1 //===- BranchProbabilityInfo.h - Branch Probability Analysis ----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass is used to evaluate branch probabilties. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 14 #define LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 15 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseMapInfo.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/IR/BasicBlock.h" 20 #include "llvm/IR/CFG.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/ValueHandle.h" 23 #include "llvm/Pass.h" 24 #include "llvm/Support/BranchProbability.h" 25 #include <algorithm> 26 #include <cassert> 27 #include <cstdint> 28 #include <memory> 29 #include <utility> 30 31 namespace llvm { 32 33 class Function; 34 class Loop; 35 class LoopInfo; 36 class raw_ostream; 37 class DominatorTree; 38 class PostDominatorTree; 39 class TargetLibraryInfo; 40 class Value; 41 42 /// Analysis providing branch probability information. 43 /// 44 /// This is a function analysis which provides information on the relative 45 /// probabilities of each "edge" in the function's CFG where such an edge is 46 /// defined by a pair (PredBlock and an index in the successors). The 47 /// probability of an edge from one block is always relative to the 48 /// probabilities of other edges from the block. The probabilites of all edges 49 /// from a block sum to exactly one (100%). 50 /// We use a pair (PredBlock and an index in the successors) to uniquely 51 /// identify an edge, since we can have multiple edges from Src to Dst. 52 /// As an example, we can have a switch which jumps to Dst with value 0 and 53 /// value 10. 54 /// 55 /// Process of computing branch probabilities can be logically viewed as three 56 /// step process: 57 /// 58 /// First, if there is a profile information associated with the branch then 59 /// it is trivially translated to branch probabilities. There is one exception 60 /// from this rule though. Probabilities for edges leading to "unreachable" 61 /// blocks (blocks with the estimated weight not greater than 62 /// UNREACHABLE_WEIGHT) are evaluated according to static estimation and 63 /// override profile information. If no branch probabilities were calculated 64 /// on this step then take the next one. 65 /// 66 /// Second, estimate absolute execution weights for each block based on 67 /// statically known information. Roots of such information are "cold", 68 /// "unreachable", "noreturn" and "unwind" blocks. Those blocks get their 69 /// weights set to BlockExecWeight::COLD, BlockExecWeight::UNREACHABLE, 70 /// BlockExecWeight::NORETURN and BlockExecWeight::UNWIND respectively. Then the 71 /// weights are propagated to the other blocks up the domination line. In 72 /// addition, if all successors have estimated weights set then maximum of these 73 /// weights assigned to the block itself (while this is not ideal heuristic in 74 /// theory it's simple and works reasonably well in most cases) and the process 75 /// repeats. Once the process of weights propagation converges branch 76 /// probabilities are set for all such branches that have at least one successor 77 /// with the weight set. Default execution weight (BlockExecWeight::DEFAULT) is 78 /// used for any successors which doesn't have its weight set. For loop back 79 /// branches we use their weights scaled by loop trip count equal to 80 /// 'LBH_TAKEN_WEIGHT/LBH_NOTTAKEN_WEIGHT'. 81 /// 82 /// Here is a simple example demonstrating how the described algorithm works. 