1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31
32 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 struct xhci_segment *seg;
46
47 if (!td || !td->start_seg)
48 return false;
49
50 xhci_for_each_ring_seg(ring->first_seg, seg) {
51 if (seg == td->start_seg)
52 return true;
53 }
54
55 return false;
56 }
57
58 /*
59 * xhci_handshake - spin reading hc until handshake completes or fails
60 * @ptr: address of hc register to be read
61 * @mask: bits to look at in result of read
62 * @done: value of those bits when handshake succeeds
63 * @usec: timeout in microseconds
64 *
65 * Returns negative errno, or zero on success
66 *
67 * Success happens when the "mask" bits have the specified value (hardware
68 * handshake done). There are two failure modes: "usec" have passed (major
69 * hardware flakeout), or the register reads as all-ones (hardware removed).
70 */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 u32 result;
74 int ret;
75
76 ret = readl_poll_timeout_atomic(ptr, result,
77 (result & mask) == done ||
78 result == U32_MAX,
79 1, timeout_us);
80 if (result == U32_MAX) /* card removed */
81 return -ENODEV;
82
83 return ret;
84 }
85
86 /*
87 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
88 * exit_state parameter, and bails out with an error immediately when xhc_state
89 * has exit_state flag set.
90 */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
92 u32 mask, u32 done, int usec, unsigned int exit_state)
93 {
94 u32 result;
95 int ret;
96
97 ret = readl_poll_timeout_atomic(ptr, result,
98 (result & mask) == done ||
99 result == U32_MAX ||
100 xhci->xhc_state & exit_state,
101 1, usec);
102
103 if (result == U32_MAX || xhci->xhc_state & exit_state)
104 return -ENODEV;
105
106 return ret;
107 }
108
109 /*
110 * Disable interrupts and begin the xHCI halting process.
111 */
xhci_quiesce(struct xhci_hcd * xhci)112 void xhci_quiesce(struct xhci_hcd *xhci)
113 {
114 u32 halted;
115 u32 cmd;
116 u32 mask;
117
118 mask = ~(XHCI_IRQS);
119 halted = readl(&xhci->op_regs->status) & STS_HALT;
120 if (!halted)
121 mask &= ~CMD_RUN;
122
123 cmd = readl(&xhci->op_regs->command);
124 cmd &= mask;
125 writel(cmd, &xhci->op_regs->command);
126 }
127
128 /*
129 * Force HC into halt state.
130 *
131 * Disable any IRQs and clear the run/stop bit.
132 * HC will complete any current and actively pipelined transactions, and
133 * should halt within 16 ms of the run/stop bit being cleared.
134 * Read HC Halted bit in the status register to see when the HC is finished.
135 */
xhci_halt(struct xhci_hcd * xhci)136 int xhci_halt(struct xhci_hcd *xhci)
137 {
138 int ret;
139
140 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
141 xhci_quiesce(xhci);
142
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
145 if (ret) {
146 xhci_warn(xhci, "Host halt failed, %d\n", ret);
147 return ret;
148 }
149
150 xhci->xhc_state |= XHCI_STATE_HALTED;
151 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
152
153 return ret;
154 }
155
156 /*
157 * Set the run bit and wait for the host to be running.
158 */
xhci_start(struct xhci_hcd * xhci)159 int xhci_start(struct xhci_hcd *xhci)
160 {
161 u32 temp;
162 int ret;
163
164 temp = readl(&xhci->op_regs->command);
165 temp |= (CMD_RUN);
166 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
167 temp);
168 writel(temp, &xhci->op_regs->command);
169
170 /*
171 * Wait for the HCHalted Status bit to be 0 to indicate the host is
172 * running.
173 */
174 ret = xhci_handshake(&xhci->op_regs->status,
175 STS_HALT, 0, XHCI_MAX_HALT_USEC);
176 if (ret == -ETIMEDOUT)
177 xhci_err(xhci, "Host took too long to start, "
178 "waited %u microseconds.\n",
179 XHCI_MAX_HALT_USEC);
180 if (!ret) {
181 /* clear state flags. Including dying, halted or removing */
182 xhci->xhc_state = 0;
183 xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
184 }
185
186 return ret;
187 }
188
189 /*
190 * Reset a halted HC.
191 *
192 * This resets pipelines, timers, counters, state machines, etc.
193 * Transactions will be terminated immediately, and operational registers
194 * will be set to their defaults.
195 */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
197 {
198 u32 command;
199 u32 state;
200 int ret;
201
202 state = readl(&xhci->op_regs->status);
203
204 if (state == ~(u32)0) {
205 xhci_warn(xhci, "Host not accessible, reset failed.\n");
206 return -ENODEV;
207 }
208
209 if ((state & STS_HALT) == 0) {
210 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
211 return 0;
212 }
213
214 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
215 command = readl(&xhci->op_regs->command);
216 command |= CMD_RESET;
217 writel(command, &xhci->op_regs->command);
218
219 /* Existing Intel xHCI controllers require a delay of 1 mS,
220 * after setting the CMD_RESET bit, and before accessing any
221 * HC registers. This allows the HC to complete the
222 * reset operation and be ready for HC register access.
223 * Without this delay, the subsequent HC register access,
224 * may result in a system hang very rarely.
225 */
226 if (xhci->quirks & XHCI_INTEL_HOST)
227 udelay(1000);
228
229 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
230 CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
231 if (ret)
232 return ret;
233
234 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
235 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
236
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "Wait for controller to be ready for doorbell rings");
239 /*
240 * xHCI cannot write to any doorbells or operational registers other
241 * than status until the "Controller Not Ready" flag is cleared.
242 */
243 ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
244
245 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
246 xhci->usb2_rhub.bus_state.suspended_ports = 0;
247 xhci->usb2_rhub.bus_state.resuming_ports = 0;
248 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
249 xhci->usb3_rhub.bus_state.suspended_ports = 0;
250 xhci->usb3_rhub.bus_state.resuming_ports = 0;
251
252 return ret;
253 }
254
xhci_zero_64b_regs(struct xhci_hcd * xhci)255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
256 {
257 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
258 struct iommu_domain *domain;
259 int err, i;
260 u64 val;
261 u32 intrs;
262
263 /*
264 * Some Renesas controllers get into a weird state if they are
265 * reset while programmed with 64bit addresses (they will preserve
266 * the top half of the address in internal, non visible
267 * registers). You end up with half the address coming from the
268 * kernel, and the other half coming from the firmware. Also,
269 * changing the programming leads to extra accesses even if the
270 * controller is supposed to be halted. The controller ends up with
271 * a fatal fault, and is then ripe for being properly reset.
272 *
273 * Special care is taken to only apply this if the device is behind
274 * an iommu. Doing anything when there is no iommu is definitely
275 * unsafe...
276 */
277 domain = iommu_get_domain_for_dev(dev);
278 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
279 domain->type == IOMMU_DOMAIN_IDENTITY)
280 return;
281
282 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
283
284 /* Clear HSEIE so that faults do not get signaled */
285 val = readl(&xhci->op_regs->command);
286 val &= ~CMD_HSEIE;
287 writel(val, &xhci->op_regs->command);
288
289 /* Clear HSE (aka FATAL) */
290 val = readl(&xhci->op_regs->status);
291 val |= STS_FATAL;
292 writel(val, &xhci->op_regs->status);
293
294 /* Now zero the registers, and brace for impact */
295 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
296 if (upper_32_bits(val))
297 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
298 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
299 if (upper_32_bits(val))
300 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
301
302 intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
303 ARRAY_SIZE(xhci->run_regs->ir_set));
304
305 for (i = 0; i < intrs; i++) {
306 struct xhci_intr_reg __iomem *ir;
307
308 ir = &xhci->run_regs->ir_set[i];
309 val = xhci_read_64(xhci, &ir->erst_base);
310 if (upper_32_bits(val))
311 xhci_write_64(xhci, 0, &ir->erst_base);
312 val= xhci_read_64(xhci, &ir->erst_dequeue);
313 if (upper_32_bits(val))
314 xhci_write_64(xhci, 0, &ir->erst_dequeue);
315 }
316
317 /* Wait for the fault to appear. It will be cleared on reset */
318 err = xhci_handshake(&xhci->op_regs->status,
319 STS_FATAL, STS_FATAL,
320 XHCI_MAX_HALT_USEC);
321 if (!err)
322 xhci_info(xhci, "Fault detected\n");
323 }
324
xhci_enable_interrupter(struct xhci_interrupter * ir)325 static int xhci_enable_interrupter(struct xhci_interrupter *ir)
326 {
327 u32 iman;
328
329 if (!ir || !ir->ir_set)
330 return -EINVAL;
331
332 iman = readl(&ir->ir_set->irq_pending);
333 writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
334
335 return 0;
336 }
337
xhci_disable_interrupter(struct xhci_interrupter * ir)338 static int xhci_disable_interrupter(struct xhci_interrupter *ir)
339 {
340 u32 iman;
341
342 if (!ir || !ir->ir_set)
343 return -EINVAL;
344
345 iman = readl(&ir->ir_set->irq_pending);
346 writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
347
348 return 0;
349 }
350
351 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
353 u32 imod_interval)
354 {
355 u32 imod;
356
357 if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
358 return -EINVAL;
359
360 imod = readl(&ir->ir_set->irq_control);
361 imod &= ~ER_IRQ_INTERVAL_MASK;
362 imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
363 writel(imod, &ir->ir_set->irq_control);
364
365 return 0;
366 }
367
compliance_mode_recovery(struct timer_list * t)368 static void compliance_mode_recovery(struct timer_list *t)
369 {
370 struct xhci_hcd *xhci;
371 struct usb_hcd *hcd;
372 struct xhci_hub *rhub;
373 u32 temp;
374 int i;
375
376 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
377 rhub = &xhci->usb3_rhub;
378 hcd = rhub->hcd;
379
380 if (!hcd)
381 return;
382
383 for (i = 0; i < rhub->num_ports; i++) {
384 temp = readl(rhub->ports[i]->addr);
385 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
386 /*
387 * Compliance Mode Detected. Letting USB Core
388 * handle the Warm Reset
389 */
390 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
391 "Compliance mode detected->port %d",
392 i + 1);
393 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
394 "Attempting compliance mode recovery");
395
396 if (hcd->state == HC_STATE_SUSPENDED)
397 usb_hcd_resume_root_hub(hcd);
398
399 usb_hcd_poll_rh_status(hcd);
400 }
401 }
402
403 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
404 mod_timer(&xhci->comp_mode_recovery_timer,
405 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
406 }
407
408 /*
409 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
410 * that causes ports behind that hardware to enter compliance mode sometimes.
411 * The quirk creates a timer that polls every 2 seconds the link state of
412 * each host controller's port and recovers it by issuing a Warm reset
413 * if Compliance mode is detected, otherwise the port will become "dead" (no
414 * device connections or disconnections will be detected anymore). Becasue no
415 * status event is generated when entering compliance mode (per xhci spec),
416 * this quirk is needed on systems that have the failing hardware installed.
417 */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
419 {
420 xhci->port_status_u0 = 0;
421 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
422 0);
423 xhci->comp_mode_recovery_timer.expires = jiffies +
424 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
425
426 add_timer(&xhci->comp_mode_recovery_timer);
427 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
428 "Compliance mode recovery timer initialized");
429 }
430
431 /*
432 * This function identifies the systems that have installed the SN65LVPE502CP
433 * USB3.0 re-driver and that need the Compliance Mode Quirk.
434 * Systems:
435 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
436 */
xhci_compliance_mode_recovery_timer_quirk_check(void)437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
438 {
439 const char *dmi_product_name, *dmi_sys_vendor;
440
441 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
442 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
443 if (!dmi_product_name || !dmi_sys_vendor)
444 return false;
445
446 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
447 return false;
448
449 if (strstr(dmi_product_name, "Z420") ||
450 strstr(dmi_product_name, "Z620") ||
451 strstr(dmi_product_name, "Z820") ||
452 strstr(dmi_product_name, "Z1 Workstation"))
453 return true;
454
455 return false;
456 }
457
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
459 {
460 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
461 }
462
463
464 /*
465 * Initialize memory for HCD and xHC (one-time init).
466 *
467 * Program the PAGESIZE register, initialize the device context array, create
468 * device contexts (?), set up a command ring segment (or two?), create event
469 * ring (one for now).
470 */
xhci_init(struct usb_hcd * hcd)471 static int xhci_init(struct usb_hcd *hcd)
472 {
473 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
474 int retval;
475
476 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
477 spin_lock_init(&xhci->lock);
478
479 retval = xhci_mem_init(xhci, GFP_KERNEL);
480 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
481
482 /* Initializing Compliance Mode Recovery Data If Needed */
483 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
484 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
485 compliance_mode_recovery_timer_init(xhci);
486 }
487
488 return retval;
489 }
490
491 /*-------------------------------------------------------------------------*/
492
xhci_run_finished(struct xhci_hcd * xhci)493 static int xhci_run_finished(struct xhci_hcd *xhci)
494 {
495 struct xhci_interrupter *ir = xhci->interrupters[0];
496 unsigned long flags;
497 u32 temp;
498
499 /*
500 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
501 * Protect the short window before host is running with a lock
502 */
503 spin_lock_irqsave(&xhci->lock, flags);
504
505 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
506 temp = readl(&xhci->op_regs->command);
507 temp |= (CMD_EIE);
508 writel(temp, &xhci->op_regs->command);
509
510 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
511 xhci_enable_interrupter(ir);
512
513 if (xhci_start(xhci)) {
514 xhci_halt(xhci);
515 spin_unlock_irqrestore(&xhci->lock, flags);
516 return -ENODEV;
517 }
518
519 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
520
521 if (xhci->quirks & XHCI_NEC_HOST)
522 xhci_ring_cmd_db(xhci);
523
524 spin_unlock_irqrestore(&xhci->lock, flags);
525
526 return 0;
527 }
528
529 /*
530 * Start the HC after it was halted.
531 *
532 * This function is called by the USB core when the HC driver is added.
533 * Its opposite is xhci_stop().
534 *
535 * xhci_init() must be called once before this function can be called.
536 * Reset the HC, enable device slot contexts, program DCBAAP, and
537 * set command ring pointer and event ring pointer.
538 *
539 * Setup MSI-X vectors and enable interrupts.
540 */
xhci_run(struct usb_hcd * hcd)541 int xhci_run(struct usb_hcd *hcd)
542 {
543 u64 temp_64;
544 int ret;
545 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
546 struct xhci_interrupter *ir = xhci->interrupters[0];
547 /* Start the xHCI host controller running only after the USB 2.0 roothub
548 * is setup.
549 */
550
551 hcd->uses_new_polling = 1;
552 if (hcd->msi_enabled)
553 ir->ip_autoclear = true;
554
555 if (!usb_hcd_is_primary_hcd(hcd))
556 return xhci_run_finished(xhci);
557
558 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
559
560 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
561 temp_64 &= ERST_PTR_MASK;
562 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
564
565 xhci_set_interrupter_moderation(ir, xhci->imod_interval);
566
567 if (xhci->quirks & XHCI_NEC_HOST) {
568 struct xhci_command *command;
569
570 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
571 if (!command)
572 return -ENOMEM;
573
574 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
575 TRB_TYPE(TRB_NEC_GET_FW));
576 if (ret)
577 xhci_free_command(xhci, command);
578 }
579 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 "Finished %s for main hcd", __func__);
581
582 xhci_create_dbc_dev(xhci);
583
584 xhci_debugfs_init(xhci);
585
586 if (xhci_has_one_roothub(xhci))
587 return xhci_run_finished(xhci);
588
589 set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
590
591 return 0;
592 }
593 EXPORT_SYMBOL_GPL(xhci_run);
594
595 /*
596 * Stop xHCI driver.
597 *
598 * This function is called by the USB core when the HC driver is removed.
599 * Its opposite is xhci_run().
600 *
601 * Disable device contexts, disable IRQs, and quiesce the HC.
602 * Reset the HC, finish any completed transactions, and cleanup memory.
603 */
xhci_stop(struct usb_hcd * hcd)604 void xhci_stop(struct usb_hcd *hcd)
605 {
606 u32 temp;
607 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608 struct xhci_interrupter *ir = xhci->interrupters[0];
609
610 mutex_lock(&xhci->mutex);
611
612 /* Only halt host and free memory after both hcds are removed */
613 if (!usb_hcd_is_primary_hcd(hcd)) {
614 mutex_unlock(&xhci->mutex);
615 return;
616 }
617
618 xhci_remove_dbc_dev(xhci);
619
620 spin_lock_irq(&xhci->lock);
621 xhci->xhc_state |= XHCI_STATE_HALTED;
622 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
623 xhci_halt(xhci);
624 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
625 spin_unlock_irq(&xhci->lock);
626
627 /* Deleting Compliance Mode Recovery Timer */
628 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
629 (!(xhci_all_ports_seen_u0(xhci)))) {
630 del_timer_sync(&xhci->comp_mode_recovery_timer);
631 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
632 "%s: compliance mode recovery timer deleted",
633 __func__);
634 }
635
636 if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 usb_amd_dev_put();
638
639 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 "// Disabling event ring interrupts");
641 temp = readl(&xhci->op_regs->status);
642 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
643 xhci_disable_interrupter(ir);
644
645 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
646 xhci_mem_cleanup(xhci);
647 xhci_debugfs_exit(xhci);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "xhci_stop completed - status = %x",
650 readl(&xhci->op_regs->status));
651 mutex_unlock(&xhci->mutex);
652 }
653 EXPORT_SYMBOL_GPL(xhci_stop);
654
655 /*
656 * Shutdown HC (not bus-specific)
657 *
658 * This is called when the machine is rebooting or halting. We assume that the
659 * machine will be powered off, and the HC's internal state will be reset.
660 * Don't bother to free memory.
661 *
662 * This will only ever be called with the main usb_hcd (the USB3 roothub).
663 */
xhci_shutdown(struct usb_hcd * hcd)664 void xhci_shutdown(struct usb_hcd *hcd)
665 {
666 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
667
668 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
669 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
670
671 /* Don't poll the roothubs after shutdown. */
672 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
673 __func__, hcd->self.busnum);
674 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
675 del_timer_sync(&hcd->rh_timer);
676
677 if (xhci->shared_hcd) {
678 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
679 del_timer_sync(&xhci->shared_hcd->rh_timer);
680 }
681
682 spin_lock_irq(&xhci->lock);
683 xhci_halt(xhci);
684
685 /*
686 * Workaround for spurious wakeps at shutdown with HSW, and for boot
687 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
688 */
689 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
690 xhci->quirks & XHCI_RESET_TO_DEFAULT)
691 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
692
693 spin_unlock_irq(&xhci->lock);
694
695 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 "xhci_shutdown completed - status = %x",
697 readl(&xhci->op_regs->status));
698 }
699 EXPORT_SYMBOL_GPL(xhci_shutdown);
700
701 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)702 static void xhci_save_registers(struct xhci_hcd *xhci)
703 {
704 struct xhci_interrupter *ir;
705 unsigned int i;
706
707 xhci->s3.command = readl(&xhci->op_regs->command);
708 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
709 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
710 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
711
712 /* save both primary and all secondary interrupters */
713 /* fixme, shold we lock to prevent race with remove secondary interrupter? */
714 for (i = 0; i < xhci->max_interrupters; i++) {
715 ir = xhci->interrupters[i];
716 if (!ir)
717 continue;
718
719 ir->s3_erst_size = readl(&ir->ir_set->erst_size);
720 ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
721 ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
722 ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
723 ir->s3_irq_control = readl(&ir->ir_set->irq_control);
724 }
725 }
726
xhci_restore_registers(struct xhci_hcd * xhci)727 static void xhci_restore_registers(struct xhci_hcd *xhci)
728 {
729 struct xhci_interrupter *ir;
730 unsigned int i;
731
732 writel(xhci->s3.command, &xhci->op_regs->command);
733 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
734 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
735 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
736
737 /* FIXME should we lock to protect against freeing of interrupters */
738 for (i = 0; i < xhci->max_interrupters; i++) {
739 ir = xhci->interrupters[i];
740 if (!ir)
741 continue;
742
743 writel(ir->s3_erst_size, &ir->ir_set->erst_size);
744 xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
745 xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
746 writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
747 writel(ir->s3_irq_control, &ir->ir_set->irq_control);
748 }
749 }
750
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 {
753 u64 val_64;
754
755 /* step 2: initialize command ring buffer */
756 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
757 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
758 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
759 xhci->cmd_ring->dequeue) &
760 (u64) ~CMD_RING_RSVD_BITS) |
761 xhci->cmd_ring->cycle_state;
762 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 "// Setting command ring address to 0x%llx",
764 (long unsigned long) val_64);
765 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
766 }
767
768 /*
769 * The whole command ring must be cleared to zero when we suspend the host.
770 *
771 * The host doesn't save the command ring pointer in the suspend well, so we
772 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
773 * aligned, because of the reserved bits in the command ring dequeue pointer
774 * register. Therefore, we can't just set the dequeue pointer back in the
775 * middle of the ring (TRBs are 16-byte aligned).
