xref: /linux/drivers/usb/host/xhci.c (revision 0dc1f314f854257eb64dcea604a42a55225453a9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28 
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31 
32 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33 
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38 
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 	struct xhci_segment *seg;
46 
47 	if (!td || !td->start_seg)
48 		return false;
49 
50 	xhci_for_each_ring_seg(ring->first_seg, seg) {
51 		if (seg == td->start_seg)
52 			return true;
53 	}
54 
55 	return false;
56 }
57 
58 /*
59  * xhci_handshake - spin reading hc until handshake completes or fails
60  * @ptr: address of hc register to be read
61  * @mask: bits to look at in result of read
62  * @done: value of those bits when handshake succeeds
63  * @usec: timeout in microseconds
64  *
65  * Returns negative errno, or zero on success
66  *
67  * Success happens when the "mask" bits have the specified value (hardware
68  * handshake done).  There are two failure modes:  "usec" have passed (major
69  * hardware flakeout), or the register reads as all-ones (hardware removed).
70  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 	u32	result;
74 	int	ret;
75 
76 	ret = readl_poll_timeout_atomic(ptr, result,
77 					(result & mask) == done ||
78 					result == U32_MAX,
79 					1, timeout_us);
80 	if (result == U32_MAX)		/* card removed */
81 		return -ENODEV;
82 
83 	return ret;
84 }
85 
86 /*
87  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
88  * exit_state parameter, and bails out with an error immediately when xhc_state
89  * has exit_state flag set.
90  */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
92 		u32 mask, u32 done, int usec, unsigned int exit_state)
93 {
94 	u32	result;
95 	int	ret;
96 
97 	ret = readl_poll_timeout_atomic(ptr, result,
98 				(result & mask) == done ||
99 				result == U32_MAX ||
100 				xhci->xhc_state & exit_state,
101 				1, usec);
102 
103 	if (result == U32_MAX || xhci->xhc_state & exit_state)
104 		return -ENODEV;
105 
106 	return ret;
107 }
108 
109 /*
110  * Disable interrupts and begin the xHCI halting process.
111  */
xhci_quiesce(struct xhci_hcd * xhci)112 void xhci_quiesce(struct xhci_hcd *xhci)
113 {
114 	u32 halted;
115 	u32 cmd;
116 	u32 mask;
117 
118 	mask = ~(XHCI_IRQS);
119 	halted = readl(&xhci->op_regs->status) & STS_HALT;
120 	if (!halted)
121 		mask &= ~CMD_RUN;
122 
123 	cmd = readl(&xhci->op_regs->command);
124 	cmd &= mask;
125 	writel(cmd, &xhci->op_regs->command);
126 }
127 
128 /*
129  * Force HC into halt state.
130  *
131  * Disable any IRQs and clear the run/stop bit.
132  * HC will complete any current and actively pipelined transactions, and
133  * should halt within 16 ms of the run/stop bit being cleared.
134  * Read HC Halted bit in the status register to see when the HC is finished.
135  */
xhci_halt(struct xhci_hcd * xhci)136 int xhci_halt(struct xhci_hcd *xhci)
137 {
138 	int ret;
139 
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
141 	xhci_quiesce(xhci);
142 
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
145 	if (ret) {
146 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
147 		return ret;
148 	}
149 
150 	xhci->xhc_state |= XHCI_STATE_HALTED;
151 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
152 
153 	return ret;
154 }
155 
156 /*
157  * Set the run bit and wait for the host to be running.
158  */
xhci_start(struct xhci_hcd * xhci)159 int xhci_start(struct xhci_hcd *xhci)
160 {
161 	u32 temp;
162 	int ret;
163 
164 	temp = readl(&xhci->op_regs->command);
165 	temp |= (CMD_RUN);
166 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
167 			temp);
168 	writel(temp, &xhci->op_regs->command);
169 
170 	/*
171 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
172 	 * running.
173 	 */
174 	ret = xhci_handshake(&xhci->op_regs->status,
175 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
176 	if (ret == -ETIMEDOUT)
177 		xhci_err(xhci, "Host took too long to start, "
178 				"waited %u microseconds.\n",
179 				XHCI_MAX_HALT_USEC);
180 	if (!ret) {
181 		/* clear state flags. Including dying, halted or removing */
182 		xhci->xhc_state = 0;
183 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * Reset a halted HC.
191  *
192  * This resets pipelines, timers, counters, state machines, etc.
193  * Transactions will be terminated immediately, and operational registers
194  * will be set to their defaults.
195  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
197 {
198 	u32 command;
199 	u32 state;
200 	int ret;
201 
202 	state = readl(&xhci->op_regs->status);
203 
204 	if (state == ~(u32)0) {
205 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
206 		return -ENODEV;
207 	}
208 
209 	if ((state & STS_HALT) == 0) {
210 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
211 		return 0;
212 	}
213 
214 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
215 	command = readl(&xhci->op_regs->command);
216 	command |= CMD_RESET;
217 	writel(command, &xhci->op_regs->command);
218 
219 	/* Existing Intel xHCI controllers require a delay of 1 mS,
220 	 * after setting the CMD_RESET bit, and before accessing any
221 	 * HC registers. This allows the HC to complete the
222 	 * reset operation and be ready for HC register access.
223 	 * Without this delay, the subsequent HC register access,
224 	 * may result in a system hang very rarely.
225 	 */
226 	if (xhci->quirks & XHCI_INTEL_HOST)
227 		udelay(1000);
228 
229 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
230 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
231 	if (ret)
232 		return ret;
233 
234 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
235 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
236 
237 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 			 "Wait for controller to be ready for doorbell rings");
239 	/*
240 	 * xHCI cannot write to any doorbells or operational registers other
241 	 * than status until the "Controller Not Ready" flag is cleared.
242 	 */
243 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
244 
245 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
246 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
247 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
248 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
249 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
250 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
251 
252 	return ret;
253 }
254 
xhci_zero_64b_regs(struct xhci_hcd * xhci)255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
256 {
257 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
258 	struct iommu_domain *domain;
259 	int err, i;
260 	u64 val;
261 	u32 intrs;
262 
263 	/*
264 	 * Some Renesas controllers get into a weird state if they are
265 	 * reset while programmed with 64bit addresses (they will preserve
266 	 * the top half of the address in internal, non visible
267 	 * registers). You end up with half the address coming from the
268 	 * kernel, and the other half coming from the firmware. Also,
269 	 * changing the programming leads to extra accesses even if the
270 	 * controller is supposed to be halted. The controller ends up with
271 	 * a fatal fault, and is then ripe for being properly reset.
272 	 *
273 	 * Special care is taken to only apply this if the device is behind
274 	 * an iommu. Doing anything when there is no iommu is definitely
275 	 * unsafe...
276 	 */
277 	domain = iommu_get_domain_for_dev(dev);
278 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
279 	    domain->type == IOMMU_DOMAIN_IDENTITY)
280 		return;
281 
282 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
283 
284 	/* Clear HSEIE so that faults do not get signaled */
285 	val = readl(&xhci->op_regs->command);
286 	val &= ~CMD_HSEIE;
287 	writel(val, &xhci->op_regs->command);
288 
289 	/* Clear HSE (aka FATAL) */
290 	val = readl(&xhci->op_regs->status);
291 	val |= STS_FATAL;
292 	writel(val, &xhci->op_regs->status);
293 
294 	/* Now zero the registers, and brace for impact */
295 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
296 	if (upper_32_bits(val))
297 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
298 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
299 	if (upper_32_bits(val))
300 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
301 
302 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
303 		      ARRAY_SIZE(xhci->run_regs->ir_set));
304 
305 	for (i = 0; i < intrs; i++) {
306 		struct xhci_intr_reg __iomem *ir;
307 
308 		ir = &xhci->run_regs->ir_set[i];
309 		val = xhci_read_64(xhci, &ir->erst_base);
310 		if (upper_32_bits(val))
311 			xhci_write_64(xhci, 0, &ir->erst_base);
312 		val= xhci_read_64(xhci, &ir->erst_dequeue);
313 		if (upper_32_bits(val))
314 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
315 	}
316 
317 	/* Wait for the fault to appear. It will be cleared on reset */
318 	err = xhci_handshake(&xhci->op_regs->status,
319 			     STS_FATAL, STS_FATAL,
320 			     XHCI_MAX_HALT_USEC);
321 	if (!err)
322 		xhci_info(xhci, "Fault detected\n");
323 }
324 
xhci_enable_interrupter(struct xhci_interrupter * ir)325 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
326 {
327 	u32 iman;
328 
329 	if (!ir || !ir->ir_set)
330 		return -EINVAL;
331 
332 	iman = readl(&ir->ir_set->irq_pending);
333 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
334 
335 	return 0;
336 }
337 
xhci_disable_interrupter(struct xhci_interrupter * ir)338 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
339 {
340 	u32 iman;
341 
342 	if (!ir || !ir->ir_set)
343 		return -EINVAL;
344 
345 	iman = readl(&ir->ir_set->irq_pending);
346 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
347 
348 	return 0;
349 }
350 
351 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
353 				    u32 imod_interval)
354 {
355 	u32 imod;
356 
357 	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
358 		return -EINVAL;
359 
360 	imod = readl(&ir->ir_set->irq_control);
361 	imod &= ~ER_IRQ_INTERVAL_MASK;
362 	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
363 	writel(imod, &ir->ir_set->irq_control);
364 
365 	return 0;
366 }
367 
compliance_mode_recovery(struct timer_list * t)368 static void compliance_mode_recovery(struct timer_list *t)
369 {
370 	struct xhci_hcd *xhci;
371 	struct usb_hcd *hcd;
372 	struct xhci_hub *rhub;
373 	u32 temp;
374 	int i;
375 
376 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
377 	rhub = &xhci->usb3_rhub;
378 	hcd = rhub->hcd;
379 
380 	if (!hcd)
381 		return;
382 
383 	for (i = 0; i < rhub->num_ports; i++) {
384 		temp = readl(rhub->ports[i]->addr);
385 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
386 			/*
387 			 * Compliance Mode Detected. Letting USB Core
388 			 * handle the Warm Reset
389 			 */
390 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
391 					"Compliance mode detected->port %d",
392 					i + 1);
393 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
394 					"Attempting compliance mode recovery");
395 
396 			if (hcd->state == HC_STATE_SUSPENDED)
397 				usb_hcd_resume_root_hub(hcd);
398 
399 			usb_hcd_poll_rh_status(hcd);
400 		}
401 	}
402 
403 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
404 		mod_timer(&xhci->comp_mode_recovery_timer,
405 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
406 }
407 
408 /*
409  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
410  * that causes ports behind that hardware to enter compliance mode sometimes.
411  * The quirk creates a timer that polls every 2 seconds the link state of
412  * each host controller's port and recovers it by issuing a Warm reset
413  * if Compliance mode is detected, otherwise the port will become "dead" (no
414  * device connections or disconnections will be detected anymore). Becasue no
415  * status event is generated when entering compliance mode (per xhci spec),
416  * this quirk is needed on systems that have the failing hardware installed.
417  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
419 {
420 	xhci->port_status_u0 = 0;
421 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
422 		    0);
423 	xhci->comp_mode_recovery_timer.expires = jiffies +
424 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
425 
426 	add_timer(&xhci->comp_mode_recovery_timer);
427 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
428 			"Compliance mode recovery timer initialized");
429 }
430 
431 /*
432  * This function identifies the systems that have installed the SN65LVPE502CP
433  * USB3.0 re-driver and that need the Compliance Mode Quirk.
434  * Systems:
435  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
436  */
xhci_compliance_mode_recovery_timer_quirk_check(void)437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
438 {
439 	const char *dmi_product_name, *dmi_sys_vendor;
440 
441 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
442 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
443 	if (!dmi_product_name || !dmi_sys_vendor)
444 		return false;
445 
446 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
447 		return false;
448 
449 	if (strstr(dmi_product_name, "Z420") ||
450 			strstr(dmi_product_name, "Z620") ||
451 			strstr(dmi_product_name, "Z820") ||
452 			strstr(dmi_product_name, "Z1 Workstation"))
453 		return true;
454 
455 	return false;
456 }
457 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
459 {
460 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
461 }
462 
463 
464 /*
465  * Initialize memory for HCD and xHC (one-time init).
466  *
467  * Program the PAGESIZE register, initialize the device context array, create
468  * device contexts (?), set up a command ring segment (or two?), create event
469  * ring (one for now).
470  */
xhci_init(struct usb_hcd * hcd)471 static int xhci_init(struct usb_hcd *hcd)
472 {
473 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
474 	int retval;
475 
476 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
477 	spin_lock_init(&xhci->lock);
478 
479 	retval = xhci_mem_init(xhci, GFP_KERNEL);
480 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
481 
482 	/* Initializing Compliance Mode Recovery Data If Needed */
483 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
484 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
485 		compliance_mode_recovery_timer_init(xhci);
486 	}
487 
488 	return retval;
489 }
490 
491 /*-------------------------------------------------------------------------*/
492 
xhci_run_finished(struct xhci_hcd * xhci)493 static int xhci_run_finished(struct xhci_hcd *xhci)
494 {
495 	struct xhci_interrupter *ir = xhci->interrupters[0];
496 	unsigned long	flags;
497 	u32		temp;
498 
499 	/*
500 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
501 	 * Protect the short window before host is running with a lock
502 	 */
503 	spin_lock_irqsave(&xhci->lock, flags);
504 
505 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
506 	temp = readl(&xhci->op_regs->command);
507 	temp |= (CMD_EIE);
508 	writel(temp, &xhci->op_regs->command);
509 
510 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
511 	xhci_enable_interrupter(ir);
512 
513 	if (xhci_start(xhci)) {
514 		xhci_halt(xhci);
515 		spin_unlock_irqrestore(&xhci->lock, flags);
516 		return -ENODEV;
517 	}
518 
519 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
520 
521 	if (xhci->quirks & XHCI_NEC_HOST)
522 		xhci_ring_cmd_db(xhci);
523 
524 	spin_unlock_irqrestore(&xhci->lock, flags);
525 
526 	return 0;
527 }
528 
529 /*
530  * Start the HC after it was halted.
531  *
532  * This function is called by the USB core when the HC driver is added.
533  * Its opposite is xhci_stop().
534  *
535  * xhci_init() must be called once before this function can be called.
536  * Reset the HC, enable device slot contexts, program DCBAAP, and
537  * set command ring pointer and event ring pointer.
538  *
539  * Setup MSI-X vectors and enable interrupts.
540  */
xhci_run(struct usb_hcd * hcd)541 int xhci_run(struct usb_hcd *hcd)
542 {
543 	u64 temp_64;
544 	int ret;
545 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
546 	struct xhci_interrupter *ir = xhci->interrupters[0];
547 	/* Start the xHCI host controller running only after the USB 2.0 roothub
548 	 * is setup.
549 	 */
550 
551 	hcd->uses_new_polling = 1;
552 	if (hcd->msi_enabled)
553 		ir->ip_autoclear = true;
554 
555 	if (!usb_hcd_is_primary_hcd(hcd))
556 		return xhci_run_finished(xhci);
557 
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
559 
560 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
561 	temp_64 &= ERST_PTR_MASK;
562 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
564 
565 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
566 
567 	if (xhci->quirks & XHCI_NEC_HOST) {
568 		struct xhci_command *command;
569 
570 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
571 		if (!command)
572 			return -ENOMEM;
573 
574 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
575 				TRB_TYPE(TRB_NEC_GET_FW));
576 		if (ret)
577 			xhci_free_command(xhci, command);
578 	}
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"Finished %s for main hcd", __func__);
581 
582 	xhci_create_dbc_dev(xhci);
583 
584 	xhci_debugfs_init(xhci);
585 
586 	if (xhci_has_one_roothub(xhci))
587 		return xhci_run_finished(xhci);
588 
589 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
590 
591 	return 0;
592 }
593 EXPORT_SYMBOL_GPL(xhci_run);
594 
595 /*
596  * Stop xHCI driver.
597  *
598  * This function is called by the USB core when the HC driver is removed.
599  * Its opposite is xhci_run().
600  *
601  * Disable device contexts, disable IRQs, and quiesce the HC.
602  * Reset the HC, finish any completed transactions, and cleanup memory.
603  */
xhci_stop(struct usb_hcd * hcd)604 void xhci_stop(struct usb_hcd *hcd)
605 {
606 	u32 temp;
607 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608 	struct xhci_interrupter *ir = xhci->interrupters[0];
609 
610 	mutex_lock(&xhci->mutex);
611 
612 	/* Only halt host and free memory after both hcds are removed */
613 	if (!usb_hcd_is_primary_hcd(hcd)) {
614 		mutex_unlock(&xhci->mutex);
615 		return;
616 	}
617 
618 	xhci_remove_dbc_dev(xhci);
619 
620 	spin_lock_irq(&xhci->lock);
621 	xhci->xhc_state |= XHCI_STATE_HALTED;
622 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
623 	xhci_halt(xhci);
624 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
625 	spin_unlock_irq(&xhci->lock);
626 
627 	/* Deleting Compliance Mode Recovery Timer */
628 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
629 			(!(xhci_all_ports_seen_u0(xhci)))) {
630 		del_timer_sync(&xhci->comp_mode_recovery_timer);
631 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
632 				"%s: compliance mode recovery timer deleted",
633 				__func__);
634 	}
635 
636 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 		usb_amd_dev_put();
638 
639 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 			"// Disabling event ring interrupts");
641 	temp = readl(&xhci->op_regs->status);
642 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
643 	xhci_disable_interrupter(ir);
644 
645 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
646 	xhci_mem_cleanup(xhci);
647 	xhci_debugfs_exit(xhci);
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"xhci_stop completed - status = %x",
650 			readl(&xhci->op_regs->status));
651 	mutex_unlock(&xhci->mutex);
652 }
653 EXPORT_SYMBOL_GPL(xhci_stop);
654 
655 /*
656  * Shutdown HC (not bus-specific)
657  *
658  * This is called when the machine is rebooting or halting.  We assume that the
659  * machine will be powered off, and the HC's internal state will be reset.
660  * Don't bother to free memory.
661  *
662  * This will only ever be called with the main usb_hcd (the USB3 roothub).
663  */
xhci_shutdown(struct usb_hcd * hcd)664 void xhci_shutdown(struct usb_hcd *hcd)
665 {
666 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
667 
668 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
669 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
670 
671 	/* Don't poll the roothubs after shutdown. */
672 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
673 			__func__, hcd->self.busnum);
674 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
675 	del_timer_sync(&hcd->rh_timer);
676 
677 	if (xhci->shared_hcd) {
678 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
679 		del_timer_sync(&xhci->shared_hcd->rh_timer);
680 	}
681 
682 	spin_lock_irq(&xhci->lock);
683 	xhci_halt(xhci);
684 
685 	/*
686 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
687 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
688 	 */
689 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
690 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
691 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
692 
693 	spin_unlock_irq(&xhci->lock);
694 
695 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 			"xhci_shutdown completed - status = %x",
697 			readl(&xhci->op_regs->status));
698 }
699 EXPORT_SYMBOL_GPL(xhci_shutdown);
700 
701 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)702 static void xhci_save_registers(struct xhci_hcd *xhci)
703 {
704 	struct xhci_interrupter *ir;
705 	unsigned int i;
706 
707 	xhci->s3.command = readl(&xhci->op_regs->command);
708 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
709 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
710 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
711 
712 	/* save both primary and all secondary interrupters */
713 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
714 	for (i = 0; i < xhci->max_interrupters; i++) {
715 		ir = xhci->interrupters[i];
716 		if (!ir)
717 			continue;
718 
719 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
720 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
721 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
722 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
723 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
724 	}
725 }
726 
xhci_restore_registers(struct xhci_hcd * xhci)727 static void xhci_restore_registers(struct xhci_hcd *xhci)
728 {
729 	struct xhci_interrupter *ir;
730 	unsigned int i;
731 
732 	writel(xhci->s3.command, &xhci->op_regs->command);
733 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
734 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
735 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
736 
737 	/* FIXME should we lock to protect against freeing of interrupters */
738 	for (i = 0; i < xhci->max_interrupters; i++) {
739 		ir = xhci->interrupters[i];
740 		if (!ir)
741 			continue;
742 
743 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
744 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
745 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
746 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
747 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
748 	}
749 }
750 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 {
753 	u64	val_64;
754 
755 	/* step 2: initialize command ring buffer */
756 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
757 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
758 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
759 				      xhci->cmd_ring->dequeue) &
760 		 (u64) ~CMD_RING_RSVD_BITS) |
761 		xhci->cmd_ring->cycle_state;
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"// Setting command ring address to 0x%llx",
764 			(long unsigned long) val_64);
765 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
766 }
767 
768 /*
769  * The whole command ring must be cleared to zero when we suspend the host.
770  *
771  * The host doesn't save the command ring pointer in the suspend well, so we
772  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
773  * aligned, because of the reserved bits in the command ring dequeue pointer
774  * register.  Therefore, we can't just set the dequeue pointer back in the
775  * middle of the ring (TRBs are 16-byte aligned).
776  */
xhci_clear_command_ring(struct xhci_hcd * xhci)777 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 {
779 	struct xhci_ring *ring;
780 	struct xhci_segment *seg;
781 
782 	ring = xhci->cmd_ring;
783 	xhci_for_each_ring_seg(ring->first_seg, seg) {
784 		/* erase all TRBs before the link */
785 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
786 		/* clear link cycle bit */
787 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
788 	}
789 
790 	xhci_initialize_ring_info(ring);
791 	/*
792 	 * Reset the hardware dequeue pointer.
