1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2004 Poul-Henning Kamp
5 * Copyright (c) 1994,1997 John S. Dyson
6 * Copyright (c) 2013 The FreeBSD Foundation
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * this file contains a new buffer I/O scheme implementing a coherent
36 * VM object and buffer cache scheme. Pains have been taken to make
37 * sure that the performance degradation associated with schemes such
38 * as this is not realized.
39 *
40 * Author: John S. Dyson
41 * Significant help during the development and debugging phases
42 * had been provided by David Greenman, also of the FreeBSD core team.
43 *
44 * see man buf(9) for more info.
45 */
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/bitset.h>
52 #include <sys/boottrace.h>
53 #include <sys/buf.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/devicestat.h>
57 #include <sys/eventhandler.h>
58 #include <sys/fail.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/memdesc.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/pctrie.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/sched.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/vmem.h>
79 #include <sys/vmmeter.h>
80 #include <sys/vnode.h>
81 #include <sys/watchdog.h>
82 #include <geom/geom.h>
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_map.h>
92 #include <vm/swap_pager.h>
93
94 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
95
96 struct bio_ops bioops; /* I/O operation notification */
97
98 struct buf_ops buf_ops_bio = {
99 .bop_name = "buf_ops_bio",
100 .bop_write = bufwrite,
101 .bop_strategy = bufstrategy,
102 .bop_sync = bufsync,
103 .bop_bdflush = bufbdflush,
104 };
105
106 struct bufqueue {
107 struct mtx_padalign bq_lock;
108 TAILQ_HEAD(, buf) bq_queue;
109 uint8_t bq_index;
110 uint16_t bq_subqueue;
111 int bq_len;
112 } __aligned(CACHE_LINE_SIZE);
113
114 #define BQ_LOCKPTR(bq) (&(bq)->bq_lock)
115 #define BQ_LOCK(bq) mtx_lock(BQ_LOCKPTR((bq)))
116 #define BQ_UNLOCK(bq) mtx_unlock(BQ_LOCKPTR((bq)))
117 #define BQ_ASSERT_LOCKED(bq) mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
118
119 struct bufdomain {
120 struct bufqueue *bd_subq;
121 struct bufqueue bd_dirtyq;
122 struct bufqueue *bd_cleanq;
123 struct mtx_padalign bd_run_lock;
124 /* Constants */
125 long bd_maxbufspace;
126 long bd_hibufspace;
127 long bd_lobufspace;
128 long bd_bufspacethresh;
129 int bd_hifreebuffers;
130 int bd_lofreebuffers;
131 int bd_hidirtybuffers;
132 int bd_lodirtybuffers;
133 int bd_dirtybufthresh;
134 int bd_lim;
135 /* atomics */
136 int bd_wanted;
137 bool bd_shutdown;
138 int __aligned(CACHE_LINE_SIZE) bd_numdirtybuffers;
139 int __aligned(CACHE_LINE_SIZE) bd_running;
140 long __aligned(CACHE_LINE_SIZE) bd_bufspace;
141 int __aligned(CACHE_LINE_SIZE) bd_freebuffers;
142 } __aligned(CACHE_LINE_SIZE);
143
144 #define BD_LOCKPTR(bd) (&(bd)->bd_cleanq->bq_lock)
145 #define BD_LOCK(bd) mtx_lock(BD_LOCKPTR((bd)))
146 #define BD_UNLOCK(bd) mtx_unlock(BD_LOCKPTR((bd)))
147 #define BD_ASSERT_LOCKED(bd) mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
148 #define BD_RUN_LOCKPTR(bd) (&(bd)->bd_run_lock)
149 #define BD_RUN_LOCK(bd) mtx_lock(BD_RUN_LOCKPTR((bd)))
150 #define BD_RUN_UNLOCK(bd) mtx_unlock(BD_RUN_LOCKPTR((bd)))
151 #define BD_DOMAIN(bd) (bd - bdomain)
152
153 static char *buf; /* buffer header pool */
154 static struct buf *
nbufp(unsigned i)155 nbufp(unsigned i)
156 {
157 return ((struct buf *)(buf + (sizeof(struct buf) +
158 sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
159 }
160
161 caddr_t __read_mostly unmapped_buf;
162 #ifdef INVARIANTS
163 caddr_t poisoned_buf = (void *)-1;
164 #endif
165
166 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
167 struct proc *bufdaemonproc;
168
169 static void vm_hold_free_pages(struct buf *bp, int newbsize);
170 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
171 vm_offset_t to);
172 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
173 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
174 vm_page_t m);
175 static void vfs_clean_pages_dirty_buf(struct buf *bp);
176 static void vfs_setdirty_range(struct buf *bp);
177 static void vfs_vmio_invalidate(struct buf *bp);
178 static void vfs_vmio_truncate(struct buf *bp, int npages);
179 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
180 static int vfs_bio_clcheck(struct vnode *vp, int size,
181 daddr_t lblkno, daddr_t blkno);
182 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
183 void (*)(struct buf *));
184 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
185 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
186 static void buf_daemon(void);
187 static __inline void bd_wakeup(void);
188 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
189 static void bufkva_reclaim(vmem_t *, int);
190 static void bufkva_free(struct buf *);
191 static int buf_import(void *, void **, int, int, int);
192 static void buf_release(void *, void **, int);
193 static void maxbcachebuf_adjust(void);
194 static inline struct bufdomain *bufdomain(struct buf *);
195 static void bq_remove(struct bufqueue *bq, struct buf *bp);
196 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
197 static int buf_recycle(struct bufdomain *, bool kva);
198 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
199 const char *lockname);
200 static void bd_init(struct bufdomain *bd);
201 static int bd_flushall(struct bufdomain *bd);
202 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
203 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
204
205 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
206 int vmiodirenable = TRUE;
207 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
208 "Use the VM system for directory writes");
209 static long runningbufspace;
210 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
211 "Amount of presently outstanding async buffer io");
212 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
213 NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
214 static counter_u64_t bufkvaspace;
215 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
216 "Kernel virtual memory used for buffers");
217 static long maxbufspace;
218 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
219 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
220 __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
221 "Maximum allowed value of bufspace (including metadata)");
222 static long bufmallocspace;
223 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
224 "Amount of malloced memory for buffers");
225 static long maxbufmallocspace;
226 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
227 0, "Maximum amount of malloced memory for buffers");
228 static long lobufspace;
229 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
230 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
231 __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
232 "Minimum amount of buffers we want to have");
233 long hibufspace;
234 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
235 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
236 __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
237 "Maximum allowed value of bufspace (excluding metadata)");
238 long bufspacethresh;
239 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
240 CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
241 __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
242 "Bufspace consumed before waking the daemon to free some");
243 static counter_u64_t buffreekvacnt;
244 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
245 "Number of times we have freed the KVA space from some buffer");
246 static counter_u64_t bufdefragcnt;
247 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
248 "Number of times we have had to repeat buffer allocation to defragment");
249 static long lorunningspace;
250 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
251 CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
252 "Minimum preferred space used for in-progress I/O");
253 static long hirunningspace;
254 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
255 CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
256 "Maximum amount of space to use for in-progress I/O");
257 int dirtybufferflushes;
258 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
259 0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
260 int bdwriteskip;
261 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
262 0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
263 int altbufferflushes;
264 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
265 &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
266 static int recursiveflushes;
267 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
268 &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
269 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
270 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
271 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
272 "Number of buffers that are dirty (has unwritten changes) at the moment");
273 static int lodirtybuffers;
274 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
275 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
276 __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
277 "How many buffers we want to have free before bufdaemon can sleep");
278 static int hidirtybuffers;
279 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
280 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
281 __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
282 "When the number of dirty buffers is considered severe");
283 int dirtybufthresh;
284 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
285 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
286 __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
287 "Number of bdwrite to bawrite conversions to clear dirty buffers");
288 static int numfreebuffers;
289 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
290 "Number of free buffers");
291 static int lofreebuffers;
292 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
293 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
294 __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
295 "Target number of free buffers");
296 static int hifreebuffers;
297 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
298 CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
299 __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
300 "Threshold for clean buffer recycling");
301 static counter_u64_t getnewbufcalls;
302 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
303 &getnewbufcalls, "Number of calls to getnewbuf");
304 static counter_u64_t getnewbufrestarts;
305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
306 &getnewbufrestarts,
307 "Number of times getnewbuf has had to restart a buffer acquisition");
308 static counter_u64_t mappingrestarts;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
310 &mappingrestarts,
311 "Number of times getblk has had to restart a buffer mapping for "
312 "unmapped buffer");
313 static counter_u64_t numbufallocfails;
314 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
315 &numbufallocfails, "Number of times buffer allocations failed");
316 static int flushbufqtarget = 100;
317 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
318 "Amount of work to do in flushbufqueues when helping bufdaemon");
319 static counter_u64_t notbufdflushes;
320 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, ¬bufdflushes,
321 "Number of dirty buffer flushes done by the bufdaemon helpers");
322 static long barrierwrites;
323 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
324 &barrierwrites, 0, "Number of barrier writes");
325 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed,
326 CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
327 &unmapped_buf_allowed, 0,
328 "Permit the use of the unmapped i/o");
329 int maxbcachebuf = MAXBCACHEBUF;
330 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
331 "Maximum size of a buffer cache block");
332
333 /*
334 * This lock synchronizes access to bd_request.
335 */
336 static struct mtx_padalign __exclusive_cache_line bdlock;
337
338 /*
339 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
340 * waitrunningbufspace().
341 */
342 static struct mtx_padalign __exclusive_cache_line rbreqlock;
343
344 /*
345 * Lock that protects bdirtywait.
346 */
347 static struct mtx_padalign __exclusive_cache_line bdirtylock;
348
349 /*
350 * bufdaemon shutdown request and sleep channel.
351 */
352 static bool bd_shutdown;
353
354 /*
355 * Wakeup point for bufdaemon, as well as indicator of whether it is already
356 * active. Set to 1 when the bufdaemon is already "on" the queue, 0 when it
357 * is idling.
358 */
359 static int bd_request;
360
361 /*
362 * Request for the buf daemon to write more buffers than is indicated by
363 * lodirtybuf. This may be necessary to push out excess dependencies or
364 * defragment the address space where a simple count of the number of dirty
365 * buffers is insufficient to characterize the demand for flushing them.
366 */
367 static int bd_speedupreq;
368
369 /*
370 * Synchronization (sleep/wakeup) variable for active buffer space requests.
371 * Set when wait starts, cleared prior to wakeup().
372 * Used in runningbufwakeup() and waitrunningbufspace().
373 */
374 static int runningbufreq;
375
376 /*
377 * Synchronization for bwillwrite() waiters.
378 */
379 static int bdirtywait;
380
381 /*
382 * Definitions for the buffer free lists.
383 */
384 #define QUEUE_NONE 0 /* on no queue */
385 #define QUEUE_EMPTY 1 /* empty buffer headers */
386 #define QUEUE_DIRTY 2 /* B_DELWRI buffers */
387 #define QUEUE_CLEAN 3 /* non-B_DELWRI buffers */
388 #define QUEUE_SENTINEL 4 /* not an queue index, but mark for sentinel */
389
390 /* Maximum number of buffer domains. */
391 #define BUF_DOMAINS 8
392
393 struct bufdomainset bdlodirty; /* Domains > lodirty */
394 struct bufdomainset bdhidirty; /* Domains > hidirty */
395
396 /* Configured number of clean queues. */
397 static int __read_mostly buf_domains;
398
399 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
400 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
401 struct bufqueue __exclusive_cache_line bqempty;
402
403 /*
404 * per-cpu empty buffer cache.
405 */
406 uma_zone_t buf_zone;
407
408 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)409 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
410 {
411 long value;
412 int error;
413
414 value = *(long *)arg1;
415 error = sysctl_handle_long(oidp, &value, 0, req);
416 if (error != 0 || req->newptr == NULL)
417 return (error);
418 mtx_lock(&rbreqlock);
419 if (arg1 == &hirunningspace) {
420 if (value < lorunningspace)
421 error = EINVAL;
422 else
423 hirunningspace = value;
424 } else {
425 KASSERT(arg1 == &lorunningspace,
426 ("%s: unknown arg1", __func__));
427 if (value > hirunningspace)
428 error = EINVAL;
429 else
430 lorunningspace = value;
431 }
432 mtx_unlock(&rbreqlock);
433 return (error);
434 }
435
436 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)437 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
438 {
439 int error;
440 int value;
441 int i;
442
443 value = *(int *)arg1;
444 error = sysctl_handle_int(oidp, &value, 0, req);
445 if (error != 0 || req->newptr == NULL)
446 return (error);
447 *(int *)arg1 = value;
448 for (i = 0; i < buf_domains; i++)
449 *(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
450 value / buf_domains;
451
452 return (error);
453 }
454
455 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)456 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
457 {
458 long value;
459 int error;
460 int i;
461
462 value = *(long *)arg1;
463 error = sysctl_handle_long(oidp, &value, 0, req);
464 if (error != 0 || req->newptr == NULL)
465 return (error);
466 *(long *)arg1 = value;
467 for (i = 0; i < buf_domains; i++)
468 *(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
469 value / buf_domains;
470
471 return (error);
472 }
473
474 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
475 defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
476 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)477 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
478 {
479 long lvalue;
480 int ivalue;
481 int i;
482
483 lvalue = 0;
484 for (i = 0; i < buf_domains; i++)
485 lvalue += bdomain[i].bd_bufspace;
486 if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
487 return (sysctl_handle_long(oidp, &lvalue, 0, req));
488 if (lvalue > INT_MAX)
489 /* On overflow, still write out a long to trigger ENOMEM. */
490 return (sysctl_handle_long(oidp, &lvalue, 0, req));
491 ivalue = lvalue;
492 return (sysctl_handle_int(oidp, &ivalue, 0, req));
493 }
494 #else
495 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)496 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
497 {
498 long lvalue;
499 int i;
500
501 lvalue = 0;
502 for (i = 0; i < buf_domains; i++)
503 lvalue += bdomain[i].bd_bufspace;
504 return (sysctl_handle_long(oidp, &lvalue, 0, req));
505 }
506 #endif
507
508 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)509 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
510 {
511 int value;
512 int i;
513
514 value = 0;
515 for (i = 0; i < buf_domains; i++)
516 value += bdomain[i].bd_numdirtybuffers;
517 return (sysctl_handle_int(oidp, &value, 0, req));
518 }
519
520 /*
521 * bdirtywakeup:
522 *
523 * Wakeup any bwillwrite() waiters.
524 */
525 static void
bdirtywakeup(void)526 bdirtywakeup(void)
527 {
528 mtx_lock(&bdirtylock);
529 if (bdirtywait) {
530 bdirtywait = 0;
531 wakeup(&bdirtywait);
532 }
533 mtx_unlock(&bdirtylock);
534 }
535
536 /*
537 * bd_clear:
538 *
539 * Clear a domain from the appropriate bitsets when dirtybuffers
540 * is decremented.
541 */
542 static void
bd_clear(struct bufdomain * bd)543 bd_clear(struct bufdomain *bd)
544 {
545
546 mtx_lock(&bdirtylock);
547 if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
548 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
549 if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
550 BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
551 mtx_unlock(&bdirtylock);
552 }
553
554 /*
555 * bd_set:
556 *
557 * Set a domain in the appropriate bitsets when dirtybuffers
558 * is incremented.
559 */
560 static void
bd_set(struct bufdomain * bd)561 bd_set(struct bufdomain *bd)
562 {
563
564 mtx_lock(&bdirtylock);
565 if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
566 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
567 if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
568 BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
569 mtx_unlock(&bdirtylock);
570 }
571
572 /*
573 * bdirtysub:
574 *
575 * Decrement the numdirtybuffers count by one and wakeup any
576 * threads blocked in bwillwrite().
577 */
578 static void
bdirtysub(struct buf * bp)579 bdirtysub(struct buf *bp)
580 {
581 struct bufdomain *bd;
582 int num;
583
584 bd = bufdomain(bp);
585 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
586 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
587 bdirtywakeup();
588 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
589 bd_clear(bd);
590 }
591
592 /*
593 * bdirtyadd:
594 *
595 * Increment the numdirtybuffers count by one and wakeup the buf
596 * daemon if needed.
597 */
598 static void
bdirtyadd(struct buf * bp)599 bdirtyadd(struct buf *bp)
600 {
601 struct bufdomain *bd;
602 int num;
603
604 /*
605 * Only do the wakeup once as we cross the boundary. The
606 * buf daemon will keep running until the condition clears.
607 */
608 bd = bufdomain(bp);
609 num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
610 if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
611 bd_wakeup();
612 if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
613 bd_set(bd);
614 }
615
616 /*
617 * bufspace_daemon_wakeup:
618 *
619 * Wakeup the daemons responsible for freeing clean bufs.
620 */
621 static void
bufspace_daemon_wakeup(struct bufdomain * bd)622 bufspace_daemon_wakeup(struct bufdomain *bd)
623 {
624
625 /*
626 * avoid the lock if the daemon is running.
627 */
628 if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
629 BD_RUN_LOCK(bd);
630 atomic_store_int(&bd->bd_running, 1);
631 wakeup(&bd->bd_running);
632 BD_RUN_UNLOCK(bd);
633 }
634 }
635
636 /*
637 * bufspace_adjust:
638 *
639 * Adjust the reported bufspace for a KVA managed buffer, possibly
640 * waking any waiters.
641 */
642 static void
bufspace_adjust(struct buf * bp,int bufsize)643 bufspace_adjust(struct buf *bp, int bufsize)
644 {
645 struct bufdomain *bd;
646 long space;
647 int diff;
648
649 KASSERT((bp->b_flags & B_MALLOC) == 0,
650 ("bufspace_adjust: malloc buf %p", bp));
651 bd = bufdomain(bp);
652 diff = bufsize - bp->b_bufsize;
653 if (diff < 0) {
654 atomic_subtract_long(&bd->bd_bufspace, -diff);
655 } else if (diff > 0) {
656 space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
657 /* Wake up the daemon on the transition. */
658 if (space < bd->bd_bufspacethresh &&
659 space + diff >= bd->bd_bufspacethresh)
660 bufspace_daemon_wakeup(bd);
661 }
662 bp->b_bufsize = bufsize;
663 }
664
665 /*
666 * bufspace_reserve:
667 *
668 * Reserve bufspace before calling allocbuf(). metadata has a
669 * different space limit than data.
670 */
671 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)672 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
673 {
674 long limit, new;
675 long space;
676
677 if (metadata)
678 limit = bd->bd_maxbufspace;
679 else
680 limit = bd->bd_hibufspace;
681 space = atomic_fetchadd_long(&bd->bd_bufspace, size);
682 new = space + size;
683 if (new > limit) {
684 atomic_subtract_long(&bd->bd_bufspace, size);
685 return (ENOSPC);
686 }
687
688 /* Wake up the daemon on the transition. */
689 if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
690 bufspace_daemon_wakeup(bd);
691
692 return (0);
693 }
694
695 /*
696 * bufspace_release:
697 *
698 * Release reserved bufspace after bufspace_adjust() has consumed it.
699 */
700 static void
bufspace_release(struct bufdomain * bd,int size)701 bufspace_release(struct bufdomain *bd, int size)
702 {
703
704 atomic_subtract_long(&bd->bd_bufspace, size);
705 }
706
707 /*
708 * bufspace_wait:
709 *
710 * Wait for bufspace, acting as the buf daemon if a locked vnode is
711 * supplied. bd_wanted must be set prior to polling for space. The
712 * operation must be re-tried on return.
713 */
714 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)715 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
716 int slpflag, int slptimeo)
717 {
718 struct thread *td;
719 int error, fl, norunbuf;
720
721 if ((gbflags & GB_NOWAIT_BD) != 0)
722 return;
723
724 td = curthread;
725 BD_LOCK(bd);
726 while (bd->bd_wanted) {
727 if (vp != NULL && vp->v_type != VCHR &&
728 (td->td_pflags & TDP_BUFNEED) == 0) {
729 BD_UNLOCK(bd);
730 /*
731 * getblk() is called with a vnode locked, and
732 * some majority of the dirty buffers may as
733 * well belong to the vnode. Flushing the
734 * buffers there would make a progress that
735 * cannot be achieved by the buf_daemon, that
736 * cannot lock the vnode.
737 */
738 norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
739 (td->td_pflags & TDP_NORUNNINGBUF);
740
741 /*
742 * Play bufdaemon. The getnewbuf() function
743 * may be called while the thread owns lock
744 * for another dirty buffer for the same
745 * vnode, which makes it impossible to use
746 * VOP_FSYNC() there, due to the buffer lock
747 * recursion.
748 */
749 td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
750 fl = buf_flush(vp, bd, flushbufqtarget);
751 td->td_pflags &= norunbuf;
752 BD_LOCK(bd);
753 if (fl != 0)
754 continue;
755 if (bd->bd_wanted == 0)
756 break;
757 }
758 error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
759 (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
760 if (error != 0)
761 break;
762 }
763 BD_UNLOCK(bd);
764 }
765
766 static void
bufspace_daemon_shutdown(void * arg,int howto __unused)767 bufspace_daemon_shutdown(void *arg, int howto __unused)
768 {
769 struct bufdomain *bd = arg;
770 int error;
771
772 if (KERNEL_PANICKED())
773 return;
774
775 BD_RUN_LOCK(bd);
776 bd->bd_shutdown = true;
777 wakeup(&bd->bd_running);
778 error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
779 "bufspace_shutdown", 60 * hz);
780 BD_RUN_UNLOCK(bd);
781 if (error != 0)
782 printf("bufspacedaemon wait error: %d\n", error);
783 }
784
785 /*
786 * bufspace_daemon:
787 *
788 * buffer space management daemon. Tries to maintain some marginal
789 * amount of free buffer space so that requesting processes neither
790 * block nor work to reclaim buffers.
791 */
792 static void
bufspace_daemon(void * arg)793 bufspace_daemon(void *arg)
794 {
795 struct bufdomain *bd = arg;
796
797 EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
798 SHUTDOWN_PRI_LAST + 100);
799
800 BD_RUN_LOCK(bd);
801 while (!bd->bd_shutdown) {
802 BD_RUN_UNLOCK(bd);
803
804 /*
805 * Free buffers from the clean queue until we meet our
806 * targets.
807 *
808 * Theory of operation: The buffer cache is most efficient
809 * when some free buffer headers and space are always
810 * available to getnewbuf(). This daemon attempts to prevent
811 * the excessive blocking and synchronization associated
812 * with shortfall. It goes through three phases according
813 * demand:
814 *
815 * 1) The daemon wakes up voluntarily once per-second
816 * during idle periods when the counters are below
817 * the wakeup thresholds (bufspacethresh, lofreebuffers).
