xref: /freebsd/crypto/openssh/xmss_fast.c (revision 19261079b74319502c6ffa1249920079f0f69a72)
1 /* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */
2 /*
3 xmss_fast.c version 20160722
4 Andreas Hülsing
5 Joost Rijneveld
6 Public domain.
7 */
8 
9 #include "includes.h"
10 #ifdef WITH_XMSS
11 
12 #include <stdlib.h>
13 #include <string.h>
14 #ifdef HAVE_STDINT_H
15 # include <stdint.h>
16 #endif
17 
18 #include "xmss_fast.h"
19 #include "crypto_api.h"
20 #include "xmss_wots.h"
21 #include "xmss_hash.h"
22 
23 #include "xmss_commons.h"
24 #include "xmss_hash_address.h"
25 // For testing
26 #include "stdio.h"
27 
28 
29 
30 /**
31  * Used for pseudorandom keygeneration,
32  * generates the seed for the WOTS keypair at address addr
33  *
34  * takes n byte sk_seed and returns n byte seed using 32 byte address addr.
35  */
get_seed(unsigned char * seed,const unsigned char * sk_seed,int n,uint32_t addr[8])36 static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8])
37 {
38   unsigned char bytes[32];
39   // Make sure that chain addr, hash addr, and key bit are 0!
40   setChainADRS(addr,0);
41   setHashADRS(addr,0);
42   setKeyAndMask(addr,0);
43   // Generate pseudorandom value
44   addr_to_byte(bytes, addr);
45   prf(seed, bytes, sk_seed, n);
46 }
47 
48 /**
49  * Initialize xmss params struct
50  * parameter names are the same as in the draft
51  * parameter k is K as used in the BDS algorithm
52  */
xmss_set_params(xmss_params * params,int n,int h,int w,int k)53 int xmss_set_params(xmss_params *params, int n, int h, int w, int k)
54 {
55   if (k >= h || k < 2 || (h - k) % 2) {
56     fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n");
57     return 1;
58   }
59   params->h = h;
60   params->n = n;
61   params->k = k;
62   wots_params wots_par;
63   wots_set_params(&wots_par, n, w);
64   params->wots_par = wots_par;
65   return 0;
66 }
67 
68 /**
69  * Initialize BDS state struct
70  * parameter names are the same as used in the description of the BDS traversal
71  */
xmss_set_bds_state(bds_state * state,unsigned char * stack,int stackoffset,unsigned char * stacklevels,unsigned char * auth,unsigned char * keep,treehash_inst * treehash,unsigned char * retain,int next_leaf)72 void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf)
73 {
74   state->stack = stack;
75   state->stackoffset = stackoffset;
76   state->stacklevels = stacklevels;
77   state->auth = auth;
78   state->keep = keep;
79   state->treehash = treehash;
80   state->retain = retain;
81   state->next_leaf = next_leaf;
82 }
83 
84 /**
85  * Initialize xmssmt_params struct
86  * parameter names are the same as in the draft
87  *
88  * Especially h is the total tree height, i.e. the XMSS trees have height h/d
89  */
xmssmt_set_params(xmssmt_params * params,int n,int h,int d,int w,int k)90 int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k)
91 {
92   if (h % d) {
93     fprintf(stderr, "d must divide h without remainder!\n");
94     return 1;
95   }
96   params->h = h;
97   params->d = d;
98   params->n = n;
99   params->index_len = (h + 7) / 8;
100   xmss_params xmss_par;
101   if (xmss_set_params(&xmss_par, n, (h/d), w, k)) {
102     return 1;
103   }
104   params->xmss_par = xmss_par;
105   return 0;
106 }
107 
108 /**
109  * Computes a leaf from a WOTS public key using an L-tree.
110  */
l_tree(unsigned char * leaf,unsigned char * wots_pk,const xmss_params * params,const unsigned char * pub_seed,uint32_t addr[8])111 static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8])
112 {
113   unsigned int l = params->wots_par.len;
114   unsigned int n = params->n;
115   uint32_t i = 0;
116   uint32_t height = 0;
117   uint32_t bound;
118 
119   //ADRS.setTreeHeight(0);
120   setTreeHeight(addr, height);
121 
122   while (l > 1) {
123      bound = l >> 1; //floor(l / 2);
124      for (i = 0; i < bound; i++) {
125        //ADRS.setTreeIndex(i);
126        setTreeIndex(addr, i);
127        //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS);
128        hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n);
129      }
130      //if ( l % 2 == 1 ) {
131      if (l & 1) {
132        //pk[floor(l / 2) + 1] = pk[l];
133        memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n);
134        //l = ceil(l / 2);
135        l=(l>>1)+1;
136      }
137      else {
138        //l = ceil(l / 2);
139        l=(l>>1);
140      }
141      //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1);
142      height++;
143      setTreeHeight(addr, height);
144    }
145    //return pk[0];
146    memcpy(leaf, wots_pk, n);
147 }
148 
149 /**
150  * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address.
