NVM_FLASH_CMD_FIRST;
1519 cmd |= NVM_FLASH_CMD_LAST;
1520 cmd |= NVM_FLASH_CMD_DONE;
1521
1522 bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp);
1523 bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr);
1524 bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd);
1525
1526 /*
1527 * Allow up to 1000ms ...
1528 */
1529 for (tries = 0; tries < 1000; ++tries) {
1530 regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG);
1531 if (regval & NVM_FLASH_CMD_DONE)
1532 break;
1533 drv_usecwait(1);
1534 }
1535
1536 if (regval & NVM_FLASH_CMD_DONE) {
1537 /*
1538 * All OK; read the data from the Flash read register
1539 */
1540 BGE_DEBUG(("bge_flash_access: complete after %d us", tries));
1541 *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG);
1542 return (0);
1543 }
1544
1545 /*
1546 * Hmm ... what happened here?
1547 *
1548 * Most likely, the user addressed a non-existent Flash. Or
1549 * maybe the Flash was busy internally (e.g. processing a write)
1550 * and didn't respond to being addressed. Either way, there's
1551 * nothing we can here ...
1552 */
1553 BGE_DEBUG(("bge_flash_access: timed out after %d us", tries));
1554 return (ENODATA);
1555 }
1556
1557 /*
1558 * The next two functions regulate access to the NVram (if fitted).
1559 *
1560 * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash
1561 * (SPI) interface, but they can be accessed through either port. These
1562 * are managed by different instance of this driver and have no software
1563 * state in common.
1564 *
1565 * In addition (and even on a single core chip) the chip's internal
1566 * firmware can access the SEEPROM/Flash, most notably after a RESET
1567 * when it may download code to run internally.
1568 *
1569 * So we need to arbitrate between these various software agents. For
1570 * this purpose, the chip provides the Software Arbitration Register,
1571 * which implements hardware(!) arbitration.
1572 *
1573 * This functionality didn't exist on older (5700/5701) chips, so there's
1574 * nothing we can do by way of arbitration on those; also, if there's no
1575 * SEEPROM/Flash fitted (or we couldn't determine what type), there's also
1576 * nothing to do.
1577 *
1578 * The internal firmware appears to use Request 0, which is the highest
1579 * priority. So we'd like to use Request 2, leaving one higher and one
1580 * lower for any future developments ... but apparently this doesn't
1581 * always work. So for now, the code uses Request 1 ;-(
1582 */
1583
1584 #define NVM_READ_REQ NVM_READ_REQ1
1585 #define NVM_RESET_REQ NVM_RESET_REQ1
1586 #define NVM_SET_REQ NVM_SET_REQ1
1587
1588 static void bge_nvmem_relinquish(bge_t *bgep);
1589 #pragma no_inline(bge_nvmem_relinquish)
1590
1591 static void
bge_nvmem_relinquish(bge_t * bgep)1592 bge_nvmem_relinquish(bge_t *bgep)
1593 {
1594 ASSERT(mutex_owned(bgep->genlock));
1595
1596 switch (bgep->chipid.nvtype) {
1597 case BGE_NVTYPE_NONE:
1598 case BGE_NVTYPE_UNKNOWN:
1599 _NOTE(NOTREACHED)
1600 return;
1601
1602 case BGE_NVTYPE_SEEPROM:
1603 /*
1604 * No arbitration performed, no release needed
1605 */
1606 return;
1607
1608 case BGE_NVTYPE_LEGACY_SEEPROM:
1609 case BGE_NVTYPE_UNBUFFERED_FLASH:
1610 case BGE_NVTYPE_BUFFERED_FLASH:
1611 default:
1612 break;
1613 }
1614
1615 /*
1616 * Our own request should be present (whether or not granted) ...
1617 */
1618 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1619
1620 /*
1621 * ... this will make it go away.
1622 */
1623 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ);
1624 (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1625 }
1626
1627 /*
1628 * Arbitrate for access to the NVmem, if necessary
1629 *
1630 * Return value:
1631 * 0 on success
1632 * EAGAIN if the device is in use (retryable)
1633 * ENODEV if the NVmem device is missing or otherwise unusable
1634 */
1635 static int bge_nvmem_acquire(bge_t *bgep);
1636 #pragma no_inline(bge_nvmem_acquire)
1637
1638 static int
bge_nvmem_acquire(bge_t * bgep)1639 bge_nvmem_acquire(bge_t *bgep)
1640 {
1641 uint32_t regval;
1642 uint32_t tries;
1643
1644 ASSERT(mutex_owned(bgep->genlock));
1645
1646 switch (bgep->chipid.nvtype) {
1647 case BGE_NVTYPE_NONE:
1648 case BGE_NVTYPE_UNKNOWN:
1649 /*
1650 * Access denied: no (recognisable) device fitted
1651 */
1652 return (ENODEV);
1653
1654 case BGE_NVTYPE_SEEPROM:
1655 /*
1656 * Access granted: no arbitration needed (or possible)
1657 */
1658 return (0);
1659
1660 case BGE_NVTYPE_LEGACY_SEEPROM:
1661 case BGE_NVTYPE_UNBUFFERED_FLASH:
1662 case BGE_NVTYPE_BUFFERED_FLASH:
1663 default:
1664 /*
1665 * Access conditional: conduct arbitration protocol
1666 */
1667 break;
1668 }
1669
1670 /*
1671 * We're holding the per-port mutex <genlock>, so no-one other
1672 * thread can be attempting to access the NVmem through *this*
1673 * port. But it could be in use by the *other* port (of a 5704),
1674 * or by the chip's internal firmware, so we have to go through
1675 * the full (hardware) arbitration protocol ...
1676 *
1677 * Note that *because* we're holding <genlock>, the interrupt handler
1678 * won't be able to progress. So we're only willing to spin for a
1679 * fairly short time. Specifically:
1680 *
1681 * We *must* wait long enough for the hardware to resolve all
1682 * requests and determine the winner. Fortunately, this is
1683 * "almost instantaneous", even as observed by GHz CPUs.
1684 *
1685 * A successful access by another Solaris thread (via either
1686 * port) typically takes ~20us. So waiting a bit longer than
1687 * that will give a good chance of success, if the other user
1688 * *is* another thread on the other port.
1689 *
1690 * However, the internal firmware can hold on to the NVmem
1691 * for *much* longer: at least 10 milliseconds just after a
1692 * RESET, and maybe even longer if the NVmem actually contains
1693 * code to download and run on the internal CPUs.
1694 *
1695 * So, we'll allow 50us; if that's not enough then it's up to the
1696 * caller to retry later (hence the choice of return code EAGAIN).
1697 */
1698 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1699 bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ);
1700
1701 for (tries = 0; tries < 50; ++tries) {
1702 regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG);
1703 if (regval & NVM_WON_REQ1)
1704 break;
1705 drv_usecwait(1);
1706 }
1707
1708 if (regval & NVM_WON_REQ1) {
1709 BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries));
1710 return (0);
1711 }
1712
1713 /*
1714 * Somebody else must be accessing the NVmem, so abandon our
1715 * attempt take control of it. The caller can try again later ...
1716 */
1717 BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries));
1718 bge_nvmem_relinquish(bgep);
1719 return (EAGAIN);
1720 }
1721
1722 /*
1723 * This code assumes that the GPIO1 bit has been wired up to the NVmem
1724 * write protect line in such a way that the NVmem is protected when
1725 * GPIO1 is an input, or is an output but driven high. Thus, to make the
1726 * NVmem writable we have to change GPIO1 to an output AND drive it low.
1727 *
1728 * Note: there's only one set of GPIO pins on a 5704, even though they
1729 * can be accessed through either port. So the chip has to resolve what
1730 * happens if the two ports program a single pin differently ... the rule
1731 * it uses is that if the ports disagree about the *direction* of a pin,
1732 * "output" wins over "input", but if they disagree about its *value* as
1733 * an output, then the pin is TRISTATED instead! In such a case, no-one
1734 * wins, and the external signal does whatever the external circuitry
1735 * defines as the default -- which we've assumed is the PROTECTED state.
1736 * So, we always change GPIO1 back to being an *input* whenever we're not
1737 * specifically using it to unprotect the NVmem. This allows either port
1738 * to update the NVmem, although obviously only one at a time!
1739 *
1740 * The caller should hold <genlock> and *also* have already acquired the
1741 * right to access the NVmem, via bge_nvmem_acquire() above.
1742 */
1743 static void bge_nvmem_protect(bge_t *bgep, boolean_t protect);
1744 #pragma inline(bge_nvmem_protect)
1745
1746 static void
bge_nvmem_protect(bge_t * bgep,boolean_t protect)1747 bge_nvmem_protect(bge_t *bgep, boolean_t protect)
1748 {
1749 uint32_t regval;
1750
1751 ASSERT(mutex_owned(bgep->genlock));
1752
1753 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
1754 if (protect) {
1755 regval |= MLCR_MISC_PINS_OUTPUT_1;
1756 regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1757 } else {
1758 regval &= ~MLCR_MISC_PINS_OUTPUT_1;
1759 regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
1760 }
1761 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval);
1762 }
1763
1764 /*
1765 * Now put it all together ...
1766 *
1767 * Try to acquire control of the NVmem; if successful, then:
1768 * unprotect it (if we want to write to it)
1769 * perform the requested access
1770 * reprotect it (after a write)
1771 * relinquish control
1772 *
1773 * Return value:
1774 * 0 on success,
1775 * EAGAIN if the device is in use (retryable)
1776 * ENODATA on access timeout (maybe retryable: device may just be busy)
1777 * ENODEV if the NVmem device is missing or otherwise unusable
1778 * EPROTO on other h/w or s/w errors.
1779 */
1780 static int
bge_nvmem_rw32(bge_t * bgep,uint32_t cmd,bge_regno_t addr,uint32_t * dp)1781 bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp)
1782 {
1783 int err;
1784
1785 if ((err = bge_nvmem_acquire(bgep)) == 0) {
1786 switch (cmd) {
1787 case BGE_SEE_READ:
1788 err = bge_seeprom_access(bgep,
1789 SEEPROM_ACCESS_READ, addr, dp);
1790 break;
1791
1792 case BGE_SEE_WRITE:
1793 bge_nvmem_protect(bgep, B_FALSE);
1794 err = bge_seeprom_access(bgep,
1795 SEEPROM_ACCESS_WRITE, addr, dp);
1796 bge_nvmem_protect(bgep, B_TRUE);
1797 break;
1798
1799 case BGE_FLASH_READ:
1800 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1801 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1802 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1803 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1804 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1805 bge_reg_set32(bgep, NVM_ACCESS_REG,
1806 NVM_ACCESS_ENABLE);
1807 }
1808 err = bge_flash_access(bgep,
1809 NVM_FLASH_CMD_RD, addr, dp);
1810 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1811 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1812 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1813 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1814 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1815 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1816 NVM_ACCESS_ENABLE);
1817 }
1818 break;
1819
1820 case BGE_FLASH_WRITE:
1821 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1822 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1823 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1824 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1825 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1826 bge_reg_set32(bgep, NVM_ACCESS_REG,
1827 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1828 }
1829 bge_nvmem_protect(bgep, B_FALSE);
1830 err = bge_flash_access(bgep,
1831 NVM_FLASH_CMD_WR, addr, dp);
1832 bge_nvmem_protect(bgep, B_TRUE);
1833 if (DEVICE_5721_SERIES_CHIPSETS(bgep) ||
1834 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
1835 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
1836 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
1837 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
1838 bge_reg_clr32(bgep, NVM_ACCESS_REG,
1839 NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE);
1840 }
1841
1842 break;
1843
1844 default:
1845 _NOTE(NOTREACHED)
1846 break;
1847 }
1848 bge_nvmem_relinquish(bgep);
1849 }
1850
1851 BGE_DEBUG(("bge_nvmem_rw32: err %d", err));
1852 return (err);
1853 }
1854
1855 static uint32_t
bge_nvmem_access_cmd(bge_t * bgep,boolean_t read)1856 bge_nvmem_access_cmd(bge_t *bgep, boolean_t read)
1857 {
1858 switch (bgep->chipid.nvtype) {
1859 case BGE_NVTYPE_NONE:
1860 case BGE_NVTYPE_UNKNOWN:
1861 default:
1862 return 0;
1863
1864 case BGE_NVTYPE_SEEPROM:
1865 case BGE_NVTYPE_LEGACY_SEEPROM:
1866 return (read ? BGE_SEE_READ : BGE_SEE_WRITE);
1867
1868 case BGE_NVTYPE_UNBUFFERED_FLASH:
1869 case BGE_NVTYPE_BUFFERED_FLASH:
1870 return (read ? BGE_FLASH_READ : BGE_FLASH_WRITE);
1871 }
1872 }
1873
1874
1875 int
bge_nvmem_read32(bge_t * bgep,bge_regno_t addr,uint32_t * dp)1876 bge_nvmem_read32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1877 {
1878 return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_TRUE),
1879 addr, dp));
1880 }
1881
1882
1883 int
bge_nvmem_write32(bge_t * bgep,bge_regno_t addr,uint32_t * dp)1884 bge_nvmem_write32(bge_t *bgep, bge_regno_t addr, uint32_t *dp)
1885 {
1886 return (bge_nvmem_rw32(bgep, bge_nvmem_access_cmd(bgep, B_FALSE),
1887 addr, dp));
1888 }
1889
1890
1891 /*
1892 * Attempt to get a MAC address from the SEEPROM or Flash, if any
1893 */
1894 static uint64_t bge_get_nvmac(bge_t *bgep);
1895 #pragma no_inline(bge_get_nvmac)
1896
1897 static uint64_t
bge_get_nvmac(bge_t * bgep)1898 bge_get_nvmac(bge_t *bgep)
1899 {
1900 uint32_t mac_high;
1901 uint32_t mac_low;
1902 uint32_t addr;
1903 uint32_t cmd;
1904 uint64_t mac;
1905
1906 BGE_TRACE(("bge_get_nvmac($%p)",
1907 (void *)bgep));
1908
1909 switch (bgep->chipid.nvtype) {
1910 case BGE_NVTYPE_NONE:
1911 case BGE_NVTYPE_UNKNOWN:
1912 default:
1913 return (0ULL);
1914
1915 case BGE_NVTYPE_SEEPROM:
1916 case BGE_NVTYPE_LEGACY_SEEPROM:
1917 cmd = BGE_SEE_READ;
1918 break;
1919
1920 case BGE_NVTYPE_UNBUFFERED_FLASH:
1921 case BGE_NVTYPE_BUFFERED_FLASH:
1922 cmd = BGE_FLASH_READ;
1923 break;
1924 }
1925
1926 if (DEVICE_5906_SERIES_CHIPSETS(bgep))
1927 addr = NVMEM_DATA_MAC_ADDRESS_5906;
1928 else
1929 addr = NVMEM_DATA_MAC_ADDRESS;
1930
1931 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high))
1932 return (0ULL);
1933 addr += 4;
1934 if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low))
1935 return (0ULL);
1936
1937 /*
1938 * The Broadcom chip is natively BIG-endian, so that's how the
1939 * MAC address is represented in NVmem. We may need to swap it
1940 * around on a little-endian host ...
1941 */
1942 #ifdef _BIG_ENDIAN
1943 mac = mac_high;
1944 mac = mac << 32;
1945 mac |= mac_low;
1946 #else
1947 mac = BGE_BSWAP_32(mac_high);
1948 mac = mac << 32;
1949 mac |= BGE_BSWAP_32(mac_low);
1950 #endif /* _BIG_ENDIAN */
1951
1952 return (mac);
1953 }
1954
1955 #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1956
1957 /*
1958 * Dummy version for when we're not supporting NVmem access
1959 */
1960 static uint64_t bge_get_nvmac(bge_t *bgep);
1961 #pragma inline(bge_get_nvmac)
1962
1963 static uint64_t
bge_get_nvmac(bge_t * bgep)1964 bge_get_nvmac(bge_t *bgep)
1965 {
1966 _NOTE(ARGUNUSED(bgep))
1967 return (0ULL);
1968 }
1969
1970 #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */
1971
1972 /*
1973 * Determine the type of NVmem that is (or may be) attached to this chip,
1974 */
1975 static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep);
1976 #pragma no_inline(bge_nvmem_id)
1977
1978 static enum bge_nvmem_type
bge_nvmem_id(bge_t * bgep)1979 bge_nvmem_id(bge_t *bgep)
1980 {
1981 enum bge_nvmem_type nvtype;
1982 uint32_t config1;
1983
1984 BGE_TRACE(("bge_nvmem_id($%p)",
1985 (void *)bgep));
1986
1987 switch (bgep->chipid.device) {
1988 default:
1989 /*
1990 * We shouldn't get here; it means we don't recognise
1991 * the chip, which means we don't know how to determine
1992 * what sort of NVmem (if any) it has. So we'll say
1993 * NONE, to disable the NVmem access code ...
