xref: /freebsd/sys/kern/vfs_bio.c (revision 4efe531c9d50a803a28d001fab9cc3011eb1f587)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2004 Poul-Henning Kamp
5  * Copyright (c) 1994,1997 John S. Dyson
6  * Copyright (c) 2013 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by Konstantin Belousov
10  * under sponsorship from the FreeBSD Foundation.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /*
35  * this file contains a new buffer I/O scheme implementing a coherent
36  * VM object and buffer cache scheme.  Pains have been taken to make
37  * sure that the performance degradation associated with schemes such
38  * as this is not realized.
39  *
40  * Author:  John S. Dyson
41  * Significant help during the development and debugging phases
42  * had been provided by David Greenman, also of the FreeBSD core team.
43  *
44  * see man buf(9) for more info.
45  */
46 
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/asan.h>
50 #include <sys/bio.h>
51 #include <sys/bitset.h>
52 #include <sys/boottrace.h>
53 #include <sys/buf.h>
54 #include <sys/conf.h>
55 #include <sys/counter.h>
56 #include <sys/devicestat.h>
57 #include <sys/eventhandler.h>
58 #include <sys/fail.h>
59 #include <sys/ktr.h>
60 #include <sys/limits.h>
61 #include <sys/lock.h>
62 #include <sys/malloc.h>
63 #include <sys/memdesc.h>
64 #include <sys/mount.h>
65 #include <sys/mutex.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/pctrie.h>
69 #include <sys/proc.h>
70 #include <sys/racct.h>
71 #include <sys/refcount.h>
72 #include <sys/resourcevar.h>
73 #include <sys/rwlock.h>
74 #include <sys/sched.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/syscallsubr.h>
78 #include <sys/vmem.h>
79 #include <sys/vmmeter.h>
80 #include <sys/vnode.h>
81 #include <sys/watchdog.h>
82 #include <geom/geom.h>
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <vm/vm_kern.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_pageout.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_extern.h>
91 #include <vm/vm_map.h>
92 #include <vm/swap_pager.h>
93 
94 static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
95 
96 struct	bio_ops bioops;		/* I/O operation notification */
97 
98 struct	buf_ops buf_ops_bio = {
99 	.bop_name	=	"buf_ops_bio",
100 	.bop_write	=	bufwrite,
101 	.bop_strategy	=	bufstrategy,
102 	.bop_sync	=	bufsync,
103 	.bop_bdflush	=	bufbdflush,
104 };
105 
106 struct bufqueue {
107 	struct mtx_padalign	bq_lock;
108 	TAILQ_HEAD(, buf)	bq_queue;
109 	uint8_t			bq_index;
110 	uint16_t		bq_subqueue;
111 	int			bq_len;
112 } __aligned(CACHE_LINE_SIZE);
113 
114 #define	BQ_LOCKPTR(bq)		(&(bq)->bq_lock)
115 #define	BQ_LOCK(bq)		mtx_lock(BQ_LOCKPTR((bq)))
116 #define	BQ_UNLOCK(bq)		mtx_unlock(BQ_LOCKPTR((bq)))
117 #define	BQ_ASSERT_LOCKED(bq)	mtx_assert(BQ_LOCKPTR((bq)), MA_OWNED)
118 
119 struct bufdomain {
120 	struct bufqueue	*bd_subq;
121 	struct bufqueue bd_dirtyq;
122 	struct bufqueue	*bd_cleanq;
123 	struct mtx_padalign bd_run_lock;
124 	/* Constants */
125 	long		bd_maxbufspace;
126 	long		bd_hibufspace;
127 	long 		bd_lobufspace;
128 	long 		bd_bufspacethresh;
129 	int		bd_hifreebuffers;
130 	int		bd_lofreebuffers;
131 	int		bd_hidirtybuffers;
132 	int		bd_lodirtybuffers;
133 	int		bd_dirtybufthresh;
134 	int		bd_lim;
135 	/* atomics */
136 	int		bd_wanted;
137 	bool		bd_shutdown;
138 	int __aligned(CACHE_LINE_SIZE)	bd_numdirtybuffers;
139 	int __aligned(CACHE_LINE_SIZE)	bd_running;
140 	long __aligned(CACHE_LINE_SIZE) bd_bufspace;
141 	int __aligned(CACHE_LINE_SIZE)	bd_freebuffers;
142 } __aligned(CACHE_LINE_SIZE);
143 
144 #define	BD_LOCKPTR(bd)		(&(bd)->bd_cleanq->bq_lock)
145 #define	BD_LOCK(bd)		mtx_lock(BD_LOCKPTR((bd)))
146 #define	BD_UNLOCK(bd)		mtx_unlock(BD_LOCKPTR((bd)))
147 #define	BD_ASSERT_LOCKED(bd)	mtx_assert(BD_LOCKPTR((bd)), MA_OWNED)
148 #define	BD_RUN_LOCKPTR(bd)	(&(bd)->bd_run_lock)
149 #define	BD_RUN_LOCK(bd)		mtx_lock(BD_RUN_LOCKPTR((bd)))
150 #define	BD_RUN_UNLOCK(bd)	mtx_unlock(BD_RUN_LOCKPTR((bd)))
151 #define	BD_DOMAIN(bd)		(bd - bdomain)
152 
153 static char *buf;		/* buffer header pool */
154 static struct buf *
nbufp(unsigned i)155 nbufp(unsigned i)
156 {
157 	return ((struct buf *)(buf + (sizeof(struct buf) +
158 	    sizeof(vm_page_t) * atop(maxbcachebuf)) * i));
159 }
160 
161 caddr_t __read_mostly unmapped_buf;
162 #ifdef INVARIANTS
163 caddr_t	poisoned_buf = (void *)-1;
164 #endif
165 
166 /* Used below and for softdep flushing threads in ufs/ffs/ffs_softdep.c */
167 struct proc *bufdaemonproc;
168 
169 static void vm_hold_free_pages(struct buf *bp, int newbsize);
170 static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
171 		vm_offset_t to);
172 static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
173 static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
174 		vm_page_t m);
175 static void vfs_clean_pages_dirty_buf(struct buf *bp);
176 static void vfs_setdirty_range(struct buf *bp);
177 static void vfs_vmio_invalidate(struct buf *bp);
178 static void vfs_vmio_truncate(struct buf *bp, int npages);
179 static void vfs_vmio_extend(struct buf *bp, int npages, int size);
180 static int vfs_bio_clcheck(struct vnode *vp, int size,
181 		daddr_t lblkno, daddr_t blkno);
182 static void breada(struct vnode *, daddr_t *, int *, int, struct ucred *, int,
183 		void (*)(struct buf *));
184 static int buf_flush(struct vnode *vp, struct bufdomain *, int);
185 static int flushbufqueues(struct vnode *, struct bufdomain *, int, int);
186 static void buf_daemon(void);
187 static __inline void bd_wakeup(void);
188 static int sysctl_runningspace(SYSCTL_HANDLER_ARGS);
189 static void bufkva_reclaim(vmem_t *, int);
190 static void bufkva_free(struct buf *);
191 static int buf_import(void *, void **, int, int, int);
192 static void buf_release(void *, void **, int);
193 static void maxbcachebuf_adjust(void);
194 static inline struct bufdomain *bufdomain(struct buf *);
195 static void bq_remove(struct bufqueue *bq, struct buf *bp);
196 static void bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock);
197 static int buf_recycle(struct bufdomain *, bool kva);
198 static void bq_init(struct bufqueue *bq, int qindex, int cpu,
199 	    const char *lockname);
200 static void bd_init(struct bufdomain *bd);
201 static int bd_flushall(struct bufdomain *bd);
202 static int sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS);
203 static int sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS);
204 
205 static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
206 int vmiodirenable = TRUE;
207 SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
208     "Use the VM system for directory writes");
209 static long runningbufspace;
210 SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
211     "Amount of presently outstanding async buffer io");
212 SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
213     NULL, 0, sysctl_bufspace, "L", "Physical memory used for buffers");
214 static counter_u64_t bufkvaspace;
215 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufkvaspace, CTLFLAG_RD, &bufkvaspace,
216     "Kernel virtual memory used for buffers");
217 static long maxbufspace;
218 SYSCTL_PROC(_vfs, OID_AUTO, maxbufspace,
219     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &maxbufspace,
220     __offsetof(struct bufdomain, bd_maxbufspace), sysctl_bufdomain_long, "L",
221     "Maximum allowed value of bufspace (including metadata)");
222 static long bufmallocspace;
223 SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
224     "Amount of malloced memory for buffers");
225 static long maxbufmallocspace;
226 SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace,
227     0, "Maximum amount of malloced memory for buffers");
228 static long lobufspace;
229 SYSCTL_PROC(_vfs, OID_AUTO, lobufspace,
230     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &lobufspace,
231     __offsetof(struct bufdomain, bd_lobufspace), sysctl_bufdomain_long, "L",
232     "Minimum amount of buffers we want to have");
233 long hibufspace;
234 SYSCTL_PROC(_vfs, OID_AUTO, hibufspace,
235     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &hibufspace,
236     __offsetof(struct bufdomain, bd_hibufspace), sysctl_bufdomain_long, "L",
237     "Maximum allowed value of bufspace (excluding metadata)");
238 long bufspacethresh;
239 SYSCTL_PROC(_vfs, OID_AUTO, bufspacethresh,
240     CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RW, &bufspacethresh,
241     __offsetof(struct bufdomain, bd_bufspacethresh), sysctl_bufdomain_long, "L",
242     "Bufspace consumed before waking the daemon to free some");
243 static counter_u64_t buffreekvacnt;
244 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt,
245     "Number of times we have freed the KVA space from some buffer");
246 static counter_u64_t bufdefragcnt;
247 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt,
248     "Number of times we have had to repeat buffer allocation to defragment");
249 static long lorunningspace;
250 SYSCTL_PROC(_vfs, OID_AUTO, lorunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
251     CTLFLAG_RW, &lorunningspace, 0, sysctl_runningspace, "L",
252     "Minimum preferred space used for in-progress I/O");
253 static long hirunningspace;
254 SYSCTL_PROC(_vfs, OID_AUTO, hirunningspace, CTLTYPE_LONG | CTLFLAG_MPSAFE |
255     CTLFLAG_RW, &hirunningspace, 0, sysctl_runningspace, "L",
256     "Maximum amount of space to use for in-progress I/O");
257 int dirtybufferflushes;
258 SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
259     0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
260 int bdwriteskip;
261 SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
262     0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
263 int altbufferflushes;
264 SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW | CTLFLAG_STATS,
265     &altbufferflushes, 0, "Number of fsync flushes to limit dirty buffers");
266 static int recursiveflushes;
267 SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW | CTLFLAG_STATS,
268     &recursiveflushes, 0, "Number of flushes skipped due to being recursive");
269 static int sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS);
270 SYSCTL_PROC(_vfs, OID_AUTO, numdirtybuffers,
271     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RD, NULL, 0, sysctl_numdirtybuffers, "I",
272     "Number of buffers that are dirty (has unwritten changes) at the moment");
273 static int lodirtybuffers;
274 SYSCTL_PROC(_vfs, OID_AUTO, lodirtybuffers,
275     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lodirtybuffers,
276     __offsetof(struct bufdomain, bd_lodirtybuffers), sysctl_bufdomain_int, "I",
277     "How many buffers we want to have free before bufdaemon can sleep");
278 static int hidirtybuffers;
279 SYSCTL_PROC(_vfs, OID_AUTO, hidirtybuffers,
280     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hidirtybuffers,
281     __offsetof(struct bufdomain, bd_hidirtybuffers), sysctl_bufdomain_int, "I",
282     "When the number of dirty buffers is considered severe");
283 int dirtybufthresh;
284 SYSCTL_PROC(_vfs, OID_AUTO, dirtybufthresh,
285     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &dirtybufthresh,
286     __offsetof(struct bufdomain, bd_dirtybufthresh), sysctl_bufdomain_int, "I",
287     "Number of bdwrite to bawrite conversions to clear dirty buffers");
288 static int numfreebuffers;
289 SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
290     "Number of free buffers");
291 static int lofreebuffers;
292 SYSCTL_PROC(_vfs, OID_AUTO, lofreebuffers,
293     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &lofreebuffers,
294     __offsetof(struct bufdomain, bd_lofreebuffers), sysctl_bufdomain_int, "I",
295    "Target number of free buffers");
296 static int hifreebuffers;
297 SYSCTL_PROC(_vfs, OID_AUTO, hifreebuffers,
298     CTLTYPE_INT|CTLFLAG_MPSAFE|CTLFLAG_RW, &hifreebuffers,
299     __offsetof(struct bufdomain, bd_hifreebuffers), sysctl_bufdomain_int, "I",
300    "Threshold for clean buffer recycling");
301 static counter_u64_t getnewbufcalls;
302 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RD,
303    &getnewbufcalls, "Number of calls to getnewbuf");
304 static counter_u64_t getnewbufrestarts;
305 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RD,
306     &getnewbufrestarts,
307     "Number of times getnewbuf has had to restart a buffer acquisition");
308 static counter_u64_t mappingrestarts;
309 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RD,
310     &mappingrestarts,
311     "Number of times getblk has had to restart a buffer mapping for "
312     "unmapped buffer");
313 static counter_u64_t numbufallocfails;
314 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, numbufallocfails, CTLFLAG_RW,
315     &numbufallocfails, "Number of times buffer allocations failed");
316 static int flushbufqtarget = 100;
317 SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
318     "Amount of work to do in flushbufqueues when helping bufdaemon");
319 static counter_u64_t notbufdflushes;
320 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes,
321     "Number of dirty buffer flushes done by the bufdaemon helpers");
322 static long barrierwrites;
323 SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW | CTLFLAG_STATS,
324     &barrierwrites, 0, "Number of barrier writes");
325 SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed,
326     CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
327     &unmapped_buf_allowed, 0,
328     "Permit the use of the unmapped i/o");
329 int maxbcachebuf = MAXBCACHEBUF;
330 SYSCTL_INT(_vfs, OID_AUTO, maxbcachebuf, CTLFLAG_RDTUN, &maxbcachebuf, 0,
331     "Maximum size of a buffer cache block");
332 
333 /*
334  * This lock synchronizes access to bd_request.
335  */
336 static struct mtx_padalign __exclusive_cache_line bdlock;
337 
338 /*
339  * This lock protects the runningbufreq and synchronizes runningbufwakeup and
340  * waitrunningbufspace().
341  */
342 static struct mtx_padalign __exclusive_cache_line rbreqlock;
343 
344 /*
345  * Lock that protects bdirtywait.
346  */
347 static struct mtx_padalign __exclusive_cache_line bdirtylock;
348 
349 /*
350  * bufdaemon shutdown request and sleep channel.
351  */
352 static bool bd_shutdown;
353 
354 /*
355  * Wakeup point for bufdaemon, as well as indicator of whether it is already
356  * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
357  * is idling.
358  */
359 static int bd_request;
360 
361 /*
362  * Request for the buf daemon to write more buffers than is indicated by
363  * lodirtybuf.  This may be necessary to push out excess dependencies or
364  * defragment the address space where a simple count of the number of dirty
365  * buffers is insufficient to characterize the demand for flushing them.
366  */
367 static int bd_speedupreq;
368 
369 /*
370  * Synchronization (sleep/wakeup) variable for active buffer space requests.
371  * Set when wait starts, cleared prior to wakeup().
372  * Used in runningbufwakeup() and waitrunningbufspace().
373  */
374 static int runningbufreq;
375 
376 /*
377  * Synchronization for bwillwrite() waiters.
378  */
379 static int bdirtywait;
380 
381 /*
382  * Definitions for the buffer free lists.
383  */
384 #define QUEUE_NONE	0	/* on no queue */
385 #define QUEUE_EMPTY	1	/* empty buffer headers */
386 #define QUEUE_DIRTY	2	/* B_DELWRI buffers */
387 #define QUEUE_CLEAN	3	/* non-B_DELWRI buffers */
388 #define QUEUE_SENTINEL	4	/* not an queue index, but mark for sentinel */
389 
390 /* Maximum number of buffer domains. */
391 #define	BUF_DOMAINS	8
392 
393 struct bufdomainset bdlodirty;		/* Domains > lodirty */
394 struct bufdomainset bdhidirty;		/* Domains > hidirty */
395 
396 /* Configured number of clean queues. */
397 static int __read_mostly buf_domains;
398 
399 BITSET_DEFINE(bufdomainset, BUF_DOMAINS);
400 struct bufdomain __exclusive_cache_line bdomain[BUF_DOMAINS];
401 struct bufqueue __exclusive_cache_line bqempty;
402 
403 /*
404  * per-cpu empty buffer cache.
405  */
406 uma_zone_t buf_zone;
407 
408 static int
sysctl_runningspace(SYSCTL_HANDLER_ARGS)409 sysctl_runningspace(SYSCTL_HANDLER_ARGS)
410 {
411 	long value;
412 	int error;
413 
414 	value = *(long *)arg1;
415 	error = sysctl_handle_long(oidp, &value, 0, req);
416 	if (error != 0 || req->newptr == NULL)
417 		return (error);
418 	mtx_lock(&rbreqlock);
419 	if (arg1 == &hirunningspace) {
420 		if (value < lorunningspace)
421 			error = EINVAL;
422 		else
423 			hirunningspace = value;
424 	} else {
425 		KASSERT(arg1 == &lorunningspace,
426 		    ("%s: unknown arg1", __func__));
427 		if (value > hirunningspace)
428 			error = EINVAL;
429 		else
430 			lorunningspace = value;
431 	}
432 	mtx_unlock(&rbreqlock);
433 	return (error);
434 }
435 
436 static int
sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)437 sysctl_bufdomain_int(SYSCTL_HANDLER_ARGS)
438 {
439 	int error;
440 	int value;
441 	int i;
442 
443 	value = *(int *)arg1;
444 	error = sysctl_handle_int(oidp, &value, 0, req);
445 	if (error != 0 || req->newptr == NULL)
446 		return (error);
447 	*(int *)arg1 = value;
448 	for (i = 0; i < buf_domains; i++)
449 		*(int *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
450 		    value / buf_domains;
451 
452 	return (error);
453 }
454 
455 static int
sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)456 sysctl_bufdomain_long(SYSCTL_HANDLER_ARGS)
457 {
458 	long value;
459 	int error;
460 	int i;
461 
462 	value = *(long *)arg1;
463 	error = sysctl_handle_long(oidp, &value, 0, req);
464 	if (error != 0 || req->newptr == NULL)
465 		return (error);
466 	*(long *)arg1 = value;
467 	for (i = 0; i < buf_domains; i++)
468 		*(long *)(uintptr_t)(((uintptr_t)&bdomain[i]) + arg2) =
469 		    value / buf_domains;
470 
471 	return (error);
472 }
473 
474 #if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
475     defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
476 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)477 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
478 {
479 	long lvalue;
480 	int ivalue;
481 	int i;
482 
483 	lvalue = 0;
484 	for (i = 0; i < buf_domains; i++)
485 		lvalue += bdomain[i].bd_bufspace;
486 	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
487 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
488 	if (lvalue > INT_MAX)
489 		/* On overflow, still write out a long to trigger ENOMEM. */
490 		return (sysctl_handle_long(oidp, &lvalue, 0, req));
491 	ivalue = lvalue;
492 	return (sysctl_handle_int(oidp, &ivalue, 0, req));
493 }
494 #else
495 static int
sysctl_bufspace(SYSCTL_HANDLER_ARGS)496 sysctl_bufspace(SYSCTL_HANDLER_ARGS)
497 {
498 	long lvalue;
499 	int i;
500 
501 	lvalue = 0;
502 	for (i = 0; i < buf_domains; i++)
503 		lvalue += bdomain[i].bd_bufspace;
504 	return (sysctl_handle_long(oidp, &lvalue, 0, req));
505 }
506 #endif
507 
508 static int
sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)509 sysctl_numdirtybuffers(SYSCTL_HANDLER_ARGS)
510 {
511 	int value;
512 	int i;
513 
514 	value = 0;
515 	for (i = 0; i < buf_domains; i++)
516 		value += bdomain[i].bd_numdirtybuffers;
517 	return (sysctl_handle_int(oidp, &value, 0, req));
518 }
519 
520 /*
521  *	bdirtywakeup:
522  *
523  *	Wakeup any bwillwrite() waiters.
524  */
525 static void
bdirtywakeup(void)526 bdirtywakeup(void)
527 {
528 	mtx_lock(&bdirtylock);
529 	if (bdirtywait) {
530 		bdirtywait = 0;
531 		wakeup(&bdirtywait);
532 	}
533 	mtx_unlock(&bdirtylock);
534 }
535 
536 /*
537  *	bd_clear:
538  *
539  *	Clear a domain from the appropriate bitsets when dirtybuffers
540  *	is decremented.
541  */
542 static void
bd_clear(struct bufdomain * bd)543 bd_clear(struct bufdomain *bd)
544 {
545 
546 	mtx_lock(&bdirtylock);
547 	if (bd->bd_numdirtybuffers <= bd->bd_lodirtybuffers)
548 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
549 	if (bd->bd_numdirtybuffers <= bd->bd_hidirtybuffers)
550 		BIT_CLR(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
551 	mtx_unlock(&bdirtylock);
552 }
553 
554 /*
555  *	bd_set:
556  *
557  *	Set a domain in the appropriate bitsets when dirtybuffers
558  *	is incremented.
559  */
560 static void
bd_set(struct bufdomain * bd)561 bd_set(struct bufdomain *bd)
562 {
563 
564 	mtx_lock(&bdirtylock);
565 	if (bd->bd_numdirtybuffers > bd->bd_lodirtybuffers)
566 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdlodirty);
567 	if (bd->bd_numdirtybuffers > bd->bd_hidirtybuffers)
568 		BIT_SET(BUF_DOMAINS, BD_DOMAIN(bd), &bdhidirty);
569 	mtx_unlock(&bdirtylock);
570 }
571 
572 /*
573  *	bdirtysub:
574  *
575  *	Decrement the numdirtybuffers count by one and wakeup any
576  *	threads blocked in bwillwrite().
577  */
578 static void
bdirtysub(struct buf * bp)579 bdirtysub(struct buf *bp)
580 {
581 	struct bufdomain *bd;
582 	int num;
583 
584 	bd = bufdomain(bp);
585 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, -1);
586 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
587 		bdirtywakeup();
588 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
589 		bd_clear(bd);
590 }
591 
592 /*
593  *	bdirtyadd:
594  *
595  *	Increment the numdirtybuffers count by one and wakeup the buf
596  *	daemon if needed.
597  */
598 static void
bdirtyadd(struct buf * bp)599 bdirtyadd(struct buf *bp)
600 {
601 	struct bufdomain *bd;
602 	int num;
603 
604 	/*
605 	 * Only do the wakeup once as we cross the boundary.  The
606 	 * buf daemon will keep running until the condition clears.