793 	 * Yes, this will need to be re-written after resume, but we're paranoid
794 	 * and want to make sure the hardware doesn't access bogus memory
795 	 * because, say, the BIOS or an SMI started the host without changing
796 	 * the command ring pointers.
797 	 */
798 	xhci_set_cmd_ring_deq(xhci);
799 }
800 
801 /*
802  * Disable port wake bits if do_wakeup is not set.
803  *
804  * Also clear a possible internal port wake state left hanging for ports that
805  * detected termination but never successfully enumerated (trained to 0U).
806  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
807  * at enumeration clears this wake, force one here as well for unconnected ports
808  */
809 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
811 				       struct xhci_hub *rhub,
812 				       bool do_wakeup)
813 {
814 	unsigned long flags;
815 	u32 t1, t2, portsc;
816 	int i;
817 
818 	spin_lock_irqsave(&xhci->lock, flags);
819 
820 	for (i = 0; i < rhub->num_ports; i++) {
821 		portsc = readl(rhub->ports[i]->addr);
822 		t1 = xhci_port_state_to_neutral(portsc);
823 		t2 = t1;
824 
825 		/* clear wake bits if do_wake is not set */
826 		if (!do_wakeup)
827 			t2 &= ~PORT_WAKE_BITS;
828 
829 		/* Don't touch csc bit if connected or connect change is set */
830 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
831 			t2 |= PORT_CSC;
832 
833 		if (t1 != t2) {
834 			writel(t2, rhub->ports[i]->addr);
835 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
836 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
837 		}
838 	}
839 	spin_unlock_irqrestore(&xhci->lock, flags);
840 }
841 
xhci_pending_portevent(struct xhci_hcd * xhci)842 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
843 {
844 	struct xhci_port	**ports;
845 	int			port_index;
846 	u32			status;
847 	u32			portsc;
848 
849 	status = readl(&xhci->op_regs->status);
850 	if (status & STS_EINT)
851 		return true;
852 	/*
853 	 * Checking STS_EINT is not enough as there is a lag between a change
854 	 * bit being set and the Port Status Change Event that it generated
855 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
856 	 */
857 
858 	port_index = xhci->usb2_rhub.num_ports;
859 	ports = xhci->usb2_rhub.ports;
860 	while (port_index--) {
861 		portsc = readl(ports[port_index]->addr);
862 		if (portsc & PORT_CHANGE_MASK ||
863 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
864 			return true;
865 	}
866 	port_index = xhci->usb3_rhub.num_ports;
867 	ports = xhci->usb3_rhub.ports;
868 	while (port_index--) {
869 		portsc = readl(ports[port_index]->addr);
870 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
871 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
872 			return true;
873 	}
874 	return false;
875 }
876 
877 /*
878  * Stop HC (not bus-specific)
879  *
880  * This is called when the machine transition into S3/S4 mode.
881  *
882  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
884 {
885 	int			rc = 0;
886 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
887 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
888 	u32			command;
889 	u32			res;
890 
891 	if (!hcd->state)
892 		return 0;
893 
894 	if (hcd->state != HC_STATE_SUSPENDED ||
895 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
896 		return -EINVAL;
897 
898 	/* Clear root port wake on bits if wakeup not allowed. */
899 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
900 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
901 
902 	if (!HCD_HW_ACCESSIBLE(hcd))
903 		return 0;
904 
905 	xhci_dbc_suspend(xhci);
906 
907 	/* Don't poll the roothubs on bus suspend. */
908 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
909 		 __func__, hcd->self.busnum);
910 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
911 	del_timer_sync(&hcd->rh_timer);
912 	if (xhci->shared_hcd) {
913 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
914 		del_timer_sync(&xhci->shared_hcd->rh_timer);
915 	}
916 
917 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
918 		usleep_range(1000, 1500);
919 
920 	spin_lock_irq(&xhci->lock);
921 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
922 	if (xhci->shared_hcd)
923 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924 	/* step 1: stop endpoint */
925 	/* skipped assuming that port suspend has done */
926 
927 	/* step 2: clear Run/Stop bit */
928 	command = readl(&xhci->op_regs->command);
929 	command &= ~CMD_RUN;
930 	writel(command, &xhci->op_regs->command);
931 
932 	/* Some chips from Fresco Logic need an extraordinary delay */
933 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934 
935 	if (xhci_handshake(&xhci->op_regs->status,
936 		      STS_HALT, STS_HALT, delay)) {
937 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938 		spin_unlock_irq(&xhci->lock);
939 		return -ETIMEDOUT;
940 	}
941 	xhci_clear_command_ring(xhci);
942 
943 	/* step 3: save registers */
944 	xhci_save_registers(xhci);
945 
946 	/* step 4: set CSS flag */
947 	command = readl(&xhci->op_regs->command);
948 	command |= CMD_CSS;
949 	writel(command, &xhci->op_regs->command);
950 	xhci->broken_suspend = 0;
951 	if (xhci_handshake(&xhci->op_regs->status,
952 				STS_SAVE, 0, 20 * 1000)) {
953 	/*
954 	 * AMD SNPS xHC 3.0 occasionally does not clear the
955 	 * SSS bit of USBSTS and when driver tries to poll
956 	 * to see if the xHC clears BIT(8) which never happens
957 	 * and driver assumes that controller is not responding
958 	 * and times out. To workaround this, its good to check
959 	 * if SRE and HCE bits are not set (as per xhci
960 	 * Section 5.4.2) and bypass the timeout.
961 	 */
962 		res = readl(&xhci->op_regs->status);
963 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
964 		    (((res & STS_SRE) == 0) &&
965 				((res & STS_HCE) == 0))) {
966 			xhci->broken_suspend = 1;
967 		} else {
968 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
969 			spin_unlock_irq(&xhci->lock);
970 			return -ETIMEDOUT;
971 		}
972 	}
973 	spin_unlock_irq(&xhci->lock);
974 
975 	/*
976 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
977 	 * is about to be suspended.
978 	 */
979 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980 			(!(xhci_all_ports_seen_u0(xhci)))) {
981 		del_timer_sync(&xhci->comp_mode_recovery_timer);
982 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
983 				"%s: compliance mode recovery timer deleted",
984 				__func__);
985 	}
986 
987 	return rc;
988 }
989 EXPORT_SYMBOL_GPL(xhci_suspend);
990 
991 /*
992  * start xHC (not bus-specific)
993  *
994  * This is called when the machine transition from S3/S4 mode.
995  *
996  */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)997 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
998 {
999 	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
1000 	u32			command, temp = 0;
1001 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1002 	int			retval = 0;
1003 	bool			comp_timer_running = false;
1004 	bool			pending_portevent = false;
1005 	bool			suspended_usb3_devs = false;
1006 	bool			reinit_xhc = false;
1007 
1008 	if (!hcd->state)
1009 		return 0;
1010 
1011 	/* Wait a bit if either of the roothubs need to settle from the
1012 	 * transition into bus suspend.
1013 	 */
1014 
1015 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1016 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1017 		msleep(100);
1018 
1019 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1020 	if (xhci->shared_hcd)
1021 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1022 
1023 	spin_lock_irq(&xhci->lock);
1024 
1025 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1026 		reinit_xhc = true;
1027 
1028 	if (!reinit_xhc) {
1029 		/*
1030 		 * Some controllers might lose power during suspend, so wait
1031 		 * for controller not ready bit to clear, just as in xHC init.
1032 		 */
1033 		retval = xhci_handshake(&xhci->op_regs->status,
1034 					STS_CNR, 0, 10 * 1000 * 1000);
1035 		if (retval) {
1036 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1037 				  retval);
1038 			spin_unlock_irq(&xhci->lock);
1039 			return retval;
1040 		}
1041 		/* step 1: restore register */
1042 		xhci_restore_registers(xhci);
1043 		/* step 2: initialize command ring buffer */
1044 		xhci_set_cmd_ring_deq(xhci);
1045 		/* step 3: restore state and start state*/
1046 		/* step 3: set CRS flag */
1047 		command = readl(&xhci->op_regs->command);
1048 		command |= CMD_CRS;
1049 		writel(command, &xhci->op_regs->command);
1050 		/*
1051 		 * Some controllers take up to 55+ ms to complete the controller
1052 		 * restore so setting the timeout to 100ms. Xhci specification
1053 		 * doesn't mention any timeout value.
1054 		 */
1055 		if (xhci_handshake(&xhci->op_regs->status,
1056 			      STS_RESTORE, 0, 100 * 1000)) {
1057 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1058 			spin_unlock_irq(&xhci->lock);
1059 			return -ETIMEDOUT;
1060 		}
1061 	}
1062 
1063 	temp = readl(&xhci->op_regs->status);
1064 
1065 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1066 	if ((temp & (STS_SRE | STS_HCE)) &&
1067 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1068 		reinit_xhc = true;
1069 		if (!xhci->broken_suspend)
1070 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1071 	}
1072 
1073 	if (reinit_xhc) {
1074 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1075 				!(xhci_all_ports_seen_u0(xhci))) {
1076 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1077 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1078 				"Compliance Mode Recovery Timer deleted!");
1079 		}
1080 
1081 		/* Let the USB core know _both_ roothubs lost power. */
1082 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1083 		if (xhci->shared_hcd)
1084 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1085 
1086 		xhci_dbg(xhci, "Stop HCD\n");
1087 		xhci_halt(xhci);
1088 		xhci_zero_64b_regs(xhci);
1089 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1090 		spin_unlock_irq(&xhci->lock);
1091 		if (retval)
1092 			return retval;
1093 
1094 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1095 		temp = readl(&xhci->op_regs->status);
1096 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1097 		xhci_disable_interrupter(xhci->interrupters[0]);
1098 
1099 		xhci_dbg(xhci, "cleaning up memory\n");
1100 		xhci_mem_cleanup(xhci);
1101 		xhci_debugfs_exit(xhci);
1102 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1103 			    readl(&xhci->op_regs->status));
1104 
1105 		/* USB core calls the PCI reinit and start functions twice:
1106 		 * first with the primary HCD, and then with the secondary HCD.
1107 		 * If we don't do the same, the host will never be started.
1108 		 */
1109 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1110 		retval = xhci_init(hcd);
1111 		if (retval)
1112 			return retval;
1113 		comp_timer_running = true;
1114 
1115 		xhci_dbg(xhci, "Start the primary HCD\n");
1116 		retval = xhci_run(hcd);
1117 		if (!retval && xhci->shared_hcd) {
1118 			xhci_dbg(xhci, "Start the secondary HCD\n");
1119 			retval = xhci_run(xhci->shared_hcd);
1120 		}
1121 		if (retval)
1122 			return retval;
1123 		/*
1124 		 * Resume roothubs unconditionally as PORTSC change bits are not
1125 		 * immediately visible after xHC reset
1126 		 */
1127 		hcd->state = HC_STATE_SUSPENDED;
1128 
1129 		if (xhci->shared_hcd) {
1130 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1131 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1132 		}
1133 		usb_hcd_resume_root_hub(hcd);
1134 
1135 		goto done;
1136 	}
1137 
1138 	/* step 4: set Run/Stop bit */
1139 	command = readl(&xhci->op_regs->command);
1140 	command |= CMD_RUN;
1141 	writel(command, &xhci->op_regs->command);
1142 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1143 		  0, 250 * 1000);
1144 
1145 	/* step 5: walk topology and initialize portsc,
1146 	 * portpmsc and portli
1147 	 */
1148 	/* this is done in bus_resume */
1149 
1150 	/* step 6: restart each of the previously
1151 	 * Running endpoints by ringing their doorbells
1152 	 */
1153 
1154 	spin_unlock_irq(&xhci->lock);
1155 
1156 	xhci_dbc_resume(xhci);
1157 
1158 	if (retval == 0) {
1159 		/*
1160 		 * Resume roothubs only if there are pending events.
1161 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1162 		 * the first wake signalling failed, give it that chance if
1163 		 * there are suspended USB 3 devices.
1164 		 */
1165 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1166 		    xhci->usb3_rhub.bus_state.bus_suspended)
1167 			suspended_usb3_devs = true;
1168 
1169 		pending_portevent = xhci_pending_portevent(xhci);
1170 
1171 		if (suspended_usb3_devs && !pending_portevent &&
1172 		    msg.event == PM_EVENT_AUTO_RESUME) {
1173 			msleep(120);
1174 			pending_portevent = xhci_pending_portevent(xhci);
1175 		}
1176 
1177 		if (pending_portevent) {
1178 			if (xhci->shared_hcd)
1179 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1180 			usb_hcd_resume_root_hub(hcd);
1181 		}
1182 	}
1183 done:
1184 	/*
1185 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1186 	 * be re-initialized Always after a system resume. Ports are subject
1187 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1188 	 * ports have entered previously to U0 before system's suspension.
1189 	 */
1190 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1191 		compliance_mode_recovery_timer_init(xhci);
1192 
1193 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1194 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1195 
1196 	/* Re-enable port polling. */
1197 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1198 		 __func__, hcd->self.busnum);
1199 	if (xhci->shared_hcd) {
1200 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1201 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1202 	}
1203 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1204 	usb_hcd_poll_rh_status(hcd);
1205 
1206 	return retval;
1207 }
1208 EXPORT_SYMBOL_GPL(xhci_resume);
1209 #endif	/* CONFIG_PM */
1210 
1211 /*-------------------------------------------------------------------------*/
1212 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1213 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1214 {
1215 	void *temp;
1216 	int ret = 0;
1217 	unsigned int buf_len;
1218 	enum dma_data_direction dir;
1219 
1220 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1221 	buf_len = urb->transfer_buffer_length;
1222 
1223 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1224 			    dev_to_node(hcd->self.sysdev));
1225 	if (!temp)
1226 		return -ENOMEM;
1227 
1228 	if (usb_urb_dir_out(urb))
1229 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1230 				   temp, buf_len, 0);
1231 
1232 	urb->transfer_buffer = temp;
1233 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1234 					   urb->transfer_buffer,
1235 					   urb->transfer_buffer_length,
1236 					   dir);
1237 
1238 	if (dma_mapping_error(hcd->self.sysdev,
1239 			      urb->transfer_dma)) {
1240 		ret = -EAGAIN;
1241 		kfree(temp);
1242 	} else {
1243 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1244 	}
1245 
1246 	return ret;
1247 }
1248 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1249 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1250 					  struct urb *urb)
1251 {
1252 	bool ret = false;
1253 	unsigned int i;
1254 	unsigned int len = 0;
1255 	unsigned int trb_size;
1256 	unsigned int max_pkt;
1257 	struct scatterlist *sg;
1258 	struct scatterlist *tail_sg;
1259 
1260 	tail_sg = urb->sg;
1261 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1262 
1263 	if (!urb->num_sgs)
1264 		return ret;
1265 
1266 	if (urb->dev->speed >= USB_SPEED_SUPER)
1267 		trb_size = TRB_CACHE_SIZE_SS;
1268 	else
1269 		trb_size = TRB_CACHE_SIZE_HS;
1270 
1271 	if (urb->transfer_buffer_length != 0 &&
1272 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1273 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1274 			len = len + sg->length;
1275 			if (i > trb_size - 2) {
1276 				len = len - tail_sg->length;
1277 				if (len < max_pkt) {
1278 					ret = true;
1279 					break;
1280 				}
1281 
1282 				tail_sg = sg_next(tail_sg);
1283 			}
1284 		}
1285 	}
1286 	return ret;
1287 }
1288 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1289 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1290 {
1291 	unsigned int len;
1292 	unsigned int buf_len;
1293 	enum dma_data_direction dir;
1294 
1295 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1296 
1297 	buf_len = urb->transfer_buffer_length;
1298 
1299 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1300 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1301 		dma_unmap_single(hcd->self.sysdev,
1302 				 urb->transfer_dma,
1303 				 urb->transfer_buffer_length,
1304 				 dir);
1305 
1306 	if (usb_urb_dir_in(urb)) {
1307 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1308 					   urb->transfer_buffer,
1309 					   buf_len,
1310 					   0);
1311 		if (len != buf_len) {
1312 			xhci_dbg(hcd_to_xhci(hcd),
1313 				 "Copy from tmp buf to urb sg list failed\n");
1314 			urb->actual_length = len;
1315 		}
1316 	}
1317 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1318 	kfree(urb->transfer_buffer);
1319 	urb->transfer_buffer = NULL;
1320 }
1321 
1322 /*
1323  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1324  * we'll copy the actual data into the TRB address register. This is limited to
1325  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1326  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1327  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1328 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1329 				gfp_t mem_flags)
1330 {
1331 	struct xhci_hcd *xhci;
1332 
1333 	xhci = hcd_to_xhci(hcd);
1334 
1335 	if (xhci_urb_suitable_for_idt(urb))
1336 		return 0;
1337 
1338 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1339 		if (xhci_urb_temp_buffer_required(hcd, urb))
1340 			return xhci_map_temp_buffer(hcd, urb);
1341 	}
1342 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1343 }
1344 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1345 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1346 {
1347 	struct xhci_hcd *xhci;
1348 	bool unmap_temp_buf = false;
1349 
1350 	xhci = hcd_to_xhci(hcd);
1351 
1352 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1353 		unmap_temp_buf = true;
1354 
1355 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1356 		xhci_unmap_temp_buf(hcd, urb);
1357 	else
1358 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1359 }
1360 
1361 /**
1362  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1363  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1364  * value to right shift 1 for the bitmask.
1365  *
1366  * Index  = (epnum * 2) + direction - 1,
1367  * where direction = 0 for OUT, 1 for IN.
1368  * For control endpoints, the IN index is used (OUT index is unused), so
1369  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1370  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1371 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1372 {
1373 	unsigned int index;
1374 	if (usb_endpoint_xfer_control(desc))
1375 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1376 	else
1377 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1378 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1379 	return index;
1380 }
1381 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1382 
1383 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1384  * address from the XHCI endpoint index.
1385  */
xhci_get_endpoint_address(unsigned int ep_index)1386 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1387 {
1388 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1389 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1390 	return direction | number;
1391 }
1392 
1393 /* Find the flag for this endpoint (for use in the control context).  Use the
1394  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1395  * bit 1, etc.
1396  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1397 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1398 {
1399 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1400 }
1401 
1402 /* Compute the last valid endpoint context index.  Basically, this is the
1403  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1404  * we find the most significant bit set in the added contexts flags.
1405  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1406  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1407  */
xhci_last_valid_endpoint(u32 added_ctxs)1408 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1409 {
1410 	return fls(added_ctxs) - 1;
1411 }
1412 
1413 /* Returns 1 if the arguments are OK;
1414  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1415  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1416 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1417 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1418 		const char *func) {
1419 	struct xhci_hcd	*xhci;
1420 	struct xhci_virt_device	*virt_dev;
1421 
1422 	if (!hcd || (check_ep && !ep) || !udev) {
1423 		pr_debug("xHCI %s called with invalid args\n", func);
1424 		return -EINVAL;
1425 	}
1426 	if (!udev->parent) {
1427 		pr_debug("xHCI %s called for root hub\n", func);
1428 		return 0;
1429 	}
1430 
1431 	xhci = hcd_to_xhci(hcd);
1432 	if (check_virt_dev) {
1433 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1434 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1435 					func);
1436 			return -EINVAL;
1437 		}
1438 
1439 		virt_dev = xhci->devs[udev->slot_id];
1440 		if (virt_dev->udev != udev) {
1441 			xhci_dbg(xhci, "xHCI %s called with udev and "
1442 					  "virt_dev does not match\n", func);
1443 			return -EINVAL;
1444 		}
1445 	}
1446 
1447 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1448 		return -ENODEV;
1449 
1450 	return 1;
1451 }
1452 
1453 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1454 		struct usb_device *udev, struct xhci_command *command,
1455 		bool ctx_change, bool must_succeed);
1456 
1457 /*
1458  * Full speed devices may have a max packet size greater than 8 bytes, but the
1459  * USB core doesn't know that until it reads the first 8 bytes of the
1460  * descriptor.  If the usb_device's max packet size changes after that point,
1461  * we need to issue an evaluate context command and wait on it.