1994 */
1995 nvtype = BGE_NVTYPE_NONE;
1996 break;
1997
1998 case DEVICE_ID_5700:
1999 case DEVICE_ID_5700x:
2000 case DEVICE_ID_5701:
2001 /*
2002 * These devices support *only* SEEPROMs
2003 */
2004 nvtype = BGE_NVTYPE_SEEPROM;
2005 break;
2006
2007 case DEVICE_ID_5702:
2008 case DEVICE_ID_5702fe:
2009 case DEVICE_ID_5703C:
2010 case DEVICE_ID_5703S:
2011 case DEVICE_ID_5704C:
2012 case DEVICE_ID_5704S:
2013 case DEVICE_ID_5704:
2014 case DEVICE_ID_5705M:
2015 case DEVICE_ID_5705C:
2016 case DEVICE_ID_5705_2:
2017 case DEVICE_ID_5717:
2018 case DEVICE_ID_5718:
2019 case DEVICE_ID_5719:
2020 case DEVICE_ID_5720:
2021 case DEVICE_ID_5724:
2022 case DEVICE_ID_5725:
2023 case DEVICE_ID_5727:
2024 case DEVICE_ID_57780:
2025 case DEVICE_ID_5780:
2026 case DEVICE_ID_5782:
2027 case DEVICE_ID_5785:
2028 case DEVICE_ID_5787:
2029 case DEVICE_ID_5787M:
2030 case DEVICE_ID_5788:
2031 case DEVICE_ID_5789:
2032 case DEVICE_ID_5751:
2033 case DEVICE_ID_5751M:
2034 case DEVICE_ID_5752:
2035 case DEVICE_ID_5752M:
2036 case DEVICE_ID_5754:
2037 case DEVICE_ID_5755:
2038 case DEVICE_ID_5755M:
2039 case DEVICE_ID_5756M:
2040 case DEVICE_ID_5721:
2041 case DEVICE_ID_5722:
2042 case DEVICE_ID_5723:
2043 case DEVICE_ID_5761:
2044 case DEVICE_ID_5761E:
2045 case DEVICE_ID_5764:
2046 case DEVICE_ID_5714C:
2047 case DEVICE_ID_5714S:
2048 case DEVICE_ID_5715C:
2049 case DEVICE_ID_5715S:
2050 config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG);
2051 if (config1 & NVM_CFG1_FLASH_MODE)
2052 if (config1 & NVM_CFG1_BUFFERED_MODE)
2053 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2054 else
2055 nvtype = BGE_NVTYPE_UNBUFFERED_FLASH;
2056 else
2057 nvtype = BGE_NVTYPE_LEGACY_SEEPROM;
2058 break;
2059 case DEVICE_ID_5906:
2060 case DEVICE_ID_5906M:
2061 nvtype = BGE_NVTYPE_BUFFERED_FLASH;
2062 break;
2063 }
2064
2065 return (nvtype);
2066 }
2067
2068 #undef BGE_DBG
2069 #define BGE_DBG BGE_DBG_APE /* debug flag for this code */
2070
2071 uint32_t bge_ape_get32(bge_t *bgep, bge_regno_t regno);
2072 #pragma inline(bge_ape_get32)
2073
2074 uint32_t
bge_ape_get32(bge_t * bgep,bge_regno_t regno)2075 bge_ape_get32(bge_t *bgep, bge_regno_t regno)
2076 {
2077 BGE_TRACE(("bge_ape_get32($%p, 0x%lx)",
2078 (void *)bgep, regno));
2079
2080 return (ddi_get32(bgep->ape_handle, APE_ADDR(bgep, regno)));
2081 }
2082
2083 void bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data);
2084 #pragma inline(bge_ape_put32)
2085
2086 void
bge_ape_put32(bge_t * bgep,bge_regno_t regno,uint32_t data)2087 bge_ape_put32(bge_t *bgep, bge_regno_t regno, uint32_t data)
2088 {
2089 BGE_TRACE(("bge_ape_put32($%p, 0x%lx, 0x%x)",
2090 (void *)bgep, regno, data));
2091
2092 ddi_put32(bgep->ape_handle, APE_ADDR(bgep, regno), data);
2093 BGE_PCICHK(bgep);
2094 }
2095
2096 void
bge_ape_lock_init(bge_t * bgep)2097 bge_ape_lock_init(bge_t *bgep)
2098 {
2099 int i;
2100 uint32_t regbase;
2101 uint32_t bit;
2102
2103 BGE_TRACE(("bge_ape_lock_init($%p)", (void *)bgep));
2104
2105 if (bgep->chipid.device == DEVICE_ID_5761)
2106 regbase = BGE_APE_LOCK_GRANT;
2107 else
2108 regbase = BGE_APE_PER_LOCK_GRANT;
2109
2110 /* Make sure the driver hasn't any stale locks. */
2111 for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
2112 switch (i) {
2113 case BGE_APE_LOCK_PHY0:
2114 case BGE_APE_LOCK_PHY1:
2115 case BGE_APE_LOCK_PHY2:
2116 case BGE_APE_LOCK_PHY3:
2117 bit = APE_LOCK_GRANT_DRIVER;
2118 break;
2119 default:
2120 if (!bgep->pci_func)
2121 bit = APE_LOCK_GRANT_DRIVER;
2122 else
2123 bit = 1 << bgep->pci_func;
2124 }
2125 bge_ape_put32(bgep, regbase + 4 * i, bit);
2126 }
2127 }
2128
2129 static int
bge_ape_lock(bge_t * bgep,int locknum)2130 bge_ape_lock(bge_t *bgep, int locknum)
2131 {
2132 int i, off;
2133 int ret = 0;
2134 uint32_t status;
2135 uint32_t req;
2136 uint32_t gnt;
2137 uint32_t bit;
2138
2139 BGE_TRACE(("bge_ape_lock($%p, 0x%x)", (void *)bgep, locknum));
2140
2141 if (!bgep->ape_enabled)
2142 return (0);
2143
2144 switch (locknum) {
2145 case BGE_APE_LOCK_GPIO:
2146 if (bgep->chipid.device == DEVICE_ID_5761)
2147 return (0);
2148 case BGE_APE_LOCK_GRC:
2149 case BGE_APE_LOCK_MEM:
2150 if (!bgep->pci_func)
2151 bit = APE_LOCK_REQ_DRIVER;
2152 else
2153 bit = 1 << bgep->pci_func;
2154 break;
2155 case BGE_APE_LOCK_PHY0:
2156 case BGE_APE_LOCK_PHY1:
2157 case BGE_APE_LOCK_PHY2:
2158 case BGE_APE_LOCK_PHY3:
2159 bit = APE_LOCK_REQ_DRIVER;
2160 break;
2161 default:
2162 return (-1);
2163 }
2164
2165 if (bgep->chipid.device == DEVICE_ID_5761) {
2166 req = BGE_APE_LOCK_REQ;
2167 gnt = BGE_APE_LOCK_GRANT;
2168 } else {
2169 req = BGE_APE_PER_LOCK_REQ;
2170 gnt = BGE_APE_PER_LOCK_GRANT;
2171 }
2172
2173 off = 4 * locknum;
2174
2175 bge_ape_put32(bgep, req + off, bit);
2176
2177 /* Wait for up to 1 millisecond to acquire lock. */
2178 for (i = 0; i < 100; i++) {
2179 status = bge_ape_get32(bgep, gnt + off);
2180 if (status == bit)
2181 break;
2182 drv_usecwait(10);
2183 }
2184
2185 if (status != bit) {
2186 /* Revoke the lock request. */
2187 bge_ape_put32(bgep, gnt + off, bit);
2188 ret = -1;
2189 }
2190
2191 return (ret);
2192 }
2193
2194 static void
bge_ape_unlock(bge_t * bgep,int locknum)2195 bge_ape_unlock(bge_t *bgep, int locknum)
2196 {
2197 uint32_t gnt;
2198 uint32_t bit;
2199
2200 BGE_TRACE(("bge_ape_unlock($%p, 0x%x)", (void *)bgep, locknum));
2201
2202 if (!bgep->ape_enabled)
2203 return;
2204
2205 switch (locknum) {
2206 case BGE_APE_LOCK_GPIO:
2207 if (bgep->chipid.device == DEVICE_ID_5761)
2208 return;
2209 case BGE_APE_LOCK_GRC:
2210 case BGE_APE_LOCK_MEM:
2211 if (!bgep->pci_func)
2212 bit = APE_LOCK_GRANT_DRIVER;
2213 else
2214 bit = 1 << bgep->pci_func;
2215 break;
2216 case BGE_APE_LOCK_PHY0:
2217 case BGE_APE_LOCK_PHY1:
2218 case BGE_APE_LOCK_PHY2:
2219 case BGE_APE_LOCK_PHY3:
2220 bit = APE_LOCK_GRANT_DRIVER;
2221 break;
2222 default:
2223 return;
2224 }
2225
2226 if (bgep->chipid.device == DEVICE_ID_5761)
2227 gnt = BGE_APE_LOCK_GRANT;
2228 else
2229 gnt = BGE_APE_PER_LOCK_GRANT;
2230
2231 bge_ape_put32(bgep, gnt + 4 * locknum, bit);
2232 }
2233
2234 /* wait for pending event to finish, if successful returns with MEM locked */
2235 static int
bge_ape_event_lock(bge_t * bgep,uint32_t timeout_us)2236 bge_ape_event_lock(bge_t *bgep, uint32_t timeout_us)
2237 {
2238 uint32_t apedata;
2239
2240 BGE_TRACE(("bge_ape_event_lock($%p, %d)", (void *)bgep, timeout_us));
2241
2242 ASSERT(timeout_us > 0);
2243
2244 while (timeout_us) {
2245 if (bge_ape_lock(bgep, BGE_APE_LOCK_MEM))
2246 return (-1);
2247
2248 apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2249 if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2250 break;
2251
2252 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2253
2254 drv_usecwait(10);
2255 timeout_us -= (timeout_us > 10) ? 10 : timeout_us;
2256 }
2257
2258 return (timeout_us ? 0 : -1);
2259 }
2260
2261 /* wait for pending event to finish, returns non-zero if not finished */
2262 static int
bge_ape_wait_for_event(bge_t * bgep,uint32_t timeout_us)2263 bge_ape_wait_for_event(bge_t *bgep, uint32_t timeout_us)
2264 {
2265 uint32_t i;
2266 uint32_t apedata;
2267
2268 BGE_TRACE(("bge_ape_wait_for_event($%p, %d)", (void *)bgep, timeout_us));
2269
2270 ASSERT(timeout_us > 0);
2271
2272 for (i = 0; i < timeout_us / 10; i++) {
2273 apedata = bge_ape_get32(bgep, BGE_APE_EVENT_STATUS);
2274
2275 if (!(apedata & APE_EVENT_STATUS_EVENT_PENDING))
2276 break;
2277
2278 drv_usecwait(10);
2279 }
2280
2281 return (i == timeout_us / 10);
2282 }
2283
2284 int
bge_ape_scratchpad_read(bge_t * bgep,uint32_t * data,uint32_t base_off,uint32_t lenToRead)2285 bge_ape_scratchpad_read(bge_t *bgep, uint32_t *data, uint32_t base_off,
2286 uint32_t lenToRead)
2287 {
2288 int err;
2289 uint32_t i;
2290 uint32_t bufoff;
2291 uint32_t msgoff;
2292 uint32_t maxlen;
2293 uint32_t apedata;
2294
2295 BGE_TRACE(("bge_ape_scratchpad_read($%p, %p, 0x%0x, %d)",
2296 (void *)bgep, (void*)data, base_off, lenToRead));
2297
2298 if (!bgep->ape_has_ncsi)
2299 return (0);
2300
2301 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2302 if (apedata != APE_SEG_SIG_MAGIC)
2303 return (-1);
2304
2305 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2306 if (!(apedata & APE_FW_STATUS_READY))
2307 return (-1);
2308
2309 bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2310 BGE_APE_SHMEM_BASE);
2311 msgoff = bufoff + 2 * sizeof(uint32_t);
2312 maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2313
2314 while (lenToRead) {
2315 uint32_t transferLen;
2316
2317 /* Cap xfer sizes to scratchpad limits. */
2318 transferLen = (lenToRead > maxlen) ? maxlen : lenToRead;
2319 lenToRead -= transferLen;
2320
2321 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2322 if (!(apedata & APE_FW_STATUS_READY))
2323 return (-1);
2324
2325 /* Wait for up to 1 millisecond for APE to service previous event. */
2326 err = bge_ape_event_lock(bgep, 1000);
2327 if (err)
2328 return (err);
2329
2330 apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2331 APE_EVENT_STATUS_SCRTCHPD_READ |
2332 APE_EVENT_STATUS_EVENT_PENDING);
2333 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2334
2335 bge_ape_put32(bgep, bufoff, base_off);
2336 bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2337
2338 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2339 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2340
2341 base_off += transferLen;
2342
2343 if (bge_ape_wait_for_event(bgep, 30000))
2344 return (-1);
2345
2346 for (i = 0; transferLen; i += 4, transferLen -= 4) {
2347 uint32_t val = bge_ape_get32(bgep, msgoff + i);
2348 memcpy(data, &val, sizeof(uint32_t));
2349 data++;
2350 }
2351 }
2352
2353 return (0);
2354 }
2355
2356 int
bge_ape_scratchpad_write(bge_t * bgep,uint32_t dstoff,uint32_t * data,uint32_t lenToWrite)2357 bge_ape_scratchpad_write(bge_t *bgep, uint32_t dstoff, uint32_t *data,
2358 uint32_t lenToWrite)
2359 {
2360 int err;
2361 uint32_t i;
2362 uint32_t bufoff;
2363 uint32_t msgoff;
2364 uint32_t maxlen;
2365 uint32_t apedata;
2366
2367 BGE_TRACE(("bge_ape_scratchpad_write($%p, %d, %p, %d)",
2368 (void *)bgep, dstoff, data, lenToWrite));
2369
2370 if (!bgep->ape_has_ncsi)
2371 return (0);
2372
2373 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2374 if (apedata != APE_SEG_SIG_MAGIC)
2375 return (-1);
2376
2377 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2378 if (!(apedata & APE_FW_STATUS_READY))
2379 return (-1);
2380
2381 bufoff = (bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_OFF) +
2382 BGE_APE_SHMEM_BASE);
2383 msgoff = bufoff + 2 * sizeof(uint32_t);
2384 maxlen = bge_ape_get32(bgep, BGE_APE_SEG_MSG_BUF_LEN);
2385
2386 while (lenToWrite) {
2387 uint32_t transferLen;
2388
2389 /* Cap xfer sizes to scratchpad limits. */
2390 transferLen = (lenToWrite > maxlen) ? maxlen : lenToWrite;
2391 lenToWrite -= transferLen;
2392
2393 /* Wait for up to 1 millisecond for
2394 * APE to service previous event.
2395 */
2396 err = bge_ape_event_lock(bgep, 1000);
2397 if (err)
2398 return (err);
2399
2400 bge_ape_put32(bgep, bufoff, dstoff);
2401 bge_ape_put32(bgep, bufoff + sizeof(uint32_t), transferLen);
2402 apedata = msgoff;
2403
2404 dstoff += transferLen;
2405
2406 for (i = 0; transferLen; i += 4, transferLen -= 4) {
2407 bge_ape_put32(bgep, apedata, *data++);
2408 apedata += sizeof(uint32_t);
2409 }
2410
2411 apedata = (APE_EVENT_STATUS_DRIVER_EVNT |
2412 APE_EVENT_STATUS_SCRTCHPD_WRITE |
2413 APE_EVENT_STATUS_EVENT_PENDING);
2414 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS, apedata);
2415
2416 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2417 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2418 }
2419
2420 return (0);
2421 }
2422
2423 static int
bge_ape_send_event(bge_t * bgep,uint32_t event)2424 bge_ape_send_event(bge_t *bgep, uint32_t event)
2425 {
2426 int err;
2427 uint32_t apedata;
2428
2429 BGE_TRACE(("bge_ape_send_event($%p, %d)", (void *)bgep, event));
2430
2431 apedata = bge_ape_get32(bgep, BGE_APE_SEG_SIG);
2432 if (apedata != APE_SEG_SIG_MAGIC)
2433 return (-1);
2434
2435 apedata = bge_ape_get32(bgep, BGE_APE_FW_STATUS);
2436 if (!(apedata & APE_FW_STATUS_READY))
2437 return (-1);
2438
2439 /* Wait for up to 1 millisecond for APE to service previous event. */
2440 err = bge_ape_event_lock(bgep, 1000);
2441 if (err)
2442 return (err);
2443
2444 bge_ape_put32(bgep, BGE_APE_EVENT_STATUS,
2445 event | APE_EVENT_STATUS_EVENT_PENDING);
2446
2447 bge_ape_unlock(bgep, BGE_APE_LOCK_MEM);
2448 bge_ape_put32(bgep, BGE_APE_EVENT, APE_EVENT_1);
2449
2450 return 0;
2451 }
2452
2453 static void
bge_ape_driver_state_change(bge_t * bgep,int mode)2454 bge_ape_driver_state_change(bge_t *bgep, int mode)
2455 {
2456 uint32_t event;
2457 uint32_t apedata;
2458
2459 BGE_TRACE(("bge_ape_driver_state_change($%p, %d)",
2460 (void *)bgep, mode));
2461
2462 if (!bgep->ape_enabled)
2463 return;
2464
2465 switch (mode) {
2466 case BGE_INIT_RESET:
2467 bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG,
2468 APE_HOST_SEG_SIG_MAGIC);
2469 bge_ape_put32(bgep, BGE_APE_HOST_SEG_LEN,
2470 APE_HOST_SEG_LEN_MAGIC);
2471 apedata = bge_ape_get32(bgep, BGE_APE_HOST_INIT_COUNT);
2472 bge_ape_put32(bgep, BGE_APE_HOST_INIT_COUNT, ++apedata);
2473 bge_ape_put32(bgep, BGE_APE_HOST_DRIVER_ID,
2474 APE_HOST_DRIVER_ID_MAGIC(1, 0));
2475 bge_ape_put32(bgep, BGE_APE_HOST_BEHAVIOR,
2476 APE_HOST_BEHAV_NO_PHYLOCK);
2477 bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE,
2478 BGE_APE_HOST_DRVR_STATE_START);
2479
2480 event = APE_EVENT_STATUS_STATE_START;
2481 break;
2482 case BGE_SHUTDOWN_RESET:
2483 /* With the interface we are currently using,
2484 * APE does not track driver state. Wiping
2485 * out the HOST SEGMENT SIGNATURE forces
2486 * the APE to assume OS absent status.
2487 */
2488 bge_ape_put32(bgep, BGE_APE_HOST_SEG_SIG, 0x0);
2489
2490 #if 0
2491 if (WOL supported) {
2492 bge_ape_put32(bgep, BGE_APE_HOST_WOL_SPEED,
2493 BGE_APE_HOST_WOL_SPEED_AUTO);
2494 apedata = BGE_APE_HOST_DRVR_STATE_WOL;
2495 } else
2496 #endif
2497 apedata = BGE_APE_HOST_DRVR_STATE_UNLOAD;
2498
2499 bge_ape_put32(bgep, BGE_APE_HOST_DRVR_STATE, apedata);
2500
2501 event = APE_EVENT_STATUS_STATE_UNLOAD;
2502 break;
2503 case BGE_SUSPEND_RESET:
2504 event = APE_EVENT_STATUS_STATE_SUSPEND;
2505 break;
2506 default:
2507 return;
2508 }
2509
2510 event |= APE_EVENT_STATUS_DRIVER_EVNT | APE_EVENT_STATUS_STATE_CHNGE;
2511
2512 bge_ape_send_event(bgep, event);
2513 }
2514
2515 #undef BGE_DBG
2516 #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */
2517
2518 static void
bge_init_recv_rule(bge_t * bgep)2519 bge_init_recv_rule(bge_t *bgep)
2520 {
2521 bge_recv_rule_t *rulep = bgep->recv_rules;
2522 uint32_t i;
2523
2524 /*
2525 * Initialize receive rule registers.
2526 * Note that rules may persist across each bge_m_start/stop() call.
2527 */
2528 for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) {
2529 bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value);
2530 bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control);
2531 }
2532 }
2533
2534 /*
2535 * Using the values captured by bge_chip_cfg_init(), and additional probes
2536 * as required, characterise the chip fully: determine the label by which
2537 * to refer to this chip, the correct settings for various registers, and
2538 * of course whether the device and/or subsystem are supported!
2539 */
2540 int bge_chip_id_init(bge_t *bgep);
2541 #pragma no_inline(bge_chip_id_init)
2542
2543 int
bge_chip_id_init(bge_t * bgep)2544 bge_chip_id_init(bge_t *bgep)
2545 {
2546 char buf[MAXPATHLEN]; /* any risk of stack overflow? */
2547 boolean_t dev_ok;
2548 chip_id_t *cidp;
2549 uint32_t subid;
2550 char *devname;
2551 char *sysname;
2552 int *ids;
2553 int err;
2554 uint_t i;
2555
2556 dev_ok = B_FALSE;
2557 cidp = &bgep->chipid;
2558
2559 /*
2560 * Check the PCI device ID to determine the generic chip type and
2561 * select parameters that depend on this.
2562 *
2563 * Note: because the SPARC platforms in general don't fit the
2564 * SEEPROM 'behind' the chip, the PCI revision ID register reads
2565 * as zero - which is why we use <asic_rev> rather than <revision>
2566 * below ...
2567 *
2568 * Note: in general we can't distinguish between the Copper/SerDes
2569 * versions by ID alone, as some Copper devices (e.g. some but not
2570 * all 5703Cs) have the same ID as the SerDes equivalents. So we
2571 * treat them the same here, and the MII code works out the media
2572 * type later on ...
2573 */
2574 cidp->mbuf_base = bge_mbuf_pool_base;
2575 cidp->mbuf_length = bge_mbuf_pool_len;
2576 cidp->recv_slots = BGE_RECV_SLOTS_USED;
2577 cidp->bge_dma_rwctrl = bge_dma_rwctrl;
2578 cidp->pci_type = BGE_PCI_X;
2579 cidp->statistic_type = BGE_STAT_BLK;
2580 cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma;
2581 cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac;
2582 cidp->mbuf_hi_water = bge_mbuf_hi_water;
2583 cidp->rx_ticks_norm = bge_rx_ticks_norm;
2584 cidp->rx_count_norm = bge_rx_count_norm;
2585 cidp->tx_ticks_norm = bge_tx_ticks_norm;
2586 cidp->tx_count_norm = bge_tx_count_norm;
2587 cidp->mask_pci_int = MHCR_MASK_PCI_INT_OUTPUT;
2588
2589 if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX)
2590 cidp->rx_rings = BGE_RECV_RINGS_DEFAULT;
2591 if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX)
2592 cidp->tx_rings = BGE_SEND_RINGS_DEFAULT;
2593
2594 cidp->msi_enabled = B_FALSE;
2595
2596 switch (cidp->device) {
2597 case DEVICE_ID_5717:
2598 case DEVICE_ID_5718:
2599 case DEVICE_ID_5719:
2600 case DEVICE_ID_5720:
2601 case DEVICE_ID_5724:
2602 case DEVICE_ID_5725:
2603 case DEVICE_ID_5727:
2604 if (cidp->device == DEVICE_ID_5717) {
2605 cidp->chip_label = 5717;
2606 } else if (cidp->device == DEVICE_ID_5718) {
2607 cidp->chip_label = 5718;
2608 } else if (cidp->device == DEVICE_ID_5719) {
2609 cidp->chip_label = 5719;
2610 } else if (cidp->device == DEVICE_ID_5720) {
2611 if (pci_config_get16(bgep->cfg_handle, PCI_CONF_DEVID) ==
2612 DEVICE_ID_5717_C0) {
2613 cidp->chip_label = 5717;
2614 } else {
2615 cidp->chip_label = 5720;
2616 }
2617 } else if (cidp->device == DEVICE_ID_5724) {
2618 cidp->chip_label = 5724;
2619 } else if (cidp->device == DEVICE_ID_5725) {
2620 cidp->chip_label = 5725;
2621 } else /* (cidp->device == DEVICE_ID_5727) */ {
2622 cidp->chip_label = 5727;
2623 }
2624 cidp->msi_enabled = bge_enable_msi;
2625 #ifdef __sparc
2626 cidp->mask_pci_int = LE_32(MHCR_MASK_PCI_INT_OUTPUT);
2627 #endif
2628 cidp->bge_dma_rwctrl = LE_32(PDRWCR_VAR_5717);
2629 cidp->pci_type = BGE_PCI_E;
2630 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2631 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5717;
2632 cidp->mbuf_hi_water = MBUF_HIWAT_5717;
2633 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2634 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2635 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2636 cidp->bge_mlcr_default = MLCR_DEFAULT_5717;
2637 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2638 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2639 cidp->statistic_type = BGE_STAT_REG;
2640 dev_ok = B_TRUE;
2641 break;
2642
2643 case DEVICE_ID_5700:
2644 case DEVICE_ID_5700x:
2645 cidp->chip_label = 5700;
2646 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2647 break;
2648
2649 case DEVICE_ID_5701:
2650 cidp->chip_label = 5701;
2651 dev_ok = B_TRUE;
2652 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2653 break;
2654
2655 case DEVICE_ID_5702:
2656 case DEVICE_ID_5702fe:
2657 cidp->chip_label = 5702;
2658 dev_ok = B_TRUE;
2659 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2660 cidp->pci_type = BGE_PCI;
2661 break;
2662
2663 case DEVICE_ID_5703C:
2664 case DEVICE_ID_5703S:
2665 case DEVICE_ID_5703:
2666 /*
2667 * Revision A0 of the 5703/5793 had various errata
2668 * that we can't or don't work around, so it's not
2669 * supported, but all later versions are
2670 */
2671 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703;
2672 if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0)
2673 dev_ok = B_TRUE;
2674 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2675 break;
2676
2677 case DEVICE_ID_5704C:
2678 case DEVICE_ID_5704S:
2679 case DEVICE_ID_5704:
2680 cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704;
2681 cidp->mbuf_base = bge_mbuf_pool_base_5704;
2682 cidp->mbuf_length = bge_mbuf_pool_len_5704;
2683 dev_ok = B_TRUE;
2684 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2685 break;
2686
2687 case DEVICE_ID_5705C:
2688 case DEVICE_ID_5705M:
2689 case DEVICE_ID_5705MA3:
2690 case DEVICE_ID_5705F:
2691 case DEVICE_ID_5705_2:
2692 case DEVICE_ID_5754:
2693 if (cidp->device == DEVICE_ID_5754) {
2694 cidp->chip_label = 5754;
2695 cidp->pci_type = BGE_PCI_E;
2696 } else {
2697 cidp->chip_label = 5705;
2698 cidp->pci_type = BGE_PCI;
2699 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2700 }
2701 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2702 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2703 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2704 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2705 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2706 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2707 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2708 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2709 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2710 cidp->statistic_type = BGE_STAT_REG;
2711 dev_ok = B_TRUE;
2712 break;
2713
2714 case DEVICE_ID_5906:
2715 case DEVICE_ID_5906M:
2716 cidp->chip_label = 5906;
2717 cidp->pci_type = BGE_PCI_E;
2718 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5906;
2719 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5906;
2720 cidp->mbuf_hi_water = MBUF_HIWAT_5906;
2721 cidp->mbuf_base = bge_mbuf_pool_base;
2722 cidp->mbuf_length = bge_mbuf_pool_len;
2723 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2724 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2725 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2726 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2727 cidp->statistic_type = BGE_STAT_REG;
2728 dev_ok = B_TRUE;
2729 break;
2730
2731 case DEVICE_ID_5753:
2732 cidp->chip_label = 5753;
2733 cidp->pci_type = BGE_PCI_E;
2734 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2735 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2736 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2737 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2738 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2739 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2740 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2741 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2742 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2743 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2744 cidp->statistic_type = BGE_STAT_REG;
2745 dev_ok = B_TRUE;
2746 break;
2747
2748 case DEVICE_ID_5755:
2749 case DEVICE_ID_5755M:
2750 cidp->chip_label = 5755;
2751 cidp->pci_type = BGE_PCI_E;
2752 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2753 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2754 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2755 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2756 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2757 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2758 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2759 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2760 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2761 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2762 if (cidp->device == DEVICE_ID_5755M)
2763 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2764 cidp->statistic_type = BGE_STAT_REG;
2765 dev_ok = B_TRUE;
2766 break;
2767
2768 case DEVICE_ID_5756M:
2769 /*
2770 * This is nearly identical to the 5755M.