818 *
819 * 2) The daemon wakes up as we cross the thresholds
820 * ahead of any potential blocking. This may bounce
821 * slightly according to the rate of consumption and
822 * release.
823 *
824 * 3) The daemon and consumers are starved for working
825 * clean buffers. This is the 'bufspace' sleep below
826 * which will inefficiently trade bufs with bqrelse
827 * until we return to condition 2.
828 */
829 while (bd->bd_bufspace > bd->bd_lobufspace ||
830 bd->bd_freebuffers < bd->bd_hifreebuffers) {
831 if (buf_recycle(bd, false) != 0) {
832 if (bd_flushall(bd))
833 continue;
834 /*
835 * Speedup dirty if we've run out of clean
836 * buffers. This is possible in particular
837 * because softdep may held many bufs locked
838 * pending writes to other bufs which are
839 * marked for delayed write, exhausting
840 * clean space until they are written.
841 */
842 bd_speedup();
843 BD_LOCK(bd);
844 if (bd->bd_wanted) {
845 msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
846 PRIBIO|PDROP, "bufspace", hz/10);
847 } else
848 BD_UNLOCK(bd);
849 }
850 maybe_yield();
851 }
852
853 /*
854 * Re-check our limits and sleep. bd_running must be
855 * cleared prior to checking the limits to avoid missed
856 * wakeups. The waker will adjust one of bufspace or
857 * freebuffers prior to checking bd_running.
858 */
859 BD_RUN_LOCK(bd);
860 if (bd->bd_shutdown)
861 break;
862 atomic_store_int(&bd->bd_running, 0);
863 if (bd->bd_bufspace < bd->bd_bufspacethresh &&
864 bd->bd_freebuffers > bd->bd_lofreebuffers) {
865 msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
866 PRIBIO, "-", hz);
867 } else {
868 /* Avoid spurious wakeups while running. */
869 atomic_store_int(&bd->bd_running, 1);
870 }
871 }
872 wakeup(&bd->bd_shutdown);
873 BD_RUN_UNLOCK(bd);
874 kthread_exit();
875 }
876
877 /*
878 * bufmallocadjust:
879 *
880 * Adjust the reported bufspace for a malloc managed buffer, possibly
881 * waking any waiters.
882 */
883 static void
bufmallocadjust(struct buf * bp,int bufsize)884 bufmallocadjust(struct buf *bp, int bufsize)
885 {
886 int diff;
887
888 KASSERT((bp->b_flags & B_MALLOC) != 0,
889 ("bufmallocadjust: non-malloc buf %p", bp));
890 diff = bufsize - bp->b_bufsize;
891 if (diff < 0)
892 atomic_subtract_long(&bufmallocspace, -diff);
893 else
894 atomic_add_long(&bufmallocspace, diff);
895 bp->b_bufsize = bufsize;
896 }
897
898 /*
899 * runningwakeup:
900 *
901 * Wake up processes that are waiting on asynchronous writes to fall
902 * below lorunningspace.
903 */
904 static void
runningwakeup(void)905 runningwakeup(void)
906 {
907
908 mtx_lock(&rbreqlock);
909 if (runningbufreq) {
910 runningbufreq = 0;
911 wakeup(&runningbufreq);
912 }
913 mtx_unlock(&rbreqlock);
914 }
915
916 /*
917 * runningbufwakeup:
918 *
919 * Decrement the outstanding write count according.
920 */
921 void
runningbufwakeup(struct buf * bp)922 runningbufwakeup(struct buf *bp)
923 {
924 long space, bspace;
925
926 bspace = bp->b_runningbufspace;
927 if (bspace == 0)
928 return;
929 space = atomic_fetchadd_long(&runningbufspace, -bspace);
930 KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
931 space, bspace));
932 bp->b_runningbufspace = 0;
933 /*
934 * Only acquire the lock and wakeup on the transition from exceeding
935 * the threshold to falling below it.
936 */
937 if (space < lorunningspace)
938 return;
939 if (space - bspace > lorunningspace)
940 return;
941 runningwakeup();
942 }
943
944 long
runningbufclaim(struct buf * bp,int space)945 runningbufclaim(struct buf *bp, int space)
946 {
947 long old;
948
949 old = atomic_fetchadd_long(&runningbufspace, space);
950 bp->b_runningbufspace = space;
951 return (old);
952 }
953
954 /*
955 * waitrunningbufspace()
956 *
957 * runningbufspace is a measure of the amount of I/O currently
958 * running. This routine is used in async-write situations to
959 * prevent creating huge backups of pending writes to a device.
960 * Only asynchronous writes are governed by this function.
961 *
962 * This does NOT turn an async write into a sync write. It waits
963 * for earlier writes to complete and generally returns before the
964 * caller's write has reached the device.
965 */
966 void
waitrunningbufspace(void)967 waitrunningbufspace(void)
968 {
969
970 mtx_lock(&rbreqlock);
971 while (runningbufspace > hirunningspace) {
972 runningbufreq = 1;
973 msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
974 }
975 mtx_unlock(&rbreqlock);
976 }
977
978 /*
979 * vfs_buf_test_cache:
980 *
981 * Called when a buffer is extended. This function clears the B_CACHE
982 * bit if the newly extended portion of the buffer does not contain
983 * valid data.
984 */
985 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)986 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
987 vm_offset_t size, vm_page_t m)
988 {
989
990 /*
991 * This function and its results are protected by higher level
992 * synchronization requiring vnode and buf locks to page in and
993 * validate pages.
994 */
995 if (bp->b_flags & B_CACHE) {
996 int base = (foff + off) & PAGE_MASK;
997 if (vm_page_is_valid(m, base, size) == 0)
998 bp->b_flags &= ~B_CACHE;
999 }
1000 }
1001
1002 /* Wake up the buffer daemon if necessary */
1003 static void
bd_wakeup(void)1004 bd_wakeup(void)
1005 {
1006
1007 mtx_lock(&bdlock);
1008 if (bd_request == 0) {
1009 bd_request = 1;
1010 wakeup(&bd_request);
1011 }
1012 mtx_unlock(&bdlock);
1013 }
1014
1015 /*
1016 * Adjust the maxbcachbuf tunable.
1017 */
1018 static void
maxbcachebuf_adjust(void)1019 maxbcachebuf_adjust(void)
1020 {
1021 int i;
1022
1023 /*
1024 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1025 */
1026 i = 2;
1027 while (i * 2 <= maxbcachebuf)
1028 i *= 2;
1029 maxbcachebuf = i;
1030 if (maxbcachebuf < MAXBSIZE)
1031 maxbcachebuf = MAXBSIZE;
1032 if (maxbcachebuf > maxphys)
1033 maxbcachebuf = maxphys;
1034 if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1035 printf("maxbcachebuf=%d\n", maxbcachebuf);
1036 }
1037
1038 /*
1039 * bd_speedup - speedup the buffer cache flushing code
1040 */
1041 void
bd_speedup(void)1042 bd_speedup(void)
1043 {
1044 int needwake;
1045
1046 mtx_lock(&bdlock);
1047 needwake = 0;
1048 if (bd_speedupreq == 0 || bd_request == 0)
1049 needwake = 1;
1050 bd_speedupreq = 1;
1051 bd_request = 1;
1052 if (needwake)
1053 wakeup(&bd_request);
1054 mtx_unlock(&bdlock);
1055 }
1056
1057 #ifdef __i386__
1058 #define TRANSIENT_DENOM 5
1059 #else
1060 #define TRANSIENT_DENOM 10
1061 #endif
1062
1063 /*
1064 * Calculating buffer cache scaling values and reserve space for buffer
1065 * headers. This is called during low level kernel initialization and
1066 * may be called more then once. We CANNOT write to the memory area
1067 * being reserved at this time.
1068 */
1069 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1070 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1071 {
1072 int tuned_nbuf;
1073 long maxbuf, maxbuf_sz, buf_sz, biotmap_sz;
1074
1075 /*
1076 * With KASAN or KMSAN enabled, the kernel map is shadowed. Account for
1077 * this when sizing maps based on the amount of physical memory
1078 * available.
1079 */
1080 #if defined(KASAN)
1081 physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1082 (KASAN_SHADOW_SCALE + 1);
1083 #elif defined(KMSAN)
1084 physmem_est /= 3;
1085
1086 /*
1087 * KMSAN cannot reliably determine whether buffer data is initialized
1088 * unless it is updated through a KVA mapping.
1089 */
1090 unmapped_buf_allowed = 0;
1091 #endif
1092
1093 /*
1094 * physmem_est is in pages. Convert it to kilobytes (assumes
1095 * PAGE_SIZE is >= 1K)
1096 */
1097 physmem_est = physmem_est * (PAGE_SIZE / 1024);
1098
1099 maxbcachebuf_adjust();
1100 /*
1101 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1102 * For the first 64MB of ram nominally allocate sufficient buffers to
1103 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
1104 * buffers to cover 1/10 of our ram over 64MB. When auto-sizing
1105 * the buffer cache we limit the eventual kva reservation to
1106 * maxbcache bytes.
1107 *
1108 * factor represents the 1/4 x ram conversion.
1109 */
1110 if (nbuf == 0) {
1111 int factor = 4 * BKVASIZE / 1024;
1112
1113 nbuf = 50;
1114 if (physmem_est > 4096)
1115 nbuf += min((physmem_est - 4096) / factor,
1116 65536 / factor);
1117 if (physmem_est > 65536)
1118 nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1119 32 * 1024 * 1024 / (factor * 5));
1120
1121 if (maxbcache && nbuf > maxbcache / BKVASIZE)
1122 nbuf = maxbcache / BKVASIZE;
1123 tuned_nbuf = 1;
1124 } else
1125 tuned_nbuf = 0;
1126
1127 /* XXX Avoid unsigned long overflows later on with maxbufspace. */
1128 maxbuf = (LONG_MAX / 3) / BKVASIZE;
1129 if (nbuf > maxbuf) {
1130 if (!tuned_nbuf)
1131 printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1132 maxbuf);
1133 nbuf = maxbuf;
1134 }
1135
1136 /*
1137 * Ideal allocation size for the transient bio submap is 10%
1138 * of the maximal space buffer map. This roughly corresponds
1139 * to the amount of the buffer mapped for typical UFS load.
1140 *
1141 * Clip the buffer map to reserve space for the transient
1142 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1143 * maximum buffer map extent on the platform.
1144 *
1145 * The fall-back to the maxbuf in case of maxbcache unset,
1146 * allows to not trim the buffer KVA for the architectures
1147 * with ample KVA space.
1148 */
1149 if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1150 maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1151 buf_sz = (long)nbuf * BKVASIZE;
1152 if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1153 (TRANSIENT_DENOM - 1)) {
1154 /*
1155 * There is more KVA than memory. Do not
1156 * adjust buffer map size, and assign the rest
1157 * of maxbuf to transient map.
1158 */
1159 biotmap_sz = maxbuf_sz - buf_sz;
1160 } else {
1161 /*
1162 * Buffer map spans all KVA we could afford on
1163 * this platform. Give 10% (20% on i386) of
1164 * the buffer map to the transient bio map.
1165 */
1166 biotmap_sz = buf_sz / TRANSIENT_DENOM;
1167 buf_sz -= biotmap_sz;
1168 }
1169 if (biotmap_sz / INT_MAX > maxphys)
1170 bio_transient_maxcnt = INT_MAX;
1171 else
1172 bio_transient_maxcnt = biotmap_sz / maxphys;
1173 /*
1174 * Artificially limit to 1024 simultaneous in-flight I/Os
1175 * using the transient mapping.
1176 */
1177 if (bio_transient_maxcnt > 1024)
1178 bio_transient_maxcnt = 1024;
1179 if (tuned_nbuf)
1180 nbuf = buf_sz / BKVASIZE;
1181 }
1182
1183 if (nswbuf == 0) {
1184 /*
1185 * Pager buffers are allocated for short periods, so scale the
1186 * number of reserved buffers based on the number of CPUs rather
1187 * than amount of memory.
1188 */
1189 nswbuf = min(nbuf / 4, 32 * mp_ncpus);
1190 if (nswbuf < NSWBUF_MIN)
1191 nswbuf = NSWBUF_MIN;
1192 }
1193
1194 /*
1195 * Reserve space for the buffer cache buffers
1196 */
1197 buf = (char *)v;
1198 v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1199 atop(maxbcachebuf)) * nbuf;
1200
1201 return (v);
1202 }
1203
1204 /*
1205 * Single global constant for BUF_WMESG, to avoid getting multiple
1206 * references.
1207 */
1208 static const char buf_wmesg[] = "bufwait";
1209
1210 /* Initialize the buffer subsystem. Called before use of any buffers. */
1211 void
bufinit(void)1212 bufinit(void)
1213 {
1214 struct buf *bp;
1215 int i;
1216
1217 TSENTER();
1218 KASSERT(maxbcachebuf >= MAXBSIZE,
1219 ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1220 MAXBSIZE));
1221 bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1222 mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1223 mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1224 mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1225
1226 unmapped_buf = (caddr_t)kva_alloc(maxphys);
1227 #ifdef INVARIANTS
1228 poisoned_buf = unmapped_buf;
1229 #endif
1230
1231 /* finally, initialize each buffer header and stick on empty q */
1232 for (i = 0; i < nbuf; i++) {
1233 bp = nbufp(i);
1234 bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1235 bp->b_flags = B_INVAL;
1236 bp->b_rcred = NOCRED;
1237 bp->b_wcred = NOCRED;
1238 bp->b_qindex = QUEUE_NONE;
1239 bp->b_domain = -1;
1240 bp->b_subqueue = mp_maxid + 1;
1241 bp->b_xflags = 0;
1242 bp->b_data = bp->b_kvabase = unmapped_buf;
1243 LIST_INIT(&bp->b_dep);
1244 BUF_LOCKINIT(bp, buf_wmesg);
1245 bq_insert(&bqempty, bp, false);
1246 }
1247
1248 /*
1249 * maxbufspace is the absolute maximum amount of buffer space we are
1250 * allowed to reserve in KVM and in real terms. The absolute maximum
1251 * is nominally used by metadata. hibufspace is the nominal maximum
1252 * used by most other requests. The differential is required to
1253 * ensure that metadata deadlocks don't occur.
1254 *
1255 * maxbufspace is based on BKVASIZE. Allocating buffers larger then
1256 * this may result in KVM fragmentation which is not handled optimally
1257 * by the system. XXX This is less true with vmem. We could use
1258 * PAGE_SIZE.
1259 */
1260 maxbufspace = (long)nbuf * BKVASIZE;
1261 hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1262 lobufspace = (hibufspace / 20) * 19; /* 95% */
1263 bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1264
1265 /*
1266 * Note: The upper limit for hirunningspace was chosen arbitrarily and
1267 * may need further tuning. It corresponds to 128 outstanding write IO
1268 * requests, which fits with many RAID controllers' tagged queuing
1269 * limits.
1270 *
1271 * The lower 1 MiB limit is the historical upper limit for
1272 * hirunningspace.
1273 */
1274 hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1275 128 * maxphys), 1024 * 1024);
1276 lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1277
1278 /*
1279 * Limit the amount of malloc memory since it is wired permanently into
1280 * the kernel space. Even though this is accounted for in the buffer
1281 * allocation, we don't want the malloced region to grow uncontrolled.
1282 * The malloc scheme improves memory utilization significantly on
1283 * average (small) directories.
1284 */
1285 maxbufmallocspace = hibufspace / 20;
1286
1287 /*
1288 * Reduce the chance of a deadlock occurring by limiting the number
1289 * of delayed-write dirty buffers we allow to stack up.
1290 */
1291 hidirtybuffers = nbuf / 4 + 20;
1292 dirtybufthresh = hidirtybuffers * 9 / 10;
1293 /*
1294 * To support extreme low-memory systems, make sure hidirtybuffers
1295 * cannot eat up all available buffer space. This occurs when our
1296 * minimum cannot be met. We try to size hidirtybuffers to 3/4 our
1297 * buffer space assuming BKVASIZE'd buffers.
1298 */
1299 while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1300 hidirtybuffers >>= 1;
1301 }
1302 lodirtybuffers = hidirtybuffers / 2;
1303
1304 /*
1305 * lofreebuffers should be sufficient to avoid stalling waiting on
1306 * buf headers under heavy utilization. The bufs in per-cpu caches
1307 * are counted as free but will be unavailable to threads executing
1308 * on other cpus.
1309 *
1310 * hifreebuffers is the free target for the bufspace daemon. This
1311 * should be set appropriately to limit work per-iteration.
1312 */
1313 lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1314 hifreebuffers = (3 * lofreebuffers) / 2;
1315 numfreebuffers = nbuf;
1316
1317 /* Setup the kva and free list allocators. */
1318 vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1319 buf_zone = uma_zcache_create("buf free cache",
1320 sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1321 NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1322
1323 /*
1324 * Size the clean queue according to the amount of buffer space.
1325 * One queue per-256mb up to the max. More queues gives better
1326 * concurrency but less accurate LRU.
1327 */
1328 buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1329 for (i = 0 ; i < buf_domains; i++) {
1330 struct bufdomain *bd;
1331
1332 bd = &bdomain[i];
1333 bd_init(bd);
1334 bd->bd_freebuffers = nbuf / buf_domains;
1335 bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1336 bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1337 bd->bd_bufspace = 0;
1338 bd->bd_maxbufspace = maxbufspace / buf_domains;
1339 bd->bd_hibufspace = hibufspace / buf_domains;
1340 bd->bd_lobufspace = lobufspace / buf_domains;
1341 bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1342 bd->bd_numdirtybuffers = 0;
1343 bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1344 bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1345 bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1346 /* Don't allow more than 2% of bufs in the per-cpu caches. */
1347 bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1348 }
1349 getnewbufcalls = counter_u64_alloc(M_WAITOK);
1350 getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1351 mappingrestarts = counter_u64_alloc(M_WAITOK);
1352 numbufallocfails = counter_u64_alloc(M_WAITOK);
1353 notbufdflushes = counter_u64_alloc(M_WAITOK);
1354 buffreekvacnt = counter_u64_alloc(M_WAITOK);
1355 bufdefragcnt = counter_u64_alloc(M_WAITOK);
1356 bufkvaspace = counter_u64_alloc(M_WAITOK);
1357 TSEXIT();
1358 }
1359
1360 #ifdef INVARIANTS
1361 static inline void
vfs_buf_check_mapped(struct buf * bp)1362 vfs_buf_check_mapped(struct buf *bp)
1363 {
1364
1365 KASSERT(bp->b_kvabase != unmapped_buf,
1366 ("mapped buf: b_kvabase was not updated %p", bp));
1367 KASSERT(bp->b_data != unmapped_buf,
1368 ("mapped buf: b_data was not updated %p", bp));
1369 KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1370 maxphys, ("b_data + b_offset unmapped %p", bp));
1371 }
1372
1373 static inline void
vfs_buf_check_unmapped(struct buf * bp)1374 vfs_buf_check_unmapped(struct buf *bp)
1375 {
1376
1377 KASSERT(bp->b_data == unmapped_buf,
1378 ("unmapped buf: corrupted b_data %p", bp));
1379 }
1380
1381 #define BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1382 #define BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1383 #else
1384 #define BUF_CHECK_MAPPED(bp) do {} while (0)
1385 #define BUF_CHECK_UNMAPPED(bp) do {} while (0)
1386 #endif
1387
1388 static int
isbufbusy(struct buf * bp)1389 isbufbusy(struct buf *bp)
1390 {
1391 if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1392 ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1393 return (1);
1394 return (0);
1395 }
1396
1397 /*
1398 * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1399 */
1400 void
bufshutdown(int show_busybufs)1401 bufshutdown(int show_busybufs)
1402 {
1403 static int first_buf_printf = 1;
1404 struct buf *bp;
1405 int i, iter, nbusy, pbusy;
1406 #ifndef PREEMPTION
1407 int subiter;
1408 #endif
1409
1410 /*
1411 * Sync filesystems for shutdown
1412 */
1413 wdog_kern_pat(WD_LASTVAL);
1414 kern_sync(curthread);
1415
1416 /*
1417 * With soft updates, some buffers that are
1418 * written will be remarked as dirty until other
1419 * buffers are written.
1420 */
1421 for (iter = pbusy = 0; iter < 20; iter++) {
1422 nbusy = 0;
1423 for (i = nbuf - 1; i >= 0; i--) {
1424 bp = nbufp(i);
1425 if (isbufbusy(bp))
1426 nbusy++;
1427 }
1428 if (nbusy == 0) {
1429 if (first_buf_printf)
1430 printf("All buffers synced.");
1431 break;
1432 }
1433 if (first_buf_printf) {
1434 printf("Syncing disks, buffers remaining... ");
1435 first_buf_printf = 0;
1436 }
1437 printf("%d ", nbusy);
1438 if (nbusy < pbusy)
1439 iter = 0;
1440 pbusy = nbusy;
1441
1442 wdog_kern_pat(WD_LASTVAL);
1443 kern_sync(curthread);
1444
1445 #ifdef PREEMPTION
1446 /*
1447 * Spin for a while to allow interrupt threads to run.
1448 */
1449 DELAY(50000 * iter);
1450 #else
1451 /*
1452 * Context switch several times to allow interrupt
1453 * threads to run.
1454 */
1455 for (subiter = 0; subiter < 50 * iter; subiter++) {
1456 sched_relinquish(curthread);
1457 DELAY(1000);
1458 }
1459 #endif
1460 }
1461 printf("\n");
1462 /*
1463 * Count only busy local buffers to prevent forcing
1464 * a fsck if we're just a client of a wedged NFS server
1465 */
1466 nbusy = 0;
1467 for (i = nbuf - 1; i >= 0; i--) {
1468 bp = nbufp(i);
1469 if (isbufbusy(bp)) {
1470 #if 0
1471 /* XXX: This is bogus. We should probably have a BO_REMOTE flag instead */
1472 if (bp->b_dev == NULL) {
1473 TAILQ_REMOVE(&mountlist,
1474 bp->b_vp->v_mount, mnt_list);
1475 continue;
1476 }
1477 #endif
1478 nbusy++;
1479 if (show_busybufs > 0) {
1480 printf(
1481 "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1482 nbusy, bp, bp->b_vp, bp->b_flags,
1483 (intmax_t)bp->b_blkno,
1484 (intmax_t)bp->b_lblkno);
1485 BUF_LOCKPRINTINFO(bp);
1486 if (show_busybufs > 1)
1487 vn_printf(bp->b_vp,
1488 "vnode content: ");
1489 }
1490 }
1491 }
1492 if (nbusy) {
1493 /*
1494 * Failed to sync all blocks. Indicate this and don't
1495 * unmount filesystems (thus forcing an fsck on reboot).