1462  */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1463 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1464 {
1465 	struct xhci_input_control_ctx *ctrl_ctx;
1466 	struct xhci_ep_ctx *ep_ctx;
1467 	struct xhci_command *command;
1468 	int max_packet_size;
1469 	int hw_max_packet_size;
1470 	int ret = 0;
1471 
1472 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1473 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1474 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1475 
1476 	if (hw_max_packet_size == max_packet_size)
1477 		return 0;
1478 
1479 	switch (max_packet_size) {
1480 	case 8: case 16: case 32: case 64: case 9:
1481 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1482 				"Max Packet Size for ep 0 changed.");
1483 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484 				"Max packet size in usb_device = %d",
1485 				max_packet_size);
1486 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487 				"Max packet size in xHCI HW = %d",
1488 				hw_max_packet_size);
1489 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1490 				"Issuing evaluate context command.");
1491 
1492 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1493 		if (!command)
1494 			return -ENOMEM;
1495 
1496 		command->in_ctx = vdev->in_ctx;
1497 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1498 		if (!ctrl_ctx) {
1499 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1500 					__func__);
1501 			ret = -ENOMEM;
1502 			break;
1503 		}
1504 		/* Set up the modified control endpoint 0 */
1505 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1506 
1507 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1508 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1509 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1510 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1511 
1512 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1513 		ctrl_ctx->drop_flags = 0;
1514 
1515 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1516 					      true, false);
1517 		/* Clean up the input context for later use by bandwidth functions */
1518 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1519 		break;
1520 	default:
1521 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1522 			max_packet_size);
1523 		return -EINVAL;
1524 	}
1525 
1526 	kfree(command->completion);
1527 	kfree(command);
1528 
1529 	return ret;
1530 }
1531 
1532 /*
1533  * non-error returns are a promise to giveback() the urb later
1534  * we drop ownership so next owner (or urb unlink) can get it
1535  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1536 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1537 {
1538 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1539 	unsigned long flags;
1540 	int ret = 0;
1541 	unsigned int slot_id, ep_index;
1542 	unsigned int *ep_state;
1543 	struct urb_priv	*urb_priv;
1544 	int num_tds;
1545 
1546 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1547 
1548 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1549 		num_tds = urb->number_of_packets;
1550 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1551 	    urb->transfer_buffer_length > 0 &&
1552 	    urb->transfer_flags & URB_ZERO_PACKET &&
1553 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1554 		num_tds = 2;
1555 	else
1556 		num_tds = 1;
1557 
1558 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1559 	if (!urb_priv)
1560 		return -ENOMEM;
1561 
1562 	urb_priv->num_tds = num_tds;
1563 	urb_priv->num_tds_done = 0;
1564 	urb->hcpriv = urb_priv;
1565 
1566 	trace_xhci_urb_enqueue(urb);
1567 
1568 	spin_lock_irqsave(&xhci->lock, flags);
1569 
1570 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1571 			      true, true, __func__);
1572 	if (ret <= 0) {
1573 		ret = ret ? ret : -EINVAL;
1574 		goto free_priv;
1575 	}
1576 
1577 	slot_id = urb->dev->slot_id;
1578 
1579 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1580 		ret = -ESHUTDOWN;
1581 		goto free_priv;
1582 	}
1583 
1584 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1585 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1586 		ret = -ENODEV;
1587 		goto free_priv;
1588 	}
1589 
1590 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1591 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1592 			 urb->ep->desc.bEndpointAddress, urb);
1593 		ret = -ESHUTDOWN;
1594 		goto free_priv;
1595 	}
1596 
1597 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1598 
1599 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1600 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1601 			  *ep_state);
1602 		ret = -EINVAL;
1603 		goto free_priv;
1604 	}
1605 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1606 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1607 		ret = -EINVAL;
1608 		goto free_priv;
1609 	}
1610 
1611 	switch (usb_endpoint_type(&urb->ep->desc)) {
1612 
1613 	case USB_ENDPOINT_XFER_CONTROL:
1614 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1615 					 slot_id, ep_index);
1616 		break;
1617 	case USB_ENDPOINT_XFER_BULK:
1618 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1619 					 slot_id, ep_index);
1620 		break;
1621 	case USB_ENDPOINT_XFER_INT:
1622 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1623 				slot_id, ep_index);
1624 		break;
1625 	case USB_ENDPOINT_XFER_ISOC:
1626 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1627 				slot_id, ep_index);
1628 	}
1629 
1630 	if (ret) {
1631 free_priv:
1632 		xhci_urb_free_priv(urb_priv);
1633 		urb->hcpriv = NULL;
1634 	}
1635 	spin_unlock_irqrestore(&xhci->lock, flags);
1636 	return ret;
1637 }
1638 
1639 /*
1640  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1641  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1642  * should pick up where it left off in the TD, unless a Set Transfer Ring
1643  * Dequeue Pointer is issued.
1644  *
1645  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1646  * the ring.  Since the ring is a contiguous structure, they can't be physically
1647  * removed.  Instead, there are two options:
1648  *
1649  *  1) If the HC is in the middle of processing the URB to be canceled, we
1650  *     simply move the ring's dequeue pointer past those TRBs using the Set
1651  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1652  *     when drivers timeout on the last submitted URB and attempt to cancel.
1653  *
1654  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1655  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1656  *     HC will need to invalidate the any TRBs it has cached after the stop
1657  *     endpoint command, as noted in the xHCI 0.95 errata.
1658  *
1659  *  3) The TD may have completed by the time the Stop Endpoint Command
1660  *     completes, so software needs to handle that case too.
1661  *
1662  * This function should protect against the TD enqueueing code ringing the
1663  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1664  * It also needs to account for multiple cancellations on happening at the same
1665  * time for the same endpoint.
1666  *
1667  * Note that this function can be called in any context, or so says
1668  * usb_hcd_unlink_urb()
1669  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1670 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1671 {
1672 	unsigned long flags;
1673 	int ret, i;
1674 	u32 temp;
1675 	struct xhci_hcd *xhci;
1676 	struct urb_priv	*urb_priv;
1677 	struct xhci_td *td;
1678 	unsigned int ep_index;
1679 	struct xhci_ring *ep_ring;
1680 	struct xhci_virt_ep *ep;
1681 	struct xhci_command *command;
1682 	struct xhci_virt_device *vdev;
1683 
1684 	xhci = hcd_to_xhci(hcd);
1685 	spin_lock_irqsave(&xhci->lock, flags);
1686 
1687 	trace_xhci_urb_dequeue(urb);
1688 
1689 	/* Make sure the URB hasn't completed or been unlinked already */
1690 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1691 	if (ret)
1692 		goto done;
1693 
1694 	/* give back URB now if we can't queue it for cancel */
1695 	vdev = xhci->devs[urb->dev->slot_id];
1696 	urb_priv = urb->hcpriv;
1697 	if (!vdev || !urb_priv)
1698 		goto err_giveback;
1699 
1700 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1701 	ep = &vdev->eps[ep_index];
1702 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1703 	if (!ep || !ep_ring)
1704 		goto err_giveback;
1705 
1706 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1707 	temp = readl(&xhci->op_regs->status);
1708 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1709 		xhci_hc_died(xhci);
1710 		goto done;
1711 	}
1712 
1713 	/*
1714 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1715 	 * make sure none of the ring related pointers in this URB private data
1716 	 * are touched, such as td_list, otherwise we overwrite freed data
1717 	 */
1718 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1719 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1720 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1721 			td = &urb_priv->td[i];
1722 			if (!list_empty(&td->cancelled_td_list))
1723 				list_del_init(&td->cancelled_td_list);
1724 		}
1725 		goto err_giveback;
1726 	}
1727 
1728 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1729 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1730 				"HC halted, freeing TD manually.");
1731 		for (i = urb_priv->num_tds_done;
1732 		     i < urb_priv->num_tds;
1733 		     i++) {
1734 			td = &urb_priv->td[i];
1735 			if (!list_empty(&td->td_list))
1736 				list_del_init(&td->td_list);
1737 			if (!list_empty(&td->cancelled_td_list))
1738 				list_del_init(&td->cancelled_td_list);
1739 		}
1740 		goto err_giveback;
1741 	}
1742 
1743 	i = urb_priv->num_tds_done;
1744 	if (i < urb_priv->num_tds)
1745 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1746 				"Cancel URB %p, dev %s, ep 0x%x, "
1747 				"starting at offset 0x%llx",
1748 				urb, urb->dev->devpath,
1749 				urb->ep->desc.bEndpointAddress,
1750 				(unsigned long long) xhci_trb_virt_to_dma(
1751 					urb_priv->td[i].start_seg,
1752 					urb_priv->td[i].start_trb));
1753 
1754 	for (; i < urb_priv->num_tds; i++) {
1755 		td = &urb_priv->td[i];
1756 		/* TD can already be on cancelled list if ep halted on it */
1757 		if (list_empty(&td->cancelled_td_list)) {
1758 			td->cancel_status = TD_DIRTY;
1759 			list_add_tail(&td->cancelled_td_list,
1760 				      &ep->cancelled_td_list);
1761 		}
1762 	}
1763 
1764 	/* These completion handlers will sort out cancelled TDs for us */
1765 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1766 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1767 				urb->dev->slot_id, ep_index, ep->ep_state);
1768 		goto done;
1769 	}
1770 
1771 	/* In this case no commands are pending but the endpoint is stopped */
1772 	if (ep->ep_state & EP_CLEARING_TT) {
1773 		/* and cancelled TDs can be given back right away */
1774 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1775 				urb->dev->slot_id, ep_index, ep->ep_state);
1776 		xhci_process_cancelled_tds(ep);
1777 	} else {
1778 		/* Otherwise, queue a new Stop Endpoint command */
1779 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1780 		if (!command) {
1781 			ret = -ENOMEM;
1782 			goto done;
1783 		}
1784 		ep->stop_time = jiffies;
1785 		ep->ep_state |= EP_STOP_CMD_PENDING;
1786 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1787 					 ep_index, 0);
1788 		xhci_ring_cmd_db(xhci);
1789 	}
1790 done:
1791 	spin_unlock_irqrestore(&xhci->lock, flags);
1792 	return ret;
1793 
1794 err_giveback:
1795 	if (urb_priv)
1796 		xhci_urb_free_priv(urb_priv);
1797 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1798 	spin_unlock_irqrestore(&xhci->lock, flags);
1799 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1800 	return ret;
1801 }
1802 
1803 /* Drop an endpoint from a new bandwidth configuration for this device.
1804  * Only one call to this function is allowed per endpoint before
1805  * check_bandwidth() or reset_bandwidth() must be called.
1806  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1807  * add the endpoint to the schedule with possibly new parameters denoted by a
1808  * different endpoint descriptor in usb_host_endpoint.
1809  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1810  * not allowed.
1811  *
1812  * The USB core will not allow URBs to be queued to an endpoint that is being
1813  * disabled, so there's no need for mutual exclusion to protect
1814  * the xhci->devs[slot_id] structure.
1815  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1816 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1817 		       struct usb_host_endpoint *ep)
1818 {
1819 	struct xhci_hcd *xhci;
1820 	struct xhci_container_ctx *in_ctx, *out_ctx;
1821 	struct xhci_input_control_ctx *ctrl_ctx;
1822 	unsigned int ep_index;
1823 	struct xhci_ep_ctx *ep_ctx;
1824 	u32 drop_flag;
1825 	u32 new_add_flags, new_drop_flags;
1826 	int ret;
1827 
1828 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1829 	if (ret <= 0)
1830 		return ret;
1831 	xhci = hcd_to_xhci(hcd);
1832 	if (xhci->xhc_state & XHCI_STATE_DYING)
1833 		return -ENODEV;
1834 
1835 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1836 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1837 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1838 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1839 				__func__, drop_flag);
1840 		return 0;
1841 	}
1842 
1843 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1844 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1845 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1846 	if (!ctrl_ctx) {
1847 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848 				__func__);
1849 		return 0;
1850 	}
1851 
1852 	ep_index = xhci_get_endpoint_index(&ep->desc);
1853 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1854 	/* If the HC already knows the endpoint is disabled,
1855 	 * or the HCD has noted it is disabled, ignore this request
1856 	 */
1857 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1858 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1859 	    xhci_get_endpoint_flag(&ep->desc)) {
1860 		/* Do not warn when called after a usb_device_reset */
1861 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1862 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1863 				  __func__, ep);
1864 		return 0;
1865 	}
1866 
1867 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1868 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1869 
1870 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1871 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1872 
1873 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1874 
1875 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1876 
1877 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1878 			(unsigned int) ep->desc.bEndpointAddress,
1879 			udev->slot_id,
1880 			(unsigned int) new_drop_flags,
1881 			(unsigned int) new_add_flags);
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1885 
1886 /* Add an endpoint to a new possible bandwidth configuration for this device.
1887  * Only one call to this function is allowed per endpoint before
1888  * check_bandwidth() or reset_bandwidth() must be called.
1889  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1890  * add the endpoint to the schedule with possibly new parameters denoted by a
1891  * different endpoint descriptor in usb_host_endpoint.
1892  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1893  * not allowed.
1894  *
1895  * The USB core will not allow URBs to be queued to an endpoint until the
1896  * configuration or alt setting is installed in the device, so there's no need
1897  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1898  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1899 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1900 		      struct usb_host_endpoint *ep)
1901 {
1902 	struct xhci_hcd *xhci;
1903 	struct xhci_container_ctx *in_ctx;
1904 	unsigned int ep_index;
1905 	struct xhci_input_control_ctx *ctrl_ctx;
1906 	struct xhci_ep_ctx *ep_ctx;
1907 	u32 added_ctxs;
1908 	u32 new_add_flags, new_drop_flags;
1909 	struct xhci_virt_device *virt_dev;
1910 	int ret = 0;
1911 
1912 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1913 	if (ret <= 0) {
1914 		/* So we won't queue a reset ep command for a root hub */
1915 		ep->hcpriv = NULL;
1916 		return ret;
1917 	}
1918 	xhci = hcd_to_xhci(hcd);
1919 	if (xhci->xhc_state & XHCI_STATE_DYING)
1920 		return -ENODEV;
1921 
1922 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1923 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1924 		/* FIXME when we have to issue an evaluate endpoint command to
1925 		 * deal with ep0 max packet size changing once we get the
1926 		 * descriptors
1927 		 */
1928 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1929 				__func__, added_ctxs);
1930 		return 0;
1931 	}
1932 
1933 	virt_dev = xhci->devs[udev->slot_id];
1934 	in_ctx = virt_dev->in_ctx;
1935 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1936 	if (!ctrl_ctx) {
1937 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938 				__func__);
1939 		return 0;
1940 	}
1941 
1942 	ep_index = xhci_get_endpoint_index(&ep->desc);
1943 	/* If this endpoint is already in use, and the upper layers are trying
1944 	 * to add it again without dropping it, reject the addition.
1945 	 */
1946 	if (virt_dev->eps[ep_index].ring &&
1947 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1948 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1949 				"without dropping it.\n",
1950 				(unsigned int) ep->desc.bEndpointAddress);
1951 		return -EINVAL;
1952 	}
1953 
1954 	/* If the HCD has already noted the endpoint is enabled,
1955 	 * ignore this request.
1956 	 */
1957 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1958 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1959 				__func__, ep);
1960 		return 0;
1961 	}
1962 
1963 	/*
1964 	 * Configuration and alternate setting changes must be done in
1965 	 * process context, not interrupt context (or so documenation
1966 	 * for usb_set_interface() and usb_set_configuration() claim).
1967 	 */
1968 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1969 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1970 				__func__, ep->desc.bEndpointAddress);
1971 		return -ENOMEM;
1972 	}
1973 
1974 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1975 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976 
1977 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1978 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1979 	 * this re-adds a new state for the endpoint from the new endpoint
1980 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1981 	 * drop flags alone.
1982 	 */
1983 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1984 
1985 	/* Store the usb_device pointer for later use */
1986 	ep->hcpriv = udev;
1987 
1988 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1989 	trace_xhci_add_endpoint(ep_ctx);
1990 
1991 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1992 			(unsigned int) ep->desc.bEndpointAddress,
1993 			udev->slot_id,
1994 			(unsigned int) new_drop_flags,
1995 			(unsigned int) new_add_flags);
1996 	return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1999 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2000 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2001 {
2002 	struct xhci_input_control_ctx *ctrl_ctx;
2003 	struct xhci_ep_ctx *ep_ctx;
2004 	struct xhci_slot_ctx *slot_ctx;
2005 	int i;
2006 
2007 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2008 	if (!ctrl_ctx) {
2009 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2010 				__func__);
2011 		return;
2012 	}
2013 
2014 	/* When a device's add flag and drop flag are zero, any subsequent
2015 	 * configure endpoint command will leave that endpoint's state
2016 	 * untouched.  Make sure we don't leave any old state in the input
2017 	 * endpoint contexts.
2018 	 */
2019 	ctrl_ctx->drop_flags = 0;
2020 	ctrl_ctx->add_flags = 0;
2021 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2022 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2023 	/* Endpoint 0 is always valid */
2024 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2025 	for (i = 1; i < 31; i++) {
2026 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2027 		ep_ctx->ep_info = 0;
2028 		ep_ctx->ep_info2 = 0;
2029 		ep_ctx->deq = 0;
2030 		ep_ctx->tx_info = 0;
2031 	}
2032 }
2033 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2034 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2035 		struct usb_device *udev, u32 *cmd_status)
2036 {
2037 	int ret;
2038 
2039 	switch (*cmd_status) {
2040 	case COMP_COMMAND_ABORTED:
2041 	case COMP_COMMAND_RING_STOPPED:
2042 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2043 		ret = -ETIME;
2044 		break;
2045 	case COMP_RESOURCE_ERROR:
2046 		dev_warn(&udev->dev,
2047 			 "Not enough host controller resources for new device state.\n");
2048 		ret = -ENOMEM;
2049 		/* FIXME: can we allocate more resources for the HC? */
2050 		break;
2051 	case COMP_BANDWIDTH_ERROR:
2052 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2053 		dev_warn(&udev->dev,
2054 			 "Not enough bandwidth for new device state.\n");
2055 		ret = -ENOSPC;
2056 		/* FIXME: can we go back to the old state? */
2057 		break;
2058 	case COMP_TRB_ERROR:
2059 		/* the HCD set up something wrong */
2060 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2061 				"add flag = 1, "
2062 				"and endpoint is not disabled.\n");
2063 		ret = -EINVAL;
2064 		break;
2065 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2066 		dev_warn(&udev->dev,
2067 			 "ERROR: Incompatible device for endpoint configure command.\n");
2068 		ret = -ENODEV;
2069 		break;
2070 	case COMP_SUCCESS:
2071 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2072 				"Successful Endpoint Configure command");
2073 		ret = 0;
2074 		break;
2075 	default:
2076 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2077 				*cmd_status);
2078 		ret = -EINVAL;
2079 		break;
2080 	}
2081 	return ret;
2082 }
2083 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2084 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2085 		struct usb_device *udev, u32 *cmd_status)
2086 {
2087 	int ret;
2088 
2089 	switch (*cmd_status) {
2090 	case COMP_COMMAND_ABORTED:
2091 	case COMP_COMMAND_RING_STOPPED:
2092 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2093 		ret = -ETIME;
2094 		break;
2095 	case COMP_PARAMETER_ERROR:
2096 		dev_warn(&udev->dev,
2097 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2098 		ret = -EINVAL;
2099 		break;
2100 	case COMP_SLOT_NOT_ENABLED_ERROR:
2101 		dev_warn(&udev->dev,
2102 			"WARN: slot not enabled for evaluate context command.\n");
2103 		ret = -EINVAL;
2104 		break;
2105 	case COMP_CONTEXT_STATE_ERROR:
2106 		dev_warn(&udev->dev,
2107 			"WARN: invalid context state for evaluate context command.\n");
2108 		ret = -EINVAL;
2109 		break;
2110 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2111 		dev_warn(&udev->dev,
2112 			"ERROR: Incompatible device for evaluate context command.\n");
2113 		ret = -ENODEV;
2114 		break;
2115 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2116 		/* Max Exit Latency too large error */
2117 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2118 		ret = -EINVAL;
2119 		break;
2120 	case COMP_SUCCESS:
2121 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2122 				"Successful evaluate context command");
2123 		ret = 0;
2124 		break;
2125 	default:
2126 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2127 			*cmd_status);
2128 		ret = -EINVAL;
2129 		break;
2130 	}
2131 	return ret;
2132 }
2133 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2134 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2135 		struct xhci_input_control_ctx *ctrl_ctx)
2136 {
2137 	u32 valid_add_flags;
2138 	u32 valid_drop_flags;
2139 
2140 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2141 	 * (bit 1).  The default control endpoint is added during the Address
2142 	 * Device command and is never removed until the slot is disabled.
2143 	 */
2144 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2145 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2146 
2147 	/* Use hweight32 to count the number of ones in the add flags, or
2148 	 * number of endpoints added.  Don't count endpoints that are changed
2149 	 * (both added and dropped).
2150 	 */
2151 	return hweight32(valid_add_flags) -
2152 		hweight32(valid_add_flags & valid_drop_flags);
2153 }
2154 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2155 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2156 		struct xhci_input_control_ctx *ctrl_ctx)
2157 {
2158 	u32 valid_add_flags;
2159 	u32 valid_drop_flags;
2160 
2161 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2162 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2163 
2164 	return hweight32(valid_drop_flags) -
2165 		hweight32(valid_add_flags & valid_drop_flags);
2166 }
2167 
2168 /*
2169  * We need to reserve the new number of endpoints before the configure endpoint
2170  * command completes.  We can't subtract the dropped endpoints from the number
2171  * of active endpoints until the command completes because we can oversubscribe
2172  * the host in this case:
2173  *
2174  *  - the first configure endpoint command drops more endpoints than it adds
2175  *  - a second configure endpoint command that adds more endpoints is queued
2176  *  - the first configure endpoint command fails, so the config is unchanged
2177  *  - the second command may succeed, even though there isn't enough resources
2178  *
2179  * Must be called with xhci->lock held.