2771 * (Actually reports the 5755 chip ID.)
2772 */
2773 cidp->chip_label = 5756;
2774 cidp->pci_type = BGE_PCI_E;
2775 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2776 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2777 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2778 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2779 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2780 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2781 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2782 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2783 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2784 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2785 cidp->statistic_type = BGE_STAT_REG;
2786 dev_ok = B_TRUE;
2787 break;
2788
2789 case DEVICE_ID_5787:
2790 case DEVICE_ID_5787M:
2791 cidp->chip_label = 5787;
2792 cidp->pci_type = BGE_PCI_E;
2793 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2794 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2795 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2796 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2797 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2798 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2799 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2800 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2801 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2802 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2803 cidp->statistic_type = BGE_STAT_REG;
2804 dev_ok = B_TRUE;
2805 break;
2806
2807 case DEVICE_ID_5723:
2808 case DEVICE_ID_5761:
2809 case DEVICE_ID_5761E:
2810 case DEVICE_ID_57780:
2811 cidp->msi_enabled = bge_enable_msi;
2812 /*
2813 * We don't use MSI for BCM5764 and BCM5785, as the
2814 * status block may fail to update when the network
2815 * traffic is heavy.
2816 */
2817 /* FALLTHRU */
2818 case DEVICE_ID_5785:
2819 case DEVICE_ID_5764:
2820 if (cidp->device == DEVICE_ID_5723)
2821 cidp->chip_label = 5723;
2822 else if (cidp->device == DEVICE_ID_5764)
2823 cidp->chip_label = 5764;
2824 else if (cidp->device == DEVICE_ID_5785)
2825 cidp->chip_label = 5785;
2826 else if (cidp->device == DEVICE_ID_57780)
2827 cidp->chip_label = 57780;
2828 else
2829 cidp->chip_label = 5761;
2830 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2831 cidp->pci_type = BGE_PCI_E;
2832 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2833 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2834 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2835 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2836 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2837 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2838 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2839 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2840 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2841 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2842 cidp->statistic_type = BGE_STAT_REG;
2843 dev_ok = B_TRUE;
2844 break;
2845
2846 /* PCI-X device, identical to 5714 */
2847 case DEVICE_ID_5780:
2848 cidp->chip_label = 5780;
2849 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2850 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2851 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2852 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2853 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2854 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2855 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2856 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2857 cidp->statistic_type = BGE_STAT_REG;
2858 dev_ok = B_TRUE;
2859 break;
2860
2861 case DEVICE_ID_5782:
2862 /*
2863 * Apart from the label, we treat this as a 5705(?)
2864 */
2865 cidp->chip_label = 5782;
2866 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2867 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2868 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2869 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2870 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2871 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2872 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2873 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2874 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2875 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
2876 cidp->statistic_type = BGE_STAT_REG;
2877 dev_ok = B_TRUE;
2878 break;
2879
2880 case DEVICE_ID_5788:
2881 /*
2882 * Apart from the label, we treat this as a 5705(?)
2883 */
2884 cidp->chip_label = 5788;
2885 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2886 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2887 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2888 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2889 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2890 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2891 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2892 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2893 cidp->statistic_type = BGE_STAT_REG;
2894 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2895 dev_ok = B_TRUE;
2896 break;
2897
2898 case DEVICE_ID_5714C:
2899 if (cidp->revision >= REVISION_ID_5714_A2)
2900 cidp->msi_enabled = bge_enable_msi;
2901 /* FALLTHRU */
2902 case DEVICE_ID_5714S:
2903 cidp->chip_label = 5714;
2904 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2905 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2906 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2907 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2908 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2909 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2910 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714;
2911 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2912 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2913 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2914 cidp->pci_type = BGE_PCI_E;
2915 cidp->statistic_type = BGE_STAT_REG;
2916 dev_ok = B_TRUE;
2917 break;
2918
2919 case DEVICE_ID_5715C:
2920 case DEVICE_ID_5715S:
2921 cidp->chip_label = 5715;
2922 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2923 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2924 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2925 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2926 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2927 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2928 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715;
2929 cidp->bge_mlcr_default = bge_mlcr_default_5714;
2930 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2931 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2932 cidp->pci_type = BGE_PCI_E;
2933 cidp->statistic_type = BGE_STAT_REG;
2934 if (cidp->revision >= REVISION_ID_5715_A2)
2935 cidp->msi_enabled = bge_enable_msi;
2936 dev_ok = B_TRUE;
2937 break;
2938
2939 case DEVICE_ID_5721:
2940 cidp->chip_label = 5721;
2941 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2942 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2943 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2944 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2945 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2946 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2947 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2948 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2949 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2950 cidp->pci_type = BGE_PCI_E;
2951 cidp->statistic_type = BGE_STAT_REG;
2952 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2953 dev_ok = B_TRUE;
2954 break;
2955
2956 case DEVICE_ID_5722:
2957 cidp->chip_label = 5722;
2958 cidp->pci_type = BGE_PCI_E;
2959 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2960 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2961 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2962 cidp->mbuf_base = bge_mbuf_pool_base_5705;
2963 cidp->mbuf_length = bge_mbuf_pool_len_5705;
2964 cidp->recv_slots = BGE_RECV_SLOTS_5705;
2965 cidp->bge_mlcr_default |= MLCR_MISC_PINS_OUTPUT_ENABLE_1;
2966 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2967 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2968 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2969 cidp->statistic_type = BGE_STAT_REG;
2970 dev_ok = B_TRUE;
2971 break;
2972
2973 case DEVICE_ID_5751:
2974 case DEVICE_ID_5751M:
2975 cidp->chip_label = 5751;
2976 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2977 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2978 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2979 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2980 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2981 cidp->recv_slots = BGE_RECV_SLOTS_5721;
2982 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
2983 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
2984 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
2985 cidp->pci_type = BGE_PCI_E;
2986 cidp->statistic_type = BGE_STAT_REG;
2987 cidp->flags |= CHIP_FLAG_NO_JUMBO;
2988 dev_ok = B_TRUE;
2989 break;
2990
2991 case DEVICE_ID_5752:
2992 case DEVICE_ID_5752M:
2993 cidp->chip_label = 5752;
2994 cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705;
2995 cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705;
2996 cidp->mbuf_hi_water = MBUF_HIWAT_5705;
2997 cidp->mbuf_base = bge_mbuf_pool_base_5721;
2998 cidp->mbuf_length = bge_mbuf_pool_len_5721;
2999 cidp->recv_slots = BGE_RECV_SLOTS_5721;
3000 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3001 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3002 cidp->tx_rings = BGE_SEND_RINGS_MAX_5705;
3003 cidp->pci_type = BGE_PCI_E;
3004 cidp->statistic_type = BGE_STAT_REG;
3005 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3006 dev_ok = B_TRUE;
3007 break;
3008
3009 case DEVICE_ID_5789:
3010 cidp->chip_label = 5789;
3011 cidp->mbuf_base = bge_mbuf_pool_base_5721;
3012 cidp->mbuf_length = bge_mbuf_pool_len_5721;
3013 cidp->recv_slots = BGE_RECV_SLOTS_5721;
3014 cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721;
3015 cidp->rx_rings = BGE_RECV_RINGS_MAX_5705;
3016 cidp->tx_rings = BGE_RECV_RINGS_MAX_5705;
3017 cidp->pci_type = BGE_PCI_E;
3018 cidp->statistic_type = BGE_STAT_REG;
3019 cidp->flags |= CHIP_FLAG_PARTIAL_CSUM;
3020 cidp->flags |= CHIP_FLAG_NO_JUMBO;
3021 cidp->msi_enabled = B_TRUE;
3022 dev_ok = B_TRUE;
3023 break;
3024
3025 }
3026
3027 /*
3028 * Setup the default jumbo parameter.
3029 */
3030 cidp->ethmax_size = ETHERMAX;
3031 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT;
3032 cidp->std_buf_size = BGE_STD_BUFF_SIZE;
3033
3034 /*
3035 * If jumbo is enabled and this kind of chipset supports jumbo feature,
3036 * setup below jumbo specific parameters.
3037 *
3038 * For BCM5714/5715, there is only one standard receive ring. So the
3039 * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo
3040 * feature is enabled.
3041 *
3042 * For the BCM5718 family we hijack the standard receive ring for
3043 * the jumboframe traffic, keeps it simple.
3044 */
3045 if (!(cidp->flags & CHIP_FLAG_NO_JUMBO) &&
3046 (cidp->default_mtu > BGE_DEFAULT_MTU)) {
3047 if (DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3048 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3049 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
3050 cidp->mbuf_lo_water_rdma =
3051 RDMA_MBUF_LOWAT_5714_JUMBO;
3052 cidp->mbuf_lo_water_rmac =
3053 MAC_RX_MBUF_LOWAT_5714_JUMBO;
3054 cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO;
3055 cidp->jumbo_slots = 0;
3056 cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE;
3057 } else {
3058 cidp->mbuf_lo_water_rdma =
3059 RDMA_MBUF_LOWAT_JUMBO;
3060 cidp->mbuf_lo_water_rmac =
3061 MAC_RX_MBUF_LOWAT_JUMBO;
3062 cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO;
3063 cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED;
3064 }
3065 cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE;
3066 cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO;
3067 cidp->ethmax_size = cidp->default_mtu +
3068 sizeof (struct ether_header);
3069 }
3070
3071 /*
3072 * Identify the NV memory type: SEEPROM or Flash?
3073 */
3074 cidp->nvtype = bge_nvmem_id(bgep);
3075
3076 /*
3077 * Now check what we've discovered: is this truly a supported
3078 * chip on (the motherboard of) a supported platform?
3079 *
3080 * Possible problems here:
3081 * 1) it's a completely unheard-of chip
3082 * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0)
3083 * 3) it's a chip we would support if it were on the motherboard
3084 * of a Sun platform, but this one isn't ;-(
3085 */
3086 if (cidp->chip_label == 0)
3087 bge_problem(bgep,
3088 "Device 'pci%04x,%04x' not recognized (%d?)",
3089 cidp->vendor, cidp->device, cidp->device);
3090 else if (!dev_ok)
3091 bge_problem(bgep,
3092 "Device 'pci%04x,%04x' (%d) revision %d not supported",
3093 cidp->vendor, cidp->device, cidp->chip_label,
3094 cidp->revision);
3095 else
3096 cidp->flags |= CHIP_FLAG_SUPPORTED;
3097
3098 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
3099 return (EIO);
3100
3101 return (0);
3102 }
3103
3104 void
bge_chip_msi_trig(bge_t * bgep)3105 bge_chip_msi_trig(bge_t *bgep)
3106 {
3107 uint32_t regval;
3108
3109 regval = bgep->param_msi_cnt<<4;
3110 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval);
3111 BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval));
3112 }
3113
3114 /*
3115 * Various registers that control the chip's internal engines (state
3116 * machines) have a <reset> and <enable> bits (fortunately, in the
3117 * same place in each such register :-).
3118 *
3119 * To reset the state machine, the <reset> bit must be written with 1;
3120 * it will then read back as 1 while the reset is in progress, but
3121 * self-clear to 0 when the reset completes.
3122 *
3123 * To enable a state machine, one must set the <enable> bit, which
3124 * will continue to read back as 0 until the state machine is running.
3125 *
3126 * To disable a state machine, the <enable> bit must be cleared, but
3127 * it will continue to read back as 1 until the state machine actually
3128 * stops.
3129 *
3130 * This routine implements polling for completion of a reset, enable
3131 * or disable operation, returning B_TRUE on success (bit reached the
3132 * required state) or B_FALSE on timeout (200*100us == 20ms).
3133 */
3134 static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3135 uint32_t mask, uint32_t val);
3136 #pragma no_inline(bge_chip_poll_engine)
3137
3138 static boolean_t
bge_chip_poll_engine(bge_t * bgep,bge_regno_t regno,uint32_t mask,uint32_t val)3139 bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno,
3140 uint32_t mask, uint32_t val)
3141 {
3142 uint32_t regval;
3143 uint32_t n;
3144
3145 BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)",
3146 (void *)bgep, regno, mask, val));
3147
3148 for (n = 200; n; --n) {
3149 regval = bge_reg_get32(bgep, regno);
3150 if ((regval & mask) == val)
3151 return (B_TRUE);
3152 drv_usecwait(100);
3153 }
3154
3155 bge_problem(bgep, "bge_chip_poll_engine failed: regno = 0x%lx", regno);
3156 bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE);
3157 return (B_FALSE);
3158 }
3159
3160 /*
3161 * Various registers that control the chip's internal engines (state
3162 * machines) have a <reset> bit (fortunately, in the same place in
3163 * each such register :-). To reset the state machine, this bit must
3164 * be written with 1; it will then read back as 1 while the reset is
3165 * in progress, but self-clear to 0 when the reset completes.
3166 *
3167 * This code sets the bit, then polls for it to read back as zero.
3168 * The return value is B_TRUE on success (reset bit cleared itself),
3169 * or B_FALSE if the state machine didn't recover :(
3170 *
3171 * NOTE: the Core reset is similar to other resets, except that we
3172 * can't poll for completion, since the Core reset disables memory
3173 * access! So we just have to assume that it will all complete in
3174 * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5.
3175 */
3176 static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno);
3177 #pragma no_inline(bge_chip_reset_engine)
3178
3179 static boolean_t
bge_chip_reset_engine(bge_t * bgep,bge_regno_t regno)3180 bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno)
3181 {
3182 uint32_t regval;
3183 uint16_t val16;
3184 uint32_t val32;
3185 uint32_t mhcr;
3186
3187 regval = bge_reg_get32(bgep, regno);
3188
3189 BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)",
3190 (void *)bgep, regno));
3191 BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x",
3192 regno, regval));
3193
3194 regval |= STATE_MACHINE_RESET_BIT;
3195
3196 switch (regno) {
3197 case MISC_CONFIG_REG:
3198 /*
3199 * BCM5714/5721/5751 pcie chip special case. In order to avoid
3200 * resetting PCIE block and bringing PCIE link down, bit 29
3201 * in the register needs to be set first, and then set it again
3202 * while the reset bit is written.
3203 * See:P500 of 57xx-PG102-RDS.pdf.
3204 */
3205 if (DEVICE_5705_SERIES_CHIPSETS(bgep) ||
3206 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3207 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3208 DEVICE_5721_SERIES_CHIPSETS(bgep) ||
3209 DEVICE_5723_SERIES_CHIPSETS(bgep) ||
3210 DEVICE_5714_SERIES_CHIPSETS(bgep) ||
3211 DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3212 regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE;
3213 if (bgep->chipid.pci_type == BGE_PCI_E) {
3214 if (bgep->chipid.asic_rev ==
3215 MHCR_CHIP_REV_5751_A0 ||
3216 bgep->chipid.asic_rev ==
3217 MHCR_CHIP_REV_5721_A0 ||
3218 bgep->chipid.asic_rev ==
3219 MHCR_CHIP_REV_5755_A0) {
3220 val32 = bge_reg_get32(bgep,
3221 PHY_TEST_CTRL_REG);
3222 if (val32 == (PHY_PCIE_SCRAM_MODE |
3223 PHY_PCIE_LTASS_MODE))
3224 bge_reg_put32(bgep,
3225 PHY_TEST_CTRL_REG,
3226 PHY_PCIE_SCRAM_MODE);
3227 val32 = pci_config_get32
3228 (bgep->cfg_handle,
3229 PCI_CONF_BGE_CLKCTL);
3230 val32 |= CLKCTL_PCIE_A0_FIX;
3231 pci_config_put32(bgep->cfg_handle,
3232 PCI_CONF_BGE_CLKCTL, val32);
3233 }
3234 bge_reg_set32(bgep, regno,
3235 MISC_CONFIG_GRC_RESET_DISABLE);
3236 regval |= MISC_CONFIG_GRC_RESET_DISABLE;
3237 }
3238 }
3239
3240 /*
3241 * Special case - causes Core reset
3242 *
3243 * On SPARC v9 we want to ensure that we don't start
3244 * timing until the I/O access has actually reached
3245 * the chip, otherwise we might make the next access
3246 * too early. And we can't just force the write out
3247 * by following it with a read (even to config space)
3248 * because that would cause the fault we're trying
3249 * to avoid. Hence the need for membar_sync() here.
3250 */
3251 ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval);
3252 #ifdef __sparcv9
3253 membar_sync();
3254 #endif /* __sparcv9 */
3255 /*
3256 * On some platforms,system need about 300us for
3257 * link setup.
3258 */
3259 drv_usecwait(300);
3260 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
3261 bge_reg_set32(bgep, VCPU_STATUS_REG, VCPU_DRV_RESET);
3262 bge_reg_clr32(
3263 bgep, VCPU_EXT_CTL, VCPU_EXT_CTL_HALF);
3264 }
3265
3266 if (bgep->chipid.pci_type == BGE_PCI_E) {
3267 /* PCI-E device need more reset time */
3268 drv_usecwait(120000);
3269
3270 /*
3271 * (re)Disable interrupts as the bit can be reset after a
3272 * core clock reset.
3273 */
3274 mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
3275 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3276 mhcr | MHCR_MASK_PCI_INT_OUTPUT);
3277
3278 /* Set PCIE max payload size and clear error status. */
3279 if ((bgep->chipid.chip_label == 5721) ||
3280 (bgep->chipid.chip_label == 5751) ||
3281 (bgep->chipid.chip_label == 5752) ||
3282 (bgep->chipid.chip_label == 5789) ||
3283 (bgep->chipid.chip_label == 5906)) {
3284 pci_config_put16(bgep->cfg_handle,
3285 PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX);
3286 pci_config_put16(bgep->cfg_handle,
3287 PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS);
3288 }
3289
3290 if ((bgep->chipid.chip_label == 5723) ||
3291 (bgep->chipid.chip_label == 5761)) {
3292 pci_config_put16(bgep->cfg_handle,
3293 PCI_CONF_DEV_CTRL_5723, READ_REQ_SIZE_MAX);
3294 pci_config_put16(bgep->cfg_handle,
3295 PCI_CONF_DEV_STUS_5723, DEVICE_ERROR_STUS);
3296 }
3297
3298 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3299 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
3300 val16 = pci_config_get16(bgep->cfg_handle,
3301 PCI_CONF_DEV_CTRL_5717);
3302 val16 &= ~READ_REQ_SIZE_MASK;
3303 val16 |= READ_REQ_SIZE_2K;
3304 pci_config_put16(bgep->cfg_handle,
3305 PCI_CONF_DEV_CTRL_5717, val16);
3306 }
3307 }
3308
3309 BGE_PCICHK(bgep);
3310 return (B_TRUE);
3311
3312 default:
3313 bge_reg_put32(bgep, regno, regval);
3314 return (bge_chip_poll_engine(bgep, regno,
3315 STATE_MACHINE_RESET_BIT, 0));
3316 }
3317 }
3318
3319 /*
3320 * Various registers that control the chip's internal engines (state
3321 * machines) have an <enable> bit (fortunately, in the same place in
3322 * each such register :-). To stop the state machine, this bit must
3323 * be written with 0, then polled to see when the state machine has
3324 * actually stopped.
3325 *
3326 * The return value is B_TRUE on success (enable bit cleared), or
3327 * B_FALSE if the state machine didn't stop :(
3328 */
3329 static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno,
3330 uint32_t morebits);
3331 #pragma no_inline(bge_chip_disable_engine)
3332
3333 static boolean_t
bge_chip_disable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)3334 bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3335 {
3336 uint32_t regval;
3337
3338 BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)",
3339 (void *)bgep, regno, morebits));
3340
3341 switch (regno) {
3342 case FTQ_RESET_REG:
3343 /*
3344 * For Schumacher's bugfix CR6490108
3345 */
3346 #ifdef BGE_IPMI_ASF
3347 #ifdef BGE_NETCONSOLE
3348 if (bgep->asf_enabled)
3349 return (B_TRUE);
3350 #endif
3351 #endif
3352 /*
3353 * Not quite like the others; it doesn't
3354 * have an <enable> bit, but instead we
3355 * have to set and then clear all the bits
3356 */
3357 bge_reg_put32(bgep, regno, ~(uint32_t)0);
3358 drv_usecwait(100);
3359 bge_reg_put32(bgep, regno, 0);
3360 return (B_TRUE);
3361
3362 default:
3363 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
3364 break;
3365 }
3366
3367 if ((regno == RCV_LIST_SELECTOR_MODE_REG) ||
3368 (regno == DMA_COMPLETION_MODE_REG) ||
3369 (regno == MBUF_CLUSTER_FREE_MODE_REG) ||
3370 (regno == BUFFER_MANAGER_MODE_REG) ||
3371 (regno == MEMORY_ARBITER_MODE_REG)) {
3372 return B_TRUE;
3373 }
3374
3375 break;
3376 }
3377
3378 regval = bge_reg_get32(bgep, regno);
3379 regval &= ~STATE_MACHINE_ENABLE_BIT;
3380 regval &= ~morebits;
3381 bge_reg_put32(bgep, regno, regval);
3382
3383 return bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, 0);
3384 }
3385
3386 /*
3387 * Various registers that control the chip's internal engines (state
3388 * machines) have an <enable> bit (fortunately, in the same place in
3389 * each such register :-). To start the state machine, this bit must
3390 * be written with 1, then polled to see when the state machine has
3391 * actually started.