776 */
xhci_clear_command_ring(struct xhci_hcd * xhci)777 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 {
779 struct xhci_ring *ring;
780 struct xhci_segment *seg;
781
782 ring = xhci->cmd_ring;
783 xhci_for_each_ring_seg(ring->first_seg, seg) {
784 /* erase all TRBs before the link */
785 memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
786 /* clear link cycle bit */
787 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
788 }
789
790 xhci_initialize_ring_info(ring);
791 /*
792 * Reset the hardware dequeue pointer.
793 * Yes, this will need to be re-written after resume, but we're paranoid
794 * and want to make sure the hardware doesn't access bogus memory
795 * because, say, the BIOS or an SMI started the host without changing
796 * the command ring pointers.
797 */
798 xhci_set_cmd_ring_deq(xhci);
799 }
800
801 /*
802 * Disable port wake bits if do_wakeup is not set.
803 *
804 * Also clear a possible internal port wake state left hanging for ports that
805 * detected termination but never successfully enumerated (trained to 0U).
806 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
807 * at enumeration clears this wake, force one here as well for unconnected ports
808 */
809
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
811 struct xhci_hub *rhub,
812 bool do_wakeup)
813 {
814 unsigned long flags;
815 u32 t1, t2, portsc;
816 int i;
817
818 spin_lock_irqsave(&xhci->lock, flags);
819
820 for (i = 0; i < rhub->num_ports; i++) {
821 portsc = readl(rhub->ports[i]->addr);
822 t1 = xhci_port_state_to_neutral(portsc);
823 t2 = t1;
824
825 /* clear wake bits if do_wake is not set */
826 if (!do_wakeup)
827 t2 &= ~PORT_WAKE_BITS;
828
829 /* Don't touch csc bit if connected or connect change is set */
830 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
831 t2 |= PORT_CSC;
832
833 if (t1 != t2) {
834 writel(t2, rhub->ports[i]->addr);
835 xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
836 rhub->hcd->self.busnum, i + 1, portsc, t2);
837 }
838 }
839 spin_unlock_irqrestore(&xhci->lock, flags);
840 }
841
xhci_pending_portevent(struct xhci_hcd * xhci)842 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
843 {
844 struct xhci_port **ports;
845 int port_index;
846 u32 status;
847 u32 portsc;
848
849 status = readl(&xhci->op_regs->status);
850 if (status & STS_EINT)
851 return true;
852 /*
853 * Checking STS_EINT is not enough as there is a lag between a change
854 * bit being set and the Port Status Change Event that it generated
855 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
856 */
857
858 port_index = xhci->usb2_rhub.num_ports;
859 ports = xhci->usb2_rhub.ports;
860 while (port_index--) {
861 portsc = readl(ports[port_index]->addr);
862 if (portsc & PORT_CHANGE_MASK ||
863 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
864 return true;
865 }
866 port_index = xhci->usb3_rhub.num_ports;
867 ports = xhci->usb3_rhub.ports;
868 while (port_index--) {
869 portsc = readl(ports[port_index]->addr);
870 if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
871 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
872 return true;
873 }
874 return false;
875 }
876
877 /*
878 * Stop HC (not bus-specific)
879 *
880 * This is called when the machine transition into S3/S4 mode.
881 *
882 */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
884 {
885 int rc = 0;
886 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
887 struct usb_hcd *hcd = xhci_to_hcd(xhci);
888 u32 command;
889 u32 res;
890
891 if (!hcd->state)
892 return 0;
893
894 if (hcd->state != HC_STATE_SUSPENDED ||
895 (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
896 return -EINVAL;
897
898 /* Clear root port wake on bits if wakeup not allowed. */
899 xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
900 xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
901
902 if (!HCD_HW_ACCESSIBLE(hcd))
903 return 0;
904
905 xhci_dbc_suspend(xhci);
906
907 /* Don't poll the roothubs on bus suspend. */
908 xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
909 __func__, hcd->self.busnum);
910 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
911 del_timer_sync(&hcd->rh_timer);
912 if (xhci->shared_hcd) {
913 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
914 del_timer_sync(&xhci->shared_hcd->rh_timer);
915 }
916
917 if (xhci->quirks & XHCI_SUSPEND_DELAY)
918 usleep_range(1000, 1500);
919
920 spin_lock_irq(&xhci->lock);
921 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
922 if (xhci->shared_hcd)
923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924 /* step 1: stop endpoint */
925 /* skipped assuming that port suspend has done */
926
927 /* step 2: clear Run/Stop bit */
928 command = readl(&xhci->op_regs->command);
929 command &= ~CMD_RUN;
930 writel(command, &xhci->op_regs->command);
931
932 /* Some chips from Fresco Logic need an extraordinary delay */
933 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934
935 if (xhci_handshake(&xhci->op_regs->status,
936 STS_HALT, STS_HALT, delay)) {
937 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938 spin_unlock_irq(&xhci->lock);
939 return -ETIMEDOUT;
940 }
941 xhci_clear_command_ring(xhci);
942
943 /* step 3: save registers */
944 xhci_save_registers(xhci);
945
946 /* step 4: set CSS flag */
947 command = readl(&xhci->op_regs->command);
948 command |= CMD_CSS;
949 writel(command, &xhci->op_regs->command);
950 xhci->broken_suspend = 0;
951 if (xhci_handshake(&xhci->op_regs->status,
952 STS_SAVE, 0, 20 * 1000)) {
953 /*
954 * AMD SNPS xHC 3.0 occasionally does not clear the
955 * SSS bit of USBSTS and when driver tries to poll
956 * to see if the xHC clears BIT(8) which never happens
957 * and driver assumes that controller is not responding
958 * and times out. To workaround this, its good to check
959 * if SRE and HCE bits are not set (as per xhci
960 * Section 5.4.2) and bypass the timeout.
961 */
962 res = readl(&xhci->op_regs->status);
963 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
964 (((res & STS_SRE) == 0) &&
965 ((res & STS_HCE) == 0))) {
966 xhci->broken_suspend = 1;
967 } else {
968 xhci_warn(xhci, "WARN: xHC save state timeout\n");
969 spin_unlock_irq(&xhci->lock);
970 return -ETIMEDOUT;
971 }
972 }
973 spin_unlock_irq(&xhci->lock);
974
975 /*
976 * Deleting Compliance Mode Recovery Timer because the xHCI Host
977 * is about to be suspended.
978 */
979 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980 (!(xhci_all_ports_seen_u0(xhci)))) {
981 del_timer_sync(&xhci->comp_mode_recovery_timer);
982 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
983 "%s: compliance mode recovery timer deleted",
984 __func__);
985 }
986
987 return rc;
988 }
989 EXPORT_SYMBOL_GPL(xhci_suspend);
990
991 /*
992 * start xHC (not bus-specific)
993 *
994 * This is called when the machine transition from S3/S4 mode.
995 *
996 */
xhci_resume(struct xhci_hcd * xhci,pm_message_t msg)997 int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
998 {
999 bool hibernated = (msg.event == PM_EVENT_RESTORE);
1000 u32 command, temp = 0;
1001 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1002 int retval = 0;
1003 bool comp_timer_running = false;
1004 bool pending_portevent = false;
1005 bool suspended_usb3_devs = false;
1006 bool reinit_xhc = false;
1007
1008 if (!hcd->state)
1009 return 0;
1010
1011 /* Wait a bit if either of the roothubs need to settle from the
1012 * transition into bus suspend.
1013 */
1014
1015 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1016 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1017 msleep(100);
1018
1019 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1020 if (xhci->shared_hcd)
1021 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1022
1023 spin_lock_irq(&xhci->lock);
1024
1025 if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1026 reinit_xhc = true;
1027
1028 if (!reinit_xhc) {
1029 /*
1030 * Some controllers might lose power during suspend, so wait
1031 * for controller not ready bit to clear, just as in xHC init.
1032 */
1033 retval = xhci_handshake(&xhci->op_regs->status,
1034 STS_CNR, 0, 10 * 1000 * 1000);
1035 if (retval) {
1036 xhci_warn(xhci, "Controller not ready at resume %d\n",
1037 retval);
1038 spin_unlock_irq(&xhci->lock);
1039 return retval;
1040 }
1041 /* step 1: restore register */
1042 xhci_restore_registers(xhci);
1043 /* step 2: initialize command ring buffer */
1044 xhci_set_cmd_ring_deq(xhci);
1045 /* step 3: restore state and start state*/
1046 /* step 3: set CRS flag */
1047 command = readl(&xhci->op_regs->command);
1048 command |= CMD_CRS;
1049 writel(command, &xhci->op_regs->command);
1050 /*
1051 * Some controllers take up to 55+ ms to complete the controller
1052 * restore so setting the timeout to 100ms. Xhci specification
1053 * doesn't mention any timeout value.
1054 */
1055 if (xhci_handshake(&xhci->op_regs->status,
1056 STS_RESTORE, 0, 100 * 1000)) {
1057 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1058 spin_unlock_irq(&xhci->lock);
1059 return -ETIMEDOUT;
1060 }
1061 }
1062
1063 temp = readl(&xhci->op_regs->status);
1064
1065 /* re-initialize the HC on Restore Error, or Host Controller Error */
1066 if ((temp & (STS_SRE | STS_HCE)) &&
1067 !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1068 reinit_xhc = true;
1069 if (!xhci->broken_suspend)
1070 xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1071 }
1072
1073 if (reinit_xhc) {
1074 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1075 !(xhci_all_ports_seen_u0(xhci))) {
1076 del_timer_sync(&xhci->comp_mode_recovery_timer);
1077 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1078 "Compliance Mode Recovery Timer deleted!");
1079 }
1080
1081 /* Let the USB core know _both_ roothubs lost power. */
1082 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1083 if (xhci->shared_hcd)
1084 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1085
1086 xhci_dbg(xhci, "Stop HCD\n");
1087 xhci_halt(xhci);
1088 xhci_zero_64b_regs(xhci);
1089 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1090 spin_unlock_irq(&xhci->lock);
1091 if (retval)
1092 return retval;
1093
1094 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1095 temp = readl(&xhci->op_regs->status);
1096 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1097 xhci_disable_interrupter(xhci->interrupters[0]);
1098
1099 xhci_dbg(xhci, "cleaning up memory\n");
1100 xhci_mem_cleanup(xhci);
1101 xhci_debugfs_exit(xhci);
1102 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1103 readl(&xhci->op_regs->status));
1104
1105 /* USB core calls the PCI reinit and start functions twice:
1106 * first with the primary HCD, and then with the secondary HCD.
1107 * If we don't do the same, the host will never be started.
1108 */
1109 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1110 retval = xhci_init(hcd);
1111 if (retval)
1112 return retval;
1113 comp_timer_running = true;
1114
1115 xhci_dbg(xhci, "Start the primary HCD\n");
1116 retval = xhci_run(hcd);
1117 if (!retval && xhci->shared_hcd) {
1118 xhci_dbg(xhci, "Start the secondary HCD\n");
1119 retval = xhci_run(xhci->shared_hcd);
1120 }
1121 if (retval)
1122 return retval;
1123 /*
1124 * Resume roothubs unconditionally as PORTSC change bits are not
1125 * immediately visible after xHC reset
1126 */
1127 hcd->state = HC_STATE_SUSPENDED;
1128
1129 if (xhci->shared_hcd) {
1130 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1131 usb_hcd_resume_root_hub(xhci->shared_hcd);
1132 }
1133 usb_hcd_resume_root_hub(hcd);
1134
1135 goto done;
1136 }
1137
1138 /* step 4: set Run/Stop bit */
1139 command = readl(&xhci->op_regs->command);
1140 command |= CMD_RUN;
1141 writel(command, &xhci->op_regs->command);
1142 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1143 0, 250 * 1000);
1144
1145 /* step 5: walk topology and initialize portsc,
1146 * portpmsc and portli
1147 */
1148 /* this is done in bus_resume */
1149
1150 /* step 6: restart each of the previously
1151 * Running endpoints by ringing their doorbells
1152 */
1153
1154 spin_unlock_irq(&xhci->lock);
1155
1156 xhci_dbc_resume(xhci);
1157
1158 if (retval == 0) {
1159 /*
1160 * Resume roothubs only if there are pending events.
1161 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1162 * the first wake signalling failed, give it that chance if
1163 * there are suspended USB 3 devices.
1164 */
1165 if (xhci->usb3_rhub.bus_state.suspended_ports ||
1166 xhci->usb3_rhub.bus_state.bus_suspended)
1167 suspended_usb3_devs = true;
1168
1169 pending_portevent = xhci_pending_portevent(xhci);
1170
1171 if (suspended_usb3_devs && !pending_portevent &&
1172 msg.event == PM_EVENT_AUTO_RESUME) {
1173 msleep(120);
1174 pending_portevent = xhci_pending_portevent(xhci);
1175 }
1176
1177 if (pending_portevent) {
1178 if (xhci->shared_hcd)
1179 usb_hcd_resume_root_hub(xhci->shared_hcd);
1180 usb_hcd_resume_root_hub(hcd);
1181 }
1182 }
1183 done:
1184 /*
1185 * If system is subject to the Quirk, Compliance Mode Timer needs to
1186 * be re-initialized Always after a system resume. Ports are subject
1187 * to suffer the Compliance Mode issue again. It doesn't matter if
1188 * ports have entered previously to U0 before system's suspension.
1189 */
1190 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1191 compliance_mode_recovery_timer_init(xhci);
1192
1193 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1194 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1195
1196 /* Re-enable port polling. */
1197 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1198 __func__, hcd->self.busnum);
1199 if (xhci->shared_hcd) {
1200 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1201 usb_hcd_poll_rh_status(xhci->shared_hcd);
1202 }
1203 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1204 usb_hcd_poll_rh_status(hcd);
1205
1206 return retval;
1207 }
1208 EXPORT_SYMBOL_GPL(xhci_resume);
1209 #endif /* CONFIG_PM */
1210
1211 /*-------------------------------------------------------------------------*/
1212
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1213 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1214 {
1215 void *temp;
1216 int ret = 0;
1217 unsigned int buf_len;
1218 enum dma_data_direction dir;
1219
1220 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1221 buf_len = urb->transfer_buffer_length;
1222
1223 temp = kzalloc_node(buf_len, GFP_ATOMIC,
1224 dev_to_node(hcd->self.sysdev));
1225 if (!temp)
1226 return -ENOMEM;
1227
1228 if (usb_urb_dir_out(urb))
1229 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1230 temp, buf_len, 0);
1231
1232 urb->transfer_buffer = temp;
1233 urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1234 urb->transfer_buffer,
1235 urb->transfer_buffer_length,
1236 dir);
1237
1238 if (dma_mapping_error(hcd->self.sysdev,
1239 urb->transfer_dma)) {
1240 ret = -EAGAIN;
1241 kfree(temp);
1242 } else {
1243 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1244 }
1245
1246 return ret;
1247 }
1248
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1249 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1250 struct urb *urb)
1251 {
1252 bool ret = false;
1253 unsigned int i;
1254 unsigned int len = 0;
1255 unsigned int trb_size;
1256 unsigned int max_pkt;
1257 struct scatterlist *sg;
1258 struct scatterlist *tail_sg;
1259
1260 tail_sg = urb->sg;
1261 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1262
1263 if (!urb->num_sgs)
1264 return ret;
1265
1266 if (urb->dev->speed >= USB_SPEED_SUPER)
1267 trb_size = TRB_CACHE_SIZE_SS;
1268 else
1269 trb_size = TRB_CACHE_SIZE_HS;
1270
1271 if (urb->transfer_buffer_length != 0 &&
1272 !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1273 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1274 len = len + sg->length;
1275 if (i > trb_size - 2) {
1276 len = len - tail_sg->length;
1277 if (len < max_pkt) {
1278 ret = true;
1279 break;
1280 }
1281
1282 tail_sg = sg_next(tail_sg);
1283 }
1284 }
1285 }
1286 return ret;
1287 }
1288
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1289 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1290 {
1291 unsigned int len;
1292 unsigned int buf_len;
1293 enum dma_data_direction dir;
1294
1295 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1296
1297 buf_len = urb->transfer_buffer_length;
1298
1299 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1300 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1301 dma_unmap_single(hcd->self.sysdev,
1302 urb->transfer_dma,
1303 urb->transfer_buffer_length,
1304 dir);
1305
1306 if (usb_urb_dir_in(urb)) {
1307 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1308 urb->transfer_buffer,
1309 buf_len,
1310 0);
1311 if (len != buf_len) {
1312 xhci_dbg(hcd_to_xhci(hcd),
1313 "Copy from tmp buf to urb sg list failed\n");
1314 urb->actual_length = len;
1315 }
1316 }
1317 urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1318 kfree(urb->transfer_buffer);
1319 urb->transfer_buffer = NULL;
1320 }
1321
1322 /*
1323 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1324 * we'll copy the actual data into the TRB address register. This is limited to
1325 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1326 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1327 */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1328 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1329 gfp_t mem_flags)
1330 {
1331 struct xhci_hcd *xhci;
1332
1333 xhci = hcd_to_xhci(hcd);
1334
1335 if (xhci_urb_suitable_for_idt(urb))
1336 return 0;
1337
1338 if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1339 if (xhci_urb_temp_buffer_required(hcd, urb))
1340 return xhci_map_temp_buffer(hcd, urb);
1341 }
1342 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1343 }
1344
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1345 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1346 {
1347 struct xhci_hcd *xhci;
1348 bool unmap_temp_buf = false;
1349
1350 xhci = hcd_to_xhci(hcd);
1351
1352 if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1353 unmap_temp_buf = true;
1354
1355 if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1356 xhci_unmap_temp_buf(hcd, urb);
1357 else
1358 usb_hcd_unmap_urb_for_dma(hcd, urb);
1359 }
1360
1361 /**
1362 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1363 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1364 * value to right shift 1 for the bitmask.
1365 *
1366 * Index = (epnum * 2) + direction - 1,
1367 * where direction = 0 for OUT, 1 for IN.
1368 * For control endpoints, the IN index is used (OUT index is unused), so
1369 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1370 */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1371 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1372 {
1373 unsigned int index;
1374 if (usb_endpoint_xfer_control(desc))
1375 index = (unsigned int) (usb_endpoint_num(desc)*2);
1376 else
1377 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1378 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1379 return index;
1380 }
1381 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1382
1383 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1384 * address from the XHCI endpoint index.
1385 */
xhci_get_endpoint_address(unsigned int ep_index)1386 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1387 {
1388 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1389 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1390 return direction | number;
1391 }
1392
1393 /* Find the flag for this endpoint (for use in the control context). Use the
1394 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1395 * bit 1, etc.
1396 */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1397 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1398 {
1399 return 1 << (xhci_get_endpoint_index(desc) + 1);
1400 }
1401
1402 /* Compute the last valid endpoint context index. Basically, this is the
1403 * endpoint index plus one. For slot contexts with more than valid endpoint,
1404 * we find the most significant bit set in the added contexts flags.
1405 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1406 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1407 */
xhci_last_valid_endpoint(u32 added_ctxs)1408 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1409 {
1410 return fls(added_ctxs) - 1;
1411 }
1412
1413 /* Returns 1 if the arguments are OK;
1414 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1415 */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1416 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1417 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1418 const char *func) {
1419 struct xhci_hcd *xhci;
1420 struct xhci_virt_device *virt_dev;
1421
1422 if (!hcd || (check_ep && !ep) || !udev) {
1423 pr_debug("xHCI %s called with invalid args\n", func);
1424 return -EINVAL;
1425 }
1426 if (!udev->parent) {
1427 pr_debug("xHCI %s called for root hub\n", func);
1428 return 0;
1429 }
1430
1431 xhci = hcd_to_xhci(hcd);
1432 if (check_virt_dev) {
1433 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1434 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1435 func);
1436 return -EINVAL;
1437 }
1438
1439 virt_dev = xhci->devs[udev->slot_id];
1440 if (virt_dev->udev != udev) {
1441 xhci_dbg(xhci, "xHCI %s called with udev and "
1442 "virt_dev does not match\n", func);
1443 return -EINVAL;
1444 }
1445 }
1446
1447 if (xhci->xhc_state & XHCI_STATE_HALTED)
1448 return -ENODEV;
1449
1450 return 1;
1451 }
1452
1453 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1454 struct usb_device *udev, struct xhci_command *command,
1455 bool ctx_change, bool must_succeed);
1456
1457 /*
1458 * Full speed devices may have a max packet size greater than 8 bytes, but the
1459 * USB core doesn't know that until it reads the first 8 bytes of the
1460 * descriptor. If the usb_device's max packet size changes after that point,
1461 * we need to issue an evaluate context command and wait on it.