2180  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2181 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2182 		struct xhci_input_control_ctx *ctrl_ctx)
2183 {
2184 	u32 added_eps;
2185 
2186 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2187 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2188 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2189 				"Not enough ep ctxs: "
2190 				"%u active, need to add %u, limit is %u.",
2191 				xhci->num_active_eps, added_eps,
2192 				xhci->limit_active_eps);
2193 		return -ENOMEM;
2194 	}
2195 	xhci->num_active_eps += added_eps;
2196 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197 			"Adding %u ep ctxs, %u now active.", added_eps,
2198 			xhci->num_active_eps);
2199 	return 0;
2200 }
2201 
2202 /*
2203  * The configure endpoint was failed by the xHC for some other reason, so we
2204  * need to revert the resources that failed configuration would have used.
2205  *
2206  * Must be called with xhci->lock held.
2207  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2208 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2209 		struct xhci_input_control_ctx *ctrl_ctx)
2210 {
2211 	u32 num_failed_eps;
2212 
2213 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2214 	xhci->num_active_eps -= num_failed_eps;
2215 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2216 			"Removing %u failed ep ctxs, %u now active.",
2217 			num_failed_eps,
2218 			xhci->num_active_eps);
2219 }
2220 
2221 /*
2222  * Now that the command has completed, clean up the active endpoint count by
2223  * subtracting out the endpoints that were dropped (but not changed).
2224  *
2225  * Must be called with xhci->lock held.
2226  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2227 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2228 		struct xhci_input_control_ctx *ctrl_ctx)
2229 {
2230 	u32 num_dropped_eps;
2231 
2232 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2233 	xhci->num_active_eps -= num_dropped_eps;
2234 	if (num_dropped_eps)
2235 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2236 				"Removing %u dropped ep ctxs, %u now active.",
2237 				num_dropped_eps,
2238 				xhci->num_active_eps);
2239 }
2240 
xhci_get_block_size(struct usb_device * udev)2241 static unsigned int xhci_get_block_size(struct usb_device *udev)
2242 {
2243 	switch (udev->speed) {
2244 	case USB_SPEED_LOW:
2245 	case USB_SPEED_FULL:
2246 		return FS_BLOCK;
2247 	case USB_SPEED_HIGH:
2248 		return HS_BLOCK;
2249 	case USB_SPEED_SUPER:
2250 	case USB_SPEED_SUPER_PLUS:
2251 		return SS_BLOCK;
2252 	case USB_SPEED_UNKNOWN:
2253 	default:
2254 		/* Should never happen */
2255 		return 1;
2256 	}
2257 }
2258 
2259 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2260 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2261 {
2262 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2263 		return LS_OVERHEAD;
2264 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2265 		return FS_OVERHEAD;
2266 	return HS_OVERHEAD;
2267 }
2268 
2269 /* If we are changing a LS/FS device under a HS hub,
2270  * make sure (if we are activating a new TT) that the HS bus has enough
2271  * bandwidth for this new TT.
2272  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2273 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2274 		struct xhci_virt_device *virt_dev,
2275 		int old_active_eps)
2276 {
2277 	struct xhci_interval_bw_table *bw_table;
2278 	struct xhci_tt_bw_info *tt_info;
2279 
2280 	/* Find the bandwidth table for the root port this TT is attached to. */
2281 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2282 	tt_info = virt_dev->tt_info;
2283 	/* If this TT already had active endpoints, the bandwidth for this TT
2284 	 * has already been added.  Removing all periodic endpoints (and thus
2285 	 * making the TT enactive) will only decrease the bandwidth used.
2286 	 */
2287 	if (old_active_eps)
2288 		return 0;
2289 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2290 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2291 			return -ENOMEM;
2292 		return 0;
2293 	}
2294 	/* Not sure why we would have no new active endpoints...
2295 	 *
2296 	 * Maybe because of an Evaluate Context change for a hub update or a
2297 	 * control endpoint 0 max packet size change?
2298 	 * FIXME: skip the bandwidth calculation in that case.
2299 	 */
2300 	return 0;
2301 }
2302 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2303 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2304 		struct xhci_virt_device *virt_dev)
2305 {
2306 	unsigned int bw_reserved;
2307 
2308 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2309 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2310 		return -ENOMEM;
2311 
2312 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2313 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2314 		return -ENOMEM;
2315 
2316 	return 0;
2317 }
2318 
2319 /*
2320  * This algorithm is a very conservative estimate of the worst-case scheduling
2321  * scenario for any one interval.  The hardware dynamically schedules the
2322  * packets, so we can't tell which microframe could be the limiting factor in
2323  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2324  *
2325  * Obviously, we can't solve an NP complete problem to find the minimum worst
2326  * case scenario.  Instead, we come up with an estimate that is no less than
2327  * the worst case bandwidth used for any one microframe, but may be an
2328  * over-estimate.
2329  *
2330  * We walk the requirements for each endpoint by interval, starting with the
2331  * smallest interval, and place packets in the schedule where there is only one
2332  * possible way to schedule packets for that interval.  In order to simplify
2333  * this algorithm, we record the largest max packet size for each interval, and
2334  * assume all packets will be that size.
2335  *
2336  * For interval 0, we obviously must schedule all packets for each interval.
2337  * The bandwidth for interval 0 is just the amount of data to be transmitted
2338  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2339  * the number of packets).
2340  *
2341  * For interval 1, we have two possible microframes to schedule those packets
2342  * in.  For this algorithm, if we can schedule the same number of packets for
2343  * each possible scheduling opportunity (each microframe), we will do so.  The
2344  * remaining number of packets will be saved to be transmitted in the gaps in
2345  * the next interval's scheduling sequence.
2346  *
2347  * As we move those remaining packets to be scheduled with interval 2 packets,
2348  * we have to double the number of remaining packets to transmit.  This is
2349  * because the intervals are actually powers of 2, and we would be transmitting
2350  * the previous interval's packets twice in this interval.  We also have to be
2351  * sure that when we look at the largest max packet size for this interval, we
2352  * also look at the largest max packet size for the remaining packets and take
2353  * the greater of the two.
2354  *
2355  * The algorithm continues to evenly distribute packets in each scheduling
2356  * opportunity, and push the remaining packets out, until we get to the last
2357  * interval.  Then those packets and their associated overhead are just added
2358  * to the bandwidth used.
2359  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2360 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2361 		struct xhci_virt_device *virt_dev,
2362 		int old_active_eps)
2363 {
2364 	unsigned int bw_reserved;
2365 	unsigned int max_bandwidth;
2366 	unsigned int bw_used;
2367 	unsigned int block_size;
2368 	struct xhci_interval_bw_table *bw_table;
2369 	unsigned int packet_size = 0;
2370 	unsigned int overhead = 0;
2371 	unsigned int packets_transmitted = 0;
2372 	unsigned int packets_remaining = 0;
2373 	unsigned int i;
2374 
2375 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2376 		return xhci_check_ss_bw(xhci, virt_dev);
2377 
2378 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2379 		max_bandwidth = HS_BW_LIMIT;
2380 		/* Convert percent of bus BW reserved to blocks reserved */
2381 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2382 	} else {
2383 		max_bandwidth = FS_BW_LIMIT;
2384 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2385 	}
2386 
2387 	bw_table = virt_dev->bw_table;
2388 	/* We need to translate the max packet size and max ESIT payloads into
2389 	 * the units the hardware uses.
2390 	 */
2391 	block_size = xhci_get_block_size(virt_dev->udev);
2392 
2393 	/* If we are manipulating a LS/FS device under a HS hub, double check
2394 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2395 	 */
2396 	if (virt_dev->tt_info) {
2397 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2398 				"Recalculating BW for rootport %u",
2399 				virt_dev->rhub_port->hw_portnum + 1);
2400 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2401 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2402 					"newly activated TT.\n");
2403 			return -ENOMEM;
2404 		}
2405 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2406 				"Recalculating BW for TT slot %u port %u",
2407 				virt_dev->tt_info->slot_id,
2408 				virt_dev->tt_info->ttport);
2409 	} else {
2410 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2411 				"Recalculating BW for rootport %u",
2412 				virt_dev->rhub_port->hw_portnum + 1);
2413 	}
2414 
2415 	/* Add in how much bandwidth will be used for interval zero, or the
2416 	 * rounded max ESIT payload + number of packets * largest overhead.
2417 	 */
2418 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2419 		bw_table->interval_bw[0].num_packets *
2420 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2421 
2422 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2423 		unsigned int bw_added;
2424 		unsigned int largest_mps;
2425 		unsigned int interval_overhead;
2426 
2427 		/*
2428 		 * How many packets could we transmit in this interval?
2429 		 * If packets didn't fit in the previous interval, we will need
2430 		 * to transmit that many packets twice within this interval.
2431 		 */
2432 		packets_remaining = 2 * packets_remaining +
2433 			bw_table->interval_bw[i].num_packets;
2434 
2435 		/* Find the largest max packet size of this or the previous
2436 		 * interval.
2437 		 */
2438 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2439 			largest_mps = 0;
2440 		else {
2441 			struct xhci_virt_ep *virt_ep;
2442 			struct list_head *ep_entry;
2443 
2444 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2445 			virt_ep = list_entry(ep_entry,
2446 					struct xhci_virt_ep, bw_endpoint_list);
2447 			/* Convert to blocks, rounding up */
2448 			largest_mps = DIV_ROUND_UP(
2449 					virt_ep->bw_info.max_packet_size,
2450 					block_size);
2451 		}
2452 		if (largest_mps > packet_size)
2453 			packet_size = largest_mps;
2454 
2455 		/* Use the larger overhead of this or the previous interval. */
2456 		interval_overhead = xhci_get_largest_overhead(
2457 				&bw_table->interval_bw[i]);
2458 		if (interval_overhead > overhead)
2459 			overhead = interval_overhead;
2460 
2461 		/* How many packets can we evenly distribute across
2462 		 * (1 << (i + 1)) possible scheduling opportunities?
2463 		 */
2464 		packets_transmitted = packets_remaining >> (i + 1);
2465 
2466 		/* Add in the bandwidth used for those scheduled packets */
2467 		bw_added = packets_transmitted * (overhead + packet_size);
2468 
2469 		/* How many packets do we have remaining to transmit? */
2470 		packets_remaining = packets_remaining % (1 << (i + 1));
2471 
2472 		/* What largest max packet size should those packets have? */
2473 		/* If we've transmitted all packets, don't carry over the
2474 		 * largest packet size.
2475 		 */
2476 		if (packets_remaining == 0) {
2477 			packet_size = 0;
2478 			overhead = 0;
2479 		} else if (packets_transmitted > 0) {
2480 			/* Otherwise if we do have remaining packets, and we've
2481 			 * scheduled some packets in this interval, take the
2482 			 * largest max packet size from endpoints with this
2483 			 * interval.
2484 			 */
2485 			packet_size = largest_mps;
2486 			overhead = interval_overhead;
2487 		}
2488 		/* Otherwise carry over packet_size and overhead from the last
2489 		 * time we had a remainder.
2490 		 */
2491 		bw_used += bw_added;
2492 		if (bw_used > max_bandwidth) {
2493 			xhci_warn(xhci, "Not enough bandwidth. "
2494 					"Proposed: %u, Max: %u\n",
2495 				bw_used, max_bandwidth);
2496 			return -ENOMEM;
2497 		}
2498 	}
2499 	/*
2500 	 * Ok, we know we have some packets left over after even-handedly
2501 	 * scheduling interval 15.  We don't know which microframes they will
2502 	 * fit into, so we over-schedule and say they will be scheduled every
2503 	 * microframe.
2504 	 */
2505 	if (packets_remaining > 0)
2506 		bw_used += overhead + packet_size;
2507 
2508 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2509 		/* OK, we're manipulating a HS device attached to a
2510 		 * root port bandwidth domain.  Include the number of active TTs
2511 		 * in the bandwidth used.
2512 		 */
2513 		bw_used += TT_HS_OVERHEAD *
2514 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2515 	}
2516 
2517 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2518 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2519 		"Available: %u " "percent",
2520 		bw_used, max_bandwidth, bw_reserved,
2521 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2522 		max_bandwidth);
2523 
2524 	bw_used += bw_reserved;
2525 	if (bw_used > max_bandwidth) {
2526 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2527 				bw_used, max_bandwidth);
2528 		return -ENOMEM;
2529 	}
2530 
2531 	bw_table->bw_used = bw_used;
2532 	return 0;
2533 }
2534 
xhci_is_async_ep(unsigned int ep_type)2535 static bool xhci_is_async_ep(unsigned int ep_type)
2536 {
2537 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2538 					ep_type != ISOC_IN_EP &&
2539 					ep_type != INT_IN_EP);
2540 }
2541 
xhci_is_sync_in_ep(unsigned int ep_type)2542 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2543 {
2544 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2545 }
2546 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2547 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2548 {
2549 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2550 
2551 	if (ep_bw->ep_interval == 0)
2552 		return SS_OVERHEAD_BURST +
2553 			(ep_bw->mult * ep_bw->num_packets *
2554 					(SS_OVERHEAD + mps));
2555 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2556 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2557 				1 << ep_bw->ep_interval);
2558 
2559 }
2560 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2561 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2562 		struct xhci_bw_info *ep_bw,
2563 		struct xhci_interval_bw_table *bw_table,
2564 		struct usb_device *udev,
2565 		struct xhci_virt_ep *virt_ep,
2566 		struct xhci_tt_bw_info *tt_info)
2567 {
2568 	struct xhci_interval_bw	*interval_bw;
2569 	int normalized_interval;
2570 
2571 	if (xhci_is_async_ep(ep_bw->type))
2572 		return;
2573 
2574 	if (udev->speed >= USB_SPEED_SUPER) {
2575 		if (xhci_is_sync_in_ep(ep_bw->type))
2576 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2577 				xhci_get_ss_bw_consumed(ep_bw);
2578 		else
2579 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2580 				xhci_get_ss_bw_consumed(ep_bw);
2581 		return;
2582 	}
2583 
2584 	/* SuperSpeed endpoints never get added to intervals in the table, so
2585 	 * this check is only valid for HS/FS/LS devices.
2586 	 */
2587 	if (list_empty(&virt_ep->bw_endpoint_list))
2588 		return;
2589 	/* For LS/FS devices, we need to translate the interval expressed in
2590 	 * microframes to frames.
2591 	 */
2592 	if (udev->speed == USB_SPEED_HIGH)
2593 		normalized_interval = ep_bw->ep_interval;
2594 	else
2595 		normalized_interval = ep_bw->ep_interval - 3;
2596 
2597 	if (normalized_interval == 0)
2598 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2599 	interval_bw = &bw_table->interval_bw[normalized_interval];
2600 	interval_bw->num_packets -= ep_bw->num_packets;
2601 	switch (udev->speed) {
2602 	case USB_SPEED_LOW:
2603 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2604 		break;
2605 	case USB_SPEED_FULL:
2606 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2607 		break;
2608 	case USB_SPEED_HIGH:
2609 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2610 		break;
2611 	default:
2612 		/* Should never happen because only LS/FS/HS endpoints will get
2613 		 * added to the endpoint list.
2614 		 */
2615 		return;
2616 	}
2617 	if (tt_info)
2618 		tt_info->active_eps -= 1;
2619 	list_del_init(&virt_ep->bw_endpoint_list);
2620 }
2621 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2622 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2623 		struct xhci_bw_info *ep_bw,
2624 		struct xhci_interval_bw_table *bw_table,
2625 		struct usb_device *udev,
2626 		struct xhci_virt_ep *virt_ep,
2627 		struct xhci_tt_bw_info *tt_info)
2628 {
2629 	struct xhci_interval_bw	*interval_bw;
2630 	struct xhci_virt_ep *smaller_ep;
2631 	int normalized_interval;
2632 
2633 	if (xhci_is_async_ep(ep_bw->type))
2634 		return;
2635 
2636 	if (udev->speed == USB_SPEED_SUPER) {
2637 		if (xhci_is_sync_in_ep(ep_bw->type))
2638 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2639 				xhci_get_ss_bw_consumed(ep_bw);
2640 		else
2641 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2642 				xhci_get_ss_bw_consumed(ep_bw);
2643 		return;
2644 	}
2645 
2646 	/* For LS/FS devices, we need to translate the interval expressed in
2647 	 * microframes to frames.
2648 	 */
2649 	if (udev->speed == USB_SPEED_HIGH)
2650 		normalized_interval = ep_bw->ep_interval;
2651 	else
2652 		normalized_interval = ep_bw->ep_interval - 3;
2653 
2654 	if (normalized_interval == 0)
2655 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2656 	interval_bw = &bw_table->interval_bw[normalized_interval];
2657 	interval_bw->num_packets += ep_bw->num_packets;
2658 	switch (udev->speed) {
2659 	case USB_SPEED_LOW:
2660 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2661 		break;
2662 	case USB_SPEED_FULL:
2663 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2664 		break;
2665 	case USB_SPEED_HIGH:
2666 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2667 		break;
2668 	default:
2669 		/* Should never happen because only LS/FS/HS endpoints will get
2670 		 * added to the endpoint list.
2671 		 */
2672 		return;
2673 	}
2674 
2675 	if (tt_info)
2676 		tt_info->active_eps += 1;
2677 	/* Insert the endpoint into the list, largest max packet size first. */
2678 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2679 			bw_endpoint_list) {
2680 		if (ep_bw->max_packet_size >=
2681 				smaller_ep->bw_info.max_packet_size) {
2682 			/* Add the new ep before the smaller endpoint */
2683 			list_add_tail(&virt_ep->bw_endpoint_list,
2684 					&smaller_ep->bw_endpoint_list);
2685 			return;
2686 		}
2687 	}
2688 	/* Add the new endpoint at the end of the list. */
2689 	list_add_tail(&virt_ep->bw_endpoint_list,
2690 			&interval_bw->endpoints);
2691 }
2692 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2693 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2694 		struct xhci_virt_device *virt_dev,
2695 		int old_active_eps)
2696 {
2697 	struct xhci_root_port_bw_info *rh_bw_info;
2698 	if (!virt_dev->tt_info)
2699 		return;
2700 
2701 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2702 	if (old_active_eps == 0 &&
2703 				virt_dev->tt_info->active_eps != 0) {
2704 		rh_bw_info->num_active_tts += 1;
2705 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2706 	} else if (old_active_eps != 0 &&
2707 				virt_dev->tt_info->active_eps == 0) {
2708 		rh_bw_info->num_active_tts -= 1;
2709 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2710 	}
2711 }
2712 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2713 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2714 		struct xhci_virt_device *virt_dev,
2715 		struct xhci_container_ctx *in_ctx)
2716 {
2717 	struct xhci_bw_info ep_bw_info[31];
2718 	int i;
2719 	struct xhci_input_control_ctx *ctrl_ctx;
2720 	int old_active_eps = 0;
2721 
2722 	if (virt_dev->tt_info)
2723 		old_active_eps = virt_dev->tt_info->active_eps;
2724 
2725 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2726 	if (!ctrl_ctx) {
2727 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2728 				__func__);
2729 		return -ENOMEM;
2730 	}
2731 
2732 	for (i = 0; i < 31; i++) {
2733 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2734 			continue;
2735 
2736 		/* Make a copy of the BW info in case we need to revert this */
2737 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2738 				sizeof(ep_bw_info[i]));
2739 		/* Drop the endpoint from the interval table if the endpoint is
2740 		 * being dropped or changed.
2741 		 */
2742 		if (EP_IS_DROPPED(ctrl_ctx, i))
2743 			xhci_drop_ep_from_interval_table(xhci,
2744 					&virt_dev->eps[i].bw_info,
2745 					virt_dev->bw_table,
2746 					virt_dev->udev,
2747 					&virt_dev->eps[i],
2748 					virt_dev->tt_info);
2749 	}
2750 	/* Overwrite the information stored in the endpoints' bw_info */
2751 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2752 	for (i = 0; i < 31; i++) {
2753 		/* Add any changed or added endpoints to the interval table */
2754 		if (EP_IS_ADDED(ctrl_ctx, i))
2755 			xhci_add_ep_to_interval_table(xhci,
2756 					&virt_dev->eps[i].bw_info,
2757 					virt_dev->bw_table,
2758 					virt_dev->udev,
2759 					&virt_dev->eps[i],
2760 					virt_dev->tt_info);
2761 	}
2762 
2763 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2764 		/* Ok, this fits in the bandwidth we have.
2765 		 * Update the number of active TTs.
2766 		 */
2767 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2768 		return 0;
2769 	}
2770 
2771 	/* We don't have enough bandwidth for this, revert the stored info. */
2772 	for (i = 0; i < 31; i++) {
2773 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2774 			continue;
2775 
2776 		/* Drop the new copies of any added or changed endpoints from
2777 		 * the interval table.
2778 		 */
2779 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2780 			xhci_drop_ep_from_interval_table(xhci,
2781 					&virt_dev->eps[i].bw_info,
2782 					virt_dev->bw_table,
2783 					virt_dev->udev,
2784 					&virt_dev->eps[i],
2785 					virt_dev->tt_info);
2786 		}
2787 		/* Revert the endpoint back to its old information */
2788 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2789 				sizeof(ep_bw_info[i]));
2790 		/* Add any changed or dropped endpoints back into the table */
2791 		if (EP_IS_DROPPED(ctrl_ctx, i))
2792 			xhci_add_ep_to_interval_table(xhci,
2793 					&virt_dev->eps[i].bw_info,
2794 					virt_dev->bw_table,
2795 					virt_dev->udev,
2796 					&virt_dev->eps[i],
2797 					virt_dev->tt_info);
2798 	}
2799 	return -ENOMEM;
2800 }
2801 
2802 /*
2803  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2804  * waits for the command completion before returning.  This does not call
2805  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2806  * cases, along with transfer ring cleanup.