83 /// 84 /// BB1 85 /// / \ 86 /// v v 87 /// BB2 BB3 88 /// / \ 89 /// v v 90 /// ColdBB UnreachBB 91 /// 92 /// Initially, ColdBB is associated with COLD_WEIGHT and UnreachBB with 93 /// UNREACHABLE_WEIGHT. COLD_WEIGHT is set to BB2 as maximum between its 94 /// successors. BB1 and BB3 has no explicit estimated weights and assumed to 95 /// have DEFAULT_WEIGHT. Based on assigned weights branches will have the 96 /// following probabilities: 97 /// P(BB1->BB2) = COLD_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) = 98 /// 0xffff / (0xffff + 0xfffff) = 0.0588(5.9%) 99 /// P(BB1->BB3) = DEFAULT_WEIGHT_WEIGHT/(COLD_WEIGHT + DEFAULT_WEIGHT) = 100 /// 0xfffff / (0xffff + 0xfffff) = 0.941(94.1%) 101 /// P(BB2->ColdBB) = COLD_WEIGHT/(COLD_WEIGHT + UNREACHABLE_WEIGHT) = 1(100%) 102 /// P(BB2->UnreachBB) = 103 /// UNREACHABLE_WEIGHT/(COLD_WEIGHT+UNREACHABLE_WEIGHT) = 0(0%) 104 /// 105 /// If no branch probabilities were calculated on this step then take the next 106 /// one. 107 /// 108 /// Third, apply different kinds of local heuristics for each individual 109 /// branch until first match. For example probability of a pointer to be null is 110 /// estimated as PH_TAKEN_WEIGHT/(PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT). If 111 /// no local heuristic has been matched then branch is left with no explicit 112 /// probability set and assumed to have default probability. 113 class BranchProbabilityInfo { 114 public: 115 BranchProbabilityInfo() = default; 116 117 BranchProbabilityInfo(const Function &F, const LoopInfo &LI, 118 const TargetLibraryInfo *TLI = nullptr, 119 DominatorTree *DT = nullptr, 120 PostDominatorTree *PDT = nullptr) { 121 calculate(F, LI, TLI, DT, PDT); 122 } 123 BranchProbabilityInfo(BranchProbabilityInfo && Arg)124 BranchProbabilityInfo(BranchProbabilityInfo &&Arg) 125 : Handles(std::move(Arg.Handles)), Probs(std::move(Arg.Probs)), 126 LastF(Arg.LastF), 127 EstimatedBlockWeight(std::move(Arg.EstimatedBlockWeight)) { 128 for (auto &Handle : Handles) 129 Handle.setBPI(this); 130 } 131 132 BranchProbabilityInfo(const BranchProbabilityInfo &) = delete; 133 BranchProbabilityInfo &operator=(const BranchProbabilityInfo &) = delete; 134 135 BranchProbabilityInfo &operator=(BranchProbabilityInfo &&RHS) { 136 releaseMemory(); 137 Handles = std::move(RHS.Handles); 138 Probs = std::move(RHS.Probs); 139 EstimatedBlockWeight = std::move(RHS.EstimatedBlockWeight); 140 for (auto &Handle : Handles) 141 Handle.setBPI(this); 142 return *this; 143 } 144 145 bool invalidate(Function &, const PreservedAnalyses &PA, 146 FunctionAnalysisManager::Invalidator &); 147 148 void releaseMemory(); 149 150 void print(raw_ostream &OS) const; 151 152 /// Get an edge's probability, relative to other out-edges of the Src. 153 /// 154 /// This routine provides access to the fractional probability between zero 155 /// (0%) and one (100%) of this edge executing, relative to other edges 156 /// leaving the 'Src' block. The returned probability is never zero, and can 157 /// only be one if the source block has only one successor. 158 BranchProbability getEdgeProbability(const BasicBlock *Src, 159 unsigned IndexInSuccessors) const; 160 161 /// Get the probability of going from Src to Dst. 162 /// 163 /// It returns the sum of all probabilities for edges from Src to Dst. 164 BranchProbability getEdgeProbability(const BasicBlock *Src, 165 const BasicBlock *Dst) const; 166 167 BranchProbability getEdgeProbability(const BasicBlock *Src, 168 const_succ_iterator Dst) const; 169 170 /// Test if an edge is hot relative to other out-edges of the Src. 171 /// 172 /// Check whether this edge out of the source block is 'hot'. We define hot 173 /// as having a relative probability >= 80%. 174 bool isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const; 175 176 /// Print an edge's probability. 177 /// 178 /// Retrieves an edge's probability similarly to \see getEdgeProbability, but 179 /// then prints that probability to the provided stream. That stream is then 180 /// returned. 181 raw_ostream &printEdgeProbability(raw_ostream &OS, const BasicBlock *Src, 182 const BasicBlock *Dst) const; 183 184 public: 185 /// Set the raw probabilities for all edges from the given block. 186 /// 187 /// This allows a pass to explicitly set edge probabilities for a block. It 188 /// can be used when updating the CFG to update the branch probability 189 /// information. 190 void setEdgeProbability(const BasicBlock *Src, 191 const SmallVectorImpl<BranchProbability> &Probs); 192 193 /// Copy outgoing edge probabilities from \p Src to \p Dst. 194 /// 195 /// This allows to keep probabilities unset for the destination if they were 196 /// unset for source. 