1462 */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1463 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1464 {
1465 struct xhci_input_control_ctx *ctrl_ctx;
1466 struct xhci_ep_ctx *ep_ctx;
1467 struct xhci_command *command;
1468 int max_packet_size;
1469 int hw_max_packet_size;
1470 int ret = 0;
1471
1472 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1473 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1474 max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1475
1476 if (hw_max_packet_size == max_packet_size)
1477 return 0;
1478
1479 switch (max_packet_size) {
1480 case 8: case 16: case 32: case 64: case 9:
1481 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1482 "Max Packet Size for ep 0 changed.");
1483 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1484 "Max packet size in usb_device = %d",
1485 max_packet_size);
1486 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1487 "Max packet size in xHCI HW = %d",
1488 hw_max_packet_size);
1489 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1490 "Issuing evaluate context command.");
1491
1492 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1493 if (!command)
1494 return -ENOMEM;
1495
1496 command->in_ctx = vdev->in_ctx;
1497 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1498 if (!ctrl_ctx) {
1499 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1500 __func__);
1501 ret = -ENOMEM;
1502 break;
1503 }
1504 /* Set up the modified control endpoint 0 */
1505 xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1506
1507 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1508 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1509 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1510 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1511
1512 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1513 ctrl_ctx->drop_flags = 0;
1514
1515 ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1516 true, false);
1517 /* Clean up the input context for later use by bandwidth functions */
1518 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1519 break;
1520 default:
1521 dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1522 max_packet_size);
1523 return -EINVAL;
1524 }
1525
1526 kfree(command->completion);
1527 kfree(command);
1528
1529 return ret;
1530 }
1531
1532 /*
1533 * non-error returns are a promise to giveback() the urb later
1534 * we drop ownership so next owner (or urb unlink) can get it
1535 */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1536 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1537 {
1538 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1539 unsigned long flags;
1540 int ret = 0;
1541 unsigned int slot_id, ep_index;
1542 unsigned int *ep_state;
1543 struct urb_priv *urb_priv;
1544 int num_tds;
1545
1546 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1547
1548 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1549 num_tds = urb->number_of_packets;
1550 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1551 urb->transfer_buffer_length > 0 &&
1552 urb->transfer_flags & URB_ZERO_PACKET &&
1553 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1554 num_tds = 2;
1555 else
1556 num_tds = 1;
1557
1558 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1559 if (!urb_priv)
1560 return -ENOMEM;
1561
1562 urb_priv->num_tds = num_tds;
1563 urb_priv->num_tds_done = 0;
1564 urb->hcpriv = urb_priv;
1565
1566 trace_xhci_urb_enqueue(urb);
1567
1568 spin_lock_irqsave(&xhci->lock, flags);
1569
1570 ret = xhci_check_args(hcd, urb->dev, urb->ep,
1571 true, true, __func__);
1572 if (ret <= 0) {
1573 ret = ret ? ret : -EINVAL;
1574 goto free_priv;
1575 }
1576
1577 slot_id = urb->dev->slot_id;
1578
1579 if (!HCD_HW_ACCESSIBLE(hcd)) {
1580 ret = -ESHUTDOWN;
1581 goto free_priv;
1582 }
1583
1584 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1585 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1586 ret = -ENODEV;
1587 goto free_priv;
1588 }
1589
1590 if (xhci->xhc_state & XHCI_STATE_DYING) {
1591 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1592 urb->ep->desc.bEndpointAddress, urb);
1593 ret = -ESHUTDOWN;
1594 goto free_priv;
1595 }
1596
1597 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1598
1599 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1600 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1601 *ep_state);
1602 ret = -EINVAL;
1603 goto free_priv;
1604 }
1605 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1606 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1607 ret = -EINVAL;
1608 goto free_priv;
1609 }
1610
1611 switch (usb_endpoint_type(&urb->ep->desc)) {
1612
1613 case USB_ENDPOINT_XFER_CONTROL:
1614 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1615 slot_id, ep_index);
1616 break;
1617 case USB_ENDPOINT_XFER_BULK:
1618 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1619 slot_id, ep_index);
1620 break;
1621 case USB_ENDPOINT_XFER_INT:
1622 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1623 slot_id, ep_index);
1624 break;
1625 case USB_ENDPOINT_XFER_ISOC:
1626 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1627 slot_id, ep_index);
1628 }
1629
1630 if (ret) {
1631 free_priv:
1632 xhci_urb_free_priv(urb_priv);
1633 urb->hcpriv = NULL;
1634 }
1635 spin_unlock_irqrestore(&xhci->lock, flags);
1636 return ret;
1637 }
1638
1639 /*
1640 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1641 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1642 * should pick up where it left off in the TD, unless a Set Transfer Ring
1643 * Dequeue Pointer is issued.
1644 *
1645 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1646 * the ring. Since the ring is a contiguous structure, they can't be physically
1647 * removed. Instead, there are two options:
1648 *
1649 * 1) If the HC is in the middle of processing the URB to be canceled, we
1650 * simply move the ring's dequeue pointer past those TRBs using the Set
1651 * Transfer Ring Dequeue Pointer command. This will be the common case,
1652 * when drivers timeout on the last submitted URB and attempt to cancel.
1653 *
1654 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1655 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1656 * HC will need to invalidate the any TRBs it has cached after the stop
1657 * endpoint command, as noted in the xHCI 0.95 errata.
1658 *
1659 * 3) The TD may have completed by the time the Stop Endpoint Command
1660 * completes, so software needs to handle that case too.
1661 *
1662 * This function should protect against the TD enqueueing code ringing the
1663 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1664 * It also needs to account for multiple cancellations on happening at the same
1665 * time for the same endpoint.
1666 *
1667 * Note that this function can be called in any context, or so says
1668 * usb_hcd_unlink_urb()
1669 */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1670 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1671 {
1672 unsigned long flags;
1673 int ret, i;
1674 u32 temp;
1675 struct xhci_hcd *xhci;
1676 struct urb_priv *urb_priv;
1677 struct xhci_td *td;
1678 unsigned int ep_index;
1679 struct xhci_ring *ep_ring;
1680 struct xhci_virt_ep *ep;
1681 struct xhci_command *command;
1682 struct xhci_virt_device *vdev;
1683
1684 xhci = hcd_to_xhci(hcd);
1685 spin_lock_irqsave(&xhci->lock, flags);
1686
1687 trace_xhci_urb_dequeue(urb);
1688
1689 /* Make sure the URB hasn't completed or been unlinked already */
1690 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1691 if (ret)
1692 goto done;
1693
1694 /* give back URB now if we can't queue it for cancel */
1695 vdev = xhci->devs[urb->dev->slot_id];
1696 urb_priv = urb->hcpriv;
1697 if (!vdev || !urb_priv)
1698 goto err_giveback;
1699
1700 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1701 ep = &vdev->eps[ep_index];
1702 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1703 if (!ep || !ep_ring)
1704 goto err_giveback;
1705
1706 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1707 temp = readl(&xhci->op_regs->status);
1708 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1709 xhci_hc_died(xhci);
1710 goto done;
1711 }
1712
1713 /*
1714 * check ring is not re-allocated since URB was enqueued. If it is, then
1715 * make sure none of the ring related pointers in this URB private data
1716 * are touched, such as td_list, otherwise we overwrite freed data
1717 */
1718 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1719 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1720 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1721 td = &urb_priv->td[i];
1722 if (!list_empty(&td->cancelled_td_list))
1723 list_del_init(&td->cancelled_td_list);
1724 }
1725 goto err_giveback;
1726 }
1727
1728 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1729 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1730 "HC halted, freeing TD manually.");
1731 for (i = urb_priv->num_tds_done;
1732 i < urb_priv->num_tds;
1733 i++) {
1734 td = &urb_priv->td[i];
1735 if (!list_empty(&td->td_list))
1736 list_del_init(&td->td_list);
1737 if (!list_empty(&td->cancelled_td_list))
1738 list_del_init(&td->cancelled_td_list);
1739 }
1740 goto err_giveback;
1741 }
1742
1743 i = urb_priv->num_tds_done;
1744 if (i < urb_priv->num_tds)
1745 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1746 "Cancel URB %p, dev %s, ep 0x%x, "
1747 "starting at offset 0x%llx",
1748 urb, urb->dev->devpath,
1749 urb->ep->desc.bEndpointAddress,
1750 (unsigned long long) xhci_trb_virt_to_dma(
1751 urb_priv->td[i].start_seg,
1752 urb_priv->td[i].start_trb));
1753
1754 for (; i < urb_priv->num_tds; i++) {
1755 td = &urb_priv->td[i];
1756 /* TD can already be on cancelled list if ep halted on it */
1757 if (list_empty(&td->cancelled_td_list)) {
1758 td->cancel_status = TD_DIRTY;
1759 list_add_tail(&td->cancelled_td_list,
1760 &ep->cancelled_td_list);
1761 }
1762 }
1763
1764 /* These completion handlers will sort out cancelled TDs for us */
1765 if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1766 xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1767 urb->dev->slot_id, ep_index, ep->ep_state);
1768 goto done;
1769 }
1770
1771 /* In this case no commands are pending but the endpoint is stopped */
1772 if (ep->ep_state & EP_CLEARING_TT) {
1773 /* and cancelled TDs can be given back right away */
1774 xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1775 urb->dev->slot_id, ep_index, ep->ep_state);
1776 xhci_process_cancelled_tds(ep);
1777 } else {
1778 /* Otherwise, queue a new Stop Endpoint command */
1779 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1780 if (!command) {
1781 ret = -ENOMEM;
1782 goto done;
1783 }
1784 ep->stop_time = jiffies;
1785 ep->ep_state |= EP_STOP_CMD_PENDING;
1786 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1787 ep_index, 0);
1788 xhci_ring_cmd_db(xhci);
1789 }
1790 done:
1791 spin_unlock_irqrestore(&xhci->lock, flags);
1792 return ret;
1793
1794 err_giveback:
1795 if (urb_priv)
1796 xhci_urb_free_priv(urb_priv);
1797 usb_hcd_unlink_urb_from_ep(hcd, urb);
1798 spin_unlock_irqrestore(&xhci->lock, flags);
1799 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1800 return ret;
1801 }
1802
1803 /* Drop an endpoint from a new bandwidth configuration for this device.
1804 * Only one call to this function is allowed per endpoint before
1805 * check_bandwidth() or reset_bandwidth() must be called.
1806 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1807 * add the endpoint to the schedule with possibly new parameters denoted by a
1808 * different endpoint descriptor in usb_host_endpoint.
1809 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1810 * not allowed.
1811 *
1812 * The USB core will not allow URBs to be queued to an endpoint that is being
1813 * disabled, so there's no need for mutual exclusion to protect
1814 * the xhci->devs[slot_id] structure.
1815 */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1816 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1817 struct usb_host_endpoint *ep)
1818 {
1819 struct xhci_hcd *xhci;
1820 struct xhci_container_ctx *in_ctx, *out_ctx;
1821 struct xhci_input_control_ctx *ctrl_ctx;
1822 unsigned int ep_index;
1823 struct xhci_ep_ctx *ep_ctx;
1824 u32 drop_flag;
1825 u32 new_add_flags, new_drop_flags;
1826 int ret;
1827
1828 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1829 if (ret <= 0)
1830 return ret;
1831 xhci = hcd_to_xhci(hcd);
1832 if (xhci->xhc_state & XHCI_STATE_DYING)
1833 return -ENODEV;
1834
1835 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1836 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1837 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1838 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1839 __func__, drop_flag);
1840 return 0;
1841 }
1842
1843 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1844 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1845 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1846 if (!ctrl_ctx) {
1847 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848 __func__);
1849 return 0;
1850 }
1851
1852 ep_index = xhci_get_endpoint_index(&ep->desc);
1853 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1854 /* If the HC already knows the endpoint is disabled,
1855 * or the HCD has noted it is disabled, ignore this request
1856 */
1857 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1858 le32_to_cpu(ctrl_ctx->drop_flags) &
1859 xhci_get_endpoint_flag(&ep->desc)) {
1860 /* Do not warn when called after a usb_device_reset */
1861 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1862 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1863 __func__, ep);
1864 return 0;
1865 }
1866
1867 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1868 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1869
1870 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1871 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1872
1873 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1874
1875 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1876
1877 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1878 (unsigned int) ep->desc.bEndpointAddress,
1879 udev->slot_id,
1880 (unsigned int) new_drop_flags,
1881 (unsigned int) new_add_flags);
1882 return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1885
1886 /* Add an endpoint to a new possible bandwidth configuration for this device.
1887 * Only one call to this function is allowed per endpoint before
1888 * check_bandwidth() or reset_bandwidth() must be called.
1889 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1890 * add the endpoint to the schedule with possibly new parameters denoted by a
1891 * different endpoint descriptor in usb_host_endpoint.
1892 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1893 * not allowed.
1894 *
1895 * The USB core will not allow URBs to be queued to an endpoint until the
1896 * configuration or alt setting is installed in the device, so there's no need
1897 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1898 */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1899 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1900 struct usb_host_endpoint *ep)
1901 {
1902 struct xhci_hcd *xhci;
1903 struct xhci_container_ctx *in_ctx;
1904 unsigned int ep_index;
1905 struct xhci_input_control_ctx *ctrl_ctx;
1906 struct xhci_ep_ctx *ep_ctx;
1907 u32 added_ctxs;
1908 u32 new_add_flags, new_drop_flags;
1909 struct xhci_virt_device *virt_dev;
1910 int ret = 0;
1911
1912 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1913 if (ret <= 0) {
1914 /* So we won't queue a reset ep command for a root hub */
1915 ep->hcpriv = NULL;
1916 return ret;
1917 }
1918 xhci = hcd_to_xhci(hcd);
1919 if (xhci->xhc_state & XHCI_STATE_DYING)
1920 return -ENODEV;
1921
1922 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1923 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1924 /* FIXME when we have to issue an evaluate endpoint command to
1925 * deal with ep0 max packet size changing once we get the
1926 * descriptors
1927 */
1928 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1929 __func__, added_ctxs);
1930 return 0;
1931 }
1932
1933 virt_dev = xhci->devs[udev->slot_id];
1934 in_ctx = virt_dev->in_ctx;
1935 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1936 if (!ctrl_ctx) {
1937 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938 __func__);
1939 return 0;
1940 }
1941
1942 ep_index = xhci_get_endpoint_index(&ep->desc);
1943 /* If this endpoint is already in use, and the upper layers are trying
1944 * to add it again without dropping it, reject the addition.
1945 */
1946 if (virt_dev->eps[ep_index].ring &&
1947 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1948 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1949 "without dropping it.\n",
1950 (unsigned int) ep->desc.bEndpointAddress);
1951 return -EINVAL;
1952 }
1953
1954 /* If the HCD has already noted the endpoint is enabled,
1955 * ignore this request.
1956 */
1957 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1958 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1959 __func__, ep);
1960 return 0;
1961 }
1962
1963 /*
1964 * Configuration and alternate setting changes must be done in
1965 * process context, not interrupt context (or so documenation
1966 * for usb_set_interface() and usb_set_configuration() claim).
1967 */
1968 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1969 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1970 __func__, ep->desc.bEndpointAddress);
1971 return -ENOMEM;
1972 }
1973
1974 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1975 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1976
1977 /* If xhci_endpoint_disable() was called for this endpoint, but the
1978 * xHC hasn't been notified yet through the check_bandwidth() call,
1979 * this re-adds a new state for the endpoint from the new endpoint
1980 * descriptors. We must drop and re-add this endpoint, so we leave the
1981 * drop flags alone.
1982 */
1983 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1984
1985 /* Store the usb_device pointer for later use */
1986 ep->hcpriv = udev;
1987
1988 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1989 trace_xhci_add_endpoint(ep_ctx);
1990
1991 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1992 (unsigned int) ep->desc.bEndpointAddress,
1993 udev->slot_id,
1994 (unsigned int) new_drop_flags,
1995 (unsigned int) new_add_flags);
1996 return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1999
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2000 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2001 {
2002 struct xhci_input_control_ctx *ctrl_ctx;
2003 struct xhci_ep_ctx *ep_ctx;
2004 struct xhci_slot_ctx *slot_ctx;
2005 int i;
2006
2007 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2008 if (!ctrl_ctx) {
2009 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2010 __func__);
2011 return;
2012 }
2013
2014 /* When a device's add flag and drop flag are zero, any subsequent
2015 * configure endpoint command will leave that endpoint's state
2016 * untouched. Make sure we don't leave any old state in the input
2017 * endpoint contexts.
2018 */
2019 ctrl_ctx->drop_flags = 0;
2020 ctrl_ctx->add_flags = 0;
2021 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2022 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2023 /* Endpoint 0 is always valid */
2024 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2025 for (i = 1; i < 31; i++) {
2026 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2027 ep_ctx->ep_info = 0;
2028 ep_ctx->ep_info2 = 0;
2029 ep_ctx->deq = 0;
2030 ep_ctx->tx_info = 0;
2031 }
2032 }
2033
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2034 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2035 struct usb_device *udev, u32 *cmd_status)
2036 {
2037 int ret;
2038
2039 switch (*cmd_status) {
2040 case COMP_COMMAND_ABORTED:
2041 case COMP_COMMAND_RING_STOPPED:
2042 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2043 ret = -ETIME;
2044 break;
2045 case COMP_RESOURCE_ERROR:
2046 dev_warn(&udev->dev,
2047 "Not enough host controller resources for new device state.\n");
2048 ret = -ENOMEM;
2049 /* FIXME: can we allocate more resources for the HC? */
2050 break;
2051 case COMP_BANDWIDTH_ERROR:
2052 case COMP_SECONDARY_BANDWIDTH_ERROR:
2053 dev_warn(&udev->dev,
2054 "Not enough bandwidth for new device state.\n");
2055 ret = -ENOSPC;
2056 /* FIXME: can we go back to the old state? */
2057 break;
2058 case COMP_TRB_ERROR:
2059 /* the HCD set up something wrong */
2060 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2061 "add flag = 1, "
2062 "and endpoint is not disabled.\n");
2063 ret = -EINVAL;
2064 break;
2065 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2066 dev_warn(&udev->dev,
2067 "ERROR: Incompatible device for endpoint configure command.\n");
2068 ret = -ENODEV;
2069 break;
2070 case COMP_SUCCESS:
2071 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2072 "Successful Endpoint Configure command");
2073 ret = 0;
2074 break;
2075 default:
2076 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2077 *cmd_status);
2078 ret = -EINVAL;
2079 break;
2080 }
2081 return ret;
2082 }
2083
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2084 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2085 struct usb_device *udev, u32 *cmd_status)
2086 {
2087 int ret;
2088
2089 switch (*cmd_status) {
2090 case COMP_COMMAND_ABORTED:
2091 case COMP_COMMAND_RING_STOPPED:
2092 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2093 ret = -ETIME;
2094 break;
2095 case COMP_PARAMETER_ERROR:
2096 dev_warn(&udev->dev,
2097 "WARN: xHCI driver setup invalid evaluate context command.\n");
2098 ret = -EINVAL;
2099 break;
2100 case COMP_SLOT_NOT_ENABLED_ERROR:
2101 dev_warn(&udev->dev,
2102 "WARN: slot not enabled for evaluate context command.\n");
2103 ret = -EINVAL;
2104 break;
2105 case COMP_CONTEXT_STATE_ERROR:
2106 dev_warn(&udev->dev,
2107 "WARN: invalid context state for evaluate context command.\n");
2108 ret = -EINVAL;
2109 break;
2110 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2111 dev_warn(&udev->dev,
2112 "ERROR: Incompatible device for evaluate context command.\n");
2113 ret = -ENODEV;
2114 break;
2115 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2116 /* Max Exit Latency too large error */
2117 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2118 ret = -EINVAL;
2119 break;
2120 case COMP_SUCCESS:
2121 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2122 "Successful evaluate context command");
2123 ret = 0;
2124 break;
2125 default:
2126 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2127 *cmd_status);
2128 ret = -EINVAL;
2129 break;
2130 }
2131 return ret;
2132 }
2133
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2134 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2135 struct xhci_input_control_ctx *ctrl_ctx)
2136 {
2137 u32 valid_add_flags;
2138 u32 valid_drop_flags;
2139
2140 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2141 * (bit 1). The default control endpoint is added during the Address
2142 * Device command and is never removed until the slot is disabled.
2143 */
2144 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2145 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2146
2147 /* Use hweight32 to count the number of ones in the add flags, or
2148 * number of endpoints added. Don't count endpoints that are changed
2149 * (both added and dropped).
2150 */
2151 return hweight32(valid_add_flags) -
2152 hweight32(valid_add_flags & valid_drop_flags);
2153 }
2154
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2155 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2156 struct xhci_input_control_ctx *ctrl_ctx)
2157 {
2158 u32 valid_add_flags;
2159 u32 valid_drop_flags;
2160
2161 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2162 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2163
2164 return hweight32(valid_drop_flags) -
2165 hweight32(valid_add_flags & valid_drop_flags);
2166 }
2167
2168 /*
2169 * We need to reserve the new number of endpoints before the configure endpoint
2170 * command completes. We can't subtract the dropped endpoints from the number
2171 * of active endpoints until the command completes because we can oversubscribe
2172 * the host in this case:
2173 *
2174 * - the first configure endpoint command drops more endpoints than it adds
2175 * - a second configure endpoint command that adds more endpoints is queued
2176 * - the first configure endpoint command fails, so the config is unchanged
2177 * - the second command may succeed, even though there isn't enough resources
2178 *
2179 * Must be called with xhci->lock held.