607 	 */
608 	bd = bufdomain(bp);
609 	num = atomic_fetchadd_int(&bd->bd_numdirtybuffers, 1);
610 	if (num == (bd->bd_lodirtybuffers + bd->bd_hidirtybuffers) / 2)
611 		bd_wakeup();
612 	if (num == bd->bd_lodirtybuffers || num == bd->bd_hidirtybuffers)
613 		bd_set(bd);
614 }
615 
616 /*
617  *	bufspace_daemon_wakeup:
618  *
619  *	Wakeup the daemons responsible for freeing clean bufs.
620  */
621 static void
bufspace_daemon_wakeup(struct bufdomain * bd)622 bufspace_daemon_wakeup(struct bufdomain *bd)
623 {
624 
625 	/*
626 	 * avoid the lock if the daemon is running.
627 	 */
628 	if (atomic_fetchadd_int(&bd->bd_running, 1) == 0) {
629 		BD_RUN_LOCK(bd);
630 		atomic_store_int(&bd->bd_running, 1);
631 		wakeup(&bd->bd_running);
632 		BD_RUN_UNLOCK(bd);
633 	}
634 }
635 
636 /*
637  *	bufspace_adjust:
638  *
639  *	Adjust the reported bufspace for a KVA managed buffer, possibly
640  * 	waking any waiters.
641  */
642 static void
bufspace_adjust(struct buf * bp,int bufsize)643 bufspace_adjust(struct buf *bp, int bufsize)
644 {
645 	struct bufdomain *bd;
646 	long space;
647 	int diff;
648 
649 	KASSERT((bp->b_flags & B_MALLOC) == 0,
650 	    ("bufspace_adjust: malloc buf %p", bp));
651 	bd = bufdomain(bp);
652 	diff = bufsize - bp->b_bufsize;
653 	if (diff < 0) {
654 		atomic_subtract_long(&bd->bd_bufspace, -diff);
655 	} else if (diff > 0) {
656 		space = atomic_fetchadd_long(&bd->bd_bufspace, diff);
657 		/* Wake up the daemon on the transition. */
658 		if (space < bd->bd_bufspacethresh &&
659 		    space + diff >= bd->bd_bufspacethresh)
660 			bufspace_daemon_wakeup(bd);
661 	}
662 	bp->b_bufsize = bufsize;
663 }
664 
665 /*
666  *	bufspace_reserve:
667  *
668  *	Reserve bufspace before calling allocbuf().  metadata has a
669  *	different space limit than data.
670  */
671 static int
bufspace_reserve(struct bufdomain * bd,int size,bool metadata)672 bufspace_reserve(struct bufdomain *bd, int size, bool metadata)
673 {
674 	long limit, new;
675 	long space;
676 
677 	if (metadata)
678 		limit = bd->bd_maxbufspace;
679 	else
680 		limit = bd->bd_hibufspace;
681 	space = atomic_fetchadd_long(&bd->bd_bufspace, size);
682 	new = space + size;
683 	if (new > limit) {
684 		atomic_subtract_long(&bd->bd_bufspace, size);
685 		return (ENOSPC);
686 	}
687 
688 	/* Wake up the daemon on the transition. */
689 	if (space < bd->bd_bufspacethresh && new >= bd->bd_bufspacethresh)
690 		bufspace_daemon_wakeup(bd);
691 
692 	return (0);
693 }
694 
695 /*
696  *	bufspace_release:
697  *
698  *	Release reserved bufspace after bufspace_adjust() has consumed it.
699  */
700 static void
bufspace_release(struct bufdomain * bd,int size)701 bufspace_release(struct bufdomain *bd, int size)
702 {
703 
704 	atomic_subtract_long(&bd->bd_bufspace, size);
705 }
706 
707 /*
708  *	bufspace_wait:
709  *
710  *	Wait for bufspace, acting as the buf daemon if a locked vnode is
711  *	supplied.  bd_wanted must be set prior to polling for space.  The
712  *	operation must be re-tried on return.
713  */
714 static void
bufspace_wait(struct bufdomain * bd,struct vnode * vp,int gbflags,int slpflag,int slptimeo)715 bufspace_wait(struct bufdomain *bd, struct vnode *vp, int gbflags,
716     int slpflag, int slptimeo)
717 {
718 	struct thread *td;
719 	int error, fl, norunbuf;
720 
721 	if ((gbflags & GB_NOWAIT_BD) != 0)
722 		return;
723 
724 	td = curthread;
725 	BD_LOCK(bd);
726 	while (bd->bd_wanted) {
727 		if (vp != NULL && vp->v_type != VCHR &&
728 		    (td->td_pflags & TDP_BUFNEED) == 0) {
729 			BD_UNLOCK(bd);
730 			/*
731 			 * getblk() is called with a vnode locked, and
732 			 * some majority of the dirty buffers may as
733 			 * well belong to the vnode.  Flushing the
734 			 * buffers there would make a progress that
735 			 * cannot be achieved by the buf_daemon, that
736 			 * cannot lock the vnode.
737 			 */
738 			norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
739 			    (td->td_pflags & TDP_NORUNNINGBUF);
740 
741 			/*
742 			 * Play bufdaemon.  The getnewbuf() function
743 			 * may be called while the thread owns lock
744 			 * for another dirty buffer for the same
745 			 * vnode, which makes it impossible to use
746 			 * VOP_FSYNC() there, due to the buffer lock
747 			 * recursion.
748 			 */
749 			td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
750 			fl = buf_flush(vp, bd, flushbufqtarget);
751 			td->td_pflags &= norunbuf;
752 			BD_LOCK(bd);
753 			if (fl != 0)
754 				continue;
755 			if (bd->bd_wanted == 0)
756 				break;
757 		}
758 		error = msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
759 		    (PRIBIO + 4) | slpflag, "newbuf", slptimeo);
760 		if (error != 0)
761 			break;
762 	}
763 	BD_UNLOCK(bd);
764 }
765 
766 static void
bufspace_daemon_shutdown(void * arg,int howto __unused)767 bufspace_daemon_shutdown(void *arg, int howto __unused)
768 {
769 	struct bufdomain *bd = arg;
770 	int error;
771 
772 	if (KERNEL_PANICKED())
773 		return;
774 
775 	BD_RUN_LOCK(bd);
776 	bd->bd_shutdown = true;
777 	wakeup(&bd->bd_running);
778 	error = msleep(&bd->bd_shutdown, BD_RUN_LOCKPTR(bd), 0,
779 	    "bufspace_shutdown", 60 * hz);
780 	BD_RUN_UNLOCK(bd);
781 	if (error != 0)
782 		printf("bufspacedaemon wait error: %d\n", error);
783 }
784 
785 /*
786  *	bufspace_daemon:
787  *
788  *	buffer space management daemon.  Tries to maintain some marginal
789  *	amount of free buffer space so that requesting processes neither
790  *	block nor work to reclaim buffers.
791  */
792 static void
bufspace_daemon(void * arg)793 bufspace_daemon(void *arg)
794 {
795 	struct bufdomain *bd = arg;
796 
797 	EVENTHANDLER_REGISTER(shutdown_pre_sync, bufspace_daemon_shutdown, bd,
798 	    SHUTDOWN_PRI_LAST + 100);
799 
800 	BD_RUN_LOCK(bd);
801 	while (!bd->bd_shutdown) {
802 		BD_RUN_UNLOCK(bd);
803 
804 		/*
805 		 * Free buffers from the clean queue until we meet our
806 		 * targets.
807 		 *
808 		 * Theory of operation:  The buffer cache is most efficient
809 		 * when some free buffer headers and space are always
810 		 * available to getnewbuf().  This daemon attempts to prevent
811 		 * the excessive blocking and synchronization associated
812 		 * with shortfall.  It goes through three phases according
813 		 * demand:
814 		 *
815 		 * 1)	The daemon wakes up voluntarily once per-second
816 		 *	during idle periods when the counters are below
817 		 *	the wakeup thresholds (bufspacethresh, lofreebuffers).
818 		 *
819 		 * 2)	The daemon wakes up as we cross the thresholds
820 		 *	ahead of any potential blocking.  This may bounce
821 		 *	slightly according to the rate of consumption and
822 		 *	release.
823 		 *
824 		 * 3)	The daemon and consumers are starved for working
825 		 *	clean buffers.  This is the 'bufspace' sleep below
826 		 *	which will inefficiently trade bufs with bqrelse
827 		 *	until we return to condition 2.
828 		 */
829 		while (bd->bd_bufspace > bd->bd_lobufspace ||
830 		    bd->bd_freebuffers < bd->bd_hifreebuffers) {
831 			if (buf_recycle(bd, false) != 0) {
832 				if (bd_flushall(bd))
833 					continue;
834 				/*
835 				 * Speedup dirty if we've run out of clean
836 				 * buffers.  This is possible in particular
837 				 * because softdep may held many bufs locked
838 				 * pending writes to other bufs which are
839 				 * marked for delayed write, exhausting
840 				 * clean space until they are written.
841 				 */
842 				bd_speedup();
843 				BD_LOCK(bd);
844 				if (bd->bd_wanted) {
845 					msleep(&bd->bd_wanted, BD_LOCKPTR(bd),
846 					    PRIBIO|PDROP, "bufspace", hz/10);
847 				} else
848 					BD_UNLOCK(bd);
849 			}
850 			maybe_yield();
851 		}
852 
853 		/*
854 		 * Re-check our limits and sleep.  bd_running must be
855 		 * cleared prior to checking the limits to avoid missed
856 		 * wakeups.  The waker will adjust one of bufspace or
857 		 * freebuffers prior to checking bd_running.
858 		 */
859 		BD_RUN_LOCK(bd);
860 		if (bd->bd_shutdown)
861 			break;
862 		atomic_store_int(&bd->bd_running, 0);
863 		if (bd->bd_bufspace < bd->bd_bufspacethresh &&
864 		    bd->bd_freebuffers > bd->bd_lofreebuffers) {
865 			msleep(&bd->bd_running, BD_RUN_LOCKPTR(bd),
866 			    PRIBIO, "-", hz);
867 		} else {
868 			/* Avoid spurious wakeups while running. */
869 			atomic_store_int(&bd->bd_running, 1);
870 		}
871 	}
872 	wakeup(&bd->bd_shutdown);
873 	BD_RUN_UNLOCK(bd);
874 	kthread_exit();
875 }
876 
877 /*
878  *	bufmallocadjust:
879  *
880  *	Adjust the reported bufspace for a malloc managed buffer, possibly
881  *	waking any waiters.
882  */
883 static void
bufmallocadjust(struct buf * bp,int bufsize)884 bufmallocadjust(struct buf *bp, int bufsize)
885 {
886 	int diff;
887 
888 	KASSERT((bp->b_flags & B_MALLOC) != 0,
889 	    ("bufmallocadjust: non-malloc buf %p", bp));
890 	diff = bufsize - bp->b_bufsize;
891 	if (diff < 0)
892 		atomic_subtract_long(&bufmallocspace, -diff);
893 	else
894 		atomic_add_long(&bufmallocspace, diff);
895 	bp->b_bufsize = bufsize;
896 }
897 
898 /*
899  *	runningwakeup:
900  *
901  *	Wake up processes that are waiting on asynchronous writes to fall
902  *	below lorunningspace.
903  */
904 static void
runningwakeup(void)905 runningwakeup(void)
906 {
907 
908 	mtx_lock(&rbreqlock);
909 	if (runningbufreq) {
910 		runningbufreq = 0;
911 		wakeup(&runningbufreq);
912 	}
913 	mtx_unlock(&rbreqlock);
914 }
915 
916 /*
917  *	runningbufwakeup:
918  *
919  *	Decrement the outstanding write count according.
920  */
921 void
runningbufwakeup(struct buf * bp)922 runningbufwakeup(struct buf *bp)
923 {
924 	long space, bspace;
925 
926 	bspace = bp->b_runningbufspace;
927 	if (bspace == 0)
928 		return;
929 	space = atomic_fetchadd_long(&runningbufspace, -bspace);
930 	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
931 	    space, bspace));
932 	bp->b_runningbufspace = 0;
933 	/*
934 	 * Only acquire the lock and wakeup on the transition from exceeding
935 	 * the threshold to falling below it.
936 	 */
937 	if (space < lorunningspace)
938 		return;
939 	if (space - bspace > lorunningspace)
940 		return;
941 	runningwakeup();
942 }
943 
944 long
runningbufclaim(struct buf * bp,int space)945 runningbufclaim(struct buf *bp, int space)
946 {
947 	long old;
948 
949 	old = atomic_fetchadd_long(&runningbufspace, space);
950 	bp->b_runningbufspace = space;
951 	return (old);
952 }
953 
954 /*
955  *	waitrunningbufspace()
956  *
957  *	runningbufspace is a measure of the amount of I/O currently
958  *	running.  This routine is used in async-write situations to
959  *	prevent creating huge backups of pending writes to a device.
960  *	Only asynchronous writes are governed by this function.
961  *
962  *	This does NOT turn an async write into a sync write.  It waits
963  *	for earlier writes to complete and generally returns before the
964  *	caller's write has reached the device.
965  */
966 void
waitrunningbufspace(void)967 waitrunningbufspace(void)
968 {
969 
970 	mtx_lock(&rbreqlock);
971 	while (runningbufspace > hirunningspace) {
972 		runningbufreq = 1;
973 		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
974 	}
975 	mtx_unlock(&rbreqlock);
976 }
977 
978 /*
979  *	vfs_buf_test_cache:
980  *
981  *	Called when a buffer is extended.  This function clears the B_CACHE
982  *	bit if the newly extended portion of the buffer does not contain
983  *	valid data.
984  */
985 static __inline void
vfs_buf_test_cache(struct buf * bp,vm_ooffset_t foff,vm_offset_t off,vm_offset_t size,vm_page_t m)986 vfs_buf_test_cache(struct buf *bp, vm_ooffset_t foff, vm_offset_t off,
987     vm_offset_t size, vm_page_t m)
988 {
989 
990 	/*
991 	 * This function and its results are protected by higher level
992 	 * synchronization requiring vnode and buf locks to page in and
993 	 * validate pages.
994 	 */
995 	if (bp->b_flags & B_CACHE) {
996 		int base = (foff + off) & PAGE_MASK;
997 		if (vm_page_is_valid(m, base, size) == 0)
998 			bp->b_flags &= ~B_CACHE;
999 	}
1000 }
1001 
1002 /* Wake up the buffer daemon if necessary */
1003 static void
bd_wakeup(void)1004 bd_wakeup(void)
1005 {
1006 
1007 	mtx_lock(&bdlock);
1008 	if (bd_request == 0) {
1009 		bd_request = 1;
1010 		wakeup(&bd_request);
1011 	}
1012 	mtx_unlock(&bdlock);
1013 }
1014 
1015 /*
1016  * Adjust the maxbcachbuf tunable.
1017  */
1018 static void
maxbcachebuf_adjust(void)1019 maxbcachebuf_adjust(void)
1020 {
1021 	int i;
1022 
1023 	/*
1024 	 * maxbcachebuf must be a power of 2 >= MAXBSIZE.
1025 	 */
1026 	i = 2;
1027 	while (i * 2 <= maxbcachebuf)
1028 		i *= 2;
1029 	maxbcachebuf = i;
1030 	if (maxbcachebuf < MAXBSIZE)
1031 		maxbcachebuf = MAXBSIZE;
1032 	if (maxbcachebuf > maxphys)
1033 		maxbcachebuf = maxphys;
1034 	if (bootverbose != 0 && maxbcachebuf != MAXBCACHEBUF)
1035 		printf("maxbcachebuf=%d\n", maxbcachebuf);
1036 }
1037 
1038 /*
1039  * bd_speedup - speedup the buffer cache flushing code
1040  */
1041 void
bd_speedup(void)1042 bd_speedup(void)
1043 {
1044 	int needwake;
1045 
1046 	mtx_lock(&bdlock);
1047 	needwake = 0;
1048 	if (bd_speedupreq == 0 || bd_request == 0)
1049 		needwake = 1;
1050 	bd_speedupreq = 1;
1051 	bd_request = 1;
1052 	if (needwake)
1053 		wakeup(&bd_request);
1054 	mtx_unlock(&bdlock);
1055 }
1056 
1057 #ifdef __i386__
1058 #define	TRANSIENT_DENOM	5
1059 #else
1060 #define	TRANSIENT_DENOM 10
1061 #endif
1062 
1063 /*
1064  * Calculating buffer cache scaling values and reserve space for buffer
1065  * headers.  This is called during low level kernel initialization and
1066  * may be called more then once.  We CANNOT write to the memory area
1067  * being reserved at this time.
1068  */
1069 caddr_t
kern_vfs_bio_buffer_alloc(caddr_t v,long physmem_est)1070 kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
1071 {
1072 	int tuned_nbuf;
1073 	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
1074 
1075 	/*
1076 	 * With KASAN or KMSAN enabled, the kernel map is shadowed.  Account for
1077 	 * this when sizing maps based on the amount of physical memory
1078 	 * available.
1079 	 */
1080 #if defined(KASAN)
1081 	physmem_est = (physmem_est * KASAN_SHADOW_SCALE) /
1082 	    (KASAN_SHADOW_SCALE + 1);
1083 #elif defined(KMSAN)
1084 	physmem_est /= 3;
1085 
1086 	/*
1087 	 * KMSAN cannot reliably determine whether buffer data is initialized
1088 	 * unless it is updated through a KVA mapping.
1089 	 */
1090 	unmapped_buf_allowed = 0;
1091 #endif
1092 
1093 	/*
1094 	 * physmem_est is in pages.  Convert it to kilobytes (assumes
1095 	 * PAGE_SIZE is >= 1K)
1096 	 */
1097 	physmem_est = physmem_est * (PAGE_SIZE / 1024);
1098 
1099 	maxbcachebuf_adjust();
1100 	/*
1101 	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
1102 	 * For the first 64MB of ram nominally allocate sufficient buffers to
1103 	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
1104 	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
1105 	 * the buffer cache we limit the eventual kva reservation to
1106 	 * maxbcache bytes.
1107 	 *
1108 	 * factor represents the 1/4 x ram conversion.
1109 	 */
1110 	if (nbuf == 0) {
1111 		int factor = 4 * BKVASIZE / 1024;
1112 
1113 		nbuf = 50;
1114 		if (physmem_est > 4096)
1115 			nbuf += min((physmem_est - 4096) / factor,
1116 			    65536 / factor);
1117 		if (physmem_est > 65536)
1118 			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
1119 			    32 * 1024 * 1024 / (factor * 5));
1120 
1121 		if (maxbcache && nbuf > maxbcache / BKVASIZE)
1122 			nbuf = maxbcache / BKVASIZE;
1123 		tuned_nbuf = 1;
1124 	} else
1125 		tuned_nbuf = 0;
1126 
1127 	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
1128 	maxbuf = (LONG_MAX / 3) / BKVASIZE;
1129 	if (nbuf > maxbuf) {
1130 		if (!tuned_nbuf)
1131 			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
1132 			    maxbuf);
1133 		nbuf = maxbuf;
1134 	}
1135 
1136 	/*
1137 	 * Ideal allocation size for the transient bio submap is 10%
1138 	 * of the maximal space buffer map.  This roughly corresponds
1139 	 * to the amount of the buffer mapped for typical UFS load.
1140 	 *
1141 	 * Clip the buffer map to reserve space for the transient
1142 	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
1143 	 * maximum buffer map extent on the platform.
1144 	 *
1145 	 * The fall-back to the maxbuf in case of maxbcache unset,
1146 	 * allows to not trim the buffer KVA for the architectures
1147 	 * with ample KVA space.
1148 	 */
1149 	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
1150 		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
1151 		buf_sz = (long)nbuf * BKVASIZE;
1152 		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
1153 		    (TRANSIENT_DENOM - 1)) {
1154 			/*
1155 			 * There is more KVA than memory.  Do not
1156 			 * adjust buffer map size, and assign the rest
1157 			 * of maxbuf to transient map.
1158 			 */
1159 			biotmap_sz = maxbuf_sz - buf_sz;
1160 		} else {
1161 			/*
1162 			 * Buffer map spans all KVA we could afford on
1163 			 * this platform.  Give 10% (20% on i386) of
1164 			 * the buffer map to the transient bio map.
1165 			 */
1166 			biotmap_sz = buf_sz / TRANSIENT_DENOM;
1167 			buf_sz -= biotmap_sz;
1168 		}
1169 		if (biotmap_sz / INT_MAX > maxphys)
1170 			bio_transient_maxcnt = INT_MAX;
1171 		else
1172 			bio_transient_maxcnt = biotmap_sz / maxphys;
1173 		/*
1174 		 * Artificially limit to 1024 simultaneous in-flight I/Os
1175 		 * using the transient mapping.
1176 		 */
1177 		if (bio_transient_maxcnt > 1024)
1178 			bio_transient_maxcnt = 1024;
1179 		if (tuned_nbuf)
1180 			nbuf = buf_sz / BKVASIZE;
1181 	}
1182 
1183 	if (nswbuf == 0) {
1184 		/*
1185 		 * Pager buffers are allocated for short periods, so scale the
1186 		 * number of reserved buffers based on the number of CPUs rather
1187 		 * than amount of memory.
1188 		 */
1189 		nswbuf = min(nbuf / 4, 32 * mp_ncpus);
1190 		if (nswbuf < NSWBUF_MIN)
1191 			nswbuf = NSWBUF_MIN;
1192 	}
1193 
1194 	/*
1195 	 * Reserve space for the buffer cache buffers
1196 	 */
1197 	buf = (char *)v;
1198 	v = (caddr_t)buf + (sizeof(struct buf) + sizeof(vm_page_t) *
1199 	    atop(maxbcachebuf)) * nbuf;
1200 
1201 	return (v);
1202 }
1203 
1204 /*
1205  * Single global constant for BUF_WMESG, to avoid getting multiple
1206  * references.