2807  *
2808  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2809  * their own transfer ring, such as offload situations.
2810  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2811 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2812 			    gfp_t gfp_flags)
2813 {
2814 	struct xhci_command *command;
2815 	unsigned long flags;
2816 	int ret;
2817 
2818 	command = xhci_alloc_command(xhci, true, gfp_flags);
2819 	if (!command)
2820 		return -ENOMEM;
2821 
2822 	spin_lock_irqsave(&xhci->lock, flags);
2823 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2824 				       ep->ep_index, suspend);
2825 	if (ret < 0) {
2826 		spin_unlock_irqrestore(&xhci->lock, flags);
2827 		goto out;
2828 	}
2829 
2830 	xhci_ring_cmd_db(xhci);
2831 	spin_unlock_irqrestore(&xhci->lock, flags);
2832 
2833 	wait_for_completion(command->completion);
2834 
2835 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2836 	if (command->status == COMP_COMMAND_ABORTED ||
2837 	    command->status == COMP_COMMAND_RING_STOPPED) {
2838 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2839 		ret = -ETIME;
2840 	}
2841 out:
2842 	xhci_free_command(xhci, command);
2843 
2844 	return ret;
2845 }
2846 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2847 
2848 /* Issue a configure endpoint command or evaluate context command
2849  * and wait for it to finish.
2850  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2851 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2852 		struct usb_device *udev,
2853 		struct xhci_command *command,
2854 		bool ctx_change, bool must_succeed)
2855 {
2856 	int ret;
2857 	unsigned long flags;
2858 	struct xhci_input_control_ctx *ctrl_ctx;
2859 	struct xhci_virt_device *virt_dev;
2860 	struct xhci_slot_ctx *slot_ctx;
2861 
2862 	if (!command)
2863 		return -EINVAL;
2864 
2865 	spin_lock_irqsave(&xhci->lock, flags);
2866 
2867 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2868 		spin_unlock_irqrestore(&xhci->lock, flags);
2869 		return -ESHUTDOWN;
2870 	}
2871 
2872 	virt_dev = xhci->devs[udev->slot_id];
2873 
2874 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2875 	if (!ctrl_ctx) {
2876 		spin_unlock_irqrestore(&xhci->lock, flags);
2877 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2878 				__func__);
2879 		return -ENOMEM;
2880 	}
2881 
2882 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2883 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2884 		spin_unlock_irqrestore(&xhci->lock, flags);
2885 		xhci_warn(xhci, "Not enough host resources, "
2886 				"active endpoint contexts = %u\n",
2887 				xhci->num_active_eps);
2888 		return -ENOMEM;
2889 	}
2890 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2891 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2892 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2893 			xhci_free_host_resources(xhci, ctrl_ctx);
2894 		spin_unlock_irqrestore(&xhci->lock, flags);
2895 		xhci_warn(xhci, "Not enough bandwidth\n");
2896 		return -ENOMEM;
2897 	}
2898 
2899 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2900 
2901 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2902 	trace_xhci_configure_endpoint(slot_ctx);
2903 
2904 	if (!ctx_change)
2905 		ret = xhci_queue_configure_endpoint(xhci, command,
2906 				command->in_ctx->dma,
2907 				udev->slot_id, must_succeed);
2908 	else
2909 		ret = xhci_queue_evaluate_context(xhci, command,
2910 				command->in_ctx->dma,
2911 				udev->slot_id, must_succeed);
2912 	if (ret < 0) {
2913 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2914 			xhci_free_host_resources(xhci, ctrl_ctx);
2915 		spin_unlock_irqrestore(&xhci->lock, flags);
2916 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2917 				"FIXME allocate a new ring segment");
2918 		return -ENOMEM;
2919 	}
2920 	xhci_ring_cmd_db(xhci);
2921 	spin_unlock_irqrestore(&xhci->lock, flags);
2922 
2923 	/* Wait for the configure endpoint command to complete */
2924 	wait_for_completion(command->completion);
2925 
2926 	if (!ctx_change)
2927 		ret = xhci_configure_endpoint_result(xhci, udev,
2928 						     &command->status);
2929 	else
2930 		ret = xhci_evaluate_context_result(xhci, udev,
2931 						   &command->status);
2932 
2933 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2934 		spin_lock_irqsave(&xhci->lock, flags);
2935 		/* If the command failed, remove the reserved resources.
2936 		 * Otherwise, clean up the estimate to include dropped eps.
2937 		 */
2938 		if (ret)
2939 			xhci_free_host_resources(xhci, ctrl_ctx);
2940 		else
2941 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2942 		spin_unlock_irqrestore(&xhci->lock, flags);
2943 	}
2944 	return ret;
2945 }
2946 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2947 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2948 	struct xhci_virt_device *vdev, int i)
2949 {
2950 	struct xhci_virt_ep *ep = &vdev->eps[i];
2951 
2952 	if (ep->ep_state & EP_HAS_STREAMS) {
2953 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2954 				xhci_get_endpoint_address(i));
2955 		xhci_free_stream_info(xhci, ep->stream_info);
2956 		ep->stream_info = NULL;
2957 		ep->ep_state &= ~EP_HAS_STREAMS;
2958 	}
2959 }
2960 
2961 /* Called after one or more calls to xhci_add_endpoint() or
2962  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2963  * to call xhci_reset_bandwidth().
2964  *
2965  * Since we are in the middle of changing either configuration or
2966  * installing a new alt setting, the USB core won't allow URBs to be
2967  * enqueued for any endpoint on the old config or interface.  Nothing
2968  * else should be touching the xhci->devs[slot_id] structure, so we
2969  * don't need to take the xhci->lock for manipulating that.
2970  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2971 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2972 {
2973 	int i;
2974 	int ret = 0;
2975 	struct xhci_hcd *xhci;
2976 	struct xhci_virt_device	*virt_dev;
2977 	struct xhci_input_control_ctx *ctrl_ctx;
2978 	struct xhci_slot_ctx *slot_ctx;
2979 	struct xhci_command *command;
2980 
2981 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2982 	if (ret <= 0)
2983 		return ret;
2984 	xhci = hcd_to_xhci(hcd);
2985 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2986 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2987 		return -ENODEV;
2988 
2989 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2990 	virt_dev = xhci->devs[udev->slot_id];
2991 
2992 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2993 	if (!command)
2994 		return -ENOMEM;
2995 
2996 	command->in_ctx = virt_dev->in_ctx;
2997 
2998 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2999 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3000 	if (!ctrl_ctx) {
3001 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3002 				__func__);
3003 		ret = -ENOMEM;
3004 		goto command_cleanup;
3005 	}
3006 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3007 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3008 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3009 
3010 	/* Don't issue the command if there's no endpoints to update. */
3011 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3012 	    ctrl_ctx->drop_flags == 0) {
3013 		ret = 0;
3014 		goto command_cleanup;
3015 	}
3016 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3017 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3018 	for (i = 31; i >= 1; i--) {
3019 		__le32 le32 = cpu_to_le32(BIT(i));
3020 
3021 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3022 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3023 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3024 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3025 			break;
3026 		}
3027 	}
3028 
3029 	ret = xhci_configure_endpoint(xhci, udev, command,
3030 			false, false);
3031 	if (ret)
3032 		/* Callee should call reset_bandwidth() */
3033 		goto command_cleanup;
3034 
3035 	/* Free any rings that were dropped, but not changed. */
3036 	for (i = 1; i < 31; i++) {
3037 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3038 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3039 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3040 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3041 		}
3042 	}
3043 	xhci_zero_in_ctx(xhci, virt_dev);
3044 	/*
3045 	 * Install any rings for completely new endpoints or changed endpoints,
3046 	 * and free any old rings from changed endpoints.
3047 	 */
3048 	for (i = 1; i < 31; i++) {
3049 		if (!virt_dev->eps[i].new_ring)
3050 			continue;
3051 		/* Only free the old ring if it exists.
3052 		 * It may not if this is the first add of an endpoint.
3053 		 */
3054 		if (virt_dev->eps[i].ring) {
3055 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3056 		}
3057 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3058 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3059 		virt_dev->eps[i].new_ring = NULL;
3060 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3061 	}
3062 command_cleanup:
3063 	kfree(command->completion);
3064 	kfree(command);
3065 
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3069 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3070 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3071 {
3072 	struct xhci_hcd *xhci;
3073 	struct xhci_virt_device	*virt_dev;
3074 	int i, ret;
3075 
3076 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3077 	if (ret <= 0)
3078 		return;
3079 	xhci = hcd_to_xhci(hcd);
3080 
3081 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3082 	virt_dev = xhci->devs[udev->slot_id];
3083 	/* Free any rings allocated for added endpoints */
3084 	for (i = 0; i < 31; i++) {
3085 		if (virt_dev->eps[i].new_ring) {
3086 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3087 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3088 			virt_dev->eps[i].new_ring = NULL;
3089 		}
3090 	}
3091 	xhci_zero_in_ctx(xhci, virt_dev);
3092 }
3093 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3094 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3095 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3096 		struct xhci_container_ctx *in_ctx,
3097 		struct xhci_container_ctx *out_ctx,
3098 		struct xhci_input_control_ctx *ctrl_ctx,
3099 		u32 add_flags, u32 drop_flags)
3100 {
3101 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3102 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3103 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3104 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3105 }
3106 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3107 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3108 				  struct usb_host_endpoint *host_ep)
3109 {
3110 	struct xhci_hcd		*xhci;
3111 	struct xhci_virt_device	*vdev;
3112 	struct xhci_virt_ep	*ep;
3113 	struct usb_device	*udev;
3114 	unsigned long		flags;
3115 	unsigned int		ep_index;
3116 
3117 	xhci = hcd_to_xhci(hcd);
3118 rescan:
3119 	spin_lock_irqsave(&xhci->lock, flags);
3120 
3121 	udev = (struct usb_device *)host_ep->hcpriv;
3122 	if (!udev || !udev->slot_id)
3123 		goto done;
3124 
3125 	vdev = xhci->devs[udev->slot_id];
3126 	if (!vdev)
3127 		goto done;
3128 
3129 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3130 	ep = &vdev->eps[ep_index];
3131 
3132 	/* wait for hub_tt_work to finish clearing hub TT */
3133 	if (ep->ep_state & EP_CLEARING_TT) {
3134 		spin_unlock_irqrestore(&xhci->lock, flags);
3135 		schedule_timeout_uninterruptible(1);
3136 		goto rescan;
3137 	}
3138 
3139 	if (ep->ep_state)
3140 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3141 			 ep->ep_state);
3142 done:
3143 	host_ep->hcpriv = NULL;
3144 	spin_unlock_irqrestore(&xhci->lock, flags);
3145 }
3146 
3147 /*
3148  * Called after usb core issues a clear halt control message.
3149  * The host side of the halt should already be cleared by a reset endpoint
3150  * command issued when the STALL event was received.
3151  *
3152  * The reset endpoint command may only be issued to endpoints in the halted
3153  * state. For software that wishes to reset the data toggle or sequence number
3154  * of an endpoint that isn't in the halted state this function will issue a
3155  * configure endpoint command with the Drop and Add bits set for the target
3156  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3157  *
3158  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3159  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3160  */
3161 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3162 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3163 		struct usb_host_endpoint *host_ep)
3164 {
3165 	struct xhci_hcd *xhci;
3166 	struct usb_device *udev;
3167 	struct xhci_virt_device *vdev;
3168 	struct xhci_virt_ep *ep;
3169 	struct xhci_input_control_ctx *ctrl_ctx;
3170 	struct xhci_command *stop_cmd, *cfg_cmd;
3171 	unsigned int ep_index;
3172 	unsigned long flags;
3173 	u32 ep_flag;
3174 	int err;
3175 
3176 	xhci = hcd_to_xhci(hcd);
3177 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3178 
3179 	/*
3180 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3181 	 * real value is read from the descriptor. Core resets Ep0 if values
3182 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3183 	 */
3184 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3185 
3186 		udev = container_of(host_ep, struct usb_device, ep0);
3187 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3188 			return;
3189 
3190 		vdev = xhci->devs[udev->slot_id];
3191 		if (!vdev || vdev->udev != udev)
3192 			return;
3193 
3194 		xhci_check_ep0_maxpacket(xhci, vdev);
3195 
3196 		/* Nothing else should be done here for ep0 during ep reset */
3197 		return;
3198 	}
3199 
3200 	if (!host_ep->hcpriv)
3201 		return;
3202 	udev = (struct usb_device *) host_ep->hcpriv;
3203 	vdev = xhci->devs[udev->slot_id];
3204 
3205 	if (!udev->slot_id || !vdev)
3206 		return;
3207 
3208 	ep = &vdev->eps[ep_index];
3209 
3210 	/* Bail out if toggle is already being cleared by a endpoint reset */
3211 	spin_lock_irqsave(&xhci->lock, flags);
3212 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3213 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3214 		spin_unlock_irqrestore(&xhci->lock, flags);
3215 		return;
3216 	}
3217 	spin_unlock_irqrestore(&xhci->lock, flags);
3218 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3219 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3220 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3221 		return;
3222 
3223 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3224 
3225 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3226 		return;
3227 
3228 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3229 	if (!stop_cmd)
3230 		return;
3231 
3232 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3233 	if (!cfg_cmd)
3234 		goto cleanup;
3235 
3236 	spin_lock_irqsave(&xhci->lock, flags);
3237 
3238 	/* block queuing new trbs and ringing ep doorbell */
3239 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3240 
3241 	/*
3242 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3243 	 * Driver is required to synchronously cancel all transfer request.
3244 	 * Stop the endpoint to force xHC to update the output context
3245 	 */
3246 
3247 	if (!list_empty(&ep->ring->td_list)) {
3248 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3249 		spin_unlock_irqrestore(&xhci->lock, flags);
3250 		xhci_free_command(xhci, cfg_cmd);
3251 		goto cleanup;
3252 	}
3253 
3254 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3255 					ep_index, 0);
3256 	if (err < 0) {
3257 		spin_unlock_irqrestore(&xhci->lock, flags);
3258 		xhci_free_command(xhci, cfg_cmd);
3259 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3260 				__func__, err);
3261 		goto cleanup;
3262 	}
3263 
3264 	xhci_ring_cmd_db(xhci);
3265 	spin_unlock_irqrestore(&xhci->lock, flags);
3266 
3267 	wait_for_completion(stop_cmd->completion);
3268 
3269 	spin_lock_irqsave(&xhci->lock, flags);
3270 
3271 	/* config ep command clears toggle if add and drop ep flags are set */
3272 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3273 	if (!ctrl_ctx) {
3274 		spin_unlock_irqrestore(&xhci->lock, flags);
3275 		xhci_free_command(xhci, cfg_cmd);
3276 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3277 				__func__);
3278 		goto cleanup;
3279 	}
3280 
3281 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3282 					   ctrl_ctx, ep_flag, ep_flag);
3283 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3284 
3285 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3286 				      udev->slot_id, false);
3287 	if (err < 0) {
3288 		spin_unlock_irqrestore(&xhci->lock, flags);
3289 		xhci_free_command(xhci, cfg_cmd);
3290 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3291 				__func__, err);
3292 		goto cleanup;
3293 	}
3294 
3295 	xhci_ring_cmd_db(xhci);
3296 	spin_unlock_irqrestore(&xhci->lock, flags);
3297 
3298 	wait_for_completion(cfg_cmd->completion);
3299 
3300 	xhci_free_command(xhci, cfg_cmd);
3301 cleanup:
3302 	xhci_free_command(xhci, stop_cmd);
3303 	spin_lock_irqsave(&xhci->lock, flags);
3304 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3305 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3306 	spin_unlock_irqrestore(&xhci->lock, flags);
3307 }
3308 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3309 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3310 		struct usb_device *udev, struct usb_host_endpoint *ep,
3311 		unsigned int slot_id)
3312 {
3313 	int ret;
3314 	unsigned int ep_index;
3315 	unsigned int ep_state;
3316 
3317 	if (!ep)
3318 		return -EINVAL;
3319 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3320 	if (ret <= 0)
3321 		return ret ? ret : -EINVAL;
3322 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3323 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3324 				" descriptor for ep 0x%x does not support streams\n",
3325 				ep->desc.bEndpointAddress);
3326 		return -EINVAL;
3327 	}
3328 
3329 	ep_index = xhci_get_endpoint_index(&ep->desc);
3330 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3331 	if (ep_state & EP_HAS_STREAMS ||
3332 			ep_state & EP_GETTING_STREAMS) {
3333 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3334 				"already has streams set up.\n",
3335 				ep->desc.bEndpointAddress);
3336 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3337 				"dynamic stream context array reallocation.\n");
3338 		return -EINVAL;
3339 	}
3340 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3341 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3342 				"endpoint 0x%x; URBs are pending.\n",
3343 				ep->desc.bEndpointAddress);
3344 		return -EINVAL;
3345 	}
3346 	return 0;
3347 }
3348 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3349 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3350 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3351 {
3352 	unsigned int max_streams;
3353 
3354 	/* The stream context array size must be a power of two */
3355 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3356 	/*
3357 	 * Find out how many primary stream array entries the host controller
3358 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3359 	 * level page entries), but that's an optional feature for xHCI host
3360 	 * controllers. xHCs must support at least 4 stream IDs.
3361 	 */
3362 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3363 	if (*num_stream_ctxs > max_streams) {
3364 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3365 				max_streams);
3366 		*num_stream_ctxs = max_streams;
3367 		*num_streams = max_streams;
3368 	}
3369 }
3370 
3371 /* Returns an error code if one of the endpoint already has streams.
3372  * This does not change any data structures, it only checks and gathers
3373  * information.
3374  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3375 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3376 		struct usb_device *udev,
3377 		struct usb_host_endpoint **eps, unsigned int num_eps,
3378 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3379 {
3380 	unsigned int max_streams;
3381 	unsigned int endpoint_flag;
3382 	int i;
3383 	int ret;
3384 
3385 	for (i = 0; i < num_eps; i++) {
3386 		ret = xhci_check_streams_endpoint(xhci, udev,
3387 				eps[i], udev->slot_id);
3388 		if (ret < 0)
3389 			return ret;
3390 
3391 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3392 		if (max_streams < (*num_streams - 1)) {
3393 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3394 					eps[i]->desc.bEndpointAddress,
3395 					max_streams);
3396 			*num_streams = max_streams+1;
3397 		}
3398 
3399 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3400 		if (*changed_ep_bitmask & endpoint_flag)
3401 			return -EINVAL;
3402 		*changed_ep_bitmask |= endpoint_flag;
3403 	}
3404 	return 0;
3405 }
3406 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3407 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3408 		struct usb_device *udev,
3409 		struct usb_host_endpoint **eps, unsigned int num_eps)
3410 {
3411 	u32 changed_ep_bitmask = 0;
3412 	unsigned int slot_id;
3413 	unsigned int ep_index;
3414 	unsigned int ep_state;
3415 	int i;
3416 
3417 	slot_id = udev->slot_id;
3418 	if (!xhci->devs[slot_id])
3419 		return 0;
3420 
3421 	for (i = 0; i < num_eps; i++) {
3422 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3423 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3424 		/* Are streams already being freed for the endpoint? */
3425 		if (ep_state & EP_GETTING_NO_STREAMS) {
3426 			xhci_warn(xhci, "WARN Can't disable streams for "
3427 					"endpoint 0x%x, "
3428 					"streams are being disabled already\n",
3429 					eps[i]->desc.bEndpointAddress);
3430 			return 0;
3431 		}
3432 		/* Are there actually any streams to free? */
3433 		if (!(ep_state & EP_HAS_STREAMS) &&
3434 				!(ep_state & EP_GETTING_STREAMS)) {
3435 			xhci_warn(xhci, "WARN Can't disable streams for "
3436 					"endpoint 0x%x, "
3437 					"streams are already disabled!\n",
3438 					eps[i]->desc.bEndpointAddress);
3439 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3440 					"with non-streams endpoint\n");
3441 			return 0;
3442 		}
3443 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3444 	}
3445 	return changed_ep_bitmask;
3446 }
3447 
3448 /*
3449  * The USB device drivers use this function (through the HCD interface in USB
3450  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3451  * coordinate mass storage command queueing across multiple endpoints (basically
3452  * a stream ID == a task ID).
3453  *
3454  * Setting up streams involves allocating the same size stream context array
3455  * for each endpoint and issuing a configure endpoint command for all endpoints.
3456  *
3457  * Don't allow the call to succeed if one endpoint only supports one stream
3458  * (which means it doesn't support streams at all).
3459  *
3460  * Drivers may get less stream IDs than they asked for, if the host controller
3461  * hardware or endpoints claim they can't support the number of requested
3462  * stream IDs.
3463  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3464 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3465 		struct usb_host_endpoint **eps, unsigned int num_eps,
3466 		unsigned int num_streams, gfp_t mem_flags)
3467 {
3468 	int i, ret;
3469 	struct xhci_hcd *xhci;
3470 	struct xhci_virt_device *vdev;
3471 	struct xhci_command *config_cmd;
3472 	struct xhci_input_control_ctx *ctrl_ctx;
3473 	unsigned int ep_index;
3474 	unsigned int num_stream_ctxs;
3475 	unsigned int max_packet;
3476 	unsigned long flags;
3477 	u32 changed_ep_bitmask = 0;
3478 
3479 	if (!eps)
3480 		return -EINVAL;
3481 
3482 	/* Add one to the number of streams requested to account for
3483 	 * stream 0 that is reserved for xHCI usage.