197 void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst); 198 199 /// Swap outgoing edges probabilities for \p Src with branch terminator 200 void swapSuccEdgesProbabilities(const BasicBlock *Src); 201 getBranchProbStackProtector(bool IsLikely)202 static BranchProbability getBranchProbStackProtector(bool IsLikely) { 203 static const BranchProbability LikelyProb((1u << 20) - 1, 1u << 20); 204 return IsLikely ? LikelyProb : LikelyProb.getCompl(); 205 } 206 207 void calculate(const Function &F, const LoopInfo &LI, 208 const TargetLibraryInfo *TLI, DominatorTree *DT, 209 PostDominatorTree *PDT); 210 211 /// Forget analysis results for the given basic block. 212 void eraseBlock(const BasicBlock *BB); 213 214 // Data structure to track SCCs for handling irreducible loops. 215 class SccInfo { 216 // Enum of types to classify basic blocks in SCC. Basic block belonging to 217 // SCC is 'Inner' until it is either 'Header' or 'Exiting'. Note that a 218 // basic block can be 'Header' and 'Exiting' at the same time. 219 enum SccBlockType { 220 Inner = 0x0, 221 Header = 0x1, 222 Exiting = 0x2, 223 }; 224 // Map of basic blocks to SCC IDs they belong to. If basic block doesn't 225 // belong to any SCC it is not in the map. 226 using SccMap = DenseMap<const BasicBlock *, int>; 227 // Each basic block in SCC is attributed with one or several types from 228 // SccBlockType. Map value has uint32_t type (instead of SccBlockType) 229 // since basic block may be for example "Header" and "Exiting" at the same 230 // time and we need to be able to keep more than one value from 231 // SccBlockType. 232 using SccBlockTypeMap = DenseMap<const BasicBlock *, uint32_t>; 233 // Vector containing classification of basic blocks for all SCCs where i'th 234 // vector element corresponds to SCC with ID equal to i. 235 using SccBlockTypeMaps = std::vector<SccBlockTypeMap>; 236 237 SccMap SccNums; 238 SccBlockTypeMaps SccBlocks; 239 240 public: 241 explicit SccInfo(const Function &F); 242 243 /// If \p BB belongs to some SCC then ID of that SCC is returned, otherwise 244 /// -1 is returned. If \p BB belongs to more than one SCC at the same time 245 /// result is undefined. 246 int getSCCNum(const BasicBlock *BB) const; 247 /// Returns true if \p BB is a 'header' block in SCC with \p SccNum ID, 248 /// false otherwise. isSCCHeader(const BasicBlock * BB,int SccNum)249 bool isSCCHeader(const BasicBlock *BB, int SccNum) const { 250 return getSccBlockType(BB, SccNum) & Header; 251 } 252 /// Returns true if \p BB is an 'exiting' block in SCC with \p SccNum ID, 253 /// false otherwise. isSCCExitingBlock(const BasicBlock * BB,int SccNum)254 bool isSCCExitingBlock(const BasicBlock *BB, int SccNum) const { 255 return getSccBlockType(BB, SccNum) & Exiting; 256 } 257 /// Fills in \p Enters vector with all such blocks that don't belong to 258 /// SCC with \p SccNum ID but there is an edge to a block belonging to the 259 /// SCC. 260 void getSccEnterBlocks(int SccNum, 261 SmallVectorImpl<BasicBlock *> &Enters) const; 262 /// Fills in \p Exits vector with all such blocks that don't belong to 263 /// SCC with \p SccNum ID but there is an edge from a block belonging to the 264 /// SCC. 265 void getSccExitBlocks(int SccNum, 266 SmallVectorImpl<BasicBlock *> &Exits) const; 267 268 private: 269 /// Returns \p BB's type according to classification given by SccBlockType 270 /// enum. Please note that \p BB must belong to SSC with \p SccNum ID. 271 uint32_t getSccBlockType(const BasicBlock *BB, int SccNum) const; 272 /// Calculates \p BB's type and stores it in internal data structures for 273 /// future use. Please note that \p BB must belong to SSC with \p SccNum ID. 274 void calculateSccBlockType(const BasicBlock *BB, int SccNum); 275 }; 276 277 private: 278 // We need to store CallbackVH's in order to correctly handle basic block 279 // removal. 