1207  */
1208 static const char buf_wmesg[] = "bufwait";
1209 
1210 /* Initialize the buffer subsystem.  Called before use of any buffers. */
1211 void
bufinit(void)1212 bufinit(void)
1213 {
1214 	struct buf *bp;
1215 	int i;
1216 
1217 	TSENTER();
1218 	KASSERT(maxbcachebuf >= MAXBSIZE,
1219 	    ("maxbcachebuf (%d) must be >= MAXBSIZE (%d)\n", maxbcachebuf,
1220 	    MAXBSIZE));
1221 	bq_init(&bqempty, QUEUE_EMPTY, -1, "bufq empty lock");
1222 	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
1223 	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
1224 	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
1225 
1226 	unmapped_buf = (caddr_t)kva_alloc(maxphys);
1227 #ifdef INVARIANTS
1228 	poisoned_buf = unmapped_buf;
1229 #endif
1230 
1231 	/* finally, initialize each buffer header and stick on empty q */
1232 	for (i = 0; i < nbuf; i++) {
1233 		bp = nbufp(i);
1234 		bzero(bp, sizeof(*bp) + sizeof(vm_page_t) * atop(maxbcachebuf));
1235 		bp->b_flags = B_INVAL;
1236 		bp->b_rcred = NOCRED;
1237 		bp->b_wcred = NOCRED;
1238 		bp->b_qindex = QUEUE_NONE;
1239 		bp->b_domain = -1;
1240 		bp->b_subqueue = mp_maxid + 1;
1241 		bp->b_xflags = 0;
1242 		bp->b_data = bp->b_kvabase = unmapped_buf;
1243 		LIST_INIT(&bp->b_dep);
1244 		BUF_LOCKINIT(bp, buf_wmesg);
1245 		bq_insert(&bqempty, bp, false);
1246 	}
1247 
1248 	/*
1249 	 * maxbufspace is the absolute maximum amount of buffer space we are
1250 	 * allowed to reserve in KVM and in real terms.  The absolute maximum
1251 	 * is nominally used by metadata.  hibufspace is the nominal maximum
1252 	 * used by most other requests.  The differential is required to
1253 	 * ensure that metadata deadlocks don't occur.
1254 	 *
1255 	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
1256 	 * this may result in KVM fragmentation which is not handled optimally
1257 	 * by the system. XXX This is less true with vmem.  We could use
1258 	 * PAGE_SIZE.
1259 	 */
1260 	maxbufspace = (long)nbuf * BKVASIZE;
1261 	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - maxbcachebuf * 10);
1262 	lobufspace = (hibufspace / 20) * 19; /* 95% */
1263 	bufspacethresh = lobufspace + (hibufspace - lobufspace) / 2;
1264 
1265 	/*
1266 	 * Note: The upper limit for hirunningspace was chosen arbitrarily and
1267 	 * may need further tuning. It corresponds to 128 outstanding write IO
1268 	 * requests, which fits with many RAID controllers' tagged queuing
1269 	 * limits.
1270 	 *
1271 	 * The lower 1 MiB limit is the historical upper limit for
1272 	 * hirunningspace.
1273 	 */
1274 	hirunningspace = lmax(lmin(roundup(hibufspace / 64, maxbcachebuf),
1275 	    128 * maxphys), 1024 * 1024);
1276 	lorunningspace = roundup((hirunningspace * 2) / 3, maxbcachebuf);
1277 
1278 	/*
1279 	 * Limit the amount of malloc memory since it is wired permanently into
1280 	 * the kernel space.  Even though this is accounted for in the buffer
1281 	 * allocation, we don't want the malloced region to grow uncontrolled.
1282 	 * The malloc scheme improves memory utilization significantly on
1283 	 * average (small) directories.
1284 	 */
1285 	maxbufmallocspace = hibufspace / 20;
1286 
1287 	/*
1288 	 * Reduce the chance of a deadlock occurring by limiting the number
1289 	 * of delayed-write dirty buffers we allow to stack up.
1290 	 */
1291 	hidirtybuffers = nbuf / 4 + 20;
1292 	dirtybufthresh = hidirtybuffers * 9 / 10;
1293 	/*
1294 	 * To support extreme low-memory systems, make sure hidirtybuffers
1295 	 * cannot eat up all available buffer space.  This occurs when our
1296 	 * minimum cannot be met.  We try to size hidirtybuffers to 3/4 our
1297 	 * buffer space assuming BKVASIZE'd buffers.
1298 	 */
1299 	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
1300 		hidirtybuffers >>= 1;
1301 	}
1302 	lodirtybuffers = hidirtybuffers / 2;
1303 
1304 	/*
1305 	 * lofreebuffers should be sufficient to avoid stalling waiting on
1306 	 * buf headers under heavy utilization.  The bufs in per-cpu caches
1307 	 * are counted as free but will be unavailable to threads executing
1308 	 * on other cpus.
1309 	 *
1310 	 * hifreebuffers is the free target for the bufspace daemon.  This
1311 	 * should be set appropriately to limit work per-iteration.
1312 	 */
1313 	lofreebuffers = MIN((nbuf / 25) + (20 * mp_ncpus), 128 * mp_ncpus);
1314 	hifreebuffers = (3 * lofreebuffers) / 2;
1315 	numfreebuffers = nbuf;
1316 
1317 	/* Setup the kva and free list allocators. */
1318 	vmem_set_reclaim(buffer_arena, bufkva_reclaim);
1319 	buf_zone = uma_zcache_create("buf free cache",
1320 	    sizeof(struct buf) + sizeof(vm_page_t) * atop(maxbcachebuf),
1321 	    NULL, NULL, NULL, NULL, buf_import, buf_release, NULL, 0);
1322 
1323 	/*
1324 	 * Size the clean queue according to the amount of buffer space.
1325 	 * One queue per-256mb up to the max.  More queues gives better
1326 	 * concurrency but less accurate LRU.
1327 	 */
1328 	buf_domains = MIN(howmany(maxbufspace, 256*1024*1024), BUF_DOMAINS);
1329 	for (i = 0 ; i < buf_domains; i++) {
1330 		struct bufdomain *bd;
1331 
1332 		bd = &bdomain[i];
1333 		bd_init(bd);
1334 		bd->bd_freebuffers = nbuf / buf_domains;
1335 		bd->bd_hifreebuffers = hifreebuffers / buf_domains;
1336 		bd->bd_lofreebuffers = lofreebuffers / buf_domains;
1337 		bd->bd_bufspace = 0;
1338 		bd->bd_maxbufspace = maxbufspace / buf_domains;
1339 		bd->bd_hibufspace = hibufspace / buf_domains;
1340 		bd->bd_lobufspace = lobufspace / buf_domains;
1341 		bd->bd_bufspacethresh = bufspacethresh / buf_domains;
1342 		bd->bd_numdirtybuffers = 0;
1343 		bd->bd_hidirtybuffers = hidirtybuffers / buf_domains;
1344 		bd->bd_lodirtybuffers = lodirtybuffers / buf_domains;
1345 		bd->bd_dirtybufthresh = dirtybufthresh / buf_domains;
1346 		/* Don't allow more than 2% of bufs in the per-cpu caches. */
1347 		bd->bd_lim = nbuf / buf_domains / 50 / mp_ncpus;
1348 	}
1349 	getnewbufcalls = counter_u64_alloc(M_WAITOK);
1350 	getnewbufrestarts = counter_u64_alloc(M_WAITOK);
1351 	mappingrestarts = counter_u64_alloc(M_WAITOK);
1352 	numbufallocfails = counter_u64_alloc(M_WAITOK);
1353 	notbufdflushes = counter_u64_alloc(M_WAITOK);
1354 	buffreekvacnt = counter_u64_alloc(M_WAITOK);
1355 	bufdefragcnt = counter_u64_alloc(M_WAITOK);
1356 	bufkvaspace = counter_u64_alloc(M_WAITOK);
1357 	TSEXIT();
1358 }
1359 
1360 #ifdef INVARIANTS
1361 static inline void
vfs_buf_check_mapped(struct buf * bp)1362 vfs_buf_check_mapped(struct buf *bp)
1363 {
1364 
1365 	KASSERT(bp->b_kvabase != unmapped_buf,
1366 	    ("mapped buf: b_kvabase was not updated %p", bp));
1367 	KASSERT(bp->b_data != unmapped_buf,
1368 	    ("mapped buf: b_data was not updated %p", bp));
1369 	KASSERT(bp->b_data < unmapped_buf || bp->b_data >= unmapped_buf +
1370 	    maxphys, ("b_data + b_offset unmapped %p", bp));
1371 }
1372 
1373 static inline void
vfs_buf_check_unmapped(struct buf * bp)1374 vfs_buf_check_unmapped(struct buf *bp)
1375 {
1376 
1377 	KASSERT(bp->b_data == unmapped_buf,
1378 	    ("unmapped buf: corrupted b_data %p", bp));
1379 }
1380 
1381 #define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
1382 #define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
1383 #else
1384 #define	BUF_CHECK_MAPPED(bp) do {} while (0)
1385 #define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
1386 #endif
1387 
1388 static int
isbufbusy(struct buf * bp)1389 isbufbusy(struct buf *bp)
1390 {
1391 	if (((bp->b_flags & B_INVAL) == 0 && BUF_ISLOCKED(bp)) ||
1392 	    ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI))
1393 		return (1);
1394 	return (0);
1395 }
1396 
1397 /*
1398  * Shutdown the system cleanly to prepare for reboot, halt, or power off.
1399  */
1400 void
bufshutdown(int show_busybufs)1401 bufshutdown(int show_busybufs)
1402 {
1403 	static int first_buf_printf = 1;
1404 	struct buf *bp;
1405 	int i, iter, nbusy, pbusy;
1406 #ifndef PREEMPTION
1407 	int subiter;
1408 #endif
1409 
1410 	/*
1411 	 * Sync filesystems for shutdown
1412 	 */
1413 	wdog_kern_pat(WD_LASTVAL);
1414 	kern_sync(curthread);
1415 
1416 	/*
1417 	 * With soft updates, some buffers that are
1418 	 * written will be remarked as dirty until other
1419 	 * buffers are written.
1420 	 */
1421 	for (iter = pbusy = 0; iter < 20; iter++) {
1422 		nbusy = 0;
1423 		for (i = nbuf - 1; i >= 0; i--) {
1424 			bp = nbufp(i);
1425 			if (isbufbusy(bp))
1426 				nbusy++;
1427 		}
1428 		if (nbusy == 0) {
1429 			if (first_buf_printf)
1430 				printf("All buffers synced.");
1431 			break;
1432 		}
1433 		if (first_buf_printf) {
1434 			printf("Syncing disks, buffers remaining... ");
1435 			first_buf_printf = 0;
1436 		}
1437 		printf("%d ", nbusy);
1438 		if (nbusy < pbusy)
1439 			iter = 0;
1440 		pbusy = nbusy;
1441 
1442 		wdog_kern_pat(WD_LASTVAL);
1443 		kern_sync(curthread);
1444 
1445 #ifdef PREEMPTION
1446 		/*
1447 		 * Spin for a while to allow interrupt threads to run.
1448 		 */
1449 		DELAY(50000 * iter);
1450 #else
1451 		/*
1452 		 * Context switch several times to allow interrupt
1453 		 * threads to run.
1454 		 */
1455 		for (subiter = 0; subiter < 50 * iter; subiter++) {
1456 			sched_relinquish(curthread);
1457 			DELAY(1000);
1458 		}
1459 #endif
1460 	}
1461 	printf("\n");
1462 	/*
1463 	 * Count only busy local buffers to prevent forcing
1464 	 * a fsck if we're just a client of a wedged NFS server
1465 	 */
1466 	nbusy = 0;
1467 	for (i = nbuf - 1; i >= 0; i--) {
1468 		bp = nbufp(i);
1469 		if (isbufbusy(bp)) {
1470 #if 0
1471 /* XXX: This is bogus.  We should probably have a BO_REMOTE flag instead */
1472 			if (bp->b_dev == NULL) {
1473 				TAILQ_REMOVE(&mountlist,
1474 				    bp->b_vp->v_mount, mnt_list);
1475 				continue;
1476 			}
1477 #endif
1478 			nbusy++;
1479 			if (show_busybufs > 0) {
1480 				printf(
1481 	    "%d: buf:%p, vnode:%p, flags:%0x, blkno:%jd, lblkno:%jd, buflock:",
1482 				    nbusy, bp, bp->b_vp, bp->b_flags,
1483 				    (intmax_t)bp->b_blkno,
1484 				    (intmax_t)bp->b_lblkno);
1485 				BUF_LOCKPRINTINFO(bp);
1486 				if (show_busybufs > 1)
1487 					vn_printf(bp->b_vp,
1488 					    "vnode content: ");
1489 			}
1490 		}
1491 	}
1492 	if (nbusy) {
1493 		/*
1494 		 * Failed to sync all blocks. Indicate this and don't
1495 		 * unmount filesystems (thus forcing an fsck on reboot).
1496 		 */
1497 		BOOTTRACE("shutdown failed to sync buffers");
1498 		printf("Giving up on %d buffers\n", nbusy);
1499 		DELAY(5000000);	/* 5 seconds */
1500 		swapoff_all();
1501 	} else {
1502 		BOOTTRACE("shutdown sync complete");
1503 		if (!first_buf_printf)
1504 			printf("Final sync complete\n");
1505 
1506 		/*
1507 		 * Unmount filesystems and perform swapoff, to quiesce
1508 		 * the system as much as possible.  In particular, no
1509 		 * I/O should be initiated from top levels since it
1510 		 * might be abruptly terminated by reset, or otherwise
1511 		 * erronously handled because other parts of the
1512 		 * system are disabled.
1513 		 *
1514 		 * Swapoff before unmount, because file-backed swap is
1515 		 * non-operational after unmount of the underlying
1516 		 * filesystem.
1517 		 */
1518 		if (!KERNEL_PANICKED()) {
1519 			swapoff_all();
1520 			vfs_unmountall();
1521 		}
1522 		BOOTTRACE("shutdown unmounted all filesystems");
1523 	}
1524 	DELAY(100000);		/* wait for console output to finish */
1525 }
1526 
1527 static void
bpmap_qenter(struct buf * bp)1528 bpmap_qenter(struct buf *bp)
1529 {
1530 
1531 	BUF_CHECK_MAPPED(bp);
1532 
1533 	/*
1534 	 * bp->b_data is relative to bp->b_offset, but
1535 	 * bp->b_offset may be offset into the first page.
1536 	 */
1537 	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
1538 	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
1539 	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
1540 	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
1541 }
1542 
1543 static inline struct bufdomain *
bufdomain(struct buf * bp)1544 bufdomain(struct buf *bp)
1545 {
1546 
1547 	return (&bdomain[bp->b_domain]);
1548 }
1549 
1550 static struct bufqueue *
bufqueue(struct buf * bp)1551 bufqueue(struct buf *bp)
1552 {
1553 
1554 	switch (bp->b_qindex) {
1555 	case QUEUE_NONE:
1556 		/* FALLTHROUGH */
1557 	case QUEUE_SENTINEL:
1558 		return (NULL);
1559 	case QUEUE_EMPTY:
1560 		return (&bqempty);
1561 	case QUEUE_DIRTY:
1562 		return (&bufdomain(bp)->bd_dirtyq);
1563 	case QUEUE_CLEAN:
1564 		return (&bufdomain(bp)->bd_subq[bp->b_subqueue]);
1565 	default:
1566 		break;
1567 	}
1568 	panic("bufqueue(%p): Unhandled type %d\n", bp, bp->b_qindex);
1569 }
1570 
1571 /*
1572  * Return the locked bufqueue that bp is a member of.
1573  */
1574 static struct bufqueue *
bufqueue_acquire(struct buf * bp)1575 bufqueue_acquire(struct buf *bp)
1576 {
1577 	struct bufqueue *bq, *nbq;
1578 
1579 	/*
1580 	 * bp can be pushed from a per-cpu queue to the
1581 	 * cleanq while we're waiting on the lock.  Retry
1582 	 * if the queues don't match.
1583 	 */
1584 	bq = bufqueue(bp);
1585 	BQ_LOCK(bq);
1586 	for (;;) {
1587 		nbq = bufqueue(bp);
1588 		if (bq == nbq)
1589 			break;
1590 		BQ_UNLOCK(bq);
1591 		BQ_LOCK(nbq);
1592 		bq = nbq;
1593 	}
1594 	return (bq);
1595 }
1596 
1597 /*
1598  *	binsfree:
1599  *
1600  *	Insert the buffer into the appropriate free list.  Requires a
1601  *	locked buffer on entry and buffer is unlocked before return.
1602  */
1603 static void
binsfree(struct buf * bp,int qindex)1604 binsfree(struct buf *bp, int qindex)
1605 {
1606 	struct bufdomain *bd;
1607 	struct bufqueue *bq;
1608 
1609 	KASSERT(qindex == QUEUE_CLEAN || qindex == QUEUE_DIRTY,
1610 	    ("binsfree: Invalid qindex %d", qindex));
1611 	BUF_ASSERT_XLOCKED(bp);
1612 
1613 	/*
1614 	 * Handle delayed bremfree() processing.
1615 	 */
1616 	if (bp->b_flags & B_REMFREE) {
1617 		if (bp->b_qindex == qindex) {
1618 			bp->b_flags |= B_REUSE;
1619 			bp->b_flags &= ~B_REMFREE;
1620 			BUF_UNLOCK(bp);
1621 			return;
1622 		}
1623 		bq = bufqueue_acquire(bp);
1624 		bq_remove(bq, bp);
1625 		BQ_UNLOCK(bq);
1626 	}
1627 	bd = bufdomain(bp);
1628 	if (qindex == QUEUE_CLEAN) {
1629 		if (bd->bd_lim != 0)
1630 			bq = &bd->bd_subq[PCPU_GET(cpuid)];
1631 		else
1632 			bq = bd->bd_cleanq;
1633 	} else
1634 		bq = &bd->bd_dirtyq;
1635 	bq_insert(bq, bp, true);
1636 }
1637 
1638 /*
1639  * buf_free:
1640  *
1641  *	Free a buffer to the buf zone once it no longer has valid contents.
1642  */
1643 static void
buf_free(struct buf * bp)1644 buf_free(struct buf *bp)
1645 {
1646 
1647 	if (bp->b_flags & B_REMFREE)
1648 		bremfreef(bp);
1649 	if (bp->b_vflags & BV_BKGRDINPROG)
1650 		panic("losing buffer 1");
1651 	if (bp->b_rcred != NOCRED) {
1652 		crfree(bp->b_rcred);
1653 		bp->b_rcred = NOCRED;
1654 	}
1655 	if (bp->b_wcred != NOCRED) {
1656 		crfree(bp->b_wcred);
1657 		bp->b_wcred = NOCRED;
1658 	}
1659 	if (!LIST_EMPTY(&bp->b_dep))
1660 		buf_deallocate(bp);
1661 	bufkva_free(bp);
1662 	atomic_add_int(&bufdomain(bp)->bd_freebuffers, 1);
1663 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1664 	BUF_UNLOCK(bp);
1665 	uma_zfree(buf_zone, bp);
1666 }
1667 
1668 /*
1669  * buf_import:
1670  *
1671  *	Import bufs into the uma cache from the buf list.  The system still
1672  *	expects a static array of bufs and much of the synchronization
1673  *	around bufs assumes type stable storage.  As a result, UMA is used
1674  *	only as a per-cpu cache of bufs still maintained on a global list.
1675  */
1676 static int
buf_import(void * arg,void ** store,int cnt,int domain,int flags)1677 buf_import(void *arg, void **store, int cnt, int domain, int flags)
1678 {
1679 	struct buf *bp;
1680 	int i;
1681 
1682 	BQ_LOCK(&bqempty);
1683 	for (i = 0; i < cnt; i++) {
1684 		bp = TAILQ_FIRST(&bqempty.bq_queue);
1685 		if (bp == NULL)
1686 			break;
1687 		bq_remove(&bqempty, bp);
1688 		store[i] = bp;
1689 	}
1690 	BQ_UNLOCK(&bqempty);
1691 
1692 	return (i);
1693 }
1694 
1695 /*
1696  * buf_release:
1697  *
1698  *	Release bufs from the uma cache back to the buffer queues.
1699  */
1700 static void
buf_release(void * arg,void ** store,int cnt)1701 buf_release(void *arg, void **store, int cnt)
1702 {
1703 	struct bufqueue *bq;
1704 	struct buf *bp;
1705         int i;
1706 
1707 	bq = &bqempty;
1708 	BQ_LOCK(bq);
1709         for (i = 0; i < cnt; i++) {
1710 		bp = store[i];
1711 		/* Inline bq_insert() to batch locking. */
1712 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1713 		bp->b_flags &= ~(B_AGE | B_REUSE);
1714 		bq->bq_len++;
1715 		bp->b_qindex = bq->bq_index;
1716 	}
1717 	BQ_UNLOCK(bq);
1718 }
1719 
1720 /*
1721  * buf_alloc:
1722  *
1723  *	Allocate an empty buffer header.
1724  */
1725 static struct buf *
buf_alloc(struct bufdomain * bd)1726 buf_alloc(struct bufdomain *bd)
1727 {
1728 	struct buf *bp;
1729 	int freebufs, error;
1730 
1731 	/*
1732 	 * We can only run out of bufs in the buf zone if the average buf
1733 	 * is less than BKVASIZE.  In this case the actual wait/block will
1734 	 * come from buf_reycle() failing to flush one of these small bufs.
1735 	 */
1736 	bp = NULL;
1737 	freebufs = atomic_fetchadd_int(&bd->bd_freebuffers, -1);
1738 	if (freebufs > 0)
1739 		bp = uma_zalloc(buf_zone, M_NOWAIT);
1740 	if (bp == NULL) {
1741 		atomic_add_int(&bd->bd_freebuffers, 1);
1742 		bufspace_daemon_wakeup(bd);
1743 		counter_u64_add(numbufallocfails, 1);
1744 		return (NULL);
1745 	}
1746 	/*
1747 	 * Wake-up the bufspace daemon on transition below threshold.
1748 	 */
1749 	if (freebufs == bd->bd_lofreebuffers)
1750 		bufspace_daemon_wakeup(bd);
1751 
1752 	error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWITNESS, NULL);
1753 	KASSERT(error == 0, ("%s: BUF_LOCK on free buf %p: %d.", __func__, bp,
1754 	    error));
1755 	(void)error;
1756 
1757 	KASSERT(bp->b_vp == NULL,
1758 	    ("bp: %p still has vnode %p.", bp, bp->b_vp));
1759 	KASSERT((bp->b_flags & (B_DELWRI | B_NOREUSE)) == 0,
1760 	    ("invalid buffer %p flags %#x", bp, bp->b_flags));
1761 	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1762 	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
1763 	KASSERT(bp->b_npages == 0,
1764 	    ("bp: %p still has %d vm pages\n", bp, bp->b_npages));
1765 	KASSERT(bp->b_kvasize == 0, ("bp: %p still has kva\n", bp));
1766 	KASSERT(bp->b_bufsize == 0, ("bp: %p still has bufspace\n", bp));
1767 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
1768 
1769 	bp->b_domain = BD_DOMAIN(bd);
1770 	bp->b_flags = 0;
1771 	bp->b_ioflags = 0;
1772 	bp->b_xflags = 0;
1773 	bp->b_vflags = 0;
1774 	bp->b_vp = NULL;
1775 	bp->b_blkno = bp->b_lblkno = 0;
1776 	bp->b_offset = NOOFFSET;
1777 	bp->b_iodone = 0;
1778 	bp->b_error = 0;
1779 	bp->b_resid = 0;
1780 	bp->b_bcount = 0;
1781 	bp->b_npages = 0;
1782 	bp->b_dirtyoff = bp->b_dirtyend = 0;
1783 	bp->b_bufobj = NULL;
1784 	bp->b_data = bp->b_kvabase = unmapped_buf;
1785 	bp->b_fsprivate1 = NULL;
1786 	bp->b_fsprivate2 = NULL;
1787 	bp->b_fsprivate3 = NULL;
1788 	LIST_INIT(&bp->b_dep);
1789 
1790 	return (bp);
1791 }
1792 
1793 /*
1794  *	buf_recycle:
1795  *
1796  *	Free a buffer from the given bufqueue.  kva controls whether the
1797  *	freed buf must own some kva resources.  This is used for
1798  *	defragmenting.