3392 *
3393 * The return value is B_TRUE on success (enable bit set), or
3394 * B_FALSE if the state machine didn't start :(
3395 */
3396 static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno,
3397 uint32_t morebits);
3398 #pragma no_inline(bge_chip_enable_engine)
3399
3400 static boolean_t
bge_chip_enable_engine(bge_t * bgep,bge_regno_t regno,uint32_t morebits)3401 bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits)
3402 {
3403 uint32_t regval;
3404
3405 BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)",
3406 (void *)bgep, regno, morebits));
3407
3408 switch (regno) {
3409 case FTQ_RESET_REG:
3410 #ifdef BGE_IPMI_ASF
3411 #ifdef BGE_NETCONSOLE
3412 if (bgep->asf_enabled)
3413 return (B_TRUE);
3414 #endif
3415 #endif
3416 /*
3417 * Not quite like the others; it doesn't
3418 * have an <enable> bit, but instead we
3419 * have to set and then clear all the bits
3420 */
3421 bge_reg_put32(bgep, regno, ~(uint32_t)0);
3422 drv_usecwait(100);
3423 bge_reg_put32(bgep, regno, 0);
3424 return (B_TRUE);
3425
3426 default:
3427 regval = bge_reg_get32(bgep, regno);
3428 regval |= STATE_MACHINE_ENABLE_BIT;
3429 regval |= morebits;
3430 bge_reg_put32(bgep, regno, regval);
3431 return (bge_chip_poll_engine(bgep, regno,
3432 STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT));
3433 }
3434 }
3435
3436 /*
3437 * Reprogram the Ethernet, Transmit, and Receive MAC
3438 * modes to match the param_* variables
3439 */
3440 void bge_sync_mac_modes(bge_t *bgep);
3441 #pragma no_inline(bge_sync_mac_modes)
3442
3443 void
bge_sync_mac_modes(bge_t * bgep)3444 bge_sync_mac_modes(bge_t *bgep)
3445 {
3446 uint32_t macmode;
3447 uint32_t regval;
3448
3449 ASSERT(mutex_owned(bgep->genlock));
3450
3451 /*
3452 * Reprogram the Ethernet MAC mode ...
3453 */
3454 macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG);
3455 macmode &= ~ETHERNET_MODE_LINK_POLARITY;
3456 macmode &= ~ETHERNET_MODE_PORTMODE_MASK;
3457 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
3458 (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) {
3459 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
3460 DEVICE_5725_SERIES_CHIPSETS(bgep) ||
3461 DEVICE_5714_SERIES_CHIPSETS(bgep))
3462 macmode |= ETHERNET_MODE_PORTMODE_GMII;
3463 else
3464 macmode |= ETHERNET_MODE_PORTMODE_TBI;
3465 } else if (bgep->param_link_speed == 10 ||
3466 bgep->param_link_speed == 100)
3467 macmode |= ETHERNET_MODE_PORTMODE_MII;
3468 else
3469 macmode |= ETHERNET_MODE_PORTMODE_GMII;
3470 if (bgep->param_link_duplex == LINK_DUPLEX_HALF)
3471 macmode |= ETHERNET_MODE_HALF_DUPLEX;
3472 else
3473 macmode &= ~ETHERNET_MODE_HALF_DUPLEX;
3474 if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC)
3475 macmode |= ETHERNET_MODE_MAC_LOOPBACK;
3476 else
3477 macmode &= ~ETHERNET_MODE_MAC_LOOPBACK;
3478 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode);
3479 BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x",
3480 (void *)bgep, regval, macmode));
3481
3482 /*
3483 * ... the Transmit MAC mode ...
3484 */
3485 macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG);
3486 if (bgep->param_link_tx_pause)
3487 macmode |= TRANSMIT_MODE_FLOW_CONTROL;
3488 else
3489 macmode &= ~TRANSMIT_MODE_FLOW_CONTROL;
3490 bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode);
3491 BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x",
3492 (void *)bgep, regval, macmode));
3493
3494 /*
3495 * ... and the Receive MAC mode
3496 */
3497 macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG);
3498 if (bgep->param_link_rx_pause)
3499 macmode |= RECEIVE_MODE_FLOW_CONTROL;
3500 else
3501 macmode &= ~RECEIVE_MODE_FLOW_CONTROL;
3502 bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode);
3503 BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x",
3504 (void *)bgep, regval, macmode));
3505
3506 /*
3507 * For BCM5785, we need to configure the link status in the MI Status
3508 * register with a write command when auto-polling is disabled.
3509 */
3510 if (bgep->chipid.device == DEVICE_ID_5785)
3511 if (bgep->param_link_speed == 10)
3512 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK
3513 | MI_STATUS_10MBPS);
3514 else
3515 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
3516 }
3517
3518 /*
3519 * bge_chip_sync() -- program the chip with the unicast MAC address,
3520 * the multicast hash table, the required level of promiscuity, and
3521 * the current loopback mode ...
3522 */
3523 #ifdef BGE_IPMI_ASF
3524 int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive);
3525 #else
3526 int bge_chip_sync(bge_t *bgep);
3527 #endif
3528 #pragma no_inline(bge_chip_sync)
3529
3530 int
3531 #ifdef BGE_IPMI_ASF
bge_chip_sync(bge_t * bgep,boolean_t asf_keeplive)3532 bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive)
3533 #else
3534 bge_chip_sync(bge_t *bgep)
3535 #endif
3536 {
3537 void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits);
3538 boolean_t promisc;
3539 uint64_t macaddr;
3540 uint32_t fill = 0;
3541 int i, j;
3542 int retval = DDI_SUCCESS;
3543
3544 BGE_TRACE(("bge_chip_sync($%p)",
3545 (void *)bgep));
3546
3547 ASSERT(mutex_owned(bgep->genlock));
3548
3549 promisc = B_FALSE;
3550 fill = ~(uint32_t)0;
3551
3552 if (bgep->promisc)
3553 promisc = B_TRUE;
3554 else
3555 fill = (uint32_t)0;
3556
3557 /*
3558 * If the TX/RX MAC engines are already running, we should stop
3559 * them (and reset the RX engine) before changing the parameters.
3560 * If they're not running, this will have no effect ...
3561 *
3562 * NOTE: this is currently disabled by default because stopping
3563 * and restarting the Tx engine may cause an outgoing packet in
3564 * transit to be truncated. Also, stopping and restarting the
3565 * Rx engine seems to not work correctly on the 5705. Testing
3566 * has not (yet!) revealed any problems with NOT stopping and
3567 * restarting these engines (and Broadcom say their drivers don't
3568 * do this), but if it is found to cause problems, this variable
3569 * can be patched to re-enable the old behaviour ...
3570 */
3571 if (bge_stop_start_on_sync) {
3572 #ifdef BGE_IPMI_ASF
3573 if (!bgep->asf_enabled) {
3574 if (!bge_chip_disable_engine(bgep,
3575 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3576 retval = DDI_FAILURE;
3577 } else {
3578 if (!bge_chip_disable_engine(bgep,
3579 RECEIVE_MAC_MODE_REG, 0))
3580 retval = DDI_FAILURE;
3581 }
3582 #else
3583 if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG,
3584 RECEIVE_MODE_KEEP_VLAN_TAG))
3585 retval = DDI_FAILURE;
3586 #endif
3587 if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3588 retval = DDI_FAILURE;
3589 if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG))
3590 retval = DDI_FAILURE;
3591 }
3592
3593 /*
3594 * Reprogram the hashed multicast address table ...
3595 */
3596 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3597 bge_reg_put32(bgep, MAC_HASH_REG(i), 0);
3598
3599 for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i)
3600 bge_reg_put32(bgep, MAC_HASH_REG(i),
3601 bgep->mcast_hash[i] | fill);
3602
3603 #ifdef BGE_IPMI_ASF
3604 if (!bgep->asf_enabled || !asf_keeplive) {
3605 #endif
3606 /*
3607 * Transform the MAC address(es) from host to chip format, then
3608 * reprogram the transmit random backoff seed and the unicast
3609 * MAC address(es) ...
3610 */
3611 for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) {
3612 for (i = 0, macaddr = 0ull;
3613 i < ETHERADDRL; ++i) {
3614 macaddr <<= 8;
3615 macaddr |= bgep->curr_addr[j].addr[i];
3616 }
3617 fill += (macaddr >> 16) + (macaddr & 0xffffffff);
3618 bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr);
3619
3620 BGE_DEBUG(("bge_chip_sync($%p) "
3621 "setting MAC address %012llx",
3622 (void *)bgep, macaddr));
3623 }
3624 #ifdef BGE_IPMI_ASF
3625 }
3626 #endif
3627 /*
3628 * Set random seed of backoff interval
3629 * - Writing zero means no backoff interval
3630 */
3631 fill = ((fill >> 20) + (fill >> 10) + fill) & 0x3ff;
3632 if (fill == 0)
3633 fill = 1;
3634 bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill);
3635
3636 /*
3637 * Set or clear the PROMISCUOUS mode bit
3638 */
3639 opfn = promisc ? bge_reg_set32 : bge_reg_clr32;
3640 (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS);
3641
3642 /*
3643 * Sync the rest of the MAC modes too ...
3644 */
3645 bge_sync_mac_modes(bgep);
3646
3647 /*
3648 * Restart RX/TX MAC engines if required ...
3649 */
3650 if (bgep->bge_chip_state == BGE_CHIP_RUNNING) {
3651 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0))
3652 retval = DDI_FAILURE;
3653 #ifdef BGE_IPMI_ASF
3654 if (!bgep->asf_enabled) {
3655 if (!bge_chip_enable_engine(bgep,
3656 RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG))
3657 retval = DDI_FAILURE;
3658 } else {
3659 if (!bge_chip_enable_engine(bgep,
3660 RECEIVE_MAC_MODE_REG, 0))
3661 retval = DDI_FAILURE;
3662 }
3663 #else
3664 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
3665 RECEIVE_MODE_KEEP_VLAN_TAG))
3666 retval = DDI_FAILURE;
3667 #endif
3668 }
3669 return (retval);
3670 }
3671
3672 #ifndef __sparc
3673 static bge_regno_t quiesce_regs[] = {
3674 READ_DMA_MODE_REG,
3675 DMA_COMPLETION_MODE_REG,
3676 WRITE_DMA_MODE_REG,
3677 BGE_REGNO_NONE
3678 };
3679
3680 void bge_chip_stop_nonblocking(bge_t *bgep);
3681 #pragma no_inline(bge_chip_stop_nonblocking)
3682
3683 /*
3684 * This function is called by bge_quiesce(). We
3685 * turn off all the DMA engines here.
3686 */
3687 void
bge_chip_stop_nonblocking(bge_t * bgep)3688 bge_chip_stop_nonblocking(bge_t *bgep)
3689 {
3690 bge_regno_t *rbp;
3691
3692 /*
3693 * Flag that no more activity may be initiated
3694 */
3695 bgep->progress &= ~PROGRESS_READY;
3696
3697 rbp = quiesce_regs;
3698 while (*rbp != BGE_REGNO_NONE) {
3699 (void) bge_chip_disable_engine(bgep, *rbp, 0);
3700 ++rbp;
3701 }
3702
3703 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3704 }
3705
3706 #endif
3707
3708 /*
3709 * bge_chip_stop() -- stop all chip processing
3710 *
3711 * If the <fault> parameter is B_TRUE, we're stopping the chip because
3712 * we've detected a problem internally; otherwise, this is a normal
3713 * (clean) stop (at user request i.e. the last STREAM has been closed).
3714 */
3715 void bge_chip_stop(bge_t *bgep, boolean_t fault);
3716 #pragma no_inline(bge_chip_stop)
3717
3718 void
bge_chip_stop(bge_t * bgep,boolean_t fault)3719 bge_chip_stop(bge_t *bgep, boolean_t fault)
3720 {
3721 bge_regno_t regno;
3722 bge_regno_t *rbp;
3723 boolean_t ok = B_TRUE;
3724
3725 BGE_TRACE(("bge_chip_stop($%p)",
3726 (void *)bgep));
3727
3728 ASSERT(mutex_owned(bgep->genlock));
3729
3730 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
3731 (pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR) |
3732 MHCR_MASK_PCI_INT_OUTPUT));
3733
3734 ok &= bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 0);
3735 ok &= bge_chip_disable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, 0);
3736 ok &= bge_chip_disable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0);
3737 ok &= bge_chip_disable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, 0);
3738 ok &= bge_chip_disable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, 0);
3739 ok &= bge_chip_disable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, 0);
3740 ok &= bge_chip_disable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, 0);
3741
3742 ok &= bge_chip_disable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, 0);
3743 ok &= bge_chip_disable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, 0);
3744 ok &= bge_chip_disable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0);
3745 ok &= bge_chip_disable_engine(bgep, READ_DMA_MODE_REG, 0);
3746 ok &= bge_chip_disable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0);
3747 ok &= bge_chip_disable_engine(bgep, DMA_COMPLETION_MODE_REG, 0);
3748 ok &= bge_chip_disable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, 0);
3749 ok &= bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0);
3750
3751 bge_reg_clr32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_TDE);
3752 drv_usecwait(40);
3753
3754 ok &= bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, 0);
3755 ok &= bge_chip_disable_engine(bgep, WRITE_DMA_MODE_REG, 0);
3756 ok &= bge_chip_disable_engine(bgep, MBUF_CLUSTER_FREE_MODE_REG, 0);
3757 ok &= bge_chip_disable_engine(bgep, FTQ_RESET_REG, 0);
3758 ok &= bge_chip_disable_engine(bgep, BUFFER_MANAGER_MODE_REG, 0);
3759 ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3760 ok &= bge_chip_disable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0);
3761
3762 if (!ok && !fault)
3763 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
3764
3765 /*
3766 * Finally, disable (all) MAC events & clear the MAC status
3767 */
3768 bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0);
3769 bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0);
3770
3771 /*
3772 * if we're stopping the chip because of a detected fault then do
3773 * appropriate actions
3774 */
3775 if (fault) {
3776 if (bgep->bge_chip_state != BGE_CHIP_FAULT) {
3777 bgep->bge_chip_state = BGE_CHIP_FAULT;
3778 if (!bgep->manual_reset)
3779 ddi_fm_service_impact(bgep->devinfo,
3780 DDI_SERVICE_LOST);
3781 if (bgep->bge_dma_error) {
3782 /*
3783 * need to free buffers in case the fault was
3784 * due to a memory error in a buffer - got to
3785 * do a fair bit of tidying first
3786 */
3787 if (bgep->progress & PROGRESS_KSTATS) {
3788 bge_fini_kstats(bgep);
3789 bgep->progress &= ~PROGRESS_KSTATS;
3790 }
3791 if (bgep->progress & PROGRESS_INTR) {
3792 bge_intr_disable(bgep);
3793 rw_enter(bgep->errlock, RW_WRITER);
3794 bge_fini_rings(bgep);
3795 rw_exit(bgep->errlock);
3796 bgep->progress &= ~PROGRESS_INTR;
3797 }
3798 if (bgep->progress & PROGRESS_BUFS) {
3799 bge_free_bufs(bgep);
3800 bgep->progress &= ~PROGRESS_BUFS;
3801 }
3802 bgep->bge_dma_error = B_FALSE;
3803 }
3804 }
3805 } else
3806 bgep->bge_chip_state = BGE_CHIP_STOPPED;
3807 }
3808
3809 /*
3810 * Poll for completion of chip's ROM firmware; also, at least on the
3811 * first time through, find and return the hardware MAC address, if any.
3812 */
3813 static uint64_t bge_poll_firmware(bge_t *bgep);
3814 #pragma no_inline(bge_poll_firmware)
3815
3816 static uint64_t
bge_poll_firmware(bge_t * bgep)3817 bge_poll_firmware(bge_t *bgep)
3818 {
3819 uint64_t magic;
3820 uint64_t mac;
3821 uint32_t gen, val;
3822 uint32_t i;
3823
3824 /*
3825 * Step 19: poll for firmware completion (GENCOMM port set
3826 * to the ones complement of T3_MAGIC_NUMBER).
3827 *
3828 * While we're at it, we also read the MAC address register;
3829 * at some stage the firmware will load this with the
3830 * factory-set value.
3831 *
3832 * When both the magic number and the MAC address are set,
3833 * we're done; but we impose a time limit of one second
3834 * (1000*1000us) in case the firmware fails in some fashion
3835 * or the SEEPROM that provides that MAC address isn't fitted.
3836 *
3837 * After the first time through (chip state != INITIAL), we
3838 * don't need the MAC address to be set (we've already got it
3839 * or not, from the first time), so we don't wait for it, but
3840 * we still have to wait for the T3_MAGIC_NUMBER.
3841 *
3842 * Note: the magic number is only a 32-bit quantity, but the NIC
3843 * memory is 64-bit (and big-endian) internally. Addressing the
3844 * GENCOMM word as "the upper half of a 64-bit quantity" makes
3845 * it work correctly on both big- and little-endian hosts.
3846 */
3847 if (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906) {
3848 for (i = 0; i < 1000; ++i) {
3849 drv_usecwait(1000);
3850 val = bge_reg_get32(bgep, VCPU_STATUS_REG);
3851 if (val & VCPU_INIT_DONE)
3852 break;
3853 }
3854 BGE_DEBUG(("bge_poll_firmware($%p): return after %d loops",
3855 (void *)bgep, i));
3856 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3857 } else {
3858 for (i = 0; i < 1000; ++i) {
3859 drv_usecwait(1000);
3860 gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32;
3861 if (i == 0 && DEVICE_5704_SERIES_CHIPSETS(bgep))
3862 drv_usecwait(100000);
3863 mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0));
3864 #ifdef BGE_IPMI_ASF
3865 if (!bgep->asf_enabled) {
3866 #endif
3867 if (gen != ~T3_MAGIC_NUMBER)
3868 continue;
3869 #ifdef BGE_IPMI_ASF
3870 }
3871 #endif
3872 if (mac != 0ULL)
3873 break;
3874 if (bgep->bge_chip_state != BGE_CHIP_INITIAL)
3875 break;
3876 }
3877 }
3878
3879 magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM);
3880 BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops",
3881 (void *)bgep, gen, i));
3882 BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx",
3883 mac, magic));
3884
3885 return (mac);
3886 }
3887
3888 /*
3889 * Maximum times of trying to get the NVRAM access lock
3890 * by calling bge_nvmem_acquire()
3891 */
3892 #define MAX_TRY_NVMEM_ACQUIRE 10000
3893
3894 #ifdef BGE_IPMI_ASF
3895 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode);
3896 #else
3897 int bge_chip_reset(bge_t *bgep, boolean_t enable_dma);
3898 #endif
3899 #pragma no_inline(bge_chip_reset)
3900
3901 int
3902 #ifdef BGE_IPMI_ASF
bge_chip_reset(bge_t * bgep,boolean_t enable_dma,uint_t asf_mode)3903 bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode)
3904 #else
3905 bge_chip_reset(bge_t *bgep, boolean_t enable_dma)
3906 #endif
3907 {
3908 chip_id_t chipid;
3909 uint64_t mac;
3910 uint64_t magic;
3911 uint32_t tmp;
3912 uint32_t mhcr_base;
3913 uint32_t mhcr;
3914 uint32_t sx0;
3915 uint32_t i, tries;
3916 #ifdef BGE_IPMI_ASF
3917 uint32_t mailbox;
3918 #endif
3919 int retval = DDI_SUCCESS;
3920
3921 BGE_TRACE(("bge_chip_reset($%p, %d)",
3922 (void *)bgep, enable_dma));
3923
3924 ASSERT(mutex_owned(bgep->genlock));
3925
3926 BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d",
3927 (void *)bgep, enable_dma, bgep->bge_chip_state));
3928
3929 /*
3930 * Do we need to stop the chip cleanly before resetting?
3931 */
3932 switch (bgep->bge_chip_state) {
3933 default:
3934 _NOTE(NOTREACHED)
3935 return (DDI_FAILURE);
3936
3937 case BGE_CHIP_INITIAL:
3938 case BGE_CHIP_STOPPED:
3939 case BGE_CHIP_RESET:
3940 break;
3941
3942 case BGE_CHIP_RUNNING:
3943 case BGE_CHIP_ERROR:
3944 case BGE_CHIP_FAULT:
3945 bge_chip_stop(bgep, B_FALSE);
3946 break;
3947 }
3948
3949 mhcr_base = MHCR_ENABLE_INDIRECT_ACCESS |
3950 MHCR_ENABLE_PCI_STATE_RW |
3951 MHCR_ENABLE_TAGGED_STATUS_MODE |
3952 MHCR_MASK_INTERRUPT_MODE |
3953 MHCR_MASK_PCI_INT_OUTPUT |
3954 MHCR_CLEAR_INTERRUPT_INTA;
3955
3956 #ifdef BGE_IPMI_ASF
3957 if (bgep->asf_enabled) {
3958 mhcr = mhcr_base;
3959 #ifdef _BIG_ENDIAN
3960 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3961 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3962 #endif
3963 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3964
3965 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
3966 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG) |
3967 MEMORY_ARBITER_ENABLE);
3968
3969 if (asf_mode == ASF_MODE_INIT) {
3970 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
3971 } else if (asf_mode == ASF_MODE_SHUTDOWN) {
3972 bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET);
3973 }
3974 }
3975 #endif
3976
3977 /*
3978 * Adapted from Broadcom document 570X-PG102-R, pp 102-116.
3979 * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159.