151  */
gen_leaf_wots(unsigned char * leaf,const unsigned char * sk_seed,const xmss_params * params,const unsigned char * pub_seed,uint32_t ltree_addr[8],uint32_t ots_addr[8])152 static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8])
153 {
154   unsigned char seed[params->n];
155   unsigned char pk[params->wots_par.keysize];
156 
157   get_seed(seed, sk_seed, params->n, ots_addr);
158   wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr);
159 
160   l_tree(leaf, pk, params, pub_seed, ltree_addr);
161 }
162 
treehash_minheight_on_stack(bds_state * state,const xmss_params * params,const treehash_inst * treehash)163 static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) {
164   unsigned int r = params->h, i;
165   for (i = 0; i < treehash->stackusage; i++) {
166     if (state->stacklevels[state->stackoffset - i - 1] < r) {
167       r = state->stacklevels[state->stackoffset - i - 1];
168     }
169   }
170   return r;
171 }
172 
173 /**
174  * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash.
175  * Currently only used for key generation.
176  *
177  */
treehash_setup(unsigned char * node,int height,int index,bds_state * state,const unsigned char * sk_seed,const xmss_params * params,const unsigned char * pub_seed,const uint32_t addr[8])178 static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8])
179 {
180   unsigned int idx = index;
181   unsigned int n = params->n;
182   unsigned int h = params->h;
183   unsigned int k = params->k;
184   // use three different addresses because at this point we use all three formats in parallel
185   uint32_t ots_addr[8];
186   uint32_t ltree_addr[8];
187   uint32_t  node_addr[8];
188   // only copy layer and tree address parts
189   memcpy(ots_addr, addr, 12);
190   // type = ots
191   setType(ots_addr, 0);
192   memcpy(ltree_addr, addr, 12);
193   setType(ltree_addr, 1);
194   memcpy(node_addr, addr, 12);
195   setType(node_addr, 2);
196 
197   uint32_t lastnode, i;
198   unsigned char stack[(height+1)*n];
199   unsigned int stacklevels[height+1];
200   unsigned int stackoffset=0;
201   unsigned int nodeh;
202 
203   lastnode = idx+(1<<height);
204 
205   for (i = 0; i < h-k; i++) {
206     state->treehash[i].h = i;
207     state->treehash[i].completed = 1;
208     state->treehash[i].stackusage = 0;
209   }
210 
211   i = 0;
212   for (; idx < lastnode; idx++) {
213     setLtreeADRS(ltree_addr, idx);
214     setOTSADRS(ots_addr, idx);
215     gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr);
216     stacklevels[stackoffset] = 0;
217     stackoffset++;
218     if (h - k > 0 && i == 3) {
219       memcpy(state->treehash[0].node, stack+stackoffset*n, n);
220     }
221     while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2])
222     {
223       nodeh = stacklevels[stackoffset-1];
224       if (i >> nodeh == 1) {
225         memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n);
226       }
227       else {
228         if (nodeh < h - k && i >> nodeh == 3) {
229           memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n);
230         }
231         else if (nodeh >= h - k) {
232           memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n);
233         }
234       }
235       setTreeHeight(node_addr, stacklevels[stackoffset-1]);
236       setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1)));
237       hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed,
238           node_addr, n);
239       stacklevels[stackoffset-2]++;
240       stackoffset--;
241     }
242     i++;
243   }
244 
245   for (i = 0; i < n; i++)
246     node[i] = stack[i];
247 }
248 
treehash_update(treehash_inst * treehash,bds_state * state,const unsigned char * sk_seed,const xmss_params * params,const unsigned char * pub_seed,const uint32_t addr[8])249 static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) {
250   int n = params->n;
251 
252   uint32_t ots_addr[8];
253   uint32_t ltree_addr[8];
254   uint32_t  node_addr[8];
255   // only copy layer and tree address parts
256   memcpy(ots_addr, addr, 12);
257   // type = ots
258   setType(ots_addr, 0);
259   memcpy(ltree_addr, addr, 12);
260   setType(ltree_addr, 1);
261   memcpy(node_addr, addr, 12);
262   setType(node_addr, 2);
263 
264   setLtreeADRS(ltree_addr, treehash->next_idx);
265   setOTSADRS(ots_addr, treehash->next_idx);
266 
267   unsigned char nodebuffer[2 * n];
268   unsigned int nodeheight = 0;
269   gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr);
270   while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) {
271     memcpy(nodebuffer + n, nodebuffer, n);
272     memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n);
273     setTreeHeight(node_addr, nodeheight);
274     setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1)));
275     hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n);
276     nodeheight++;
277     treehash->stackusage--;
278     state->stackoffset--;
279   }
280   if (nodeheight == treehash->h) { // this also implies stackusage == 0
281     memcpy(treehash->node, nodebuffer, n);
282     treehash->completed = 1;
283   }
284   else {
285     memcpy(state->stack + state->stackoffset*n, nodebuffer, n);
286     treehash->stackusage++;
287     state->stacklevels[state->stackoffset] = nodeheight;
288     state->stackoffset++;
289     treehash->next_idx++;
290   }
291 }
292 
293 /**
294  * Computes a root node given a leaf and an authapth
295  */
validate_authpath(unsigned char * root,const unsigned char * leaf,unsigned long leafidx,const unsigned char * authpath,const xmss_params * params,const unsigned char * pub_seed,uint32_t addr[8])296 static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8])
297 {
298   unsigned int n = params->n;
299 
300   uint32_t i, j;
301   unsigned char buffer[2*n];
302 
303   // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left.