1496 */
1497 BOOTTRACE("shutdown failed to sync buffers");
1498 printf("Giving up on %d buffers\n", nbusy);
1499 DELAY(5000000); /* 5 seconds */
1500 swapoff_all();
1501 } else {
1502 BOOTTRACE("shutdown sync complete");
1503 if (!first_buf_printf)
1504 printf("Final sync complete\n");
1505
1506 /*
1507 * Unmount filesystems and perform swapoff, to quiesce
1508 * the system as much as possible. In particular, no
1509 * I/O should be initiated from top levels since it
1510 * might be abruptly terminated by reset, or otherwise
1511 * erronously handled because other parts of the
1512 * system are disabled.
1513 *
1514 * Swapoff before unmount, because file-backed swap is
1515 * non-operational after unmount of the underlying
1516 * filesystem.
1517 */
1518 if (!KERNEL_PANICKED()) {
1519 swapoff_all();
1520 vfs_unmountall();
1521 }
1522 BOOTTRACE("shutdown unmounted all filesystems");
1523 }
1524 DELAY(100000); /* wait for console output to finish */
1525 }
1526
1527 static void
bpmap_qenter(struct buf * bp)1528 bpmap_qenter(struct buf *bp)
1529 {
1530
1531 BUF_CHECK_MAPPED(bp);
1532
1533 /*
1534 * bp->b_data is relative to bp->b_offset, but
1535 * bp->b_offset may be offset into the first page.
1536 */
1537 bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1538 pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1539 bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1540 (vm_offset_t)(bp->b_offset & PAGE_MASK));
1541 }
1542
1543 static inline struct bufdomain *
bufdomain(struct buf * bp)1544 bufdomain(struct buf *bp)
1545 {
1546
1547 return (&bdomain[bp->b_domain]);
1548 }
1549
1550 static struct bufqueue *
bufqueue(struct buf * bp)1551 bufqueue(struct buf *bp)
1552 {
1553
1554 switch (bp->b_qindex) {
1555 case QUEUE_NONE:
1556 /* FALLTHROUGH */
1557 case QUEUE_SENTINEL:
1558 return (NULL);
1559 case QUEUE_EMPTY:
1560 return (&bqempty);
1561 case QUEUE_DIRTY:
1562 return (&bufdomain(bp)->bd_dirtyq);
1563 case QUEUE_CLEAN:
1564 return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1565 default:
1566 break;
1567 }
1568 panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1569 }
1570
1571 /*
1572 * Return the locked bufqueue that bp is a member of.
1573 */
1574 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1575 bufqueue_acquire(struct buf *bp)
1576 {
1577 struct bufqueue *bq, *nbq;
1578
1579 /*
1580 * bp can be pushed from a per-cpu queue to the
1581 * cleanq while we're waiting on the lock. Retry
1582 * if the queues don't match.
1583 */
1584 bq = bufqueue(bp);
1585 BQ_LOCK(bq);
1586 for (;;) {
1587 nbq = bufqueue(bp);
1588 if (bq == nbq)
1589 break;
1590 BQ_UNLOCK(bq);
1591 BQ_LOCK(nbq);
1592 bq = nbq;
1593 }
1594 return (bq);
1595 }
1596
1597 /*
1598 * binsfree:
1599 *
1600 * Insert the buffer into the appropriate free list. Requires a
1601 * locked buffer on entry and buffer is unlocked before return.
1602 */
1603 static void
binsfree(struct buf * bp,int qindex)1604 binsfree(struct buf *bp, int qindex)
1605 {
1606 struct bufdomain *bd;
1607 struct bufqueue *bq;
1608
1609 KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1610 ("binsfree: Invalid qindex %d", qindex));
1611 BUF_ASSERT_XLOCKED(bp);
1612
1613 /*
1614 * Handle delayed bremfree() processing.
1615 */
1616 if (bp->b_flags & B_REMFREE) {
1617 if (bp->b_qindex == qindex) {
1618 bp->b_flags |= B_REUSE;
1619 bp->b_flags &= ~B_REMFREE;
1620 BUF_UNLOCK(bp);
1621 return;
1622 }
1623 bq = bufqueue_acquire(bp);
1624 bq_remove(bq, bp);
1625 BQ_UNLOCK(bq);
1626 }
1627 bd = bufdomain(bp);
1628 if (qindex == QUEUE_CLEAN) {
1629 if (bd->bd_lim != 0)
1630 bq = &bd->bd_subq[PCPU_GET(cpuid)];
1631 else
1632 bq = bd->bd_cleanq;
1633 } else
1634 bq = &bd->bd_dirtyq;
1635 bq_insert(bq, bp, true);
1636 }
1637
1638 /*
1639 * buf_free:
1640 *
1641 * Free a buffer to the buf zone once it no longer has valid contents.
1642 */
1643 static void
buf_free(struct buf * bp)1644 buf_free(struct buf *bp)
1645 {
1646
1647 if (bp->b_flags & B_REMFREE)
1648 bremfreef(bp);
1649 if (bp->b_vflags & BV_BKGRDINPROG)
1650 panic("losing buffer 1");
1651 if (bp->b_rcred != NOCRED) {
1652 crfree(bp->b_rcred);
1653 bp->b_rcred = NOCRED;
1654 }
1655 if (bp->b_wcred != NOCRED) {
1656 crfree(bp->b_wcred);
1657 bp->b_wcred = NOCRED;
1658 }
1659 if (!LIST_EMPTY(&bp->b_dep))
1660 buf_deallocate(bp);
1661 bufkva_free(bp);
1662 atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1663 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1664 BUF_UNLOCK(bp);
1665 uma_zfree(buf_zone, bp);
1666 }
1667
1668 /*
1669 * buf_import:
1670 *
1671 * Import bufs into the uma cache from the buf list. The system still
1672 * expects a static array of bufs and much of the synchronization
1673 * around bufs assumes type stable storage. As a result, UMA is used
1674 * only as a per-cpu cache of bufs still maintained on a global list.
1675 */
1676 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1677 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1678 {
1679 struct buf *bp;
1680 int i;
1681
1682 BQ_LOCK(&bqempty);
1683 for (i = 0; i < cnt; i++) {
1684 bp = TAILQ_FIRST(&bqempty.bq_queue);
1685 if (bp == NULL)
1686 break;
1687 bq_remove(&bqempty, bp);
1688 store[i] = bp;
1689 }
1690 BQ_UNLOCK(&bqempty);
1691
1692 return (i);
1693 }
1694
1695 /*
1696 * buf_release:
1697 *
1698 * Release bufs from the uma cache back to the buffer queues.
1699 */
1700 static void
buf_release(void * arg,void ** store,int cnt)1701 buf_release(void *arg, void **store, int cnt)
1702 {
1703 struct bufqueue *bq;
1704 struct buf *bp;
1705 int i;
1706
1707 bq = &bqempty;
1708 BQ_LOCK(bq);
1709 for (i = 0; i < cnt; i++) {
1710 bp = store[i];
1711 /* Inline bq_insert() to batch locking. */
1712 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1713 bp->b_flags &= ~(B_AGE | B_REUSE);
1714 bq->bq_len++;
1715 bp->b_qindex = bq->bq_index;
1716 }
1717 BQ_UNLOCK(bq);
1718 }
1719
1720 /*
1721 * buf_alloc:
1722 *
1723 * Allocate an empty buffer header.
1724 */
1725 static struct buf *
buf_alloc(struct bufdomain * bd)1726 buf_alloc(struct bufdomain *bd)
1727 {
1728 struct buf *bp;
1729 int freebufs, error;
1730
1731 /*
1732 * We can only run out of bufs in the buf zone if the average buf
1733 * is less than BKVASIZE. In this case the actual wait/block will
1734 * come from buf_reycle() failing to flush one of these small bufs.
1735 */
1736 bp = NULL;
1737 freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1738 if (freebufs > 0)
1739 bp = uma_zalloc(buf_zone, M_NOWAIT);
1740 if (bp == NULL) {
1741 atomic_add_int(&bd->bd_freebuffers, 1);
1742 bufspace_daemon_wakeup(bd);
1743 counter_u64_add(numbufallocfails, 1);
1744 return (NULL);
1745 }
1746 /*
1747 * Wake-up the bufspace daemon on transition below threshold.
1748 */
1749 if (freebufs == bd->bd_lofreebuffers)
1750 bufspace_daemon_wakeup(bd);
1751
1752 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1753 KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1754 error));
1755 (void)error;
1756
1757 KASSERT(bp->b_vp == NULL,
1758 ("bp: %p still has vnode %p.", bp, bp->b_vp));
1759 KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1760 ("invalid buffer %p flags %#x", bp, bp->b_flags));
1761 KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1762 ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1763 KASSERT(bp->b_npages == 0,
1764 ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1765 KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1766 KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1767 MPASS((bp->b_flags & B_MAXPHYS) == 0);
1768
1769 bp->b_domain = BD_DOMAIN(bd);
1770 bp->b_flags = 0;
1771 bp->b_ioflags = 0;
1772 bp->b_xflags = 0;
1773 bp->b_vflags = 0;
1774 bp->b_vp = NULL;
1775 bp->b_blkno = bp->b_lblkno = 0;
1776 bp->b_offset = NOOFFSET;
1777 bp->b_iodone = 0;
1778 bp->b_error = 0;
1779 bp->b_resid = 0;
1780 bp->b_bcount = 0;
1781 bp->b_npages = 0;
1782 bp->b_dirtyoff = bp->b_dirtyend = 0;
1783 bp->b_bufobj = NULL;
1784 bp->b_data = bp->b_kvabase = unmapped_buf;
1785 bp->b_fsprivate1 = NULL;
1786 bp->b_fsprivate2 = NULL;
1787 bp->b_fsprivate3 = NULL;
1788 LIST_INIT(&bp->b_dep);
1789
1790 return (bp);
1791 }
1792
1793 /*
1794 * buf_recycle:
1795 *
1796 * Free a buffer from the given bufqueue. kva controls whether the
1797 * freed buf must own some kva resources. This is used for
1798 * defragmenting.
1799 */
1800 static int
buf_recycle(struct bufdomain * bd,bool kva)1801 buf_recycle(struct bufdomain *bd, bool kva)
1802 {
1803 struct bufqueue *bq;
1804 struct buf *bp, *nbp;
1805
1806 if (kva)
1807 counter_u64_add(bufdefragcnt, 1);
1808 nbp = NULL;
1809 bq = bd->bd_cleanq;
1810 BQ_LOCK(bq);
1811 KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1812 ("buf_recycle: Locks don't match"));
1813 nbp = TAILQ_FIRST(&bq->bq_queue);
1814
1815 /*
1816 * Run scan, possibly freeing data and/or kva mappings on the fly
1817 * depending.
1818 */
1819 while ((bp = nbp) != NULL) {
1820 /*
1821 * Calculate next bp (we can only use it if we do not
1822 * release the bqlock).
1823 */
1824 nbp = TAILQ_NEXT(bp, b_freelist);
1825
1826 /*
1827 * If we are defragging then we need a buffer with
1828 * some kva to reclaim.
1829 */
1830 if (kva && bp->b_kvasize == 0)
1831 continue;
1832
1833 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1834 continue;
1835
1836 /*
1837 * Implement a second chance algorithm for frequently
1838 * accessed buffers.
1839 */
1840 if ((bp->b_flags & B_REUSE) != 0) {
1841 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1842 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1843 bp->b_flags &= ~B_REUSE;
1844 BUF_UNLOCK(bp);
1845 continue;
1846 }
1847
1848 /*
1849 * Skip buffers with background writes in progress.
1850 */
1851 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1852 BUF_UNLOCK(bp);
1853 continue;
1854 }
1855
1856 KASSERT(bp->b_qindex == QUEUE_CLEAN,
1857 ("buf_recycle: inconsistent queue %d bp %p",
1858 bp->b_qindex, bp));
1859 KASSERT(bp->b_domain == BD_DOMAIN(bd),
1860 ("getnewbuf: queue domain %d doesn't match request %d",
1861 bp->b_domain, (int)BD_DOMAIN(bd)));
1862 /*
1863 * NOTE: nbp is now entirely invalid. We can only restart
1864 * the scan from this point on.
1865 */
1866 bq_remove(bq, bp);
1867 BQ_UNLOCK(bq);
1868
1869 /*
1870 * Requeue the background write buffer with error and
1871 * restart the scan.
1872 */
1873 if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1874 bqrelse(bp);
1875 BQ_LOCK(bq);
1876 nbp = TAILQ_FIRST(&bq->bq_queue);
1877 continue;
1878 }
1879 bp->b_flags |= B_INVAL;
1880 brelse(bp);
1881 return (0);
1882 }
1883 bd->bd_wanted = 1;
1884 BQ_UNLOCK(bq);
1885
1886 return (ENOBUFS);
1887 }
1888
1889 /*
1890 * bremfree:
1891 *
1892 * Mark the buffer for removal from the appropriate free list.
1893 *
1894 */
1895 void
bremfree(struct buf * bp)1896 bremfree(struct buf *bp)
1897 {
1898
1899 CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1900 KASSERT((bp->b_flags & B_REMFREE) == 0,
1901 ("bremfree: buffer %p already marked for delayed removal.", bp));
1902 KASSERT(bp->b_qindex != QUEUE_NONE,
1903 ("bremfree: buffer %p not on a queue.", bp));
1904 BUF_ASSERT_XLOCKED(bp);
1905
1906 bp->b_flags |= B_REMFREE;
1907 }
1908
1909 /*
1910 * bremfreef:
1911 *
1912 * Force an immediate removal from a free list. Used only in nfs when
1913 * it abuses the b_freelist pointer.
1914 */
1915 void
bremfreef(struct buf * bp)1916 bremfreef(struct buf *bp)
1917 {
1918 struct bufqueue *bq;
1919
1920 bq = bufqueue_acquire(bp);
1921 bq_remove(bq, bp);
1922 BQ_UNLOCK(bq);
1923 }
1924
1925 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1926 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1927 {
1928
1929 mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1930 TAILQ_INIT(&bq->bq_queue);
1931 bq->bq_len = 0;
1932 bq->bq_index = qindex;
1933 bq->bq_subqueue = subqueue;
1934 }
1935
1936 static void
bd_init(struct bufdomain * bd)1937 bd_init(struct bufdomain *bd)
1938 {
1939 int i;
1940
1941 /* Per-CPU clean buf queues, plus one global queue. */
1942 bd->bd_subq = mallocarray(mp_maxid + 2, sizeof(struct bufqueue),
1943 M_BIOBUF, M_WAITOK | M_ZERO);
1944 bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1945 bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1946 bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1947 for (i = 0; i <= mp_maxid; i++)
1948 bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1949 "bufq clean subqueue lock");
1950 mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1951 }
1952
1953 /*
1954 * bq_remove:
1955 *
1956 * Removes a buffer from the free list, must be called with the
1957 * correct qlock held.
1958 */
1959 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1960 bq_remove(struct bufqueue *bq, struct buf *bp)
1961 {
1962
1963 CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1964 bp, bp->b_vp, bp->b_flags);
1965 KASSERT(bp->b_qindex != QUEUE_NONE,
1966 ("bq_remove: buffer %p not on a queue.", bp));
1967 KASSERT(bufqueue(bp) == bq,
1968 ("bq_remove: Remove buffer %p from wrong queue.", bp));
1969
1970 BQ_ASSERT_LOCKED(bq);
1971 if (bp->b_qindex != QUEUE_EMPTY) {
1972 BUF_ASSERT_XLOCKED(bp);
1973 }
1974 KASSERT(bq->bq_len >= 1,
1975 ("queue %d underflow", bp->b_qindex));
1976 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1977 bq->bq_len--;
1978 bp->b_qindex = QUEUE_NONE;
1979 bp->b_flags &= ~(B_REMFREE | B_REUSE);
1980 }
1981
1982 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1983 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1984 {
1985 struct buf *bp;
1986
1987 BQ_ASSERT_LOCKED(bq);
1988 if (bq != bd->bd_cleanq) {
1989 BD_LOCK(bd);
1990 while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1991 TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1992 TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1993 b_freelist);
1994 bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1995 }
1996 bd->bd_cleanq->bq_len += bq->bq_len;
1997 bq->bq_len = 0;
1998 }
1999 if (bd->bd_wanted) {
2000 bd->bd_wanted = 0;
2001 wakeup(&bd->bd_wanted);
2002 }
2003 if (bq != bd->bd_cleanq)
2004 BD_UNLOCK(bd);
2005 }
2006
2007 static int
bd_flushall(struct bufdomain * bd)2008 bd_flushall(struct bufdomain *bd)
2009 {
2010 struct bufqueue *bq;
2011 int flushed;
2012 int i;
2013
2014 if (bd->bd_lim == 0)
2015 return (0);
2016 flushed = 0;
2017 for (i = 0; i <= mp_maxid; i++) {
2018 bq = &bd->bd_subq[i];
2019 if (bq->bq_len == 0)
2020 continue;
2021 BQ_LOCK(bq);
2022 bd_flush(bd, bq);
2023 BQ_UNLOCK(bq);
2024 flushed++;
2025 }
2026
2027 return (flushed);
2028 }
2029
2030 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)2031 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
2032 {
2033 struct bufdomain *bd;
2034
2035 if (bp->b_qindex != QUEUE_NONE)
2036 panic("bq_insert: free buffer %p onto another queue?", bp);
2037
2038 bd = bufdomain(bp);
2039 if (bp->b_flags & B_AGE) {
2040 /* Place this buf directly on the real queue. */
2041 if (bq->bq_index == QUEUE_CLEAN)
2042 bq = bd->bd_cleanq;
2043 BQ_LOCK(bq);
2044 TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2045 } else {
2046 BQ_LOCK(bq);
2047 TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2048 }
2049 bp->b_flags &= ~(B_AGE | B_REUSE);
2050 bq->bq_len++;
2051 bp->b_qindex = bq->bq_index;
2052 bp->b_subqueue = bq->bq_subqueue;
2053
2054 /*
2055 * Unlock before we notify so that we don't wakeup a waiter that
2056 * fails a trylock on the buf and sleeps again.
2057 */
2058 if (unlock)
2059 BUF_UNLOCK(bp);
2060
2061 if (bp->b_qindex == QUEUE_CLEAN) {
2062 /*
2063 * Flush the per-cpu queue and notify any waiters.
2064 */
2065 if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2066 bq->bq_len >= bd->bd_lim))
2067 bd_flush(bd, bq);
2068 }
2069 BQ_UNLOCK(bq);
2070 }
2071
2072 /*
2073 * bufkva_free:
2074 *
2075 * Free the kva allocation for a buffer.
2076 *
2077 */
2078 static void
bufkva_free(struct buf * bp)2079 bufkva_free(struct buf *bp)
2080 {
2081
2082 #ifdef INVARIANTS
2083 if (bp->b_kvasize == 0) {
2084 KASSERT(bp->b_kvabase == unmapped_buf &&
2085 bp->b_data == unmapped_buf,
2086 ("Leaked KVA space on %p", bp));
2087 } else if (buf_mapped(bp))
2088 BUF_CHECK_MAPPED(bp);
2089 else
2090 BUF_CHECK_UNMAPPED(bp);
2091 #endif
2092 if (bp->b_kvasize == 0)
2093 return;
2094
2095 vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2096 counter_u64_add(bufkvaspace, -bp->b_kvasize);
2097 counter_u64_add(buffreekvacnt, 1);
2098 bp->b_data = bp->b_kvabase = unmapped_buf;
2099 bp->b_kvasize = 0;
2100 }
2101
2102 /*
2103 * bufkva_alloc:
2104 *
2105 * Allocate the buffer KVA and set b_kvasize and b_kvabase.
2106 */
2107 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2108 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2109 {
2110 vm_offset_t addr;
2111 int error;
2112
2113 KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2114 ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2115 MPASS((bp->b_flags & B_MAXPHYS) == 0);
2116 KASSERT(maxsize <= maxbcachebuf,
2117 ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2118
2119 bufkva_free(bp);
2120
2121 addr = 0;
2122 error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2123 if (error != 0) {
2124 /*
2125 * Buffer map is too fragmented. Request the caller
2126 * to defragment the map.
2127 */
2128 return (error);
2129 }
2130 bp->b_kvabase = (caddr_t)addr;
2131 bp->b_kvasize = maxsize;
2132 counter_u64_add(bufkvaspace, bp->b_kvasize);
2133 if ((gbflags & GB_UNMAPPED) != 0) {
2134 bp->b_data = unmapped_buf;
2135 BUF_CHECK_UNMAPPED(bp);
2136 } else {
2137 bp->b_data = bp->b_kvabase;
2138 BUF_CHECK_MAPPED(bp);
2139 }
2140 return (0);
2141 }
2142
2143 /*
2144 * bufkva_reclaim:
2145 *
2146 * Reclaim buffer kva by freeing buffers holding kva. This is a vmem
2147 * callback that fires to avoid returning failure.
2148 */
2149 static void
bufkva_reclaim(vmem_t * vmem,int flags)2150 bufkva_reclaim(vmem_t *vmem, int flags)
2151 {
2152 bool done;
2153 int q;
2154 int i;
2155
2156 done = false;
2157 for (i = 0; i < 5; i++) {
2158 for (q = 0; q < buf_domains; q++)
2159 if (buf_recycle(&bdomain[q], true) != 0)
2160 done = true;
2161 if (done)
2162 break;
2163 }
2164 return;
2165 }
2166
2167 /*
2168 * Attempt to initiate asynchronous I/O on read-ahead blocks. We must
2169 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2170 * the buffer is valid and we do not have to do anything.
2171 */
2172 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2173 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2174 struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2175 {
2176 struct buf *rabp;
2177 struct thread *td;
2178 int i;
2179
2180 td = curthread;
2181
2182 for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2183 if (inmem(vp, *rablkno))
2184 continue;
2185 rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2186 if ((rabp->b_flags & B_CACHE) != 0) {
2187 brelse(rabp);
2188 continue;
2189 }
2190 #ifdef RACCT
2191 if (racct_enable) {
2192 PROC_LOCK(curproc);
2193 racct_add_buf(curproc, rabp, 0);
2194 PROC_UNLOCK(curproc);
2195 }
2196 #endif /* RACCT */
2197 td->td_ru.ru_inblock++;
2198 rabp->b_flags |= B_ASYNC;
2199 rabp->b_flags &= ~B_INVAL;
2200 if ((flags & GB_CKHASH) != 0) {
2201 rabp->b_flags |= B_CKHASH;
2202 rabp->b_ckhashcalc = ckhashfunc;
2203 }
2204 rabp->b_ioflags &= ~BIO_ERROR;
2205 rabp->b_iocmd = BIO_READ;
2206 if (rabp->b_rcred == NOCRED && cred != NOCRED)
2207 rabp->b_rcred = crhold(cred);
2208 vfs_busy_pages(rabp, 0);
2209 BUF_KERNPROC(rabp);
2210 rabp->b_iooffset = dbtob(rabp->b_blkno);
2211 bstrategy(rabp);
2212 }
2213 }
2214
2215 /*
2216 * Entry point for bread() and breadn() via #defines in sys/buf.h.