1799  */
1800 static int
buf_recycle(struct bufdomain * bd,bool kva)1801 buf_recycle(struct bufdomain *bd, bool kva)
1802 {
1803 	struct bufqueue *bq;
1804 	struct buf *bp, *nbp;
1805 
1806 	if (kva)
1807 		counter_u64_add(bufdefragcnt, 1);
1808 	nbp = NULL;
1809 	bq = bd->bd_cleanq;
1810 	BQ_LOCK(bq);
1811 	KASSERT(BQ_LOCKPTR(bq) == BD_LOCKPTR(bd),
1812 	    ("buf_recycle: Locks don't match"));
1813 	nbp = TAILQ_FIRST(&bq->bq_queue);
1814 
1815 	/*
1816 	 * Run scan, possibly freeing data and/or kva mappings on the fly
1817 	 * depending.
1818 	 */
1819 	while ((bp = nbp) != NULL) {
1820 		/*
1821 		 * Calculate next bp (we can only use it if we do not
1822 		 * release the bqlock).
1823 		 */
1824 		nbp = TAILQ_NEXT(bp, b_freelist);
1825 
1826 		/*
1827 		 * If we are defragging then we need a buffer with
1828 		 * some kva to reclaim.
1829 		 */
1830 		if (kva && bp->b_kvasize == 0)
1831 			continue;
1832 
1833 		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1834 			continue;
1835 
1836 		/*
1837 		 * Implement a second chance algorithm for frequently
1838 		 * accessed buffers.
1839 		 */
1840 		if ((bp->b_flags & B_REUSE) != 0) {
1841 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1842 			TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
1843 			bp->b_flags &= ~B_REUSE;
1844 			BUF_UNLOCK(bp);
1845 			continue;
1846 		}
1847 
1848 		/*
1849 		 * Skip buffers with background writes in progress.
1850 		 */
1851 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
1852 			BUF_UNLOCK(bp);
1853 			continue;
1854 		}
1855 
1856 		KASSERT(bp->b_qindex == QUEUE_CLEAN,
1857 		    ("buf_recycle: inconsistent queue %d bp %p",
1858 		    bp->b_qindex, bp));
1859 		KASSERT(bp->b_domain == BD_DOMAIN(bd),
1860 		    ("getnewbuf: queue domain %d doesn't match request %d",
1861 		    bp->b_domain, (int)BD_DOMAIN(bd)));
1862 		/*
1863 		 * NOTE:  nbp is now entirely invalid.  We can only restart
1864 		 * the scan from this point on.
1865 		 */
1866 		bq_remove(bq, bp);
1867 		BQ_UNLOCK(bq);
1868 
1869 		/*
1870 		 * Requeue the background write buffer with error and
1871 		 * restart the scan.
1872 		 */
1873 		if ((bp->b_vflags & BV_BKGRDERR) != 0) {
1874 			bqrelse(bp);
1875 			BQ_LOCK(bq);
1876 			nbp = TAILQ_FIRST(&bq->bq_queue);
1877 			continue;
1878 		}
1879 		bp->b_flags |= B_INVAL;
1880 		brelse(bp);
1881 		return (0);
1882 	}
1883 	bd->bd_wanted = 1;
1884 	BQ_UNLOCK(bq);
1885 
1886 	return (ENOBUFS);
1887 }
1888 
1889 /*
1890  *	bremfree:
1891  *
1892  *	Mark the buffer for removal from the appropriate free list.
1893  *
1894  */
1895 void
bremfree(struct buf * bp)1896 bremfree(struct buf *bp)
1897 {
1898 
1899 	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1900 	KASSERT((bp->b_flags & B_REMFREE) == 0,
1901 	    ("bremfree: buffer %p already marked for delayed removal.", bp));
1902 	KASSERT(bp->b_qindex != QUEUE_NONE,
1903 	    ("bremfree: buffer %p not on a queue.", bp));
1904 	BUF_ASSERT_XLOCKED(bp);
1905 
1906 	bp->b_flags |= B_REMFREE;
1907 }
1908 
1909 /*
1910  *	bremfreef:
1911  *
1912  *	Force an immediate removal from a free list.  Used only in nfs when
1913  *	it abuses the b_freelist pointer.
1914  */
1915 void
bremfreef(struct buf * bp)1916 bremfreef(struct buf *bp)
1917 {
1918 	struct bufqueue *bq;
1919 
1920 	bq = bufqueue_acquire(bp);
1921 	bq_remove(bq, bp);
1922 	BQ_UNLOCK(bq);
1923 }
1924 
1925 static void
bq_init(struct bufqueue * bq,int qindex,int subqueue,const char * lockname)1926 bq_init(struct bufqueue *bq, int qindex, int subqueue, const char *lockname)
1927 {
1928 
1929 	mtx_init(&bq->bq_lock, lockname, NULL, MTX_DEF);
1930 	TAILQ_INIT(&bq->bq_queue);
1931 	bq->bq_len = 0;
1932 	bq->bq_index = qindex;
1933 	bq->bq_subqueue = subqueue;
1934 }
1935 
1936 static void
bd_init(struct bufdomain * bd)1937 bd_init(struct bufdomain *bd)
1938 {
1939 	int i;
1940 
1941 	/* Per-CPU clean buf queues, plus one global queue. */
1942 	bd->bd_subq = mallocarray(mp_maxid + 2, sizeof(struct bufqueue),
1943 	    M_BIOBUF, M_WAITOK | M_ZERO);
1944 	bd->bd_cleanq = &bd->bd_subq[mp_maxid + 1];
1945 	bq_init(bd->bd_cleanq, QUEUE_CLEAN, mp_maxid + 1, "bufq clean lock");
1946 	bq_init(&bd->bd_dirtyq, QUEUE_DIRTY, -1, "bufq dirty lock");
1947 	for (i = 0; i <= mp_maxid; i++)
1948 		bq_init(&bd->bd_subq[i], QUEUE_CLEAN, i,
1949 		    "bufq clean subqueue lock");
1950 	mtx_init(&bd->bd_run_lock, "bufspace daemon run lock", NULL, MTX_DEF);
1951 }
1952 
1953 /*
1954  *	bq_remove:
1955  *
1956  *	Removes a buffer from the free list, must be called with the
1957  *	correct qlock held.
1958  */
1959 static void
bq_remove(struct bufqueue * bq,struct buf * bp)1960 bq_remove(struct bufqueue *bq, struct buf *bp)
1961 {
1962 
1963 	CTR3(KTR_BUF, "bq_remove(%p) vp %p flags %X",
1964 	    bp, bp->b_vp, bp->b_flags);
1965 	KASSERT(bp->b_qindex != QUEUE_NONE,
1966 	    ("bq_remove: buffer %p not on a queue.", bp));
1967 	KASSERT(bufqueue(bp) == bq,
1968 	    ("bq_remove: Remove buffer %p from wrong queue.", bp));
1969 
1970 	BQ_ASSERT_LOCKED(bq);
1971 	if (bp->b_qindex != QUEUE_EMPTY) {
1972 		BUF_ASSERT_XLOCKED(bp);
1973 	}
1974 	KASSERT(bq->bq_len >= 1,
1975 	    ("queue %d underflow", bp->b_qindex));
1976 	TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1977 	bq->bq_len--;
1978 	bp->b_qindex = QUEUE_NONE;
1979 	bp->b_flags &= ~(B_REMFREE | B_REUSE);
1980 }
1981 
1982 static void
bd_flush(struct bufdomain * bd,struct bufqueue * bq)1983 bd_flush(struct bufdomain *bd, struct bufqueue *bq)
1984 {
1985 	struct buf *bp;
1986 
1987 	BQ_ASSERT_LOCKED(bq);
1988 	if (bq != bd->bd_cleanq) {
1989 		BD_LOCK(bd);
1990 		while ((bp = TAILQ_FIRST(&bq->bq_queue)) != NULL) {
1991 			TAILQ_REMOVE(&bq->bq_queue, bp, b_freelist);
1992 			TAILQ_INSERT_TAIL(&bd->bd_cleanq->bq_queue, bp,
1993 			    b_freelist);
1994 			bp->b_subqueue = bd->bd_cleanq->bq_subqueue;
1995 		}
1996 		bd->bd_cleanq->bq_len += bq->bq_len;
1997 		bq->bq_len = 0;
1998 	}
1999 	if (bd->bd_wanted) {
2000 		bd->bd_wanted = 0;
2001 		wakeup(&bd->bd_wanted);
2002 	}
2003 	if (bq != bd->bd_cleanq)
2004 		BD_UNLOCK(bd);
2005 }
2006 
2007 static int
bd_flushall(struct bufdomain * bd)2008 bd_flushall(struct bufdomain *bd)
2009 {
2010 	struct bufqueue *bq;
2011 	int flushed;
2012 	int i;
2013 
2014 	if (bd->bd_lim == 0)
2015 		return (0);
2016 	flushed = 0;
2017 	for (i = 0; i <= mp_maxid; i++) {
2018 		bq = &bd->bd_subq[i];
2019 		if (bq->bq_len == 0)
2020 			continue;
2021 		BQ_LOCK(bq);
2022 		bd_flush(bd, bq);
2023 		BQ_UNLOCK(bq);
2024 		flushed++;
2025 	}
2026 
2027 	return (flushed);
2028 }
2029 
2030 static void
bq_insert(struct bufqueue * bq,struct buf * bp,bool unlock)2031 bq_insert(struct bufqueue *bq, struct buf *bp, bool unlock)
2032 {
2033 	struct bufdomain *bd;
2034 
2035 	if (bp->b_qindex != QUEUE_NONE)
2036 		panic("bq_insert: free buffer %p onto another queue?", bp);
2037 
2038 	bd = bufdomain(bp);
2039 	if (bp->b_flags & B_AGE) {
2040 		/* Place this buf directly on the real queue. */
2041 		if (bq->bq_index == QUEUE_CLEAN)
2042 			bq = bd->bd_cleanq;
2043 		BQ_LOCK(bq);
2044 		TAILQ_INSERT_HEAD(&bq->bq_queue, bp, b_freelist);
2045 	} else {
2046 		BQ_LOCK(bq);
2047 		TAILQ_INSERT_TAIL(&bq->bq_queue, bp, b_freelist);
2048 	}
2049 	bp->b_flags &= ~(B_AGE | B_REUSE);
2050 	bq->bq_len++;
2051 	bp->b_qindex = bq->bq_index;
2052 	bp->b_subqueue = bq->bq_subqueue;
2053 
2054 	/*
2055 	 * Unlock before we notify so that we don't wakeup a waiter that
2056 	 * fails a trylock on the buf and sleeps again.
2057 	 */
2058 	if (unlock)
2059 		BUF_UNLOCK(bp);
2060 
2061 	if (bp->b_qindex == QUEUE_CLEAN) {
2062 		/*
2063 		 * Flush the per-cpu queue and notify any waiters.
2064 		 */
2065 		if (bd->bd_wanted || (bq != bd->bd_cleanq &&
2066 		    bq->bq_len >= bd->bd_lim))
2067 			bd_flush(bd, bq);
2068 	}
2069 	BQ_UNLOCK(bq);
2070 }
2071 
2072 /*
2073  *	bufkva_free:
2074  *
2075  *	Free the kva allocation for a buffer.
2076  *
2077  */
2078 static void
bufkva_free(struct buf * bp)2079 bufkva_free(struct buf *bp)
2080 {
2081 
2082 #ifdef INVARIANTS
2083 	if (bp->b_kvasize == 0) {
2084 		KASSERT(bp->b_kvabase == unmapped_buf &&
2085 		    bp->b_data == unmapped_buf,
2086 		    ("Leaked KVA space on %p", bp));
2087 	} else if (buf_mapped(bp))
2088 		BUF_CHECK_MAPPED(bp);
2089 	else
2090 		BUF_CHECK_UNMAPPED(bp);
2091 #endif
2092 	if (bp->b_kvasize == 0)
2093 		return;
2094 
2095 	vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase, bp->b_kvasize);
2096 	counter_u64_add(bufkvaspace, -bp->b_kvasize);
2097 	counter_u64_add(buffreekvacnt, 1);
2098 	bp->b_data = bp->b_kvabase = unmapped_buf;
2099 	bp->b_kvasize = 0;
2100 }
2101 
2102 /*
2103  *	bufkva_alloc:
2104  *
2105  *	Allocate the buffer KVA and set b_kvasize and b_kvabase.
2106  */
2107 static int
bufkva_alloc(struct buf * bp,int maxsize,int gbflags)2108 bufkva_alloc(struct buf *bp, int maxsize, int gbflags)
2109 {
2110 	vm_offset_t addr;
2111 	int error;
2112 
2113 	KASSERT((gbflags & GB_UNMAPPED) == 0 || (gbflags & GB_KVAALLOC) != 0,
2114 	    ("Invalid gbflags 0x%x in %s", gbflags, __func__));
2115 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
2116 	KASSERT(maxsize <= maxbcachebuf,
2117 	    ("bufkva_alloc kva too large %d %u", maxsize, maxbcachebuf));
2118 
2119 	bufkva_free(bp);
2120 
2121 	addr = 0;
2122 	error = vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr);
2123 	if (error != 0) {
2124 		/*
2125 		 * Buffer map is too fragmented.  Request the caller
2126 		 * to defragment the map.
2127 		 */
2128 		return (error);
2129 	}
2130 	bp->b_kvabase = (caddr_t)addr;
2131 	bp->b_kvasize = maxsize;
2132 	counter_u64_add(bufkvaspace, bp->b_kvasize);
2133 	if ((gbflags & GB_UNMAPPED) != 0) {
2134 		bp->b_data = unmapped_buf;
2135 		BUF_CHECK_UNMAPPED(bp);
2136 	} else {
2137 		bp->b_data = bp->b_kvabase;
2138 		BUF_CHECK_MAPPED(bp);
2139 	}
2140 	return (0);
2141 }
2142 
2143 /*
2144  *	bufkva_reclaim:
2145  *
2146  *	Reclaim buffer kva by freeing buffers holding kva.  This is a vmem
2147  *	callback that fires to avoid returning failure.
2148  */
2149 static void
bufkva_reclaim(vmem_t * vmem,int flags)2150 bufkva_reclaim(vmem_t *vmem, int flags)
2151 {
2152 	bool done;
2153 	int q;
2154 	int i;
2155 
2156 	done = false;
2157 	for (i = 0; i < 5; i++) {
2158 		for (q = 0; q < buf_domains; q++)
2159 			if (buf_recycle(&bdomain[q], true) != 0)
2160 				done = true;
2161 		if (done)
2162 			break;
2163 	}
2164 	return;
2165 }
2166 
2167 /*
2168  * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
2169  * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
2170  * the buffer is valid and we do not have to do anything.
2171  */
2172 static void
breada(struct vnode * vp,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *))2173 breada(struct vnode * vp, daddr_t * rablkno, int * rabsize, int cnt,
2174     struct ucred * cred, int flags, void (*ckhashfunc)(struct buf *))
2175 {
2176 	struct buf *rabp;
2177 	struct thread *td;
2178 	int i;
2179 
2180 	td = curthread;
2181 
2182 	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
2183 		if (inmem(vp, *rablkno))
2184 			continue;
2185 		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
2186 		if ((rabp->b_flags & B_CACHE) != 0) {
2187 			brelse(rabp);
2188 			continue;
2189 		}
2190 #ifdef RACCT
2191 		if (racct_enable) {
2192 			PROC_LOCK(curproc);
2193 			racct_add_buf(curproc, rabp, 0);
2194 			PROC_UNLOCK(curproc);
2195 		}
2196 #endif /* RACCT */
2197 		td->td_ru.ru_inblock++;
2198 		rabp->b_flags |= B_ASYNC;
2199 		rabp->b_flags &= ~B_INVAL;
2200 		if ((flags & GB_CKHASH) != 0) {
2201 			rabp->b_flags |= B_CKHASH;
2202 			rabp->b_ckhashcalc = ckhashfunc;
2203 		}
2204 		rabp->b_ioflags &= ~BIO_ERROR;
2205 		rabp->b_iocmd = BIO_READ;
2206 		if (rabp->b_rcred == NOCRED && cred != NOCRED)
2207 			rabp->b_rcred = crhold(cred);
2208 		vfs_busy_pages(rabp, 0);
2209 		BUF_KERNPROC(rabp);
2210 		rabp->b_iooffset = dbtob(rabp->b_blkno);
2211 		bstrategy(rabp);
2212 	}
2213 }
2214 
2215 /*
2216  * Entry point for bread() and breadn() via #defines in sys/buf.h.
2217  *
2218  * Get a buffer with the specified data.  Look in the cache first.  We
2219  * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
2220  * is set, the buffer is valid and we do not have to do anything, see
2221  * getblk(). Also starts asynchronous I/O on read-ahead blocks.
2222  *
2223  * Always return a NULL buffer pointer (in bpp) when returning an error.
2224  *
2225  * The blkno parameter is the logical block being requested. Normally
2226  * the mapping of logical block number to disk block address is done
2227  * by calling VOP_BMAP(). However, if the mapping is already known, the
2228  * disk block address can be passed using the dblkno parameter. If the
2229  * disk block address is not known, then the same value should be passed
2230  * for blkno and dblkno.
2231  */
2232 int
breadn_flags(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,daddr_t * rablkno,int * rabsize,int cnt,struct ucred * cred,int flags,void (* ckhashfunc)(struct buf *),struct buf ** bpp)2233 breadn_flags(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size,
2234     daddr_t *rablkno, int *rabsize, int cnt, struct ucred *cred, int flags,
2235     void (*ckhashfunc)(struct buf *), struct buf **bpp)
2236 {
2237 	struct buf *bp;
2238 	struct thread *td;
2239 	int error, readwait, rv;
2240 
2241 	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
2242 	td = curthread;
2243 	/*
2244 	 * Can only return NULL if GB_LOCK_NOWAIT or GB_SPARSE flags
2245 	 * are specified.
2246 	 */
2247 	error = getblkx(vp, blkno, dblkno, size, 0, 0, flags, &bp);
2248 	if (error != 0) {
2249 		*bpp = NULL;
2250 		return (error);
2251 	}
2252 	KASSERT(blkno == bp->b_lblkno,
2253 	    ("getblkx returned buffer for blkno %jd instead of blkno %jd",
2254 	    (intmax_t)bp->b_lblkno, (intmax_t)blkno));
2255 	flags &= ~GB_NOSPARSE;
2256 	*bpp = bp;
2257 
2258 	/*
2259 	 * If not found in cache, do some I/O
2260 	 */
2261 	readwait = 0;
2262 	if ((bp->b_flags & B_CACHE) == 0) {
2263 #ifdef RACCT
2264 		if (racct_enable) {
2265 			PROC_LOCK(td->td_proc);
2266 			racct_add_buf(td->td_proc, bp, 0);
2267 			PROC_UNLOCK(td->td_proc);
2268 		}
2269 #endif /* RACCT */
2270 		td->td_ru.ru_inblock++;
2271 		bp->b_iocmd = BIO_READ;
2272 		bp->b_flags &= ~B_INVAL;
2273 		if ((flags & GB_CKHASH) != 0) {
2274 			bp->b_flags |= B_CKHASH;
2275 			bp->b_ckhashcalc = ckhashfunc;
2276 		}
2277 		if ((flags & GB_CVTENXIO) != 0)
2278 			bp->b_xflags |= BX_CVTENXIO;
2279 		bp->b_ioflags &= ~BIO_ERROR;
2280 		if (bp->b_rcred == NOCRED && cred != NOCRED)
2281 			bp->b_rcred = crhold(cred);
2282 		vfs_busy_pages(bp, 0);
2283 		bp->b_iooffset = dbtob(bp->b_blkno);
2284 		bstrategy(bp);
2285 		++readwait;
2286 	}
2287 
2288 	/*
2289 	 * Attempt to initiate asynchronous I/O on read-ahead blocks.
2290 	 */
2291 	breada(vp, rablkno, rabsize, cnt, cred, flags, ckhashfunc);
2292 
2293 	rv = 0;
2294 	if (readwait) {
2295 		rv = bufwait(bp);
2296 		if (rv != 0) {
2297 			brelse(bp);
2298 			*bpp = NULL;
2299 		}
2300 	}
2301 	return (rv);
2302 }
2303 
2304 /*
2305  * Write, release buffer on completion.  (Done by iodone
2306  * if async).  Do not bother writing anything if the buffer
2307  * is invalid.
2308  *
2309  * Note that we set B_CACHE here, indicating that buffer is
2310  * fully valid and thus cacheable.  This is true even of NFS
2311  * now so we set it generally.  This could be set either here
2312  * or in biodone() since the I/O is synchronous.  We put it
2313  * here.
2314  */
2315 int
bufwrite(struct buf * bp)2316 bufwrite(struct buf *bp)
2317 {
2318 	struct vnode *vp;
2319 	long space;
2320 	int oldflags, retval;
2321 	bool vp_md;
2322 
2323 	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2324 	if ((bp->b_bufobj->bo_flag & BO_DEAD) != 0) {
2325 		bp->b_flags |= B_INVAL | B_RELBUF;
2326 		bp->b_flags &= ~B_CACHE;
2327 		brelse(bp);
2328 		return (ENXIO);
2329 	}
2330 	if ((bp->b_flags & B_INVAL) != 0) {
2331 		brelse(bp);
2332 		return (0);
2333 	}
2334 
2335 	if ((bp->b_flags & B_BARRIER) != 0)
2336 		atomic_add_long(&barrierwrites, 1);
2337 
2338 	oldflags = bp->b_flags;
2339 
2340 	KASSERT((bp->b_vflags & BV_BKGRDINPROG) == 0,
2341 	    ("FFS background buffer should not get here %p", bp));
2342 
2343 	vp = bp->b_vp;
2344 	vp_md = vp != NULL && (vp->v_vflag & VV_MD) != 0;
2345 
2346 	/*
2347 	 * Mark the buffer clean.  Increment the bufobj write count
2348 	 * before bundirty() call, to prevent other thread from seeing
2349 	 * empty dirty list and zero counter for writes in progress,
2350 	 * falsely indicating that the bufobj is clean.