2180 */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2181 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2182 struct xhci_input_control_ctx *ctrl_ctx)
2183 {
2184 u32 added_eps;
2185
2186 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2187 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2188 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2189 "Not enough ep ctxs: "
2190 "%u active, need to add %u, limit is %u.",
2191 xhci->num_active_eps, added_eps,
2192 xhci->limit_active_eps);
2193 return -ENOMEM;
2194 }
2195 xhci->num_active_eps += added_eps;
2196 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2197 "Adding %u ep ctxs, %u now active.", added_eps,
2198 xhci->num_active_eps);
2199 return 0;
2200 }
2201
2202 /*
2203 * The configure endpoint was failed by the xHC for some other reason, so we
2204 * need to revert the resources that failed configuration would have used.
2205 *
2206 * Must be called with xhci->lock held.
2207 */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2208 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2209 struct xhci_input_control_ctx *ctrl_ctx)
2210 {
2211 u32 num_failed_eps;
2212
2213 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2214 xhci->num_active_eps -= num_failed_eps;
2215 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2216 "Removing %u failed ep ctxs, %u now active.",
2217 num_failed_eps,
2218 xhci->num_active_eps);
2219 }
2220
2221 /*
2222 * Now that the command has completed, clean up the active endpoint count by
2223 * subtracting out the endpoints that were dropped (but not changed).
2224 *
2225 * Must be called with xhci->lock held.
2226 */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2227 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2228 struct xhci_input_control_ctx *ctrl_ctx)
2229 {
2230 u32 num_dropped_eps;
2231
2232 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2233 xhci->num_active_eps -= num_dropped_eps;
2234 if (num_dropped_eps)
2235 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2236 "Removing %u dropped ep ctxs, %u now active.",
2237 num_dropped_eps,
2238 xhci->num_active_eps);
2239 }
2240
xhci_get_block_size(struct usb_device * udev)2241 static unsigned int xhci_get_block_size(struct usb_device *udev)
2242 {
2243 switch (udev->speed) {
2244 case USB_SPEED_LOW:
2245 case USB_SPEED_FULL:
2246 return FS_BLOCK;
2247 case USB_SPEED_HIGH:
2248 return HS_BLOCK;
2249 case USB_SPEED_SUPER:
2250 case USB_SPEED_SUPER_PLUS:
2251 return SS_BLOCK;
2252 case USB_SPEED_UNKNOWN:
2253 default:
2254 /* Should never happen */
2255 return 1;
2256 }
2257 }
2258
2259 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2260 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2261 {
2262 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2263 return LS_OVERHEAD;
2264 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2265 return FS_OVERHEAD;
2266 return HS_OVERHEAD;
2267 }
2268
2269 /* If we are changing a LS/FS device under a HS hub,
2270 * make sure (if we are activating a new TT) that the HS bus has enough
2271 * bandwidth for this new TT.
2272 */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2273 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2274 struct xhci_virt_device *virt_dev,
2275 int old_active_eps)
2276 {
2277 struct xhci_interval_bw_table *bw_table;
2278 struct xhci_tt_bw_info *tt_info;
2279
2280 /* Find the bandwidth table for the root port this TT is attached to. */
2281 bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2282 tt_info = virt_dev->tt_info;
2283 /* If this TT already had active endpoints, the bandwidth for this TT
2284 * has already been added. Removing all periodic endpoints (and thus
2285 * making the TT enactive) will only decrease the bandwidth used.
2286 */
2287 if (old_active_eps)
2288 return 0;
2289 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2290 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2291 return -ENOMEM;
2292 return 0;
2293 }
2294 /* Not sure why we would have no new active endpoints...
2295 *
2296 * Maybe because of an Evaluate Context change for a hub update or a
2297 * control endpoint 0 max packet size change?
2298 * FIXME: skip the bandwidth calculation in that case.
2299 */
2300 return 0;
2301 }
2302
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2303 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2304 struct xhci_virt_device *virt_dev)
2305 {
2306 unsigned int bw_reserved;
2307
2308 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2309 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2310 return -ENOMEM;
2311
2312 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2313 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2314 return -ENOMEM;
2315
2316 return 0;
2317 }
2318
2319 /*
2320 * This algorithm is a very conservative estimate of the worst-case scheduling
2321 * scenario for any one interval. The hardware dynamically schedules the
2322 * packets, so we can't tell which microframe could be the limiting factor in
2323 * the bandwidth scheduling. This only takes into account periodic endpoints.
2324 *
2325 * Obviously, we can't solve an NP complete problem to find the minimum worst
2326 * case scenario. Instead, we come up with an estimate that is no less than
2327 * the worst case bandwidth used for any one microframe, but may be an
2328 * over-estimate.
2329 *
2330 * We walk the requirements for each endpoint by interval, starting with the
2331 * smallest interval, and place packets in the schedule where there is only one
2332 * possible way to schedule packets for that interval. In order to simplify
2333 * this algorithm, we record the largest max packet size for each interval, and
2334 * assume all packets will be that size.
2335 *
2336 * For interval 0, we obviously must schedule all packets for each interval.
2337 * The bandwidth for interval 0 is just the amount of data to be transmitted
2338 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2339 * the number of packets).
2340 *
2341 * For interval 1, we have two possible microframes to schedule those packets
2342 * in. For this algorithm, if we can schedule the same number of packets for
2343 * each possible scheduling opportunity (each microframe), we will do so. The
2344 * remaining number of packets will be saved to be transmitted in the gaps in
2345 * the next interval's scheduling sequence.
2346 *
2347 * As we move those remaining packets to be scheduled with interval 2 packets,
2348 * we have to double the number of remaining packets to transmit. This is
2349 * because the intervals are actually powers of 2, and we would be transmitting
2350 * the previous interval's packets twice in this interval. We also have to be
2351 * sure that when we look at the largest max packet size for this interval, we
2352 * also look at the largest max packet size for the remaining packets and take
2353 * the greater of the two.
2354 *
2355 * The algorithm continues to evenly distribute packets in each scheduling
2356 * opportunity, and push the remaining packets out, until we get to the last
2357 * interval. Then those packets and their associated overhead are just added
2358 * to the bandwidth used.
2359 */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2360 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2361 struct xhci_virt_device *virt_dev,
2362 int old_active_eps)
2363 {
2364 unsigned int bw_reserved;
2365 unsigned int max_bandwidth;
2366 unsigned int bw_used;
2367 unsigned int block_size;
2368 struct xhci_interval_bw_table *bw_table;
2369 unsigned int packet_size = 0;
2370 unsigned int overhead = 0;
2371 unsigned int packets_transmitted = 0;
2372 unsigned int packets_remaining = 0;
2373 unsigned int i;
2374
2375 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2376 return xhci_check_ss_bw(xhci, virt_dev);
2377
2378 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2379 max_bandwidth = HS_BW_LIMIT;
2380 /* Convert percent of bus BW reserved to blocks reserved */
2381 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2382 } else {
2383 max_bandwidth = FS_BW_LIMIT;
2384 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2385 }
2386
2387 bw_table = virt_dev->bw_table;
2388 /* We need to translate the max packet size and max ESIT payloads into
2389 * the units the hardware uses.
2390 */
2391 block_size = xhci_get_block_size(virt_dev->udev);
2392
2393 /* If we are manipulating a LS/FS device under a HS hub, double check
2394 * that the HS bus has enough bandwidth if we are activing a new TT.
2395 */
2396 if (virt_dev->tt_info) {
2397 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2398 "Recalculating BW for rootport %u",
2399 virt_dev->rhub_port->hw_portnum + 1);
2400 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2401 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2402 "newly activated TT.\n");
2403 return -ENOMEM;
2404 }
2405 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2406 "Recalculating BW for TT slot %u port %u",
2407 virt_dev->tt_info->slot_id,
2408 virt_dev->tt_info->ttport);
2409 } else {
2410 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2411 "Recalculating BW for rootport %u",
2412 virt_dev->rhub_port->hw_portnum + 1);
2413 }
2414
2415 /* Add in how much bandwidth will be used for interval zero, or the
2416 * rounded max ESIT payload + number of packets * largest overhead.
2417 */
2418 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2419 bw_table->interval_bw[0].num_packets *
2420 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2421
2422 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2423 unsigned int bw_added;
2424 unsigned int largest_mps;
2425 unsigned int interval_overhead;
2426
2427 /*
2428 * How many packets could we transmit in this interval?
2429 * If packets didn't fit in the previous interval, we will need
2430 * to transmit that many packets twice within this interval.
2431 */
2432 packets_remaining = 2 * packets_remaining +
2433 bw_table->interval_bw[i].num_packets;
2434
2435 /* Find the largest max packet size of this or the previous
2436 * interval.
2437 */
2438 if (list_empty(&bw_table->interval_bw[i].endpoints))
2439 largest_mps = 0;
2440 else {
2441 struct xhci_virt_ep *virt_ep;
2442 struct list_head *ep_entry;
2443
2444 ep_entry = bw_table->interval_bw[i].endpoints.next;
2445 virt_ep = list_entry(ep_entry,
2446 struct xhci_virt_ep, bw_endpoint_list);
2447 /* Convert to blocks, rounding up */
2448 largest_mps = DIV_ROUND_UP(
2449 virt_ep->bw_info.max_packet_size,
2450 block_size);
2451 }
2452 if (largest_mps > packet_size)
2453 packet_size = largest_mps;
2454
2455 /* Use the larger overhead of this or the previous interval. */
2456 interval_overhead = xhci_get_largest_overhead(
2457 &bw_table->interval_bw[i]);
2458 if (interval_overhead > overhead)
2459 overhead = interval_overhead;
2460
2461 /* How many packets can we evenly distribute across
2462 * (1 << (i + 1)) possible scheduling opportunities?
2463 */
2464 packets_transmitted = packets_remaining >> (i + 1);
2465
2466 /* Add in the bandwidth used for those scheduled packets */
2467 bw_added = packets_transmitted * (overhead + packet_size);
2468
2469 /* How many packets do we have remaining to transmit? */
2470 packets_remaining = packets_remaining % (1 << (i + 1));
2471
2472 /* What largest max packet size should those packets have? */
2473 /* If we've transmitted all packets, don't carry over the
2474 * largest packet size.
2475 */
2476 if (packets_remaining == 0) {
2477 packet_size = 0;
2478 overhead = 0;
2479 } else if (packets_transmitted > 0) {
2480 /* Otherwise if we do have remaining packets, and we've
2481 * scheduled some packets in this interval, take the
2482 * largest max packet size from endpoints with this
2483 * interval.
2484 */
2485 packet_size = largest_mps;
2486 overhead = interval_overhead;
2487 }
2488 /* Otherwise carry over packet_size and overhead from the last
2489 * time we had a remainder.
2490 */
2491 bw_used += bw_added;
2492 if (bw_used > max_bandwidth) {
2493 xhci_warn(xhci, "Not enough bandwidth. "
2494 "Proposed: %u, Max: %u\n",
2495 bw_used, max_bandwidth);
2496 return -ENOMEM;
2497 }
2498 }
2499 /*
2500 * Ok, we know we have some packets left over after even-handedly
2501 * scheduling interval 15. We don't know which microframes they will
2502 * fit into, so we over-schedule and say they will be scheduled every
2503 * microframe.
2504 */
2505 if (packets_remaining > 0)
2506 bw_used += overhead + packet_size;
2507
2508 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2509 /* OK, we're manipulating a HS device attached to a
2510 * root port bandwidth domain. Include the number of active TTs
2511 * in the bandwidth used.
2512 */
2513 bw_used += TT_HS_OVERHEAD *
2514 xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2515 }
2516
2517 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2518 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2519 "Available: %u " "percent",
2520 bw_used, max_bandwidth, bw_reserved,
2521 (max_bandwidth - bw_used - bw_reserved) * 100 /
2522 max_bandwidth);
2523
2524 bw_used += bw_reserved;
2525 if (bw_used > max_bandwidth) {
2526 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2527 bw_used, max_bandwidth);
2528 return -ENOMEM;
2529 }
2530
2531 bw_table->bw_used = bw_used;
2532 return 0;
2533 }
2534
xhci_is_async_ep(unsigned int ep_type)2535 static bool xhci_is_async_ep(unsigned int ep_type)
2536 {
2537 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2538 ep_type != ISOC_IN_EP &&
2539 ep_type != INT_IN_EP);
2540 }
2541
xhci_is_sync_in_ep(unsigned int ep_type)2542 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2543 {
2544 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2545 }
2546
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2547 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2548 {
2549 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2550
2551 if (ep_bw->ep_interval == 0)
2552 return SS_OVERHEAD_BURST +
2553 (ep_bw->mult * ep_bw->num_packets *
2554 (SS_OVERHEAD + mps));
2555 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2556 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2557 1 << ep_bw->ep_interval);
2558
2559 }
2560
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2561 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2562 struct xhci_bw_info *ep_bw,
2563 struct xhci_interval_bw_table *bw_table,
2564 struct usb_device *udev,
2565 struct xhci_virt_ep *virt_ep,
2566 struct xhci_tt_bw_info *tt_info)
2567 {
2568 struct xhci_interval_bw *interval_bw;
2569 int normalized_interval;
2570
2571 if (xhci_is_async_ep(ep_bw->type))
2572 return;
2573
2574 if (udev->speed >= USB_SPEED_SUPER) {
2575 if (xhci_is_sync_in_ep(ep_bw->type))
2576 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2577 xhci_get_ss_bw_consumed(ep_bw);
2578 else
2579 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2580 xhci_get_ss_bw_consumed(ep_bw);
2581 return;
2582 }
2583
2584 /* SuperSpeed endpoints never get added to intervals in the table, so
2585 * this check is only valid for HS/FS/LS devices.
2586 */
2587 if (list_empty(&virt_ep->bw_endpoint_list))
2588 return;
2589 /* For LS/FS devices, we need to translate the interval expressed in
2590 * microframes to frames.
2591 */
2592 if (udev->speed == USB_SPEED_HIGH)
2593 normalized_interval = ep_bw->ep_interval;
2594 else
2595 normalized_interval = ep_bw->ep_interval - 3;
2596
2597 if (normalized_interval == 0)
2598 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2599 interval_bw = &bw_table->interval_bw[normalized_interval];
2600 interval_bw->num_packets -= ep_bw->num_packets;
2601 switch (udev->speed) {
2602 case USB_SPEED_LOW:
2603 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2604 break;
2605 case USB_SPEED_FULL:
2606 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2607 break;
2608 case USB_SPEED_HIGH:
2609 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2610 break;
2611 default:
2612 /* Should never happen because only LS/FS/HS endpoints will get
2613 * added to the endpoint list.
2614 */
2615 return;
2616 }
2617 if (tt_info)
2618 tt_info->active_eps -= 1;
2619 list_del_init(&virt_ep->bw_endpoint_list);
2620 }
2621
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2622 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2623 struct xhci_bw_info *ep_bw,
2624 struct xhci_interval_bw_table *bw_table,
2625 struct usb_device *udev,
2626 struct xhci_virt_ep *virt_ep,
2627 struct xhci_tt_bw_info *tt_info)
2628 {
2629 struct xhci_interval_bw *interval_bw;
2630 struct xhci_virt_ep *smaller_ep;
2631 int normalized_interval;
2632
2633 if (xhci_is_async_ep(ep_bw->type))
2634 return;
2635
2636 if (udev->speed == USB_SPEED_SUPER) {
2637 if (xhci_is_sync_in_ep(ep_bw->type))
2638 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2639 xhci_get_ss_bw_consumed(ep_bw);
2640 else
2641 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2642 xhci_get_ss_bw_consumed(ep_bw);
2643 return;
2644 }
2645
2646 /* For LS/FS devices, we need to translate the interval expressed in
2647 * microframes to frames.
2648 */
2649 if (udev->speed == USB_SPEED_HIGH)
2650 normalized_interval = ep_bw->ep_interval;
2651 else
2652 normalized_interval = ep_bw->ep_interval - 3;
2653
2654 if (normalized_interval == 0)
2655 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2656 interval_bw = &bw_table->interval_bw[normalized_interval];
2657 interval_bw->num_packets += ep_bw->num_packets;
2658 switch (udev->speed) {
2659 case USB_SPEED_LOW:
2660 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2661 break;
2662 case USB_SPEED_FULL:
2663 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2664 break;
2665 case USB_SPEED_HIGH:
2666 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2667 break;
2668 default:
2669 /* Should never happen because only LS/FS/HS endpoints will get
2670 * added to the endpoint list.
2671 */
2672 return;
2673 }
2674
2675 if (tt_info)
2676 tt_info->active_eps += 1;
2677 /* Insert the endpoint into the list, largest max packet size first. */
2678 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2679 bw_endpoint_list) {
2680 if (ep_bw->max_packet_size >=
2681 smaller_ep->bw_info.max_packet_size) {
2682 /* Add the new ep before the smaller endpoint */
2683 list_add_tail(&virt_ep->bw_endpoint_list,
2684 &smaller_ep->bw_endpoint_list);
2685 return;
2686 }
2687 }
2688 /* Add the new endpoint at the end of the list. */
2689 list_add_tail(&virt_ep->bw_endpoint_list,
2690 &interval_bw->endpoints);
2691 }
2692
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2693 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2694 struct xhci_virt_device *virt_dev,
2695 int old_active_eps)
2696 {
2697 struct xhci_root_port_bw_info *rh_bw_info;
2698 if (!virt_dev->tt_info)
2699 return;
2700
2701 rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2702 if (old_active_eps == 0 &&
2703 virt_dev->tt_info->active_eps != 0) {
2704 rh_bw_info->num_active_tts += 1;
2705 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2706 } else if (old_active_eps != 0 &&
2707 virt_dev->tt_info->active_eps == 0) {
2708 rh_bw_info->num_active_tts -= 1;
2709 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2710 }
2711 }
2712
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2713 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2714 struct xhci_virt_device *virt_dev,
2715 struct xhci_container_ctx *in_ctx)
2716 {
2717 struct xhci_bw_info ep_bw_info[31];
2718 int i;
2719 struct xhci_input_control_ctx *ctrl_ctx;
2720 int old_active_eps = 0;
2721
2722 if (virt_dev->tt_info)
2723 old_active_eps = virt_dev->tt_info->active_eps;
2724
2725 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2726 if (!ctrl_ctx) {
2727 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2728 __func__);
2729 return -ENOMEM;
2730 }
2731
2732 for (i = 0; i < 31; i++) {
2733 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2734 continue;
2735
2736 /* Make a copy of the BW info in case we need to revert this */
2737 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2738 sizeof(ep_bw_info[i]));
2739 /* Drop the endpoint from the interval table if the endpoint is
2740 * being dropped or changed.
2741 */
2742 if (EP_IS_DROPPED(ctrl_ctx, i))
2743 xhci_drop_ep_from_interval_table(xhci,
2744 &virt_dev->eps[i].bw_info,
2745 virt_dev->bw_table,
2746 virt_dev->udev,
2747 &virt_dev->eps[i],
2748 virt_dev->tt_info);
2749 }
2750 /* Overwrite the information stored in the endpoints' bw_info */
2751 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2752 for (i = 0; i < 31; i++) {
2753 /* Add any changed or added endpoints to the interval table */
2754 if (EP_IS_ADDED(ctrl_ctx, i))
2755 xhci_add_ep_to_interval_table(xhci,
2756 &virt_dev->eps[i].bw_info,
2757 virt_dev->bw_table,
2758 virt_dev->udev,
2759 &virt_dev->eps[i],
2760 virt_dev->tt_info);
2761 }
2762
2763 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2764 /* Ok, this fits in the bandwidth we have.
2765 * Update the number of active TTs.
2766 */
2767 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2768 return 0;
2769 }
2770
2771 /* We don't have enough bandwidth for this, revert the stored info. */
2772 for (i = 0; i < 31; i++) {
2773 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2774 continue;
2775
2776 /* Drop the new copies of any added or changed endpoints from
2777 * the interval table.