3484 	 */
3485 	num_streams += 1;
3486 	xhci = hcd_to_xhci(hcd);
3487 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3488 			num_streams);
3489 
3490 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3491 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3492 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3493 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3494 		return -ENOSYS;
3495 	}
3496 
3497 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3498 	if (!config_cmd)
3499 		return -ENOMEM;
3500 
3501 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3502 	if (!ctrl_ctx) {
3503 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3504 				__func__);
3505 		xhci_free_command(xhci, config_cmd);
3506 		return -ENOMEM;
3507 	}
3508 
3509 	/* Check to make sure all endpoints are not already configured for
3510 	 * streams.  While we're at it, find the maximum number of streams that
3511 	 * all the endpoints will support and check for duplicate endpoints.
3512 	 */
3513 	spin_lock_irqsave(&xhci->lock, flags);
3514 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3515 			num_eps, &num_streams, &changed_ep_bitmask);
3516 	if (ret < 0) {
3517 		xhci_free_command(xhci, config_cmd);
3518 		spin_unlock_irqrestore(&xhci->lock, flags);
3519 		return ret;
3520 	}
3521 	if (num_streams <= 1) {
3522 		xhci_warn(xhci, "WARN: endpoints can't handle "
3523 				"more than one stream.\n");
3524 		xhci_free_command(xhci, config_cmd);
3525 		spin_unlock_irqrestore(&xhci->lock, flags);
3526 		return -EINVAL;
3527 	}
3528 	vdev = xhci->devs[udev->slot_id];
3529 	/* Mark each endpoint as being in transition, so
3530 	 * xhci_urb_enqueue() will reject all URBs.
3531 	 */
3532 	for (i = 0; i < num_eps; i++) {
3533 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3535 	}
3536 	spin_unlock_irqrestore(&xhci->lock, flags);
3537 
3538 	/* Setup internal data structures and allocate HW data structures for
3539 	 * streams (but don't install the HW structures in the input context
3540 	 * until we're sure all memory allocation succeeded).
3541 	 */
3542 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3543 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3544 			num_stream_ctxs, num_streams);
3545 
3546 	for (i = 0; i < num_eps; i++) {
3547 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3548 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3549 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3550 				num_stream_ctxs,
3551 				num_streams,
3552 				max_packet, mem_flags);
3553 		if (!vdev->eps[ep_index].stream_info)
3554 			goto cleanup;
3555 		/* Set maxPstreams in endpoint context and update deq ptr to
3556 		 * point to stream context array. FIXME
3557 		 */
3558 	}
3559 
3560 	/* Set up the input context for a configure endpoint command. */
3561 	for (i = 0; i < num_eps; i++) {
3562 		struct xhci_ep_ctx *ep_ctx;
3563 
3564 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3565 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3566 
3567 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3568 				vdev->out_ctx, ep_index);
3569 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3570 				vdev->eps[ep_index].stream_info);
3571 	}
3572 	/* Tell the HW to drop its old copy of the endpoint context info
3573 	 * and add the updated copy from the input context.
3574 	 */
3575 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3576 			vdev->out_ctx, ctrl_ctx,
3577 			changed_ep_bitmask, changed_ep_bitmask);
3578 
3579 	/* Issue and wait for the configure endpoint command */
3580 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3581 			false, false);
3582 
3583 	/* xHC rejected the configure endpoint command for some reason, so we
3584 	 * leave the old ring intact and free our internal streams data
3585 	 * structure.
3586 	 */
3587 	if (ret < 0)
3588 		goto cleanup;
3589 
3590 	spin_lock_irqsave(&xhci->lock, flags);
3591 	for (i = 0; i < num_eps; i++) {
3592 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3594 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3595 			 udev->slot_id, ep_index);
3596 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3597 	}
3598 	xhci_free_command(xhci, config_cmd);
3599 	spin_unlock_irqrestore(&xhci->lock, flags);
3600 
3601 	for (i = 0; i < num_eps; i++) {
3602 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3604 	}
3605 	/* Subtract 1 for stream 0, which drivers can't use */
3606 	return num_streams - 1;
3607 
3608 cleanup:
3609 	/* If it didn't work, free the streams! */
3610 	for (i = 0; i < num_eps; i++) {
3611 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3613 		vdev->eps[ep_index].stream_info = NULL;
3614 		/* FIXME Unset maxPstreams in endpoint context and
3615 		 * update deq ptr to point to normal string ring.
3616 		 */
3617 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3618 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3619 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3620 	}
3621 	xhci_free_command(xhci, config_cmd);
3622 	return -ENOMEM;
3623 }
3624 
3625 /* Transition the endpoint from using streams to being a "normal" endpoint
3626  * without streams.
3627  *
3628  * Modify the endpoint context state, submit a configure endpoint command,
3629  * and free all endpoint rings for streams if that completes successfully.
3630  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3631 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3632 		struct usb_host_endpoint **eps, unsigned int num_eps,
3633 		gfp_t mem_flags)
3634 {
3635 	int i, ret;
3636 	struct xhci_hcd *xhci;
3637 	struct xhci_virt_device *vdev;
3638 	struct xhci_command *command;
3639 	struct xhci_input_control_ctx *ctrl_ctx;
3640 	unsigned int ep_index;
3641 	unsigned long flags;
3642 	u32 changed_ep_bitmask;
3643 
3644 	xhci = hcd_to_xhci(hcd);
3645 	vdev = xhci->devs[udev->slot_id];
3646 
3647 	/* Set up a configure endpoint command to remove the streams rings */
3648 	spin_lock_irqsave(&xhci->lock, flags);
3649 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3650 			udev, eps, num_eps);
3651 	if (changed_ep_bitmask == 0) {
3652 		spin_unlock_irqrestore(&xhci->lock, flags);
3653 		return -EINVAL;
3654 	}
3655 
3656 	/* Use the xhci_command structure from the first endpoint.  We may have
3657 	 * allocated too many, but the driver may call xhci_free_streams() for
3658 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3659 	 */
3660 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3661 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3662 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3663 	if (!ctrl_ctx) {
3664 		spin_unlock_irqrestore(&xhci->lock, flags);
3665 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3666 				__func__);
3667 		return -EINVAL;
3668 	}
3669 
3670 	for (i = 0; i < num_eps; i++) {
3671 		struct xhci_ep_ctx *ep_ctx;
3672 
3673 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3674 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3675 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3676 			EP_GETTING_NO_STREAMS;
3677 
3678 		xhci_endpoint_copy(xhci, command->in_ctx,
3679 				vdev->out_ctx, ep_index);
3680 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3681 				&vdev->eps[ep_index]);
3682 	}
3683 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3684 			vdev->out_ctx, ctrl_ctx,
3685 			changed_ep_bitmask, changed_ep_bitmask);
3686 	spin_unlock_irqrestore(&xhci->lock, flags);
3687 
3688 	/* Issue and wait for the configure endpoint command,
3689 	 * which must succeed.
3690 	 */
3691 	ret = xhci_configure_endpoint(xhci, udev, command,
3692 			false, true);
3693 
3694 	/* xHC rejected the configure endpoint command for some reason, so we
3695 	 * leave the streams rings intact.
3696 	 */
3697 	if (ret < 0)
3698 		return ret;
3699 
3700 	spin_lock_irqsave(&xhci->lock, flags);
3701 	for (i = 0; i < num_eps; i++) {
3702 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3703 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3704 		vdev->eps[ep_index].stream_info = NULL;
3705 		/* FIXME Unset maxPstreams in endpoint context and
3706 		 * update deq ptr to point to normal string ring.
3707 		 */
3708 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3709 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3710 	}
3711 	spin_unlock_irqrestore(&xhci->lock, flags);
3712 
3713 	return 0;
3714 }
3715 
3716 /*
3717  * Deletes endpoint resources for endpoints that were active before a Reset
3718  * Device command, or a Disable Slot command.  The Reset Device command leaves
3719  * the control endpoint intact, whereas the Disable Slot command deletes it.
3720  *
3721  * Must be called with xhci->lock held.
3722  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3723 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3724 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3725 {
3726 	int i;
3727 	unsigned int num_dropped_eps = 0;
3728 	unsigned int drop_flags = 0;
3729 
3730 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3731 		if (virt_dev->eps[i].ring) {
3732 			drop_flags |= 1 << i;
3733 			num_dropped_eps++;
3734 		}
3735 	}
3736 	xhci->num_active_eps -= num_dropped_eps;
3737 	if (num_dropped_eps)
3738 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3739 				"Dropped %u ep ctxs, flags = 0x%x, "
3740 				"%u now active.",
3741 				num_dropped_eps, drop_flags,
3742 				xhci->num_active_eps);
3743 }
3744 
3745 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3746 
3747 /*
3748  * This submits a Reset Device Command, which will set the device state to 0,
3749  * set the device address to 0, and disable all the endpoints except the default
3750  * control endpoint.  The USB core should come back and call
3751  * xhci_address_device(), and then re-set up the configuration.  If this is
3752  * called because of a usb_reset_and_verify_device(), then the old alternate
3753  * settings will be re-installed through the normal bandwidth allocation
3754  * functions.
3755  *
3756  * Wait for the Reset Device command to finish.  Remove all structures
3757  * associated with the endpoints that were disabled.  Clear the input device
3758  * structure? Reset the control endpoint 0 max packet size?
3759  *
3760  * If the virt_dev to be reset does not exist or does not match the udev,
3761  * it means the device is lost, possibly due to the xHC restore error and
3762  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3763  * re-allocate the device.
3764  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3765 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3766 		struct usb_device *udev)
3767 {
3768 	int ret, i;
3769 	unsigned long flags;
3770 	struct xhci_hcd *xhci;
3771 	unsigned int slot_id;
3772 	struct xhci_virt_device *virt_dev;
3773 	struct xhci_command *reset_device_cmd;
3774 	struct xhci_slot_ctx *slot_ctx;
3775 	int old_active_eps = 0;
3776 
3777 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3778 	if (ret <= 0)
3779 		return ret;
3780 	xhci = hcd_to_xhci(hcd);
3781 	slot_id = udev->slot_id;
3782 	virt_dev = xhci->devs[slot_id];
3783 	if (!virt_dev) {
3784 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3785 				"not exist. Re-allocate the device\n", slot_id);
3786 		ret = xhci_alloc_dev(hcd, udev);
3787 		if (ret == 1)
3788 			return 0;
3789 		else
3790 			return -EINVAL;
3791 	}
3792 
3793 	if (virt_dev->tt_info)
3794 		old_active_eps = virt_dev->tt_info->active_eps;
3795 
3796 	if (virt_dev->udev != udev) {
3797 		/* If the virt_dev and the udev does not match, this virt_dev
3798 		 * may belong to another udev.
3799 		 * Re-allocate the device.
3800 		 */
3801 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3802 				"not match the udev. Re-allocate the device\n",
3803 				slot_id);
3804 		ret = xhci_alloc_dev(hcd, udev);
3805 		if (ret == 1)
3806 			return 0;
3807 		else
3808 			return -EINVAL;
3809 	}
3810 
3811 	/* If device is not setup, there is no point in resetting it */
3812 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3813 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3814 						SLOT_STATE_DISABLED)
3815 		return 0;
3816 
3817 	if (xhci->quirks & XHCI_ETRON_HOST) {
3818 		/*
3819 		 * Obtaining a new device slot to inform the xHCI host that
3820 		 * the USB device has been reset.
3821 		 */
3822 		ret = xhci_disable_slot(xhci, udev->slot_id);
3823 		xhci_free_virt_device(xhci, udev->slot_id);
3824 		if (!ret) {
3825 			ret = xhci_alloc_dev(hcd, udev);
3826 			if (ret == 1)
3827 				ret = 0;
3828 			else
3829 				ret = -EINVAL;
3830 		}
3831 		return ret;
3832 	}
3833 
3834 	trace_xhci_discover_or_reset_device(slot_ctx);
3835 
3836 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3837 	/* Allocate the command structure that holds the struct completion.
3838 	 * Assume we're in process context, since the normal device reset
3839 	 * process has to wait for the device anyway.  Storage devices are
3840 	 * reset as part of error handling, so use GFP_NOIO instead of
3841 	 * GFP_KERNEL.
3842 	 */
3843 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3844 	if (!reset_device_cmd) {
3845 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3846 		return -ENOMEM;
3847 	}
3848 
3849 	/* Attempt to submit the Reset Device command to the command ring */
3850 	spin_lock_irqsave(&xhci->lock, flags);
3851 
3852 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3853 	if (ret) {
3854 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3855 		spin_unlock_irqrestore(&xhci->lock, flags);
3856 		goto command_cleanup;
3857 	}
3858 	xhci_ring_cmd_db(xhci);
3859 	spin_unlock_irqrestore(&xhci->lock, flags);
3860 
3861 	/* Wait for the Reset Device command to finish */
3862 	wait_for_completion(reset_device_cmd->completion);
3863 
3864 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3865 	 * unless we tried to reset a slot ID that wasn't enabled,
3866 	 * or the device wasn't in the addressed or configured state.
3867 	 */
3868 	ret = reset_device_cmd->status;
3869 	switch (ret) {
3870 	case COMP_COMMAND_ABORTED:
3871 	case COMP_COMMAND_RING_STOPPED:
3872 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3873 		ret = -ETIME;
3874 		goto command_cleanup;
3875 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3876 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3877 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3878 				slot_id,
3879 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3880 		xhci_dbg(xhci, "Not freeing device rings.\n");
3881 		/* Don't treat this as an error.  May change my mind later. */
3882 		ret = 0;
3883 		goto command_cleanup;
3884 	case COMP_SUCCESS:
3885 		xhci_dbg(xhci, "Successful reset device command.\n");
3886 		break;
3887 	default:
3888 		if (xhci_is_vendor_info_code(xhci, ret))
3889 			break;
3890 		xhci_warn(xhci, "Unknown completion code %u for "
3891 				"reset device command.\n", ret);
3892 		ret = -EINVAL;
3893 		goto command_cleanup;
3894 	}
3895 
3896 	/* Free up host controller endpoint resources */
3897 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3898 		spin_lock_irqsave(&xhci->lock, flags);
3899 		/* Don't delete the default control endpoint resources */
3900 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3901 		spin_unlock_irqrestore(&xhci->lock, flags);
3902 	}
3903 
3904 	/* Everything but endpoint 0 is disabled, so free the rings. */
3905 	for (i = 1; i < 31; i++) {
3906 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3907 
3908 		if (ep->ep_state & EP_HAS_STREAMS) {
3909 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3910 					xhci_get_endpoint_address(i));
3911 			xhci_free_stream_info(xhci, ep->stream_info);
3912 			ep->stream_info = NULL;
3913 			ep->ep_state &= ~EP_HAS_STREAMS;
3914 		}
3915 
3916 		if (ep->ring) {
3917 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3918 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3919 		}
3920 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3921 			xhci_drop_ep_from_interval_table(xhci,
3922 					&virt_dev->eps[i].bw_info,
3923 					virt_dev->bw_table,
3924 					udev,
3925 					&virt_dev->eps[i],
3926 					virt_dev->tt_info);
3927 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3928 	}
3929 	/* If necessary, update the number of active TTs on this root port */
3930 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3931 	virt_dev->flags = 0;
3932 	ret = 0;
3933 
3934 command_cleanup:
3935 	xhci_free_command(xhci, reset_device_cmd);
3936 	return ret;
3937 }
3938 
3939 /*
3940  * At this point, the struct usb_device is about to go away, the device has
3941  * disconnected, and all traffic has been stopped and the endpoints have been
3942  * disabled.  Free any HC data structures associated with that device.
3943  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3944 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3945 {
3946 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3947 	struct xhci_virt_device *virt_dev;
3948 	struct xhci_slot_ctx *slot_ctx;
3949 	unsigned long flags;
3950 	int i, ret;
3951 
3952 	/*
3953 	 * We called pm_runtime_get_noresume when the device was attached.
3954 	 * Decrement the counter here to allow controller to runtime suspend
3955 	 * if no devices remain.
3956 	 */
3957 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3958 		pm_runtime_put_noidle(hcd->self.controller);
3959 
3960 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3961 	/* If the host is halted due to driver unload, we still need to free the
3962 	 * device.
3963 	 */
3964 	if (ret <= 0 && ret != -ENODEV)
3965 		return;
3966 
3967 	virt_dev = xhci->devs[udev->slot_id];
3968 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3969 	trace_xhci_free_dev(slot_ctx);
3970 
3971 	/* Stop any wayward timer functions (which may grab the lock) */
3972 	for (i = 0; i < 31; i++)
3973 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3974 	virt_dev->udev = NULL;
3975 	xhci_disable_slot(xhci, udev->slot_id);
3976 
3977 	spin_lock_irqsave(&xhci->lock, flags);
3978 	xhci_free_virt_device(xhci, udev->slot_id);
3979 	spin_unlock_irqrestore(&xhci->lock, flags);
3980 
3981 }
3982 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3983 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3984 {
3985 	struct xhci_command *command;
3986 	unsigned long flags;
3987 	u32 state;
3988 	int ret;
3989 
3990 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3991 	if (!command)
3992 		return -ENOMEM;
3993 
3994 	xhci_debugfs_remove_slot(xhci, slot_id);
3995 
3996 	spin_lock_irqsave(&xhci->lock, flags);
3997 	/* Don't disable the slot if the host controller is dead. */
3998 	state = readl(&xhci->op_regs->status);
3999 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4000 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
4001 		spin_unlock_irqrestore(&xhci->lock, flags);
4002 		kfree(command);
4003 		return -ENODEV;
4004 	}
4005 
4006 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4007 				slot_id);
4008 	if (ret) {
4009 		spin_unlock_irqrestore(&xhci->lock, flags);
4010 		kfree(command);
4011 		return ret;
4012 	}
4013 	xhci_ring_cmd_db(xhci);
4014 	spin_unlock_irqrestore(&xhci->lock, flags);
4015 
4016 	wait_for_completion(command->completion);
4017 
4018 	if (command->status != COMP_SUCCESS)
4019 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4020 			  slot_id, command->status);
4021 
4022 	xhci_free_command(xhci, command);
4023 
4024 	return 0;
4025 }
4026 
4027 /*
4028  * Checks if we have enough host controller resources for the default control
4029  * endpoint.
4030  *
4031  * Must be called with xhci->lock held.
4032  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4033 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4034 {
4035 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4036 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4037 				"Not enough ep ctxs: "
4038 				"%u active, need to add 1, limit is %u.",
4039 				xhci->num_active_eps, xhci->limit_active_eps);
4040 		return -ENOMEM;
4041 	}
4042 	xhci->num_active_eps += 1;
4043 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4044 			"Adding 1 ep ctx, %u now active.",
4045 			xhci->num_active_eps);
4046 	return 0;
4047 }
4048 
4049 
4050 /*
4051  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4052  * timed out, or allocating memory failed.  Returns 1 on success.
4053  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4054 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4055 {
4056 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057 	struct xhci_virt_device *vdev;
4058 	struct xhci_slot_ctx *slot_ctx;
4059 	unsigned long flags;
4060 	int ret, slot_id;
4061 	struct xhci_command *command;
4062 
4063 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4064 	if (!command)
4065 		return 0;
4066 
4067 	spin_lock_irqsave(&xhci->lock, flags);
4068 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4069 	if (ret) {
4070 		spin_unlock_irqrestore(&xhci->lock, flags);
4071 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4072 		xhci_free_command(xhci, command);
4073 		return 0;
4074 	}
4075 	xhci_ring_cmd_db(xhci);
4076 	spin_unlock_irqrestore(&xhci->lock, flags);
4077 
4078 	wait_for_completion(command->completion);
4079 	slot_id = command->slot_id;
4080 
4081 	if (!slot_id || command->status != COMP_SUCCESS) {
4082 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4083 			 xhci_trb_comp_code_string(command->status));
4084 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4085 				HCS_MAX_SLOTS(
4086 					readl(&xhci->cap_regs->hcs_params1)));
4087 		xhci_free_command(xhci, command);
4088 		return 0;
4089 	}
4090 
4091 	xhci_free_command(xhci, command);
4092 
4093 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4094 		spin_lock_irqsave(&xhci->lock, flags);
4095 		ret = xhci_reserve_host_control_ep_resources(xhci);
4096 		if (ret) {
4097 			spin_unlock_irqrestore(&xhci->lock, flags);
4098 			xhci_warn(xhci, "Not enough host resources, "
4099 					"active endpoint contexts = %u\n",
4100 					xhci->num_active_eps);
4101 			goto disable_slot;
4102 		}
4103 		spin_unlock_irqrestore(&xhci->lock, flags);
4104 	}
4105 	/* Use GFP_NOIO, since this function can be called from
4106 	 * xhci_discover_or_reset_device(), which may be called as part of
4107 	 * mass storage driver error handling.