2351 	 */
2352 	bufobj_wref(bp->b_bufobj);
2353 	bundirty(bp);
2354 
2355 	bp->b_flags &= ~B_DONE;
2356 	bp->b_ioflags &= ~BIO_ERROR;
2357 	bp->b_flags |= B_CACHE;
2358 	bp->b_iocmd = BIO_WRITE;
2359 
2360 	vfs_busy_pages(bp, 1);
2361 
2362 	/*
2363 	 * Normal bwrites pipeline writes
2364 	 */
2365 	space = runningbufclaim(bp, bp->b_bufsize);
2366 
2367 #ifdef RACCT
2368 	if (racct_enable) {
2369 		PROC_LOCK(curproc);
2370 		racct_add_buf(curproc, bp, 1);
2371 		PROC_UNLOCK(curproc);
2372 	}
2373 #endif /* RACCT */
2374 	curthread->td_ru.ru_oublock++;
2375 	if ((oldflags & B_ASYNC) != 0)
2376 		BUF_KERNPROC(bp);
2377 	bp->b_iooffset = dbtob(bp->b_blkno);
2378 	buf_track(bp, __func__);
2379 	bstrategy(bp);
2380 
2381 	if ((oldflags & B_ASYNC) == 0) {
2382 		retval = bufwait(bp);
2383 		brelse(bp);
2384 		return (retval);
2385 	} else if (space > hirunningspace) {
2386 		/*
2387 		 * Don't allow the async write to saturate the I/O
2388 		 * system.  We do not block here if it is the update
2389 		 * or syncer daemon trying to clean up as that can
2390 		 * lead to deadlock.
2391 		 */
2392 		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
2393 			waitrunningbufspace();
2394 	}
2395 
2396 	return (0);
2397 }
2398 
2399 void
bufbdflush(struct bufobj * bo,struct buf * bp)2400 bufbdflush(struct bufobj *bo, struct buf *bp)
2401 {
2402 	struct buf *nbp;
2403 	struct bufdomain *bd;
2404 
2405 	bd = &bdomain[bo->bo_domain];
2406 	if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh + 10) {
2407 		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
2408 		altbufferflushes++;
2409 	} else if (bo->bo_dirty.bv_cnt > bd->bd_dirtybufthresh) {
2410 		BO_LOCK(bo);
2411 		/*
2412 		 * Try to find a buffer to flush.
2413 		 */
2414 		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
2415 			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
2416 			    BUF_LOCK(nbp,
2417 				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
2418 				continue;
2419 			if (bp == nbp)
2420 				panic("bdwrite: found ourselves");
2421 			BO_UNLOCK(bo);
2422 			/* Don't countdeps with the bo lock held. */
2423 			if (buf_countdeps(nbp, 0)) {
2424 				BO_LOCK(bo);
2425 				BUF_UNLOCK(nbp);
2426 				continue;
2427 			}
2428 			if (nbp->b_flags & B_CLUSTEROK) {
2429 				vfs_bio_awrite(nbp);
2430 			} else {
2431 				bremfree(nbp);
2432 				bawrite(nbp);
2433 			}
2434 			dirtybufferflushes++;
2435 			break;
2436 		}
2437 		if (nbp == NULL)
2438 			BO_UNLOCK(bo);
2439 	}
2440 }
2441 
2442 /*
2443  * Delayed write. (Buffer is marked dirty).  Do not bother writing
2444  * anything if the buffer is marked invalid.
2445  *
2446  * Note that since the buffer must be completely valid, we can safely
2447  * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
2448  * biodone() in order to prevent getblk from writing the buffer
2449  * out synchronously.
2450  */
2451 void
bdwrite(struct buf * bp)2452 bdwrite(struct buf *bp)
2453 {
2454 	struct thread *td = curthread;
2455 	struct vnode *vp;
2456 	struct bufobj *bo;
2457 
2458 	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2459 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2460 	KASSERT((bp->b_flags & B_BARRIER) == 0,
2461 	    ("Barrier request in delayed write %p", bp));
2462 
2463 	if (bp->b_flags & B_INVAL) {
2464 		brelse(bp);
2465 		return;
2466 	}
2467 
2468 	/*
2469 	 * If we have too many dirty buffers, don't create any more.
2470 	 * If we are wildly over our limit, then force a complete
2471 	 * cleanup. Otherwise, just keep the situation from getting
2472 	 * out of control. Note that we have to avoid a recursive
2473 	 * disaster and not try to clean up after our own cleanup!
2474 	 */
2475 	vp = bp->b_vp;
2476 	bo = bp->b_bufobj;
2477 	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
2478 		td->td_pflags |= TDP_INBDFLUSH;
2479 		BO_BDFLUSH(bo, bp);
2480 		td->td_pflags &= ~TDP_INBDFLUSH;
2481 	} else
2482 		recursiveflushes++;
2483 
2484 	bdirty(bp);
2485 	/*
2486 	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
2487 	 * true even of NFS now.
2488 	 */
2489 	bp->b_flags |= B_CACHE;
2490 
2491 	/*
2492 	 * This bmap keeps the system from needing to do the bmap later,
2493 	 * perhaps when the system is attempting to do a sync.  Since it
2494 	 * is likely that the indirect block -- or whatever other datastructure
2495 	 * that the filesystem needs is still in memory now, it is a good
2496 	 * thing to do this.  Note also, that if the pageout daemon is
2497 	 * requesting a sync -- there might not be enough memory to do
2498 	 * the bmap then...  So, this is important to do.
2499 	 */
2500 	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
2501 		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
2502 	}
2503 
2504 	buf_track(bp, __func__);
2505 
2506 	/*
2507 	 * Set the *dirty* buffer range based upon the VM system dirty
2508 	 * pages.
2509 	 *
2510 	 * Mark the buffer pages as clean.  We need to do this here to
2511 	 * satisfy the vnode_pager and the pageout daemon, so that it
2512 	 * thinks that the pages have been "cleaned".  Note that since
2513 	 * the pages are in a delayed write buffer -- the VFS layer
2514 	 * "will" see that the pages get written out on the next sync,
2515 	 * or perhaps the cluster will be completed.
2516 	 */
2517 	vfs_clean_pages_dirty_buf(bp);
2518 	bqrelse(bp);
2519 
2520 	/*
2521 	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
2522 	 * due to the softdep code.
2523 	 */
2524 }
2525 
2526 /*
2527  *	bdirty:
2528  *
2529  *	Turn buffer into delayed write request.  We must clear BIO_READ and
2530  *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
2531  *	itself to properly update it in the dirty/clean lists.  We mark it
2532  *	B_DONE to ensure that any asynchronization of the buffer properly
2533  *	clears B_DONE ( else a panic will occur later ).
2534  *
2535  *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
2536  *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
2537  *	should only be called if the buffer is known-good.
2538  *
2539  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2540  *	count.
2541  *
2542  *	The buffer must be on QUEUE_NONE.
2543  */
2544 void
bdirty(struct buf * bp)2545 bdirty(struct buf *bp)
2546 {
2547 
2548 	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
2549 	    bp, bp->b_vp, bp->b_flags);
2550 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2551 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2552 	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
2553 	bp->b_flags &= ~(B_RELBUF);
2554 	bp->b_iocmd = BIO_WRITE;
2555 
2556 	if ((bp->b_flags & B_DELWRI) == 0) {
2557 		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
2558 		reassignbuf(bp);
2559 		bdirtyadd(bp);
2560 	}
2561 }
2562 
2563 /*
2564  *	bundirty:
2565  *
2566  *	Clear B_DELWRI for buffer.
2567  *
2568  *	Since the buffer is not on a queue, we do not update the numfreebuffers
2569  *	count.
2570  *
2571  *	The buffer must be on QUEUE_NONE.
2572  */
2573 
2574 void
bundirty(struct buf * bp)2575 bundirty(struct buf *bp)
2576 {
2577 
2578 	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2579 	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2580 	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
2581 	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
2582 
2583 	if (bp->b_flags & B_DELWRI) {
2584 		bp->b_flags &= ~B_DELWRI;
2585 		reassignbuf(bp);
2586 		bdirtysub(bp);
2587 	}
2588 	/*
2589 	 * Since it is now being written, we can clear its deferred write flag.
2590 	 */
2591 	bp->b_flags &= ~B_DEFERRED;
2592 }
2593 
2594 /*
2595  *	bawrite:
2596  *
2597  *	Asynchronous write.  Start output on a buffer, but do not wait for
2598  *	it to complete.  The buffer is released when the output completes.
2599  *
2600  *	bwrite() ( or the VOP routine anyway ) is responsible for handling
2601  *	B_INVAL buffers.  Not us.
2602  */
2603 void
bawrite(struct buf * bp)2604 bawrite(struct buf *bp)
2605 {
2606 
2607 	bp->b_flags |= B_ASYNC;
2608 	(void) bwrite(bp);
2609 }
2610 
2611 /*
2612  *	babarrierwrite:
2613  *
2614  *	Asynchronous barrier write.  Start output on a buffer, but do not
2615  *	wait for it to complete.  Place a write barrier after this write so
2616  *	that this buffer and all buffers written before it are committed to
2617  *	the disk before any buffers written after this write are committed
2618  *	to the disk.  The buffer is released when the output completes.
2619  */
2620 void
babarrierwrite(struct buf * bp)2621 babarrierwrite(struct buf *bp)
2622 {
2623 
2624 	bp->b_flags |= B_ASYNC | B_BARRIER;
2625 	(void) bwrite(bp);
2626 }
2627 
2628 /*
2629  *	bbarrierwrite:
2630  *
2631  *	Synchronous barrier write.  Start output on a buffer and wait for
2632  *	it to complete.  Place a write barrier after this write so that
2633  *	this buffer and all buffers written before it are committed to
2634  *	the disk before any buffers written after this write are committed
2635  *	to the disk.  The buffer is released when the output completes.
2636  */
2637 int
bbarrierwrite(struct buf * bp)2638 bbarrierwrite(struct buf *bp)
2639 {
2640 
2641 	bp->b_flags |= B_BARRIER;
2642 	return (bwrite(bp));
2643 }
2644 
2645 /*
2646  *	bwillwrite:
2647  *
2648  *	Called prior to the locking of any vnodes when we are expecting to
2649  *	write.  We do not want to starve the buffer cache with too many
2650  *	dirty buffers so we block here.  By blocking prior to the locking
2651  *	of any vnodes we attempt to avoid the situation where a locked vnode
2652  *	prevents the various system daemons from flushing related buffers.
2653  */
2654 void
bwillwrite(void)2655 bwillwrite(void)
2656 {
2657 
2658 	if (buf_dirty_count_severe()) {
2659 		mtx_lock(&bdirtylock);
2660 		while (buf_dirty_count_severe()) {
2661 			bdirtywait = 1;
2662 			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
2663 			    "flswai", 0);
2664 		}
2665 		mtx_unlock(&bdirtylock);
2666 	}
2667 }
2668 
2669 /*
2670  * Return true if we have too many dirty buffers.
2671  */
2672 int
buf_dirty_count_severe(void)2673 buf_dirty_count_severe(void)
2674 {
2675 
2676 	return (!BIT_EMPTY(BUF_DOMAINS, &bdhidirty));
2677 }
2678 
2679 /*
2680  *	brelse:
2681  *
2682  *	Release a busy buffer and, if requested, free its resources.  The
2683  *	buffer will be stashed in the appropriate bufqueue[] allowing it
2684  *	to be accessed later as a cache entity or reused for other purposes.
2685  */
2686 void
brelse(struct buf * bp)2687 brelse(struct buf *bp)
2688 {
2689 	struct mount *v_mnt;
2690 	int qindex;
2691 
2692 	/*
2693 	 * Many functions erroneously call brelse with a NULL bp under rare
2694 	 * error conditions. Simply return when called with a NULL bp.
2695 	 */
2696 	if (bp == NULL)
2697 		return;
2698 	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
2699 	    bp, bp->b_vp, bp->b_flags);
2700 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2701 	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2702 	KASSERT((bp->b_flags & B_VMIO) != 0 || (bp->b_flags & B_NOREUSE) == 0,
2703 	    ("brelse: non-VMIO buffer marked NOREUSE"));
2704 
2705 	if (BUF_LOCKRECURSED(bp)) {
2706 		/*
2707 		 * Do not process, in particular, do not handle the
2708 		 * B_INVAL/B_RELBUF and do not release to free list.
2709 		 */
2710 		BUF_UNLOCK(bp);
2711 		return;
2712 	}
2713 
2714 	if (bp->b_flags & B_MANAGED) {
2715 		bqrelse(bp);
2716 		return;
2717 	}
2718 
2719 	if (LIST_EMPTY(&bp->b_dep)) {
2720 		bp->b_flags &= ~B_IOSTARTED;
2721 	} else {
2722 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2723 		    ("brelse: SU io not finished bp %p", bp));
2724 	}
2725 
2726 	if ((bp->b_vflags & (BV_BKGRDINPROG | BV_BKGRDERR)) == BV_BKGRDERR) {
2727 		BO_LOCK(bp->b_bufobj);
2728 		bp->b_vflags &= ~BV_BKGRDERR;
2729 		BO_UNLOCK(bp->b_bufobj);
2730 		bdirty(bp);
2731 	}
2732 
2733 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2734 	    (bp->b_flags & B_INVALONERR)) {
2735 		/*
2736 		 * Forced invalidation of dirty buffer contents, to be used
2737 		 * after a failed write in the rare case that the loss of the
2738 		 * contents is acceptable.  The buffer is invalidated and
2739 		 * freed.
2740 		 */
2741 		bp->b_flags |= B_INVAL | B_RELBUF | B_NOCACHE;
2742 		bp->b_flags &= ~(B_ASYNC | B_CACHE);
2743 	}
2744 
2745 	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
2746 	    (bp->b_error != ENXIO || !LIST_EMPTY(&bp->b_dep)) &&
2747 	    !(bp->b_flags & B_INVAL)) {
2748 		/*
2749 		 * Failed write, redirty.  All errors except ENXIO (which
2750 		 * means the device is gone) are treated as being
2751 		 * transient.
2752 		 *
2753 		 * XXX Treating EIO as transient is not correct; the
2754 		 * contract with the local storage device drivers is that
2755 		 * they will only return EIO once the I/O is no longer
2756 		 * retriable.  Network I/O also respects this through the
2757 		 * guarantees of TCP and/or the internal retries of NFS.
2758 		 * ENOMEM might be transient, but we also have no way of
2759 		 * knowing when its ok to retry/reschedule.  In general,
2760 		 * this entire case should be made obsolete through better
2761 		 * error handling/recovery and resource scheduling.
2762 		 *
2763 		 * Do this also for buffers that failed with ENXIO, but have
2764 		 * non-empty dependencies - the soft updates code might need
2765 		 * to access the buffer to untangle them.
2766 		 *
2767 		 * Must clear BIO_ERROR to prevent pages from being scrapped.
2768 		 */
2769 		bp->b_ioflags &= ~BIO_ERROR;
2770 		bdirty(bp);
2771 	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
2772 	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
2773 		/*
2774 		 * Either a failed read I/O, or we were asked to free or not
2775 		 * cache the buffer, or we failed to write to a device that's
2776 		 * no longer present.
2777 		 */
2778 		bp->b_flags |= B_INVAL;
2779 		if (!LIST_EMPTY(&bp->b_dep))
2780 			buf_deallocate(bp);
2781 		if (bp->b_flags & B_DELWRI)
2782 			bdirtysub(bp);
2783 		bp->b_flags &= ~(B_DELWRI | B_CACHE);
2784 		if ((bp->b_flags & B_VMIO) == 0) {
2785 			allocbuf(bp, 0);
2786 			if (bp->b_vp)
2787 				brelvp(bp);
2788 		}
2789 	}
2790 
2791 	/*
2792 	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_truncate()
2793 	 * is called with B_DELWRI set, the underlying pages may wind up
2794 	 * getting freed causing a previous write (bdwrite()) to get 'lost'
2795 	 * because pages associated with a B_DELWRI bp are marked clean.
2796 	 *
2797 	 * We still allow the B_INVAL case to call vfs_vmio_truncate(), even
2798 	 * if B_DELWRI is set.
2799 	 */
2800 	if (bp->b_flags & B_DELWRI)
2801 		bp->b_flags &= ~B_RELBUF;
2802 
2803 	/*
2804 	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
2805 	 * constituted, not even NFS buffers now.  Two flags effect this.  If
2806 	 * B_INVAL, the struct buf is invalidated but the VM object is kept
2807 	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
2808 	 *
2809 	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
2810 	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
2811 	 * buffer is also B_INVAL because it hits the re-dirtying code above.
2812 	 *
2813 	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
2814 	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
2815 	 * the commit state and we cannot afford to lose the buffer. If the
2816 	 * buffer has a background write in progress, we need to keep it
2817 	 * around to prevent it from being reconstituted and starting a second
2818 	 * background write.
2819 	 */
2820 
2821 	v_mnt = bp->b_vp != NULL ? bp->b_vp->v_mount : NULL;
2822 
2823 	if ((bp->b_flags & B_VMIO) && (bp->b_flags & B_NOCACHE ||
2824 	    (bp->b_ioflags & BIO_ERROR && bp->b_iocmd == BIO_READ)) &&
2825 	    (v_mnt == NULL || (v_mnt->mnt_vfc->vfc_flags & VFCF_NETWORK) == 0 ||
2826 	    vn_isdisk(bp->b_vp) || (bp->b_flags & B_DELWRI) == 0)) {
2827 		vfs_vmio_invalidate(bp);
2828 		allocbuf(bp, 0);
2829 	}
2830 
2831 	if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0 ||
2832 	    (bp->b_flags & (B_DELWRI | B_NOREUSE)) == B_NOREUSE) {
2833 		allocbuf(bp, 0);
2834 		bp->b_flags &= ~B_NOREUSE;
2835 		if (bp->b_vp != NULL)
2836 			brelvp(bp);
2837 	}
2838 
2839 	/*
2840 	 * If the buffer has junk contents signal it and eventually
2841 	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
2842 	 * doesn't find it.
2843 	 */
2844 	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
2845 	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
2846 		bp->b_flags |= B_INVAL;
2847 	if (bp->b_flags & B_INVAL) {
2848 		if (bp->b_flags & B_DELWRI)
2849 			bundirty(bp);
2850 		if (bp->b_vp)
2851 			brelvp(bp);
2852 	}
2853 
2854 	buf_track(bp, __func__);
2855 
2856 	/* buffers with no memory */
2857 	if (bp->b_bufsize == 0) {
2858 		buf_free(bp);
2859 		return;
2860 	}
2861 	/* buffers with junk contents */
2862 	if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
2863 	    (bp->b_ioflags & BIO_ERROR)) {
2864 		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
2865 		if (bp->b_vflags & BV_BKGRDINPROG)
2866 			panic("losing buffer 2");
2867 		qindex = QUEUE_CLEAN;
2868 		bp->b_flags |= B_AGE;
2869 	/* remaining buffers */
2870 	} else if (bp->b_flags & B_DELWRI)
2871 		qindex = QUEUE_DIRTY;
2872 	else
2873 		qindex = QUEUE_CLEAN;
2874 
2875 	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
2876 		panic("brelse: not dirty");
2877 
2878 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_RELBUF | B_DIRECT);
2879 	bp->b_xflags &= ~(BX_CVTENXIO);
2880 	/* binsfree unlocks bp. */
2881 	binsfree(bp, qindex);
2882 }
2883 
2884 /*
2885  * Release a buffer back to the appropriate queue but do not try to free
2886  * it.  The buffer is expected to be used again soon.
2887  *
2888  * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
2889  * biodone() to requeue an async I/O on completion.  It is also used when
2890  * known good buffers need to be requeued but we think we may need the data
2891  * again soon.
2892  *
2893  * XXX we should be able to leave the B_RELBUF hint set on completion.
2894  */
2895 void
bqrelse(struct buf * bp)2896 bqrelse(struct buf *bp)
2897 {
2898 	int qindex;
2899 
2900 	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2901 	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
2902 	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
2903 
2904 	qindex = QUEUE_NONE;
2905 	if (BUF_LOCKRECURSED(bp)) {
2906 		/* do not release to free list */
2907 		BUF_UNLOCK(bp);
2908 		return;
2909 	}
2910 	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
2911 	bp->b_xflags &= ~(BX_CVTENXIO);
2912 
2913 	if (LIST_EMPTY(&bp->b_dep)) {
2914 		bp->b_flags &= ~B_IOSTARTED;
2915 	} else {
2916 		KASSERT((bp->b_flags & B_IOSTARTED) == 0,
2917 		    ("bqrelse: SU io not finished bp %p", bp));
2918 	}
2919 
2920 	if (bp->b_flags & B_MANAGED) {
2921 		if (bp->b_flags & B_REMFREE)
2922 			bremfreef(bp);
2923 		goto out;
2924 	}
2925 
2926 	/* buffers with stale but valid contents */
2927 	if ((bp->b_flags & B_DELWRI) != 0 || (bp->b_vflags & (BV_BKGRDINPROG |
2928 	    BV_BKGRDERR)) == BV_BKGRDERR) {
2929 		BO_LOCK(bp->b_bufobj);
2930 		bp->b_vflags &= ~BV_BKGRDERR;
2931 		BO_UNLOCK(bp->b_bufobj);
2932 		qindex = QUEUE_DIRTY;
2933 	} else {
2934 		if ((bp->b_flags & B_DELWRI) == 0 &&
2935 		    (bp->b_xflags & BX_VNDIRTY))
2936 			panic("bqrelse: not dirty");
2937 		if ((bp->b_flags & B_NOREUSE) != 0) {
2938 			brelse(bp);
2939 			return;
2940 		}
2941 		qindex = QUEUE_CLEAN;
2942 	}
2943 	buf_track(bp, __func__);
2944 	/* binsfree unlocks bp. */
2945 	binsfree(bp, qindex);
2946 	return;
2947 
2948 out:
2949 	buf_track(bp, __func__);
2950 	/* unlock */
2951 	BUF_UNLOCK(bp);
2952 }
2953 
2954 /*
2955  * Complete I/O to a VMIO backed page.  Validate the pages as appropriate,
2956  * restore bogus pages.