2778 */
2779 if (EP_IS_ADDED(ctrl_ctx, i)) {
2780 xhci_drop_ep_from_interval_table(xhci,
2781 &virt_dev->eps[i].bw_info,
2782 virt_dev->bw_table,
2783 virt_dev->udev,
2784 &virt_dev->eps[i],
2785 virt_dev->tt_info);
2786 }
2787 /* Revert the endpoint back to its old information */
2788 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2789 sizeof(ep_bw_info[i]));
2790 /* Add any changed or dropped endpoints back into the table */
2791 if (EP_IS_DROPPED(ctrl_ctx, i))
2792 xhci_add_ep_to_interval_table(xhci,
2793 &virt_dev->eps[i].bw_info,
2794 virt_dev->bw_table,
2795 virt_dev->udev,
2796 &virt_dev->eps[i],
2797 virt_dev->tt_info);
2798 }
2799 return -ENOMEM;
2800 }
2801
2802 /*
2803 * Synchronous XHCI stop endpoint helper. Issues the stop endpoint command and
2804 * waits for the command completion before returning. This does not call
2805 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2806 * cases, along with transfer ring cleanup.
2807 *
2808 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2809 * their own transfer ring, such as offload situations.
2810 */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2811 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2812 gfp_t gfp_flags)
2813 {
2814 struct xhci_command *command;
2815 unsigned long flags;
2816 int ret;
2817
2818 command = xhci_alloc_command(xhci, true, gfp_flags);
2819 if (!command)
2820 return -ENOMEM;
2821
2822 spin_lock_irqsave(&xhci->lock, flags);
2823 ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2824 ep->ep_index, suspend);
2825 if (ret < 0) {
2826 spin_unlock_irqrestore(&xhci->lock, flags);
2827 goto out;
2828 }
2829
2830 xhci_ring_cmd_db(xhci);
2831 spin_unlock_irqrestore(&xhci->lock, flags);
2832
2833 wait_for_completion(command->completion);
2834
2835 /* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2836 if (command->status == COMP_COMMAND_ABORTED ||
2837 command->status == COMP_COMMAND_RING_STOPPED) {
2838 xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2839 ret = -ETIME;
2840 }
2841 out:
2842 xhci_free_command(xhci, command);
2843
2844 return ret;
2845 }
2846 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2847
2848 /* Issue a configure endpoint command or evaluate context command
2849 * and wait for it to finish.
2850 */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2851 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2852 struct usb_device *udev,
2853 struct xhci_command *command,
2854 bool ctx_change, bool must_succeed)
2855 {
2856 int ret;
2857 unsigned long flags;
2858 struct xhci_input_control_ctx *ctrl_ctx;
2859 struct xhci_virt_device *virt_dev;
2860 struct xhci_slot_ctx *slot_ctx;
2861
2862 if (!command)
2863 return -EINVAL;
2864
2865 spin_lock_irqsave(&xhci->lock, flags);
2866
2867 if (xhci->xhc_state & XHCI_STATE_DYING) {
2868 spin_unlock_irqrestore(&xhci->lock, flags);
2869 return -ESHUTDOWN;
2870 }
2871
2872 virt_dev = xhci->devs[udev->slot_id];
2873
2874 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2875 if (!ctrl_ctx) {
2876 spin_unlock_irqrestore(&xhci->lock, flags);
2877 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2878 __func__);
2879 return -ENOMEM;
2880 }
2881
2882 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2883 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2884 spin_unlock_irqrestore(&xhci->lock, flags);
2885 xhci_warn(xhci, "Not enough host resources, "
2886 "active endpoint contexts = %u\n",
2887 xhci->num_active_eps);
2888 return -ENOMEM;
2889 }
2890 if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2891 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2892 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2893 xhci_free_host_resources(xhci, ctrl_ctx);
2894 spin_unlock_irqrestore(&xhci->lock, flags);
2895 xhci_warn(xhci, "Not enough bandwidth\n");
2896 return -ENOMEM;
2897 }
2898
2899 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2900
2901 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2902 trace_xhci_configure_endpoint(slot_ctx);
2903
2904 if (!ctx_change)
2905 ret = xhci_queue_configure_endpoint(xhci, command,
2906 command->in_ctx->dma,
2907 udev->slot_id, must_succeed);
2908 else
2909 ret = xhci_queue_evaluate_context(xhci, command,
2910 command->in_ctx->dma,
2911 udev->slot_id, must_succeed);
2912 if (ret < 0) {
2913 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2914 xhci_free_host_resources(xhci, ctrl_ctx);
2915 spin_unlock_irqrestore(&xhci->lock, flags);
2916 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2917 "FIXME allocate a new ring segment");
2918 return -ENOMEM;
2919 }
2920 xhci_ring_cmd_db(xhci);
2921 spin_unlock_irqrestore(&xhci->lock, flags);
2922
2923 /* Wait for the configure endpoint command to complete */
2924 wait_for_completion(command->completion);
2925
2926 if (!ctx_change)
2927 ret = xhci_configure_endpoint_result(xhci, udev,
2928 &command->status);
2929 else
2930 ret = xhci_evaluate_context_result(xhci, udev,
2931 &command->status);
2932
2933 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2934 spin_lock_irqsave(&xhci->lock, flags);
2935 /* If the command failed, remove the reserved resources.
2936 * Otherwise, clean up the estimate to include dropped eps.
2937 */
2938 if (ret)
2939 xhci_free_host_resources(xhci, ctrl_ctx);
2940 else
2941 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2942 spin_unlock_irqrestore(&xhci->lock, flags);
2943 }
2944 return ret;
2945 }
2946
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2947 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2948 struct xhci_virt_device *vdev, int i)
2949 {
2950 struct xhci_virt_ep *ep = &vdev->eps[i];
2951
2952 if (ep->ep_state & EP_HAS_STREAMS) {
2953 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2954 xhci_get_endpoint_address(i));
2955 xhci_free_stream_info(xhci, ep->stream_info);
2956 ep->stream_info = NULL;
2957 ep->ep_state &= ~EP_HAS_STREAMS;
2958 }
2959 }
2960
2961 /* Called after one or more calls to xhci_add_endpoint() or
2962 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2963 * to call xhci_reset_bandwidth().
2964 *
2965 * Since we are in the middle of changing either configuration or
2966 * installing a new alt setting, the USB core won't allow URBs to be
2967 * enqueued for any endpoint on the old config or interface. Nothing
2968 * else should be touching the xhci->devs[slot_id] structure, so we
2969 * don't need to take the xhci->lock for manipulating that.
2970 */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2971 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2972 {
2973 int i;
2974 int ret = 0;
2975 struct xhci_hcd *xhci;
2976 struct xhci_virt_device *virt_dev;
2977 struct xhci_input_control_ctx *ctrl_ctx;
2978 struct xhci_slot_ctx *slot_ctx;
2979 struct xhci_command *command;
2980
2981 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2982 if (ret <= 0)
2983 return ret;
2984 xhci = hcd_to_xhci(hcd);
2985 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2986 (xhci->xhc_state & XHCI_STATE_REMOVING))
2987 return -ENODEV;
2988
2989 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2990 virt_dev = xhci->devs[udev->slot_id];
2991
2992 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2993 if (!command)
2994 return -ENOMEM;
2995
2996 command->in_ctx = virt_dev->in_ctx;
2997
2998 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2999 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3000 if (!ctrl_ctx) {
3001 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3002 __func__);
3003 ret = -ENOMEM;
3004 goto command_cleanup;
3005 }
3006 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3007 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3008 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3009
3010 /* Don't issue the command if there's no endpoints to update. */
3011 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3012 ctrl_ctx->drop_flags == 0) {
3013 ret = 0;
3014 goto command_cleanup;
3015 }
3016 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3017 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3018 for (i = 31; i >= 1; i--) {
3019 __le32 le32 = cpu_to_le32(BIT(i));
3020
3021 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3022 || (ctrl_ctx->add_flags & le32) || i == 1) {
3023 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3024 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3025 break;
3026 }
3027 }
3028
3029 ret = xhci_configure_endpoint(xhci, udev, command,
3030 false, false);
3031 if (ret)
3032 /* Callee should call reset_bandwidth() */
3033 goto command_cleanup;
3034
3035 /* Free any rings that were dropped, but not changed. */
3036 for (i = 1; i < 31; i++) {
3037 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3038 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3039 xhci_free_endpoint_ring(xhci, virt_dev, i);
3040 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3041 }
3042 }
3043 xhci_zero_in_ctx(xhci, virt_dev);
3044 /*
3045 * Install any rings for completely new endpoints or changed endpoints,
3046 * and free any old rings from changed endpoints.
3047 */
3048 for (i = 1; i < 31; i++) {
3049 if (!virt_dev->eps[i].new_ring)
3050 continue;
3051 /* Only free the old ring if it exists.
3052 * It may not if this is the first add of an endpoint.
3053 */
3054 if (virt_dev->eps[i].ring) {
3055 xhci_free_endpoint_ring(xhci, virt_dev, i);
3056 }
3057 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3058 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3059 virt_dev->eps[i].new_ring = NULL;
3060 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3061 }
3062 command_cleanup:
3063 kfree(command->completion);
3064 kfree(command);
3065
3066 return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3069
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3070 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3071 {
3072 struct xhci_hcd *xhci;
3073 struct xhci_virt_device *virt_dev;
3074 int i, ret;
3075
3076 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3077 if (ret <= 0)
3078 return;
3079 xhci = hcd_to_xhci(hcd);
3080
3081 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3082 virt_dev = xhci->devs[udev->slot_id];
3083 /* Free any rings allocated for added endpoints */
3084 for (i = 0; i < 31; i++) {
3085 if (virt_dev->eps[i].new_ring) {
3086 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3087 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3088 virt_dev->eps[i].new_ring = NULL;
3089 }
3090 }
3091 xhci_zero_in_ctx(xhci, virt_dev);
3092 }
3093 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3094
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3095 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3096 struct xhci_container_ctx *in_ctx,
3097 struct xhci_container_ctx *out_ctx,
3098 struct xhci_input_control_ctx *ctrl_ctx,
3099 u32 add_flags, u32 drop_flags)
3100 {
3101 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3102 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3103 xhci_slot_copy(xhci, in_ctx, out_ctx);
3104 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3105 }
3106
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3107 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3108 struct usb_host_endpoint *host_ep)
3109 {
3110 struct xhci_hcd *xhci;
3111 struct xhci_virt_device *vdev;
3112 struct xhci_virt_ep *ep;
3113 struct usb_device *udev;
3114 unsigned long flags;
3115 unsigned int ep_index;
3116
3117 xhci = hcd_to_xhci(hcd);
3118 rescan:
3119 spin_lock_irqsave(&xhci->lock, flags);
3120
3121 udev = (struct usb_device *)host_ep->hcpriv;
3122 if (!udev || !udev->slot_id)
3123 goto done;
3124
3125 vdev = xhci->devs[udev->slot_id];
3126 if (!vdev)
3127 goto done;
3128
3129 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3130 ep = &vdev->eps[ep_index];
3131
3132 /* wait for hub_tt_work to finish clearing hub TT */
3133 if (ep->ep_state & EP_CLEARING_TT) {
3134 spin_unlock_irqrestore(&xhci->lock, flags);
3135 schedule_timeout_uninterruptible(1);
3136 goto rescan;
3137 }
3138
3139 if (ep->ep_state)
3140 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3141 ep->ep_state);
3142 done:
3143 host_ep->hcpriv = NULL;
3144 spin_unlock_irqrestore(&xhci->lock, flags);
3145 }
3146
3147 /*
3148 * Called after usb core issues a clear halt control message.
3149 * The host side of the halt should already be cleared by a reset endpoint
3150 * command issued when the STALL event was received.
3151 *
3152 * The reset endpoint command may only be issued to endpoints in the halted
3153 * state. For software that wishes to reset the data toggle or sequence number
3154 * of an endpoint that isn't in the halted state this function will issue a
3155 * configure endpoint command with the Drop and Add bits set for the target
3156 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3157 *
3158 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3159 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3160 */
3161
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3162 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3163 struct usb_host_endpoint *host_ep)
3164 {
3165 struct xhci_hcd *xhci;
3166 struct usb_device *udev;
3167 struct xhci_virt_device *vdev;
3168 struct xhci_virt_ep *ep;
3169 struct xhci_input_control_ctx *ctrl_ctx;
3170 struct xhci_command *stop_cmd, *cfg_cmd;
3171 unsigned int ep_index;
3172 unsigned long flags;
3173 u32 ep_flag;
3174 int err;
3175
3176 xhci = hcd_to_xhci(hcd);
3177 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3178
3179 /*
3180 * Usb core assumes a max packet value for ep0 on FS devices until the
3181 * real value is read from the descriptor. Core resets Ep0 if values
3182 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3183 */
3184 if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3185
3186 udev = container_of(host_ep, struct usb_device, ep0);
3187 if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3188 return;
3189
3190 vdev = xhci->devs[udev->slot_id];
3191 if (!vdev || vdev->udev != udev)
3192 return;
3193
3194 xhci_check_ep0_maxpacket(xhci, vdev);
3195
3196 /* Nothing else should be done here for ep0 during ep reset */
3197 return;
3198 }
3199
3200 if (!host_ep->hcpriv)
3201 return;
3202 udev = (struct usb_device *) host_ep->hcpriv;
3203 vdev = xhci->devs[udev->slot_id];
3204
3205 if (!udev->slot_id || !vdev)
3206 return;
3207
3208 ep = &vdev->eps[ep_index];
3209
3210 /* Bail out if toggle is already being cleared by a endpoint reset */
3211 spin_lock_irqsave(&xhci->lock, flags);
3212 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3213 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3214 spin_unlock_irqrestore(&xhci->lock, flags);
3215 return;
3216 }
3217 spin_unlock_irqrestore(&xhci->lock, flags);
3218 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3219 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3220 usb_endpoint_xfer_isoc(&host_ep->desc))
3221 return;
3222
3223 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3224
3225 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3226 return;
3227
3228 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3229 if (!stop_cmd)
3230 return;
3231
3232 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3233 if (!cfg_cmd)
3234 goto cleanup;
3235
3236 spin_lock_irqsave(&xhci->lock, flags);
3237
3238 /* block queuing new trbs and ringing ep doorbell */
3239 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3240
3241 /*
3242 * Make sure endpoint ring is empty before resetting the toggle/seq.
3243 * Driver is required to synchronously cancel all transfer request.
3244 * Stop the endpoint to force xHC to update the output context
3245 */
3246
3247 if (!list_empty(&ep->ring->td_list)) {
3248 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3249 spin_unlock_irqrestore(&xhci->lock, flags);
3250 xhci_free_command(xhci, cfg_cmd);
3251 goto cleanup;
3252 }
3253
3254 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3255 ep_index, 0);
3256 if (err < 0) {
3257 spin_unlock_irqrestore(&xhci->lock, flags);
3258 xhci_free_command(xhci, cfg_cmd);
3259 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3260 __func__, err);
3261 goto cleanup;
3262 }
3263
3264 xhci_ring_cmd_db(xhci);
3265 spin_unlock_irqrestore(&xhci->lock, flags);
3266
3267 wait_for_completion(stop_cmd->completion);
3268
3269 spin_lock_irqsave(&xhci->lock, flags);
3270
3271 /* config ep command clears toggle if add and drop ep flags are set */
3272 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3273 if (!ctrl_ctx) {
3274 spin_unlock_irqrestore(&xhci->lock, flags);
3275 xhci_free_command(xhci, cfg_cmd);
3276 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3277 __func__);
3278 goto cleanup;
3279 }
3280
3281 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3282 ctrl_ctx, ep_flag, ep_flag);
3283 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3284
3285 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3286 udev->slot_id, false);
3287 if (err < 0) {
3288 spin_unlock_irqrestore(&xhci->lock, flags);
3289 xhci_free_command(xhci, cfg_cmd);
3290 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3291 __func__, err);
3292 goto cleanup;
3293 }
3294
3295 xhci_ring_cmd_db(xhci);
3296 spin_unlock_irqrestore(&xhci->lock, flags);
3297
3298 wait_for_completion(cfg_cmd->completion);
3299
3300 xhci_free_command(xhci, cfg_cmd);
3301 cleanup:
3302 xhci_free_command(xhci, stop_cmd);
3303 spin_lock_irqsave(&xhci->lock, flags);
3304 if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3305 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3306 spin_unlock_irqrestore(&xhci->lock, flags);
3307 }
3308
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3309 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3310 struct usb_device *udev, struct usb_host_endpoint *ep,
3311 unsigned int slot_id)
3312 {
3313 int ret;
3314 unsigned int ep_index;
3315 unsigned int ep_state;
3316
3317 if (!ep)
3318 return -EINVAL;
3319 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3320 if (ret <= 0)
3321 return ret ? ret : -EINVAL;
3322 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3323 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3324 " descriptor for ep 0x%x does not support streams\n",
3325 ep->desc.bEndpointAddress);
3326 return -EINVAL;
3327 }
3328
3329 ep_index = xhci_get_endpoint_index(&ep->desc);
3330 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3331 if (ep_state & EP_HAS_STREAMS ||
3332 ep_state & EP_GETTING_STREAMS) {
3333 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3334 "already has streams set up.\n",
3335 ep->desc.bEndpointAddress);
3336 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3337 "dynamic stream context array reallocation.\n");
3338 return -EINVAL;
3339 }
3340 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3341 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3342 "endpoint 0x%x; URBs are pending.\n",
3343 ep->desc.bEndpointAddress);
3344 return -EINVAL;
3345 }
3346 return 0;
3347 }
3348
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3349 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3350 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3351 {
3352 unsigned int max_streams;
3353
3354 /* The stream context array size must be a power of two */
3355 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3356 /*
3357 * Find out how many primary stream array entries the host controller
3358 * supports. Later we may use secondary stream arrays (similar to 2nd
3359 * level page entries), but that's an optional feature for xHCI host
3360 * controllers. xHCs must support at least 4 stream IDs.
3361 */
3362 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3363 if (*num_stream_ctxs > max_streams) {
3364 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3365 max_streams);
3366 *num_stream_ctxs = max_streams;
3367 *num_streams = max_streams;
3368 }
3369 }
3370
3371 /* Returns an error code if one of the endpoint already has streams.
3372 * This does not change any data structures, it only checks and gathers
3373 * information.
3374 */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3375 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3376 struct usb_device *udev,
3377 struct usb_host_endpoint **eps, unsigned int num_eps,
3378 unsigned int *num_streams, u32 *changed_ep_bitmask)
3379 {
3380 unsigned int max_streams;
3381 unsigned int endpoint_flag;
3382 int i;
3383 int ret;
3384
3385 for (i = 0; i < num_eps; i++) {
3386 ret = xhci_check_streams_endpoint(xhci, udev,
3387 eps[i], udev->slot_id);
3388 if (ret < 0)
3389 return ret;
3390
3391 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3392 if (max_streams < (*num_streams - 1)) {
3393 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3394 eps[i]->desc.bEndpointAddress,
3395 max_streams);
3396 *num_streams = max_streams+1;
3397 }
3398
3399 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3400 if (*changed_ep_bitmask & endpoint_flag)
3401 return -EINVAL;
3402 *changed_ep_bitmask |= endpoint_flag;
3403 }
3404 return 0;
3405 }
3406
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3407 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3408 struct usb_device *udev,
3409 struct usb_host_endpoint **eps, unsigned int num_eps)
3410 {
3411 u32 changed_ep_bitmask = 0;
3412 unsigned int slot_id;
3413 unsigned int ep_index;
3414 unsigned int ep_state;
3415 int i;
3416
3417 slot_id = udev->slot_id;
3418 if (!xhci->devs[slot_id])
3419 return 0;
3420
3421 for (i = 0; i < num_eps; i++) {
3422 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3423 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3424 /* Are streams already being freed for the endpoint? */
3425 if (ep_state & EP_GETTING_NO_STREAMS) {
3426 xhci_warn(xhci, "WARN Can't disable streams for "
3427 "endpoint 0x%x, "
3428 "streams are being disabled already\n",
3429 eps[i]->desc.bEndpointAddress);
3430 return 0;
3431 }
3432 /* Are there actually any streams to free? */
3433 if (!(ep_state & EP_HAS_STREAMS) &&
3434 !(ep_state & EP_GETTING_STREAMS)) {
3435 xhci_warn(xhci, "WARN Can't disable streams for "
3436 "endpoint 0x%x, "
3437 "streams are already disabled!\n",
3438 eps[i]->desc.bEndpointAddress);
3439 xhci_warn(xhci, "WARN xhci_free_streams() called "
3440 "with non-streams endpoint\n");
3441 return 0;
3442 }
3443 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3444 }
3445 return changed_ep_bitmask;
3446 }
3447
3448 /*
3449 * The USB device drivers use this function (through the HCD interface in USB
3450 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3451 * coordinate mass storage command queueing across multiple endpoints (basically
3452 * a stream ID == a task ID).
3453 *
3454 * Setting up streams involves allocating the same size stream context array
3455 * for each endpoint and issuing a configure endpoint command for all endpoints.
3456 *
3457 * Don't allow the call to succeed if one endpoint only supports one stream
3458 * (which means it doesn't support streams at all).
3459 *
3460 * Drivers may get less stream IDs than they asked for, if the host controller
3461 * hardware or endpoints claim they can't support the number of requested
3462 * stream IDs.