2217 *
2218 * Get a buffer with the specified data. Look in the cache first. We
2219 * must clear BIO_ERROR and B_INVAL prior to initiating I/O. If B_CACHE
2220 * is set, the buffer is valid and we do not have to do anything, see
2221 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2222 *
2223 * Always return a NULL buffer pointer (in bpp) when returning an error.
2224 *
2225 * The blkno parameter is the logical block being requested. Normally
2226 * the mapping of logical block number to disk block address is done
2227 * by calling VOP_BMAP(). However, if the mapping is already known, the
2228 * disk block address can be passed using the dblkno parameter. If the
2229 * disk block address is not known, then the same value should be passed
2230 * for blkno and dblkno.
2231 */
2232 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2233 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2234 daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2235 void (*ckhashfunc)(struct buf *), struct buf **bpp)
2236 {
2237 struct buf *bp;
2238 struct thread *td;
2239 int error, readwait, rv;
2240
2241 CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2242 td = curthread;
2243 /*
2244 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2245 * are specified.
2246 */
2247 error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2248 if (error != 0) {
2249 *bpp = NULL;
2250 return (error);
2251 }
2252 KASSERT(blkno == bp->b_lblkno,
2253 ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2254 (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2255 flags &= ~GB_NOSPARSE;
2256 *bpp = bp;
2257
2258 /*
2259 * If not found in cache, do some I/O
2260 */
2261 readwait = 0;
2262 if ((bp->b_flags & B_CACHE) == 0) {
2263 #ifdef RACCT
2264 if (racct_enable) {
2265 PROC_LOCK(td->td_proc);
2266 racct_add_buf(td->td_proc, bp, 0);
2267 PROC_UNLOCK(td->td_proc);
2268 }
2269 #endif /* RACCT */
2270 td->td_ru.ru_inblock++;
2271 bp->b_iocmd = BIO_READ;
2272 bp->b_flags &= ~B_INVAL;
2273 if ((flags & GB_CKHASH) != 0) {
2274 bp->b_flags |= B_CKHASH;
2275 bp->b_ckhashcalc = ckhashfunc;
2276 }
2277 if ((flags & GB_CVTENXIO) != 0)
2278 bp->b_xflags |= BX_CVTENXIO;
2279 bp->b_ioflags &= ~BIO_ERROR;
2280 if (bp->b_rcred == NOCRED && cred != NOCRED)
2281 bp->b_rcred = crhold(cred);
2282 vfs_busy_pages(bp, 0);
2283 bp->b_iooffset = dbtob(bp->b_blkno);
2284 bstrategy(bp);
2285 ++readwait;
2286 }
2287
2288 /*
2289 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2290 */
2291 breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2292
2293 rv = 0;
2294 if (readwait) {
2295 rv = bufwait(bp);
2296 if (rv != 0) {
2297 brelse(bp);
2298 *bpp = NULL;
2299 }
2300 }
2301 return (rv);
2302 }
2303
2304 /*
2305 * Write, release buffer on completion. (Done by iodone
2306 * if async). Do not bother writing anything if the buffer
2307 * is invalid.
2308 *
2309 * Note that we set B_CACHE here, indicating that buffer is
2310 * fully valid and thus cacheable. This is true even of NFS
2311 * now so we set it generally. This could be set either here
2312 * or in biodone() since the I/O is synchronous. We put it
2313 * here.
2314 */
2315 int
bufwrite(struct buf * bp)2316 bufwrite(struct buf *bp)
2317 {
2318 struct vnode *vp;
2319 long space;
2320 int oldflags, retval;
2321 bool vp_md;
2322
2323 CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2324 if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2325 bp->b_flags |= B_INVAL | B_RELBUF;
2326 bp->b_flags &= ~B_CACHE;
2327 brelse(bp);
2328 return (ENXIO);
2329 }
2330 if ((bp->b_flags & B_INVAL) != 0) {
2331 brelse(bp);
2332 return (0);
2333 }
2334
2335 if ((bp->b_flags & B_BARRIER) != 0)
2336 atomic_add_long(&barrierwrites, 1);
2337
2338 oldflags = bp->b_flags;
2339
2340 KASSERT((bp->b_vflags & BV_BKGRDINPROG) == 0,
2341 ("FFS background buffer should not get here %p", bp));
2342
2343 vp = bp->b_vp;
2344 vp_md = vp != NULL && (vp->v_vflag & VV_MD) != 0;
2345
2346 /*
2347 * Mark the buffer clean. Increment the bufobj write count
2348 * before bundirty() call, to prevent other thread from seeing
2349 * empty dirty list and zero counter for writes in progress,
2350 * falsely indicating that the bufobj is clean.
2351 */
2352 bufobj_wref(bp->b_bufobj);
2353 bundirty(bp);
2354
2355 bp->b_flags &= ~B_DONE;
2356 bp->b_ioflags &= ~BIO_ERROR;
2357 bp->b_flags |= B_CACHE;
2358 bp->b_iocmd = BIO_WRITE;
2359
2360 vfs_busy_pages(bp, 1);
2361
2362 /*
2363 * Normal bwrites pipeline writes
2364 */
2365 space = runningbufclaim(bp, bp->b_bufsize);
2366
2367 #ifdef RACCT
2368 if (racct_enable) {
2369 PROC_LOCK(curproc);
2370 racct_add_buf(curproc, bp, 1);
2371 PROC_UNLOCK(curproc);
2372 }
2373 #endif /* RACCT */
2374 curthread->td_ru.ru_oublock++;
2375 if ((oldflags & B_ASYNC) != 0)
2376 BUF_KERNPROC(bp);
2377 bp->b_iooffset = dbtob(bp->b_blkno);
2378 buf_track(bp, __func__);
2379 bstrategy(bp);
2380
2381 if ((oldflags & B_ASYNC) == 0) {
2382 retval = bufwait(bp);
2383 brelse(bp);
2384 return (retval);
2385 } else if (space > hirunningspace) {
2386 /*
2387 * Don't allow the async write to saturate the I/O
2388 * system. We do not block here if it is the update
2389 * or syncer daemon trying to clean up as that can
2390 * lead to deadlock.
2391 */
2392 if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2393 waitrunningbufspace();
2394 }
2395
2396 return (0);
2397 }
2398
2399 void
bufbdflush(struct bufobj * bo,struct buf * bp)2400 bufbdflush(struct bufobj *bo, struct buf *bp)
2401 {
2402 struct buf *nbp;
2403 struct bufdomain *bd;
2404
2405 bd = &bdomain[bo->bo_domain];
2406 if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2407 (void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2408 altbufferflushes++;
2409 } else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2410 BO_LOCK(bo);
2411 /*
2412 * Try to find a buffer to flush.
2413 */
2414 TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2415 if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2416 BUF_LOCK(nbp,
2417 LK_EXCLUSIVE | LK_NOWAIT, NULL))
2418 continue;
2419 if (bp == nbp)
2420 panic("bdwrite: found ourselves");
2421 BO_UNLOCK(bo);
2422 /* Don't countdeps with the bo lock held. */
2423 if (buf_countdeps(nbp, 0)) {
2424 BO_LOCK(bo);
2425 BUF_UNLOCK(nbp);
2426 continue;
2427 }
2428 if (nbp->b_flags & B_CLUSTEROK) {
2429 vfs_bio_awrite(nbp);
2430 } else {
2431 bremfree(nbp);
2432 bawrite(nbp);
2433 }
2434 dirtybufferflushes++;
2435 break;
2436 }
2437 if (nbp == NULL)
2438 BO_UNLOCK(bo);
2439 }
2440 }
2441
2442 /*
2443 * Delayed write. (Buffer is marked dirty). Do not bother writing
2444 * anything if the buffer is marked invalid.
2445 *
2446 * Note that since the buffer must be completely valid, we can safely
2447 * set B_CACHE. In fact, we have to set B_CACHE here rather then in
2448 * biodone() in order to prevent getblk from writing the buffer
2449 * out synchronously.
2450 */
2451 void
bdwrite(struct buf * bp)2452 bdwrite(struct buf *bp)
2453 {
2454 struct thread *td = curthread;
2455 struct vnode *vp;
2456 struct bufobj *bo;
2457
2458 CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2459 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2460 KASSERT((bp->b_flags & B_BARRIER) == 0,
2461 ("Barrier request in delayed write %p", bp));
2462
2463 if (bp->b_flags & B_INVAL) {
2464 brelse(bp);
2465 return;
2466 }
2467
2468 /*
2469 * If we have too many dirty buffers, don't create any more.
2470 * If we are wildly over our limit, then force a complete
2471 * cleanup. Otherwise, just keep the situation from getting
2472 * out of control. Note that we have to avoid a recursive
2473 * disaster and not try to clean up after our own cleanup!
2474 */
2475 vp = bp->b_vp;
2476 bo = bp->b_bufobj;
2477 if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2478 td->td_pflags |= TDP_INBDFLUSH;
2479 BO_BDFLUSH(bo, bp);
2480 td->td_pflags &= ~TDP_INBDFLUSH;
2481 } else
2482 recursiveflushes++;
2483
2484 bdirty(bp);
2485 /*
2486 * Set B_CACHE, indicating that the buffer is fully valid. This is
2487 * true even of NFS now.
2488 */
2489 bp->b_flags |= B_CACHE;
2490
2491 /*
2492 * This bmap keeps the system from needing to do the bmap later,
2493 * perhaps when the system is attempting to do a sync. Since it
2494 * is likely that the indirect block -- or whatever other datastructure
2495 * that the filesystem needs is still in memory now, it is a good
2496 * thing to do this. Note also, that if the pageout daemon is
2497 * requesting a sync -- there might not be enough memory to do
2498 * the bmap then... So, this is important to do.
2499 */
2500 if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2501 VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2502 }
2503
2504 buf_track(bp, __func__);
2505
2506 /*
2507 * Set the *dirty* buffer range based upon the VM system dirty
2508 * pages.
2509 *
2510 * Mark the buffer pages as clean. We need to do this here to
2511 * satisfy the vnode_pager and the pageout daemon, so that it
2512 * thinks that the pages have been "cleaned". Note that since
2513 * the pages are in a delayed write buffer -- the VFS layer
2514 * "will" see that the pages get written out on the next sync,
2515 * or perhaps the cluster will be completed.
2516 */
2517 vfs_clean_pages_dirty_buf(bp);
2518 bqrelse(bp);
2519
2520 /*
2521 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2522 * due to the softdep code.
2523 */
2524 }
2525
2526 /*
2527 * bdirty:
2528 *
2529 * Turn buffer into delayed write request. We must clear BIO_READ and
2530 * B_RELBUF, and we must set B_DELWRI. We reassign the buffer to
2531 * itself to properly update it in the dirty/clean lists. We mark it
2532 * B_DONE to ensure that any asynchronization of the buffer properly
2533 * clears B_DONE ( else a panic will occur later ).
2534 *
2535 * bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2536 * might have been set pre-getblk(). Unlike bwrite/bdwrite, bdirty()
2537 * should only be called if the buffer is known-good.
2538 *
2539 * Since the buffer is not on a queue, we do not update the numfreebuffers
2540 * count.
2541 *
2542 * The buffer must be on QUEUE_NONE.
2543 */
2544 void
bdirty(struct buf * bp)2545 bdirty(struct buf *bp)
2546 {
2547
2548 CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2549 bp, bp->b_vp, bp->b_flags);
2550 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2551 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2552 ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2553 bp->b_flags &= ~(B_RELBUF);
2554 bp->b_iocmd = BIO_WRITE;
2555
2556 if ((bp->b_flags & B_DELWRI) == 0) {
2557 bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2558 reassignbuf(bp);
2559 bdirtyadd(bp);
2560 }
2561 }
2562
2563 /*
2564 * bundirty:
2565 *
2566 * Clear B_DELWRI for buffer.
2567 *
2568 * Since the buffer is not on a queue, we do not update the numfreebuffers
2569 * count.
2570 *
2571 * The buffer must be on QUEUE_NONE.
2572 */
2573
2574 void
bundirty(struct buf * bp)2575 bundirty(struct buf *bp)
2576 {
2577
2578 CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2579 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2580 KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2581 ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2582
2583 if (bp->b_flags & B_DELWRI) {
2584 bp->b_flags &= ~B_DELWRI;
2585 reassignbuf(bp);
2586 bdirtysub(bp);
2587 }
2588 /*
2589 * Since it is now being written, we can clear its deferred write flag.
2590 */
2591 bp->b_flags &= ~B_DEFERRED;
2592 }
2593
2594 /*
2595 * bawrite:
2596 *
2597 * Asynchronous write. Start output on a buffer, but do not wait for
2598 * it to complete. The buffer is released when the output completes.
2599 *
2600 * bwrite() ( or the VOP routine anyway ) is responsible for handling
2601 * B_INVAL buffers. Not us.
2602 */
2603 void
bawrite(struct buf * bp)2604 bawrite(struct buf *bp)
2605 {
2606
2607 bp->b_flags |= B_ASYNC;
2608 (void) bwrite(bp);
2609 }
2610
2611 /*
2612 * babarrierwrite:
2613 *
2614 * Asynchronous barrier write. Start output on a buffer, but do not
2615 * wait for it to complete. Place a write barrier after this write so
2616 * that this buffer and all buffers written before it are committed to
2617 * the disk before any buffers written after this write are committed
2618 * to the disk. The buffer is released when the output completes.
2619 */
2620 void
babarrierwrite(struct buf * bp)2621 babarrierwrite(struct buf *bp)
2622 {
2623
2624 bp->b_flags |= B_ASYNC | B_BARRIER;
2625 (void) bwrite(bp);
2626 }
2627
2628 /*
2629 * bbarrierwrite:
2630 *
2631 * Synchronous barrier write. Start output on a buffer and wait for
2632 * it to complete. Place a write barrier after this write so that
2633 * this buffer and all buffers written before it are committed to
2634 * the disk before any buffers written after this write are committed
2635 * to the disk. The buffer is released when the output completes.
2636 */
2637 int
bbarrierwrite(struct buf * bp)2638 bbarrierwrite(struct buf *bp)
2639 {
2640
2641 bp->b_flags |= B_BARRIER;
2642 return (bwrite(bp));
2643 }
2644
2645 /*
2646 * bwillwrite:
2647 *
2648 * Called prior to the locking of any vnodes when we are expecting to
2649 * write. We do not want to starve the buffer cache with too many
2650 * dirty buffers so we block here. By blocking prior to the locking
2651 * of any vnodes we attempt to avoid the situation where a locked vnode
2652 * prevents the various system daemons from flushing related buffers.
2653 */
2654 void
bwillwrite(void)2655 bwillwrite(void)
2656 {
2657
2658 if (buf_dirty_count_severe()) {
2659 mtx_lock(&bdirtylock);
2660 while (buf_dirty_count_severe()) {
2661 bdirtywait = 1;
2662 msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2663 "flswai", 0);
2664 }
2665 mtx_unlock(&bdirtylock);
2666 }
2667 }
2668
2669 /*
2670 * Return true if we have too many dirty buffers.
2671 */
2672 int
buf_dirty_count_severe(void)2673 buf_dirty_count_severe(void)
2674 {
2675
2676 return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2677 }
2678
2679 /*
2680 * brelse:
2681 *
2682 * Release a busy buffer and, if requested, free its resources. The
2683 * buffer will be stashed in the appropriate bufqueue[] allowing it
2684 * to be accessed later as a cache entity or reused for other purposes.
2685 */
2686 void
brelse(struct buf * bp)2687 brelse(struct buf *bp)
2688 {
2689 struct mount *v_mnt;
2690 int qindex;
2691
2692 /*
2693 * Many functions erroneously call brelse with a NULL bp under rare
2694 * error conditions. Simply return when called with a NULL bp.
2695 */
2696 if (bp == NULL)
2697 return;
2698 CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2699 bp, bp->b_vp, bp->b_flags);
2700 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2701 ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2702 KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2703 ("brelse: non-VMIO buffer marked NOREUSE"));
2704
2705 if (BUF_LOCKRECURSED(bp)) {
2706 /*
2707 * Do not process, in particular, do not handle the
2708 * B_INVAL/B_RELBUF and do not release to free list.
2709 */
2710 BUF_UNLOCK(bp);
2711 return;
2712 }
2713
2714 if (bp->b_flags & B_MANAGED) {
2715 bqrelse(bp);
2716 return;
2717 }
2718
2719 if (LIST_EMPTY(&bp->b_dep)) {
2720 bp->b_flags &= ~B_IOSTARTED;
2721 } else {
2722 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2723 ("brelse: SU io not finished bp %p", bp));
2724 }
2725
2726 if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2727 BO_LOCK(bp->b_bufobj);
2728 bp->b_vflags &= ~BV_BKGRDERR;
2729 BO_UNLOCK(bp->b_bufobj);
2730 bdirty(bp);
2731 }
2732
2733 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2734 (bp->b_flags & B_INVALONERR)) {
2735 /*
2736 * Forced invalidation of dirty buffer contents, to be used
2737 * after a failed write in the rare case that the loss of the
2738 * contents is acceptable. The buffer is invalidated and
2739 * freed.
2740 */
2741 bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2742 bp->b_flags &= ~(B_ASYNC | B_CACHE);
2743 }
2744
2745 if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2746 (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2747 !(bp->b_flags & B_INVAL)) {
2748 /*
2749 * Failed write, redirty. All errors except ENXIO (which
2750 * means the device is gone) are treated as being
2751 * transient.
2752 *
2753 * XXX Treating EIO as transient is not correct; the
2754 * contract with the local storage device drivers is that
2755 * they will only return EIO once the I/O is no longer
2756 * retriable. Network I/O also respects this through the
2757 * guarantees of TCP and/or the internal retries of NFS.
2758 * ENOMEM might be transient, but we also have no way of
2759 * knowing when its ok to retry/reschedule. In general,
2760 * this entire case should be made obsolete through better
2761 * error handling/recovery and resource scheduling.
2762 *
2763 * Do this also for buffers that failed with ENXIO, but have
2764 * non-empty dependencies - the soft updates code might need
2765 * to access the buffer to untangle them.
2766 *
2767 * Must clear BIO_ERROR to prevent pages from being scrapped.
2768 */
2769 bp->b_ioflags &= ~BIO_ERROR;
2770 bdirty(bp);
2771 } else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2772 (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2773 /*
2774 * Either a failed read I/O, or we were asked to free or not
2775 * cache the buffer, or we failed to write to a device that's
2776 * no longer present.
2777 */
2778 bp->b_flags |= B_INVAL;
2779 if (!LIST_EMPTY(&bp->b_dep))
2780 buf_deallocate(bp);
2781 if (bp->b_flags & B_DELWRI)
2782 bdirtysub(bp);
2783 bp->b_flags &= ~(B_DELWRI | B_CACHE);
2784 if ((bp->b_flags & B_VMIO) == 0) {
2785 allocbuf(bp, 0);
2786 if (bp->b_vp)
2787 brelvp(bp);
2788 }
2789 }
2790
2791 /*
2792 * We must clear B_RELBUF if B_DELWRI is set. If vfs_vmio_truncate()
2793 * is called with B_DELWRI set, the underlying pages may wind up
2794 * getting freed causing a previous write (bdwrite()) to get 'lost'
2795 * because pages associated with a B_DELWRI bp are marked clean.
2796 *
2797 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2798 * if B_DELWRI is set.
2799 */
2800 if (bp->b_flags & B_DELWRI)
2801 bp->b_flags &= ~B_RELBUF;
2802
2803 /*
2804 * VMIO buffer rundown. It is not very necessary to keep a VMIO buffer
2805 * constituted, not even NFS buffers now. Two flags effect this. If
2806 * B_INVAL, the struct buf is invalidated but the VM object is kept
2807 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2808 *
2809 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2810 * invalidated. BIO_ERROR cannot be set for a failed write unless the
2811 * buffer is also B_INVAL because it hits the re-dirtying code above.
2812 *
2813 * Normally we can do this whether a buffer is B_DELWRI or not. If
2814 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2815 * the commit state and we cannot afford to lose the buffer. If the
2816 * buffer has a background write in progress, we need to keep it
2817 * around to prevent it from being reconstituted and starting a second
2818 * background write.
2819 */
2820
2821 v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2822
2823 if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2824 (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2825 (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2826 vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2827 vfs_vmio_invalidate(bp);
2828 allocbuf(bp, 0);
2829 }
2830
2831 if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2832 (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2833 allocbuf(bp, 0);
2834 bp->b_flags &= ~B_NOREUSE;
2835 if (bp->b_vp != NULL)
2836 brelvp(bp);
2837 }
2838
2839 /*
2840 * If the buffer has junk contents signal it and eventually
2841 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2842 * doesn't find it.
2843 */
2844 if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2845 (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2846 bp->b_flags |= B_INVAL;
2847 if (bp->b_flags & B_INVAL) {
2848 if (bp->b_flags & B_DELWRI)
2849 bundirty(bp);
2850 if (bp->b_vp)
2851 brelvp(bp);
2852 }
2853
2854 buf_track(bp, __func__);
2855
2856 /* buffers with no memory */
2857 if (bp->b_bufsize == 0) {
2858 buf_free(bp);
2859 return;
2860 }
2861 /* buffers with junk contents */
2862 if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2863 (bp->b_ioflags & BIO_ERROR)) {
2864 bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2865 if (bp->b_vflags & BV_BKGRDINPROG)
2866 panic("losing buffer 2");
2867 qindex = QUEUE_CLEAN;
2868 bp->b_flags |= B_AGE;
2869 /* remaining buffers */
2870 } else if (bp->b_flags & B_DELWRI)
2871 qindex = QUEUE_DIRTY;
2872 else
2873 qindex = QUEUE_CLEAN;
2874
2875 if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2876 panic("brelse: not dirty");
2877
2878 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2879 bp->b_xflags &= ~(BX_CVTENXIO);
2880 /* binsfree unlocks bp. */
2881 binsfree(bp, qindex);
2882 }
2883
2884 /*
2885 * Release a buffer back to the appropriate queue but do not try to free
2886 * it. The buffer is expected to be used again soon.