2957  */
2958 static void
vfs_vmio_iodone(struct buf * bp)2959 vfs_vmio_iodone(struct buf *bp)
2960 {
2961 	vm_ooffset_t foff;
2962 	vm_page_t m;
2963 	vm_object_t obj;
2964 	struct vnode *vp __unused;
2965 	int i, iosize, resid;
2966 	bool bogus;
2967 
2968 	obj = bp->b_bufobj->bo_object;
2969 	KASSERT(blockcount_read(&obj->paging_in_progress) >= bp->b_npages,
2970 	    ("vfs_vmio_iodone: paging in progress(%d) < b_npages(%d)",
2971 	    blockcount_read(&obj->paging_in_progress), bp->b_npages));
2972 
2973 	vp = bp->b_vp;
2974 	VNPASS(vp->v_holdcnt > 0, vp);
2975 	VNPASS(vp->v_object != NULL, vp);
2976 
2977 	foff = bp->b_offset;
2978 	KASSERT(bp->b_offset != NOOFFSET,
2979 	    ("vfs_vmio_iodone: bp %p has no buffer offset", bp));
2980 
2981 	bogus = false;
2982 	iosize = bp->b_bcount - bp->b_resid;
2983 	for (i = 0; i < bp->b_npages; i++) {
2984 		resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
2985 		if (resid > iosize)
2986 			resid = iosize;
2987 
2988 		/*
2989 		 * cleanup bogus pages, restoring the originals
2990 		 */
2991 		m = bp->b_pages[i];
2992 		if (m == bogus_page) {
2993 			bogus = true;
2994 			m = vm_page_relookup(obj, OFF_TO_IDX(foff));
2995 			if (m == NULL)
2996 				panic("biodone: page disappeared!");
2997 			bp->b_pages[i] = m;
2998 		} else if ((bp->b_iocmd == BIO_READ) && resid > 0) {
2999 			/*
3000 			 * In the write case, the valid and clean bits are
3001 			 * already changed correctly ( see bdwrite() ), so we
3002 			 * only need to do this here in the read case.
3003 			 */
3004 			KASSERT((m->dirty & vm_page_bits(foff & PAGE_MASK,
3005 			    resid)) == 0, ("vfs_vmio_iodone: page %p "
3006 			    "has unexpected dirty bits", m));
3007 			vfs_page_set_valid(bp, foff, m);
3008 		}
3009 		KASSERT(OFF_TO_IDX(foff) == m->pindex,
3010 		    ("vfs_vmio_iodone: foff(%jd)/pindex(%ju) mismatch",
3011 		    (intmax_t)foff, (uintmax_t)m->pindex));
3012 
3013 		vm_page_sunbusy(m);
3014 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3015 		iosize -= resid;
3016 	}
3017 	vm_object_pip_wakeupn(obj, bp->b_npages);
3018 	if (bogus && buf_mapped(bp)) {
3019 		BUF_CHECK_MAPPED(bp);
3020 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3021 		    bp->b_pages, bp->b_npages);
3022 	}
3023 }
3024 
3025 /*
3026  * Perform page invalidation when a buffer is released.  The fully invalid
3027  * pages will be reclaimed later in vfs_vmio_truncate().
3028  */
3029 static void
vfs_vmio_invalidate(struct buf * bp)3030 vfs_vmio_invalidate(struct buf *bp)
3031 {
3032 	vm_object_t obj;
3033 	vm_page_t m;
3034 	int flags, i, resid, poffset, presid;
3035 
3036 	if (buf_mapped(bp)) {
3037 		BUF_CHECK_MAPPED(bp);
3038 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
3039 	} else
3040 		BUF_CHECK_UNMAPPED(bp);
3041 	/*
3042 	 * Get the base offset and length of the buffer.  Note that
3043 	 * in the VMIO case if the buffer block size is not
3044 	 * page-aligned then b_data pointer may not be page-aligned.
3045 	 * But our b_pages[] array *IS* page aligned.
3046 	 *
3047 	 * block sizes less then DEV_BSIZE (usually 512) are not
3048 	 * supported due to the page granularity bits (m->valid,
3049 	 * m->dirty, etc...).
3050 	 *
3051 	 * See man buf(9) for more information
3052 	 */
3053 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3054 	obj = bp->b_bufobj->bo_object;
3055 	resid = bp->b_bufsize;
3056 	poffset = bp->b_offset & PAGE_MASK;
3057 	VM_OBJECT_WLOCK(obj);
3058 	for (i = 0; i < bp->b_npages; i++) {
3059 		m = bp->b_pages[i];
3060 		if (m == bogus_page)
3061 			panic("vfs_vmio_invalidate: Unexpected bogus page.");
3062 		bp->b_pages[i] = NULL;
3063 
3064 		presid = resid > (PAGE_SIZE - poffset) ?
3065 		    (PAGE_SIZE - poffset) : resid;
3066 		KASSERT(presid >= 0, ("brelse: extra page"));
3067 		vm_page_busy_acquire(m, VM_ALLOC_SBUSY);
3068 		if (pmap_page_wired_mappings(m) == 0)
3069 			vm_page_set_invalid(m, poffset, presid);
3070 		vm_page_sunbusy(m);
3071 		vm_page_release_locked(m, flags);
3072 		resid -= presid;
3073 		poffset = 0;
3074 	}
3075 	VM_OBJECT_WUNLOCK(obj);
3076 	bp->b_npages = 0;
3077 }
3078 
3079 /*
3080  * Page-granular truncation of an existing VMIO buffer.
3081  */
3082 static void
vfs_vmio_truncate(struct buf * bp,int desiredpages)3083 vfs_vmio_truncate(struct buf *bp, int desiredpages)
3084 {
3085 	vm_object_t obj;
3086 	vm_page_t m;
3087 	int flags, i;
3088 
3089 	if (bp->b_npages == desiredpages)
3090 		return;
3091 
3092 	if (buf_mapped(bp)) {
3093 		BUF_CHECK_MAPPED(bp);
3094 		pmap_qremove((vm_offset_t)trunc_page((vm_offset_t)bp->b_data) +
3095 		    (desiredpages << PAGE_SHIFT), bp->b_npages - desiredpages);
3096 	} else
3097 		BUF_CHECK_UNMAPPED(bp);
3098 
3099 	/*
3100 	 * The object lock is needed only if we will attempt to free pages.
3101 	 */
3102 	flags = (bp->b_flags & B_NOREUSE) != 0 ? VPR_NOREUSE : 0;
3103 	if ((bp->b_flags & B_DIRECT) != 0) {
3104 		flags |= VPR_TRYFREE;
3105 		obj = bp->b_bufobj->bo_object;
3106 		VM_OBJECT_WLOCK(obj);
3107 	} else {
3108 		obj = NULL;
3109 	}
3110 	for (i = desiredpages; i < bp->b_npages; i++) {
3111 		m = bp->b_pages[i];
3112 		KASSERT(m != bogus_page, ("allocbuf: bogus page found"));
3113 		bp->b_pages[i] = NULL;
3114 		if (obj != NULL)
3115 			vm_page_release_locked(m, flags);
3116 		else
3117 			vm_page_release(m, flags);
3118 	}
3119 	if (obj != NULL)
3120 		VM_OBJECT_WUNLOCK(obj);
3121 	bp->b_npages = desiredpages;
3122 }
3123 
3124 /*
3125  * Byte granular extension of VMIO buffers.
3126  */
3127 static void
vfs_vmio_extend(struct buf * bp,int desiredpages,int size)3128 vfs_vmio_extend(struct buf *bp, int desiredpages, int size)
3129 {
3130 	/*
3131 	 * We are growing the buffer, possibly in a
3132 	 * byte-granular fashion.
3133 	 */
3134 	vm_object_t obj;
3135 	vm_offset_t toff;
3136 	vm_offset_t tinc;
3137 	vm_page_t m;
3138 
3139 	/*
3140 	 * Step 1, bring in the VM pages from the object, allocating
3141 	 * them if necessary.  We must clear B_CACHE if these pages
3142 	 * are not valid for the range covered by the buffer.
3143 	 */
3144 	obj = bp->b_bufobj->bo_object;
3145 	if (bp->b_npages < desiredpages) {
3146 		KASSERT(desiredpages <= atop(maxbcachebuf),
3147 		    ("vfs_vmio_extend past maxbcachebuf %p %d %u",
3148 		    bp, desiredpages, maxbcachebuf));
3149 
3150 		/*
3151 		 * We must allocate system pages since blocking
3152 		 * here could interfere with paging I/O, no
3153 		 * matter which process we are.
3154 		 *
3155 		 * Only exclusive busy can be tested here.
3156 		 * Blocking on shared busy might lead to
3157 		 * deadlocks once allocbuf() is called after
3158 		 * pages are vfs_busy_pages().
3159 		 */
3160 		(void)vm_page_grab_pages_unlocked(obj,
3161 		    OFF_TO_IDX(bp->b_offset) + bp->b_npages,
3162 		    VM_ALLOC_SYSTEM | VM_ALLOC_IGN_SBUSY |
3163 		    VM_ALLOC_NOBUSY | VM_ALLOC_WIRED,
3164 		    &bp->b_pages[bp->b_npages], desiredpages - bp->b_npages);
3165 		bp->b_npages = desiredpages;
3166 	}
3167 
3168 	/*
3169 	 * Step 2.  We've loaded the pages into the buffer,
3170 	 * we have to figure out if we can still have B_CACHE
3171 	 * set.  Note that B_CACHE is set according to the
3172 	 * byte-granular range ( bcount and size ), not the
3173 	 * aligned range ( newbsize ).
3174 	 *
3175 	 * The VM test is against m->valid, which is DEV_BSIZE
3176 	 * aligned.  Needless to say, the validity of the data
3177 	 * needs to also be DEV_BSIZE aligned.  Note that this
3178 	 * fails with NFS if the server or some other client
3179 	 * extends the file's EOF.  If our buffer is resized,
3180 	 * B_CACHE may remain set! XXX
3181 	 */
3182 	toff = bp->b_bcount;
3183 	tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3184 	while ((bp->b_flags & B_CACHE) && toff < size) {
3185 		vm_pindex_t pi;
3186 
3187 		if (tinc > (size - toff))
3188 			tinc = size - toff;
3189 		pi = ((bp->b_offset & PAGE_MASK) + toff) >> PAGE_SHIFT;
3190 		m = bp->b_pages[pi];
3191 		vfs_buf_test_cache(bp, bp->b_offset, toff, tinc, m);
3192 		toff += tinc;
3193 		tinc = PAGE_SIZE;
3194 	}
3195 
3196 	/*
3197 	 * Step 3, fixup the KVA pmap.
3198 	 */
3199 	if (buf_mapped(bp))
3200 		bpmap_qenter(bp);
3201 	else
3202 		BUF_CHECK_UNMAPPED(bp);
3203 }
3204 
3205 /*
3206  * Check to see if a block at a particular lbn is available for a clustered
3207  * write.
3208  */
3209 static int
vfs_bio_clcheck(struct vnode * vp,int size,daddr_t lblkno,daddr_t blkno)3210 vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
3211 {
3212 	struct buf *bpa;
3213 	int match;
3214 
3215 	match = 0;
3216 
3217 	/* If the buf isn't in core skip it */
3218 	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
3219 		return (0);
3220 
3221 	/* If the buf is busy we don't want to wait for it */
3222 	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
3223 		return (0);
3224 
3225 	/* Only cluster with valid clusterable delayed write buffers */
3226 	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
3227 	    (B_DELWRI | B_CLUSTEROK))
3228 		goto done;
3229 
3230 	if (bpa->b_bufsize != size)
3231 		goto done;
3232 
3233 	/*
3234 	 * Check to see if it is in the expected place on disk and that the
3235 	 * block has been mapped.
3236 	 */
3237 	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
3238 		match = 1;
3239 done:
3240 	BUF_UNLOCK(bpa);
3241 	return (match);
3242 }
3243 
3244 /*
3245  *	vfs_bio_awrite:
3246  *
3247  *	Implement clustered async writes for clearing out B_DELWRI buffers.
3248  *	This is much better then the old way of writing only one buffer at
3249  *	a time.  Note that we may not be presented with the buffers in the
3250  *	correct order, so we search for the cluster in both directions.
3251  */
3252 int
vfs_bio_awrite(struct buf * bp)3253 vfs_bio_awrite(struct buf *bp)
3254 {
3255 	struct bufobj *bo;
3256 	int i;
3257 	int j;
3258 	daddr_t lblkno = bp->b_lblkno;
3259 	struct vnode *vp = bp->b_vp;
3260 	int ncl;
3261 	int nwritten;
3262 	int size;
3263 	int maxcl;
3264 	int gbflags;
3265 
3266 	bo = &vp->v_bufobj;
3267 	gbflags = (bp->b_data == unmapped_buf) ? GB_UNMAPPED : 0;
3268 	/*
3269 	 * right now we support clustered writing only to regular files.  If
3270 	 * we find a clusterable block we could be in the middle of a cluster
3271 	 * rather then at the beginning.
3272 	 */
3273 	if ((vp->v_type == VREG) &&
3274 	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
3275 	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
3276 		size = vp->v_mount->mnt_stat.f_iosize;
3277 		maxcl = maxphys / size;
3278 
3279 		BO_RLOCK(bo);
3280 		for (i = 1; i < maxcl; i++)
3281 			if (vfs_bio_clcheck(vp, size, lblkno + i,
3282 			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
3283 				break;
3284 
3285 		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
3286 			if (vfs_bio_clcheck(vp, size, lblkno - j,
3287 			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
3288 				break;
3289 		BO_RUNLOCK(bo);
3290 		--j;
3291 		ncl = i + j;
3292 		/*
3293 		 * this is a possible cluster write
3294 		 */
3295 		if (ncl != 1) {
3296 			BUF_UNLOCK(bp);
3297 			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
3298 			    gbflags);
3299 			return (nwritten);
3300 		}
3301 	}
3302 	bremfree(bp);
3303 	bp->b_flags |= B_ASYNC;
3304 	/*
3305 	 * default (old) behavior, writing out only one block
3306 	 *
3307 	 * XXX returns b_bufsize instead of b_bcount for nwritten?
3308 	 */
3309 	nwritten = bp->b_bufsize;
3310 	(void) bwrite(bp);
3311 
3312 	return (nwritten);
3313 }
3314 
3315 /*
3316  *	getnewbuf_kva:
3317  *
3318  *	Allocate KVA for an empty buf header according to gbflags.
3319  */
3320 static int
getnewbuf_kva(struct buf * bp,int gbflags,int maxsize)3321 getnewbuf_kva(struct buf *bp, int gbflags, int maxsize)
3322 {
3323 
3324 	if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_UNMAPPED) {
3325 		/*
3326 		 * In order to keep fragmentation sane we only allocate kva
3327 		 * in BKVASIZE chunks.  XXX with vmem we can do page size.
3328 		 */
3329 		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
3330 
3331 		if (maxsize != bp->b_kvasize &&
3332 		    bufkva_alloc(bp, maxsize, gbflags))
3333 			return (ENOSPC);
3334 	}
3335 	return (0);
3336 }
3337 
3338 /*
3339  *	getnewbuf:
3340  *
3341  *	Find and initialize a new buffer header, freeing up existing buffers
3342  *	in the bufqueues as necessary.  The new buffer is returned locked.
3343  *
3344  *	We block if:
3345  *		We have insufficient buffer headers
3346  *		We have insufficient buffer space
3347  *		buffer_arena is too fragmented ( space reservation fails )
3348  *		If we have to flush dirty buffers ( but we try to avoid this )
3349  *
3350  *	The caller is responsible for releasing the reserved bufspace after
3351  *	allocbuf() is called.
3352  */
3353 static struct buf *
getnewbuf(struct vnode * vp,int slpflag,int slptimeo,int maxsize,int gbflags)3354 getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int maxsize, int gbflags)
3355 {
3356 	struct bufdomain *bd;
3357 	struct buf *bp;
3358 	bool metadata, reserved;
3359 
3360 	bp = NULL;
3361 	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3362 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3363 	if (!unmapped_buf_allowed)
3364 		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3365 
3366 	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
3367 	    vp->v_type == VCHR)
3368 		metadata = true;
3369 	else
3370 		metadata = false;
3371 	if (vp == NULL)
3372 		bd = &bdomain[0];
3373 	else
3374 		bd = &bdomain[vp->v_bufobj.bo_domain];
3375 
3376 	counter_u64_add(getnewbufcalls, 1);
3377 	reserved = false;
3378 	do {
3379 		if (reserved == false &&
3380 		    bufspace_reserve(bd, maxsize, metadata) != 0) {
3381 			counter_u64_add(getnewbufrestarts, 1);
3382 			continue;
3383 		}
3384 		reserved = true;
3385 		if ((bp = buf_alloc(bd)) == NULL) {
3386 			counter_u64_add(getnewbufrestarts, 1);
3387 			continue;
3388 		}
3389 		if (getnewbuf_kva(bp, gbflags, maxsize) == 0)
3390 			return (bp);
3391 		break;
3392 	} while (buf_recycle(bd, false) == 0);
3393 
3394 	if (reserved)
3395 		bufspace_release(bd, maxsize);
3396 	if (bp != NULL) {
3397 		bp->b_flags |= B_INVAL;
3398 		brelse(bp);
3399 	}
3400 	bufspace_wait(bd, vp, gbflags, slpflag, slptimeo);
3401 
3402 	return (NULL);
3403 }
3404 
3405 /*
3406  *	buf_daemon:
3407  *
3408  *	buffer flushing daemon.  Buffers are normally flushed by the
3409  *	update daemon but if it cannot keep up this process starts to
3410  *	take the load in an attempt to prevent getnewbuf() from blocking.
3411  */
3412 static struct kproc_desc buf_kp = {
3413 	"bufdaemon",
3414 	buf_daemon,
3415 	&bufdaemonproc
3416 };
3417 SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
3418 
3419 static int
buf_flush(struct vnode * vp,struct bufdomain * bd,int target)3420 buf_flush(struct vnode *vp, struct bufdomain *bd, int target)
3421 {
3422 	int flushed;
3423 
3424 	flushed = flushbufqueues(vp, bd, target, 0);
3425 	if (flushed == 0) {
3426 		/*
3427 		 * Could not find any buffers without rollback
3428 		 * dependencies, so just write the first one
3429 		 * in the hopes of eventually making progress.
3430 		 */
3431 		if (vp != NULL && target > 2)
3432 			target /= 2;
3433 		flushbufqueues(vp, bd, target, 1);
3434 	}
3435 	return (flushed);
3436 }
3437 
3438 static void
buf_daemon_shutdown(void * arg __unused,int howto __unused)3439 buf_daemon_shutdown(void *arg __unused, int howto __unused)
3440 {
3441 	int error;
3442 
3443 	if (KERNEL_PANICKED())
3444 		return;
3445 
3446 	mtx_lock(&bdlock);
3447 	bd_shutdown = true;
3448 	wakeup(&bd_request);
3449 	error = msleep(&bd_shutdown, &bdlock, 0, "buf_daemon_shutdown",
3450 	    60 * hz);
3451 	mtx_unlock(&bdlock);
3452 	if (error != 0)
3453 		printf("bufdaemon wait error: %d\n", error);
3454 }
3455 
3456 static void
buf_daemon(void)3457 buf_daemon(void)
3458 {
3459 	struct bufdomain *bd;
3460 	int speedupreq;
3461 	int lodirty;
3462 	int i;
3463 
3464 	/*
3465 	 * This process needs to be suspended prior to shutdown sync.
3466 	 */
3467 	EVENTHANDLER_REGISTER(shutdown_pre_sync, buf_daemon_shutdown, NULL,
3468 	    SHUTDOWN_PRI_LAST + 100);
3469 
3470 	/*
3471 	 * Start the buf clean daemons as children threads.
3472 	 */
3473 	for (i = 0 ; i < buf_domains; i++) {
3474 		int error;
3475 
3476 		error = kthread_add((void (*)(void *))bufspace_daemon,
3477 		    &bdomain[i], curproc, NULL, 0, 0, "bufspacedaemon-%d", i);
3478 		if (error)
3479 			panic("error %d spawning bufspace daemon", error);
3480 	}
3481 
3482 	/*
3483 	 * This process is allowed to take the buffer cache to the limit
3484 	 */
3485 	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
3486 	mtx_lock(&bdlock);
3487 	while (!bd_shutdown) {
3488 		bd_request = 0;
3489 		mtx_unlock(&bdlock);
3490 
3491 		/*
3492 		 * Save speedupreq for this pass and reset to capture new
3493 		 * requests.
3494 		 */
3495 		speedupreq = bd_speedupreq;
3496 		bd_speedupreq = 0;
3497 
3498 		/*
3499 		 * Flush each domain sequentially according to its level and
3500 		 * the speedup request.
3501 		 */
3502 		for (i = 0; i < buf_domains; i++) {
3503 			bd = &bdomain[i];
3504 			if (speedupreq)
3505 				lodirty = bd->bd_numdirtybuffers / 2;
3506 			else
3507 				lodirty = bd->bd_lodirtybuffers;
3508 			while (bd->bd_numdirtybuffers > lodirty) {
3509 				if (buf_flush(NULL, bd,
3510 				    bd->bd_numdirtybuffers - lodirty) == 0)
3511 					break;
3512 				kern_yield(PRI_USER);
3513 			}
3514 		}
3515 
3516 		/*
3517 		 * Only clear bd_request if we have reached our low water
3518 		 * mark.  The buf_daemon normally waits 1 second and
3519 		 * then incrementally flushes any dirty buffers that have
3520 		 * built up, within reason.
3521 		 *
3522 		 * If we were unable to hit our low water mark and couldn't
3523 		 * find any flushable buffers, we sleep for a short period
3524 		 * to avoid endless loops on unlockable buffers.
3525 		 */
3526 		mtx_lock(&bdlock);
3527 		if (bd_shutdown)
3528 			break;
3529 		if (BIT_EMPTY(BUF_DOMAINS, &bdlodirty)) {
3530 			/*
3531 			 * We reached our low water mark, reset the
3532 			 * request and sleep until we are needed again.
3533 			 * The sleep is just so the suspend code works.
3534 			 */
3535 			bd_request = 0;
3536 			/*
3537 			 * Do an extra wakeup in case dirty threshold
3538 			 * changed via sysctl and the explicit transition
3539 			 * out of shortfall was missed.
3540 			 */
3541 			bdirtywakeup();
3542 			if (runningbufspace <= lorunningspace)
3543 				runningwakeup();
3544 			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
3545 		} else {
3546 			/*
3547 			 * We couldn't find any flushable dirty buffers but
3548 			 * still have too many dirty buffers, we
3549 			 * have to sleep and try again.  (rare)
3550 			 */
3551 			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
3552 		}
3553 	}
3554 	wakeup(&bd_shutdown);
3555 	mtx_unlock(&bdlock);
3556 	kthread_exit();
3557 }
3558 
3559 /*
3560  *	flushbufqueues:
3561  *
3562  *	Try to flush a buffer in the dirty queue.  We must be careful to
3563  *	free up B_INVAL buffers instead of write them, which NFS is
3564  *	particularly sensitive to.