3980 *
3981 * Before reset Core clock,it is
3982 * also required to initialize the Memory Arbiter as specified in step9
3983 * and Misc Host Control Register as specified in step-13
3984 * Step 4-5: reset Core clock & wait for completion
3985 * Steps 6-8: are done by bge_chip_cfg_init()
3986 * put the T3_MAGIC_NUMBER into the GENCOMM port before reset
3987 */
3988 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
3989 retval = DDI_FAILURE;
3990
3991 mhcr = mhcr_base;
3992 #ifdef _BIG_ENDIAN
3993 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
3994 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
3995 #endif
3996 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
3997
3998 #ifdef BGE_IPMI_ASF
3999 if (bgep->asf_enabled)
4000 bgep->asf_wordswapped = B_FALSE;
4001 #endif
4002 /*
4003 * NVRAM Corruption Workaround
4004 */
4005 for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++)
4006 if (bge_nvmem_acquire(bgep) != EAGAIN)
4007 break;
4008 if (tries >= MAX_TRY_NVMEM_ACQUIRE)
4009 BGE_DEBUG(("%s: fail to acquire nvram lock",
4010 bgep->ifname));
4011
4012 bge_ape_lock(bgep, BGE_APE_LOCK_GRC);
4013
4014 #ifdef BGE_IPMI_ASF
4015 if (!bgep->asf_enabled) {
4016 #endif
4017 magic = (uint64_t)T3_MAGIC_NUMBER << 32;
4018 bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic);
4019 #ifdef BGE_IPMI_ASF
4020 }
4021 #endif
4022
4023 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4024 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4025 bge_reg_set32(bgep, FAST_BOOT_PC, 0);
4026 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4027 retval = DDI_FAILURE;
4028 }
4029
4030 mhcr = mhcr_base;
4031 #ifdef _BIG_ENDIAN
4032 mhcr |= (MHCR_ENABLE_ENDIAN_WORD_SWAP |
4033 MHCR_ENABLE_ENDIAN_BYTE_SWAP);
4034 #endif
4035 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr);
4036
4037 if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG))
4038 retval = DDI_FAILURE;
4039
4040 bge_chip_cfg_init(bgep, &chipid, enable_dma);
4041
4042 /*
4043 * Step 8a: This may belong elsewhere, but BCM5721 needs
4044 * a bit set to avoid a fifo overflow/underflow bug.
4045 */
4046 if ((bgep->chipid.chip_label == 5721) ||
4047 (bgep->chipid.chip_label == 5751) ||
4048 (bgep->chipid.chip_label == 5752) ||
4049 (bgep->chipid.chip_label == 5755) ||
4050 (bgep->chipid.chip_label == 5756) ||
4051 (bgep->chipid.chip_label == 5789) ||
4052 (bgep->chipid.chip_label == 5906))
4053 bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT);
4054
4055 /*
4056 * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should
4057 * not be changed.
4058 */
4059 if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0))
4060 retval = DDI_FAILURE;
4061
4062 /*
4063 * Steps 10-11: configure PIO endianness options and
4064 * enable indirect register access -- already done
4065 * Steps 12-13: enable writing to the PCI state & clock
4066 * control registers -- not required; we aren't going to
4067 * use those features.
4068 * Steps 14-15: Configure DMA endianness options. See
4069 * the comments on the setting of the MHCR above.
4070 */
4071 tmp = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME;
4072 #ifdef _BIG_ENDIAN
4073 tmp |= (MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME);
4074 #endif
4075 #ifdef BGE_IPMI_ASF
4076 if (bgep->asf_enabled)
4077 tmp |= MODE_HOST_STACK_UP;
4078 #endif
4079 bge_reg_put32(bgep, MODE_CONTROL_REG, tmp);
4080
4081 #ifdef BGE_IPMI_ASF
4082 if (bgep->asf_enabled) {
4083 #ifdef __sparc
4084 bge_reg_put32(bgep, MEMORY_ARBITER_MODE_REG,
4085 MEMORY_ARBITER_ENABLE |
4086 bge_reg_get32(bgep, MEMORY_ARBITER_MODE_REG));
4087 #endif
4088
4089 #ifdef BGE_NETCONSOLE
4090 if (!bgep->asf_newhandshake) {
4091 if ((asf_mode == ASF_MODE_INIT) ||
4092 (asf_mode == ASF_MODE_POST_INIT)) {
4093 bge_asf_post_reset_old_mode(bgep,
4094 BGE_INIT_RESET);
4095 } else {
4096 bge_asf_post_reset_old_mode(bgep,
4097 BGE_SHUTDOWN_RESET);
4098 }
4099 }
4100 #endif
4101
4102 /* Wait for NVRAM init */
4103 i = 0;
4104 drv_usecwait(5000);
4105 mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX);
4106
4107 while ((mailbox != (uint32_t)
4108 ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) &&
4109 (i < 10000)) {
4110 drv_usecwait(100);
4111 mailbox = bge_nic_get32(bgep,
4112 BGE_FIRMWARE_MAILBOX);
4113 i++;
4114 }
4115
4116 #ifndef BGE_NETCONSOLE
4117 if (!bgep->asf_newhandshake) {
4118 if ((asf_mode == ASF_MODE_INIT) ||
4119 (asf_mode == ASF_MODE_POST_INIT)) {
4120
4121 bge_asf_post_reset_old_mode(bgep,
4122 BGE_INIT_RESET);
4123 } else {
4124 bge_asf_post_reset_old_mode(bgep,
4125 BGE_SHUTDOWN_RESET);
4126 }
4127 }
4128 #endif
4129 }
4130 #endif
4131
4132 bge_ape_unlock(bgep, BGE_APE_LOCK_GRC);
4133
4134 /*
4135 * Steps 16-17: poll for firmware completion
4136 */
4137 mac = bge_poll_firmware(bgep);
4138
4139 if (bgep->chipid.device == DEVICE_ID_5720) {
4140 tmp = bge_reg_get32(bgep, CPMU_CLCK_ORIDE_REG);
4141 bge_reg_put32(bgep, CPMU_CLCK_ORIDE_REG,
4142 (tmp & ~CPMU_CLCK_ORIDE_MAC_ORIDE_EN));
4143 }
4144
4145 /*
4146 * Step 18: enable external memory -- doesn't apply.
4147 *
4148 * However we take the opportunity to set the MLCR anyway, as
4149 * this register also controls the SEEPROM auto-access method
4150 * which we may want to use later ...
4151 *
4152 * The proper value here depends on the way the chip is wired
4153 * into the circuit board, as this register *also* controls which
4154 * of the "Miscellaneous I/O" pins are driven as outputs and the
4155 * values driven onto those pins!
4156 *
4157 * See also step 74 in the PRM ...
4158 */
4159 bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG,
4160 bgep->chipid.bge_mlcr_default);
4161
4162 if ((bgep->chipid.flags & CHIP_FLAG_SERDES) &&
4163 DEVICE_5714_SERIES_CHIPSETS(bgep)) {
4164 tmp = bge_reg_get32(bgep, SERDES_RX_CONTROL);
4165 tmp |= SERDES_RX_CONTROL_SIG_DETECT;
4166 bge_reg_put32(bgep, SERDES_RX_CONTROL, tmp);
4167 }
4168
4169 bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT);
4170
4171 /*
4172 * Step 20: clear the Ethernet MAC mode register
4173 */
4174 if (bgep->ape_enabled)
4175 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4176 ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4177 else
4178 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0);
4179
4180 /*
4181 * Step 21: restore cache-line-size, latency timer, and
4182 * subsystem ID registers to their original values (not
4183 * those read into the local structure <chipid>, 'cos
4184 * that was after they were cleared by the RESET).
4185 *
4186 * Note: the Subsystem Vendor/Device ID registers are not
4187 * directly writable in config space, so we use the shadow
4188 * copy in "Page Zero" of register space to restore them
4189 * both in one go ...
4190 */
4191 pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ,
4192 bgep->chipid.clsize);
4193 pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER,
4194 bgep->chipid.latency);
4195 bge_reg_put32(bgep, PCI_CONF_SUBVENID,
4196 (bgep->chipid.subdev << 16) | bgep->chipid.subven);
4197
4198 /*
4199 * The SEND INDEX registers should be reset to zero by the
4200 * global chip reset; if they're not, there'll be trouble
4201 * later on.
4202 */
4203 sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0));
4204 if (sx0 != 0) {
4205 BGE_REPORT((bgep, "SEND INDEX - device didn't RESET"));
4206 bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE);
4207 retval = DDI_FAILURE;
4208 }
4209
4210 /* Enable MSI code */
4211 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4212 bge_reg_set32(bgep, MSI_MODE_REG,
4213 MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION);
4214
4215 /*
4216 * On the first time through, save the factory-set MAC address
4217 * (if any). If bge_poll_firmware() above didn't return one
4218 * (from a chip register) consider looking in the attached NV
4219 * memory device, if any. Once we have it, we save it in both
4220 * register-image (64-bit) and byte-array forms. All-zero and
4221 * all-one addresses are not valid, and we refuse to stash those.
4222 */
4223 if (bgep->bge_chip_state == BGE_CHIP_INITIAL) {
4224 if (mac == 0ULL)
4225 mac = bge_get_nvmac(bgep);
4226 if (mac != 0ULL && mac != ~0ULL) {
4227 bgep->chipid.hw_mac_addr = mac;
4228 for (i = ETHERADDRL; i-- != 0; ) {
4229 bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac;
4230 mac >>= 8;
4231 }
4232 bgep->chipid.vendor_addr.set = B_TRUE;
4233 }
4234 }
4235
4236 #ifdef BGE_IPMI_ASF
4237 if (bgep->asf_enabled && bgep->asf_newhandshake) {
4238 if (asf_mode != ASF_MODE_NONE) {
4239 if ((asf_mode == ASF_MODE_INIT) ||
4240 (asf_mode == ASF_MODE_POST_INIT)) {
4241
4242 bge_asf_post_reset_new_mode(bgep,
4243 BGE_INIT_RESET);
4244 } else {
4245 bge_asf_post_reset_new_mode(bgep,
4246 BGE_SHUTDOWN_RESET);
4247 }
4248 }
4249 }
4250 #endif
4251
4252 /*
4253 * Record the new state
4254 */
4255 bgep->chip_resets += 1;
4256 bgep->bge_chip_state = BGE_CHIP_RESET;
4257 return (retval);
4258 }
4259
4260 /*
4261 * bge_chip_start() -- start the chip transmitting and/or receiving,
4262 * including enabling interrupts
4263 */
4264 int bge_chip_start(bge_t *bgep, boolean_t reset_phys);
4265 #pragma no_inline(bge_chip_start)
4266
4267 void
bge_chip_coalesce_update(bge_t * bgep)4268 bge_chip_coalesce_update(bge_t *bgep)
4269 {
4270 bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG,
4271 bgep->chipid.tx_count_norm);
4272 bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG,
4273 bgep->chipid.tx_ticks_norm);
4274 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG,
4275 bgep->chipid.rx_count_norm);
4276 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG,
4277 bgep->chipid.rx_ticks_norm);
4278 }
4279
4280 int
bge_chip_start(bge_t * bgep,boolean_t reset_phys)4281 bge_chip_start(bge_t *bgep, boolean_t reset_phys)
4282 {
4283 uint32_t coalmode;
4284 uint32_t ledctl;
4285 uint32_t mtu;
4286 uint32_t maxring;
4287 uint32_t stats_mask;
4288 uint32_t dma_wrprio;
4289 uint64_t ring;
4290 uint32_t reg;
4291 uint32_t regval;
4292 uint32_t mhcr;
4293 int retval = DDI_SUCCESS;
4294 int i;
4295
4296 BGE_TRACE(("bge_chip_start($%p)",
4297 (void *)bgep));
4298
4299 ASSERT(mutex_owned(bgep->genlock));
4300 ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET);
4301
4302 /* Initialize EEE, enable MAC control of LPI */
4303 bge_eee_init(bgep);
4304
4305 if (bgep->ape_enabled) {
4306 /*
4307 * Allow reads and writes to the
4308 * APE register and memory space.
4309 */
4310 regval = pci_config_get32(bgep->cfg_handle,
4311 PCI_CONF_BGE_PCISTATE);
4312 regval |= PCISTATE_ALLOW_APE_CTLSPC_WR |
4313 PCISTATE_ALLOW_APE_SHMEM_WR | PCISTATE_ALLOW_APE_PSPACE_WR;
4314 pci_config_put32(bgep->cfg_handle,
4315 PCI_CONF_BGE_PCISTATE, regval);
4316 }
4317
4318 /*
4319 * Taken from Broadcom document 570X-PG102-R, pp 102-116.
4320 * The document specifies 95 separate steps to fully
4321 * initialise the chip!!!!
4322 *
4323 * The reset code above has already got us as far as step
4324 * 21, so we continue with ...
4325 *
4326 * Step 22: clear the MAC statistics block
4327 * (0x0300-0x0aff in NIC-local memory)
4328 */
4329 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
4330 bge_nic_zero(bgep, NIC_MEM_STATISTICS,
4331 NIC_MEM_STATISTICS_SIZE);
4332
4333 /*
4334 * Step 23: clear the status block (in host memory)
4335 */
4336 DMA_ZERO(bgep->status_block);
4337
4338 /*
4339 * Step 24: set DMA read/write control register
4340 */
4341 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR,
4342 bgep->chipid.bge_dma_rwctrl);
4343
4344 /*
4345 * Step 25: Configure DMA endianness -- already done (16/17)
4346 * Step 26: Configure Host-Based Send Rings
4347 * Step 27: Indicate Host Stack Up
4348 */
4349 bge_reg_set32(bgep, MODE_CONTROL_REG,
4350 MODE_HOST_SEND_BDS |
4351 MODE_HOST_STACK_UP);
4352
4353 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4354 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4355 reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4356 ? RDMA_RSRV_CTRL_REG2 : RDMA_RSRV_CTRL_REG;
4357 regval = bge_reg_get32(bgep, reg);
4358 if ((bgep->chipid.device == DEVICE_ID_5719) ||
4359 (bgep->chipid.device == DEVICE_ID_5720) ||
4360 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4361 regval &= ~(RDMA_RSRV_CTRL_TXMRGN_MASK |
4362 RDMA_RSRV_CTRL_FIFO_LWM_MASK |
4363 RDMA_RSRV_CTRL_FIFO_HWM_MASK);
4364 regval |= (RDMA_RSRV_CTRL_TXMRGN_320B |
4365 RDMA_RSRV_CTRL_FIFO_LWM_1_5K |
4366 RDMA_RSRV_CTRL_FIFO_HWM_1_5K);
4367 }
4368 /* Enable the DMA FIFO Overrun fix. */
4369 bge_reg_put32(bgep, reg,
4370 (regval | RDMA_RSRV_CTRL_FIFO_OFLW_FIX));
4371
4372 if ((CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5719) ||
4373 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5720) ||
4374 (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)) {
4375 reg = (CHIP_ASIC_REV(bgep) == CHIP_ASIC_REV_5762)
4376 ? RDMA_CORR_CTRL_REG2 : RDMA_CORR_CTRL_REG;
4377 regval = bge_reg_get32(bgep, reg);
4378 bge_reg_put32(bgep, reg, (regval |
4379 RDMA_CORR_CTRL_BLEN_BD_4K |
4380 RDMA_CORR_CTRL_BLEN_LSO_4K));
4381 }
4382 }
4383
4384 /*
4385 * Step 28: Configure checksum options:
4386 * Solaris supports the hardware default checksum options.
4387 *
4388 * Workaround for Incorrect pseudo-header checksum calculation.
4389 */
4390 if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)
4391 bge_reg_set32(bgep, MODE_CONTROL_REG,
4392 MODE_SEND_NO_PSEUDO_HDR_CSUM);
4393
4394 /*
4395 * Step 29: configure Timer Prescaler. The value is always the
4396 * same: the Core Clock frequency in MHz (66), minus 1, shifted
4397 * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit
4398 * for the whole chip!
4399 */
4400 regval = bge_reg_get32(bgep, MISC_CONFIG_REG);
4401 regval = (regval & 0xffffff00) | MISC_CONFIG_DEFAULT;
4402 bge_reg_put32(bgep, MISC_CONFIG_REG, regval);
4403
4404 if (DEVICE_5906_SERIES_CHIPSETS(bgep)) {
4405 drv_usecwait(40);
4406 /* put PHY into ready state */
4407 bge_reg_clr32(bgep, MISC_CONFIG_REG, MISC_CONFIG_EPHY_IDDQ);
4408 (void) bge_reg_get32(bgep, MISC_CONFIG_REG); /* flush */
4409 drv_usecwait(40);
4410 }
4411
4412 /*
4413 * Steps 30-31: Configure MAC local memory pool & DMA pool registers
4414 *
4415 * If the mbuf_length is specified as 0, we just leave these at
4416 * their hardware defaults, rather than explicitly setting them.
4417 * As the Broadcom HRM,driver better not change the parameters
4418 * when the chipsets is 5705/5788/5721/5751/5714 and 5715.
4419 */
4420 if ((bgep->chipid.mbuf_length != 0) &&
4421 (DEVICE_5704_SERIES_CHIPSETS(bgep))) {
4422 bge_reg_put32(bgep, MBUF_POOL_BASE_REG,
4423 bgep->chipid.mbuf_base);
4424 bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG,
4425 bgep->chipid.mbuf_length);
4426 bge_reg_put32(bgep, DMAD_POOL_BASE_REG,
4427 DMAD_POOL_BASE_DEFAULT);
4428 bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG,
4429 DMAD_POOL_LENGTH_DEFAULT);
4430 }
4431
4432 /*
4433 * Step 32: configure MAC memory pool watermarks
4434 */
4435 bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG,
4436 bgep->chipid.mbuf_lo_water_rdma);
4437 bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG,
4438 bgep->chipid.mbuf_lo_water_rmac);
4439 bge_reg_put32(bgep, MBUF_HIWAT_REG,
4440 bgep->chipid.mbuf_hi_water);
4441
4442 /*
4443 * Step 33: configure DMA resource watermarks
4444 */
4445 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4446 bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG,
4447 bge_dmad_lo_water);
4448 bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG,
4449 bge_dmad_hi_water);
4450 }
4451 bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames);
4452
4453 /*
4454 * Steps 34-36: enable buffer manager & internal h/w queues
4455 */
4456 regval = STATE_MACHINE_ATTN_ENABLE_BIT;
4457 if (bgep->chipid.device == DEVICE_ID_5719)
4458 regval |= BUFFER_MANAGER_MODE_NO_TX_UNDERRUN;
4459 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4460 DEVICE_5725_SERIES_CHIPSETS(bgep))
4461 regval |= BUFFER_MANAGER_MODE_MBLOW_ATTN_ENABLE;
4462 if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, regval))
4463 retval = DDI_FAILURE;
4464
4465 if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0))
4466 retval = DDI_FAILURE;
4467
4468 /*
4469 * Steps 37-39: initialise Receive Buffer (Producer) RCBs
4470 */
4471 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4472 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4473 buff_ring_t *brp = &bgep->buff[BGE_STD_BUFF_RING];
4474 bge_reg_put64(bgep, STD_RCV_BD_RING_RCB_REG,
4475 brp->desc.cookie.dmac_laddress);
4476 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 8,
4477 (brp->desc.nslots) << 16 | brp->buf[0].size << 2);
4478 bge_reg_put32(bgep, STD_RCV_BD_RING_RCB_REG + 0xc,
4479 NIC_MEM_SHADOW_BUFF_STD_5717);
4480 } else
4481 bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG,
4482 &bgep->buff[BGE_STD_BUFF_RING].hw_rcb);
4483
4484 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4485 bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG,
4486 &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb);
4487 bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG,
4488 &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb);
4489 }
4490
4491 /*
4492 * Step 40: set Receive Buffer Descriptor Ring replenish thresholds
4493 */
4494 bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std);
4495 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4496 bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG,
4497 bge_replenish_jumbo);
4498 bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG,
4499 bge_replenish_mini);
4500 }
4501
4502 /*
4503 * Steps 41-43: clear Send Ring Producer Indices and initialise
4504 * Send Producer Rings (0x0100-0x01ff in NIC-local memory)
4505 */
4506 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4507 maxring = BGE_SEND_RINGS_MAX;
4508 else
4509 maxring = BGE_SEND_RINGS_MAX_5705;
4510 for (ring = 0; ring < maxring; ++ring) {
4511 bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0);
4512 bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0);
4513 bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring),
4514 &bgep->send[ring].hw_rcb);
4515 }
4516
4517 /*
4518 * Steps 44-45: initialise Receive Return Rings
4519 * (0x0200-0x02ff in NIC-local memory)
4520 */
4521 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4522 maxring = BGE_RECV_RINGS_MAX;
4523 else
4524 maxring = BGE_RECV_RINGS_MAX_5705;
4525 for (ring = 0; ring < maxring; ++ring)
4526 bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring),
4527 &bgep->recv[ring].hw_rcb);
4528
4529 /*
4530 * Step 46: initialise Receive Buffer (Producer) Ring indexes
4531 */
4532 bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0);
4533 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4534 bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0);
4535 bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0);
4536 }
4537 /*
4538 * Step 47: configure the MAC unicast address
4539 * Step 48: configure the random backoff seed
4540 * Step 96: set up multicast filters
4541 */
4542 #ifdef BGE_IPMI_ASF
4543 if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE)
4544 #else
4545 if (bge_chip_sync(bgep) == DDI_FAILURE)
4546 #endif
4547 retval = DDI_FAILURE;
4548
4549 /*
4550 * Step 49: configure the MTU
4551 */
4552 mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ;
4553 bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu);
4554
4555 /*
4556 * Step 50: configure the IPG et al
4557 */
4558 bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT);
4559
4560 /*
4561 * Step 51: configure the default Rx Return Ring
4562 */
4563 bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT);
4564
4565 /*
4566 * Steps 52-54: configure Receive List Placement,
4567 * and enable Receive List Placement Statistics
4568 */
4569 bge_reg_put32(bgep, RCV_LP_CONFIG_REG,
4570 RCV_LP_CONFIG(bgep->chipid.rx_rings));
4571 switch (MHCR_CHIP_ASIC_REV(bgep)) {
4572 case MHCR_CHIP_ASIC_REV_5700:
4573 case MHCR_CHIP_ASIC_REV_5701:
4574 case MHCR_CHIP_ASIC_REV_5703:
4575 case MHCR_CHIP_ASIC_REV_5704:
4576 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0);
4577 break;
4578 case MHCR_CHIP_ASIC_REV_5705:
4579 break;
4580 default:
4581 stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG);
4582 stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ;
4583 bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask);
4584 break;
4585 }
4586 bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE);
4587
4588 if (bgep->chipid.rx_rings > 1)
4589 bge_init_recv_rule(bgep);
4590
4591 /*
4592 * Steps 55-56: enable Send Data Initiator Statistics
4593 */
4594 bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0);
4595 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4596 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4597 SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER);
4598 } else {
4599 bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG,
4600 SEND_INIT_STATS_ENABLE);
4601 }
4602 /*
4603 * Steps 57-58: stop (?) the Host Coalescing Engine
4604 */
4605 if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0))
4606 retval = DDI_FAILURE;
4607
4608 /*
4609 * Steps 59-62: initialise Host Coalescing parameters
4610 */
4611 bge_chip_coalesce_update(bgep);
4612 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4613 bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG,
4614 bge_tx_count_intr);
4615 bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG,
4616 bge_tx_ticks_intr);
4617 bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG,
4618 bge_rx_count_intr);
4619 bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG,
4620 bge_rx_ticks_intr);
4621 }
4622
4623 /*
4624 * Steps 63-64: initialise status block & statistics
4625 * host memory addresses
4626 * The statistic block does not exist in some chipsets
4627 * Step 65: initialise Statistics Coalescing Tick Counter
4628 */
4629 bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG,
4630 bgep->status_block.cookie.dmac_laddress);
4631
4632 /*
4633 * Steps 66-67: initialise status block & statistics
4634 * NIC-local memory addresses
4635 */
4636 if (DEVICE_5704_SERIES_CHIPSETS(bgep)) {
4637 bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG,
4638 bgep->statistics.cookie.dmac_laddress);
4639 bge_reg_put32(bgep, STATISTICS_TICKS_REG,
4640 STATISTICS_TICKS_DEFAULT);
4641 bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG,
4642 NIC_MEM_STATUS_BLOCK);
4643 bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG,
4644 NIC_MEM_STATISTICS);
4645 }
4646
4647 /*
4648 * Steps 68-71: start the Host Coalescing Engine, the Receive BD
4649 * Completion Engine, the Receive List Placement Engine, and the
4650 * Receive List selector.Pay attention:0x3400 is not exist in BCM5714
4651 * and BCM5715.