2887 *
2888 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2889 * biodone() to requeue an async I/O on completion. It is also used when
2890 * known good buffers need to be requeued but we think we may need the data
2891 * again soon.
2892 *
2893 * XXX we should be able to leave the B_RELBUF hint set on completion.
2894 */
2895 void
bqrelse(struct buf * bp)2896 bqrelse(struct buf *bp)
2897 {
2898 int qindex;
2899
2900 CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2901 KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2902 ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2903
2904 qindex = QUEUE_NONE;
2905 if (BUF_LOCKRECURSED(bp)) {
2906 /* do not release to free list */
2907 BUF_UNLOCK(bp);
2908 return;
2909 }
2910 bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2911 bp->b_xflags &= ~(BX_CVTENXIO);
2912
2913 if (LIST_EMPTY(&bp->b_dep)) {
2914 bp->b_flags &= ~B_IOSTARTED;
2915 } else {
2916 KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2917 ("bqrelse: SU io not finished bp %p", bp));
2918 }
2919
2920 if (bp->b_flags & B_MANAGED) {
2921 if (bp->b_flags & B_REMFREE)
2922 bremfreef(bp);
2923 goto out;
2924 }
2925
2926 /* buffers with stale but valid contents */
2927 if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2928 BV_BKGRDERR)) == BV_BKGRDERR) {
2929 BO_LOCK(bp->b_bufobj);
2930 bp->b_vflags &= ~BV_BKGRDERR;
2931 BO_UNLOCK(bp->b_bufobj);
2932 qindex = QUEUE_DIRTY;
2933 } else {
2934 if ((bp->b_flags & B_DELWRI) == 0 &&
2935 (bp->b_xflags & BX_VNDIRTY))
2936 panic("bqrelse: not dirty");
2937 if ((bp->b_flags & B_NOREUSE) != 0) {
2938 brelse(bp);
2939 return;
2940 }
2941 qindex = QUEUE_CLEAN;
2942 }
2943 buf_track(bp, __func__);
2944 /* binsfree unlocks bp. */
2945 binsfree(bp, qindex);
2946 return;
2947
2948 out:
2949 buf_track(bp, __func__);
2950 /* unlock */
2951 BUF_UNLOCK(bp);
2952 }
2953
2954 /*
2955 * Complete I/O to a VMIO backed page. Validate the pages as appropriate,
2956 * restore bogus pages.
2957 */
2958 static void
vfs_vmio_iodone(struct buf * bp)2959 vfs_vmio_iodone(struct buf *bp)
2960 {
2961 vm_ooffset_t foff;
2962 vm_page_t m;
2963 vm_object_t obj;
2964 struct vnode *vp __unused;
2965 int i, iosize, resid;
2966 bool bogus;
2967
2968 obj = bp->b_bufobj->bo_object;
2969 KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2970 ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2971 blockcount_read(&obj->paging_in_progress), bp->b_npages));
2972
2973 vp = bp->b_vp;
2974 VNPASS(vp->v_holdcnt > 0, vp);
2975 VNPASS(vp->v_object != NULL, vp);
2976
2977 foff = bp->b_offset;
2978 KASSERT(bp->b_offset != NOOFFSET,
2979 ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2980
2981 bogus = false;
2982 iosize = bp->b_bcount - bp->b_resid;
2983 for (i = 0; i < bp->b_npages; i++) {
2984 resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2985 if (resid > iosize)
2986 resid = iosize;
2987
2988 /*
2989 * cleanup bogus pages, restoring the originals
2990 */
2991 m = bp->b_pages[i];
2992 if (m == bogus_page) {
2993 bogus = true;
2994 m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2995 if (m == NULL)
2996 panic("biodone: page disappeared!");
2997 bp->b_pages[i] = m;
2998 } else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2999 /*
3000 * In the write case, the valid and clean bits are
3001 * already changed correctly ( see bdwrite() ), so we
3002 * only need to do this here in the read case.
3003 */
3004 KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
3005 resid)) == 0, ("vfs_vmio_iodone: page %p "
3006 "has unexpected dirty bits", m));
3007 vfs_page_set_valid(bp, foff, m);
3008 }
3009 KASSERT(OFF_TO_IDX(foff) == m->pindex,
3010 ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
3011 (intmax_t)foff, (uintmax_t)m->pindex));
3012
3013 vm_page_sunbusy(m);
3014 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3015 iosize -= resid;
3016 }
3017 vm_object_pip_wakeupn(obj, bp->b_npages);
3018 if (bogus && buf_mapped(bp)) {
3019 BUF_CHECK_MAPPED(bp);
3020 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3021 bp->b_pages, bp->b_npages);
3022 }
3023 }
3024
3025 /*
3026 * Perform page invalidation when a buffer is released. The fully invalid
3027 * pages will be reclaimed later in vfs_vmio_truncate().
3028 */
3029 static void
vfs_vmio_invalidate(struct buf * bp)3030 vfs_vmio_invalidate(struct buf *bp)
3031 {
3032 vm_object_t obj;
3033 vm_page_t m;
3034 int flags, i, resid, poffset, presid;
3035
3036 if (buf_mapped(bp)) {
3037 BUF_CHECK_MAPPED(bp);
3038 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3039 } else
3040 BUF_CHECK_UNMAPPED(bp);
3041 /*
3042 * Get the base offset and length of the buffer. Note that
3043 * in the VMIO case if the buffer block size is not
3044 * page-aligned then b_data pointer may not be page-aligned.
3045 * But our b_pages[] array *IS* page aligned.
3046 *
3047 * block sizes less then DEV_BSIZE (usually 512) are not
3048 * supported due to the page granularity bits (m->valid,
3049 * m->dirty, etc...).
3050 *
3051 * See man buf(9) for more information
3052 */
3053 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3054 obj = bp->b_bufobj->bo_object;
3055 resid = bp->b_bufsize;
3056 poffset = bp->b_offset & PAGE_MASK;
3057 VM_OBJECT_WLOCK(obj);
3058 for (i = 0; i < bp->b_npages; i++) {
3059 m = bp->b_pages[i];
3060 if (m == bogus_page)
3061 panic("vfs_vmio_invalidate: Unexpected bogus page.");
3062 bp->b_pages[i] = NULL;
3063
3064 presid = resid > (PAGE_SIZE - poffset) ?
3065 (PAGE_SIZE - poffset) : resid;
3066 KASSERT(presid >= 0, ("brelse: extra page"));
3067 vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3068 if (pmap_page_wired_mappings(m) == 0)
3069 vm_page_set_invalid(m, poffset, presid);
3070 vm_page_sunbusy(m);
3071 vm_page_release_locked(m, flags);
3072 resid -= presid;
3073 poffset = 0;
3074 }
3075 VM_OBJECT_WUNLOCK(obj);
3076 bp->b_npages = 0;
3077 }
3078
3079 /*
3080 * Page-granular truncation of an existing VMIO buffer.
3081 */
3082 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3083 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3084 {
3085 vm_object_t obj;
3086 vm_page_t m;
3087 int flags, i;
3088
3089 if (bp->b_npages == desiredpages)
3090 return;
3091
3092 if (buf_mapped(bp)) {
3093 BUF_CHECK_MAPPED(bp);
3094 pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3095 (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3096 } else
3097 BUF_CHECK_UNMAPPED(bp);
3098
3099 /*
3100 * The object lock is needed only if we will attempt to free pages.
3101 */
3102 flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3103 if ((bp->b_flags & B_DIRECT) != 0) {
3104 flags |= VPR_TRYFREE;
3105 obj = bp->b_bufobj->bo_object;
3106 VM_OBJECT_WLOCK(obj);
3107 } else {
3108 obj = NULL;
3109 }
3110 for (i = desiredpages; i < bp->b_npages; i++) {
3111 m = bp->b_pages[i];
3112 KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3113 bp->b_pages[i] = NULL;
3114 if (obj != NULL)
3115 vm_page_release_locked(m, flags);
3116 else
3117 vm_page_release(m, flags);
3118 }
3119 if (obj != NULL)
3120 VM_OBJECT_WUNLOCK(obj);
3121 bp->b_npages = desiredpages;
3122 }
3123
3124 /*
3125 * Byte granular extension of VMIO buffers.
3126 */
3127 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3128 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3129 {
3130 /*
3131 * We are growing the buffer, possibly in a
3132 * byte-granular fashion.
3133 */
3134 vm_object_t obj;
3135 vm_offset_t toff;
3136 vm_offset_t tinc;
3137 vm_page_t m;
3138
3139 /*
3140 * Step 1, bring in the VM pages from the object, allocating
3141 * them if necessary. We must clear B_CACHE if these pages
3142 * are not valid for the range covered by the buffer.
3143 */
3144 obj = bp->b_bufobj->bo_object;
3145 if (bp->b_npages < desiredpages) {
3146 KASSERT(desiredpages <= atop(maxbcachebuf),
3147 ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3148 bp, desiredpages, maxbcachebuf));
3149
3150 /*
3151 * We must allocate system pages since blocking
3152 * here could interfere with paging I/O, no
3153 * matter which process we are.
3154 *
3155 * Only exclusive busy can be tested here.
3156 * Blocking on shared busy might lead to
3157 * deadlocks once allocbuf() is called after
3158 * pages are vfs_busy_pages().
3159 */
3160 (void)vm_page_grab_pages_unlocked(obj,
3161 OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3162 VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3163 VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3164 &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3165 bp->b_npages = desiredpages;
3166 }
3167
3168 /*
3169 * Step 2. We've loaded the pages into the buffer,
3170 * we have to figure out if we can still have B_CACHE
3171 * set. Note that B_CACHE is set according to the
3172 * byte-granular range ( bcount and size ), not the
3173 * aligned range ( newbsize ).
3174 *
3175 * The VM test is against m->valid, which is DEV_BSIZE
3176 * aligned. Needless to say, the validity of the data
3177 * needs to also be DEV_BSIZE aligned. Note that this
3178 * fails with NFS if the server or some other client
3179 * extends the file's EOF. If our buffer is resized,
3180 * B_CACHE may remain set! XXX
3181 */
3182 toff = bp->b_bcount;
3183 tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3184 while ((bp->b_flags & B_CACHE) && toff < size) {
3185 vm_pindex_t pi;
3186
3187 if (tinc > (size - toff))
3188 tinc = size - toff;
3189 pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3190 m = bp->b_pages[pi];
3191 vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3192 toff += tinc;
3193 tinc = PAGE_SIZE;
3194 }
3195
3196 /*
3197 * Step 3, fixup the KVA pmap.
3198 */
3199 if (buf_mapped(bp))
3200 bpmap_qenter(bp);
3201 else
3202 BUF_CHECK_UNMAPPED(bp);
3203 }
3204
3205 /*
3206 * Check to see if a block at a particular lbn is available for a clustered
3207 * write.
3208 */
3209 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3210 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3211 {
3212 struct buf *bpa;
3213 int match;
3214
3215 match = 0;
3216
3217 /* If the buf isn't in core skip it */
3218 if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3219 return (0);
3220
3221 /* If the buf is busy we don't want to wait for it */
3222 if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3223 return (0);
3224
3225 /* Only cluster with valid clusterable delayed write buffers */
3226 if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3227 (B_DELWRI | B_CLUSTEROK))
3228 goto done;
3229
3230 if (bpa->b_bufsize != size)
3231 goto done;
3232
3233 /*
3234 * Check to see if it is in the expected place on disk and that the
3235 * block has been mapped.
3236 */
3237 if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3238 match = 1;
3239 done:
3240 BUF_UNLOCK(bpa);
3241 return (match);
3242 }
3243
3244 /*
3245 * vfs_bio_awrite:
3246 *
3247 * Implement clustered async writes for clearing out B_DELWRI buffers.
3248 * This is much better then the old way of writing only one buffer at
3249 * a time. Note that we may not be presented with the buffers in the
3250 * correct order, so we search for the cluster in both directions.
3251 */
3252 int
vfs_bio_awrite(struct buf * bp)3253 vfs_bio_awrite(struct buf *bp)
3254 {
3255 struct bufobj *bo;
3256 int i;
3257 int j;
3258 daddr_t lblkno = bp->b_lblkno;
3259 struct vnode *vp = bp->b_vp;
3260 int ncl;
3261 int nwritten;
3262 int size;
3263 int maxcl;
3264 int gbflags;
3265
3266 bo = &vp->v_bufobj;
3267 gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3268 /*
3269 * right now we support clustered writing only to regular files. If
3270 * we find a clusterable block we could be in the middle of a cluster
3271 * rather then at the beginning.
3272 */
3273 if ((vp->v_type == VREG) &&
3274 (vp->v_mount != 0) && /* Only on nodes that have the size info */
3275 (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3276 size = vp->v_mount->mnt_stat.f_iosize;
3277 maxcl = maxphys / size;
3278
3279 BO_RLOCK(bo);
3280 for (i = 1; i < maxcl; i++)
3281 if (vfs_bio_clcheck(vp, size, lblkno + i,
3282 bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3283 break;
3284
3285 for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3286 if (vfs_bio_clcheck(vp, size, lblkno - j,
3287 bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3288 break;
3289 BO_RUNLOCK(bo);
3290 --j;
3291 ncl = i + j;
3292 /*
3293 * this is a possible cluster write
3294 */
3295 if (ncl != 1) {
3296 BUF_UNLOCK(bp);
3297 nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3298 gbflags);
3299 return (nwritten);
3300 }
3301 }
3302 bremfree(bp);
3303 bp->b_flags |= B_ASYNC;
3304 /*
3305 * default (old) behavior, writing out only one block
3306 *
3307 * XXX returns b_bufsize instead of b_bcount for nwritten?
3308 */
3309 nwritten = bp->b_bufsize;
3310 (void) bwrite(bp);
3311
3312 return (nwritten);
3313 }
3314
3315 /*
3316 * getnewbuf_kva:
3317 *
3318 * Allocate KVA for an empty buf header according to gbflags.
3319 */
3320 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3321 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3322 {
3323
3324 if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3325 /*
3326 * In order to keep fragmentation sane we only allocate kva
3327 * in BKVASIZE chunks. XXX with vmem we can do page size.
3328 */
3329 maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3330
3331 if (maxsize != bp->b_kvasize &&
3332 bufkva_alloc(bp, maxsize, gbflags))
3333 return (ENOSPC);
3334 }
3335 return (0);
3336 }
3337
3338 /*
3339 * getnewbuf:
3340 *
3341 * Find and initialize a new buffer header, freeing up existing buffers
3342 * in the bufqueues as necessary. The new buffer is returned locked.
3343 *
3344 * We block if:
3345 * We have insufficient buffer headers
3346 * We have insufficient buffer space
3347 * buffer_arena is too fragmented ( space reservation fails )
3348 * If we have to flush dirty buffers ( but we try to avoid this )
3349 *
3350 * The caller is responsible for releasing the reserved bufspace after
3351 * allocbuf() is called.
3352 */
3353 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3354 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3355 {
3356 struct bufdomain *bd;
3357 struct buf *bp;
3358 bool metadata, reserved;
3359
3360 bp = NULL;
3361 KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3362 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3363 if (!unmapped_buf_allowed)
3364 gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3365
3366 if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3367 vp->v_type == VCHR)
3368 metadata = true;
3369 else
3370 metadata = false;
3371 if (vp == NULL)
3372 bd = &bdomain[0];
3373 else
3374 bd = &bdomain[vp->v_bufobj.bo_domain];
3375
3376 counter_u64_add(getnewbufcalls, 1);
3377 reserved = false;
3378 do {
3379 if (reserved == false &&
3380 bufspace_reserve(bd, maxsize, metadata) != 0) {
3381 counter_u64_add(getnewbufrestarts, 1);
3382 continue;
3383 }
3384 reserved = true;
3385 if ((bp = buf_alloc(bd)) == NULL) {
3386 counter_u64_add(getnewbufrestarts, 1);
3387 continue;
3388 }
3389 if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3390 return (bp);
3391 break;
3392 } while (buf_recycle(bd, false) == 0);
3393
3394 if (reserved)
3395 bufspace_release(bd, maxsize);
3396 if (bp != NULL) {
3397 bp->b_flags |= B_INVAL;
3398 brelse(bp);
3399 }
3400 bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3401
3402 return (NULL);
3403 }
3404
3405 /*
3406 * buf_daemon:
3407 *
3408 * buffer flushing daemon. Buffers are normally flushed by the
3409 * update daemon but if it cannot keep up this process starts to
3410 * take the load in an attempt to prevent getnewbuf() from blocking.
3411 */
3412 static struct kproc_desc buf_kp = {
3413 "bufdaemon",
3414 buf_daemon,
3415 &bufdaemonproc
3416 };
3417 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3418
3419 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3420 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3421 {
3422 int flushed;
3423
3424 flushed = flushbufqueues(vp, bd, target, 0);
3425 if (flushed == 0) {
3426 /*
3427 * Could not find any buffers without rollback
3428 * dependencies, so just write the first one
3429 * in the hopes of eventually making progress.
3430 */
3431 if (vp != NULL && target > 2)
3432 target /= 2;
3433 flushbufqueues(vp, bd, target, 1);
3434 }
3435 return (flushed);
3436 }
3437
3438 static void
buf_daemon_shutdown(void * arg __unused,int howto __unused)3439 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3440 {
3441 int error;
3442
3443 if (KERNEL_PANICKED())
3444 return;
3445
3446 mtx_lock(&bdlock);
3447 bd_shutdown = true;
3448 wakeup(&bd_request);
3449 error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3450 60 * hz);
3451 mtx_unlock(&bdlock);
3452 if (error != 0)
3453 printf("bufdaemon wait error: %d\n", error);
3454 }
3455
3456 static void
buf_daemon(void)3457 buf_daemon(void)
3458 {
3459 struct bufdomain *bd;
3460 int speedupreq;
3461 int lodirty;
3462 int i;
3463
3464 /*
3465 * This process needs to be suspended prior to shutdown sync.
3466 */
3467 EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3468 SHUTDOWN_PRI_LAST + 100);
3469
3470 /*
3471 * Start the buf clean daemons as children threads.
3472 */
3473 for (i = 0 ; i < buf_domains; i++) {
3474 int error;
3475
3476 error = kthread_add((void (*)(void *))bufspace_daemon,
3477 &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3478 if (error)
3479 panic("error %d spawning bufspace daemon", error);
3480 }
3481
3482 /*
3483 * This process is allowed to take the buffer cache to the limit
3484 */
3485 curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3486 mtx_lock(&bdlock);
3487 while (!bd_shutdown) {
3488 bd_request = 0;
3489 mtx_unlock(&bdlock);
3490
3491 /*
3492 * Save speedupreq for this pass and reset to capture new
3493 * requests.
3494 */
3495 speedupreq = bd_speedupreq;
3496 bd_speedupreq = 0;
3497
3498 /*
3499 * Flush each domain sequentially according to its level and
3500 * the speedup request.
3501 */
3502 for (i = 0; i < buf_domains; i++) {
3503 bd = &bdomain[i];
3504 if (speedupreq)
3505 lodirty = bd->bd_numdirtybuffers / 2;
3506 else
3507 lodirty = bd->bd_lodirtybuffers;
3508 while (bd->bd_numdirtybuffers > lodirty) {
3509 if (buf_flush(NULL, bd,
3510 bd->bd_numdirtybuffers - lodirty) == 0)
3511 break;
3512 kern_yield(PRI_USER);
3513 }
3514 }
3515
3516 /*
3517 * Only clear bd_request if we have reached our low water
3518 * mark. The buf_daemon normally waits 1 second and
3519 * then incrementally flushes any dirty buffers that have
3520 * built up, within reason.
3521 *
3522 * If we were unable to hit our low water mark and couldn't
3523 * find any flushable buffers, we sleep for a short period
3524 * to avoid endless loops on unlockable buffers.
3525 */
3526 mtx_lock(&bdlock);
3527 if (bd_shutdown)
3528 break;
3529 if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3530 /*
3531 * We reached our low water mark, reset the
3532 * request and sleep until we are needed again.
3533 * The sleep is just so the suspend code works.
3534 */
3535 bd_request = 0;
3536 /*
3537 * Do an extra wakeup in case dirty threshold
3538 * changed via sysctl and the explicit transition
3539 * out of shortfall was missed.
3540 */
3541 bdirtywakeup();
3542 if (runningbufspace <= lorunningspace)
3543 runningwakeup();
3544 msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3545 } else {
3546 /*
3547 * We couldn't find any flushable dirty buffers but
3548 * still have too many dirty buffers, we
3549 * have to sleep and try again. (rare)
3550 */
3551 msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3552 }
3553 }
3554 wakeup(&bd_shutdown);
3555 mtx_unlock(&bdlock);
3556 kthread_exit();
3557 }
3558
3559 /*
3560 * flushbufqueues:
3561 *
3562 * Try to flush a buffer in the dirty queue. We must be careful to
3563 * free up B_INVAL buffers instead of write them, which NFS is
3564 * particularly sensitive to.
3565 */
3566 static int flushwithdeps = 0;
3567 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3568 &flushwithdeps, 0,
3569 "Number of buffers flushed with dependencies that require rollbacks");
3570
3571 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3572 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3573 int flushdeps)
3574 {
3575 struct bufqueue *bq;
3576 struct buf *sentinel;
3577 struct vnode *vp;
3578 struct mount *mp;
3579 struct buf *bp;
3580 int hasdeps;
3581 int flushed;
3582 int error;
3583 bool unlock;
3584
3585 flushed = 0;
3586 bq = &bd->bd_dirtyq;
3587 bp = NULL;
3588 sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3589 sentinel->b_qindex = QUEUE_SENTINEL;
3590 BQ_LOCK(bq);
3591 TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3592 BQ_UNLOCK(bq);
3593 while (flushed != target) {
3594 maybe_yield();
3595 BQ_LOCK(bq);
3596 bp = TAILQ_NEXT(sentinel, b_freelist);
3597 if (bp != NULL) {
3598 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3599 TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3600 b_freelist);
3601 } else {
3602 BQ_UNLOCK(bq);
3603 break;
3604 }
3605 /*
3606 * Skip sentinels inserted by other invocations of the
3607 * flushbufqueues(), taking care to not reorder them.
3608 *
3609 * Only flush the buffers that belong to the
3610 * vnode locked by the curthread.