3565  */
3566 static int flushwithdeps = 0;
3567 SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW | CTLFLAG_STATS,
3568     &flushwithdeps, 0,
3569     "Number of buffers flushed with dependencies that require rollbacks");
3570 
3571 static int
flushbufqueues(struct vnode * lvp,struct bufdomain * bd,int target,int flushdeps)3572 flushbufqueues(struct vnode *lvp, struct bufdomain *bd, int target,
3573     int flushdeps)
3574 {
3575 	struct bufqueue *bq;
3576 	struct buf *sentinel;
3577 	struct vnode *vp;
3578 	struct mount *mp;
3579 	struct buf *bp;
3580 	int hasdeps;
3581 	int flushed;
3582 	int error;
3583 	bool unlock;
3584 
3585 	flushed = 0;
3586 	bq = &bd->bd_dirtyq;
3587 	bp = NULL;
3588 	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
3589 	sentinel->b_qindex = QUEUE_SENTINEL;
3590 	BQ_LOCK(bq);
3591 	TAILQ_INSERT_HEAD(&bq->bq_queue, sentinel, b_freelist);
3592 	BQ_UNLOCK(bq);
3593 	while (flushed != target) {
3594 		maybe_yield();
3595 		BQ_LOCK(bq);
3596 		bp = TAILQ_NEXT(sentinel, b_freelist);
3597 		if (bp != NULL) {
3598 			TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3599 			TAILQ_INSERT_AFTER(&bq->bq_queue, bp, sentinel,
3600 			    b_freelist);
3601 		} else {
3602 			BQ_UNLOCK(bq);
3603 			break;
3604 		}
3605 		/*
3606 		 * Skip sentinels inserted by other invocations of the
3607 		 * flushbufqueues(), taking care to not reorder them.
3608 		 *
3609 		 * Only flush the buffers that belong to the
3610 		 * vnode locked by the curthread.
3611 		 */
3612 		if (bp->b_qindex == QUEUE_SENTINEL || (lvp != NULL &&
3613 		    bp->b_vp != lvp)) {
3614 			BQ_UNLOCK(bq);
3615 			continue;
3616 		}
3617 		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
3618 		BQ_UNLOCK(bq);
3619 		if (error != 0)
3620 			continue;
3621 
3622 		/*
3623 		 * BKGRDINPROG can only be set with the buf and bufobj
3624 		 * locks both held.  We tolerate a race to clear it here.
3625 		 */
3626 		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
3627 		    (bp->b_flags & B_DELWRI) == 0) {
3628 			BUF_UNLOCK(bp);
3629 			continue;
3630 		}
3631 		if (bp->b_flags & B_INVAL) {
3632 			bremfreef(bp);
3633 			brelse(bp);
3634 			flushed++;
3635 			continue;
3636 		}
3637 
3638 		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
3639 			if (flushdeps == 0) {
3640 				BUF_UNLOCK(bp);
3641 				continue;
3642 			}
3643 			hasdeps = 1;
3644 		} else
3645 			hasdeps = 0;
3646 		/*
3647 		 * We must hold the lock on a vnode before writing
3648 		 * one of its buffers. Otherwise we may confuse, or
3649 		 * in the case of a snapshot vnode, deadlock the
3650 		 * system.
3651 		 *
3652 		 * The lock order here is the reverse of the normal
3653 		 * of vnode followed by buf lock.  This is ok because
3654 		 * the NOWAIT will prevent deadlock.
3655 		 */
3656 		vp = bp->b_vp;
3657 		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
3658 			BUF_UNLOCK(bp);
3659 			continue;
3660 		}
3661 		if (lvp == NULL) {
3662 			unlock = true;
3663 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
3664 		} else {
3665 			ASSERT_VOP_LOCKED(vp, "getbuf");
3666 			unlock = false;
3667 			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
3668 			    vn_lock(vp, LK_TRYUPGRADE);
3669 		}
3670 		if (error == 0) {
3671 			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
3672 			    bp, bp->b_vp, bp->b_flags);
3673 			if (curproc == bufdaemonproc) {
3674 				vfs_bio_awrite(bp);
3675 			} else {
3676 				bremfree(bp);
3677 				bwrite(bp);
3678 				counter_u64_add(notbufdflushes, 1);
3679 			}
3680 			vn_finished_write(mp);
3681 			if (unlock)
3682 				VOP_UNLOCK(vp);
3683 			flushwithdeps += hasdeps;
3684 			flushed++;
3685 
3686 			/*
3687 			 * Sleeping on runningbufspace while holding
3688 			 * vnode lock leads to deadlock.
3689 			 */
3690 			if (curproc == bufdaemonproc &&
3691 			    runningbufspace > hirunningspace)
3692 				waitrunningbufspace();
3693 			continue;
3694 		}
3695 		vn_finished_write(mp);
3696 		BUF_UNLOCK(bp);
3697 	}
3698 	BQ_LOCK(bq);
3699 	TAILQ_REMOVE(&bq->bq_queue, sentinel, b_freelist);
3700 	BQ_UNLOCK(bq);
3701 	free(sentinel, M_TEMP);
3702 	return (flushed);
3703 }
3704 
3705 /*
3706  * Check to see if a block is currently memory resident.
3707  */
3708 struct buf *
incore(struct bufobj * bo,daddr_t blkno)3709 incore(struct bufobj *bo, daddr_t blkno)
3710 {
3711 	return (gbincore_unlocked(bo, blkno));
3712 }
3713 
3714 /*
3715  * Returns true if no I/O is needed to access the
3716  * associated VM object.  This is like incore except
3717  * it also hunts around in the VM system for the data.
3718  */
3719 bool
inmem(struct vnode * vp,daddr_t blkno)3720 inmem(struct vnode * vp, daddr_t blkno)
3721 {
3722 	vm_object_t obj;
3723 	vm_offset_t toff, tinc, size;
3724 	vm_page_t m, n;
3725 	vm_ooffset_t off;
3726 	int valid;
3727 
3728 	ASSERT_VOP_LOCKED(vp, "inmem");
3729 
3730 	if (incore(&vp->v_bufobj, blkno))
3731 		return (true);
3732 	if (vp->v_mount == NULL)
3733 		return (false);
3734 	obj = vp->v_object;
3735 	if (obj == NULL)
3736 		return (false);
3737 
3738 	size = PAGE_SIZE;
3739 	if (size > vp->v_mount->mnt_stat.f_iosize)
3740 		size = vp->v_mount->mnt_stat.f_iosize;
3741 	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
3742 
3743 	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
3744 		m = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3745 recheck:
3746 		if (m == NULL)
3747 			return (false);
3748 
3749 		tinc = size;
3750 		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
3751 			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
3752 		/*
3753 		 * Consider page validity only if page mapping didn't change
3754 		 * during the check.
3755 		 */
3756 		valid = vm_page_is_valid(m,
3757 		    (vm_offset_t)((toff + off) & PAGE_MASK), tinc);
3758 		n = vm_page_lookup_unlocked(obj, OFF_TO_IDX(off + toff));
3759 		if (m != n) {
3760 			m = n;
3761 			goto recheck;
3762 		}
3763 		if (!valid)
3764 			return (false);
3765 	}
3766 	return (true);
3767 }
3768 
3769 /*
3770  * Set the dirty range for a buffer based on the status of the dirty
3771  * bits in the pages comprising the buffer.  The range is limited
3772  * to the size of the buffer.
3773  *
3774  * Tell the VM system that the pages associated with this buffer
3775  * are clean.  This is used for delayed writes where the data is
3776  * going to go to disk eventually without additional VM intevention.
3777  *
3778  * Note that while we only really need to clean through to b_bcount, we
3779  * just go ahead and clean through to b_bufsize.
3780  */
3781 static void
vfs_clean_pages_dirty_buf(struct buf * bp)3782 vfs_clean_pages_dirty_buf(struct buf *bp)
3783 {
3784 	vm_ooffset_t foff, noff, eoff;
3785 	vm_page_t m;
3786 	int i;
3787 
3788 	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
3789 		return;
3790 
3791 	foff = bp->b_offset;
3792 	KASSERT(bp->b_offset != NOOFFSET,
3793 	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
3794 
3795 	vfs_busy_pages_acquire(bp);
3796 	vfs_setdirty_range(bp);
3797 	for (i = 0; i < bp->b_npages; i++) {
3798 		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3799 		eoff = noff;
3800 		if (eoff > bp->b_offset + bp->b_bufsize)
3801 			eoff = bp->b_offset + bp->b_bufsize;
3802 		m = bp->b_pages[i];
3803 		vfs_page_set_validclean(bp, foff, m);
3804 		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3805 		foff = noff;
3806 	}
3807 	vfs_busy_pages_release(bp);
3808 }
3809 
3810 static void
vfs_setdirty_range(struct buf * bp)3811 vfs_setdirty_range(struct buf *bp)
3812 {
3813 	vm_offset_t boffset;
3814 	vm_offset_t eoffset;
3815 	int i;
3816 
3817 	/*
3818 	 * test the pages to see if they have been modified directly
3819 	 * by users through the VM system.
3820 	 */
3821 	for (i = 0; i < bp->b_npages; i++)
3822 		vm_page_test_dirty(bp->b_pages[i]);
3823 
3824 	/*
3825 	 * Calculate the encompassing dirty range, boffset and eoffset,
3826 	 * (eoffset - boffset) bytes.
3827 	 */
3828 
3829 	for (i = 0; i < bp->b_npages; i++) {
3830 		if (bp->b_pages[i]->dirty)
3831 			break;
3832 	}
3833 	boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3834 
3835 	for (i = bp->b_npages - 1; i >= 0; --i) {
3836 		if (bp->b_pages[i]->dirty) {
3837 			break;
3838 		}
3839 	}
3840 	eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
3841 
3842 	/*
3843 	 * Fit it to the buffer.
3844 	 */
3845 
3846 	if (eoffset > bp->b_bcount)
3847 		eoffset = bp->b_bcount;
3848 
3849 	/*
3850 	 * If we have a good dirty range, merge with the existing
3851 	 * dirty range.
3852 	 */
3853 
3854 	if (boffset < eoffset) {
3855 		if (bp->b_dirtyoff > boffset)
3856 			bp->b_dirtyoff = boffset;
3857 		if (bp->b_dirtyend < eoffset)
3858 			bp->b_dirtyend = eoffset;
3859 	}
3860 }
3861 
3862 /*
3863  * Allocate the KVA mapping for an existing buffer.
3864  * If an unmapped buffer is provided but a mapped buffer is requested, take
3865  * also care to properly setup mappings between pages and KVA.
3866  */
3867 static void
bp_unmapped_get_kva(struct buf * bp,daddr_t blkno,int size,int gbflags)3868 bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
3869 {
3870 	int bsize, maxsize, need_mapping, need_kva;
3871 	off_t offset;
3872 
3873 	need_mapping = bp->b_data == unmapped_buf &&
3874 	    (gbflags & GB_UNMAPPED) == 0;
3875 	need_kva = bp->b_kvabase == unmapped_buf &&
3876 	    bp->b_data == unmapped_buf &&
3877 	    (gbflags & GB_KVAALLOC) != 0;
3878 	if (!need_mapping && !need_kva)
3879 		return;
3880 
3881 	BUF_CHECK_UNMAPPED(bp);
3882 
3883 	if (need_mapping && bp->b_kvabase != unmapped_buf) {
3884 		/*
3885 		 * Buffer is not mapped, but the KVA was already
3886 		 * reserved at the time of the instantiation.  Use the
3887 		 * allocated space.
3888 		 */
3889 		goto has_addr;
3890 	}
3891 
3892 	/*
3893 	 * Calculate the amount of the address space we would reserve
3894 	 * if the buffer was mapped.
3895 	 */
3896 	bsize = vn_isdisk(bp->b_vp) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
3897 	KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
3898 	offset = blkno * bsize;
3899 	maxsize = size + (offset & PAGE_MASK);
3900 	maxsize = imax(maxsize, bsize);
3901 
3902 	while (bufkva_alloc(bp, maxsize, gbflags) != 0) {
3903 		if ((gbflags & GB_NOWAIT_BD) != 0) {
3904 			/*
3905 			 * XXXKIB: defragmentation cannot
3906 			 * succeed, not sure what else to do.
3907 			 */
3908 			panic("GB_NOWAIT_BD and GB_UNMAPPED %p", bp);
3909 		}
3910 		counter_u64_add(mappingrestarts, 1);
3911 		bufspace_wait(bufdomain(bp), bp->b_vp, gbflags, 0, 0);
3912 	}
3913 has_addr:
3914 	if (need_mapping) {
3915 		/* b_offset is handled by bpmap_qenter. */
3916 		bp->b_data = bp->b_kvabase;
3917 		BUF_CHECK_MAPPED(bp);
3918 		bpmap_qenter(bp);
3919 	}
3920 }
3921 
3922 struct buf *
getblk(struct vnode * vp,daddr_t blkno,int size,int slpflag,int slptimeo,int flags)3923 getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3924     int flags)
3925 {
3926 	struct buf *bp;
3927 	int error;
3928 
3929 	error = getblkx(vp, blkno, blkno, size, slpflag, slptimeo, flags, &bp);
3930 	if (error != 0)
3931 		return (NULL);
3932 	return (bp);
3933 }
3934 
3935 /*
3936  *	getblkx:
3937  *
3938  *	Get a block given a specified block and offset into a file/device.
3939  *	The buffers B_DONE bit will be cleared on return, making it almost
3940  * 	ready for an I/O initiation.  B_INVAL may or may not be set on
3941  *	return.  The caller should clear B_INVAL prior to initiating a
3942  *	READ.
3943  *
3944  *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
3945  *	an existing buffer.
3946  *
3947  *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
3948  *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
3949  *	and then cleared based on the backing VM.  If the previous buffer is
3950  *	non-0-sized but invalid, B_CACHE will be cleared.
3951  *
3952  *	If getblk() must create a new buffer, the new buffer is returned with
3953  *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
3954  *	case it is returned with B_INVAL clear and B_CACHE set based on the
3955  *	backing VM.
3956  *
3957  *	getblk() also forces a bwrite() for any B_DELWRI buffer whose
3958  *	B_CACHE bit is clear.
3959  *
3960  *	What this means, basically, is that the caller should use B_CACHE to
3961  *	determine whether the buffer is fully valid or not and should clear
3962  *	B_INVAL prior to issuing a read.  If the caller intends to validate
3963  *	the buffer by loading its data area with something, the caller needs
3964  *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3965  *	the caller should set B_CACHE ( as an optimization ), else the caller
3966  *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3967  *	a write attempt or if it was a successful read.  If the caller
3968  *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3969  *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3970  *
3971  *	The blkno parameter is the logical block being requested. Normally
3972  *	the mapping of logical block number to disk block address is done
3973  *	by calling VOP_BMAP(). However, if the mapping is already known, the
3974  *	disk block address can be passed using the dblkno parameter. If the
3975  *	disk block address is not known, then the same value should be passed
3976  *	for blkno and dblkno.
3977  */
3978 int
getblkx(struct vnode * vp,daddr_t blkno,daddr_t dblkno,int size,int slpflag,int slptimeo,int flags,struct buf ** bpp)3979 getblkx(struct vnode *vp, daddr_t blkno, daddr_t dblkno, int size, int slpflag,
3980     int slptimeo, int flags, struct buf **bpp)
3981 {
3982 	struct buf *bp;
3983 	struct bufobj *bo;
3984 	daddr_t d_blkno;
3985 	int bsize, error, maxsize, vmio;
3986 	off_t offset;
3987 
3988 	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3989 	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3990 	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3991 	if (vp->v_type != VCHR)
3992 		ASSERT_VOP_LOCKED(vp, "getblk");
3993 	if (size > maxbcachebuf) {
3994 		printf("getblkx: size(%d) > maxbcachebuf(%d)\n", size,
3995 		    maxbcachebuf);
3996 		return (EIO);
3997 	}
3998 	if (!unmapped_buf_allowed)
3999 		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4000 
4001 	bo = &vp->v_bufobj;
4002 	d_blkno = dblkno;
4003 
4004 	/* Attempt lockless lookup first. */
4005 	bp = gbincore_unlocked(bo, blkno);
4006 	if (bp == NULL) {
4007 		/*
4008 		 * With GB_NOCREAT we must be sure about not finding the buffer
4009 		 * as it may have been reassigned during unlocked lookup.
4010 		 * If BO_NONSTERILE is still unset, no reassign has occurred.
4011 		 */
4012 		if ((flags & GB_NOCREAT) != 0) {
4013 			/* Ensure bo_flag is loaded after gbincore_unlocked. */
4014 			atomic_thread_fence_acq();
4015 			if ((bo->bo_flag & BO_NONSTERILE) == 0)
4016 				return (EEXIST);
4017 			goto loop;
4018 		}
4019 		goto newbuf_unlocked;
4020 	}
4021 
4022 	error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL, "getblku", 0,
4023 	    0);
4024 	if (error != 0) {
4025 		KASSERT(error == EBUSY,
4026 		    ("getblk: unexpected error %d from buf try-lock", error));
4027 		/*
4028 		 * We failed a buf try-lock.
4029 		 *
4030 		 * With GB_LOCK_NOWAIT, just return, rather than taking the
4031 		 * bufobj interlock and trying again, since we would probably
4032 		 * fail again anyway.  This is okay even if the buf's identity
4033 		 * changed and we contended on the wrong lock, as changing
4034 		 * identity itself requires the buf lock, and we could have
4035 		 * contended on the right lock.
4036 		 */
4037 		if ((flags & GB_LOCK_NOWAIT) != 0)
4038 			return (error);
4039 		goto loop;
4040 	}
4041 
4042 	/* Verify buf identify has not changed since lookup. */
4043 	if (bp->b_bufobj == bo && bp->b_lblkno == blkno)
4044 		goto foundbuf_fastpath;
4045 
4046 	/* It changed, fallback to locked lookup. */
4047 	BUF_UNLOCK_RAW(bp);
4048 
4049 	/* As above, with GB_LOCK_NOWAIT, just return. */
4050 	if ((flags & GB_LOCK_NOWAIT) != 0)
4051 		return (EBUSY);
4052 
4053 loop:
4054 	BO_RLOCK(bo);
4055 	bp = gbincore(bo, blkno);
4056 	if (bp != NULL) {
4057 		int lockflags;
4058 
4059 		/*
4060 		 * Buffer is in-core.  If the buffer is not busy nor managed,
4061 		 * it must be on a queue.
4062 		 */
4063 		lockflags = LK_EXCLUSIVE | LK_INTERLOCK |
4064 		    ((flags & GB_LOCK_NOWAIT) != 0 ? LK_NOWAIT : LK_SLEEPFAIL);
4065 #ifdef WITNESS
4066 		lockflags |= (flags & GB_NOWITNESS) != 0 ? LK_NOWITNESS : 0;
4067 #endif
4068 
4069 		error = BUF_TIMELOCK(bp, lockflags,
4070 		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
4071 
4072 		/*
4073 		 * If we slept and got the lock we have to restart in case
4074 		 * the buffer changed identities.
4075 		 */
4076 		if (error == ENOLCK)
4077 			goto loop;
4078 		/* We timed out or were interrupted. */
4079 		else if (error != 0)
4080 			return (error);
4081 
4082 foundbuf_fastpath:
4083 		/* If recursed, assume caller knows the rules. */
4084 		if (BUF_LOCKRECURSED(bp))
4085 			goto end;
4086 
4087 		/*
4088 		 * The buffer is locked.  B_CACHE is cleared if the buffer is
4089 		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
4090 		 * and for a VMIO buffer B_CACHE is adjusted according to the
4091 		 * backing VM cache.
4092 		 */
4093 		if (bp->b_flags & B_INVAL)
4094 			bp->b_flags &= ~B_CACHE;
4095 		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
4096 			bp->b_flags |= B_CACHE;
4097 		if (bp->b_flags & B_MANAGED)
4098 			MPASS(bp->b_qindex == QUEUE_NONE);
4099 		else
4100 			bremfree(bp);
4101 
4102 		/*
4103 		 * check for size inconsistencies for non-VMIO case.
4104 		 */
4105 		if (bp->b_bcount != size) {
4106 			if ((bp->b_flags & B_VMIO) == 0 ||
4107 			    (size > bp->b_kvasize)) {
4108 				if (bp->b_flags & B_DELWRI) {
4109 					bp->b_flags |= B_NOCACHE;
4110 					bwrite(bp);
4111 				} else {
4112 					if (LIST_EMPTY(&bp->b_dep)) {
4113 						bp->b_flags |= B_RELBUF;
4114 						brelse(bp);
4115 					} else {
4116 						bp->b_flags |= B_NOCACHE;
4117 						bwrite(bp);
4118 					}
4119 				}
4120 				goto loop;
4121 			}
4122 		}
4123 
4124 		/*
4125 		 * Handle the case of unmapped buffer which should
4126 		 * become mapped, or the buffer for which KVA
4127 		 * reservation is requested.
4128 		 */
4129 		bp_unmapped_get_kva(bp, blkno, size, flags);
4130 
4131 		/*
4132 		 * If the size is inconsistent in the VMIO case, we can resize
4133 		 * the buffer.  This might lead to B_CACHE getting set or
4134 		 * cleared.  If the size has not changed, B_CACHE remains
4135 		 * unchanged from its previous state.
4136 		 */
4137 		allocbuf(bp, size);
4138 
4139 		KASSERT(bp->b_offset != NOOFFSET,
4140 		    ("getblk: no buffer offset"));
4141 
4142 		/*
4143 		 * A buffer with B_DELWRI set and B_CACHE clear must
4144 		 * be committed before we can return the buffer in
4145 		 * order to prevent the caller from issuing a read
4146 		 * ( due to B_CACHE not being set ) and overwriting
4147 		 * it.
4148 		 *
4149 		 * Most callers, including NFS and FFS, need this to
4150 		 * operate properly either because they assume they
4151 		 * can issue a read if B_CACHE is not set, or because
4152 		 * ( for example ) an uncached B_DELWRI might loop due
4153 		 * to softupdates re-dirtying the buffer.  In the latter
4154 		 * case, B_CACHE is set after the first write completes,
4155 		 * preventing further loops.
4156 		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
4157 		 * above while extending the buffer, we cannot allow the
4158 		 * buffer to remain with B_CACHE set after the write
4159 		 * completes or it will represent a corrupt state.  To
4160 		 * deal with this we set B_NOCACHE to scrap the buffer
4161 		 * after the write.
4162 		 *
4163 		 * We might be able to do something fancy, like setting
4164 		 * B_CACHE in bwrite() except if B_DELWRI is already set,
4165 		 * so the below call doesn't set B_CACHE, but that gets real
4166 		 * confusing.  This is much easier.