304   // Otherwise, it is the other way around
305   if (leafidx & 1) {
306     for (j = 0; j < n; j++)
307       buffer[n+j] = leaf[j];
308     for (j = 0; j < n; j++)
309       buffer[j] = authpath[j];
310   }
311   else {
312     for (j = 0; j < n; j++)
313       buffer[j] = leaf[j];
314     for (j = 0; j < n; j++)
315       buffer[n+j] = authpath[j];
316   }
317   authpath += n;
318 
319   for (i=0; i < params->h-1; i++) {
320     setTreeHeight(addr, i);
321     leafidx >>= 1;
322     setTreeIndex(addr, leafidx);
323     if (leafidx&1) {
324       hash_h(buffer+n, buffer, pub_seed, addr, n);
325       for (j = 0; j < n; j++)
326         buffer[j] = authpath[j];
327     }
328     else {
329       hash_h(buffer, buffer, pub_seed, addr, n);
330       for (j = 0; j < n; j++)
331         buffer[j+n] = authpath[j];
332     }
333     authpath += n;
334   }
335   setTreeHeight(addr, (params->h-1));
336   leafidx >>= 1;
337   setTreeIndex(addr, leafidx);
338   hash_h(root, buffer, pub_seed, addr, n);
339 }
340 
341 /**
342  * Performs one treehash update on the instance that needs it the most.
343  * Returns 1 if such an instance was not found
344  **/
bds_treehash_update(bds_state * state,unsigned int updates,const unsigned char * sk_seed,const xmss_params * params,unsigned char * pub_seed,const uint32_t addr[8])345 static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) {
346   uint32_t i, j;
347   unsigned int level, l_min, low;
348   unsigned int h = params->h;
349   unsigned int k = params->k;
350   unsigned int used = 0;
351 
352   for (j = 0; j < updates; j++) {
353     l_min = h;
354     level = h - k;
355     for (i = 0; i < h - k; i++) {
356       if (state->treehash[i].completed) {
357         low = h;
358       }
359       else if (state->treehash[i].stackusage == 0) {
360         low = i;
361       }
362       else {
363         low = treehash_minheight_on_stack(state, params, &(state->treehash[i]));
364       }
365       if (low < l_min) {
366         level = i;
367         l_min = low;
368       }
369     }
370     if (level == h - k) {
371       break;
372     }
373     treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr);
374     used++;
375   }
376   return updates - used;
377 }
378 
379 /**
380  * Updates the state (typically NEXT_i) by adding a leaf and updating the stack
381  * Returns 1 if all leaf nodes have already been processed
382  **/
bds_state_update(bds_state * state,const unsigned char * sk_seed,const xmss_params * params,unsigned char * pub_seed,const uint32_t addr[8])383 static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) {
384   uint32_t ltree_addr[8];
385   uint32_t node_addr[8];
386   uint32_t ots_addr[8];
387 
388   int n = params->n;
389   int h = params->h;
390   int k = params->k;
391 
392   int nodeh;
393   int idx = state->next_leaf;
394   if (idx == 1 << h) {
395     return 1;
396   }
397 
398   // only copy layer and tree address parts
399   memcpy(ots_addr, addr, 12);
400   // type = ots
401   setType(ots_addr, 0);
402   memcpy(ltree_addr, addr, 12);
403   setType(ltree_addr, 1);
404   memcpy(node_addr, addr, 12);
405   setType(node_addr, 2);
406 
407   setOTSADRS(ots_addr, idx);
408   setLtreeADRS(ltree_addr, idx);
409 
410   gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr);
411 
412   state->stacklevels[state->stackoffset] = 0;
413   state->stackoffset++;
414   if (h - k > 0 && idx == 3) {
415     memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n);
416   }
417   while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) {
418     nodeh = state->stacklevels[state->stackoffset-1];
419     if (idx >> nodeh == 1) {
420       memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n);
421     }
422     else {
423       if (nodeh < h - k && idx >> nodeh == 3) {
424         memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n);
425       }
426       else if (nodeh >= h - k) {
427         memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n);
428       }
429     }
430     setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]);
431     setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1)));
432     hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n);
433 
434     state->stacklevels[state->stackoffset-2]++;
435     state->stackoffset--;
436   }
437   state->next_leaf++;
438   return 0;
439 }
440 
441 /**
442  * Returns the auth path for node leaf_idx and computes the auth path for the
443  * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo
444  * in "Post Quantum Cryptography", Springer 2009.