280 class BasicBlockCallbackVH final : public CallbackVH { 281 BranchProbabilityInfo *BPI; 282 deleted()283 void deleted() override { 284 assert(BPI != nullptr); 285 BPI->eraseBlock(cast<BasicBlock>(getValPtr())); 286 } 287 288 public: setBPI(BranchProbabilityInfo * BPI)289 void setBPI(BranchProbabilityInfo *BPI) { this->BPI = BPI; } 290 291 BasicBlockCallbackVH(const Value *V, BranchProbabilityInfo *BPI = nullptr) CallbackVH(const_cast<Value * > (V))292 : CallbackVH(const_cast<Value *>(V)), BPI(BPI) {} 293 }; 294 295 /// Pair of Loop and SCC ID number. Used to unify handling of normal and 296 /// SCC based loop representations. 297 using LoopData = std::pair<Loop *, int>; 298 /// Helper class to keep basic block along with its loop data information. 299 class LoopBlock { 300 public: 301 explicit LoopBlock(const BasicBlock *BB, const LoopInfo &LI, 302 const SccInfo &SccI); 303 getBlock()304 const BasicBlock *getBlock() const { return BB; } getBlock()305 BasicBlock *getBlock() { return const_cast<BasicBlock *>(BB); } getLoopData()306 LoopData getLoopData() const { return LD; } getLoop()307 Loop *getLoop() const { return LD.first; } getSccNum()308 int getSccNum() const { return LD.second; } 309 belongsToLoop()310 bool belongsToLoop() const { return getLoop() || getSccNum() != -1; } belongsToSameLoop(const LoopBlock & LB)311 bool belongsToSameLoop(const LoopBlock &LB) const { 312 return (LB.getLoop() && getLoop() == LB.getLoop()) || 313 (LB.getSccNum() != -1 && getSccNum() == LB.getSccNum()); 314 } 315 316 private: 317 const BasicBlock *const BB = nullptr; 318 LoopData LD = {nullptr, -1}; 319 }; 320 321 // Pair of LoopBlocks representing an edge from first to second block. 322 using LoopEdge = std::pair<const LoopBlock &, const LoopBlock &>; 323 324 DenseSet<BasicBlockCallbackVH, DenseMapInfo<Value*>> Handles; 325 326 // Since we allow duplicate edges from one basic block to another, we use 327 // a pair (PredBlock and an index in the successors) to specify an edge. 328 using Edge = std::pair<const BasicBlock *, unsigned>; 329 330 DenseMap<Edge, BranchProbability> Probs; 331 332 /// Track the last function we run over for printing. 333 const Function *LastF = nullptr; 334 335 const LoopInfo *LI = nullptr; 336 337 /// Keeps information about all SCCs in a function. 338 std::unique_ptr<const SccInfo> SccI; 339 340 /// Keeps mapping of a basic block to its estimated weight. 341 SmallDenseMap<const BasicBlock *, uint32_t> EstimatedBlockWeight; 342 343 /// Keeps mapping of a loop to estimated weight to enter the loop. 344 SmallDenseMap<LoopData, uint32_t> EstimatedLoopWeight; 345 346 /// Helper to construct LoopBlock for \p BB. getLoopBlock(const BasicBlock * BB)347 LoopBlock getLoopBlock(const BasicBlock *BB) const { 348 return LoopBlock(BB, *LI, *SccI); 349 } 350 351 /// Returns true if destination block belongs to some loop and source block is 352 /// either doesn't belong to any loop or belongs to a loop which is not inner 353 /// relative to the destination block. 354 bool isLoopEnteringEdge(const LoopEdge &Edge) const; 355 /// Returns true if source block belongs to some loop and destination block is 356 /// either doesn't belong to any loop or belongs to a loop which is not inner 357 /// relative to the source block. 358 bool isLoopExitingEdge(const LoopEdge &Edge) const; 359 /// Returns true if \p Edge is either enters to or exits from some loop, false 360 /// in all other cases. 361 bool isLoopEnteringExitingEdge(const LoopEdge &Edge) const; 362 /// Returns true if source and destination blocks belongs to the same loop and 363 /// destination block is loop header. 364 bool isLoopBackEdge(const LoopEdge &Edge) const; 365 // Fills in \p Enters vector with all "enter" blocks to a loop \LB belongs to. 366 void getLoopEnterBlocks(const LoopBlock &LB, 367 SmallVectorImpl<BasicBlock *> &Enters) const; 368 // Fills in \p Exits vector with all "exit" blocks from a loop \LB belongs to. 369 void getLoopExitBlocks(const LoopBlock &LB, 370 SmallVectorImpl<BasicBlock *> &Exits) const; 371 372 /// Returns estimated weight for \p BB. std::nullopt if \p BB has no estimated 373 /// weight. 