4652 */
4653
4654 if (bgep->chipid.device == DEVICE_ID_5719) {
4655 for (i = 0; i < BGE_NUM_RDMA_CHANNELS; i++) {
4656 if (bge_reg_get32(bgep, (BGE_RDMA_LENGTH + (i << 2))) >
4657 bgep->chipid.default_mtu)
4658 break;
4659 }
4660 if (i < BGE_NUM_RDMA_CHANNELS) {
4661 regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
4662 regval |= RDMA_CORR_CTRL_TX_LENGTH_WA;
4663 bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
4664 bgep->rdma_length_bug_on_5719 = B_TRUE;
4665 }
4666 }
4667
4668 if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS &&
4669 bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS)
4670 coalmode = COALESCE_64_BYTE_STATUS;
4671 else
4672 coalmode = 0;
4673 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4674 DEVICE_5725_SERIES_CHIPSETS(bgep))
4675 coalmode = COALESCE_CLR_TICKS_RX;
4676 if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode))
4677 retval = DDI_FAILURE;
4678 if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG,
4679 STATE_MACHINE_ATTN_ENABLE_BIT))
4680 retval = DDI_FAILURE;
4681 if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0))
4682 retval = DDI_FAILURE;
4683
4684 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4685 if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG,
4686 STATE_MACHINE_ATTN_ENABLE_BIT))
4687 retval = DDI_FAILURE;
4688
4689 /*
4690 * Step 72: Enable MAC DMA engines
4691 * Step 73: Clear & enable MAC statistics
4692 */
4693 if (bgep->ape_enabled) {
4694 /* XXX put32 instead of set32 ? */
4695 bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG,
4696 ETHERNET_MODE_APE_TX_EN | ETHERNET_MODE_APE_RX_EN);
4697 }
4698 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4699 ETHERNET_MODE_ENABLE_FHDE |
4700 ETHERNET_MODE_ENABLE_RDE |
4701 ETHERNET_MODE_ENABLE_TDE);
4702 bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG,
4703 ETHERNET_MODE_ENABLE_TX_STATS |
4704 ETHERNET_MODE_ENABLE_RX_STATS |
4705 ETHERNET_MODE_CLEAR_TX_STATS |
4706 ETHERNET_MODE_CLEAR_RX_STATS);
4707
4708 drv_usecwait(140);
4709
4710 if (bgep->ape_enabled) {
4711 /* Write our heartbeat update interval to APE. */
4712 bge_ape_put32(bgep, BGE_APE_HOST_HEARTBEAT_INT_MS,
4713 APE_HOST_HEARTBEAT_INT_DISABLE);
4714 }
4715
4716 /*
4717 * Step 74: configure the MLCR (Miscellaneous Local Control
4718 * Register); not required, as we set up the MLCR in step 10
4719 * (part of the reset code) above.
4720 *
4721 * Step 75: clear Interrupt Mailbox 0
4722 */
4723 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0);
4724
4725 /*
4726 * Steps 76-87: Gentlemen, start your engines ...
4727 *
4728 * Enable the DMA Completion Engine, the Write DMA Engine,
4729 * the Read DMA Engine, Receive Data Completion Engine,
4730 * the MBuf Cluster Free Engine, the Send Data Completion Engine,
4731 * the Send BD Completion Engine, the Receive BD Initiator Engine,
4732 * the Receive Data Initiator Engine, the Send Data Initiator Engine,
4733 * the Send BD Initiator Engine, and the Send BD Selector Engine.
4734 *
4735 * Beware exhaust fumes?
4736 */
4737 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4738 if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0))
4739 retval = DDI_FAILURE;
4740 dma_wrprio = (bge_dma_wrprio << DMA_PRIORITY_SHIFT) |
4741 ALL_DMA_ATTN_BITS;
4742 /* the 5723 check here covers all newer chip families (OK) */
4743 if ((MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5755) ||
4744 (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5723) ||
4745 (MHCR_CHIP_ASIC_REV(bgep) == MHCR_CHIP_ASIC_REV_5906)) {
4746 dma_wrprio |= DMA_STATUS_TAG_FIX_CQ12384;
4747 }
4748 if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG,
4749 dma_wrprio))
4750 retval = DDI_FAILURE;
4751
4752 drv_usecwait(40);
4753
4754 if (DEVICE_5723_SERIES_CHIPSETS(bgep) ||
4755 DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4756 DEVICE_5725_SERIES_CHIPSETS(bgep))
4757 bge_dma_rdprio = 0;
4758 if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG,
4759 (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS))
4760 retval = DDI_FAILURE;
4761
4762 drv_usecwait(40);
4763
4764 if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG,
4765 STATE_MACHINE_ATTN_ENABLE_BIT))
4766 retval = DDI_FAILURE;
4767 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
4768 if (!bge_chip_enable_engine(bgep,
4769 MBUF_CLUSTER_FREE_MODE_REG, 0))
4770 retval = DDI_FAILURE;
4771 if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0))
4772 retval = DDI_FAILURE;
4773 if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG,
4774 STATE_MACHINE_ATTN_ENABLE_BIT))
4775 retval = DDI_FAILURE;
4776 if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG,
4777 RCV_BD_DISABLED_RING_ATTN))
4778 retval = DDI_FAILURE;
4779 if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG,
4780 RCV_DATA_BD_ILL_RING_ATTN))
4781 retval = DDI_FAILURE;
4782 if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0))
4783 retval = DDI_FAILURE;
4784 if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG,
4785 STATE_MACHINE_ATTN_ENABLE_BIT))
4786 retval = DDI_FAILURE;
4787 if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG,
4788 STATE_MACHINE_ATTN_ENABLE_BIT))
4789 retval = DDI_FAILURE;
4790
4791 drv_usecwait(40);
4792
4793 /*
4794 * Step 88: download firmware -- doesn't apply
4795 * Steps 89-90: enable Transmit & Receive MAC Engines
4796 */
4797 regval = 0;
4798 if (DEVICE_5717_SERIES_CHIPSETS(bgep)) {
4799 regval |= TRANSMIT_MODE_MBUF_LOCKUP_FIX;
4800 }
4801 if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, regval))
4802 retval = DDI_FAILURE;
4803
4804 drv_usecwait(100);
4805
4806 #ifdef BGE_IPMI_ASF
4807 if (!bgep->asf_enabled) {
4808 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4809 RECEIVE_MODE_KEEP_VLAN_TAG))
4810 retval = DDI_FAILURE;
4811 } else {
4812 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0))
4813 retval = DDI_FAILURE;
4814 }
4815 #else
4816 if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG,
4817 RECEIVE_MODE_KEEP_VLAN_TAG))
4818 retval = DDI_FAILURE;
4819 #endif
4820
4821 drv_usecwait(100);
4822
4823 /*
4824 * Step 91: disable auto-polling of PHY status
4825 */
4826 bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT);
4827
4828 /*
4829 * Step 92: configure D0 power state (not required)
4830 * Step 93: initialise LED control register ()
4831 */
4832 ledctl = LED_CONTROL_DEFAULT;
4833 switch (bgep->chipid.device) {
4834 case DEVICE_ID_5700:
4835 case DEVICE_ID_5700x:
4836 case DEVICE_ID_5701:
4837 /*
4838 * Switch to 5700 (MAC) mode on these older chips
4839 */
4840 ledctl &= ~LED_CONTROL_LED_MODE_MASK;
4841 ledctl |= LED_CONTROL_LED_MODE_5700;
4842 break;
4843
4844 default:
4845 break;
4846 }
4847 bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl);
4848
4849 /*
4850 * Step 94: activate link
4851 */
4852 bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK);
4853
4854 /*
4855 * Step 95: set up physical layer (PHY/SerDes)
4856 * restart autoneg (if required)
4857 */
4858 if (reset_phys)
4859 {
4860 if (bge_phys_update(bgep) == DDI_FAILURE)
4861 retval = DDI_FAILURE;
4862 /* forcing a mac link update here */
4863 bge_phys_check(bgep);
4864 bgep->link_state = (bgep->param_link_up) ? LINK_STATE_UP :
4865 LINK_STATE_DOWN;
4866 bge_sync_mac_modes(bgep);
4867 mac_link_update(bgep->mh, bgep->link_state);
4868 }
4869
4870 /*
4871 * Extra step (DSG): hand over all the Receive Buffers to the chip
4872 */
4873 for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring)
4874 bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg,
4875 bgep->buff[ring].rf_next);
4876
4877 /*
4878 * MSI bits:The least significant MSI 16-bit word.
4879 * ISR will be triggered different.
4880 */
4881 if (bgep->intr_type == DDI_INTR_TYPE_MSI)
4882 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70);
4883
4884 /*
4885 * Extra step (DSG): select which interrupts are enabled
4886 *
4887 * Program the Ethernet MAC engine to signal attention on
4888 * Link Change events, then enable interrupts on MAC, DMA,
4889 * and FLOW attention signals.
4890 */
4891 bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG,
4892 ETHERNET_EVENT_LINK_INT |
4893 ETHERNET_STATUS_PCS_ERROR_INT);
4894 #ifdef BGE_IPMI_ASF
4895 if (bgep->asf_enabled) {
4896 bge_reg_set32(bgep, MODE_CONTROL_REG,
4897 MODE_INT_ON_FLOW_ATTN |
4898 MODE_INT_ON_DMA_ATTN |
4899 MODE_HOST_STACK_UP|
4900 MODE_INT_ON_MAC_ATTN);
4901 } else {
4902 #endif
4903 bge_reg_set32(bgep, MODE_CONTROL_REG,
4904 MODE_INT_ON_FLOW_ATTN |
4905 MODE_INT_ON_DMA_ATTN |
4906 MODE_INT_ON_MAC_ATTN);
4907 #ifdef BGE_IPMI_ASF
4908 }
4909 #endif
4910
4911 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
4912 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
4913 bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL_5717,
4914 DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED);
4915 #if 0
4916 mhcr = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MHCR);
4917 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR,
4918 (mhcr | MHCR_TLP_MINOR_ERR_TOLERANCE));
4919 #endif
4920 }
4921
4922 /*
4923 * Step 97: enable PCI interrupts!!!
4924 */
4925 if (bgep->intr_type == DDI_INTR_TYPE_FIXED)
4926 bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR,
4927 bgep->chipid.mask_pci_int);
4928
4929 /*
4930 * All done!
4931 */
4932 bgep->bge_chip_state = BGE_CHIP_RUNNING;
4933 return (retval);
4934 }
4935
4936
4937 /*
4938 * ========== Hardware interrupt handler ==========
4939 */
4940
4941 #undef BGE_DBG
4942 #define BGE_DBG BGE_DBG_INT /* debug flag for this code */
4943
4944 /*
4945 * Sync the status block, then atomically clear the specified bits in
4946 * the <flags-and-tag> field of the status block.
4947 * the <flags> word of the status block, returning the value of the
4948 * <tag> and the <flags> before the bits were cleared.
4949 */
4950 static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags);
4951 #pragma inline(bge_status_sync)
4952
4953 static int
bge_status_sync(bge_t * bgep,uint64_t bits,uint64_t * flags)4954 bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags)
4955 {
4956 bge_status_t *bsp;
4957 int retval;
4958
4959 BGE_TRACE(("bge_status_sync($%p, 0x%llx)",
4960 (void *)bgep, bits));
4961
4962 ASSERT(bgep->bge_guard == BGE_GUARD);
4963
4964 DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL);
4965 retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl);
4966 if (retval != DDI_FM_OK)
4967 return (retval);
4968
4969 bsp = DMA_VPTR(bgep->status_block);
4970 *flags = bge_atomic_clr64(&bsp->flags_n_tag, bits);
4971
4972 BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx",
4973 (void *)bgep, bits, *flags));
4974
4975 return (retval);
4976 }
4977
4978 void bge_wake_factotum(bge_t *bgep);
4979 #pragma inline(bge_wake_factotum)
4980
4981 void
bge_wake_factotum(bge_t * bgep)4982 bge_wake_factotum(bge_t *bgep)
4983 {
4984 mutex_enter(bgep->softintrlock);
4985 if (bgep->factotum_flag == 0) {
4986 bgep->factotum_flag = 1;
4987 ddi_trigger_softintr(bgep->factotum_id);
4988 }
4989 mutex_exit(bgep->softintrlock);
4990 }
4991
4992 static void
bge_intr_error_handler(bge_t * bgep)4993 bge_intr_error_handler(bge_t *bgep)
4994 {
4995 uint32_t flow;
4996 uint32_t rdma;
4997 uint32_t wdma;
4998 uint32_t tmac;
4999 uint32_t rmac;
5000 uint32_t rxrs;
5001 uint32_t emac;
5002 uint32_t msis;
5003 uint32_t txrs = 0;
5004
5005 ASSERT(mutex_owned(bgep->genlock));
5006
5007 /*
5008 * Read all the registers that show the possible
5009 * reasons for the ERROR bit to be asserted
5010 */
5011 flow = bge_reg_get32(bgep, FLOW_ATTN_REG);
5012 rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG);
5013 wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG);
5014 tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG);
5015 rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG);
5016 rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG);
5017 emac = bge_reg_get32(bgep, ETHERNET_MAC_STATUS_REG);
5018 msis = bge_reg_get32(bgep, MSI_STATUS_REG);
5019 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5020 txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG);
5021
5022 BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x emac 0x%x msis 0x%x",
5023 (void *)bgep, flow, rdma, wdma, emac, msis));
5024 BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x",
5025 (void *)bgep, tmac, rmac, rxrs, txrs));
5026
5027 /*
5028 * For now, just clear all the errors ...
5029 */
5030 if (DEVICE_5704_SERIES_CHIPSETS(bgep))
5031 bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0);
5032 bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0);
5033 bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0);
5034 bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0);
5035 bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0);
5036 bge_reg_put32(bgep, FLOW_ATTN_REG, ~0);
5037 }
5038
5039 /*
5040 * bge_intr() -- handle chip interrupts
5041 */
5042 uint_t bge_intr(caddr_t arg1, caddr_t arg2);
5043 #pragma no_inline(bge_intr)
5044
5045 uint_t
bge_intr(caddr_t arg1,caddr_t arg2)5046 bge_intr(caddr_t arg1, caddr_t arg2)
5047 {
5048 bge_t *bgep = (void *)arg1; /* private device info */
5049 bge_status_t *bsp;
5050 uint64_t flags;
5051 uint32_t regval;
5052 uint_t result;
5053 int retval, loop_cnt = 0;
5054
5055 BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2));
5056
5057 /*
5058 * GLD v2 checks that s/w setup is complete before passing
5059 * interrupts to this routine, thus eliminating the old
5060 * (and well-known) race condition around ddi_add_intr()
5061 */
5062 ASSERT(bgep->progress & PROGRESS_HWINT);
5063
5064 result = DDI_INTR_UNCLAIMED;
5065 mutex_enter(bgep->genlock);
5066
5067 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5068 /*
5069 * Check whether chip's says it's asserting #INTA;
5070 * if not, don't process or claim the interrupt.
5071 *
5072 * Note that the PCI signal is active low, so the
5073 * bit is *zero* when the interrupt is asserted.
5074 */
5075 regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG);
5076 if (!(DEVICE_5717_SERIES_CHIPSETS(bgep) ||
5077 DEVICE_5725_SERIES_CHIPSETS(bgep)) &&
5078 (regval & MLCR_INTA_STATE)) {
5079 if (bge_check_acc_handle(bgep, bgep->io_handle)
5080 != DDI_FM_OK)
5081 goto chip_stop;
5082 mutex_exit(bgep->genlock);
5083 return (result);
5084 }
5085
5086 /*
5087 * Block further PCI interrupts ...
5088 */
5089 bge_reg_set32(bgep, PCI_CONF_BGE_MHCR,
5090 bgep->chipid.mask_pci_int);
5091
5092 } else {
5093 /*
5094 * Check MSI status
5095 */
5096 regval = bge_reg_get32(bgep, MSI_STATUS_REG);
5097 if (regval & MSI_ERROR_ATTENTION) {
5098 BGE_REPORT((bgep, "msi error attention,"
5099 " status=0x%x", regval));
5100 bge_reg_put32(bgep, MSI_STATUS_REG, regval);
5101 }
5102 }
5103
5104 result = DDI_INTR_CLAIMED;
5105
5106 BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval));
5107
5108 /*
5109 * Sync the status block and grab the flags-n-tag from it.
5110 * We count the number of interrupts where there doesn't
5111 * seem to have been a DMA update of the status block; if
5112 * it *has* been updated, the counter will be cleared in
5113 * the while() loop below ...
5114 */
5115 bgep->missed_dmas += 1;
5116 bsp = DMA_VPTR(bgep->status_block);
5117 for (loop_cnt = 0; loop_cnt < bge_intr_max_loop; loop_cnt++) {
5118 if (bgep->bge_chip_state != BGE_CHIP_RUNNING) {
5119 /*
5120 * bge_chip_stop() may have freed dma area etc
5121 * while we were in this interrupt handler -
5122 * better not call bge_status_sync()
5123 */
5124 (void) bge_check_acc_handle(bgep,
5125 bgep->io_handle);
5126 mutex_exit(bgep->genlock);
5127 return (DDI_INTR_CLAIMED);
5128 }
5129
5130 retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED |
5131 STATUS_FLAG_LINK_CHANGED | STATUS_FLAG_ERROR, &flags);
5132 if (retval != DDI_FM_OK) {
5133 bgep->bge_dma_error = B_TRUE;
5134 goto chip_stop;
5135 }
5136
5137 if (!(flags & STATUS_FLAG_UPDATED))
5138 break;
5139
5140 /*
5141 * Tell the chip that we're processing the interrupt
5142 */
5143 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5144 INTERRUPT_MBOX_DISABLE(flags));
5145 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5146 DDI_FM_OK)
5147 goto chip_stop;
5148
5149 if (flags & STATUS_FLAG_LINK_CHANGED) {
5150 BGE_DEBUG(("bge_intr($%p) ($%p) link event", arg1, arg2));
5151 if (bge_phys_check(bgep)) {
5152 bgep->link_state = bgep->param_link_up ?
5153 LINK_STATE_UP : LINK_STATE_DOWN;
5154 bge_sync_mac_modes(bgep);
5155 mac_link_update(bgep->mh, bgep->link_state);
5156 }
5157
5158 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5159 DDI_FM_OK)
5160 goto chip_stop;
5161 }
5162
5163 if (flags & STATUS_FLAG_ERROR) {
5164 bge_intr_error_handler(bgep);
5165
5166 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5167 DDI_FM_OK)
5168 goto chip_stop;
5169 }
5170
5171 /*
5172 * Drop the mutex while we:
5173 * Receive any newly-arrived packets
5174 * Recycle any newly-finished send buffers
5175 */
5176 bgep->bge_intr_running = B_TRUE;
5177 mutex_exit(bgep->genlock);
5178 bge_receive(bgep, bsp);
5179 (void) bge_recycle(bgep, bsp);
5180 mutex_enter(bgep->genlock);
5181 bgep->bge_intr_running = B_FALSE;
5182
5183 /*
5184 * Tell the chip we've finished processing, and
5185 * give it the tag that we got from the status
5186 * block earlier, so that it knows just how far
5187 * we've gone. If it's got more for us to do,
5188 * it will now update the status block and try
5189 * to assert an interrupt (but we've got the
5190 * #INTA blocked at present). If we see the
5191 * update, we'll loop around to do some more.
5192 * Eventually we'll get out of here ...
5193 */
5194 bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG,
5195 INTERRUPT_MBOX_ENABLE(flags));
5196 if (bgep->chipid.pci_type == BGE_PCI_E)
5197 (void) bge_mbx_get(bgep, INTERRUPT_MBOX_0_REG);
5198 bgep->missed_dmas = 0;
5199 }
5200
5201 if (bgep->missed_dmas) {
5202 /*
5203 * Probably due to the internal status tag not
5204 * being reset. Force a status block update now;
5205 * this should ensure that we get an update and
5206 * a new interrupt. After that, we should be in
5207 * sync again ...