445  */
bds_round(bds_state * state,const unsigned long leaf_idx,const unsigned char * sk_seed,const xmss_params * params,unsigned char * pub_seed,uint32_t addr[8])446 static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8])
447 {
448   unsigned int i;
449   unsigned int n = params->n;
450   unsigned int h = params->h;
451   unsigned int k = params->k;
452 
453   unsigned int tau = h;
454   unsigned int startidx;
455   unsigned int offset, rowidx;
456   unsigned char buf[2 * n];
457 
458   uint32_t ots_addr[8];
459   uint32_t ltree_addr[8];
460   uint32_t  node_addr[8];
461   // only copy layer and tree address parts
462   memcpy(ots_addr, addr, 12);
463   // type = ots
464   setType(ots_addr, 0);
465   memcpy(ltree_addr, addr, 12);
466   setType(ltree_addr, 1);
467   memcpy(node_addr, addr, 12);
468   setType(node_addr, 2);
469 
470   for (i = 0; i < h; i++) {
471     if (! ((leaf_idx >> i) & 1)) {
472       tau = i;
473       break;
474     }
475   }
476 
477   if (tau > 0) {
478     memcpy(buf,     state->auth + (tau-1) * n, n);
479     // we need to do this before refreshing state->keep to prevent overwriting
480     memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n);
481   }
482   if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) {
483     memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n);
484   }
485   if (tau == 0) {
486     setLtreeADRS(ltree_addr, leaf_idx);
487     setOTSADRS(ots_addr, leaf_idx);
488     gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr);
489   }
490   else {
491     setTreeHeight(node_addr, (tau-1));
492     setTreeIndex(node_addr, leaf_idx >> tau);
493     hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n);
494     for (i = 0; i < tau; i++) {
495       if (i < h - k) {
496         memcpy(state->auth + i * n, state->treehash[i].node, n);
497       }
498       else {
499         offset = (1 << (h - 1 - i)) + i - h;
500         rowidx = ((leaf_idx >> i) - 1) >> 1;
501         memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n);
502       }
503     }
504 
505     for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) {
506       startidx = leaf_idx + 1 + 3 * (1 << i);
507       if (startidx < 1U << h) {
508         state->treehash[i].h = i;
509         state->treehash[i].next_idx = startidx;
510         state->treehash[i].completed = 0;
511         state->treehash[i].stackusage = 0;
512       }
513     }
514   }
515 }
516 
517 /*
518  * Generates a XMSS key pair for a given parameter set.
519  * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
520  * Format pk: [root || PUB_SEED] omitting algo oid.
521  */
xmss_keypair(unsigned char * pk,unsigned char * sk,bds_state * state,xmss_params * params)522 int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params)
523 {
524   unsigned int n = params->n;
525   // Set idx = 0
526   sk[0] = 0;
527   sk[1] = 0;
528   sk[2] = 0;
529   sk[3] = 0;
530   // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)
531   randombytes(sk+4, 3*n);
532   // Copy PUB_SEED to public key
533   memcpy(pk+n, sk+4+2*n, n);
534 
535   uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
536 
537   // Compute root
538   treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr);
539   // copy root to sk
540   memcpy(sk+4+3*n, pk, n);
541   return 0;
542 }
543 
544 /**
545  * Signs a message.
546  * Returns
547  * 1. an array containing the signature followed by the message AND
548  * 2. an updated secret key!