3611 */
3612 if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3613 bp->b_vp != lvp)) {
3614 BQ_UNLOCK(bq);
3615 continue;
3616 }
3617 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3618 BQ_UNLOCK(bq);
3619 if (error != 0)
3620 continue;
3621
3622 /*
3623 * BKGRDINPROG can only be set with the buf and bufobj
3624 * locks both held. We tolerate a race to clear it here.
3625 */
3626 if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3627 (bp->b_flags & B_DELWRI) == 0) {
3628 BUF_UNLOCK(bp);
3629 continue;
3630 }
3631 if (bp->b_flags & B_INVAL) {
3632 bremfreef(bp);
3633 brelse(bp);
3634 flushed++;
3635 continue;
3636 }
3637
3638 if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3639 if (flushdeps == 0) {
3640 BUF_UNLOCK(bp);
3641 continue;
3642 }
3643 hasdeps = 1;
3644 } else
3645 hasdeps = 0;
3646 /*
3647 * We must hold the lock on a vnode before writing
3648 * one of its buffers. Otherwise we may confuse, or
3649 * in the case of a snapshot vnode, deadlock the
3650 * system.
3651 *
3652 * The lock order here is the reverse of the normal
3653 * of vnode followed by buf lock. This is ok because
3654 * the NOWAIT will prevent deadlock.
3655 */
3656 vp = bp->b_vp;
3657 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3658 BUF_UNLOCK(bp);
3659 continue;
3660 }
3661 if (lvp == NULL) {
3662 unlock = true;
3663 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3664 } else {
3665 ASSERT_VOP_LOCKED(vp, "getbuf");
3666 unlock = false;
3667 error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3668 vn_lock(vp, LK_TRYUPGRADE);
3669 }
3670 if (error == 0) {
3671 CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3672 bp, bp->b_vp, bp->b_flags);
3673 if (curproc == bufdaemonproc) {
3674 vfs_bio_awrite(bp);
3675 } else {
3676 bremfree(bp);
3677 bwrite(bp);
3678 counter_u64_add(notbufdflushes, 1);
3679 }
3680 vn_finished_write(mp);
3681 if (unlock)
3682 VOP_UNLOCK(vp);
3683 flushwithdeps += hasdeps;
3684 flushed++;
3685
3686 /*
3687 * Sleeping on runningbufspace while holding
3688 * vnode lock leads to deadlock.
3689 */
3690 if (curproc == bufdaemonproc &&
3691 runningbufspace > hirunningspace)
3692 waitrunningbufspace();
3693 continue;
3694 }
3695 vn_finished_write(mp);
3696 BUF_UNLOCK(bp);
3697 }
3698 BQ_LOCK(bq);
3699 TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3700 BQ_UNLOCK(bq);
3701 free(sentinel, M_TEMP);
3702 return (flushed);
3703 }
3704
3705 /*
3706 * Check to see if a block is currently memory resident.
3707 */
3708 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3709 incore(struct bufobj *bo, daddr_t blkno)
3710 {
3711 return (gbincore_unlocked(bo, blkno));
3712 }
3713
3714 /*
3715 * Returns true if no I/O is needed to access the
3716 * associated VM object. This is like incore except
3717 * it also hunts around in the VM system for the data.
3718 */
3719 bool
inmem(struct vnode * vp,daddr_t blkno)3720 inmem(struct vnode * vp, daddr_t blkno)
3721 {
3722 vm_object_t obj;
3723 vm_offset_t toff, tinc, size;
3724 vm_page_t m, n;
3725 vm_ooffset_t off;
3726 int valid;
3727
3728 ASSERT_VOP_LOCKED(vp, "inmem");
3729
3730 if (incore(&vp->v_bufobj, blkno))
3731 return (true);
3732 if (vp->v_mount == NULL)
3733 return (false);
3734 obj = vp->v_object;
3735 if (obj == NULL)
3736 return (false);
3737
3738 size = PAGE_SIZE;
3739 if (size > vp->v_mount->mnt_stat.f_iosize)
3740 size = vp->v_mount->mnt_stat.f_iosize;
3741 off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3742
3743 for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3744 m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3745 recheck:
3746 if (m == NULL)
3747 return (false);
3748
3749 tinc = size;
3750 if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3751 tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3752 /*
3753 * Consider page validity only if page mapping didn't change
3754 * during the check.
3755 */
3756 valid = vm_page_is_valid(m,
3757 (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3758 n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3759 if (m != n) {
3760 m = n;
3761 goto recheck;
3762 }
3763 if (!valid)
3764 return (false);
3765 }
3766 return (true);
3767 }
3768
3769 /*
3770 * Set the dirty range for a buffer based on the status of the dirty
3771 * bits in the pages comprising the buffer. The range is limited
3772 * to the size of the buffer.
3773 *
3774 * Tell the VM system that the pages associated with this buffer
3775 * are clean. This is used for delayed writes where the data is
3776 * going to go to disk eventually without additional VM intevention.
3777 *
3778 * Note that while we only really need to clean through to b_bcount, we
3779 * just go ahead and clean through to b_bufsize.
3780 */
3781 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3782 vfs_clean_pages_dirty_buf(struct buf *bp)
3783 {
3784 vm_ooffset_t foff, noff, eoff;
3785 vm_page_t m;
3786 int i;
3787
3788 if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3789 return;
3790
3791 foff = bp->b_offset;
3792 KASSERT(bp->b_offset != NOOFFSET,
3793 ("vfs_clean_pages_dirty_buf: no buffer offset"));
3794
3795 vfs_busy_pages_acquire(bp);
3796 vfs_setdirty_range(bp);
3797 for (i = 0; i < bp->b_npages; i++) {
3798 noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3799 eoff = noff;
3800 if (eoff > bp->b_offset + bp->b_bufsize)
3801 eoff = bp->b_offset + bp->b_bufsize;
3802 m = bp->b_pages[i];
3803 vfs_page_set_validclean(bp, foff, m);
3804 /* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3805 foff = noff;
3806 }
3807 vfs_busy_pages_release(bp);
3808 }
3809
3810 static void
vfs_setdirty_range(struct buf * bp)3811 vfs_setdirty_range(struct buf *bp)
3812 {
3813 vm_offset_t boffset;
3814 vm_offset_t eoffset;
3815 int i;
3816
3817 /*
3818 * test the pages to see if they have been modified directly
3819 * by users through the VM system.
3820 */
3821 for (i = 0; i < bp->b_npages; i++)
3822 vm_page_test_dirty(bp->b_pages[i]);
3823
3824 /*
3825 * Calculate the encompassing dirty range, boffset and eoffset,
3826 * (eoffset - boffset) bytes.
3827 */
3828
3829 for (i = 0; i < bp->b_npages; i++) {
3830 if (bp->b_pages[i]->dirty)
3831 break;
3832 }
3833 boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3834
3835 for (i = bp->b_npages - 1; i >= 0; --i) {
3836 if (bp->b_pages[i]->dirty) {
3837 break;
3838 }
3839 }
3840 eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3841
3842 /*
3843 * Fit it to the buffer.
3844 */
3845
3846 if (eoffset > bp->b_bcount)
3847 eoffset = bp->b_bcount;
3848
3849 /*
3850 * If we have a good dirty range, merge with the existing
3851 * dirty range.
3852 */
3853
3854 if (boffset < eoffset) {
3855 if (bp->b_dirtyoff > boffset)
3856 bp->b_dirtyoff = boffset;
3857 if (bp->b_dirtyend < eoffset)
3858 bp->b_dirtyend = eoffset;
3859 }
3860 }
3861
3862 /*
3863 * Allocate the KVA mapping for an existing buffer.
3864 * If an unmapped buffer is provided but a mapped buffer is requested, take
3865 * also care to properly setup mappings between pages and KVA.
3866 */
3867 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3868 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3869 {
3870 int bsize, maxsize, need_mapping, need_kva;
3871 off_t offset;
3872
3873 need_mapping = bp->b_data == unmapped_buf &&
3874 (gbflags & GB_UNMAPPED) == 0;
3875 need_kva = bp->b_kvabase == unmapped_buf &&
3876 bp->b_data == unmapped_buf &&
3877 (gbflags & GB_KVAALLOC) != 0;
3878 if (!need_mapping && !need_kva)
3879 return;
3880
3881 BUF_CHECK_UNMAPPED(bp);
3882
3883 if (need_mapping && bp->b_kvabase != unmapped_buf) {
3884 /*
3885 * Buffer is not mapped, but the KVA was already
3886 * reserved at the time of the instantiation. Use the
3887 * allocated space.
3888 */
3889 goto has_addr;
3890 }
3891
3892 /*
3893 * Calculate the amount of the address space we would reserve
3894 * if the buffer was mapped.
3895 */
3896 bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3897 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3898 offset = blkno * bsize;
3899 maxsize = size + (offset & PAGE_MASK);
3900 maxsize = imax(maxsize, bsize);
3901
3902 while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3903 if ((gbflags & GB_NOWAIT_BD) != 0) {
3904 /*
3905 * XXXKIB: defragmentation cannot
3906 * succeed, not sure what else to do.
3907 */
3908 panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3909 }
3910 counter_u64_add(mappingrestarts, 1);
3911 bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3912 }
3913 has_addr:
3914 if (need_mapping) {
3915 /* b_offset is handled by bpmap_qenter. */
3916 bp->b_data = bp->b_kvabase;
3917 BUF_CHECK_MAPPED(bp);
3918 bpmap_qenter(bp);
3919 }
3920 }
3921
3922 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3923 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3924 int flags)
3925 {
3926 struct buf *bp;
3927 int error;
3928
3929 error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3930 if (error != 0)
3931 return (NULL);
3932 return (bp);
3933 }
3934
3935 /*
3936 * getblkx:
3937 *
3938 * Get a block given a specified block and offset into a file/device.
3939 * The buffers B_DONE bit will be cleared on return, making it almost
3940 * ready for an I/O initiation. B_INVAL may or may not be set on
3941 * return. The caller should clear B_INVAL prior to initiating a
3942 * READ.
3943 *
3944 * For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3945 * an existing buffer.
3946 *
3947 * For a VMIO buffer, B_CACHE is modified according to the backing VM.
3948 * If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3949 * and then cleared based on the backing VM. If the previous buffer is
3950 * non-0-sized but invalid, B_CACHE will be cleared.
3951 *
3952 * If getblk() must create a new buffer, the new buffer is returned with
3953 * both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3954 * case it is returned with B_INVAL clear and B_CACHE set based on the
3955 * backing VM.
3956 *
3957 * getblk() also forces a bwrite() for any B_DELWRI buffer whose
3958 * B_CACHE bit is clear.
3959 *
3960 * What this means, basically, is that the caller should use B_CACHE to
3961 * determine whether the buffer is fully valid or not and should clear
3962 * B_INVAL prior to issuing a read. If the caller intends to validate
3963 * the buffer by loading its data area with something, the caller needs
3964 * to clear B_INVAL. If the caller does this without issuing an I/O,
3965 * the caller should set B_CACHE ( as an optimization ), else the caller
3966 * should issue the I/O and biodone() will set B_CACHE if the I/O was
3967 * a write attempt or if it was a successful read. If the caller
3968 * intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3969 * prior to issuing the READ. biodone() will *not* clear B_INVAL.
3970 *
3971 * The blkno parameter is the logical block being requested. Normally
3972 * the mapping of logical block number to disk block address is done
3973 * by calling VOP_BMAP(). However, if the mapping is already known, the
3974 * disk block address can be passed using the dblkno parameter. If the
3975 * disk block address is not known, then the same value should be passed
3976 * for blkno and dblkno.
3977 */
3978 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3979 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3980 int slptimeo, int flags, struct buf **bpp)
3981 {
3982 struct buf *bp;
3983 struct bufobj *bo;
3984 daddr_t d_blkno;
3985 int bsize, error, maxsize, vmio;
3986 off_t offset;
3987
3988 CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3989 KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3990 ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3991 if (vp->v_type != VCHR)
3992 ASSERT_VOP_LOCKED(vp, "getblk");
3993 if (size > maxbcachebuf) {
3994 printf("getblkx: size(%d) > maxbcachebuf(%d)\n", size,
3995 maxbcachebuf);
3996 return (EIO);
3997 }
3998 if (!unmapped_buf_allowed)
3999 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4000
4001 bo = &vp->v_bufobj;
4002 d_blkno = dblkno;
4003
4004 /* Attempt lockless lookup first. */
4005 bp = gbincore_unlocked(bo, blkno);
4006 if (bp == NULL) {
4007 /*
4008 * With GB_NOCREAT we must be sure about not finding the buffer
4009 * as it may have been reassigned during unlocked lookup.
4010 * If BO_NONSTERILE is still unset, no reassign has occurred.
4011 */
4012 if ((flags & GB_NOCREAT) != 0) {
4013 /* Ensure bo_flag is loaded after gbincore_unlocked. */
4014 atomic_thread_fence_acq();
4015 if ((bo->bo_flag & BO_NONSTERILE) == 0)
4016 return (EEXIST);
4017 goto loop;
4018 }
4019 goto newbuf_unlocked;
4020 }
4021
4022 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
4023 0);
4024 if (error != 0) {
4025 KASSERT(error == EBUSY,
4026 ("getblk: unexpected error %d from buf try-lock", error));
4027 /*
4028 * We failed a buf try-lock.
4029 *
4030 * With GB_LOCK_NOWAIT, just return, rather than taking the
4031 * bufobj interlock and trying again, since we would probably
4032 * fail again anyway. This is okay even if the buf's identity
4033 * changed and we contended on the wrong lock, as changing
4034 * identity itself requires the buf lock, and we could have
4035 * contended on the right lock.
4036 */
4037 if ((flags & GB_LOCK_NOWAIT) != 0)
4038 return (error);
4039 goto loop;
4040 }
4041
4042 /* Verify buf identify has not changed since lookup. */
4043 if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
4044 goto foundbuf_fastpath;
4045
4046 /* It changed, fallback to locked lookup. */
4047 BUF_UNLOCK_RAW(bp);
4048
4049 /* As above, with GB_LOCK_NOWAIT, just return. */
4050 if ((flags & GB_LOCK_NOWAIT) != 0)
4051 return (EBUSY);
4052
4053 loop:
4054 BO_RLOCK(bo);
4055 bp = gbincore(bo, blkno);
4056 if (bp != NULL) {
4057 int lockflags;
4058
4059 /*
4060 * Buffer is in-core. If the buffer is not busy nor managed,
4061 * it must be on a queue.
4062 */
4063 lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
4064 ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
4065 #ifdef WITNESS
4066 lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
4067 #endif
4068
4069 error = BUF_TIMELOCK(bp, lockflags,
4070 BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
4071
4072 /*
4073 * If we slept and got the lock we have to restart in case
4074 * the buffer changed identities.
4075 */
4076 if (error == ENOLCK)
4077 goto loop;
4078 /* We timed out or were interrupted. */
4079 else if (error != 0)
4080 return (error);
4081
4082 foundbuf_fastpath:
4083 /* If recursed, assume caller knows the rules. */
4084 if (BUF_LOCKRECURSED(bp))
4085 goto end;
4086
4087 /*
4088 * The buffer is locked. B_CACHE is cleared if the buffer is
4089 * invalid. Otherwise, for a non-VMIO buffer, B_CACHE is set
4090 * and for a VMIO buffer B_CACHE is adjusted according to the
4091 * backing VM cache.
4092 */
4093 if (bp->b_flags & B_INVAL)
4094 bp->b_flags &= ~B_CACHE;
4095 else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4096 bp->b_flags |= B_CACHE;
4097 if (bp->b_flags & B_MANAGED)
4098 MPASS(bp->b_qindex == QUEUE_NONE);
4099 else
4100 bremfree(bp);
4101
4102 /*
4103 * check for size inconsistencies for non-VMIO case.
4104 */
4105 if (bp->b_bcount != size) {
4106 if ((bp->b_flags & B_VMIO) == 0 ||
4107 (size > bp->b_kvasize)) {
4108 if (bp->b_flags & B_DELWRI) {
4109 bp->b_flags |= B_NOCACHE;
4110 bwrite(bp);
4111 } else {
4112 if (LIST_EMPTY(&bp->b_dep)) {
4113 bp->b_flags |= B_RELBUF;
4114 brelse(bp);
4115 } else {
4116 bp->b_flags |= B_NOCACHE;
4117 bwrite(bp);
4118 }
4119 }
4120 goto loop;
4121 }
4122 }
4123
4124 /*
4125 * Handle the case of unmapped buffer which should
4126 * become mapped, or the buffer for which KVA
4127 * reservation is requested.
4128 */
4129 bp_unmapped_get_kva(bp, blkno, size, flags);
4130
4131 /*
4132 * If the size is inconsistent in the VMIO case, we can resize
4133 * the buffer. This might lead to B_CACHE getting set or
4134 * cleared. If the size has not changed, B_CACHE remains
4135 * unchanged from its previous state.
4136 */
4137 allocbuf(bp, size);
4138
4139 KASSERT(bp->b_offset != NOOFFSET,
4140 ("getblk: no buffer offset"));
4141
4142 /*
4143 * A buffer with B_DELWRI set and B_CACHE clear must
4144 * be committed before we can return the buffer in
4145 * order to prevent the caller from issuing a read
4146 * ( due to B_CACHE not being set ) and overwriting
4147 * it.
4148 *
4149 * Most callers, including NFS and FFS, need this to
4150 * operate properly either because they assume they
4151 * can issue a read if B_CACHE is not set, or because
4152 * ( for example ) an uncached B_DELWRI might loop due
4153 * to softupdates re-dirtying the buffer. In the latter
4154 * case, B_CACHE is set after the first write completes,
4155 * preventing further loops.
4156 * NOTE! b*write() sets B_CACHE. If we cleared B_CACHE
4157 * above while extending the buffer, we cannot allow the
4158 * buffer to remain with B_CACHE set after the write
4159 * completes or it will represent a corrupt state. To
4160 * deal with this we set B_NOCACHE to scrap the buffer
4161 * after the write.
4162 *
4163 * We might be able to do something fancy, like setting
4164 * B_CACHE in bwrite() except if B_DELWRI is already set,
4165 * so the below call doesn't set B_CACHE, but that gets real
4166 * confusing. This is much easier.
4167 */
4168
4169 if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4170 bp->b_flags |= B_NOCACHE;
4171 bwrite(bp);
4172 goto loop;
4173 }
4174 bp->b_flags &= ~B_DONE;
4175 } else {
4176 /*
4177 * Buffer is not in-core, create new buffer. The buffer
4178 * returned by getnewbuf() is locked. Note that the returned
4179 * buffer is also considered valid (not marked B_INVAL).
4180 */
4181 BO_RUNLOCK(bo);
4182 newbuf_unlocked:
4183 /*
4184 * If the user does not want us to create the buffer, bail out
4185 * here.
4186 */
4187 if (flags & GB_NOCREAT)
4188 return (EEXIST);
4189
4190 bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4191 KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4192 offset = blkno * bsize;
4193 vmio = vp->v_object != NULL;
4194 if (vmio) {
4195 maxsize = size + (offset & PAGE_MASK);
4196 if (maxsize > maxbcachebuf) {
4197 printf(
4198 "getblkx: maxsize(%d) > maxbcachebuf(%d)\n",
4199 maxsize, maxbcachebuf);
4200 return (EIO);
4201 }
4202 } else {
4203 maxsize = size;
4204 /* Do not allow non-VMIO notmapped buffers. */
4205 flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4206 }
4207 maxsize = imax(maxsize, bsize);
4208 if ((flags & GB_NOSPARSE) != 0 && vmio &&
4209 !vn_isdisk(vp)) {
4210 error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4211 KASSERT(error != EOPNOTSUPP,
4212 ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4213 vp));
4214 if (error != 0)
4215 return (error);
4216 if (d_blkno == -1)
4217 return (EJUSTRETURN);
4218 }
4219
4220 bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4221 if (bp == NULL) {
4222 if (slpflag || slptimeo)
4223 return (ETIMEDOUT);
4224 /*
4225 * XXX This is here until the sleep path is diagnosed
4226 * enough to work under very low memory conditions.
4227 *
4228 * There's an issue on low memory, 4BSD+non-preempt
4229 * systems (eg MIPS routers with 32MB RAM) where buffer
4230 * exhaustion occurs without sleeping for buffer
4231 * reclaimation. This just sticks in a loop and
4232 * constantly attempts to allocate a buffer, which
4233 * hits exhaustion and tries to wakeup bufdaemon.
4234 * This never happens because we never yield.
4235 *
4236 * The real solution is to identify and fix these cases
4237 * so we aren't effectively busy-waiting in a loop
4238 * until the reclaimation path has cycles to run.
4239 */
4240 kern_yield(PRI_USER);
4241 goto loop;
4242 }
4243
4244 /*
4245 *
4246 * Insert the buffer into the hash, so that it can
4247 * be found by incore.
4248 *
4249 * We don't hold the bufobj interlock while allocating the new
4250 * buffer. Consequently, we can race on buffer creation. This
4251 * can be a problem whether the vnode is locked or not. If the
4252 * buffer is created out from under us, we have to throw away
4253 * the one we just created.
4254 */
4255 bp->b_lblkno = blkno;
4256 bp->b_blkno = d_blkno;
4257 bp->b_offset = offset;
4258 error = bgetvp(vp, bp);
4259 if (error != 0) {
4260 KASSERT(error == EEXIST,
4261 ("getblk: unexpected error %d from bgetvp",
4262 error));
4263 bp->b_flags |= B_INVAL;
4264 bufspace_release(bufdomain(bp), maxsize);
4265 brelse(bp);
4266 goto loop;
4267 }
4268
4269 /*
4270 * set B_VMIO bit. allocbuf() the buffer bigger. Since the
4271 * buffer size starts out as 0, B_CACHE will be set by
4272 * allocbuf() for the VMIO case prior to it testing the
4273 * backing store for validity.
4274 */
4275
4276 if (vmio) {
4277 bp->b_flags |= B_VMIO;
4278 KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4279 ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4280 bp, vp->v_object, bp->b_bufobj->bo_object));
4281 } else {
4282 bp->b_flags &= ~B_VMIO;
4283 KASSERT(bp->b_bufobj->bo_object == NULL,
4284 ("ARGH! has b_bufobj->bo_object %p %p\n",
4285 bp, bp->b_bufobj->bo_object));
4286 BUF_CHECK_MAPPED(bp);
4287 }
4288
4289 allocbuf(bp, size);
4290 bufspace_release(bufdomain(bp), maxsize);
4291 bp->b_flags &= ~B_DONE;
4292 }
4293 CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4294 end:
4295 buf_track(bp, __func__);
4296 KASSERT(bp->b_bufobj == bo,
4297 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4298 *bpp = bp;
4299 return (0);
4300 }
4301
4302 /*
4303 * Get an empty, disassociated buffer of given size. The buffer is initially
4304 * set to B_INVAL.