5208 */
5209 BGE_REPORT((bgep, "interrupt: flags 0x%llx - "
5210 "not updated?", flags));
5211 bgep->missed_updates++;
5212 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG,
5213 COALESCE_NOW);
5214
5215 if (bgep->missed_dmas >= bge_dma_miss_limit) {
5216 /*
5217 * If this happens multiple times in a row,
5218 * it means DMA is just not working. Maybe
5219 * the chip's failed, or maybe there's a
5220 * problem on the PCI bus or in the host-PCI
5221 * bridge (Tomatillo).
5222 *
5223 * At all events, we want to stop further
5224 * interrupts and let the recovery code take
5225 * over to see whether anything can be done
5226 * about it ...
5227 */
5228 bge_fm_ereport(bgep,
5229 DDI_FM_DEVICE_BADINT_LIMIT);
5230 goto chip_stop;
5231 }
5232 }
5233
5234 /*
5235 * Reenable assertion of #INTA, unless there's a DMA fault
5236 */
5237 if (bgep->intr_type == DDI_INTR_TYPE_FIXED) {
5238 bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR,
5239 bgep->chipid.mask_pci_int);
5240 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5241 DDI_FM_OK)
5242 goto chip_stop;
5243 }
5244
5245 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5246 goto chip_stop;
5247
5248 mutex_exit(bgep->genlock);
5249 return (result);
5250
5251 chip_stop:
5252
5253 #ifdef BGE_IPMI_ASF
5254 if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) {
5255 /*
5256 * We must stop ASF heart beat before
5257 * bge_chip_stop(), otherwise some
5258 * computers (ex. IBM HS20 blade
5259 * server) may crash.
5260 */
5261 bge_asf_update_status(bgep);
5262 bge_asf_stop_timer(bgep);
5263 bgep->asf_status = ASF_STAT_STOP;
5264
5265 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5266 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5267 }
5268 #endif
5269 bge_chip_stop(bgep, B_TRUE);
5270 (void) bge_check_acc_handle(bgep, bgep->io_handle);
5271 mutex_exit(bgep->genlock);
5272 return (result);
5273 }
5274
5275 /*
5276 * ========== Factotum, implemented as a softint handler ==========
5277 */
5278
5279 #undef BGE_DBG
5280 #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */
5281
5282 /*
5283 * Factotum routine to check for Tx stall, using the 'watchdog' counter
5284 */
5285 static boolean_t bge_factotum_stall_check(bge_t *bgep);
5286 #pragma no_inline(bge_factotum_stall_check)
5287
5288 static boolean_t
bge_factotum_stall_check(bge_t * bgep)5289 bge_factotum_stall_check(bge_t *bgep)
5290 {
5291 uint32_t dogval;
5292 bge_status_t *bsp;
5293 uint64_t now = gethrtime();
5294
5295 if ((now - bgep->timestamp) < BGE_CYCLIC_PERIOD)
5296 return (B_FALSE);
5297
5298 bgep->timestamp = now;
5299
5300 ASSERT(mutex_owned(bgep->genlock));
5301
5302 /*
5303 * Specific check for Tx stall ...
5304 *
5305 * The 'watchdog' counter is incremented whenever a packet
5306 * is queued, reset to 1 when some (but not all) buffers
5307 * are reclaimed, reset to 0 (disabled) when all buffers
5308 * are reclaimed, and shifted left here. If it exceeds the
5309 * threshold value, the chip is assumed to have stalled and
5310 * is put into the ERROR state. The factotum will then reset
5311 * it on the next pass.
5312 *
5313 * All of which should ensure that we don't get into a state
5314 * where packets are left pending indefinitely!
5315 */
5316 dogval = bge_atomic_shl32(&bgep->watchdog, 1);
5317 bsp = DMA_VPTR(bgep->status_block);
5318 if (dogval < bge_watchdog_count || bge_recycle(bgep, bsp))
5319 return (B_FALSE);
5320
5321 #if !defined(BGE_NETCONSOLE)
5322 BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval));
5323 #endif
5324 bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL);
5325 return (B_TRUE);
5326 }
5327
5328 /*
5329 * The factotum is woken up when there's something to do that we'd rather
5330 * not do from inside a hardware interrupt handler or high-level cyclic.
5331 * Its main task is to reset & restart the chip after an error.
5332 */
5333 uint_t bge_chip_factotum(caddr_t arg);
5334 #pragma no_inline(bge_chip_factotum)
5335
5336 uint_t
bge_chip_factotum(caddr_t arg)5337 bge_chip_factotum(caddr_t arg)
5338 {
5339 bge_t *bgep;
5340 uint_t result;
5341 boolean_t error;
5342 int dma_state;
5343
5344 bgep = (void *)arg;
5345
5346 BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep));
5347
5348 mutex_enter(bgep->softintrlock);
5349 if (bgep->factotum_flag == 0) {
5350 mutex_exit(bgep->softintrlock);
5351 return (DDI_INTR_UNCLAIMED);
5352 }
5353 bgep->factotum_flag = 0;
5354 mutex_exit(bgep->softintrlock);
5355
5356 result = DDI_INTR_CLAIMED;
5357 error = B_FALSE;
5358
5359 mutex_enter(bgep->genlock);
5360 switch (bgep->bge_chip_state) {
5361 default:
5362 break;
5363
5364 case BGE_CHIP_RUNNING:
5365
5366 if (bgep->chipid.device == DEVICE_ID_5700) {
5367 if (bge_phys_check(bgep)) {
5368 bgep->link_state = (bgep->param_link_up) ?
5369 LINK_STATE_UP : LINK_STATE_DOWN;
5370 bge_sync_mac_modes(bgep);
5371 mac_link_update(bgep->mh, bgep->link_state);
5372 }
5373 }
5374
5375 error = bge_factotum_stall_check(bgep);
5376 if (dma_state != DDI_FM_OK) {
5377 bgep->bge_dma_error = B_TRUE;
5378 error = B_TRUE;
5379 }
5380 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5381 error = B_TRUE;
5382 if (error)
5383 bgep->bge_chip_state = BGE_CHIP_ERROR;
5384 break;
5385
5386 case BGE_CHIP_ERROR:
5387 error = B_TRUE;
5388 break;
5389
5390 case BGE_CHIP_FAULT:
5391 /*
5392 * Fault detected, time to reset ...
5393 */
5394 if (bge_autorecover) {
5395 if (!(bgep->progress & PROGRESS_BUFS)) {
5396 /*
5397 * if we can't allocate the ring buffers,
5398 * try later
5399 */
5400 if (bge_alloc_bufs(bgep) != DDI_SUCCESS) {
5401 mutex_exit(bgep->genlock);
5402 return (result);
5403 }
5404 bgep->progress |= PROGRESS_BUFS;
5405 }
5406 if (!(bgep->progress & PROGRESS_INTR)) {
5407 bge_init_rings(bgep);
5408 bge_intr_enable(bgep);
5409 bgep->progress |= PROGRESS_INTR;
5410 }
5411 if (!(bgep->progress & PROGRESS_KSTATS)) {
5412 bge_init_kstats(bgep,
5413 ddi_get_instance(bgep->devinfo));
5414 bgep->progress |= PROGRESS_KSTATS;
5415 }
5416
5417 BGE_REPORT((bgep, "automatic recovery activated"));
5418
5419 if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) {
5420 bgep->bge_chip_state = BGE_CHIP_ERROR;
5421 error = B_TRUE;
5422 }
5423 if (bge_check_acc_handle(bgep, bgep->cfg_handle) !=
5424 DDI_FM_OK) {
5425 bgep->bge_chip_state = BGE_CHIP_ERROR;
5426 error = B_TRUE;
5427 }
5428 if (bge_check_acc_handle(bgep, bgep->io_handle) !=
5429 DDI_FM_OK) {
5430 bgep->bge_chip_state = BGE_CHIP_ERROR;
5431 error = B_TRUE;
5432 }
5433 if (error == B_FALSE) {
5434 #ifdef BGE_IPMI_ASF
5435 if (bgep->asf_enabled &&
5436 bgep->asf_status != ASF_STAT_RUN) {
5437 bgep->asf_timeout_id = timeout(
5438 bge_asf_heartbeat, (void *)bgep,
5439 drv_usectohz(
5440 BGE_ASF_HEARTBEAT_INTERVAL));
5441 bgep->asf_status = ASF_STAT_RUN;
5442 }
5443 #endif
5444 if (!bgep->manual_reset) {
5445 ddi_fm_service_impact(bgep->devinfo,
5446 DDI_SERVICE_RESTORED);
5447 }
5448 }
5449 }
5450 break;
5451 }
5452
5453 /*
5454 * If an error is detected, stop the chip now, marking it as
5455 * faulty, so that it will be reset next time through ...
5456 *
5457 * Note that if intr_running is set, then bge_intr() has dropped
5458 * genlock to call bge_receive/bge_recycle. Can't stop the chip at
5459 * this point so have to wait until the next time the factotum runs.
5460 */
5461 if (error && !bgep->bge_intr_running) {
5462 #ifdef BGE_IPMI_ASF
5463 if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) {
5464 /*
5465 * We must stop ASF heart beat before bge_chip_stop(),
5466 * otherwise some computers (ex. IBM HS20 blade server)
5467 * may crash.
5468 */
5469 bge_asf_update_status(bgep);
5470 bge_asf_stop_timer(bgep);
5471 bgep->asf_status = ASF_STAT_STOP;
5472
5473 bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET);
5474 (void) bge_check_acc_handle(bgep, bgep->cfg_handle);
5475 }
5476 #endif
5477 bge_chip_stop(bgep, B_TRUE);
5478 (void) bge_check_acc_handle(bgep, bgep->io_handle);
5479 }
5480 mutex_exit(bgep->genlock);
5481
5482 return (result);
5483 }
5484
5485 /*
5486 * High-level cyclic handler
5487 *
5488 * This routine schedules a (low-level) softint callback to the
5489 * factotum, and prods the chip to update the status block (which
5490 * will cause a hardware interrupt when complete).
5491 */
5492 void bge_chip_cyclic(void *arg);
5493 #pragma no_inline(bge_chip_cyclic)
5494
5495 void
bge_chip_cyclic(void * arg)5496 bge_chip_cyclic(void *arg)
5497 {
5498 bge_t *bgep;
5499 uint32_t regval;
5500
5501 bgep = arg;
5502
5503 switch (bgep->bge_chip_state) {
5504 default:
5505 return;
5506
5507 case BGE_CHIP_RUNNING:
5508
5509 /* XXX I really don't like this forced interrupt... */
5510 bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW);
5511 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
5512 ddi_fm_service_impact(bgep->devinfo,
5513 DDI_SERVICE_UNAFFECTED);
5514
5515 break;
5516
5517 case BGE_CHIP_FAULT:
5518 case BGE_CHIP_ERROR:
5519
5520 break;
5521 }
5522
5523 mutex_enter(bgep->genlock);
5524
5525 if (bgep->eee_lpi_wait && !--bgep->eee_lpi_wait) {
5526 BGE_DEBUG(("eee cyclic, lpi enabled"));
5527 bge_eee_enable(bgep);
5528 }
5529
5530 if (bgep->rdma_length_bug_on_5719) {
5531 if ((bge_reg_get32(bgep, STAT_IFHCOUT_UPKGS_REG) +
5532 bge_reg_get32(bgep, STAT_IFHCOUT_MPKGS_REG) +
5533 bge_reg_get32(bgep, STAT_IFHCOUT_BPKGS_REG)) >
5534 BGE_NUM_RDMA_CHANNELS) {
5535 regval = bge_reg_get32(bgep, RDMA_CORR_CTRL_REG);
5536 regval &= ~RDMA_CORR_CTRL_TX_LENGTH_WA;
5537 bge_reg_put32(bgep, RDMA_CORR_CTRL_REG, regval);
5538 bgep->rdma_length_bug_on_5719 = B_FALSE;
5539 }
5540 }
5541
5542 mutex_exit(bgep->genlock);
5543
5544 bge_wake_factotum(bgep);
5545
5546 }
5547
5548
5549 /*
5550 * ========== Ioctl subfunctions ==========
5551 */
5552
5553 #undef BGE_DBG
5554 #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */
5555
5556 #if BGE_DEBUGGING || BGE_DO_PPIO
5557
5558 static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5559 #pragma no_inline(bge_chip_peek_cfg)
5560
5561 static void
bge_chip_peek_cfg(bge_t * bgep,bge_peekpoke_t * ppd)5562 bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5563 {
5564 uint64_t regval;
5565 uint64_t regno;
5566
5567 BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)",
5568 (void *)bgep, (void *)ppd));
5569
5570 regno = ppd->pp_acc_offset;
5571
5572 switch (ppd->pp_acc_size) {
5573 case 1:
5574 regval = pci_config_get8(bgep->cfg_handle, regno);
5575 break;
5576
5577 case 2:
5578 regval = pci_config_get16(bgep->cfg_handle, regno);
5579 break;
5580
5581 case 4:
5582 regval = pci_config_get32(bgep->cfg_handle, regno);
5583 break;
5584
5585 case 8:
5586 regval = pci_config_get64(bgep->cfg_handle, regno);
5587 break;
5588 }
5589
5590 ppd->pp_acc_data = regval;
5591 }
5592
5593 static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd);
5594 #pragma no_inline(bge_chip_poke_cfg)
5595
5596 static void
bge_chip_poke_cfg(bge_t * bgep,bge_peekpoke_t * ppd)5597 bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd)
5598 {
5599 uint64_t regval;
5600 uint64_t regno;
5601
5602 BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)",
5603 (void *)bgep, (void *)ppd));
5604
5605 regno = ppd->pp_acc_offset;
5606 regval = ppd->pp_acc_data;
5607
5608 switch (ppd->pp_acc_size) {
5609 case 1:
5610 pci_config_put8(bgep->cfg_handle, regno, regval);
5611 break;
5612
5613 case 2:
5614 pci_config_put16(bgep->cfg_handle, regno, regval);
5615 break;
5616
5617 case 4:
5618 pci_config_put32(bgep->cfg_handle, regno, regval);
5619 break;
5620
5621 case 8:
5622 pci_config_put64(bgep->cfg_handle, regno, regval);
5623 break;
5624 }
5625 }
5626
5627 static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5628 #pragma no_inline(bge_chip_peek_reg)
5629
5630 static void
bge_chip_peek_reg(bge_t * bgep,bge_peekpoke_t * ppd)5631 bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5632 {
5633 uint64_t regval;
5634 void *regaddr;
5635
5636 BGE_TRACE(("bge_chip_peek_reg($%p, $%p)",
5637 (void *)bgep, (void *)ppd));
5638
5639 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5640
5641 switch (ppd->pp_acc_size) {
5642 case 1:
5643 regval = ddi_get8(bgep->io_handle, regaddr);
5644 break;
5645
5646 case 2:
5647 regval = ddi_get16(bgep->io_handle, regaddr);
5648 break;
5649
5650 case 4:
5651 regval = ddi_get32(bgep->io_handle, regaddr);
5652 break;
5653
5654 case 8:
5655 regval = ddi_get64(bgep->io_handle, regaddr);
5656 break;
5657 }
5658
5659 ppd->pp_acc_data = regval;
5660 }
5661
5662 static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd);
5663 #pragma no_inline(bge_chip_peek_reg)
5664
5665 static void
bge_chip_poke_reg(bge_t * bgep,bge_peekpoke_t * ppd)5666 bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd)
5667 {
5668 uint64_t regval;
5669 void *regaddr;
5670
5671 BGE_TRACE(("bge_chip_poke_reg($%p, $%p)",
5672 (void *)bgep, (void *)ppd));
5673
5674 regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset);
5675 regval = ppd->pp_acc_data;
5676
5677 switch (ppd->pp_acc_size) {
5678 case 1:
5679 ddi_put8(bgep->io_handle, regaddr, regval);
5680 break;
5681
5682 case 2:
5683 ddi_put16(bgep->io_handle, regaddr, regval);
5684 break;
5685
5686 case 4:
5687 ddi_put32(bgep->io_handle, regaddr, regval);
5688 break;
5689
5690 case 8:
5691 ddi_put64(bgep->io_handle, regaddr, regval);
5692 break;
5693 }
5694 BGE_PCICHK(bgep);
5695 }
5696
5697 static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5698 #pragma no_inline(bge_chip_peek_nic)
5699
5700 static void
bge_chip_peek_nic(bge_t * bgep,bge_peekpoke_t * ppd)5701 bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5702 {
5703 uint64_t regoff;
5704 uint64_t regval;
5705 void *regaddr;
5706
5707 BGE_TRACE(("bge_chip_peek_nic($%p, $%p)",
5708 (void *)bgep, (void *)ppd));
5709
5710 regoff = ppd->pp_acc_offset;
5711 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5712 regoff &= MWBAR_GRANULE_MASK;
5713 regoff += NIC_MEM_WINDOW_OFFSET;
5714 regaddr = PIO_ADDR(bgep, regoff);
5715
5716 switch (ppd->pp_acc_size) {
5717 case 1:
5718 regval = ddi_get8(bgep->io_handle, regaddr);
5719 break;
5720
5721 case 2:
5722 regval = ddi_get16(bgep->io_handle, regaddr);
5723 break;
5724
5725 case 4:
5726 regval = ddi_get32(bgep->io_handle, regaddr);
5727 break;
5728
5729 case 8:
5730 regval = ddi_get64(bgep->io_handle, regaddr);
5731 break;
5732 }
5733
5734 ppd->pp_acc_data = regval;
5735 }
5736
5737 static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd);
5738 #pragma no_inline(bge_chip_poke_nic)
5739
5740 static void
bge_chip_poke_nic(bge_t * bgep,bge_peekpoke_t * ppd)5741 bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd)
5742 {
5743 uint64_t regoff;
5744 uint64_t regval;
5745 void *regaddr;
5746
5747 BGE_TRACE(("bge_chip_poke_nic($%p, $%p)",
5748 (void *)bgep, (void *)ppd));
5749
5750 regoff = ppd->pp_acc_offset;
5751 bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK);
5752 regoff &= MWBAR_GRANULE_MASK;
5753 regoff += NIC_MEM_WINDOW_OFFSET;
5754 regaddr = PIO_ADDR(bgep, regoff);
5755 regval = ppd->pp_acc_data;
5756
5757 switch (ppd->pp_acc_size) {
5758 case 1:
5759 ddi_put8(bgep->io_handle, regaddr, regval);
5760 break;
5761
5762 case 2:
5763 ddi_put16(bgep->io_handle, regaddr, regval);
5764 break;
5765
5766 case 4:
5767 ddi_put32(bgep->io_handle, regaddr, regval);
5768 break;
5769
5770 case 8:
5771 ddi_put64(bgep->io_handle, regaddr, regval);
5772 break;
5773 }
5774 BGE_PCICHK(bgep);
5775 }
5776
5777 static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5778 #pragma no_inline(bge_chip_peek_mii)
5779
5780 static void
bge_chip_peek_mii(bge_t * bgep,bge_peekpoke_t * ppd)5781 bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5782 {
5783 BGE_TRACE(("bge_chip_peek_mii($%p, $%p)",
5784 (void *)bgep, (void *)ppd));
5785
5786 ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2);
5787 }
5788
5789 static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd);
5790 #pragma no_inline(bge_chip_poke_mii)
5791
5792 static void
bge_chip_poke_mii(bge_t * bgep,bge_peekpoke_t * ppd)5793 bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd)
5794 {
5795 BGE_TRACE(("bge_chip_poke_mii($%p, $%p)",
5796 (void *)bgep, (void *)ppd));
5797
5798 bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data);
5799 }
5800
5801 #if BGE_SEE_IO32
5802
5803 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5804 #pragma no_inline(bge_chip_peek_seeprom)
5805
5806 static void
bge_chip_peek_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5807 bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5808 {
5809 uint32_t data;
5810 int err;
5811
5812 BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)",
5813 (void *)bgep, (void *)ppd));
5814
5815 err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data);
5816 ppd->pp_acc_data = err ? ~0ull : data;
5817 }
5818
5819 static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd);
5820 #pragma no_inline(bge_chip_poke_seeprom)
5821
5822 static void
bge_chip_poke_seeprom(bge_t * bgep,bge_peekpoke_t * ppd)5823 bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd)
5824 {
5825 uint32_t data;
5826
5827 BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)",
5828 (void *)bgep, (void *)ppd));
5829
5830 data = ppd->pp_acc_data;
5831 (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data);
5832 }
5833 #endif /* BGE_SEE_IO32 */
5834
5835 #if BGE_FLASH_IO32
5836
5837 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5838 #pragma no_inline(bge_chip_peek_flash)
5839
5840 static void
bge_chip_peek_flash(bge_t * bgep,bge_peekpoke_t * ppd)5841 bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5842 {
5843 uint32_t data;
5844 int err;
5845
5846 BGE_TRACE(("bge_chip_peek_flash($%p, $%p)",
5847 (void *)bgep, (void *)ppd));
5848
5849 err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data);
5850 ppd->pp_acc_data = err ? ~0ull : data;
5851 }
5852
5853 static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd);
5854 #pragma no_inline(bge_chip_poke_flash)
5855
5856 static void
bge_chip_poke_flash(bge_t * bgep,bge_peekpoke_t * ppd)5857 bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd)
5858 {
5859 uint32_t data;
5860
5861 BGE_TRACE(("bge_chip_poke_flash($%p, $%p)",
5862 (void *)bgep, (void *)ppd));
5863
5864 data = ppd->pp_acc_data;
5865 (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE,
5866 ppd->pp_acc_offset, &data);
5867 }
5868 #endif /* BGE_FLASH_IO32 */
5869
5870 static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5871 #pragma no_inline(bge_chip_peek_mem)
5872
5873 static void
bge_chip_peek_mem(bge_t * bgep,bge_peekpoke_t * ppd)5874 bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5875 {
5876 uint64_t regval;
5877 void *vaddr;
5878
5879 BGE_TRACE(("bge_chip_peek_bge($%p, $%p)",
5880 (void *)bgep, (void *)ppd));
5881
5882 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5883
5884 switch (ppd->pp_acc_size) {
5885 case 1:
5886 regval = *(uint8_t *)vaddr;
5887 break;
5888
5889 case 2:
5890 regval = *(uint16_t *)vaddr;
5891 break;
5892
5893 case 4:
5894 regval = *(uint32_t *)vaddr;
5895 break;
5896
5897 case 8:
5898 regval = *(uint64_t *)vaddr;
5899 break;
5900 }
5901
5902 BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p",
5903 (void *)bgep, (void *)ppd, regval, vaddr));
5904
5905 ppd->pp_acc_data = regval;
5906 }
5907
5908 static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd);
5909 #pragma no_inline(bge_chip_poke_mem)
5910
5911 static void
bge_chip_poke_mem(bge_t * bgep,bge_peekpoke_t * ppd)5912 bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd)
5913 {
5914 uint64_t regval;
5915 void *vaddr;
5916
5917 BGE_TRACE(("bge_chip_poke_mem($%p, $%p)",
5918 (void *)bgep, (void *)ppd));
5919
5920 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5921 regval = ppd->pp_acc_data;
5922
5923 BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p",
5924 (void *)bgep, (void *)ppd, regval, vaddr));
5925
5926 switch (ppd->pp_acc_size) {
5927 case 1:
5928 *(uint8_t *)vaddr = (uint8_t)regval;
5929 break;
5930
5931 case 2:
5932 *(uint16_t *)vaddr = (uint16_t)regval;
5933 break;
5934
5935 case 4:
5936 *(uint32_t *)vaddr = (uint32_t)regval;
5937 break;
5938
5939 case 8:
5940 *(uint64_t *)vaddr = (uint64_t)regval;
5941 break;
5942 }
5943 }
5944
5945 static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
5946 struct iocblk *iocp);
5947 #pragma no_inline(bge_pp_ioctl)
5948
5949 static enum ioc_reply
bge_pp_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)5950 bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
5951 {
5952 void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd);
5953 bge_peekpoke_t *ppd;
5954 dma_area_t *areap;
5955 uint64_t sizemask;
5956 uint64_t mem_va;
5957 uint64_t maxoff;
5958 boolean_t peek;
5959
5960 switch (cmd) {
5961 default:
5962 /* NOTREACHED */
5963 bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd);
5964 return (IOC_INVAL);
5965
5966 case BGE_PEEK:
5967 peek = B_TRUE;
5968 break;
5969
5970 case BGE_POKE:
5971 peek = B_FALSE;
5972 break;
5973 }
5974
5975 /*
5976 * Validate format of ioctl
5977 */
5978 if (iocp->ioc_count != sizeof (bge_peekpoke_t))
5979 return (IOC_INVAL);
5980 if (mp->b_cont == NULL)
5981 return (IOC_INVAL);
5982 ppd = (void *)mp->b_cont->b_rptr;
5983
5984 /*
5985 * Validate request parameters
5986 */
5987 switch (ppd->pp_acc_space) {
5988 default:
5989 return (IOC_INVAL);
5990
5991 case BGE_PP_SPACE_CFG:
5992 /*
5993 * Config space
5994 */
5995 sizemask = 8|4|2|1;
5996 mem_va = 0;
5997 maxoff = PCI_CONF_HDR_SIZE;
5998 ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg;
5999 break;
6000
6001 case BGE_PP_SPACE_REG:
6002 /*
6003 * Memory-mapped I/O space
6004 */
6005 sizemask = 8|4|2|1;
6006 mem_va = 0;
6007 maxoff = RIAAR_REGISTER_MAX;
6008 ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg;
6009 break;
6010
6011 case BGE_PP_SPACE_NIC:
6012 /*
6013 * NIC on-chip memory
6014 */
6015 sizemask = 8|4|2|1;
6016 mem_va = 0;
6017 maxoff = MWBAR_ONCHIP_MAX;
6018 ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic;
6019 break;
6020
6021 case BGE_PP_SPACE_MII:
6022 /*
6023 * PHY's MII registers
6024 * NB: all PHY registers are two bytes, but the
6025 * addresses increment in ones (word addressing).