549  *
550  */
xmss_sign(unsigned char * sk,bds_state * state,unsigned char * sig_msg,unsigned long long * sig_msg_len,const unsigned char * msg,unsigned long long msglen,const xmss_params * params)551 int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params)
552 {
553   unsigned int h = params->h;
554   unsigned int n = params->n;
555   unsigned int k = params->k;
556   uint16_t i = 0;
557 
558   // Extract SK
559   unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3];
560   unsigned char sk_seed[n];
561   memcpy(sk_seed, sk+4, n);
562   unsigned char sk_prf[n];
563   memcpy(sk_prf, sk+4+n, n);
564   unsigned char pub_seed[n];
565   memcpy(pub_seed, sk+4+2*n, n);
566 
567   // index as 32 bytes string
568   unsigned char idx_bytes_32[32];
569   to_byte(idx_bytes_32, idx, 32);
570 
571   unsigned char hash_key[3*n];
572 
573   // Update SK
574   sk[0] = ((idx + 1) >> 24) & 255;
575   sk[1] = ((idx + 1) >> 16) & 255;
576   sk[2] = ((idx + 1) >> 8) & 255;
577   sk[3] = (idx + 1) & 255;
578   // -- Secret key for this non-forward-secure version is now updated.
579   // -- A productive implementation should use a file handle instead and write the updated secret key at this point!
580 
581   // Init working params
582   unsigned char R[n];
583   unsigned char msg_h[n];
584   unsigned char ots_seed[n];
585   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
586 
587   // ---------------------------------
588   // Message Hashing
589   // ---------------------------------
590 
591   // Message Hash:
592   // First compute pseudorandom value
593   prf(R, idx_bytes_32, sk_prf, n);
594   // Generate hash key (R || root || idx)
595   memcpy(hash_key, R, n);
596   memcpy(hash_key+n, sk+4+3*n, n);
597   to_byte(hash_key+2*n, idx, n);
598   // Then use it for message digest
599   h_msg(msg_h, msg, msglen, hash_key, 3*n, n);
600 
601   // Start collecting signature
602   *sig_msg_len = 0;
603 
604   // Copy index to signature
605   sig_msg[0] = (idx >> 24) & 255;
606   sig_msg[1] = (idx >> 16) & 255;
607   sig_msg[2] = (idx >> 8) & 255;
608   sig_msg[3] = idx & 255;
609 
610   sig_msg += 4;
611   *sig_msg_len += 4;
612 
613   // Copy R to signature
614   for (i = 0; i < n; i++)
615     sig_msg[i] = R[i];
616 
617   sig_msg += n;
618   *sig_msg_len += n;
619 
620   // ----------------------------------
621   // Now we start to "really sign"
622   // ----------------------------------
623 
624   // Prepare Address
625   setType(ots_addr, 0);
626   setOTSADRS(ots_addr, idx);
627 
628   // Compute seed for OTS key pair
629   get_seed(ots_seed, sk_seed, n, ots_addr);
630 
631   // Compute WOTS signature
632   wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr);
633 
634   sig_msg += params->wots_par.keysize;
635   *sig_msg_len += params->wots_par.keysize;
636 
637   // the auth path was already computed during the previous round
638   memcpy(sig_msg, state->auth, h*n);
639 
640   if (idx < (1U << h) - 1) {
641     bds_round(state, idx, sk_seed, params, pub_seed, ots_addr);
642     bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr);
643   }
644 
645 /* TODO: save key/bds state here! */
646 
647   sig_msg += params->h*n;
648   *sig_msg_len += params->h*n;
649 
650   //Whipe secret elements?
651   //zerobytes(tsk, CRYPTO_SECRETKEYBYTES);
652 
653 
654   memcpy(sig_msg, msg, msglen);
655   *sig_msg_len += msglen;
656 
657   return 0;
658 }
659 
660 /**
661  * Verifies a given message signature pair under a given public key.