4108 	 */
4109 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4110 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4111 		goto disable_slot;
4112 	}
4113 	vdev = xhci->devs[slot_id];
4114 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4115 	trace_xhci_alloc_dev(slot_ctx);
4116 
4117 	udev->slot_id = slot_id;
4118 
4119 	xhci_debugfs_create_slot(xhci, slot_id);
4120 
4121 	/*
4122 	 * If resetting upon resume, we can't put the controller into runtime
4123 	 * suspend if there is a device attached.
4124 	 */
4125 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4126 		pm_runtime_get_noresume(hcd->self.controller);
4127 
4128 	/* Is this a LS or FS device under a HS hub? */
4129 	/* Hub or peripherial? */
4130 	return 1;
4131 
4132 disable_slot:
4133 	xhci_disable_slot(xhci, udev->slot_id);
4134 	xhci_free_virt_device(xhci, udev->slot_id);
4135 
4136 	return 0;
4137 }
4138 
4139 /**
4140  * xhci_setup_device - issues an Address Device command to assign a unique
4141  *			USB bus address.
4142  * @hcd: USB host controller data structure.
4143  * @udev: USB dev structure representing the connected device.
4144  * @setup: Enum specifying setup mode: address only or with context.
4145  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4146  *
4147  * Return: 0 if successful; otherwise, negative error code.
4148  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4149 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4150 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4151 {
4152 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4153 	unsigned long flags;
4154 	struct xhci_virt_device *virt_dev;
4155 	int ret = 0;
4156 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4157 	struct xhci_slot_ctx *slot_ctx;
4158 	struct xhci_input_control_ctx *ctrl_ctx;
4159 	u64 temp_64;
4160 	struct xhci_command *command = NULL;
4161 
4162 	mutex_lock(&xhci->mutex);
4163 
4164 	if (xhci->xhc_state) {	/* dying, removing or halted */
4165 		ret = -ESHUTDOWN;
4166 		goto out;
4167 	}
4168 
4169 	if (!udev->slot_id) {
4170 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4171 				"Bad Slot ID %d", udev->slot_id);
4172 		ret = -EINVAL;
4173 		goto out;
4174 	}
4175 
4176 	virt_dev = xhci->devs[udev->slot_id];
4177 
4178 	if (WARN_ON(!virt_dev)) {
4179 		/*
4180 		 * In plug/unplug torture test with an NEC controller,
4181 		 * a zero-dereference was observed once due to virt_dev = 0.
4182 		 * Print useful debug rather than crash if it is observed again!
4183 		 */
4184 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4185 			udev->slot_id);
4186 		ret = -EINVAL;
4187 		goto out;
4188 	}
4189 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4190 	trace_xhci_setup_device_slot(slot_ctx);
4191 
4192 	if (setup == SETUP_CONTEXT_ONLY) {
4193 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4194 		    SLOT_STATE_DEFAULT) {
4195 			xhci_dbg(xhci, "Slot already in default state\n");
4196 			goto out;
4197 		}
4198 	}
4199 
4200 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4201 	if (!command) {
4202 		ret = -ENOMEM;
4203 		goto out;
4204 	}
4205 
4206 	command->in_ctx = virt_dev->in_ctx;
4207 	command->timeout_ms = timeout_ms;
4208 
4209 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4210 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4211 	if (!ctrl_ctx) {
4212 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4213 				__func__);
4214 		ret = -EINVAL;
4215 		goto out;
4216 	}
4217 	/*
4218 	 * If this is the first Set Address since device plug-in or
4219 	 * virt_device realloaction after a resume with an xHCI power loss,
4220 	 * then set up the slot context.
4221 	 */
4222 	if (!slot_ctx->dev_info)
4223 		xhci_setup_addressable_virt_dev(xhci, udev);
4224 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4225 	else
4226 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4227 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4228 	ctrl_ctx->drop_flags = 0;
4229 
4230 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4231 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4232 
4233 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4234 	spin_lock_irqsave(&xhci->lock, flags);
4235 	trace_xhci_setup_device(virt_dev);
4236 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4237 					udev->slot_id, setup);
4238 	if (ret) {
4239 		spin_unlock_irqrestore(&xhci->lock, flags);
4240 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4241 				"FIXME: allocate a command ring segment");
4242 		goto out;
4243 	}
4244 	xhci_ring_cmd_db(xhci);
4245 	spin_unlock_irqrestore(&xhci->lock, flags);
4246 
4247 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4248 	wait_for_completion(command->completion);
4249 
4250 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4251 	 * the SetAddress() "recovery interval" required by USB and aborting the
4252 	 * command on a timeout.
4253 	 */
4254 	switch (command->status) {
4255 	case COMP_COMMAND_ABORTED:
4256 	case COMP_COMMAND_RING_STOPPED:
4257 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4258 		ret = -ETIME;
4259 		break;
4260 	case COMP_CONTEXT_STATE_ERROR:
4261 	case COMP_SLOT_NOT_ENABLED_ERROR:
4262 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4263 			 act, udev->slot_id);
4264 		ret = -EINVAL;
4265 		break;
4266 	case COMP_USB_TRANSACTION_ERROR:
4267 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4268 
4269 		mutex_unlock(&xhci->mutex);
4270 		ret = xhci_disable_slot(xhci, udev->slot_id);
4271 		xhci_free_virt_device(xhci, udev->slot_id);
4272 		if (!ret) {
4273 			if (xhci_alloc_dev(hcd, udev) == 1)
4274 				xhci_setup_addressable_virt_dev(xhci, udev);
4275 		}
4276 		kfree(command->completion);
4277 		kfree(command);
4278 		return -EPROTO;
4279 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4280 		dev_warn(&udev->dev,
4281 			 "ERROR: Incompatible device for setup %s command\n", act);
4282 		ret = -ENODEV;
4283 		break;
4284 	case COMP_SUCCESS:
4285 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4286 			       "Successful setup %s command", act);
4287 		break;
4288 	default:
4289 		xhci_err(xhci,
4290 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4291 			 act, command->status);
4292 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4293 		ret = -EINVAL;
4294 		break;
4295 	}
4296 	if (ret)
4297 		goto out;
4298 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4299 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4300 			"Op regs DCBAA ptr = %#016llx", temp_64);
4301 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4302 		"Slot ID %d dcbaa entry @%p = %#016llx",
4303 		udev->slot_id,
4304 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4305 		(unsigned long long)
4306 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4307 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 			"Output Context DMA address = %#08llx",
4309 			(unsigned long long)virt_dev->out_ctx->dma);
4310 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4311 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4312 	/*
4313 	 * USB core uses address 1 for the roothubs, so we add one to the
4314 	 * address given back to us by the HC.
4315 	 */
4316 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4317 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4318 	/* Zero the input context control for later use */
4319 	ctrl_ctx->add_flags = 0;
4320 	ctrl_ctx->drop_flags = 0;
4321 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4322 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4323 
4324 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4325 		       "Internal device address = %d",
4326 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4327 out:
4328 	mutex_unlock(&xhci->mutex);
4329 	if (command) {
4330 		kfree(command->completion);
4331 		kfree(command);
4332 	}
4333 	return ret;
4334 }
4335 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4336 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4337 			       unsigned int timeout_ms)
4338 {
4339 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4340 }
4341 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4342 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4343 {
4344 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4345 				 XHCI_CMD_DEFAULT_TIMEOUT);
4346 }
4347 
4348 /*
4349  * Transfer the port index into real index in the HW port status
4350  * registers. Caculate offset between the port's PORTSC register
4351  * and port status base. Divide the number of per port register
4352  * to get the real index. The raw port number bases 1.
4353  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4354 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4355 {
4356 	struct xhci_hub *rhub;
4357 
4358 	rhub = xhci_get_rhub(hcd);
4359 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4360 }
4361 
4362 /*
4363  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4364  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4365  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4366 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4367 			struct usb_device *udev, u16 max_exit_latency)
4368 {
4369 	struct xhci_virt_device *virt_dev;
4370 	struct xhci_command *command;
4371 	struct xhci_input_control_ctx *ctrl_ctx;
4372 	struct xhci_slot_ctx *slot_ctx;
4373 	unsigned long flags;
4374 	int ret;
4375 
4376 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4377 	if (!command)
4378 		return -ENOMEM;
4379 
4380 	spin_lock_irqsave(&xhci->lock, flags);
4381 
4382 	virt_dev = xhci->devs[udev->slot_id];
4383 
4384 	/*
4385 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4386 	 * xHC was re-initialized. Exit latency will be set later after
4387 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4388 	 */
4389 
4390 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4391 		spin_unlock_irqrestore(&xhci->lock, flags);
4392 		xhci_free_command(xhci, command);
4393 		return 0;
4394 	}
4395 
4396 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4397 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4398 	if (!ctrl_ctx) {
4399 		spin_unlock_irqrestore(&xhci->lock, flags);
4400 		xhci_free_command(xhci, command);
4401 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4402 				__func__);
4403 		return -ENOMEM;
4404 	}
4405 
4406 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4407 	spin_unlock_irqrestore(&xhci->lock, flags);
4408 
4409 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4410 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4411 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4412 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4413 	slot_ctx->dev_state = 0;
4414 
4415 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4416 			"Set up evaluate context for LPM MEL change.");
4417 
4418 	/* Issue and wait for the evaluate context command. */
4419 	ret = xhci_configure_endpoint(xhci, udev, command,
4420 			true, true);
4421 
4422 	if (!ret) {
4423 		spin_lock_irqsave(&xhci->lock, flags);
4424 		virt_dev->current_mel = max_exit_latency;
4425 		spin_unlock_irqrestore(&xhci->lock, flags);
4426 	}
4427 
4428 	xhci_free_command(xhci, command);
4429 
4430 	return ret;
4431 }
4432 
4433 #ifdef CONFIG_PM
4434 
4435 /* BESL to HIRD Encoding array for USB2 LPM */
4436 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4437 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4438 
4439 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4440 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4441 					struct usb_device *udev)
4442 {
4443 	int u2del, besl, besl_host;
4444 	int besl_device = 0;
4445 	u32 field;
4446 
4447 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4448 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4449 
4450 	if (field & USB_BESL_SUPPORT) {
4451 		for (besl_host = 0; besl_host < 16; besl_host++) {
4452 			if (xhci_besl_encoding[besl_host] >= u2del)
4453 				break;
4454 		}
4455 		/* Use baseline BESL value as default */
4456 		if (field & USB_BESL_BASELINE_VALID)
4457 			besl_device = USB_GET_BESL_BASELINE(field);
4458 		else if (field & USB_BESL_DEEP_VALID)
4459 			besl_device = USB_GET_BESL_DEEP(field);
4460 	} else {
4461 		if (u2del <= 50)
4462 			besl_host = 0;
4463 		else
4464 			besl_host = (u2del - 51) / 75 + 1;
4465 	}
4466 
4467 	besl = besl_host + besl_device;
4468 	if (besl > 15)
4469 		besl = 15;
4470 
4471 	return besl;
4472 }
4473 
4474 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4475 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4476 {
4477 	u32 field;
4478 	int l1;
4479 	int besld = 0;
4480 	int hirdm = 0;
4481 
4482 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4483 
4484 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4485 	l1 = udev->l1_params.timeout / 256;
4486 
4487 	/* device has preferred BESLD */
4488 	if (field & USB_BESL_DEEP_VALID) {
4489 		besld = USB_GET_BESL_DEEP(field);
4490 		hirdm = 1;
4491 	}
4492 
4493 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4494 }
4495 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4496 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4497 			struct usb_device *udev, int enable)
4498 {
4499 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4500 	struct xhci_port **ports;
4501 	__le32 __iomem	*pm_addr, *hlpm_addr;
4502 	u32		pm_val, hlpm_val, field;
4503 	unsigned int	port_num;
4504 	unsigned long	flags;
4505 	int		hird, exit_latency;
4506 	int		ret;
4507 
4508 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4509 		return -EPERM;
4510 
4511 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4512 			!udev->lpm_capable)
4513 		return -EPERM;
4514 
4515 	if (!udev->parent || udev->parent->parent ||
4516 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517 		return -EPERM;
4518 
4519 	if (udev->usb2_hw_lpm_capable != 1)
4520 		return -EPERM;
4521 
4522 	spin_lock_irqsave(&xhci->lock, flags);
4523 
4524 	ports = xhci->usb2_rhub.ports;
4525 	port_num = udev->portnum - 1;
4526 	pm_addr = ports[port_num]->addr + PORTPMSC;
4527 	pm_val = readl(pm_addr);
4528 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4529 
4530 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4531 		 str_enable_disable(enable), port_num + 1);
4532 
4533 	if (enable) {
4534 		/* Host supports BESL timeout instead of HIRD */
4535 		if (udev->usb2_hw_lpm_besl_capable) {
4536 			/* if device doesn't have a preferred BESL value use a
4537 			 * default one which works with mixed HIRD and BESL
4538 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4539 			 */
4540 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4541 			if ((field & USB_BESL_SUPPORT) &&
4542 			    (field & USB_BESL_BASELINE_VALID))
4543 				hird = USB_GET_BESL_BASELINE(field);
4544 			else
4545 				hird = udev->l1_params.besl;
4546 
4547 			exit_latency = xhci_besl_encoding[hird];
4548 			spin_unlock_irqrestore(&xhci->lock, flags);
4549 
4550 			ret = xhci_change_max_exit_latency(xhci, udev,
4551 							   exit_latency);
4552 			if (ret < 0)
4553 				return ret;
4554 			spin_lock_irqsave(&xhci->lock, flags);
4555 
4556 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4557 			writel(hlpm_val, hlpm_addr);
4558 			/* flush write */
4559 			readl(hlpm_addr);
4560 		} else {
4561 			hird = xhci_calculate_hird_besl(xhci, udev);
4562 		}
4563 
4564 		pm_val &= ~PORT_HIRD_MASK;
4565 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4566 		writel(pm_val, pm_addr);
4567 		pm_val = readl(pm_addr);
4568 		pm_val |= PORT_HLE;
4569 		writel(pm_val, pm_addr);
4570 		/* flush write */
4571 		readl(pm_addr);
4572 	} else {
4573 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4574 		writel(pm_val, pm_addr);
4575 		/* flush write */
4576 		readl(pm_addr);
4577 		if (udev->usb2_hw_lpm_besl_capable) {
4578 			spin_unlock_irqrestore(&xhci->lock, flags);
4579 			xhci_change_max_exit_latency(xhci, udev, 0);
4580 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4581 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4582 					   100, 10000);
4583 			return 0;
4584 		}
4585 	}
4586 
4587 	spin_unlock_irqrestore(&xhci->lock, flags);
4588 	return 0;
4589 }
4590 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4591 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4592 {
4593 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4594 	struct xhci_port *port;
4595 	u32 capability;
4596 
4597 	/* Check if USB3 device at root port is tunneled over USB4 */
4598 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4599 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4600 
4601 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4602 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4603 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4604 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4605 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4606 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4607 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4608 		return 0;
4609 	}
4610 
4611 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4612 		return 0;
4613 
4614 	/* we only support lpm for non-hub device connected to root hub yet */
4615 	if (!udev->parent || udev->parent->parent ||
4616 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4617 		return 0;
4618 
4619 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4620 	capability = port->port_cap->protocol_caps;
4621 
4622 	if (capability & XHCI_HLC) {
4623 		udev->usb2_hw_lpm_capable = 1;
4624 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4625 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4626 		if (capability & XHCI_BLC)
4627 			udev->usb2_hw_lpm_besl_capable = 1;
4628 	}
4629 
4630 	return 0;
4631 }
4632 
4633 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4634 
4635 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4636 static unsigned long long xhci_service_interval_to_ns(
4637 		struct usb_endpoint_descriptor *desc)
4638 {
4639 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4640 }
4641 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4642 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4643 		enum usb3_link_state state)
4644 {
4645 	unsigned long long sel;
4646 	unsigned long long pel;
4647 	unsigned int max_sel_pel;
4648 	char *state_name;
4649 
4650 	switch (state) {
4651 	case USB3_LPM_U1:
4652 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4653 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4654 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4655 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4656 		state_name = "U1";
4657 		break;
4658 	case USB3_LPM_U2:
4659 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4660 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4661 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4662 		state_name = "U2";
4663 		break;
4664 	default:
4665 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4666 				__func__);
4667 		return USB3_LPM_DISABLED;
4668 	}
4669 
4670 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4671 		return USB3_LPM_DEVICE_INITIATED;
4672 
4673 	if (sel > max_sel_pel)
4674 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4675 				"due to long SEL %llu ms\n",
4676 				state_name, sel);
4677 	else
4678 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4679 				"due to long PEL %llu ms\n",
4680 				state_name, pel);
4681 	return USB3_LPM_DISABLED;
4682 }
4683 
4684 /* The U1 timeout should be the maximum of the following values:
4685  *  - For control endpoints, U1 system exit latency (SEL) * 3
4686  *  - For bulk endpoints, U1 SEL * 5
4687  *  - For interrupt endpoints:
4688  *    - Notification EPs, U1 SEL * 3
4689  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4690  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4691  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4692 static unsigned long long xhci_calculate_intel_u1_timeout(
4693 		struct usb_device *udev,
4694 		struct usb_endpoint_descriptor *desc)
4695 {
4696 	unsigned long long timeout_ns;
4697 	int ep_type;
4698 	int intr_type;
4699 
4700 	ep_type = usb_endpoint_type(desc);
4701 	switch (ep_type) {
4702 	case USB_ENDPOINT_XFER_CONTROL:
4703 		timeout_ns = udev->u1_params.sel * 3;
4704 		break;
4705 	case USB_ENDPOINT_XFER_BULK:
4706 		timeout_ns = udev->u1_params.sel * 5;
4707 		break;
4708 	case USB_ENDPOINT_XFER_INT:
4709 		intr_type = usb_endpoint_interrupt_type(desc);
4710 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4711 			timeout_ns = udev->u1_params.sel * 3;
4712 			break;
4713 		}
4714 		/* Otherwise the calculation is the same as isoc eps */
4715 		fallthrough;
4716 	case USB_ENDPOINT_XFER_ISOC:
4717 		timeout_ns = xhci_service_interval_to_ns(desc);
4718 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4719 		if (timeout_ns < udev->u1_params.sel * 2)
4720 			timeout_ns = udev->u1_params.sel * 2;
4721 		break;
4722 	default:
4723 		return 0;
4724 	}
4725 
4726 	return timeout_ns;
4727 }
4728 
4729 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4730 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4731 		struct usb_device *udev,
4732 		struct usb_endpoint_descriptor *desc)
4733 {
4734 	unsigned long long timeout_ns;
4735 
4736 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4737 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4738 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4739 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4740 			return USB3_LPM_DISABLED;
4741 		}
4742 	}
4743 
4744 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4745 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4746 	else
4747 		timeout_ns = udev->u1_params.sel;
4748 
4749 	/* The U1 timeout is encoded in 1us intervals.
4750 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4751 	 */
4752 	if (timeout_ns == USB3_LPM_DISABLED)
4753 		timeout_ns = 1;
4754 	else
4755 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4756 
4757 	/* If the necessary timeout value is bigger than what we can set in the
4758 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4759 	 */
4760 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4761 		return timeout_ns;
4762 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4763 			"due to long timeout %llu ms\n", timeout_ns);
4764 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4765 }
4766 
4767 /* The U2 timeout should be the maximum of:
4768  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4769  *  - largest bInterval of any active periodic endpoint (to avoid going
4770  *    into lower power link states between intervals).
4771  *  - the U2 Exit Latency of the device
4772  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4773 static unsigned long long xhci_calculate_intel_u2_timeout(
4774 		struct usb_device *udev,
4775 		struct usb_endpoint_descriptor *desc)
4776 {
4777 	unsigned long long timeout_ns;
4778 	unsigned long long u2_del_ns;
4779 
4780 	timeout_ns = 10 * 1000 * 1000;
4781 
4782 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4783 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4784 		timeout_ns = xhci_service_interval_to_ns(desc);
4785 
4786 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4787 	if (u2_del_ns > timeout_ns)
4788 		timeout_ns = u2_del_ns;
4789 
4790 	return timeout_ns;
4791 }
4792 
4793 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4794 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4795 		struct usb_device *udev,
4796 		struct usb_endpoint_descriptor *desc)
4797 {
4798 	unsigned long long timeout_ns;
4799 
4800 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4801 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4802 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4803 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4804 			return USB3_LPM_DISABLED;
4805 		}
4806 	}
4807 
4808 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4809 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4810 	else
4811 		timeout_ns = udev->u2_params.sel;
4812 
4813 	/* The U2 timeout is encoded in 256us intervals */
4814 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4815 	/* If the necessary timeout value is bigger than what we can set in the
4816 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4817 	 */
4818 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4819 		return timeout_ns;
4820 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4821 			"due to long timeout %llu ms\n", timeout_ns);
4822 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4823 }
4824 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4825 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4826 		struct usb_device *udev,
4827 		struct usb_endpoint_descriptor *desc,
4828 		enum usb3_link_state state,
4829 		u16 *timeout)
4830 {
4831 	if (state == USB3_LPM_U1)
4832 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4833 	else if (state == USB3_LPM_U2)
4834 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4835 
4836 	return USB3_LPM_DISABLED;
4837 }
4838 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4839 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4840 		struct usb_device *udev,
4841 		struct usb_endpoint_descriptor *desc,
4842 		enum usb3_link_state state,
4843 		u16 *timeout)
4844 {
4845 	u16 alt_timeout;
4846 
4847 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4848 		desc, state, timeout);
4849 
4850 	/* If we found we can't enable hub-initiated LPM, and
4851 	 * the U1 or U2 exit latency was too high to allow
4852 	 * device-initiated LPM as well, then we will disable LPM
4853 	 * for this device, so stop searching any further.