6026 * So we scale the address here, then undo the
6027 * transformation inside the peek/poke functions.
6028 */
6029 ppd->pp_acc_offset *= 2;
6030 sizemask = 2;
6031 mem_va = 0;
6032 maxoff = (MII_MAXREG+1)*2;
6033 ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii;
6034 break;
6035
6036 #if BGE_SEE_IO32
6037 case BGE_PP_SPACE_SEEPROM:
6038 /*
6039 * Attached SEEPROM(s), if any.
6040 * NB: we use the high-order bits of the 'address' as
6041 * a device select to accommodate multiple SEEPROMS,
6042 * If each one is the maximum size (64kbytes), this
6043 * makes them appear contiguous. Otherwise, there may
6044 * be holes in the mapping. ENxS doesn't have any
6045 * SEEPROMs anyway ...
6046 */
6047 sizemask = 4;
6048 mem_va = 0;
6049 maxoff = SEEPROM_DEV_AND_ADDR_MASK;
6050 ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom;
6051 break;
6052 #endif /* BGE_SEE_IO32 */
6053
6054 #if BGE_FLASH_IO32
6055 case BGE_PP_SPACE_FLASH:
6056 /*
6057 * Attached Flash device (if any); a maximum of one device
6058 * is currently supported. But it can be up to 1MB (unlike
6059 * the 64k limit on SEEPROMs) so why would you need more ;-)
6060 */
6061 sizemask = 4;
6062 mem_va = 0;
6063 maxoff = NVM_FLASH_ADDR_MASK;
6064 ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash;
6065 break;
6066 #endif /* BGE_FLASH_IO32 */
6067
6068 case BGE_PP_SPACE_BGE:
6069 /*
6070 * BGE data structure!
6071 */
6072 sizemask = 8|4|2|1;
6073 mem_va = (uintptr_t)bgep;
6074 maxoff = sizeof (*bgep);
6075 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6076 break;
6077
6078 case BGE_PP_SPACE_STATUS:
6079 case BGE_PP_SPACE_STATISTICS:
6080 case BGE_PP_SPACE_TXDESC:
6081 case BGE_PP_SPACE_TXBUFF:
6082 case BGE_PP_SPACE_RXDESC:
6083 case BGE_PP_SPACE_RXBUFF:
6084 /*
6085 * Various DMA_AREAs
6086 */
6087 switch (ppd->pp_acc_space) {
6088 case BGE_PP_SPACE_TXDESC:
6089 areap = &bgep->tx_desc;
6090 break;
6091 case BGE_PP_SPACE_TXBUFF:
6092 areap = &bgep->tx_buff[0];
6093 break;
6094 case BGE_PP_SPACE_RXDESC:
6095 areap = &bgep->rx_desc[0];
6096 break;
6097 case BGE_PP_SPACE_RXBUFF:
6098 areap = &bgep->rx_buff[0];
6099 break;
6100 case BGE_PP_SPACE_STATUS:
6101 areap = &bgep->status_block;
6102 break;
6103 case BGE_PP_SPACE_STATISTICS:
6104 if (bgep->chipid.statistic_type == BGE_STAT_BLK)
6105 areap = &bgep->statistics;
6106 break;
6107 }
6108
6109 sizemask = 8|4|2|1;
6110 mem_va = (uintptr_t)areap->mem_va;
6111 maxoff = areap->alength;
6112 ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem;
6113 break;
6114 }
6115
6116 switch (ppd->pp_acc_size) {
6117 default:
6118 return (IOC_INVAL);
6119
6120 case 8:
6121 case 4:
6122 case 2:
6123 case 1:
6124 if ((ppd->pp_acc_size & sizemask) == 0)
6125 return (IOC_INVAL);
6126 break;
6127 }
6128
6129 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
6130 return (IOC_INVAL);
6131
6132 if (ppd->pp_acc_offset >= maxoff)
6133 return (IOC_INVAL);
6134
6135 if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff)
6136 return (IOC_INVAL);
6137
6138 /*
6139 * All OK - go do it!
6140 */
6141 ppd->pp_acc_offset += mem_va;
6142 (*ppfn)(bgep, ppd);
6143 return (peek ? IOC_REPLY : IOC_ACK);
6144 }
6145
6146 static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6147 struct iocblk *iocp);
6148 #pragma no_inline(bge_diag_ioctl)
6149
6150 static enum ioc_reply
bge_diag_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6151 bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6152 {
6153 ASSERT(mutex_owned(bgep->genlock));
6154
6155 switch (cmd) {
6156 default:
6157 /* NOTREACHED */
6158 bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd);
6159 return (IOC_INVAL);
6160
6161 case BGE_DIAG:
6162 /*
6163 * Currently a no-op
6164 */
6165 return (IOC_ACK);
6166
6167 case BGE_PEEK:
6168 case BGE_POKE:
6169 return (bge_pp_ioctl(bgep, cmd, mp, iocp));
6170
6171 case BGE_PHY_RESET:
6172 return (IOC_RESTART_ACK);
6173
6174 case BGE_SOFT_RESET:
6175 case BGE_HARD_RESET:
6176 /*
6177 * Reset and reinitialise the 570x hardware
6178 */
6179 bgep->bge_chip_state = BGE_CHIP_FAULT;
6180 ddi_trigger_softintr(bgep->factotum_id);
6181 (void) bge_restart(bgep, cmd == BGE_HARD_RESET);
6182 return (IOC_ACK);
6183 }
6184
6185 /* NOTREACHED */
6186 }
6187
6188 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
6189
6190 static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6191 struct iocblk *iocp);
6192 #pragma no_inline(bge_mii_ioctl)
6193
6194 static enum ioc_reply
bge_mii_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6195 bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6196 {
6197 struct bge_mii_rw *miirwp;
6198
6199 /*
6200 * Validate format of ioctl
6201 */
6202 if (iocp->ioc_count != sizeof (struct bge_mii_rw))
6203 return (IOC_INVAL);
6204 if (mp->b_cont == NULL)
6205 return (IOC_INVAL);
6206 miirwp = (void *)mp->b_cont->b_rptr;
6207
6208 /*
6209 * Validate request parameters ...
6210 */
6211 if (miirwp->mii_reg > MII_MAXREG)
6212 return (IOC_INVAL);
6213
6214 switch (cmd) {
6215 default:
6216 /* NOTREACHED */
6217 bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd);
6218 return (IOC_INVAL);
6219
6220 case BGE_MII_READ:
6221 miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg);
6222 return (IOC_REPLY);
6223
6224 case BGE_MII_WRITE:
6225 bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data);
6226 return (IOC_ACK);
6227 }
6228
6229 /* NOTREACHED */
6230 }
6231
6232 #if BGE_SEE_IO32
6233
6234 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6235 struct iocblk *iocp);
6236 #pragma no_inline(bge_see_ioctl)
6237
6238 static enum ioc_reply
bge_see_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6239 bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6240 {
6241 struct bge_see_rw *seerwp;
6242
6243 /*
6244 * Validate format of ioctl
6245 */
6246 if (iocp->ioc_count != sizeof (struct bge_see_rw))
6247 return (IOC_INVAL);
6248 if (mp->b_cont == NULL)
6249 return (IOC_INVAL);
6250 seerwp = (void *)mp->b_cont->b_rptr;
6251
6252 /*
6253 * Validate request parameters ...
6254 */
6255 if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK)
6256 return (IOC_INVAL);
6257
6258 switch (cmd) {
6259 default:
6260 /* NOTREACHED */
6261 bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd);
6262 return (IOC_INVAL);
6263
6264 case BGE_SEE_READ:
6265 case BGE_SEE_WRITE:
6266 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6267 seerwp->see_addr, &seerwp->see_data);
6268 return (IOC_REPLY);
6269 }
6270
6271 /* NOTREACHED */
6272 }
6273
6274 #endif /* BGE_SEE_IO32 */
6275
6276 #if BGE_FLASH_IO32
6277
6278 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp,
6279 struct iocblk *iocp);
6280 #pragma no_inline(bge_flash_ioctl)
6281
6282 static enum ioc_reply
bge_flash_ioctl(bge_t * bgep,int cmd,mblk_t * mp,struct iocblk * iocp)6283 bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp)
6284 {
6285 struct bge_flash_rw *flashrwp;
6286
6287 /*
6288 * Validate format of ioctl
6289 */
6290 if (iocp->ioc_count != sizeof (struct bge_flash_rw))
6291 return (IOC_INVAL);
6292 if (mp->b_cont == NULL)
6293 return (IOC_INVAL);
6294 flashrwp = (void *)mp->b_cont->b_rptr;
6295
6296 /*
6297 * Validate request parameters ...
6298 */
6299 if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK)
6300 return (IOC_INVAL);
6301
6302 switch (cmd) {
6303 default:
6304 /* NOTREACHED */
6305 bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd);
6306 return (IOC_INVAL);
6307
6308 case BGE_FLASH_READ:
6309 case BGE_FLASH_WRITE:
6310 iocp->ioc_error = bge_nvmem_rw32(bgep, cmd,
6311 flashrwp->flash_addr, &flashrwp->flash_data);
6312 return (IOC_REPLY);
6313 }
6314
6315 /* NOTREACHED */
6316 }
6317
6318 #endif /* BGE_FLASH_IO32 */
6319
6320 enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp,
6321 struct iocblk *iocp);
6322 #pragma no_inline(bge_chip_ioctl)
6323
6324 enum ioc_reply
bge_chip_ioctl(bge_t * bgep,queue_t * wq,mblk_t * mp,struct iocblk * iocp)6325 bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp)
6326 {
6327 int cmd;
6328
6329 BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)",
6330 (void *)bgep, (void *)wq, (void *)mp, (void *)iocp));
6331
6332 ASSERT(mutex_owned(bgep->genlock));
6333
6334 cmd = iocp->ioc_cmd;
6335 switch (cmd) {
6336 default:
6337 /* NOTREACHED */
6338 bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd);
6339 return (IOC_INVAL);
6340
6341 case BGE_DIAG:
6342 case BGE_PEEK:
6343 case BGE_POKE:
6344 case BGE_PHY_RESET:
6345 case BGE_SOFT_RESET:
6346 case BGE_HARD_RESET:
6347 #if BGE_DEBUGGING || BGE_DO_PPIO
6348 return (bge_diag_ioctl(bgep, cmd, mp, iocp));
6349 #else
6350 return (IOC_INVAL);
6351 #endif /* BGE_DEBUGGING || BGE_DO_PPIO */
6352
6353 case BGE_MII_READ:
6354 case BGE_MII_WRITE:
6355 return (bge_mii_ioctl(bgep, cmd, mp, iocp));
6356
6357 #if BGE_SEE_IO32
6358 case BGE_SEE_READ:
6359 case BGE_SEE_WRITE:
6360 return (bge_see_ioctl(bgep, cmd, mp, iocp));
6361 #endif /* BGE_SEE_IO32 */
6362
6363 #if BGE_FLASH_IO32
6364 case BGE_FLASH_READ:
6365 case BGE_FLASH_WRITE:
6366 return (bge_flash_ioctl(bgep, cmd, mp, iocp));
6367 #endif /* BGE_FLASH_IO32 */
6368 }
6369
6370 /* NOTREACHED */
6371 }
6372
6373 /* ARGSUSED */
6374 void
bge_chip_blank(void * arg,time_t ticks,uint_t count,int flag)6375 bge_chip_blank(void *arg, time_t ticks, uint_t count, int flag)
6376 {
6377 recv_ring_t *rrp = arg;
6378 bge_t *bgep = rrp->bgep;
6379
6380 mutex_enter(bgep->genlock);
6381 rrp->poll_flag = flag;
6382 #ifdef NOT_YET
6383 /*
6384 * XXX-Sunay: Since most broadcom cards support only one
6385 * interrupt but multiple rx rings, we can't disable the
6386 * physical interrupt. This need to be done via capability
6387 * negotiation depending on the NIC.
6388 */
6389 bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks);
6390 bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count);
6391 #endif
6392 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6393 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED);
6394 mutex_exit(bgep->genlock);
6395 }
6396
6397 #ifdef BGE_IPMI_ASF
6398
6399 uint32_t
bge_nic_read32(bge_t * bgep,bge_regno_t addr)6400 bge_nic_read32(bge_t *bgep, bge_regno_t addr)
6401 {
6402 uint32_t data;
6403
6404 #ifndef __sparc
6405 if (!bgep->asf_wordswapped) {
6406 /* a workaround word swap error */
6407 if (addr & 4)
6408 addr = addr - 4;
6409 else
6410 addr = addr + 4;
6411 }
6412 #else
6413 if (DEVICE_5717_SERIES_CHIPSETS(bgep) ||
6414 DEVICE_5725_SERIES_CHIPSETS(bgep)) {
6415 addr = LE_32(addr);
6416 }
6417 #endif
6418
6419 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr);
6420 data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR);
6421 pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0);
6422
6423 data = LE_32(data);
6424
6425 BGE_DEBUG(("bge_nic_read32($%p, 0x%x) => 0x%x",
6426 (void *)bgep, addr, data));
6427
6428 return (data);
6429 }
6430
6431 void
bge_asf_update_status(bge_t * bgep)6432 bge_asf_update_status(bge_t *bgep)
6433 {
6434 uint32_t event;
6435
6436 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE);
6437 bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4);
6438 bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3);
6439
6440 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6441 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6442 }
6443
6444
6445 /*
6446 * The driver is supposed to notify ASF that the OS is still running
6447 * every three seconds, otherwise the management server may attempt
6448 * to reboot the machine. If it hasn't actually failed, this is
6449 * not a desirable result. However, this isn't running as a real-time
6450 * thread, and even if it were, it might not be able to generate the
6451 * heartbeat in a timely manner due to system load. As it isn't a
6452 * significant strain on the machine, we will set the interval to half
6453 * of the required value.
6454 */
6455 void
bge_asf_heartbeat(void * arg)6456 bge_asf_heartbeat(void *arg)
6457 {
6458 bge_t *bgep = (bge_t *)arg;
6459
6460 mutex_enter(bgep->genlock);
6461 bge_asf_update_status((bge_t *)bgep);
6462 if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK)
6463 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6464 if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK)
6465 ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED);
6466 mutex_exit(bgep->genlock);
6467 ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep,
6468 drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL));
6469 }
6470
6471
6472 void
bge_asf_stop_timer(bge_t * bgep)6473 bge_asf_stop_timer(bge_t *bgep)
6474 {
6475 timeout_id_t tmp_id = 0;
6476
6477 while ((bgep->asf_timeout_id != 0) &&
6478 (tmp_id != bgep->asf_timeout_id)) {
6479 tmp_id = bgep->asf_timeout_id;
6480 (void) untimeout(tmp_id);
6481 }
6482 bgep->asf_timeout_id = 0;
6483 }
6484
6485
6486
6487 /*
6488 * This function should be placed at the earliest position of bge_attach().
6489 */
6490 void
bge_asf_get_config(bge_t * bgep)6491 bge_asf_get_config(bge_t *bgep)
6492 {
6493 uint32_t nicsig;
6494 uint32_t niccfg;
6495
6496 bgep->asf_enabled = B_FALSE;
6497
6498 /* No ASF if APE present. */
6499 if (bgep->ape_enabled)
6500 return;
6501
6502 nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR);
6503 if (nicsig == BGE_NIC_DATA_SIG) {
6504 niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR);
6505 if (niccfg & BGE_NIC_CFG_ENABLE_ASF)
6506 /*
6507 * Here, we don't consider BAXTER, because BGE haven't
6508 * supported BAXTER (that is 5752). Also, as I know,
6509 * BAXTER doesn't support ASF feature.
6510 */
6511 bgep->asf_enabled = B_TRUE;
6512 else
6513 bgep->asf_enabled = B_FALSE;
6514 } else
6515 bgep->asf_enabled = B_FALSE;
6516 }
6517
6518
6519 void
bge_asf_pre_reset_operations(bge_t * bgep,uint32_t mode)6520 bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode)
6521 {
6522 uint32_t tries;
6523 uint32_t event;
6524
6525 ASSERT(bgep->asf_enabled);
6526
6527 /* Issues "pause firmware" command and wait for ACK */
6528 bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW);
6529 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6530 bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT);
6531
6532 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6533 tries = 0;
6534 while ((event & RRER_ASF_EVENT) && (tries < 100)) {
6535 drv_usecwait(1);
6536 tries ++;
6537 event = bge_reg_get32(bgep, RX_RISC_EVENT_REG);
6538 }
6539
6540 bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX,
6541 BGE_MAGIC_NUM_FIRMWARE_INIT_DONE);
6542
6543 if (bgep->asf_newhandshake) {
6544 switch (mode) {
6545 case BGE_INIT_RESET:
6546 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6547 BGE_DRV_STATE_START);
6548 break;
6549 case BGE_SHUTDOWN_RESET:
6550 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6551 BGE_DRV_STATE_UNLOAD);
6552 break;
6553 case BGE_SUSPEND_RESET:
6554 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6555 BGE_DRV_STATE_SUSPEND);
6556 break;
6557 default:
6558 break;
6559 }
6560 }
6561
6562 if (mode == BGE_INIT_RESET ||
6563 mode == BGE_SUSPEND_RESET)
6564 bge_ape_driver_state_change(bgep, mode);
6565 }
6566
6567
6568 void
bge_asf_post_reset_old_mode(bge_t * bgep,uint32_t mode)6569 bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode)
6570 {
6571 switch (mode) {
6572 case BGE_INIT_RESET:
6573 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6574 BGE_DRV_STATE_START);
6575 break;
6576 case BGE_SHUTDOWN_RESET:
6577 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6578 BGE_DRV_STATE_UNLOAD);
6579 break;
6580 case BGE_SUSPEND_RESET:
6581 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6582 BGE_DRV_STATE_SUSPEND);
6583 break;
6584 default:
6585 break;
6586 }
6587 }
6588
6589
6590 void
bge_asf_post_reset_new_mode(bge_t * bgep,uint32_t mode)6591 bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode)
6592 {
6593 switch (mode) {
6594 case BGE_INIT_RESET:
6595 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6596 BGE_DRV_STATE_START_DONE);
6597 break;
6598 case BGE_SHUTDOWN_RESET:
6599 bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX,
6600 BGE_DRV_STATE_UNLOAD_DONE);
6601 break;
6602 default:
6603 break;
6604 }
6605
6606 if (mode == BGE_SHUTDOWN_RESET)
6607 bge_ape_driver_state_change(bgep, mode);
6608 }
6609
6610 #endif /* BGE_IPMI_ASF */
6611