4305 */
4306 struct buf *
geteblk(int size,int flags)4307 geteblk(int size, int flags)
4308 {
4309 struct buf *bp;
4310 int maxsize;
4311
4312 maxsize = (size + BKVAMASK) & ~BKVAMASK;
4313 while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4314 if ((flags & GB_NOWAIT_BD) &&
4315 (curthread->td_pflags & TDP_BUFNEED) != 0)
4316 return (NULL);
4317 }
4318 allocbuf(bp, size);
4319 bufspace_release(bufdomain(bp), maxsize);
4320 bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
4321 return (bp);
4322 }
4323
4324 /*
4325 * Truncate the backing store for a non-vmio buffer.
4326 */
4327 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4328 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4329 {
4330
4331 if (bp->b_flags & B_MALLOC) {
4332 /*
4333 * malloced buffers are not shrunk
4334 */
4335 if (newbsize == 0) {
4336 bufmallocadjust(bp, 0);
4337 free(bp->b_data, M_BIOBUF);
4338 bp->b_data = bp->b_kvabase;
4339 bp->b_flags &= ~B_MALLOC;
4340 }
4341 return;
4342 }
4343 vm_hold_free_pages(bp, newbsize);
4344 bufspace_adjust(bp, newbsize);
4345 }
4346
4347 /*
4348 * Extend the backing for a non-VMIO buffer.
4349 */
4350 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4351 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4352 {
4353 caddr_t origbuf;
4354 int origbufsize;
4355
4356 /*
4357 * We only use malloced memory on the first allocation.
4358 * and revert to page-allocated memory when the buffer
4359 * grows.
4360 *
4361 * There is a potential smp race here that could lead
4362 * to bufmallocspace slightly passing the max. It
4363 * is probably extremely rare and not worth worrying
4364 * over.
4365 */
4366 if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4367 bufmallocspace < maxbufmallocspace) {
4368 bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4369 bp->b_flags |= B_MALLOC;
4370 bufmallocadjust(bp, newbsize);
4371 return;
4372 }
4373
4374 /*
4375 * If the buffer is growing on its other-than-first
4376 * allocation then we revert to the page-allocation
4377 * scheme.
4378 */
4379 origbuf = NULL;
4380 origbufsize = 0;
4381 if (bp->b_flags & B_MALLOC) {
4382 origbuf = bp->b_data;
4383 origbufsize = bp->b_bufsize;
4384 bp->b_data = bp->b_kvabase;
4385 bufmallocadjust(bp, 0);
4386 bp->b_flags &= ~B_MALLOC;
4387 newbsize = round_page(newbsize);
4388 }
4389 vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4390 (vm_offset_t) bp->b_data + newbsize);
4391 if (origbuf != NULL) {
4392 bcopy(origbuf, bp->b_data, origbufsize);
4393 free(origbuf, M_BIOBUF);
4394 }
4395 bufspace_adjust(bp, newbsize);
4396 }
4397
4398 /*
4399 * This code constitutes the buffer memory from either anonymous system
4400 * memory (in the case of non-VMIO operations) or from an associated
4401 * VM object (in the case of VMIO operations). This code is able to
4402 * resize a buffer up or down.
4403 *
4404 * Note that this code is tricky, and has many complications to resolve
4405 * deadlock or inconsistent data situations. Tread lightly!!!
4406 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4407 * the caller. Calling this code willy nilly can result in the loss of data.
4408 *
4409 * allocbuf() only adjusts B_CACHE for VMIO buffers. getblk() deals with
4410 * B_CACHE for the non-VMIO case.
4411 */
4412 int
allocbuf(struct buf * bp,int size)4413 allocbuf(struct buf *bp, int size)
4414 {
4415 int newbsize;
4416
4417 if (bp->b_bcount == size)
4418 return (1);
4419
4420 KASSERT(bp->b_kvasize == 0 || bp->b_kvasize >= size,
4421 ("allocbuf: buffer too small %p %#x %#x",
4422 bp, bp->b_kvasize, size));
4423
4424 newbsize = roundup2(size, DEV_BSIZE);
4425 if ((bp->b_flags & B_VMIO) == 0) {
4426 if ((bp->b_flags & B_MALLOC) == 0)
4427 newbsize = round_page(newbsize);
4428 /*
4429 * Just get anonymous memory from the kernel. Don't
4430 * mess with B_CACHE.
4431 */
4432 if (newbsize < bp->b_bufsize)
4433 vfs_nonvmio_truncate(bp, newbsize);
4434 else if (newbsize > bp->b_bufsize)
4435 vfs_nonvmio_extend(bp, newbsize);
4436 } else {
4437 int desiredpages;
4438
4439 desiredpages = size == 0 ? 0 :
4440 num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4441
4442 KASSERT((bp->b_flags & B_MALLOC) == 0,
4443 ("allocbuf: VMIO buffer can't be malloced %p", bp));
4444
4445 /*
4446 * Set B_CACHE initially if buffer is 0 length or will become
4447 * 0-length.
4448 */
4449 if (size == 0 || bp->b_bufsize == 0)
4450 bp->b_flags |= B_CACHE;
4451
4452 if (newbsize < bp->b_bufsize)
4453 vfs_vmio_truncate(bp, desiredpages);
4454 /* XXX This looks as if it should be newbsize > b_bufsize */
4455 else if (size > bp->b_bcount)
4456 vfs_vmio_extend(bp, desiredpages, size);
4457 bufspace_adjust(bp, newbsize);
4458 }
4459 bp->b_bcount = size; /* requested buffer size. */
4460 return (1);
4461 }
4462
4463 extern int inflight_transient_maps;
4464
4465 static struct bio_queue nondump_bios;
4466
4467 void
biodone(struct bio * bp)4468 biodone(struct bio *bp)
4469 {
4470 struct mtx *mtxp;
4471 void (*done)(struct bio *);
4472 vm_offset_t start, end;
4473
4474 biotrack(bp, __func__);
4475
4476 /*
4477 * Avoid completing I/O when dumping after a panic since that may
4478 * result in a deadlock in the filesystem or pager code. Note that
4479 * this doesn't affect dumps that were started manually since we aim
4480 * to keep the system usable after it has been resumed.
4481 */
4482 if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4483 TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4484 return;
4485 }
4486 if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4487 bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4488 bp->bio_flags |= BIO_UNMAPPED;
4489 start = trunc_page((vm_offset_t)bp->bio_data);
4490 end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4491 bp->bio_data = unmapped_buf;
4492 pmap_qremove(start, atop(end - start));
4493 vmem_free(transient_arena, start, end - start);
4494 atomic_add_int(&inflight_transient_maps, -1);
4495 }
4496 done = bp->bio_done;
4497 /*
4498 * The check for done == biodone is to allow biodone to be
4499 * used as a bio_done routine.
4500 */
4501 if (done == NULL || done == biodone) {
4502 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4503 mtx_lock(mtxp);
4504 bp->bio_flags |= BIO_DONE;
4505 wakeup(bp);
4506 mtx_unlock(mtxp);
4507 } else
4508 done(bp);
4509 }
4510
4511 /*
4512 * Wait for a BIO to finish.
4513 */
4514 int
biowait(struct bio * bp,const char * wmesg)4515 biowait(struct bio *bp, const char *wmesg)
4516 {
4517 struct mtx *mtxp;
4518
4519 mtxp = mtx_pool_find(mtxpool_sleep, bp);
4520 mtx_lock(mtxp);
4521 while ((bp->bio_flags & BIO_DONE) == 0)
4522 msleep(bp, mtxp, PRIBIO, wmesg, 0);
4523 mtx_unlock(mtxp);
4524 if (bp->bio_error != 0)
4525 return (bp->bio_error);
4526 if (!(bp->bio_flags & BIO_ERROR))
4527 return (0);
4528 return (EIO);
4529 }
4530
4531 void
biofinish(struct bio * bp,struct devstat * stat,int error)4532 biofinish(struct bio *bp, struct devstat *stat, int error)
4533 {
4534
4535 if (error) {
4536 bp->bio_error = error;
4537 bp->bio_flags |= BIO_ERROR;
4538 }
4539 if (stat != NULL)
4540 devstat_end_transaction_bio(stat, bp);
4541 biodone(bp);
4542 }
4543
4544 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4545 void
biotrack_buf(struct bio * bp,const char * location)4546 biotrack_buf(struct bio *bp, const char *location)
4547 {
4548
4549 buf_track(bp->bio_track_bp, location);
4550 }
4551 #endif
4552
4553 /*
4554 * bufwait:
4555 *
4556 * Wait for buffer I/O completion, returning error status. The buffer
4557 * is left locked and B_DONE on return. B_EINTR is converted into an EINTR
4558 * error and cleared.
4559 */
4560 int
bufwait(struct buf * bp)4561 bufwait(struct buf *bp)
4562 {
4563 if (bp->b_iocmd == BIO_READ)
4564 bwait(bp, PRIBIO, "biord");
4565 else
4566 bwait(bp, PRIBIO, "biowr");
4567 if (bp->b_flags & B_EINTR) {
4568 bp->b_flags &= ~B_EINTR;
4569 return (EINTR);
4570 }
4571 if (bp->b_ioflags & BIO_ERROR) {
4572 return (bp->b_error ? bp->b_error : EIO);
4573 } else {
4574 return (0);
4575 }
4576 }
4577
4578 /*
4579 * bufdone:
4580 *
4581 * Finish I/O on a buffer, optionally calling a completion function.
4582 * This is usually called from an interrupt so process blocking is
4583 * not allowed.
4584 *
4585 * biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4586 * In a non-VMIO bp, B_CACHE will be set on the next getblk()
4587 * assuming B_INVAL is clear.
4588 *
4589 * For the VMIO case, we set B_CACHE if the op was a read and no
4590 * read error occurred, or if the op was a write. B_CACHE is never
4591 * set if the buffer is invalid or otherwise uncacheable.
4592 *
4593 * bufdone does not mess with B_INVAL, allowing the I/O routine or the
4594 * initiator to leave B_INVAL set to brelse the buffer out of existence
4595 * in the biodone routine.
4596 */
4597 void
bufdone(struct buf * bp)4598 bufdone(struct buf *bp)
4599 {
4600 struct bufobj *dropobj;
4601 void (*biodone)(struct buf *);
4602
4603 buf_track(bp, __func__);
4604 CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4605 dropobj = NULL;
4606
4607 KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4608
4609 runningbufwakeup(bp);
4610 if (bp->b_iocmd == BIO_WRITE)
4611 dropobj = bp->b_bufobj;
4612 /* call optional completion function if requested */
4613 if (bp->b_iodone != NULL) {
4614 biodone = bp->b_iodone;
4615 bp->b_iodone = NULL;
4616 (*biodone) (bp);
4617 if (dropobj)
4618 bufobj_wdrop(dropobj);
4619 return;
4620 }
4621 if (bp->b_flags & B_VMIO) {
4622 /*
4623 * Set B_CACHE if the op was a normal read and no error
4624 * occurred. B_CACHE is set for writes in the b*write()
4625 * routines.
4626 */
4627 if (bp->b_iocmd == BIO_READ &&
4628 !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4629 !(bp->b_ioflags & BIO_ERROR))
4630 bp->b_flags |= B_CACHE;
4631 vfs_vmio_iodone(bp);
4632 }
4633 if (!LIST_EMPTY(&bp->b_dep))
4634 buf_complete(bp);
4635 if ((bp->b_flags & B_CKHASH) != 0) {
4636 KASSERT(bp->b_iocmd == BIO_READ,
4637 ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4638 KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4639 (*bp->b_ckhashcalc)(bp);
4640 }
4641 /*
4642 * For asynchronous completions, release the buffer now. The brelse
4643 * will do a wakeup there if necessary - so no need to do a wakeup
4644 * here in the async case. The sync case always needs to do a wakeup.
4645 */
4646 if (bp->b_flags & B_ASYNC) {
4647 if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4648 (bp->b_ioflags & BIO_ERROR))
4649 brelse(bp);
4650 else
4651 bqrelse(bp);
4652 } else
4653 bdone(bp);
4654 if (dropobj)
4655 bufobj_wdrop(dropobj);
4656 }
4657
4658 /*
4659 * This routine is called in lieu of iodone in the case of
4660 * incomplete I/O. This keeps the busy status for pages
4661 * consistent.
4662 */
4663 void
vfs_unbusy_pages(struct buf * bp)4664 vfs_unbusy_pages(struct buf *bp)
4665 {
4666 int i;
4667 vm_object_t obj;
4668 vm_page_t m;
4669
4670 runningbufwakeup(bp);
4671 if (!(bp->b_flags & B_VMIO))
4672 return;
4673
4674 obj = bp->b_bufobj->bo_object;
4675 for (i = 0; i < bp->b_npages; i++) {
4676 m = bp->b_pages[i];
4677 if (m == bogus_page) {
4678 m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4679 if (!m)
4680 panic("vfs_unbusy_pages: page missing\n");
4681 bp->b_pages[i] = m;
4682 if (buf_mapped(bp)) {
4683 BUF_CHECK_MAPPED(bp);
4684 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4685 bp->b_pages, bp->b_npages);
4686 } else
4687 BUF_CHECK_UNMAPPED(bp);
4688 }
4689 vm_page_sunbusy(m);
4690 }
4691 vm_object_pip_wakeupn(obj, bp->b_npages);
4692 }
4693
4694 /*
4695 * vfs_page_set_valid:
4696 *
4697 * Set the valid bits in a page based on the supplied offset. The
4698 * range is restricted to the buffer's size.
4699 *
4700 * This routine is typically called after a read completes.
4701 */
4702 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4703 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4704 {
4705 vm_ooffset_t eoff;
4706
4707 /*
4708 * Compute the end offset, eoff, such that [off, eoff) does not span a
4709 * page boundary and eoff is not greater than the end of the buffer.
4710 * The end of the buffer, in this case, is our file EOF, not the
4711 * allocation size of the buffer.
4712 */
4713 eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4714 if (eoff > bp->b_offset + bp->b_bcount)
4715 eoff = bp->b_offset + bp->b_bcount;
4716
4717 /*
4718 * Set valid range. This is typically the entire buffer and thus the
4719 * entire page.
4720 */
4721 if (eoff > off)
4722 vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4723 }
4724
4725 /*
4726 * vfs_page_set_validclean:
4727 *
4728 * Set the valid bits and clear the dirty bits in a page based on the
4729 * supplied offset. The range is restricted to the buffer's size.
4730 */
4731 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4732 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4733 {
4734 vm_ooffset_t soff, eoff;
4735
4736 /*
4737 * Start and end offsets in buffer. eoff - soff may not cross a
4738 * page boundary or cross the end of the buffer. The end of the
4739 * buffer, in this case, is our file EOF, not the allocation size
4740 * of the buffer.
4741 */
4742 soff = off;
4743 eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4744 if (eoff > bp->b_offset + bp->b_bcount)
4745 eoff = bp->b_offset + bp->b_bcount;
4746
4747 /*
4748 * Set valid range. This is typically the entire buffer and thus the
4749 * entire page.
4750 */
4751 if (eoff > soff) {
4752 vm_page_set_validclean(
4753 m,
4754 (vm_offset_t) (soff & PAGE_MASK),
4755 (vm_offset_t) (eoff - soff)
4756 );
4757 }
4758 }
4759
4760 /*
4761 * Acquire a shared busy on all pages in the buf.
4762 */
4763 void
vfs_busy_pages_acquire(struct buf * bp)4764 vfs_busy_pages_acquire(struct buf *bp)
4765 {
4766 int i;
4767
4768 for (i = 0; i < bp->b_npages; i++)
4769 vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4770 }
4771
4772 void
vfs_busy_pages_release(struct buf * bp)4773 vfs_busy_pages_release(struct buf *bp)
4774 {
4775 int i;
4776
4777 for (i = 0; i < bp->b_npages; i++)
4778 vm_page_sunbusy(bp->b_pages[i]);
4779 }
4780
4781 /*
4782 * This routine is called before a device strategy routine.
4783 * It is used to tell the VM system that paging I/O is in
4784 * progress, and treat the pages associated with the buffer
4785 * almost as being exclusive busy. Also the object paging_in_progress
4786 * flag is handled to make sure that the object doesn't become
4787 * inconsistent.
4788 *
4789 * Since I/O has not been initiated yet, certain buffer flags
4790 * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4791 * and should be ignored.
4792 */
4793 void
vfs_busy_pages(struct buf * bp,int clear_modify)4794 vfs_busy_pages(struct buf *bp, int clear_modify)
4795 {
4796 vm_object_t obj;
4797 vm_ooffset_t foff;
4798 vm_page_t m;
4799 int i;
4800 bool bogus;
4801
4802 if (!(bp->b_flags & B_VMIO))
4803 return;
4804
4805 obj = bp->b_bufobj->bo_object;
4806 foff = bp->b_offset;
4807 KASSERT(bp->b_offset != NOOFFSET,
4808 ("vfs_busy_pages: no buffer offset"));
4809 if ((bp->b_flags & B_CLUSTER) == 0) {
4810 vm_object_pip_add(obj, bp->b_npages);
4811 vfs_busy_pages_acquire(bp);
4812 }
4813 if (bp->b_bufsize != 0)
4814 vfs_setdirty_range(bp);
4815 bogus = false;
4816 for (i = 0; i < bp->b_npages; i++) {
4817 m = bp->b_pages[i];
4818 vm_page_assert_sbusied(m);
4819
4820 /*
4821 * When readying a buffer for a read ( i.e
4822 * clear_modify == 0 ), it is important to do
4823 * bogus_page replacement for valid pages in
4824 * partially instantiated buffers. Partially
4825 * instantiated buffers can, in turn, occur when
4826 * reconstituting a buffer from its VM backing store
4827 * base. We only have to do this if B_CACHE is
4828 * clear ( which causes the I/O to occur in the
4829 * first place ). The replacement prevents the read
4830 * I/O from overwriting potentially dirty VM-backed
4831 * pages. XXX bogus page replacement is, uh, bogus.
4832 * It may not work properly with small-block devices.
4833 * We need to find a better way.
4834 */
4835 if (clear_modify) {
4836 pmap_remove_write(m);
4837 vfs_page_set_validclean(bp, foff, m);
4838 } else if (vm_page_all_valid(m) &&
4839 (bp->b_flags & B_CACHE) == 0) {
4840 bp->b_pages[i] = bogus_page;
4841 bogus = true;
4842 }
4843 foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4844 }
4845 if (bogus && buf_mapped(bp)) {
4846 BUF_CHECK_MAPPED(bp);
4847 pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4848 bp->b_pages, bp->b_npages);
4849 }
4850 }
4851
4852 /*
4853 * vfs_bio_set_valid:
4854 *
4855 * Set the range within the buffer to valid. The range is
4856 * relative to the beginning of the buffer, b_offset. Note that
4857 * b_offset itself may be offset from the beginning of the first
4858 * page.
4859 */
4860 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4861 vfs_bio_set_valid(struct buf *bp, int base, int size)
4862 {
4863 int i, n;
4864 vm_page_t m;
4865
4866 if (!(bp->b_flags & B_VMIO))
4867 return;
4868
4869 /*
4870 * Fixup base to be relative to beginning of first page.
4871 * Set initial n to be the maximum number of bytes in the
4872 * first page that can be validated.
4873 */
4874 base += (bp->b_offset & PAGE_MASK);
4875 n = PAGE_SIZE - (base & PAGE_MASK);
4876
4877 /*
4878 * Busy may not be strictly necessary here because the pages are
4879 * unlikely to be fully valid and the vnode lock will synchronize
4880 * their access via getpages. It is grabbed for consistency with
4881 * other page validation.
4882 */
4883 vfs_busy_pages_acquire(bp);
4884 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4885 m = bp->b_pages[i];
4886 if (n > size)
4887 n = size;
4888 vm_page_set_valid_range(m, base & PAGE_MASK, n);
4889 base += n;
4890 size -= n;
4891 n = PAGE_SIZE;
4892 }
4893 vfs_busy_pages_release(bp);
4894 }
4895
4896 /*
4897 * vfs_bio_clrbuf:
4898 *
4899 * If the specified buffer is a non-VMIO buffer, clear the entire
4900 * buffer. If the specified buffer is a VMIO buffer, clear and
4901 * validate only the previously invalid portions of the buffer.
4902 * This routine essentially fakes an I/O, so we need to clear
4903 * BIO_ERROR and B_INVAL.
4904 *
4905 * Note that while we only theoretically need to clear through b_bcount,
4906 * we go ahead and clear through b_bufsize.
4907 */
4908 void
vfs_bio_clrbuf(struct buf * bp)4909 vfs_bio_clrbuf(struct buf *bp)
4910 {
4911 int i, j, sa, ea, slide, zbits;
4912 vm_page_bits_t mask;
4913
4914 if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4915 clrbuf(bp);
4916 return;
4917 }
4918 bp->b_flags &= ~B_INVAL;
4919 bp->b_ioflags &= ~BIO_ERROR;
4920 vfs_busy_pages_acquire(bp);
4921 sa = bp->b_offset & PAGE_MASK;
4922 slide = 0;
4923 for (i = 0; i < bp->b_npages; i++, sa = 0) {
4924 slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4925 ea = slide & PAGE_MASK;
4926 if (ea == 0)
4927 ea = PAGE_SIZE;
4928 if (bp->b_pages[i] == bogus_page)
4929 continue;
4930 j = sa / DEV_BSIZE;
4931 zbits = (sizeof(vm_page_bits_t) * NBBY) -
4932 (ea - sa) / DEV_BSIZE;
4933 mask = (VM_PAGE_BITS_ALL >> zbits) << j;
4934 if ((bp->b_pages[i]->valid & mask) == mask)
4935 continue;
4936 if ((bp->b_pages[i]->valid & mask) == 0)
4937 pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4938 else {
4939 for (; sa < ea; sa += DEV_BSIZE, j++) {
4940 if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4941 pmap_zero_page_area(bp->b_pages[i],
4942 sa, DEV_BSIZE);
4943 }
4944 }
4945 }
4946 vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4947 roundup2(ea - sa, DEV_BSIZE));
4948 }
4949 vfs_busy_pages_release(bp);
4950 bp->b_resid = 0;
4951 }
4952
4953 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4954 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4955 {
4956 vm_page_t m;
4957 int i, n;
4958
4959 if (buf_mapped(bp)) {
4960 BUF_CHECK_MAPPED(bp);
4961 bzero(bp->b_data + base, size);
4962 } else {
4963 BUF_CHECK_UNMAPPED(bp);
4964 n = PAGE_SIZE - (base & PAGE_MASK);
4965 for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4966 m = bp->b_pages[i];
4967 if (n > size)
4968 n = size;
4969 pmap_zero_page_area(m, base & PAGE_MASK, n);
4970 base += n;
4971 size -= n;
4972 n = PAGE_SIZE;
4973 }
4974 }
4975 }
4976
4977 /*
4978 * Update buffer flags based on I/O request parameters, optionally releasing the
4979 * buffer. If it's VMIO or direct I/O, the buffer pages are released to the VM,
4980 * where they may be placed on a page queue (VMIO) or freed immediately (direct
4981 * I/O). Otherwise the buffer is released to the cache.