3463 */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3464 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3465 struct usb_host_endpoint **eps, unsigned int num_eps,
3466 unsigned int num_streams, gfp_t mem_flags)
3467 {
3468 int i, ret;
3469 struct xhci_hcd *xhci;
3470 struct xhci_virt_device *vdev;
3471 struct xhci_command *config_cmd;
3472 struct xhci_input_control_ctx *ctrl_ctx;
3473 unsigned int ep_index;
3474 unsigned int num_stream_ctxs;
3475 unsigned int max_packet;
3476 unsigned long flags;
3477 u32 changed_ep_bitmask = 0;
3478
3479 if (!eps)
3480 return -EINVAL;
3481
3482 /* Add one to the number of streams requested to account for
3483 * stream 0 that is reserved for xHCI usage.
3484 */
3485 num_streams += 1;
3486 xhci = hcd_to_xhci(hcd);
3487 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3488 num_streams);
3489
3490 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3491 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3492 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3493 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3494 return -ENOSYS;
3495 }
3496
3497 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3498 if (!config_cmd)
3499 return -ENOMEM;
3500
3501 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3502 if (!ctrl_ctx) {
3503 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3504 __func__);
3505 xhci_free_command(xhci, config_cmd);
3506 return -ENOMEM;
3507 }
3508
3509 /* Check to make sure all endpoints are not already configured for
3510 * streams. While we're at it, find the maximum number of streams that
3511 * all the endpoints will support and check for duplicate endpoints.
3512 */
3513 spin_lock_irqsave(&xhci->lock, flags);
3514 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3515 num_eps, &num_streams, &changed_ep_bitmask);
3516 if (ret < 0) {
3517 xhci_free_command(xhci, config_cmd);
3518 spin_unlock_irqrestore(&xhci->lock, flags);
3519 return ret;
3520 }
3521 if (num_streams <= 1) {
3522 xhci_warn(xhci, "WARN: endpoints can't handle "
3523 "more than one stream.\n");
3524 xhci_free_command(xhci, config_cmd);
3525 spin_unlock_irqrestore(&xhci->lock, flags);
3526 return -EINVAL;
3527 }
3528 vdev = xhci->devs[udev->slot_id];
3529 /* Mark each endpoint as being in transition, so
3530 * xhci_urb_enqueue() will reject all URBs.
3531 */
3532 for (i = 0; i < num_eps; i++) {
3533 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3535 }
3536 spin_unlock_irqrestore(&xhci->lock, flags);
3537
3538 /* Setup internal data structures and allocate HW data structures for
3539 * streams (but don't install the HW structures in the input context
3540 * until we're sure all memory allocation succeeded).
3541 */
3542 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3543 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3544 num_stream_ctxs, num_streams);
3545
3546 for (i = 0; i < num_eps; i++) {
3547 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3548 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3549 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3550 num_stream_ctxs,
3551 num_streams,
3552 max_packet, mem_flags);
3553 if (!vdev->eps[ep_index].stream_info)
3554 goto cleanup;
3555 /* Set maxPstreams in endpoint context and update deq ptr to
3556 * point to stream context array. FIXME
3557 */
3558 }
3559
3560 /* Set up the input context for a configure endpoint command. */
3561 for (i = 0; i < num_eps; i++) {
3562 struct xhci_ep_ctx *ep_ctx;
3563
3564 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3565 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3566
3567 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3568 vdev->out_ctx, ep_index);
3569 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3570 vdev->eps[ep_index].stream_info);
3571 }
3572 /* Tell the HW to drop its old copy of the endpoint context info
3573 * and add the updated copy from the input context.
3574 */
3575 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3576 vdev->out_ctx, ctrl_ctx,
3577 changed_ep_bitmask, changed_ep_bitmask);
3578
3579 /* Issue and wait for the configure endpoint command */
3580 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3581 false, false);
3582
3583 /* xHC rejected the configure endpoint command for some reason, so we
3584 * leave the old ring intact and free our internal streams data
3585 * structure.
3586 */
3587 if (ret < 0)
3588 goto cleanup;
3589
3590 spin_lock_irqsave(&xhci->lock, flags);
3591 for (i = 0; i < num_eps; i++) {
3592 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3594 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3595 udev->slot_id, ep_index);
3596 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3597 }
3598 xhci_free_command(xhci, config_cmd);
3599 spin_unlock_irqrestore(&xhci->lock, flags);
3600
3601 for (i = 0; i < num_eps; i++) {
3602 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3604 }
3605 /* Subtract 1 for stream 0, which drivers can't use */
3606 return num_streams - 1;
3607
3608 cleanup:
3609 /* If it didn't work, free the streams! */
3610 for (i = 0; i < num_eps; i++) {
3611 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3613 vdev->eps[ep_index].stream_info = NULL;
3614 /* FIXME Unset maxPstreams in endpoint context and
3615 * update deq ptr to point to normal string ring.
3616 */
3617 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3618 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3619 xhci_endpoint_zero(xhci, vdev, eps[i]);
3620 }
3621 xhci_free_command(xhci, config_cmd);
3622 return -ENOMEM;
3623 }
3624
3625 /* Transition the endpoint from using streams to being a "normal" endpoint
3626 * without streams.
3627 *
3628 * Modify the endpoint context state, submit a configure endpoint command,
3629 * and free all endpoint rings for streams if that completes successfully.
3630 */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3631 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3632 struct usb_host_endpoint **eps, unsigned int num_eps,
3633 gfp_t mem_flags)
3634 {
3635 int i, ret;
3636 struct xhci_hcd *xhci;
3637 struct xhci_virt_device *vdev;
3638 struct xhci_command *command;
3639 struct xhci_input_control_ctx *ctrl_ctx;
3640 unsigned int ep_index;
3641 unsigned long flags;
3642 u32 changed_ep_bitmask;
3643
3644 xhci = hcd_to_xhci(hcd);
3645 vdev = xhci->devs[udev->slot_id];
3646
3647 /* Set up a configure endpoint command to remove the streams rings */
3648 spin_lock_irqsave(&xhci->lock, flags);
3649 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3650 udev, eps, num_eps);
3651 if (changed_ep_bitmask == 0) {
3652 spin_unlock_irqrestore(&xhci->lock, flags);
3653 return -EINVAL;
3654 }
3655
3656 /* Use the xhci_command structure from the first endpoint. We may have
3657 * allocated too many, but the driver may call xhci_free_streams() for
3658 * each endpoint it grouped into one call to xhci_alloc_streams().
3659 */
3660 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3661 command = vdev->eps[ep_index].stream_info->free_streams_command;
3662 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3663 if (!ctrl_ctx) {
3664 spin_unlock_irqrestore(&xhci->lock, flags);
3665 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3666 __func__);
3667 return -EINVAL;
3668 }
3669
3670 for (i = 0; i < num_eps; i++) {
3671 struct xhci_ep_ctx *ep_ctx;
3672
3673 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3674 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3675 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3676 EP_GETTING_NO_STREAMS;
3677
3678 xhci_endpoint_copy(xhci, command->in_ctx,
3679 vdev->out_ctx, ep_index);
3680 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3681 &vdev->eps[ep_index]);
3682 }
3683 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3684 vdev->out_ctx, ctrl_ctx,
3685 changed_ep_bitmask, changed_ep_bitmask);
3686 spin_unlock_irqrestore(&xhci->lock, flags);
3687
3688 /* Issue and wait for the configure endpoint command,
3689 * which must succeed.
3690 */
3691 ret = xhci_configure_endpoint(xhci, udev, command,
3692 false, true);
3693
3694 /* xHC rejected the configure endpoint command for some reason, so we
3695 * leave the streams rings intact.
3696 */
3697 if (ret < 0)
3698 return ret;
3699
3700 spin_lock_irqsave(&xhci->lock, flags);
3701 for (i = 0; i < num_eps; i++) {
3702 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3703 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3704 vdev->eps[ep_index].stream_info = NULL;
3705 /* FIXME Unset maxPstreams in endpoint context and
3706 * update deq ptr to point to normal string ring.
3707 */
3708 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3709 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3710 }
3711 spin_unlock_irqrestore(&xhci->lock, flags);
3712
3713 return 0;
3714 }
3715
3716 /*
3717 * Deletes endpoint resources for endpoints that were active before a Reset
3718 * Device command, or a Disable Slot command. The Reset Device command leaves
3719 * the control endpoint intact, whereas the Disable Slot command deletes it.
3720 *
3721 * Must be called with xhci->lock held.
3722 */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3723 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3724 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3725 {
3726 int i;
3727 unsigned int num_dropped_eps = 0;
3728 unsigned int drop_flags = 0;
3729
3730 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3731 if (virt_dev->eps[i].ring) {
3732 drop_flags |= 1 << i;
3733 num_dropped_eps++;
3734 }
3735 }
3736 xhci->num_active_eps -= num_dropped_eps;
3737 if (num_dropped_eps)
3738 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3739 "Dropped %u ep ctxs, flags = 0x%x, "
3740 "%u now active.",
3741 num_dropped_eps, drop_flags,
3742 xhci->num_active_eps);
3743 }
3744
3745 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3746
3747 /*
3748 * This submits a Reset Device Command, which will set the device state to 0,
3749 * set the device address to 0, and disable all the endpoints except the default
3750 * control endpoint. The USB core should come back and call
3751 * xhci_address_device(), and then re-set up the configuration. If this is
3752 * called because of a usb_reset_and_verify_device(), then the old alternate
3753 * settings will be re-installed through the normal bandwidth allocation
3754 * functions.
3755 *
3756 * Wait for the Reset Device command to finish. Remove all structures
3757 * associated with the endpoints that were disabled. Clear the input device
3758 * structure? Reset the control endpoint 0 max packet size?
3759 *
3760 * If the virt_dev to be reset does not exist or does not match the udev,
3761 * it means the device is lost, possibly due to the xHC restore error and
3762 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3763 * re-allocate the device.
3764 */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3765 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3766 struct usb_device *udev)
3767 {
3768 int ret, i;
3769 unsigned long flags;
3770 struct xhci_hcd *xhci;
3771 unsigned int slot_id;
3772 struct xhci_virt_device *virt_dev;
3773 struct xhci_command *reset_device_cmd;
3774 struct xhci_slot_ctx *slot_ctx;
3775 int old_active_eps = 0;
3776
3777 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3778 if (ret <= 0)
3779 return ret;
3780 xhci = hcd_to_xhci(hcd);
3781 slot_id = udev->slot_id;
3782 virt_dev = xhci->devs[slot_id];
3783 if (!virt_dev) {
3784 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3785 "not exist. Re-allocate the device\n", slot_id);
3786 ret = xhci_alloc_dev(hcd, udev);
3787 if (ret == 1)
3788 return 0;
3789 else
3790 return -EINVAL;
3791 }
3792
3793 if (virt_dev->tt_info)
3794 old_active_eps = virt_dev->tt_info->active_eps;
3795
3796 if (virt_dev->udev != udev) {
3797 /* If the virt_dev and the udev does not match, this virt_dev
3798 * may belong to another udev.
3799 * Re-allocate the device.
3800 */
3801 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3802 "not match the udev. Re-allocate the device\n",
3803 slot_id);
3804 ret = xhci_alloc_dev(hcd, udev);
3805 if (ret == 1)
3806 return 0;
3807 else
3808 return -EINVAL;
3809 }
3810
3811 /* If device is not setup, there is no point in resetting it */
3812 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3813 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3814 SLOT_STATE_DISABLED)
3815 return 0;
3816
3817 if (xhci->quirks & XHCI_ETRON_HOST) {
3818 /*
3819 * Obtaining a new device slot to inform the xHCI host that
3820 * the USB device has been reset.
3821 */
3822 ret = xhci_disable_slot(xhci, udev->slot_id);
3823 xhci_free_virt_device(xhci, udev->slot_id);
3824 if (!ret) {
3825 ret = xhci_alloc_dev(hcd, udev);
3826 if (ret == 1)
3827 ret = 0;
3828 else
3829 ret = -EINVAL;
3830 }
3831 return ret;
3832 }
3833
3834 trace_xhci_discover_or_reset_device(slot_ctx);
3835
3836 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3837 /* Allocate the command structure that holds the struct completion.
3838 * Assume we're in process context, since the normal device reset
3839 * process has to wait for the device anyway. Storage devices are
3840 * reset as part of error handling, so use GFP_NOIO instead of
3841 * GFP_KERNEL.
3842 */
3843 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3844 if (!reset_device_cmd) {
3845 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3846 return -ENOMEM;
3847 }
3848
3849 /* Attempt to submit the Reset Device command to the command ring */
3850 spin_lock_irqsave(&xhci->lock, flags);
3851
3852 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3853 if (ret) {
3854 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3855 spin_unlock_irqrestore(&xhci->lock, flags);
3856 goto command_cleanup;
3857 }
3858 xhci_ring_cmd_db(xhci);
3859 spin_unlock_irqrestore(&xhci->lock, flags);
3860
3861 /* Wait for the Reset Device command to finish */
3862 wait_for_completion(reset_device_cmd->completion);
3863
3864 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3865 * unless we tried to reset a slot ID that wasn't enabled,
3866 * or the device wasn't in the addressed or configured state.
3867 */
3868 ret = reset_device_cmd->status;
3869 switch (ret) {
3870 case COMP_COMMAND_ABORTED:
3871 case COMP_COMMAND_RING_STOPPED:
3872 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3873 ret = -ETIME;
3874 goto command_cleanup;
3875 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3876 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3877 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3878 slot_id,
3879 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3880 xhci_dbg(xhci, "Not freeing device rings.\n");
3881 /* Don't treat this as an error. May change my mind later. */
3882 ret = 0;
3883 goto command_cleanup;
3884 case COMP_SUCCESS:
3885 xhci_dbg(xhci, "Successful reset device command.\n");
3886 break;
3887 default:
3888 if (xhci_is_vendor_info_code(xhci, ret))
3889 break;
3890 xhci_warn(xhci, "Unknown completion code %u for "
3891 "reset device command.\n", ret);
3892 ret = -EINVAL;
3893 goto command_cleanup;
3894 }
3895
3896 /* Free up host controller endpoint resources */
3897 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3898 spin_lock_irqsave(&xhci->lock, flags);
3899 /* Don't delete the default control endpoint resources */
3900 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3901 spin_unlock_irqrestore(&xhci->lock, flags);
3902 }
3903
3904 /* Everything but endpoint 0 is disabled, so free the rings. */
3905 for (i = 1; i < 31; i++) {
3906 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3907
3908 if (ep->ep_state & EP_HAS_STREAMS) {
3909 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3910 xhci_get_endpoint_address(i));
3911 xhci_free_stream_info(xhci, ep->stream_info);
3912 ep->stream_info = NULL;
3913 ep->ep_state &= ~EP_HAS_STREAMS;
3914 }
3915
3916 if (ep->ring) {
3917 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3918 xhci_free_endpoint_ring(xhci, virt_dev, i);
3919 }
3920 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3921 xhci_drop_ep_from_interval_table(xhci,
3922 &virt_dev->eps[i].bw_info,
3923 virt_dev->bw_table,
3924 udev,
3925 &virt_dev->eps[i],
3926 virt_dev->tt_info);
3927 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3928 }
3929 /* If necessary, update the number of active TTs on this root port */
3930 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3931 virt_dev->flags = 0;
3932 ret = 0;
3933
3934 command_cleanup:
3935 xhci_free_command(xhci, reset_device_cmd);
3936 return ret;
3937 }
3938
3939 /*
3940 * At this point, the struct usb_device is about to go away, the device has
3941 * disconnected, and all traffic has been stopped and the endpoints have been
3942 * disabled. Free any HC data structures associated with that device.
3943 */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3944 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3945 {
3946 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3947 struct xhci_virt_device *virt_dev;
3948 struct xhci_slot_ctx *slot_ctx;
3949 unsigned long flags;
3950 int i, ret;
3951
3952 /*
3953 * We called pm_runtime_get_noresume when the device was attached.
3954 * Decrement the counter here to allow controller to runtime suspend
3955 * if no devices remain.
3956 */
3957 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3958 pm_runtime_put_noidle(hcd->self.controller);
3959
3960 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3961 /* If the host is halted due to driver unload, we still need to free the
3962 * device.
3963 */
3964 if (ret <= 0 && ret != -ENODEV)
3965 return;
3966
3967 virt_dev = xhci->devs[udev->slot_id];
3968 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3969 trace_xhci_free_dev(slot_ctx);
3970
3971 /* Stop any wayward timer functions (which may grab the lock) */
3972 for (i = 0; i < 31; i++)
3973 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3974 virt_dev->udev = NULL;
3975 xhci_disable_slot(xhci, udev->slot_id);
3976
3977 spin_lock_irqsave(&xhci->lock, flags);
3978 xhci_free_virt_device(xhci, udev->slot_id);
3979 spin_unlock_irqrestore(&xhci->lock, flags);
3980
3981 }
3982
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3983 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3984 {
3985 struct xhci_command *command;
3986 unsigned long flags;
3987 u32 state;
3988 int ret;
3989
3990 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3991 if (!command)
3992 return -ENOMEM;
3993
3994 xhci_debugfs_remove_slot(xhci, slot_id);
3995
3996 spin_lock_irqsave(&xhci->lock, flags);
3997 /* Don't disable the slot if the host controller is dead. */
3998 state = readl(&xhci->op_regs->status);
3999 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
4000 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4001 spin_unlock_irqrestore(&xhci->lock, flags);
4002 kfree(command);
4003 return -ENODEV;
4004 }
4005
4006 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4007 slot_id);
4008 if (ret) {
4009 spin_unlock_irqrestore(&xhci->lock, flags);
4010 kfree(command);
4011 return ret;
4012 }
4013 xhci_ring_cmd_db(xhci);
4014 spin_unlock_irqrestore(&xhci->lock, flags);
4015
4016 wait_for_completion(command->completion);
4017
4018 if (command->status != COMP_SUCCESS)
4019 xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4020 slot_id, command->status);
4021
4022 xhci_free_command(xhci, command);
4023
4024 return 0;
4025 }
4026
4027 /*
4028 * Checks if we have enough host controller resources for the default control
4029 * endpoint.
4030 *
4031 * Must be called with xhci->lock held.
4032 */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4033 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4034 {
4035 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4037 "Not enough ep ctxs: "
4038 "%u active, need to add 1, limit is %u.",
4039 xhci->num_active_eps, xhci->limit_active_eps);
4040 return -ENOMEM;
4041 }
4042 xhci->num_active_eps += 1;
4043 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4044 "Adding 1 ep ctx, %u now active.",
4045 xhci->num_active_eps);
4046 return 0;
4047 }
4048
4049
4050 /*
4051 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4052 * timed out, or allocating memory failed. Returns 1 on success.
4053 */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4054 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4055 {
4056 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057 struct xhci_virt_device *vdev;
4058 struct xhci_slot_ctx *slot_ctx;
4059 unsigned long flags;
4060 int ret, slot_id;
4061 struct xhci_command *command;
4062
4063 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4064 if (!command)
4065 return 0;
4066
4067 spin_lock_irqsave(&xhci->lock, flags);
4068 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4069 if (ret) {
4070 spin_unlock_irqrestore(&xhci->lock, flags);
4071 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4072 xhci_free_command(xhci, command);
4073 return 0;
4074 }
4075 xhci_ring_cmd_db(xhci);
4076 spin_unlock_irqrestore(&xhci->lock, flags);
4077
4078 wait_for_completion(command->completion);
4079 slot_id = command->slot_id;
4080
4081 if (!slot_id || command->status != COMP_SUCCESS) {
4082 xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4083 xhci_trb_comp_code_string(command->status));
4084 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4085 HCS_MAX_SLOTS(
4086 readl(&xhci->cap_regs->hcs_params1)));
4087 xhci_free_command(xhci, command);
4088 return 0;
4089 }
4090
4091 xhci_free_command(xhci, command);
4092
4093 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4094 spin_lock_irqsave(&xhci->lock, flags);
4095 ret = xhci_reserve_host_control_ep_resources(xhci);
4096 if (ret) {
4097 spin_unlock_irqrestore(&xhci->lock, flags);
4098 xhci_warn(xhci, "Not enough host resources, "
4099 "active endpoint contexts = %u\n",
4100 xhci->num_active_eps);
4101 goto disable_slot;
4102 }
4103 spin_unlock_irqrestore(&xhci->lock, flags);
4104 }
4105 /* Use GFP_NOIO, since this function can be called from
4106 * xhci_discover_or_reset_device(), which may be called as part of
4107 * mass storage driver error handling.
4108 */
4109 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4110 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4111 goto disable_slot;
4112 }
4113 vdev = xhci->devs[slot_id];
4114 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4115 trace_xhci_alloc_dev(slot_ctx);
4116
4117 udev->slot_id = slot_id;
4118
4119 xhci_debugfs_create_slot(xhci, slot_id);
4120
4121 /*
4122 * If resetting upon resume, we can't put the controller into runtime
4123 * suspend if there is a device attached.