662  */
xmss_sign_open(unsigned char * msg,unsigned long long * msglen,const unsigned char * sig_msg,unsigned long long sig_msg_len,const unsigned char * pk,const xmss_params * params)663 int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params)
664 {
665   unsigned int n = params->n;
666 
667   unsigned long long i, m_len;
668   unsigned long idx=0;
669   unsigned char wots_pk[params->wots_par.keysize];
670   unsigned char pkhash[n];
671   unsigned char root[n];
672   unsigned char msg_h[n];
673   unsigned char hash_key[3*n];
674 
675   unsigned char pub_seed[n];
676   memcpy(pub_seed, pk+n, n);
677 
678   // Init addresses
679   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
680   uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
681   uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
682 
683   setType(ots_addr, 0);
684   setType(ltree_addr, 1);
685   setType(node_addr, 2);
686 
687   // Extract index
688   idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3];
689   printf("verify:: idx = %lu\n", idx);
690 
691   // Generate hash key (R || root || idx)
692   memcpy(hash_key, sig_msg+4,n);
693   memcpy(hash_key+n, pk, n);
694   to_byte(hash_key+2*n, idx, n);
695 
696   sig_msg += (n+4);
697   sig_msg_len -= (n+4);
698 
699   // hash message
700   unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n;
701   m_len = sig_msg_len - tmp_sig_len;
702   h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n);
703 
704   //-----------------------
705   // Verify signature
706   //-----------------------
707 
708   // Prepare Address
709   setOTSADRS(ots_addr, idx);
710   // Check WOTS signature
711   wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr);
712 
713   sig_msg += params->wots_par.keysize;
714   sig_msg_len -= params->wots_par.keysize;
715 
716   // Compute Ltree
717   setLtreeADRS(ltree_addr, idx);
718   l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr);
719 
720   // Compute root
721   validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr);
722 
723   sig_msg += params->h*n;
724   sig_msg_len -= params->h*n;
725 
726   for (i = 0; i < n; i++)
727     if (root[i] != pk[i])
728       goto fail;
729 
730   *msglen = sig_msg_len;
731   for (i = 0; i < *msglen; i++)
732     msg[i] = sig_msg[i];
733 
734   return 0;
735 
736 
737 fail:
738   *msglen = sig_msg_len;
739   for (i = 0; i < *msglen; i++)
740     msg[i] = 0;
741   *msglen = -1;
742   return -1;
743 }
744 
745 /*
746  * Generates a XMSSMT key pair for a given parameter set.
747  * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root]
748  * Format pk: [root || PUB_SEED] omitting algo oid.
749  */
xmssmt_keypair(unsigned char * pk,unsigned char * sk,bds_state * states,unsigned char * wots_sigs,xmssmt_params * params)750 int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params)
751 {
752   unsigned int n = params->n;
753   unsigned int i;
754   unsigned char ots_seed[params->n];
755   // Set idx = 0
756   for (i = 0; i < params->index_len; i++) {
757     sk[i] = 0;
758   }
759   // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte)
760   randombytes(sk+params->index_len, 3*n);
761   // Copy PUB_SEED to public key
762   memcpy(pk+n, sk+params->index_len+2*n, n);
763 
764   // Set address to point on the single tree on layer d-1
765   uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
766   setLayerADRS(addr, (params->d-1));
767   // Set up state and compute wots signatures for all but topmost tree root
768   for (i = 0; i < params->d - 1; i++) {
769     // Compute seed for OTS key pair
770     treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr);
771     setLayerADRS(addr, (i+1));
772     get_seed(ots_seed, sk+params->index_len, n, addr);
773     wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr);
774   }
775   treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr);
776   memcpy(sk+params->index_len+3*n, pk, n);
777   return 0;
778 }
779 
780 /**
781  * Signs a message.
782  * Returns
783  * 1. an array containing the signature followed by the message AND
784  * 2. an updated secret key!
785  *
786  */
xmssmt_sign(unsigned char * sk,bds_state * states,unsigned char * wots_sigs,unsigned char * sig_msg,unsigned long long * sig_msg_len,const unsigned char * msg,unsigned long long msglen,const xmssmt_params * params)787 int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params)
788 {
789   unsigned int n = params->n;
790 
791   unsigned int tree_h = params->xmss_par.h;
792   unsigned int h = params->h;
793   unsigned int k = params->xmss_par.k;
794   unsigned int idx_len = params->index_len;
795   uint64_t idx_tree;
796   uint32_t idx_leaf;
797   uint64_t i, j;
798   int needswap_upto = -1;
799   unsigned int updates;
800 
801   unsigned char sk_seed[n];
802   unsigned char sk_prf[n];
803   unsigned char pub_seed[n];
804   // Init working params
805   unsigned char R[n];
806   unsigned char msg_h[n];
807   unsigned char hash_key[3*n];
808   unsigned char ots_seed[n];
809   uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
810   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
811   unsigned char idx_bytes_32[32];
812   bds_state tmp;
813 
814   // Extract SK
815   unsigned long long idx = 0;
816   for (i = 0; i < idx_len; i++) {
817     idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i);
818   }
819 
820   memcpy(sk_seed, sk+idx_len, n);
821   memcpy(sk_prf, sk+idx_len+n, n);
822   memcpy(pub_seed, sk+idx_len+2*n, n);
823 
824   // Update SK
825   for (i = 0; i < idx_len; i++) {
826     sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255;
827   }
828   // -- Secret key for this non-forward-secure version is now updated.