4854 	 */
4855 	if (alt_timeout == USB3_LPM_DISABLED) {
4856 		*timeout = alt_timeout;
4857 		return -E2BIG;
4858 	}
4859 	if (alt_timeout > *timeout)
4860 		*timeout = alt_timeout;
4861 	return 0;
4862 }
4863 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4864 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4865 		struct usb_device *udev,
4866 		struct usb_host_interface *alt,
4867 		enum usb3_link_state state,
4868 		u16 *timeout)
4869 {
4870 	int j;
4871 
4872 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4873 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4874 					&alt->endpoint[j].desc, state, timeout))
4875 			return -E2BIG;
4876 	}
4877 	return 0;
4878 }
4879 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4880 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4881 		struct usb_device *udev,
4882 		enum usb3_link_state state)
4883 {
4884 	struct usb_device *parent = udev->parent;
4885 	int tier = 1; /* roothub is tier1 */
4886 
4887 	while (parent) {
4888 		parent = parent->parent;
4889 		tier++;
4890 	}
4891 
4892 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4893 		goto fail;
4894 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4895 		goto fail;
4896 
4897 	return 0;
4898 fail:
4899 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4900 			tier);
4901 	return -E2BIG;
4902 }
4903 
4904 /* Returns the U1 or U2 timeout that should be enabled.
4905  * If the tier check or timeout setting functions return with a non-zero exit
4906  * code, that means the timeout value has been finalized and we shouldn't look
4907  * at any more endpoints.
4908  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4909 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4910 			struct usb_device *udev, enum usb3_link_state state)
4911 {
4912 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4913 	struct usb_host_config *config;
4914 	char *state_name;
4915 	int i;
4916 	u16 timeout = USB3_LPM_DISABLED;
4917 
4918 	if (state == USB3_LPM_U1)
4919 		state_name = "U1";
4920 	else if (state == USB3_LPM_U2)
4921 		state_name = "U2";
4922 	else {
4923 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4924 				state);
4925 		return timeout;
4926 	}
4927 
4928 	/* Gather some information about the currently installed configuration
4929 	 * and alternate interface settings.
4930 	 */
4931 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4932 			state, &timeout))
4933 		return timeout;
4934 
4935 	config = udev->actconfig;
4936 	if (!config)
4937 		return timeout;
4938 
4939 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4940 		struct usb_driver *driver;
4941 		struct usb_interface *intf = config->interface[i];
4942 
4943 		if (!intf)
4944 			continue;
4945 
4946 		/* Check if any currently bound drivers want hub-initiated LPM
4947 		 * disabled.
4948 		 */
4949 		if (intf->dev.driver) {
4950 			driver = to_usb_driver(intf->dev.driver);
4951 			if (driver && driver->disable_hub_initiated_lpm) {
4952 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4953 					state_name, driver->name);
4954 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4955 								      state);
4956 				if (timeout == USB3_LPM_DISABLED)
4957 					return timeout;
4958 			}
4959 		}
4960 
4961 		/* Not sure how this could happen... */
4962 		if (!intf->cur_altsetting)
4963 			continue;
4964 
4965 		if (xhci_update_timeout_for_interface(xhci, udev,
4966 					intf->cur_altsetting,
4967 					state, &timeout))
4968 			return timeout;
4969 	}
4970 	return timeout;
4971 }
4972 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4973 static int calculate_max_exit_latency(struct usb_device *udev,
4974 		enum usb3_link_state state_changed,
4975 		u16 hub_encoded_timeout)
4976 {
4977 	unsigned long long u1_mel_us = 0;
4978 	unsigned long long u2_mel_us = 0;
4979 	unsigned long long mel_us = 0;
4980 	bool disabling_u1;
4981 	bool disabling_u2;
4982 	bool enabling_u1;
4983 	bool enabling_u2;
4984 
4985 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4986 			hub_encoded_timeout == USB3_LPM_DISABLED);
4987 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4988 			hub_encoded_timeout == USB3_LPM_DISABLED);
4989 
4990 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4991 			hub_encoded_timeout != USB3_LPM_DISABLED);
4992 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4993 			hub_encoded_timeout != USB3_LPM_DISABLED);
4994 
4995 	/* If U1 was already enabled and we're not disabling it,
4996 	 * or we're going to enable U1, account for the U1 max exit latency.
4997 	 */
4998 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4999 			enabling_u1)
5000 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5001 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5002 			enabling_u2)
5003 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5004 
5005 	mel_us = max(u1_mel_us, u2_mel_us);
5006 
5007 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5008 	if (mel_us > MAX_EXIT) {
5009 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5010 				"is too big.\n", mel_us);
5011 		return -E2BIG;
5012 	}
5013 	return mel_us;
5014 }
5015 
5016 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5017 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5018 			struct usb_device *udev, enum usb3_link_state state)
5019 {
5020 	struct xhci_hcd	*xhci;
5021 	struct xhci_port *port;
5022 	u16 hub_encoded_timeout;
5023 	int mel;
5024 	int ret;
5025 
5026 	xhci = hcd_to_xhci(hcd);
5027 	/* The LPM timeout values are pretty host-controller specific, so don't
5028 	 * enable hub-initiated timeouts unless the vendor has provided
5029 	 * information about their timeout algorithm.
5030 	 */
5031 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5032 			!xhci->devs[udev->slot_id])
5033 		return USB3_LPM_DISABLED;
5034 
5035 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5036 		return USB3_LPM_DISABLED;
5037 
5038 	/* If connected to root port then check port can handle lpm */
5039 	if (udev->parent && !udev->parent->parent) {
5040 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5041 		if (port->lpm_incapable)
5042 			return USB3_LPM_DISABLED;
5043 	}
5044 
5045 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5046 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5047 	if (mel < 0) {
5048 		/* Max Exit Latency is too big, disable LPM. */
5049 		hub_encoded_timeout = USB3_LPM_DISABLED;
5050 		mel = 0;
5051 	}
5052 
5053 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5054 	if (ret)
5055 		return ret;
5056 	return hub_encoded_timeout;
5057 }
5058 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5059 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5060 			struct usb_device *udev, enum usb3_link_state state)
5061 {
5062 	struct xhci_hcd	*xhci;
5063 	u16 mel;
5064 
5065 	xhci = hcd_to_xhci(hcd);
5066 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5067 			!xhci->devs[udev->slot_id])
5068 		return 0;
5069 
5070 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5071 	return xhci_change_max_exit_latency(xhci, udev, mel);
5072 }
5073 #else /* CONFIG_PM */
5074 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5075 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5076 				struct usb_device *udev, int enable)
5077 {
5078 	return 0;
5079 }
5080 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5081 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5082 {
5083 	return 0;
5084 }
5085 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5086 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5087 			struct usb_device *udev, enum usb3_link_state state)
5088 {
5089 	return USB3_LPM_DISABLED;
5090 }
5091 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5092 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5093 			struct usb_device *udev, enum usb3_link_state state)
5094 {
5095 	return 0;
5096 }
5097 #endif	/* CONFIG_PM */
5098 
5099 /*-------------------------------------------------------------------------*/
5100 
5101 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5102  * internal data structures for the device.
5103  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5104 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5105 			struct usb_tt *tt, gfp_t mem_flags)
5106 {
5107 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5108 	struct xhci_virt_device *vdev;
5109 	struct xhci_command *config_cmd;
5110 	struct xhci_input_control_ctx *ctrl_ctx;
5111 	struct xhci_slot_ctx *slot_ctx;
5112 	unsigned long flags;
5113 	unsigned think_time;
5114 	int ret;
5115 
5116 	/* Ignore root hubs */
5117 	if (!hdev->parent)
5118 		return 0;
5119 
5120 	vdev = xhci->devs[hdev->slot_id];
5121 	if (!vdev) {
5122 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5123 		return -EINVAL;
5124 	}
5125 
5126 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5127 	if (!config_cmd)
5128 		return -ENOMEM;
5129 
5130 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5131 	if (!ctrl_ctx) {
5132 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5133 				__func__);
5134 		xhci_free_command(xhci, config_cmd);
5135 		return -ENOMEM;
5136 	}
5137 
5138 	spin_lock_irqsave(&xhci->lock, flags);
5139 	if (hdev->speed == USB_SPEED_HIGH &&
5140 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5141 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5142 		xhci_free_command(xhci, config_cmd);
5143 		spin_unlock_irqrestore(&xhci->lock, flags);
5144 		return -ENOMEM;
5145 	}
5146 
5147 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5148 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5149 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5150 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5151 	/*
5152 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5153 	 * but it may be already set to 1 when setup an xHCI virtual
5154 	 * device, so clear it anyway.
5155 	 */
5156 	if (tt->multi)
5157 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5158 	else if (hdev->speed == USB_SPEED_FULL)
5159 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5160 
5161 	if (xhci->hci_version > 0x95) {
5162 		xhci_dbg(xhci, "xHCI version %x needs hub "
5163 				"TT think time and number of ports\n",
5164 				(unsigned int) xhci->hci_version);
5165 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5166 		/* Set TT think time - convert from ns to FS bit times.
5167 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5168 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5169 		 *
5170 		 * xHCI 1.0: this field shall be 0 if the device is not a
5171 		 * High-spped hub.
5172 		 */
5173 		think_time = tt->think_time;
5174 		if (think_time != 0)
5175 			think_time = (think_time / 666) - 1;
5176 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5177 			slot_ctx->tt_info |=
5178 				cpu_to_le32(TT_THINK_TIME(think_time));
5179 	} else {
5180 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5181 				"TT think time or number of ports\n",
5182 				(unsigned int) xhci->hci_version);
5183 	}
5184 	slot_ctx->dev_state = 0;
5185 	spin_unlock_irqrestore(&xhci->lock, flags);
5186 
5187 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5188 			(xhci->hci_version > 0x95) ?
5189 			"configure endpoint" : "evaluate context");
5190 
5191 	/* Issue and wait for the configure endpoint or
5192 	 * evaluate context command.
5193 	 */
5194 	if (xhci->hci_version > 0x95)
5195 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5196 				false, false);
5197 	else
5198 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5199 				true, false);
5200 
5201 	xhci_free_command(xhci, config_cmd);
5202 	return ret;
5203 }
5204 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5205 
xhci_get_frame(struct usb_hcd * hcd)5206 static int xhci_get_frame(struct usb_hcd *hcd)
5207 {
5208 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5209 	/* EHCI mods by the periodic size.  Why? */
5210 	return readl(&xhci->run_regs->microframe_index) >> 3;
5211 }
5212 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5213 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5214 {
5215 	xhci->usb2_rhub.hcd = hcd;
5216 	hcd->speed = HCD_USB2;
5217 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5218 	/*
5219 	 * USB 2.0 roothub under xHCI has an integrated TT,
5220 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5221 	 * companion controller.
5222 	 */
5223 	hcd->has_tt = 1;
5224 }
5225 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5226 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5227 {
5228 	unsigned int minor_rev;
5229 
5230 	/*
5231 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5232 	 * should return 0x31 for sbrn, or that the minor revision
5233 	 * is a two digit BCD containig minor and sub-minor numbers.
5234 	 * This was later clarified in xHCI 1.2.
5235 	 *
5236 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5237 	 * minor revision set to 0x1 instead of 0x10.
5238 	 */
5239 	if (xhci->usb3_rhub.min_rev == 0x1)
5240 		minor_rev = 1;
5241 	else
5242 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5243 
5244 	switch (minor_rev) {
5245 	case 2:
5246 		hcd->speed = HCD_USB32;
5247 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5248 		hcd->self.root_hub->rx_lanes = 2;
5249 		hcd->self.root_hub->tx_lanes = 2;
5250 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5251 		break;
5252 	case 1:
5253 		hcd->speed = HCD_USB31;
5254 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5255 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5256 		break;
5257 	}
5258 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5259 		  minor_rev, minor_rev ? "Enhanced " : "");
5260 
5261 	xhci->usb3_rhub.hcd = hcd;
5262 }
5263 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5264 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5265 {
5266 	struct xhci_hcd		*xhci;
5267 	/*
5268 	 * TODO: Check with DWC3 clients for sysdev according to
5269 	 * quirks
5270 	 */
5271 	struct device		*dev = hcd->self.sysdev;
5272 	int			retval;
5273 
5274 	/* Accept arbitrarily long scatter-gather lists */
5275 	hcd->self.sg_tablesize = ~0;
5276 
5277 	/* support to build packet from discontinuous buffers */
5278 	hcd->self.no_sg_constraint = 1;
5279 
5280 	/* XHCI controllers don't stop the ep queue on short packets :| */
5281 	hcd->self.no_stop_on_short = 1;
5282 
5283 	xhci = hcd_to_xhci(hcd);
5284 
5285 	if (!usb_hcd_is_primary_hcd(hcd)) {
5286 		xhci_hcd_init_usb3_data(xhci, hcd);
5287 		return 0;
5288 	}
5289 
5290 	mutex_init(&xhci->mutex);
5291 	xhci->main_hcd = hcd;
5292 	xhci->cap_regs = hcd->regs;
5293 	xhci->op_regs = hcd->regs +
5294 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5295 	xhci->run_regs = hcd->regs +
5296 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5297 	/* Cache read-only capability registers */
5298 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5299 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5300 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5301 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5302 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5303 	if (xhci->hci_version > 0x100)
5304 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5305 
5306 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5307 	if ((!xhci->max_interrupters) ||
5308 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5309 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5310 
5311 	xhci->quirks |= quirks;
5312 
5313 	if (get_quirks)
5314 		get_quirks(dev, xhci);
5315 
5316 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5317 	 * success event after a short transfer. This quirk will ignore such
5318 	 * spurious event.
5319 	 */
5320 	if (xhci->hci_version > 0x96)
5321 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5322 
5323 	if (xhci->hci_version == 0x95 && link_quirk) {
5324 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5325 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5326 	}
5327 
5328 	/* Make sure the HC is halted. */
5329 	retval = xhci_halt(xhci);
5330 	if (retval)
5331 		return retval;
5332 
5333 	xhci_zero_64b_regs(xhci);
5334 
5335 	xhci_dbg(xhci, "Resetting HCD\n");
5336 	/* Reset the internal HC memory state and registers. */
5337 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5338 	if (retval)
5339 		return retval;
5340 	xhci_dbg(xhci, "Reset complete\n");
5341 
5342 	/*
5343 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5344 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5345 	 * address memory pointers actually. So, this driver clears the AC64
5346 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5347 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5348 	 */
5349 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5350 		xhci->hcc_params &= ~BIT(0);
5351 
5352 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5353 	 * if xHC supports 64-bit addressing */
5354 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5355 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5356 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5357 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5358 	} else {
5359 		/*
5360 		 * This is to avoid error in cases where a 32-bit USB
5361 		 * controller is used on a 64-bit capable system.
5362 		 */
5363 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5364 		if (retval)
5365 			return retval;
5366 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5367 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5368 	}
5369 
5370 	xhci_dbg(xhci, "Calling HCD init\n");
5371 	/* Initialize HCD and host controller data structures. */
5372 	retval = xhci_init(hcd);
5373 	if (retval)
5374 		return retval;
5375 	xhci_dbg(xhci, "Called HCD init\n");
5376 
5377 	if (xhci_hcd_is_usb3(hcd))
5378 		xhci_hcd_init_usb3_data(xhci, hcd);
5379 	else
5380 		xhci_hcd_init_usb2_data(xhci, hcd);
5381 
5382 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5383 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5384 
5385 	return 0;
5386 }
5387 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5388 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5390 		struct usb_host_endpoint *ep)
5391 {
5392 	struct xhci_hcd *xhci;
5393 	struct usb_device *udev;
5394 	unsigned int slot_id;
5395 	unsigned int ep_index;
5396 	unsigned long flags;
5397 
5398 	xhci = hcd_to_xhci(hcd);
5399 
5400 	spin_lock_irqsave(&xhci->lock, flags);
5401 	udev = (struct usb_device *)ep->hcpriv;
5402 	slot_id = udev->slot_id;
5403 	ep_index = xhci_get_endpoint_index(&ep->desc);
5404 
5405 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5406 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5407 	spin_unlock_irqrestore(&xhci->lock, flags);
5408 }
5409 
5410 static const struct hc_driver xhci_hc_driver = {
5411 	.description =		"xhci-hcd",
5412 	.product_desc =		"xHCI Host Controller",
5413 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5414 
5415 	/*
5416 	 * generic hardware linkage
5417 	 */
5418 	.irq =			xhci_irq,
5419 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5420 				HCD_BH,
5421 
5422 	/*
5423 	 * basic lifecycle operations
5424 	 */
5425 	.reset =		NULL, /* set in xhci_init_driver() */
5426 	.start =		xhci_run,
5427 	.stop =			xhci_stop,
5428 	.shutdown =		xhci_shutdown,
5429 
5430 	/*
5431 	 * managing i/o requests and associated device resources
5432 	 */
5433 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5434 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5435 	.urb_enqueue =		xhci_urb_enqueue,
5436 	.urb_dequeue =		xhci_urb_dequeue,
5437 	.alloc_dev =		xhci_alloc_dev,
5438 	.free_dev =		xhci_free_dev,
5439 	.alloc_streams =	xhci_alloc_streams,
5440 	.free_streams =		xhci_free_streams,
5441 	.add_endpoint =		xhci_add_endpoint,
5442 	.drop_endpoint =	xhci_drop_endpoint,
5443 	.endpoint_disable =	xhci_endpoint_disable,
5444 	.endpoint_reset =	xhci_endpoint_reset,
5445 	.check_bandwidth =	xhci_check_bandwidth,
5446 	.reset_bandwidth =	xhci_reset_bandwidth,
5447 	.address_device =	xhci_address_device,
5448 	.enable_device =	xhci_enable_device,
5449 	.update_hub_device =	xhci_update_hub_device,
5450 	.reset_device =		xhci_discover_or_reset_device,
5451 
5452 	/*
5453 	 * scheduling support
5454 	 */
5455 	.get_frame_number =	xhci_get_frame,
5456 
5457 	/*
5458 	 * root hub support
5459 	 */
5460 	.hub_control =		xhci_hub_control,
5461 	.hub_status_data =	xhci_hub_status_data,
5462 	.bus_suspend =		xhci_bus_suspend,
5463 	.bus_resume =		xhci_bus_resume,
5464 	.get_resuming_ports =	xhci_get_resuming_ports,
5465 
5466 	/*
5467 	 * call back when device connected and addressed
5468 	 */
5469 	.update_device =        xhci_update_device,
5470 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5471 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5472 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5473 	.find_raw_port_number =	xhci_find_raw_port_number,
5474 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5475 };
5476 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5477 void xhci_init_driver(struct hc_driver *drv,
5478 		      const struct xhci_driver_overrides *over)
5479 {
5480 	BUG_ON(!over);
5481 
5482 	/* Copy the generic table to drv then apply the overrides */
5483 	*drv = xhci_hc_driver;
5484 
5485 	if (over) {
5486 		drv->hcd_priv_size += over->extra_priv_size;
5487 		if (over->reset)
5488 			drv->reset = over->reset;
5489 		if (over->start)
5490 			drv->start = over->start;
5491 		if (over->add_endpoint)
5492 			drv->add_endpoint = over->add_endpoint;
5493 		if (over->drop_endpoint)
5494 			drv->drop_endpoint = over->drop_endpoint;
5495 		if (over->check_bandwidth)
5496 			drv->check_bandwidth = over->check_bandwidth;
5497 		if (over->reset_bandwidth)
5498 			drv->reset_bandwidth = over->reset_bandwidth;
5499 		if (over->update_hub_device)
5500 			drv->update_hub_device = over->update_hub_device;
5501 		if (over->hub_control)
5502 			drv->hub_control = over->hub_control;
5503 	}
5504 }
5505 EXPORT_SYMBOL_GPL(xhci_init_driver);
5506 
5507 MODULE_DESCRIPTION(DRIVER_DESC);
5508 MODULE_AUTHOR(DRIVER_AUTHOR);
5509 MODULE_LICENSE("GPL");
5510 
xhci_hcd_init(void)5511 static int __init xhci_hcd_init(void)
5512 {
5513 	/*
5514 	 * Check the compiler generated sizes of structures that must be laid
5515 	 * out in specific ways for hardware access.
5516 	 */
5517 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5518 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5519 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5520 	/* xhci_device_control has eight fields, and also
5521 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5522 	 */
5523 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5524 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5525 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5526 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5527 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5528 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5529 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5530 
5531 	if (usb_disabled())
5532 		return -ENODEV;
5533 
5534 	xhci_debugfs_create_root();
5535 	xhci_dbc_init();
5536 
5537 	return 0;
5538 }
5539 
5540 /*
5541  * If an init function is provided, an exit function must also be provided
5542  * to allow module unload.
5543  */
xhci_hcd_fini(void)5544 static void __exit xhci_hcd_fini(void)
5545 {
5546 	xhci_debugfs_remove_root();
5547 	xhci_dbc_exit();
5548 }
5549 
5550 module_init(xhci_hcd_init);
5551 module_exit(xhci_hcd_fini);
5552