4124 */
4125 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4126 pm_runtime_get_noresume(hcd->self.controller);
4127
4128 /* Is this a LS or FS device under a HS hub? */
4129 /* Hub or peripherial? */
4130 return 1;
4131
4132 disable_slot:
4133 xhci_disable_slot(xhci, udev->slot_id);
4134 xhci_free_virt_device(xhci, udev->slot_id);
4135
4136 return 0;
4137 }
4138
4139 /**
4140 * xhci_setup_device - issues an Address Device command to assign a unique
4141 * USB bus address.
4142 * @hcd: USB host controller data structure.
4143 * @udev: USB dev structure representing the connected device.
4144 * @setup: Enum specifying setup mode: address only or with context.
4145 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4146 *
4147 * Return: 0 if successful; otherwise, negative error code.
4148 */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4149 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4150 enum xhci_setup_dev setup, unsigned int timeout_ms)
4151 {
4152 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4153 unsigned long flags;
4154 struct xhci_virt_device *virt_dev;
4155 int ret = 0;
4156 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4157 struct xhci_slot_ctx *slot_ctx;
4158 struct xhci_input_control_ctx *ctrl_ctx;
4159 u64 temp_64;
4160 struct xhci_command *command = NULL;
4161
4162 mutex_lock(&xhci->mutex);
4163
4164 if (xhci->xhc_state) { /* dying, removing or halted */
4165 ret = -ESHUTDOWN;
4166 goto out;
4167 }
4168
4169 if (!udev->slot_id) {
4170 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4171 "Bad Slot ID %d", udev->slot_id);
4172 ret = -EINVAL;
4173 goto out;
4174 }
4175
4176 virt_dev = xhci->devs[udev->slot_id];
4177
4178 if (WARN_ON(!virt_dev)) {
4179 /*
4180 * In plug/unplug torture test with an NEC controller,
4181 * a zero-dereference was observed once due to virt_dev = 0.
4182 * Print useful debug rather than crash if it is observed again!
4183 */
4184 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4185 udev->slot_id);
4186 ret = -EINVAL;
4187 goto out;
4188 }
4189 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4190 trace_xhci_setup_device_slot(slot_ctx);
4191
4192 if (setup == SETUP_CONTEXT_ONLY) {
4193 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4194 SLOT_STATE_DEFAULT) {
4195 xhci_dbg(xhci, "Slot already in default state\n");
4196 goto out;
4197 }
4198 }
4199
4200 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4201 if (!command) {
4202 ret = -ENOMEM;
4203 goto out;
4204 }
4205
4206 command->in_ctx = virt_dev->in_ctx;
4207 command->timeout_ms = timeout_ms;
4208
4209 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4210 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4211 if (!ctrl_ctx) {
4212 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4213 __func__);
4214 ret = -EINVAL;
4215 goto out;
4216 }
4217 /*
4218 * If this is the first Set Address since device plug-in or
4219 * virt_device realloaction after a resume with an xHCI power loss,
4220 * then set up the slot context.
4221 */
4222 if (!slot_ctx->dev_info)
4223 xhci_setup_addressable_virt_dev(xhci, udev);
4224 /* Otherwise, update the control endpoint ring enqueue pointer. */
4225 else
4226 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4227 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4228 ctrl_ctx->drop_flags = 0;
4229
4230 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4231 le32_to_cpu(slot_ctx->dev_info) >> 27);
4232
4233 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4234 spin_lock_irqsave(&xhci->lock, flags);
4235 trace_xhci_setup_device(virt_dev);
4236 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4237 udev->slot_id, setup);
4238 if (ret) {
4239 spin_unlock_irqrestore(&xhci->lock, flags);
4240 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4241 "FIXME: allocate a command ring segment");
4242 goto out;
4243 }
4244 xhci_ring_cmd_db(xhci);
4245 spin_unlock_irqrestore(&xhci->lock, flags);
4246
4247 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4248 wait_for_completion(command->completion);
4249
4250 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4251 * the SetAddress() "recovery interval" required by USB and aborting the
4252 * command on a timeout.
4253 */
4254 switch (command->status) {
4255 case COMP_COMMAND_ABORTED:
4256 case COMP_COMMAND_RING_STOPPED:
4257 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4258 ret = -ETIME;
4259 break;
4260 case COMP_CONTEXT_STATE_ERROR:
4261 case COMP_SLOT_NOT_ENABLED_ERROR:
4262 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4263 act, udev->slot_id);
4264 ret = -EINVAL;
4265 break;
4266 case COMP_USB_TRANSACTION_ERROR:
4267 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4268
4269 mutex_unlock(&xhci->mutex);
4270 ret = xhci_disable_slot(xhci, udev->slot_id);
4271 xhci_free_virt_device(xhci, udev->slot_id);
4272 if (!ret) {
4273 if (xhci_alloc_dev(hcd, udev) == 1)
4274 xhci_setup_addressable_virt_dev(xhci, udev);
4275 }
4276 kfree(command->completion);
4277 kfree(command);
4278 return -EPROTO;
4279 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4280 dev_warn(&udev->dev,
4281 "ERROR: Incompatible device for setup %s command\n", act);
4282 ret = -ENODEV;
4283 break;
4284 case COMP_SUCCESS:
4285 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4286 "Successful setup %s command", act);
4287 break;
4288 default:
4289 xhci_err(xhci,
4290 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4291 act, command->status);
4292 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4293 ret = -EINVAL;
4294 break;
4295 }
4296 if (ret)
4297 goto out;
4298 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4299 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4300 "Op regs DCBAA ptr = %#016llx", temp_64);
4301 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4302 "Slot ID %d dcbaa entry @%p = %#016llx",
4303 udev->slot_id,
4304 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4305 (unsigned long long)
4306 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4307 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4308 "Output Context DMA address = %#08llx",
4309 (unsigned long long)virt_dev->out_ctx->dma);
4310 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4311 le32_to_cpu(slot_ctx->dev_info) >> 27);
4312 /*
4313 * USB core uses address 1 for the roothubs, so we add one to the
4314 * address given back to us by the HC.
4315 */
4316 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4317 le32_to_cpu(slot_ctx->dev_info) >> 27);
4318 /* Zero the input context control for later use */
4319 ctrl_ctx->add_flags = 0;
4320 ctrl_ctx->drop_flags = 0;
4321 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4322 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4323
4324 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4325 "Internal device address = %d",
4326 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4327 out:
4328 mutex_unlock(&xhci->mutex);
4329 if (command) {
4330 kfree(command->completion);
4331 kfree(command);
4332 }
4333 return ret;
4334 }
4335
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4336 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4337 unsigned int timeout_ms)
4338 {
4339 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4340 }
4341
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4342 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4343 {
4344 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4345 XHCI_CMD_DEFAULT_TIMEOUT);
4346 }
4347
4348 /*
4349 * Transfer the port index into real index in the HW port status
4350 * registers. Caculate offset between the port's PORTSC register
4351 * and port status base. Divide the number of per port register
4352 * to get the real index. The raw port number bases 1.
4353 */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4354 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4355 {
4356 struct xhci_hub *rhub;
4357
4358 rhub = xhci_get_rhub(hcd);
4359 return rhub->ports[port1 - 1]->hw_portnum + 1;
4360 }
4361
4362 /*
4363 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4364 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4365 */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4366 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4367 struct usb_device *udev, u16 max_exit_latency)
4368 {
4369 struct xhci_virt_device *virt_dev;
4370 struct xhci_command *command;
4371 struct xhci_input_control_ctx *ctrl_ctx;
4372 struct xhci_slot_ctx *slot_ctx;
4373 unsigned long flags;
4374 int ret;
4375
4376 command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4377 if (!command)
4378 return -ENOMEM;
4379
4380 spin_lock_irqsave(&xhci->lock, flags);
4381
4382 virt_dev = xhci->devs[udev->slot_id];
4383
4384 /*
4385 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4386 * xHC was re-initialized. Exit latency will be set later after
4387 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4388 */
4389
4390 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4391 spin_unlock_irqrestore(&xhci->lock, flags);
4392 xhci_free_command(xhci, command);
4393 return 0;
4394 }
4395
4396 /* Attempt to issue an Evaluate Context command to change the MEL. */
4397 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4398 if (!ctrl_ctx) {
4399 spin_unlock_irqrestore(&xhci->lock, flags);
4400 xhci_free_command(xhci, command);
4401 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4402 __func__);
4403 return -ENOMEM;
4404 }
4405
4406 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4407 spin_unlock_irqrestore(&xhci->lock, flags);
4408
4409 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4410 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4411 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4412 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4413 slot_ctx->dev_state = 0;
4414
4415 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4416 "Set up evaluate context for LPM MEL change.");
4417
4418 /* Issue and wait for the evaluate context command. */
4419 ret = xhci_configure_endpoint(xhci, udev, command,
4420 true, true);
4421
4422 if (!ret) {
4423 spin_lock_irqsave(&xhci->lock, flags);
4424 virt_dev->current_mel = max_exit_latency;
4425 spin_unlock_irqrestore(&xhci->lock, flags);
4426 }
4427
4428 xhci_free_command(xhci, command);
4429
4430 return ret;
4431 }
4432
4433 #ifdef CONFIG_PM
4434
4435 /* BESL to HIRD Encoding array for USB2 LPM */
4436 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4437 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4438
4439 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4440 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4441 struct usb_device *udev)
4442 {
4443 int u2del, besl, besl_host;
4444 int besl_device = 0;
4445 u32 field;
4446
4447 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4448 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4449
4450 if (field & USB_BESL_SUPPORT) {
4451 for (besl_host = 0; besl_host < 16; besl_host++) {
4452 if (xhci_besl_encoding[besl_host] >= u2del)
4453 break;
4454 }
4455 /* Use baseline BESL value as default */
4456 if (field & USB_BESL_BASELINE_VALID)
4457 besl_device = USB_GET_BESL_BASELINE(field);
4458 else if (field & USB_BESL_DEEP_VALID)
4459 besl_device = USB_GET_BESL_DEEP(field);
4460 } else {
4461 if (u2del <= 50)
4462 besl_host = 0;
4463 else
4464 besl_host = (u2del - 51) / 75 + 1;
4465 }
4466
4467 besl = besl_host + besl_device;
4468 if (besl > 15)
4469 besl = 15;
4470
4471 return besl;
4472 }
4473
4474 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4475 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4476 {
4477 u32 field;
4478 int l1;
4479 int besld = 0;
4480 int hirdm = 0;
4481
4482 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4483
4484 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4485 l1 = udev->l1_params.timeout / 256;
4486
4487 /* device has preferred BESLD */
4488 if (field & USB_BESL_DEEP_VALID) {
4489 besld = USB_GET_BESL_DEEP(field);
4490 hirdm = 1;
4491 }
4492
4493 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4494 }
4495
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4496 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4497 struct usb_device *udev, int enable)
4498 {
4499 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4500 struct xhci_port **ports;
4501 __le32 __iomem *pm_addr, *hlpm_addr;
4502 u32 pm_val, hlpm_val, field;
4503 unsigned int port_num;
4504 unsigned long flags;
4505 int hird, exit_latency;
4506 int ret;
4507
4508 if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4509 return -EPERM;
4510
4511 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4512 !udev->lpm_capable)
4513 return -EPERM;
4514
4515 if (!udev->parent || udev->parent->parent ||
4516 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517 return -EPERM;
4518
4519 if (udev->usb2_hw_lpm_capable != 1)
4520 return -EPERM;
4521
4522 spin_lock_irqsave(&xhci->lock, flags);
4523
4524 ports = xhci->usb2_rhub.ports;
4525 port_num = udev->portnum - 1;
4526 pm_addr = ports[port_num]->addr + PORTPMSC;
4527 pm_val = readl(pm_addr);
4528 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4529
4530 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4531 str_enable_disable(enable), port_num + 1);
4532
4533 if (enable) {
4534 /* Host supports BESL timeout instead of HIRD */
4535 if (udev->usb2_hw_lpm_besl_capable) {
4536 /* if device doesn't have a preferred BESL value use a
4537 * default one which works with mixed HIRD and BESL
4538 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4539 */
4540 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4541 if ((field & USB_BESL_SUPPORT) &&
4542 (field & USB_BESL_BASELINE_VALID))
4543 hird = USB_GET_BESL_BASELINE(field);
4544 else
4545 hird = udev->l1_params.besl;
4546
4547 exit_latency = xhci_besl_encoding[hird];
4548 spin_unlock_irqrestore(&xhci->lock, flags);
4549
4550 ret = xhci_change_max_exit_latency(xhci, udev,
4551 exit_latency);
4552 if (ret < 0)
4553 return ret;
4554 spin_lock_irqsave(&xhci->lock, flags);
4555
4556 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4557 writel(hlpm_val, hlpm_addr);
4558 /* flush write */
4559 readl(hlpm_addr);
4560 } else {
4561 hird = xhci_calculate_hird_besl(xhci, udev);
4562 }
4563
4564 pm_val &= ~PORT_HIRD_MASK;
4565 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4566 writel(pm_val, pm_addr);
4567 pm_val = readl(pm_addr);
4568 pm_val |= PORT_HLE;
4569 writel(pm_val, pm_addr);
4570 /* flush write */
4571 readl(pm_addr);
4572 } else {
4573 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4574 writel(pm_val, pm_addr);
4575 /* flush write */
4576 readl(pm_addr);
4577 if (udev->usb2_hw_lpm_besl_capable) {
4578 spin_unlock_irqrestore(&xhci->lock, flags);
4579 xhci_change_max_exit_latency(xhci, udev, 0);
4580 readl_poll_timeout(ports[port_num]->addr, pm_val,
4581 (pm_val & PORT_PLS_MASK) == XDEV_U0,
4582 100, 10000);
4583 return 0;
4584 }
4585 }
4586
4587 spin_unlock_irqrestore(&xhci->lock, flags);
4588 return 0;
4589 }
4590
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4591 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4592 {
4593 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4594 struct xhci_port *port;
4595 u32 capability;
4596
4597 /* Check if USB3 device at root port is tunneled over USB4 */
4598 if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4599 port = xhci->usb3_rhub.ports[udev->portnum - 1];
4600
4601 udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4602 if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4603 dev_dbg(&udev->dev, "link tunnel state unknown\n");
4604 else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4605 dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4606 else if (udev->tunnel_mode == USB_LINK_NATIVE)
4607 dev_dbg(&udev->dev, "native USB 3.x link\n");
4608 return 0;
4609 }
4610
4611 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4612 return 0;
4613
4614 /* we only support lpm for non-hub device connected to root hub yet */
4615 if (!udev->parent || udev->parent->parent ||
4616 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4617 return 0;
4618
4619 port = xhci->usb2_rhub.ports[udev->portnum - 1];
4620 capability = port->port_cap->protocol_caps;
4621
4622 if (capability & XHCI_HLC) {
4623 udev->usb2_hw_lpm_capable = 1;
4624 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4625 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4626 if (capability & XHCI_BLC)
4627 udev->usb2_hw_lpm_besl_capable = 1;
4628 }
4629
4630 return 0;
4631 }
4632
4633 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4634
4635 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4636 static unsigned long long xhci_service_interval_to_ns(
4637 struct usb_endpoint_descriptor *desc)
4638 {
4639 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4640 }
4641
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4642 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4643 enum usb3_link_state state)
4644 {
4645 unsigned long long sel;
4646 unsigned long long pel;
4647 unsigned int max_sel_pel;
4648 char *state_name;
4649
4650 switch (state) {
4651 case USB3_LPM_U1:
4652 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4653 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4654 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4655 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4656 state_name = "U1";
4657 break;
4658 case USB3_LPM_U2:
4659 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4660 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4661 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4662 state_name = "U2";
4663 break;
4664 default:
4665 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4666 __func__);
4667 return USB3_LPM_DISABLED;
4668 }
4669
4670 if (sel <= max_sel_pel && pel <= max_sel_pel)
4671 return USB3_LPM_DEVICE_INITIATED;
4672
4673 if (sel > max_sel_pel)
4674 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4675 "due to long SEL %llu ms\n",
4676 state_name, sel);
4677 else
4678 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4679 "due to long PEL %llu ms\n",
4680 state_name, pel);
4681 return USB3_LPM_DISABLED;
4682 }
4683
4684 /* The U1 timeout should be the maximum of the following values:
4685 * - For control endpoints, U1 system exit latency (SEL) * 3
4686 * - For bulk endpoints, U1 SEL * 5
4687 * - For interrupt endpoints:
4688 * - Notification EPs, U1 SEL * 3
4689 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4690 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4691 */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4692 static unsigned long long xhci_calculate_intel_u1_timeout(
4693 struct usb_device *udev,
4694 struct usb_endpoint_descriptor *desc)
4695 {
4696 unsigned long long timeout_ns;
4697 int ep_type;
4698 int intr_type;
4699
4700 ep_type = usb_endpoint_type(desc);
4701 switch (ep_type) {
4702 case USB_ENDPOINT_XFER_CONTROL:
4703 timeout_ns = udev->u1_params.sel * 3;
4704 break;
4705 case USB_ENDPOINT_XFER_BULK:
4706 timeout_ns = udev->u1_params.sel * 5;
4707 break;
4708 case USB_ENDPOINT_XFER_INT:
4709 intr_type = usb_endpoint_interrupt_type(desc);
4710 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4711 timeout_ns = udev->u1_params.sel * 3;
4712 break;
4713 }
4714 /* Otherwise the calculation is the same as isoc eps */
4715 fallthrough;
4716 case USB_ENDPOINT_XFER_ISOC:
4717 timeout_ns = xhci_service_interval_to_ns(desc);
4718 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4719 if (timeout_ns < udev->u1_params.sel * 2)
4720 timeout_ns = udev->u1_params.sel * 2;
4721 break;
4722 default:
4723 return 0;
4724 }
4725
4726 return timeout_ns;
4727 }
4728
4729 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4730 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4731 struct usb_device *udev,
4732 struct usb_endpoint_descriptor *desc)
4733 {
4734 unsigned long long timeout_ns;
4735
4736 /* Prevent U1 if service interval is shorter than U1 exit latency */
4737 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4738 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4739 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4740 return USB3_LPM_DISABLED;
4741 }
4742 }
4743
4744 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4745 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4746 else
4747 timeout_ns = udev->u1_params.sel;
4748
4749 /* The U1 timeout is encoded in 1us intervals.
4750 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4751 */
4752 if (timeout_ns == USB3_LPM_DISABLED)
4753 timeout_ns = 1;
4754 else
4755 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4756
4757 /* If the necessary timeout value is bigger than what we can set in the
4758 * USB 3.0 hub, we have to disable hub-initiated U1.
4759 */
4760 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4761 return timeout_ns;
4762 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4763 "due to long timeout %llu ms\n", timeout_ns);
4764 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4765 }
4766
4767 /* The U2 timeout should be the maximum of:
4768 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4769 * - largest bInterval of any active periodic endpoint (to avoid going
4770 * into lower power link states between intervals).
4771 * - the U2 Exit Latency of the device
4772 */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4773 static unsigned long long xhci_calculate_intel_u2_timeout(
4774 struct usb_device *udev,
4775 struct usb_endpoint_descriptor *desc)
4776 {
4777 unsigned long long timeout_ns;
4778 unsigned long long u2_del_ns;
4779
4780 timeout_ns = 10 * 1000 * 1000;
4781
4782 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4783 (xhci_service_interval_to_ns(desc) > timeout_ns))
4784 timeout_ns = xhci_service_interval_to_ns(desc);
4785
4786 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4787 if (u2_del_ns > timeout_ns)
4788 timeout_ns = u2_del_ns;
4789
4790 return timeout_ns;
4791 }
4792
4793 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4794 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4795 struct usb_device *udev,
4796 struct usb_endpoint_descriptor *desc)
4797 {
4798 unsigned long long timeout_ns;
4799
4800 /* Prevent U2 if service interval is shorter than U2 exit latency */
4801 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4802 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4803 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4804 return USB3_LPM_DISABLED;
4805 }
4806 }
4807
4808 if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4809 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4810 else
4811 timeout_ns = udev->u2_params.sel;
4812
4813 /* The U2 timeout is encoded in 256us intervals */
4814 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4815 /* If the necessary timeout value is bigger than what we can set in the
4816 * USB 3.0 hub, we have to disable hub-initiated U2.
4817 */
4818 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4819 return timeout_ns;
4820 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4821 "due to long timeout %llu ms\n", timeout_ns);
4822 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4823 }
4824
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4825 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4826 struct usb_device *udev,
4827 struct usb_endpoint_descriptor *desc,
4828 enum usb3_link_state state,
4829 u16 *timeout)
4830 {
4831 if (state == USB3_LPM_U1)
4832 return xhci_calculate_u1_timeout(xhci, udev, desc);
4833 else if (state == USB3_LPM_U2)
4834 return xhci_calculate_u2_timeout(xhci, udev, desc);
4835
4836 return USB3_LPM_DISABLED;
4837 }
4838
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4839 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4840 struct usb_device *udev,
4841 struct usb_endpoint_descriptor *desc,
4842 enum usb3_link_state state,
4843 u16 *timeout)
4844 {
4845 u16 alt_timeout;
4846
4847 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4848 desc, state, timeout);
4849
4850 /* If we found we can't enable hub-initiated LPM, and
4851 * the U1 or U2 exit latency was too high to allow
4852 * device-initiated LPM as well, then we will disable LPM
4853 * for this device, so stop searching any further.