4982 */
4983 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4984 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4985 {
4986
4987 KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4988 ("buf %p non-VMIO noreuse", bp));
4989
4990 if ((ioflag & IO_DIRECT) != 0)
4991 bp->b_flags |= B_DIRECT;
4992 if ((ioflag & IO_EXT) != 0)
4993 bp->b_xflags |= BX_ALTDATA;
4994 if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4995 bp->b_flags |= B_RELBUF;
4996 if ((ioflag & IO_NOREUSE) != 0)
4997 bp->b_flags |= B_NOREUSE;
4998 if (release)
4999 brelse(bp);
5000 } else if (release)
5001 bqrelse(bp);
5002 }
5003
5004 void
vfs_bio_brelse(struct buf * bp,int ioflag)5005 vfs_bio_brelse(struct buf *bp, int ioflag)
5006 {
5007
5008 b_io_dismiss(bp, ioflag, true);
5009 }
5010
5011 void
vfs_bio_set_flags(struct buf * bp,int ioflag)5012 vfs_bio_set_flags(struct buf *bp, int ioflag)
5013 {
5014
5015 b_io_dismiss(bp, ioflag, false);
5016 }
5017
5018 /*
5019 * vm_hold_load_pages and vm_hold_free_pages get pages into
5020 * a buffers address space. The pages are anonymous and are
5021 * not associated with a file object.
5022 */
5023 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)5024 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
5025 {
5026 vm_offset_t pg;
5027 vm_page_t p;
5028 int index;
5029
5030 BUF_CHECK_MAPPED(bp);
5031
5032 to = round_page(to);
5033 from = round_page(from);
5034 index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5035 MPASS((bp->b_flags & B_MAXPHYS) == 0);
5036 KASSERT(to - from <= maxbcachebuf,
5037 ("vm_hold_load_pages too large %p %#jx %#jx %u",
5038 bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
5039
5040 for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
5041 /*
5042 * note: must allocate system pages since blocking here
5043 * could interfere with paging I/O, no matter which
5044 * process we are.
5045 */
5046 p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
5047 VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
5048 pmap_qenter(pg, &p, 1);
5049 bp->b_pages[index] = p;
5050 }
5051 bp->b_npages = index;
5052 }
5053
5054 /* Return pages associated with this buf to the vm system */
5055 static void
vm_hold_free_pages(struct buf * bp,int newbsize)5056 vm_hold_free_pages(struct buf *bp, int newbsize)
5057 {
5058 vm_offset_t from;
5059 vm_page_t p;
5060 int index, newnpages;
5061
5062 BUF_CHECK_MAPPED(bp);
5063
5064 from = round_page((vm_offset_t)bp->b_data + newbsize);
5065 newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5066 if (bp->b_npages > newnpages)
5067 pmap_qremove(from, bp->b_npages - newnpages);
5068 for (index = newnpages; index < bp->b_npages; index++) {
5069 p = bp->b_pages[index];
5070 bp->b_pages[index] = NULL;
5071 vm_page_unwire_noq(p);
5072 vm_page_free(p);
5073 }
5074 bp->b_npages = newnpages;
5075 }
5076
5077 /*
5078 * Map an IO request into kernel virtual address space.
5079 *
5080 * All requests are (re)mapped into kernel VA space.
5081 * Notice that we use b_bufsize for the size of the buffer
5082 * to be mapped. b_bcount might be modified by the driver.
5083 *
5084 * Note that even if the caller determines that the address space should
5085 * be valid, a race or a smaller-file mapped into a larger space may
5086 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5087 * check the return value.
5088 *
5089 * This function only works with pager buffers.
5090 */
5091 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)5092 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5093 {
5094 vm_prot_t prot;
5095 int pidx;
5096
5097 MPASS((bp->b_flags & B_MAXPHYS) != 0);
5098 prot = VM_PROT_READ;
5099 if (bp->b_iocmd == BIO_READ)
5100 prot |= VM_PROT_WRITE; /* Less backwards than it looks */
5101 pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5102 (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5103 if (pidx < 0)
5104 return (-1);
5105 bp->b_bufsize = len;
5106 bp->b_npages = pidx;
5107 bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5108 if (mapbuf || !unmapped_buf_allowed) {
5109 pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5110 bp->b_data = bp->b_kvabase + bp->b_offset;
5111 } else
5112 bp->b_data = unmapped_buf;
5113 return (0);
5114 }
5115
5116 /*
5117 * Free the io map PTEs associated with this IO operation.
5118 * We also invalidate the TLB entries and restore the original b_addr.
5119 *
5120 * This function only works with pager buffers.
5121 */
5122 void
vunmapbuf(struct buf * bp)5123 vunmapbuf(struct buf *bp)
5124 {
5125 int npages;
5126
5127 npages = bp->b_npages;
5128 if (buf_mapped(bp))
5129 pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5130 vm_page_unhold_pages(bp->b_pages, npages);
5131
5132 bp->b_data = unmapped_buf;
5133 }
5134
5135 void
bdone(struct buf * bp)5136 bdone(struct buf *bp)
5137 {
5138 struct mtx *mtxp;
5139
5140 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5141 mtx_lock(mtxp);
5142 bp->b_flags |= B_DONE;
5143 wakeup(bp);
5144 mtx_unlock(mtxp);
5145 }
5146
5147 void
bwait(struct buf * bp,u_char pri,const char * wchan)5148 bwait(struct buf *bp, u_char pri, const char *wchan)
5149 {
5150 struct mtx *mtxp;
5151
5152 mtxp = mtx_pool_find(mtxpool_sleep, bp);
5153 mtx_lock(mtxp);
5154 while ((bp->b_flags & B_DONE) == 0)
5155 msleep(bp, mtxp, pri, wchan, 0);
5156 mtx_unlock(mtxp);
5157 }
5158
5159 int
bufsync(struct bufobj * bo,int waitfor)5160 bufsync(struct bufobj *bo, int waitfor)
5161 {
5162
5163 return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5164 }
5165
5166 void
bufstrategy(struct bufobj * bo,struct buf * bp)5167 bufstrategy(struct bufobj *bo, struct buf *bp)
5168 {
5169 int i __unused;
5170 struct vnode *vp;
5171
5172 vp = bp->b_vp;
5173 KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5174 KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5175 ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5176 i = VOP_STRATEGY(vp, bp);
5177 KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5178 }
5179
5180 /*
5181 * Initialize a struct bufobj before use. Memory is assumed zero filled.
5182 */
5183 void
bufobj_init(struct bufobj * bo,void * private)5184 bufobj_init(struct bufobj *bo, void *private)
5185 {
5186 static volatile int bufobj_cleanq;
5187
5188 bo->bo_domain =
5189 atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5190 rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5191 bo->bo_private = private;
5192 TAILQ_INIT(&bo->bo_clean.bv_hd);
5193 pctrie_init(&bo->bo_clean.bv_root);
5194 TAILQ_INIT(&bo->bo_dirty.bv_hd);
5195 pctrie_init(&bo->bo_dirty.bv_root);
5196 }
5197
5198 void
bufobj_wrefl(struct bufobj * bo)5199 bufobj_wrefl(struct bufobj *bo)
5200 {
5201
5202 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5203 ASSERT_BO_WLOCKED(bo);
5204 bo->bo_numoutput++;
5205 }
5206
5207 void
bufobj_wref(struct bufobj * bo)5208 bufobj_wref(struct bufobj *bo)
5209 {
5210
5211 KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5212 BO_LOCK(bo);
5213 bo->bo_numoutput++;
5214 BO_UNLOCK(bo);
5215 }
5216
5217 void
bufobj_wdrop(struct bufobj * bo)5218 bufobj_wdrop(struct bufobj *bo)
5219 {
5220
5221 KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5222 BO_LOCK(bo);
5223 KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5224 if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5225 bo->bo_flag &= ~BO_WWAIT;
5226 wakeup(&bo->bo_numoutput);
5227 }
5228 BO_UNLOCK(bo);
5229 }
5230
5231 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5232 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5233 {
5234 int error;
5235
5236 KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5237 ASSERT_BO_WLOCKED(bo);
5238 error = 0;
5239 while (bo->bo_numoutput) {
5240 bo->bo_flag |= BO_WWAIT;
5241 error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5242 slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5243 if (error)
5244 break;
5245 }
5246 return (error);
5247 }
5248
5249 /*
5250 * Set bio_data or bio_ma for struct bio from the struct buf.
5251 */
5252 void
bdata2bio(struct buf * bp,struct bio * bip)5253 bdata2bio(struct buf *bp, struct bio *bip)
5254 {
5255
5256 if (!buf_mapped(bp)) {
5257 KASSERT(unmapped_buf_allowed, ("unmapped"));
5258 bip->bio_ma = bp->b_pages;
5259 bip->bio_ma_n = bp->b_npages;
5260 bip->bio_data = unmapped_buf;
5261 bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5262 bip->bio_flags |= BIO_UNMAPPED;
5263 KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5264 PAGE_SIZE == bp->b_npages,
5265 ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5266 (long long)bip->bio_length, bip->bio_ma_n));
5267 } else {
5268 bip->bio_data = bp->b_data;
5269 bip->bio_ma = NULL;
5270 }
5271 }
5272
5273 struct memdesc
memdesc_bio(struct bio * bio)5274 memdesc_bio(struct bio *bio)
5275 {
5276 if ((bio->bio_flags & BIO_VLIST) != 0)
5277 return (memdesc_vlist((struct bus_dma_segment *)bio->bio_data,
5278 bio->bio_ma_n));
5279
5280 if ((bio->bio_flags & BIO_UNMAPPED) != 0)
5281 return (memdesc_vmpages(bio->bio_ma, bio->bio_bcount,
5282 bio->bio_ma_offset));
5283
5284 return (memdesc_vaddr(bio->bio_data, bio->bio_bcount));
5285 }
5286
5287 static int buf_pager_relbuf;
5288 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5289 &buf_pager_relbuf, 0,
5290 "Make buffer pager release buffers after reading");
5291
5292 /*
5293 * The buffer pager. It uses buffer reads to validate pages.
5294 *
5295 * In contrast to the generic local pager from vm/vnode_pager.c, this
5296 * pager correctly and easily handles volumes where the underlying
5297 * device block size is greater than the machine page size. The
5298 * buffer cache transparently extends the requested page run to be
5299 * aligned at the block boundary, and does the necessary bogus page
5300 * replacements in the addends to avoid obliterating already valid
5301 * pages.
5302 *
5303 * The only non-trivial issue is that the exclusive busy state for
5304 * pages, which is assumed by the vm_pager_getpages() interface, is
5305 * incompatible with the VMIO buffer cache's desire to share-busy the
5306 * pages. This function performs a trivial downgrade of the pages'
5307 * state before reading buffers, and a less trivial upgrade from the
5308 * shared-busy to excl-busy state after the read.
5309 */
5310 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5311 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5312 int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5313 vbg_get_blksize_t get_blksize)
5314 {
5315 vm_page_t m;
5316 vm_object_t object;
5317 struct buf *bp;
5318 struct mount *mp;
5319 daddr_t lbn, lbnp;
5320 vm_ooffset_t la, lb, poff, poffe;
5321 long bo_bs, bsize;
5322 int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5323 bool redo, lpart;
5324
5325 object = vp->v_object;
5326 mp = vp->v_mount;
5327 error = 0;
5328 la = IDX_TO_OFF(ma[count - 1]->pindex);
5329 if (la >= object->un_pager.vnp.vnp_size)
5330 return (VM_PAGER_BAD);
5331
5332 /*
5333 * Change the meaning of la from where the last requested page starts
5334 * to where it ends, because that's the end of the requested region
5335 * and the start of the potential read-ahead region.
5336 */
5337 la += PAGE_SIZE;
5338 lpart = la > object->un_pager.vnp.vnp_size;
5339 error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5340 &bo_bs);
5341 if (error != 0)
5342 return (VM_PAGER_ERROR);
5343
5344 /*
5345 * Calculate read-ahead, behind and total pages.
5346 */
5347 pgsin = count;
5348 lb = IDX_TO_OFF(ma[0]->pindex);
5349 pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5350 pgsin += pgsin_b;
5351 if (rbehind != NULL)
5352 *rbehind = pgsin_b;
5353 pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5354 if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5355 pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5356 PAGE_SIZE) - la);
5357 pgsin += pgsin_a;
5358 if (rahead != NULL)
5359 *rahead = pgsin_a;
5360 VM_CNT_INC(v_vnodein);
5361 VM_CNT_ADD(v_vnodepgsin, pgsin);
5362
5363 br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5364 != 0) ? GB_UNMAPPED : 0;
5365 again:
5366 for (i = 0; i < count; i++) {
5367 if (ma[i] != bogus_page)
5368 vm_page_busy_downgrade(ma[i]);
5369 }
5370
5371 lbnp = -1;
5372 for (i = 0; i < count; i++) {
5373 m = ma[i];
5374 if (m == bogus_page)
5375 continue;
5376
5377 /*
5378 * Pages are shared busy and the object lock is not
5379 * owned, which together allow for the pages'
5380 * invalidation. The racy test for validity avoids
5381 * useless creation of the buffer for the most typical
5382 * case when invalidation is not used in redo or for
5383 * parallel read. The shared->excl upgrade loop at
5384 * the end of the function catches the race in a
5385 * reliable way (protected by the object lock).
5386 */
5387 if (vm_page_all_valid(m))
5388 continue;
5389
5390 poff = IDX_TO_OFF(m->pindex);
5391 poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5392 for (; poff < poffe; poff += bsize) {
5393 lbn = get_lblkno(vp, poff);
5394 if (lbn == lbnp)
5395 goto next_page;
5396 lbnp = lbn;
5397
5398 error = get_blksize(vp, lbn, &bsize);
5399 if (error == 0)
5400 error = bread_gb(vp, lbn, bsize,
5401 curthread->td_ucred, br_flags, &bp);
5402 if (error != 0)
5403 goto end_pages;
5404 if (bp->b_rcred == curthread->td_ucred) {
5405 crfree(bp->b_rcred);
5406 bp->b_rcred = NOCRED;
5407 }
5408 if (LIST_EMPTY(&bp->b_dep)) {
5409 /*
5410 * Invalidation clears m->valid, but
5411 * may leave B_CACHE flag if the
5412 * buffer existed at the invalidation
5413 * time. In this case, recycle the
5414 * buffer to do real read on next
5415 * bread() after redo.
5416 *
5417 * Otherwise B_RELBUF is not strictly
5418 * necessary, enable to reduce buf
5419 * cache pressure.
5420 */
5421 if (buf_pager_relbuf ||
5422 !vm_page_all_valid(m))
5423 bp->b_flags |= B_RELBUF;
5424
5425 bp->b_flags &= ~B_NOCACHE;
5426 brelse(bp);
5427 } else {
5428 bqrelse(bp);
5429 }
5430 }
5431 KASSERT(1 /* racy, enable for debugging */ ||
5432 vm_page_all_valid(m) || i == count - 1,
5433 ("buf %d %p invalid", i, m));
5434 if (i == count - 1 && lpart) {
5435 if (!vm_page_none_valid(m) &&
5436 !vm_page_all_valid(m))
5437 vm_page_zero_invalid(m, TRUE);
5438 }
5439 next_page:;
5440 }
5441 end_pages:
5442
5443 redo = false;
5444 for (i = 0; i < count; i++) {
5445 if (ma[i] == bogus_page)
5446 continue;
5447 if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5448 vm_page_sunbusy(ma[i]);
5449 ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5450 VM_ALLOC_NORMAL);
5451 }
5452
5453 /*
5454 * Since the pages were only sbusy while neither the
5455 * buffer nor the object lock was held by us, or
5456 * reallocated while vm_page_grab() slept for busy
5457 * relinguish, they could have been invalidated.
5458 * Recheck the valid bits and re-read as needed.
5459 *
5460 * Note that the last page is made fully valid in the
5461 * read loop, and partial validity for the page at
5462 * index count - 1 could mean that the page was
5463 * invalidated or removed, so we must restart for
5464 * safety as well.
5465 */
5466 if (!vm_page_all_valid(ma[i]))
5467 redo = true;
5468 }
5469 if (redo && error == 0)
5470 goto again;
5471 return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5472 }
5473
5474 #include "opt_ddb.h"
5475 #ifdef DDB
5476 #include <ddb/ddb.h>
5477
5478 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5479 DB_SHOW_COMMAND(buffer, db_show_buffer)
5480 {
5481 /* get args */
5482 struct buf *bp = (struct buf *)addr;
5483 #ifdef FULL_BUF_TRACKING
5484 uint32_t i, j;
5485 #endif
5486
5487 if (!have_addr) {
5488 db_printf("usage: show buffer <addr>\n");
5489 return;
5490 }
5491
5492 db_printf("buf at %p\n", bp);
5493 db_printf("b_flags = 0x%b, b_xflags = 0x%b\n",
5494 (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5495 (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5496 db_printf("b_vflags = 0x%b, b_ioflags = 0x%b\n",
5497 (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5498 (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5499 db_printf(
5500 "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5501 "b_bufobj = %p, b_data = %p\n"
5502 "b_blkno = %jd, b_lblkno = %jd, b_vp = %p, b_dep = %p\n",
5503 bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5504 bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5505 (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5506 db_printf("b_kvabase = %p, b_kvasize = %d\n",
5507 bp->b_kvabase, bp->b_kvasize);
5508 if (bp->b_npages) {
5509 int i;
5510 db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5511 for (i = 0; i < bp->b_npages; i++) {
5512 vm_page_t m;
5513 m = bp->b_pages[i];
5514 if (m != NULL)
5515 db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5516 (u_long)m->pindex,
5517 (u_long)VM_PAGE_TO_PHYS(m));
5518 else
5519 db_printf("( ??? )");
5520 if ((i + 1) < bp->b_npages)
5521 db_printf(",");
5522 }
5523 db_printf("\n");
5524 }
5525 BUF_LOCKPRINTINFO(bp);
5526 #if defined(FULL_BUF_TRACKING)
5527 db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5528
5529 i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5530 for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5531 if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5532 continue;
5533 db_printf(" %2u: %s\n", j,
5534 bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5535 }
5536 #elif defined(BUF_TRACKING)
5537 db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5538 #endif
5539 }
5540
DB_SHOW_COMMAND_FLAGS(bufqueues,bufqueues,DB_CMD_MEMSAFE)5541 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
5542 {
5543 struct bufdomain *bd;
5544 struct buf *bp;
5545 long total;
5546 int i, j, cnt;
5547
5548 db_printf("bqempty: %d\n", bqempty.bq_len);
5549
5550 for (i = 0; i < buf_domains; i++) {
5551 bd = &bdomain[i];
5552 db_printf("Buf domain %d\n", i);
5553 db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5554 db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5555 db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5556 db_printf("\n");
5557 db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5558 db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5559 db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5560 db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5561 db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5562 db_printf("\n");
5563 db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5564 db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5565 db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5566 db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5567 db_printf("\n");
5568 total = 0;
5569 TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5570 total += bp->b_bufsize;
5571 db_printf("\tcleanq count\t%d (%ld)\n",
5572 bd->bd_cleanq->bq_len, total);
5573 total = 0;
5574 TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5575 total += bp->b_bufsize;
5576 db_printf("\tdirtyq count\t%d (%ld)\n",
5577 bd->bd_dirtyq.bq_len, total);
5578 db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5579 db_printf("\tlim\t\t%d\n", bd->bd_lim);
5580 db_printf("\tCPU ");
5581 for (j = 0; j <= mp_maxid; j++)
5582 db_printf("%d, ", bd->bd_subq[j].bq_len);
5583 db_printf("\n");
5584 cnt = 0;
5585 total = 0;
5586 for (j = 0; j < nbuf; j++) {
5587 bp = nbufp(j);
5588 if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5589 cnt++;
5590 total += bp->b_bufsize;
5591 }
5592 }
5593 db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5594 cnt = 0;
5595 total = 0;
5596 for (j = 0; j < nbuf; j++) {
5597 bp = nbufp(j);
5598 if (bp->b_domain == i) {
5599 cnt++;
5600 total += bp->b_bufsize;
5601 }
5602 }
5603 db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5604 }
5605 }
5606
DB_SHOW_COMMAND_FLAGS(lockedbufs,lockedbufs,DB_CMD_MEMSAFE)5607 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
5608 {
5609 struct buf *bp;
5610 int i;
5611
5612 for (i = 0; i < nbuf; i++) {
5613 bp = nbufp(i);
5614 if (BUF_ISLOCKED(bp)) {
5615 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5616 db_printf("\n");
5617 if (db_pager_quit)
5618 break;
5619 }
5620 }
5621 }
5622
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5623 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5624 {
5625 struct vnode *vp;
5626 struct buf *bp;
5627
5628 if (!have_addr) {
5629 db_printf("usage: show vnodebufs <addr>\n");
5630 return;
5631 }
5632 vp = (struct vnode *)addr;
5633 db_printf("Clean buffers:\n");
5634 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5635 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5636 db_printf("\n");
5637 }
5638 db_printf("Dirty buffers:\n");
5639 TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5640 db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5641 db_printf("\n");
5642 }
5643 }
5644
DB_COMMAND_FLAGS(countfreebufs,db_coundfreebufs,DB_CMD_MEMSAFE)5645 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
5646 {
5647 struct buf *bp;
5648 int i, used = 0, nfree = 0;
5649
5650 if (have_addr) {
5651 db_printf("usage: countfreebufs\n");
5652 return;
5653 }
5654
5655 for (i = 0; i < nbuf; i++) {
5656 bp = nbufp(i);
5657 if (bp->b_qindex == QUEUE_EMPTY)
5658 nfree++;
5659 else
5660 used++;
5661 }
5662
5663 db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5664 nfree + used);
5665 db_printf("numfreebuffers is %d\n", numfreebuffers);
5666 }
5667 #endif /* DDB */
5668