829   // -- A productive implementation should use a file handle instead and write the updated secret key at this point!
830 
831 
832   // ---------------------------------
833   // Message Hashing
834   // ---------------------------------
835 
836   // Message Hash:
837   // First compute pseudorandom value
838   to_byte(idx_bytes_32, idx, 32);
839   prf(R, idx_bytes_32, sk_prf, n);
840   // Generate hash key (R || root || idx)
841   memcpy(hash_key, R, n);
842   memcpy(hash_key+n, sk+idx_len+3*n, n);
843   to_byte(hash_key+2*n, idx, n);
844 
845   // Then use it for message digest
846   h_msg(msg_h, msg, msglen, hash_key, 3*n, n);
847 
848   // Start collecting signature
849   *sig_msg_len = 0;
850 
851   // Copy index to signature
852   for (i = 0; i < idx_len; i++) {
853     sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255;
854   }
855 
856   sig_msg += idx_len;
857   *sig_msg_len += idx_len;
858 
859   // Copy R to signature
860   for (i = 0; i < n; i++)
861     sig_msg[i] = R[i];
862 
863   sig_msg += n;
864   *sig_msg_len += n;
865 
866   // ----------------------------------
867   // Now we start to "really sign"
868   // ----------------------------------
869 
870   // Handle lowest layer separately as it is slightly different...
871 
872   // Prepare Address
873   setType(ots_addr, 0);
874   idx_tree = idx >> tree_h;
875   idx_leaf = (idx & ((1 << tree_h)-1));
876   setLayerADRS(ots_addr, 0);
877   setTreeADRS(ots_addr, idx_tree);
878   setOTSADRS(ots_addr, idx_leaf);
879 
880   // Compute seed for OTS key pair
881   get_seed(ots_seed, sk_seed, n, ots_addr);
882 
883   // Compute WOTS signature
884   wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr);
885 
886   sig_msg += params->xmss_par.wots_par.keysize;
887   *sig_msg_len += params->xmss_par.wots_par.keysize;
888 
889   memcpy(sig_msg, states[0].auth, tree_h*n);
890   sig_msg += tree_h*n;
891   *sig_msg_len += tree_h*n;
892 
893   // prepare signature of remaining layers
894   for (i = 1; i < params->d; i++) {
895     // put WOTS signature in place
896     memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize);
897 
898     sig_msg += params->xmss_par.wots_par.keysize;
899     *sig_msg_len += params->xmss_par.wots_par.keysize;
900 
901     // put AUTH nodes in place
902     memcpy(sig_msg, states[i].auth, tree_h*n);
903     sig_msg += tree_h*n;
904     *sig_msg_len += tree_h*n;
905   }
906 
907   updates = (tree_h - k) >> 1;
908 
909   setTreeADRS(addr, (idx_tree + 1));
910   // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists
911   if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) {
912     bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr);
913   }
914 
915   for (i = 0; i < params->d; i++) {
916     // check if we're not at the end of a tree
917     if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) {
918       idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1);
919       idx_tree = (idx >> (tree_h * (i+1)));
920       setLayerADRS(addr, i);
921       setTreeADRS(addr, idx_tree);
922       if (i == (unsigned int) (needswap_upto + 1)) {
923         bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr);
924       }
925       updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr);
926       setTreeADRS(addr, (idx_tree + 1));
927       // if a NEXT-tree exists for this level;
928       if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) {
929         if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) {
930           bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr);
931           updates--;
932         }
933       }
934     }
935     else if (idx < (1ULL << h) - 1) {
936       memcpy(&tmp, states+params->d + i, sizeof(bds_state));
937       memcpy(states+params->d + i, states + i, sizeof(bds_state));
938       memcpy(states + i, &tmp, sizeof(bds_state));
939 
940       setLayerADRS(ots_addr, (i+1));
941       setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h)));
942       setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1)));
943 
944       get_seed(ots_seed, sk+params->index_len, n, ots_addr);
945       wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr);
946 
947       states[params->d + i].stackoffset = 0;
948       states[params->d + i].next_leaf = 0;
949 
950       updates--; // WOTS-signing counts as one update
951       needswap_upto = i;
952       for (j = 0; j < tree_h-k; j++) {
953         states[i].treehash[j].completed = 1;
954       }
955     }
956   }
957 
958   //Whipe secret elements?
959   //zerobytes(tsk, CRYPTO_SECRETKEYBYTES);
960 
961   memcpy(sig_msg, msg, msglen);
962   *sig_msg_len += msglen;
963 
964   return 0;
965 }
966 
967 /**
968  * Verifies a given message signature pair under a given public key.