4854 */
4855 if (alt_timeout == USB3_LPM_DISABLED) {
4856 *timeout = alt_timeout;
4857 return -E2BIG;
4858 }
4859 if (alt_timeout > *timeout)
4860 *timeout = alt_timeout;
4861 return 0;
4862 }
4863
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4864 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4865 struct usb_device *udev,
4866 struct usb_host_interface *alt,
4867 enum usb3_link_state state,
4868 u16 *timeout)
4869 {
4870 int j;
4871
4872 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4873 if (xhci_update_timeout_for_endpoint(xhci, udev,
4874 &alt->endpoint[j].desc, state, timeout))
4875 return -E2BIG;
4876 }
4877 return 0;
4878 }
4879
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4880 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4881 struct usb_device *udev,
4882 enum usb3_link_state state)
4883 {
4884 struct usb_device *parent = udev->parent;
4885 int tier = 1; /* roothub is tier1 */
4886
4887 while (parent) {
4888 parent = parent->parent;
4889 tier++;
4890 }
4891
4892 if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4893 goto fail;
4894 if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4895 goto fail;
4896
4897 return 0;
4898 fail:
4899 dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4900 tier);
4901 return -E2BIG;
4902 }
4903
4904 /* Returns the U1 or U2 timeout that should be enabled.
4905 * If the tier check or timeout setting functions return with a non-zero exit
4906 * code, that means the timeout value has been finalized and we shouldn't look
4907 * at any more endpoints.
4908 */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4909 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4910 struct usb_device *udev, enum usb3_link_state state)
4911 {
4912 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4913 struct usb_host_config *config;
4914 char *state_name;
4915 int i;
4916 u16 timeout = USB3_LPM_DISABLED;
4917
4918 if (state == USB3_LPM_U1)
4919 state_name = "U1";
4920 else if (state == USB3_LPM_U2)
4921 state_name = "U2";
4922 else {
4923 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4924 state);
4925 return timeout;
4926 }
4927
4928 /* Gather some information about the currently installed configuration
4929 * and alternate interface settings.
4930 */
4931 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4932 state, &timeout))
4933 return timeout;
4934
4935 config = udev->actconfig;
4936 if (!config)
4937 return timeout;
4938
4939 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4940 struct usb_driver *driver;
4941 struct usb_interface *intf = config->interface[i];
4942
4943 if (!intf)
4944 continue;
4945
4946 /* Check if any currently bound drivers want hub-initiated LPM
4947 * disabled.
4948 */
4949 if (intf->dev.driver) {
4950 driver = to_usb_driver(intf->dev.driver);
4951 if (driver && driver->disable_hub_initiated_lpm) {
4952 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4953 state_name, driver->name);
4954 timeout = xhci_get_timeout_no_hub_lpm(udev,
4955 state);
4956 if (timeout == USB3_LPM_DISABLED)
4957 return timeout;
4958 }
4959 }
4960
4961 /* Not sure how this could happen... */
4962 if (!intf->cur_altsetting)
4963 continue;
4964
4965 if (xhci_update_timeout_for_interface(xhci, udev,
4966 intf->cur_altsetting,
4967 state, &timeout))
4968 return timeout;
4969 }
4970 return timeout;
4971 }
4972
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4973 static int calculate_max_exit_latency(struct usb_device *udev,
4974 enum usb3_link_state state_changed,
4975 u16 hub_encoded_timeout)
4976 {
4977 unsigned long long u1_mel_us = 0;
4978 unsigned long long u2_mel_us = 0;
4979 unsigned long long mel_us = 0;
4980 bool disabling_u1;
4981 bool disabling_u2;
4982 bool enabling_u1;
4983 bool enabling_u2;
4984
4985 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4986 hub_encoded_timeout == USB3_LPM_DISABLED);
4987 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4988 hub_encoded_timeout == USB3_LPM_DISABLED);
4989
4990 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4991 hub_encoded_timeout != USB3_LPM_DISABLED);
4992 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4993 hub_encoded_timeout != USB3_LPM_DISABLED);
4994
4995 /* If U1 was already enabled and we're not disabling it,
4996 * or we're going to enable U1, account for the U1 max exit latency.
4997 */
4998 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4999 enabling_u1)
5000 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5001 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5002 enabling_u2)
5003 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5004
5005 mel_us = max(u1_mel_us, u2_mel_us);
5006
5007 /* xHCI host controller max exit latency field is only 16 bits wide. */
5008 if (mel_us > MAX_EXIT) {
5009 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5010 "is too big.\n", mel_us);
5011 return -E2BIG;
5012 }
5013 return mel_us;
5014 }
5015
5016 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5017 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5018 struct usb_device *udev, enum usb3_link_state state)
5019 {
5020 struct xhci_hcd *xhci;
5021 struct xhci_port *port;
5022 u16 hub_encoded_timeout;
5023 int mel;
5024 int ret;
5025
5026 xhci = hcd_to_xhci(hcd);
5027 /* The LPM timeout values are pretty host-controller specific, so don't
5028 * enable hub-initiated timeouts unless the vendor has provided
5029 * information about their timeout algorithm.
5030 */
5031 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5032 !xhci->devs[udev->slot_id])
5033 return USB3_LPM_DISABLED;
5034
5035 if (xhci_check_tier_policy(xhci, udev, state) < 0)
5036 return USB3_LPM_DISABLED;
5037
5038 /* If connected to root port then check port can handle lpm */
5039 if (udev->parent && !udev->parent->parent) {
5040 port = xhci->usb3_rhub.ports[udev->portnum - 1];
5041 if (port->lpm_incapable)
5042 return USB3_LPM_DISABLED;
5043 }
5044
5045 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5046 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5047 if (mel < 0) {
5048 /* Max Exit Latency is too big, disable LPM. */
5049 hub_encoded_timeout = USB3_LPM_DISABLED;
5050 mel = 0;
5051 }
5052
5053 ret = xhci_change_max_exit_latency(xhci, udev, mel);
5054 if (ret)
5055 return ret;
5056 return hub_encoded_timeout;
5057 }
5058
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5059 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5060 struct usb_device *udev, enum usb3_link_state state)
5061 {
5062 struct xhci_hcd *xhci;
5063 u16 mel;
5064
5065 xhci = hcd_to_xhci(hcd);
5066 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5067 !xhci->devs[udev->slot_id])
5068 return 0;
5069
5070 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5071 return xhci_change_max_exit_latency(xhci, udev, mel);
5072 }
5073 #else /* CONFIG_PM */
5074
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5075 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5076 struct usb_device *udev, int enable)
5077 {
5078 return 0;
5079 }
5080
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5081 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5082 {
5083 return 0;
5084 }
5085
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5086 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5087 struct usb_device *udev, enum usb3_link_state state)
5088 {
5089 return USB3_LPM_DISABLED;
5090 }
5091
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5092 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5093 struct usb_device *udev, enum usb3_link_state state)
5094 {
5095 return 0;
5096 }
5097 #endif /* CONFIG_PM */
5098
5099 /*-------------------------------------------------------------------------*/
5100
5101 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5102 * internal data structures for the device.
5103 */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5104 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5105 struct usb_tt *tt, gfp_t mem_flags)
5106 {
5107 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5108 struct xhci_virt_device *vdev;
5109 struct xhci_command *config_cmd;
5110 struct xhci_input_control_ctx *ctrl_ctx;
5111 struct xhci_slot_ctx *slot_ctx;
5112 unsigned long flags;
5113 unsigned think_time;
5114 int ret;
5115
5116 /* Ignore root hubs */
5117 if (!hdev->parent)
5118 return 0;
5119
5120 vdev = xhci->devs[hdev->slot_id];
5121 if (!vdev) {
5122 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5123 return -EINVAL;
5124 }
5125
5126 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5127 if (!config_cmd)
5128 return -ENOMEM;
5129
5130 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5131 if (!ctrl_ctx) {
5132 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5133 __func__);
5134 xhci_free_command(xhci, config_cmd);
5135 return -ENOMEM;
5136 }
5137
5138 spin_lock_irqsave(&xhci->lock, flags);
5139 if (hdev->speed == USB_SPEED_HIGH &&
5140 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5141 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5142 xhci_free_command(xhci, config_cmd);
5143 spin_unlock_irqrestore(&xhci->lock, flags);
5144 return -ENOMEM;
5145 }
5146
5147 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5148 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5149 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5150 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5151 /*
5152 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5153 * but it may be already set to 1 when setup an xHCI virtual
5154 * device, so clear it anyway.
5155 */
5156 if (tt->multi)
5157 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5158 else if (hdev->speed == USB_SPEED_FULL)
5159 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5160
5161 if (xhci->hci_version > 0x95) {
5162 xhci_dbg(xhci, "xHCI version %x needs hub "
5163 "TT think time and number of ports\n",
5164 (unsigned int) xhci->hci_version);
5165 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5166 /* Set TT think time - convert from ns to FS bit times.
5167 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5168 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5169 *
5170 * xHCI 1.0: this field shall be 0 if the device is not a
5171 * High-spped hub.
5172 */
5173 think_time = tt->think_time;
5174 if (think_time != 0)
5175 think_time = (think_time / 666) - 1;
5176 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5177 slot_ctx->tt_info |=
5178 cpu_to_le32(TT_THINK_TIME(think_time));
5179 } else {
5180 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5181 "TT think time or number of ports\n",
5182 (unsigned int) xhci->hci_version);
5183 }
5184 slot_ctx->dev_state = 0;
5185 spin_unlock_irqrestore(&xhci->lock, flags);
5186
5187 xhci_dbg(xhci, "Set up %s for hub device.\n",
5188 (xhci->hci_version > 0x95) ?
5189 "configure endpoint" : "evaluate context");
5190
5191 /* Issue and wait for the configure endpoint or
5192 * evaluate context command.
5193 */
5194 if (xhci->hci_version > 0x95)
5195 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5196 false, false);
5197 else
5198 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5199 true, false);
5200
5201 xhci_free_command(xhci, config_cmd);
5202 return ret;
5203 }
5204 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5205
xhci_get_frame(struct usb_hcd * hcd)5206 static int xhci_get_frame(struct usb_hcd *hcd)
5207 {
5208 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5209 /* EHCI mods by the periodic size. Why? */
5210 return readl(&xhci->run_regs->microframe_index) >> 3;
5211 }
5212
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5213 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5214 {
5215 xhci->usb2_rhub.hcd = hcd;
5216 hcd->speed = HCD_USB2;
5217 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5218 /*
5219 * USB 2.0 roothub under xHCI has an integrated TT,
5220 * (rate matching hub) as opposed to having an OHCI/UHCI
5221 * companion controller.
5222 */
5223 hcd->has_tt = 1;
5224 }
5225
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5226 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5227 {
5228 unsigned int minor_rev;
5229
5230 /*
5231 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5232 * should return 0x31 for sbrn, or that the minor revision
5233 * is a two digit BCD containig minor and sub-minor numbers.
5234 * This was later clarified in xHCI 1.2.
5235 *
5236 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5237 * minor revision set to 0x1 instead of 0x10.
5238 */
5239 if (xhci->usb3_rhub.min_rev == 0x1)
5240 minor_rev = 1;
5241 else
5242 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5243
5244 switch (minor_rev) {
5245 case 2:
5246 hcd->speed = HCD_USB32;
5247 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5248 hcd->self.root_hub->rx_lanes = 2;
5249 hcd->self.root_hub->tx_lanes = 2;
5250 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5251 break;
5252 case 1:
5253 hcd->speed = HCD_USB31;
5254 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5255 hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5256 break;
5257 }
5258 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5259 minor_rev, minor_rev ? "Enhanced " : "");
5260
5261 xhci->usb3_rhub.hcd = hcd;
5262 }
5263
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5264 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5265 {
5266 struct xhci_hcd *xhci;
5267 /*
5268 * TODO: Check with DWC3 clients for sysdev according to
5269 * quirks
5270 */
5271 struct device *dev = hcd->self.sysdev;
5272 int retval;
5273
5274 /* Accept arbitrarily long scatter-gather lists */
5275 hcd->self.sg_tablesize = ~0;
5276
5277 /* support to build packet from discontinuous buffers */
5278 hcd->self.no_sg_constraint = 1;
5279
5280 /* XHCI controllers don't stop the ep queue on short packets :| */
5281 hcd->self.no_stop_on_short = 1;
5282
5283 xhci = hcd_to_xhci(hcd);
5284
5285 if (!usb_hcd_is_primary_hcd(hcd)) {
5286 xhci_hcd_init_usb3_data(xhci, hcd);
5287 return 0;
5288 }
5289
5290 mutex_init(&xhci->mutex);
5291 xhci->main_hcd = hcd;
5292 xhci->cap_regs = hcd->regs;
5293 xhci->op_regs = hcd->regs +
5294 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5295 xhci->run_regs = hcd->regs +
5296 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5297 /* Cache read-only capability registers */
5298 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5299 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5300 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5301 xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5302 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5303 if (xhci->hci_version > 0x100)
5304 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5305
5306 /* xhci-plat or xhci-pci might have set max_interrupters already */
5307 if ((!xhci->max_interrupters) ||
5308 xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5309 xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5310
5311 xhci->quirks |= quirks;
5312
5313 if (get_quirks)
5314 get_quirks(dev, xhci);
5315
5316 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5317 * success event after a short transfer. This quirk will ignore such
5318 * spurious event.
5319 */
5320 if (xhci->hci_version > 0x96)
5321 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5322
5323 if (xhci->hci_version == 0x95 && link_quirk) {
5324 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5325 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5326 }
5327
5328 /* Make sure the HC is halted. */
5329 retval = xhci_halt(xhci);
5330 if (retval)
5331 return retval;
5332
5333 xhci_zero_64b_regs(xhci);
5334
5335 xhci_dbg(xhci, "Resetting HCD\n");
5336 /* Reset the internal HC memory state and registers. */
5337 retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5338 if (retval)
5339 return retval;
5340 xhci_dbg(xhci, "Reset complete\n");
5341
5342 /*
5343 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5344 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5345 * address memory pointers actually. So, this driver clears the AC64
5346 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5347 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5348 */
5349 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5350 xhci->hcc_params &= ~BIT(0);
5351
5352 /* Set dma_mask and coherent_dma_mask to 64-bits,
5353 * if xHC supports 64-bit addressing */
5354 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5355 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5356 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5357 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5358 } else {
5359 /*
5360 * This is to avoid error in cases where a 32-bit USB
5361 * controller is used on a 64-bit capable system.
5362 */
5363 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5364 if (retval)
5365 return retval;
5366 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5367 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5368 }
5369
5370 xhci_dbg(xhci, "Calling HCD init\n");
5371 /* Initialize HCD and host controller data structures. */
5372 retval = xhci_init(hcd);
5373 if (retval)
5374 return retval;
5375 xhci_dbg(xhci, "Called HCD init\n");
5376
5377 if (xhci_hcd_is_usb3(hcd))
5378 xhci_hcd_init_usb3_data(xhci, hcd);
5379 else
5380 xhci_hcd_init_usb2_data(xhci, hcd);
5381
5382 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5383 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5384
5385 return 0;
5386 }
5387 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5388
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5389 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5390 struct usb_host_endpoint *ep)
5391 {
5392 struct xhci_hcd *xhci;
5393 struct usb_device *udev;
5394 unsigned int slot_id;
5395 unsigned int ep_index;
5396 unsigned long flags;
5397
5398 xhci = hcd_to_xhci(hcd);
5399
5400 spin_lock_irqsave(&xhci->lock, flags);
5401 udev = (struct usb_device *)ep->hcpriv;
5402 slot_id = udev->slot_id;
5403 ep_index = xhci_get_endpoint_index(&ep->desc);
5404
5405 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5406 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5407 spin_unlock_irqrestore(&xhci->lock, flags);
5408 }
5409
5410 static const struct hc_driver xhci_hc_driver = {
5411 .description = "xhci-hcd",
5412 .product_desc = "xHCI Host Controller",
5413 .hcd_priv_size = sizeof(struct xhci_hcd),
5414
5415 /*
5416 * generic hardware linkage
5417 */
5418 .irq = xhci_irq,
5419 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5420 HCD_BH,
5421
5422 /*
5423 * basic lifecycle operations
5424 */
5425 .reset = NULL, /* set in xhci_init_driver() */
5426 .start = xhci_run,
5427 .stop = xhci_stop,
5428 .shutdown = xhci_shutdown,
5429
5430 /*
5431 * managing i/o requests and associated device resources
5432 */
5433 .map_urb_for_dma = xhci_map_urb_for_dma,
5434 .unmap_urb_for_dma = xhci_unmap_urb_for_dma,
5435 .urb_enqueue = xhci_urb_enqueue,
5436 .urb_dequeue = xhci_urb_dequeue,
5437 .alloc_dev = xhci_alloc_dev,
5438 .free_dev = xhci_free_dev,
5439 .alloc_streams = xhci_alloc_streams,
5440 .free_streams = xhci_free_streams,
5441 .add_endpoint = xhci_add_endpoint,
5442 .drop_endpoint = xhci_drop_endpoint,
5443 .endpoint_disable = xhci_endpoint_disable,
5444 .endpoint_reset = xhci_endpoint_reset,
5445 .check_bandwidth = xhci_check_bandwidth,
5446 .reset_bandwidth = xhci_reset_bandwidth,
5447 .address_device = xhci_address_device,
5448 .enable_device = xhci_enable_device,
5449 .update_hub_device = xhci_update_hub_device,
5450 .reset_device = xhci_discover_or_reset_device,
5451
5452 /*
5453 * scheduling support
5454 */
5455 .get_frame_number = xhci_get_frame,
5456
5457 /*
5458 * root hub support
5459 */
5460 .hub_control = xhci_hub_control,
5461 .hub_status_data = xhci_hub_status_data,
5462 .bus_suspend = xhci_bus_suspend,
5463 .bus_resume = xhci_bus_resume,
5464 .get_resuming_ports = xhci_get_resuming_ports,
5465
5466 /*
5467 * call back when device connected and addressed
5468 */
5469 .update_device = xhci_update_device,
5470 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5471 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5472 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5473 .find_raw_port_number = xhci_find_raw_port_number,
5474 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5475 };
5476
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5477 void xhci_init_driver(struct hc_driver *drv,
5478 const struct xhci_driver_overrides *over)
5479 {
5480 BUG_ON(!over);
5481
5482 /* Copy the generic table to drv then apply the overrides */
5483 *drv = xhci_hc_driver;
5484
5485 if (over) {
5486 drv->hcd_priv_size += over->extra_priv_size;
5487 if (over->reset)
5488 drv->reset = over->reset;
5489 if (over->start)
5490 drv->start = over->start;
5491 if (over->add_endpoint)
5492 drv->add_endpoint = over->add_endpoint;
5493 if (over->drop_endpoint)
5494 drv->drop_endpoint = over->drop_endpoint;
5495 if (over->check_bandwidth)
5496 drv->check_bandwidth = over->check_bandwidth;
5497 if (over->reset_bandwidth)
5498 drv->reset_bandwidth = over->reset_bandwidth;
5499 if (over->update_hub_device)
5500 drv->update_hub_device = over->update_hub_device;
5501 if (over->hub_control)
5502 drv->hub_control = over->hub_control;
5503 }
5504 }
5505 EXPORT_SYMBOL_GPL(xhci_init_driver);
5506
5507 MODULE_DESCRIPTION(DRIVER_DESC);
5508 MODULE_AUTHOR(DRIVER_AUTHOR);
5509 MODULE_LICENSE("GPL");
5510
xhci_hcd_init(void)5511 static int __init xhci_hcd_init(void)
5512 {
5513 /*
5514 * Check the compiler generated sizes of structures that must be laid
5515 * out in specific ways for hardware access.
5516 */
5517 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5518 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5519 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5520 /* xhci_device_control has eight fields, and also
5521 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5522 */
5523 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5524 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5525 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5526 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5527 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5528 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5529 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5530
5531 if (usb_disabled())
5532 return -ENODEV;
5533
5534 xhci_debugfs_create_root();
5535 xhci_dbc_init();
5536
5537 return 0;
5538 }
5539
5540 /*
5541 * If an init function is provided, an exit function must also be provided
5542 * to allow module unload.
5543 */
xhci_hcd_fini(void)5544 static void __exit xhci_hcd_fini(void)
5545 {
5546 xhci_debugfs_remove_root();
5547 xhci_dbc_exit();
5548 }
5549
5550 module_init(xhci_hcd_init);
5551 module_exit(xhci_hcd_fini);
5552