374 std::optional<uint32_t> getEstimatedBlockWeight(const BasicBlock *BB) const; 375 376 /// Returns estimated weight to enter \p L. In other words it is weight of 377 /// loop's header block not scaled by trip count. Returns std::nullopt if \p L 378 /// has no no estimated weight. 379 std::optional<uint32_t> getEstimatedLoopWeight(const LoopData &L) const; 380 381 /// Return estimated weight for \p Edge. Returns std::nullopt if estimated 382 /// weight is unknown. 383 std::optional<uint32_t> getEstimatedEdgeWeight(const LoopEdge &Edge) const; 384 385 /// Iterates over all edges leading from \p SrcBB to \p Successors and 386 /// returns maximum of all estimated weights. If at least one edge has unknown 387 /// estimated weight std::nullopt is returned. 388 template <class IterT> 389 std::optional<uint32_t> 390 getMaxEstimatedEdgeWeight(const LoopBlock &SrcBB, 391 iterator_range<IterT> Successors) const; 392 393 /// If \p LoopBB has no estimated weight then set it to \p BBWeight and 394 /// return true. Otherwise \p BB's weight remains unchanged and false is 395 /// returned. In addition all blocks/loops that might need their weight to be 396 /// re-estimated are put into BlockWorkList/LoopWorkList. 397 bool updateEstimatedBlockWeight(LoopBlock &LoopBB, uint32_t BBWeight, 398 SmallVectorImpl<BasicBlock *> &BlockWorkList, 399 SmallVectorImpl<LoopBlock> &LoopWorkList); 400 401 /// Starting from \p LoopBB (including \p LoopBB itself) propagate \p BBWeight 402 /// up the domination tree. 403 void propagateEstimatedBlockWeight(const LoopBlock &LoopBB, DominatorTree *DT, 404 PostDominatorTree *PDT, uint32_t BBWeight, 405 SmallVectorImpl<BasicBlock *> &WorkList, 406 SmallVectorImpl<LoopBlock> &LoopWorkList); 407 408 /// Returns block's weight encoded in the IR. 409 std::optional<uint32_t> getInitialEstimatedBlockWeight(const BasicBlock *BB); 410 411 // Computes estimated weights for all blocks in \p F. 412 void computeEestimateBlockWeight(const Function &F, DominatorTree *DT, 413 PostDominatorTree *PDT); 414 415 /// Based on computed weights by \p computeEstimatedBlockWeight set 416 /// probabilities on branches. 417 bool calcEstimatedHeuristics(const BasicBlock *BB); 418 bool calcMetadataWeights(const BasicBlock *BB); 419 bool calcPointerHeuristics(const BasicBlock *BB); 420 bool calcZeroHeuristics(const BasicBlock *BB, const TargetLibraryInfo *TLI); 421 bool calcFloatingPointHeuristics(const BasicBlock *BB); 422 }; 423 424 /// Analysis pass which computes \c BranchProbabilityInfo. 425 class BranchProbabilityAnalysis 426 : public AnalysisInfoMixin<BranchProbabilityAnalysis> { 427 friend AnalysisInfoMixin<BranchProbabilityAnalysis>; 428 429 static AnalysisKey Key; 430 431 public: 432 /// Provide the result type for this analysis pass. 433 using Result = BranchProbabilityInfo; 434 435 /// Run the analysis pass over a function and produce BPI. 436 BranchProbabilityInfo run(Function &F, FunctionAnalysisManager &AM); 437 }; 438 439 /// Printer pass for the \c BranchProbabilityAnalysis results. 440 class BranchProbabilityPrinterPass 441 : public PassInfoMixin<BranchProbabilityPrinterPass> { 442 raw_ostream &OS; 443 444 public: BranchProbabilityPrinterPass(raw_ostream & OS)445 explicit BranchProbabilityPrinterPass(raw_ostream &OS) : OS(OS) {} 446 447 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM); 448 isRequired()449 static bool isRequired() { return true; } 450 }; 451 452 /// Legacy analysis pass which computes \c BranchProbabilityInfo. 453 class BranchProbabilityInfoWrapperPass : public FunctionPass { 454 BranchProbabilityInfo BPI; 455 456 public: 457 static char ID; 458 459 BranchProbabilityInfoWrapperPass(); 460 getBPI()461 BranchProbabilityInfo &getBPI() { return BPI; } getBPI()462 const BranchProbabilityInfo &getBPI() const { return BPI; } 463 464 void getAnalysisUsage(AnalysisUsage &AU) const override; 465 bool runOnFunction(Function &F) override; 466 void releaseMemory() override; 467 void print(raw_ostream &OS, const Module *M = nullptr) const override; 468 }; 469 470 } // end namespace llvm 471 472 #endif // LLVM_ANALYSIS_BRANCHPROBABILITYINFO_H 473