969  */
xmssmt_sign_open(unsigned char * msg,unsigned long long * msglen,const unsigned char * sig_msg,unsigned long long sig_msg_len,const unsigned char * pk,const xmssmt_params * params)970 int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params)
971 {
972   unsigned int n = params->n;
973 
974   unsigned int tree_h = params->xmss_par.h;
975   unsigned int idx_len = params->index_len;
976   uint64_t idx_tree;
977   uint32_t idx_leaf;
978 
979   unsigned long long i, m_len;
980   unsigned long long idx=0;
981   unsigned char wots_pk[params->xmss_par.wots_par.keysize];
982   unsigned char pkhash[n];
983   unsigned char root[n];
984   unsigned char msg_h[n];
985   unsigned char hash_key[3*n];
986 
987   unsigned char pub_seed[n];
988   memcpy(pub_seed, pk+n, n);
989 
990   // Init addresses
991   uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
992   uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
993   uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0};
994 
995   // Extract index
996   for (i = 0; i < idx_len; i++) {
997     idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i));
998   }
999   printf("verify:: idx = %llu\n", idx);
1000   sig_msg += idx_len;
1001   sig_msg_len -= idx_len;
1002 
1003   // Generate hash key (R || root || idx)
1004   memcpy(hash_key, sig_msg,n);
1005   memcpy(hash_key+n, pk, n);
1006   to_byte(hash_key+2*n, idx, n);
1007 
1008   sig_msg += n;
1009   sig_msg_len -= n;
1010 
1011 
1012   // hash message (recall, R is now on pole position at sig_msg
1013   unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n);
1014   m_len = sig_msg_len - tmp_sig_len;
1015   h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n);
1016 
1017 
1018   //-----------------------
1019   // Verify signature
1020   //-----------------------
1021 
1022   // Prepare Address
1023   idx_tree = idx >> tree_h;
1024   idx_leaf = (idx & ((1 << tree_h)-1));
1025   setLayerADRS(ots_addr, 0);
1026   setTreeADRS(ots_addr, idx_tree);
1027   setType(ots_addr, 0);
1028 
1029   memcpy(ltree_addr, ots_addr, 12);
1030   setType(ltree_addr, 1);
1031 
1032   memcpy(node_addr, ltree_addr, 12);
1033   setType(node_addr, 2);
1034 
1035   setOTSADRS(ots_addr, idx_leaf);
1036 
1037   // Check WOTS signature
1038   wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr);
1039 
1040   sig_msg += params->xmss_par.wots_par.keysize;
1041   sig_msg_len -= params->xmss_par.wots_par.keysize;
1042 
1043   // Compute Ltree
1044   setLtreeADRS(ltree_addr, idx_leaf);
1045   l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr);
1046 
1047   // Compute root
1048   validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr);
1049 
1050   sig_msg += tree_h*n;
1051   sig_msg_len -= tree_h*n;
1052 
1053   for (i = 1; i < params->d; i++) {
1054     // Prepare Address
1055     idx_leaf = (idx_tree & ((1 << tree_h)-1));
1056     idx_tree = idx_tree >> tree_h;
1057 
1058     setLayerADRS(ots_addr, i);
1059     setTreeADRS(ots_addr, idx_tree);
1060     setType(ots_addr, 0);
1061 
1062     memcpy(ltree_addr, ots_addr, 12);
1063     setType(ltree_addr, 1);
1064 
1065     memcpy(node_addr, ltree_addr, 12);
1066     setType(node_addr, 2);
1067 
1068     setOTSADRS(ots_addr, idx_leaf);
1069 
1070     // Check WOTS signature
1071     wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr);
1072 
1073     sig_msg += params->xmss_par.wots_par.keysize;
1074     sig_msg_len -= params->xmss_par.wots_par.keysize;
1075 
1076     // Compute Ltree
1077     setLtreeADRS(ltree_addr, idx_leaf);
1078     l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr);
1079 
1080     // Compute root
1081     validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr);
1082 
1083     sig_msg += tree_h*n;
1084     sig_msg_len -= tree_h*n;
1085 
1086   }
1087 
1088   for (i = 0; i < n; i++)
1089     if (root[i] != pk[i])
1090       goto fail;
1091 
1092   *msglen = sig_msg_len;
1093   for (i = 0; i < *msglen; i++)
1094     msg[i] = sig_msg[i];
1095 
1096   return 0;
1097 
1098 
1099 fail:
1100   *msglen = sig_msg_len;
1101   for (i = 0; i < *msglen; i++)
1102     msg[i] = 0;
1103   *msglen = -1;
1104   return -1;
1105 }
1106 #endif /* WITH_XMSS */
1107