4167 		 */
4168 
4169 		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
4170 			bp->b_flags |= B_NOCACHE;
4171 			bwrite(bp);
4172 			goto loop;
4173 		}
4174 		bp->b_flags &= ~B_DONE;
4175 	} else {
4176 		/*
4177 		 * Buffer is not in-core, create new buffer.  The buffer
4178 		 * returned by getnewbuf() is locked.  Note that the returned
4179 		 * buffer is also considered valid (not marked B_INVAL).
4180 		 */
4181 		BO_RUNLOCK(bo);
4182 newbuf_unlocked:
4183 		/*
4184 		 * If the user does not want us to create the buffer, bail out
4185 		 * here.
4186 		 */
4187 		if (flags & GB_NOCREAT)
4188 			return (EEXIST);
4189 
4190 		bsize = vn_isdisk(vp) ? DEV_BSIZE : bo->bo_bsize;
4191 		KASSERT(bsize != 0, ("bsize == 0, check bo->bo_bsize"));
4192 		offset = blkno * bsize;
4193 		vmio = vp->v_object != NULL;
4194 		if (vmio) {
4195 			maxsize = size + (offset & PAGE_MASK);
4196 			if (maxsize > maxbcachebuf) {
4197 				printf(
4198 			    "getblkx: maxsize(%d) > maxbcachebuf(%d)\n",
4199 				    maxsize, maxbcachebuf);
4200 				return (EIO);
4201 			}
4202 		} else {
4203 			maxsize = size;
4204 			/* Do not allow non-VMIO notmapped buffers. */
4205 			flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
4206 		}
4207 		maxsize = imax(maxsize, bsize);
4208 		if ((flags & GB_NOSPARSE) != 0 && vmio &&
4209 		    !vn_isdisk(vp)) {
4210 			error = VOP_BMAP(vp, blkno, NULL, &d_blkno, 0, 0);
4211 			KASSERT(error != EOPNOTSUPP,
4212 			    ("GB_NOSPARSE from fs not supporting bmap, vp %p",
4213 			    vp));
4214 			if (error != 0)
4215 				return (error);
4216 			if (d_blkno == -1)
4217 				return (EJUSTRETURN);
4218 		}
4219 
4220 		bp = getnewbuf(vp, slpflag, slptimeo, maxsize, flags);
4221 		if (bp == NULL) {
4222 			if (slpflag || slptimeo)
4223 				return (ETIMEDOUT);
4224 			/*
4225 			 * XXX This is here until the sleep path is diagnosed
4226 			 * enough to work under very low memory conditions.
4227 			 *
4228 			 * There's an issue on low memory, 4BSD+non-preempt
4229 			 * systems (eg MIPS routers with 32MB RAM) where buffer
4230 			 * exhaustion occurs without sleeping for buffer
4231 			 * reclaimation.  This just sticks in a loop and
4232 			 * constantly attempts to allocate a buffer, which
4233 			 * hits exhaustion and tries to wakeup bufdaemon.
4234 			 * This never happens because we never yield.
4235 			 *
4236 			 * The real solution is to identify and fix these cases
4237 			 * so we aren't effectively busy-waiting in a loop
4238 			 * until the reclaimation path has cycles to run.
4239 			 */
4240 			kern_yield(PRI_USER);
4241 			goto loop;
4242 		}
4243 
4244 		/*
4245 		 *
4246 		 * Insert the buffer into the hash, so that it can
4247 		 * be found by incore.
4248 		 *
4249 		 * We don't hold the bufobj interlock while allocating the new
4250 		 * buffer.  Consequently, we can race on buffer creation.  This
4251 		 * can be a problem whether the vnode is locked or not.  If the
4252 		 * buffer is created out from under us, we have to throw away
4253 		 * the one we just created.
4254 		 */
4255 		bp->b_lblkno = blkno;
4256 		bp->b_blkno = d_blkno;
4257 		bp->b_offset = offset;
4258 		error = bgetvp(vp, bp);
4259 		if (error != 0) {
4260 			KASSERT(error == EEXIST,
4261 			    ("getblk: unexpected error %d from bgetvp",
4262 			    error));
4263 			bp->b_flags |= B_INVAL;
4264 			bufspace_release(bufdomain(bp), maxsize);
4265 			brelse(bp);
4266 			goto loop;
4267 		}
4268 
4269 		/*
4270 		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
4271 		 * buffer size starts out as 0, B_CACHE will be set by
4272 		 * allocbuf() for the VMIO case prior to it testing the
4273 		 * backing store for validity.
4274 		 */
4275 
4276 		if (vmio) {
4277 			bp->b_flags |= B_VMIO;
4278 			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
4279 			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
4280 			    bp, vp->v_object, bp->b_bufobj->bo_object));
4281 		} else {
4282 			bp->b_flags &= ~B_VMIO;
4283 			KASSERT(bp->b_bufobj->bo_object == NULL,
4284 			    ("ARGH! has b_bufobj->bo_object %p %p\n",
4285 			    bp, bp->b_bufobj->bo_object));
4286 			BUF_CHECK_MAPPED(bp);
4287 		}
4288 
4289 		allocbuf(bp, size);
4290 		bufspace_release(bufdomain(bp), maxsize);
4291 		bp->b_flags &= ~B_DONE;
4292 	}
4293 	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
4294 end:
4295 	buf_track(bp, __func__);
4296 	KASSERT(bp->b_bufobj == bo,
4297 	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
4298 	*bpp = bp;
4299 	return (0);
4300 }
4301 
4302 /*
4303  * Get an empty, disassociated buffer of given size.  The buffer is initially
4304  * set to B_INVAL.
4305  */
4306 struct buf *
geteblk(int size,int flags)4307 geteblk(int size, int flags)
4308 {
4309 	struct buf *bp;
4310 	int maxsize;
4311 
4312 	maxsize = (size + BKVAMASK) & ~BKVAMASK;
4313 	while ((bp = getnewbuf(NULL, 0, 0, maxsize, flags)) == NULL) {
4314 		if ((flags & GB_NOWAIT_BD) &&
4315 		    (curthread->td_pflags & TDP_BUFNEED) != 0)
4316 			return (NULL);
4317 	}
4318 	allocbuf(bp, size);
4319 	bufspace_release(bufdomain(bp), maxsize);
4320 	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
4321 	return (bp);
4322 }
4323 
4324 /*
4325  * Truncate the backing store for a non-vmio buffer.
4326  */
4327 static void
vfs_nonvmio_truncate(struct buf * bp,int newbsize)4328 vfs_nonvmio_truncate(struct buf *bp, int newbsize)
4329 {
4330 
4331 	if (bp->b_flags & B_MALLOC) {
4332 		/*
4333 		 * malloced buffers are not shrunk
4334 		 */
4335 		if (newbsize == 0) {
4336 			bufmallocadjust(bp, 0);
4337 			free(bp->b_data, M_BIOBUF);
4338 			bp->b_data = bp->b_kvabase;
4339 			bp->b_flags &= ~B_MALLOC;
4340 		}
4341 		return;
4342 	}
4343 	vm_hold_free_pages(bp, newbsize);
4344 	bufspace_adjust(bp, newbsize);
4345 }
4346 
4347 /*
4348  * Extend the backing for a non-VMIO buffer.
4349  */
4350 static void
vfs_nonvmio_extend(struct buf * bp,int newbsize)4351 vfs_nonvmio_extend(struct buf *bp, int newbsize)
4352 {
4353 	caddr_t origbuf;
4354 	int origbufsize;
4355 
4356 	/*
4357 	 * We only use malloced memory on the first allocation.
4358 	 * and revert to page-allocated memory when the buffer
4359 	 * grows.
4360 	 *
4361 	 * There is a potential smp race here that could lead
4362 	 * to bufmallocspace slightly passing the max.  It
4363 	 * is probably extremely rare and not worth worrying
4364 	 * over.
4365 	 */
4366 	if (bp->b_bufsize == 0 && newbsize <= PAGE_SIZE/2 &&
4367 	    bufmallocspace < maxbufmallocspace) {
4368 		bp->b_data = malloc(newbsize, M_BIOBUF, M_WAITOK);
4369 		bp->b_flags |= B_MALLOC;
4370 		bufmallocadjust(bp, newbsize);
4371 		return;
4372 	}
4373 
4374 	/*
4375 	 * If the buffer is growing on its other-than-first
4376 	 * allocation then we revert to the page-allocation
4377 	 * scheme.
4378 	 */
4379 	origbuf = NULL;
4380 	origbufsize = 0;
4381 	if (bp->b_flags & B_MALLOC) {
4382 		origbuf = bp->b_data;
4383 		origbufsize = bp->b_bufsize;
4384 		bp->b_data = bp->b_kvabase;
4385 		bufmallocadjust(bp, 0);
4386 		bp->b_flags &= ~B_MALLOC;
4387 		newbsize = round_page(newbsize);
4388 	}
4389 	vm_hold_load_pages(bp, (vm_offset_t) bp->b_data + bp->b_bufsize,
4390 	    (vm_offset_t) bp->b_data + newbsize);
4391 	if (origbuf != NULL) {
4392 		bcopy(origbuf, bp->b_data, origbufsize);
4393 		free(origbuf, M_BIOBUF);
4394 	}
4395 	bufspace_adjust(bp, newbsize);
4396 }
4397 
4398 /*
4399  * This code constitutes the buffer memory from either anonymous system
4400  * memory (in the case of non-VMIO operations) or from an associated
4401  * VM object (in the case of VMIO operations).  This code is able to
4402  * resize a buffer up or down.
4403  *
4404  * Note that this code is tricky, and has many complications to resolve
4405  * deadlock or inconsistent data situations.  Tread lightly!!!
4406  * There are B_CACHE and B_DELWRI interactions that must be dealt with by
4407  * the caller.  Calling this code willy nilly can result in the loss of data.
4408  *
4409  * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
4410  * B_CACHE for the non-VMIO case.
4411  */
4412 int
allocbuf(struct buf * bp,int size)4413 allocbuf(struct buf *bp, int size)
4414 {
4415 	int newbsize;
4416 
4417 	if (bp->b_bcount == size)
4418 		return (1);
4419 
4420 	KASSERT(bp->b_kvasize == 0 || bp->b_kvasize >= size,
4421 	    ("allocbuf: buffer too small %p %#x %#x",
4422 	    bp, bp->b_kvasize, size));
4423 
4424 	newbsize = roundup2(size, DEV_BSIZE);
4425 	if ((bp->b_flags & B_VMIO) == 0) {
4426 		if ((bp->b_flags & B_MALLOC) == 0)
4427 			newbsize = round_page(newbsize);
4428 		/*
4429 		 * Just get anonymous memory from the kernel.  Don't
4430 		 * mess with B_CACHE.
4431 		 */
4432 		if (newbsize < bp->b_bufsize)
4433 			vfs_nonvmio_truncate(bp, newbsize);
4434 		else if (newbsize > bp->b_bufsize)
4435 			vfs_nonvmio_extend(bp, newbsize);
4436 	} else {
4437 		int desiredpages;
4438 
4439 		desiredpages = size == 0 ? 0 :
4440 		    num_pages((bp->b_offset & PAGE_MASK) + newbsize);
4441 
4442 		KASSERT((bp->b_flags & B_MALLOC) == 0,
4443 		    ("allocbuf: VMIO buffer can't be malloced %p", bp));
4444 
4445 		/*
4446 		 * Set B_CACHE initially if buffer is 0 length or will become
4447 		 * 0-length.
4448 		 */
4449 		if (size == 0 || bp->b_bufsize == 0)
4450 			bp->b_flags |= B_CACHE;
4451 
4452 		if (newbsize < bp->b_bufsize)
4453 			vfs_vmio_truncate(bp, desiredpages);
4454 		/* XXX This looks as if it should be newbsize > b_bufsize */
4455 		else if (size > bp->b_bcount)
4456 			vfs_vmio_extend(bp, desiredpages, size);
4457 		bufspace_adjust(bp, newbsize);
4458 	}
4459 	bp->b_bcount = size;		/* requested buffer size. */
4460 	return (1);
4461 }
4462 
4463 extern int inflight_transient_maps;
4464 
4465 static struct bio_queue nondump_bios;
4466 
4467 void
biodone(struct bio * bp)4468 biodone(struct bio *bp)
4469 {
4470 	struct mtx *mtxp;
4471 	void (*done)(struct bio *);
4472 	vm_offset_t start, end;
4473 
4474 	biotrack(bp, __func__);
4475 
4476 	/*
4477 	 * Avoid completing I/O when dumping after a panic since that may
4478 	 * result in a deadlock in the filesystem or pager code.  Note that
4479 	 * this doesn't affect dumps that were started manually since we aim
4480 	 * to keep the system usable after it has been resumed.
4481 	 */
4482 	if (__predict_false(dumping && SCHEDULER_STOPPED())) {
4483 		TAILQ_INSERT_HEAD(&nondump_bios, bp, bio_queue);
4484 		return;
4485 	}
4486 	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
4487 		bp->bio_flags &= ~BIO_TRANSIENT_MAPPING;
4488 		bp->bio_flags |= BIO_UNMAPPED;
4489 		start = trunc_page((vm_offset_t)bp->bio_data);
4490 		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
4491 		bp->bio_data = unmapped_buf;
4492 		pmap_qremove(start, atop(end - start));
4493 		vmem_free(transient_arena, start, end - start);
4494 		atomic_add_int(&inflight_transient_maps, -1);
4495 	}
4496 	done = bp->bio_done;
4497 	/*
4498 	 * The check for done == biodone is to allow biodone to be
4499 	 * used as a bio_done routine.
4500 	 */
4501 	if (done == NULL || done == biodone) {
4502 		mtxp = mtx_pool_find(mtxpool_sleep, bp);
4503 		mtx_lock(mtxp);
4504 		bp->bio_flags |= BIO_DONE;
4505 		wakeup(bp);
4506 		mtx_unlock(mtxp);
4507 	} else
4508 		done(bp);
4509 }
4510 
4511 /*
4512  * Wait for a BIO to finish.
4513  */
4514 int
biowait(struct bio * bp,const char * wmesg)4515 biowait(struct bio *bp, const char *wmesg)
4516 {
4517 	struct mtx *mtxp;
4518 
4519 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4520 	mtx_lock(mtxp);
4521 	while ((bp->bio_flags & BIO_DONE) == 0)
4522 		msleep(bp, mtxp, PRIBIO, wmesg, 0);
4523 	mtx_unlock(mtxp);
4524 	if (bp->bio_error != 0)
4525 		return (bp->bio_error);
4526 	if (!(bp->bio_flags & BIO_ERROR))
4527 		return (0);
4528 	return (EIO);
4529 }
4530 
4531 void
biofinish(struct bio * bp,struct devstat * stat,int error)4532 biofinish(struct bio *bp, struct devstat *stat, int error)
4533 {
4534 
4535 	if (error) {
4536 		bp->bio_error = error;
4537 		bp->bio_flags |= BIO_ERROR;
4538 	}
4539 	if (stat != NULL)
4540 		devstat_end_transaction_bio(stat, bp);
4541 	biodone(bp);
4542 }
4543 
4544 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4545 void
biotrack_buf(struct bio * bp,const char * location)4546 biotrack_buf(struct bio *bp, const char *location)
4547 {
4548 
4549 	buf_track(bp->bio_track_bp, location);
4550 }
4551 #endif
4552 
4553 /*
4554  *	bufwait:
4555  *
4556  *	Wait for buffer I/O completion, returning error status.  The buffer
4557  *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
4558  *	error and cleared.
4559  */
4560 int
bufwait(struct buf * bp)4561 bufwait(struct buf *bp)
4562 {
4563 	if (bp->b_iocmd == BIO_READ)
4564 		bwait(bp, PRIBIO, "biord");
4565 	else
4566 		bwait(bp, PRIBIO, "biowr");
4567 	if (bp->b_flags & B_EINTR) {
4568 		bp->b_flags &= ~B_EINTR;
4569 		return (EINTR);
4570 	}
4571 	if (bp->b_ioflags & BIO_ERROR) {
4572 		return (bp->b_error ? bp->b_error : EIO);
4573 	} else {
4574 		return (0);
4575 	}
4576 }
4577 
4578 /*
4579  *	bufdone:
4580  *
4581  *	Finish I/O on a buffer, optionally calling a completion function.
4582  *	This is usually called from an interrupt so process blocking is
4583  *	not allowed.
4584  *
4585  *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
4586  *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
4587  *	assuming B_INVAL is clear.
4588  *
4589  *	For the VMIO case, we set B_CACHE if the op was a read and no
4590  *	read error occurred, or if the op was a write.  B_CACHE is never
4591  *	set if the buffer is invalid or otherwise uncacheable.
4592  *
4593  *	bufdone does not mess with B_INVAL, allowing the I/O routine or the
4594  *	initiator to leave B_INVAL set to brelse the buffer out of existence
4595  *	in the biodone routine.
4596  */
4597 void
bufdone(struct buf * bp)4598 bufdone(struct buf *bp)
4599 {
4600 	struct bufobj *dropobj;
4601 	void    (*biodone)(struct buf *);
4602 
4603 	buf_track(bp, __func__);
4604 	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
4605 	dropobj = NULL;
4606 
4607 	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
4608 
4609 	runningbufwakeup(bp);
4610 	if (bp->b_iocmd == BIO_WRITE)
4611 		dropobj = bp->b_bufobj;
4612 	/* call optional completion function if requested */
4613 	if (bp->b_iodone != NULL) {
4614 		biodone = bp->b_iodone;
4615 		bp->b_iodone = NULL;
4616 		(*biodone) (bp);
4617 		if (dropobj)
4618 			bufobj_wdrop(dropobj);
4619 		return;
4620 	}
4621 	if (bp->b_flags & B_VMIO) {
4622 		/*
4623 		 * Set B_CACHE if the op was a normal read and no error
4624 		 * occurred.  B_CACHE is set for writes in the b*write()
4625 		 * routines.
4626 		 */
4627 		if (bp->b_iocmd == BIO_READ &&
4628 		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
4629 		    !(bp->b_ioflags & BIO_ERROR))
4630 			bp->b_flags |= B_CACHE;
4631 		vfs_vmio_iodone(bp);
4632 	}
4633 	if (!LIST_EMPTY(&bp->b_dep))
4634 		buf_complete(bp);
4635 	if ((bp->b_flags & B_CKHASH) != 0) {
4636 		KASSERT(bp->b_iocmd == BIO_READ,
4637 		    ("bufdone: b_iocmd %d not BIO_READ", bp->b_iocmd));
4638 		KASSERT(buf_mapped(bp), ("bufdone: bp %p not mapped", bp));
4639 		(*bp->b_ckhashcalc)(bp);
4640 	}
4641 	/*
4642 	 * For asynchronous completions, release the buffer now. The brelse
4643 	 * will do a wakeup there if necessary - so no need to do a wakeup
4644 	 * here in the async case. The sync case always needs to do a wakeup.
4645 	 */
4646 	if (bp->b_flags & B_ASYNC) {
4647 		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) ||
4648 		    (bp->b_ioflags & BIO_ERROR))
4649 			brelse(bp);
4650 		else
4651 			bqrelse(bp);
4652 	} else
4653 		bdone(bp);
4654 	if (dropobj)
4655 		bufobj_wdrop(dropobj);
4656 }
4657 
4658 /*
4659  * This routine is called in lieu of iodone in the case of
4660  * incomplete I/O.  This keeps the busy status for pages
4661  * consistent.
4662  */
4663 void
vfs_unbusy_pages(struct buf * bp)4664 vfs_unbusy_pages(struct buf *bp)
4665 {
4666 	int i;
4667 	vm_object_t obj;
4668 	vm_page_t m;
4669 
4670 	runningbufwakeup(bp);
4671 	if (!(bp->b_flags & B_VMIO))
4672 		return;
4673 
4674 	obj = bp->b_bufobj->bo_object;
4675 	for (i = 0; i < bp->b_npages; i++) {
4676 		m = bp->b_pages[i];
4677 		if (m == bogus_page) {
4678 			m = vm_page_relookup(obj, OFF_TO_IDX(bp->b_offset) + i);
4679 			if (!m)
4680 				panic("vfs_unbusy_pages: page missing\n");
4681 			bp->b_pages[i] = m;
4682 			if (buf_mapped(bp)) {
4683 				BUF_CHECK_MAPPED(bp);
4684 				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4685 				    bp->b_pages, bp->b_npages);
4686 			} else
4687 				BUF_CHECK_UNMAPPED(bp);
4688 		}
4689 		vm_page_sunbusy(m);
4690 	}
4691 	vm_object_pip_wakeupn(obj, bp->b_npages);
4692 }
4693 
4694 /*
4695  * vfs_page_set_valid:
4696  *
4697  *	Set the valid bits in a page based on the supplied offset.   The
4698  *	range is restricted to the buffer's size.
4699  *
4700  *	This routine is typically called after a read completes.
4701  */
4702 static void
vfs_page_set_valid(struct buf * bp,vm_ooffset_t off,vm_page_t m)4703 vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4704 {
4705 	vm_ooffset_t eoff;
4706 
4707 	/*
4708 	 * Compute the end offset, eoff, such that [off, eoff) does not span a
4709 	 * page boundary and eoff is not greater than the end of the buffer.
4710 	 * The end of the buffer, in this case, is our file EOF, not the
4711 	 * allocation size of the buffer.
4712 	 */
4713 	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
4714 	if (eoff > bp->b_offset + bp->b_bcount)
4715 		eoff = bp->b_offset + bp->b_bcount;
4716 
4717 	/*
4718 	 * Set valid range.  This is typically the entire buffer and thus the
4719 	 * entire page.
4720 	 */
4721 	if (eoff > off)
4722 		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
4723 }
4724 
4725 /*
4726  * vfs_page_set_validclean:
4727  *
4728  *	Set the valid bits and clear the dirty bits in a page based on the
4729  *	supplied offset.   The range is restricted to the buffer's size.
4730  */
4731 static void
vfs_page_set_validclean(struct buf * bp,vm_ooffset_t off,vm_page_t m)4732 vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
4733 {
4734 	vm_ooffset_t soff, eoff;
4735 
4736 	/*
4737 	 * Start and end offsets in buffer.  eoff - soff may not cross a
4738 	 * page boundary or cross the end of the buffer.  The end of the
4739 	 * buffer, in this case, is our file EOF, not the allocation size
4740 	 * of the buffer.
4741 	 */
4742 	soff = off;
4743 	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4744 	if (eoff > bp->b_offset + bp->b_bcount)
4745 		eoff = bp->b_offset + bp->b_bcount;
4746 
4747 	/*
4748 	 * Set valid range.  This is typically the entire buffer and thus the
4749 	 * entire page.
4750 	 */
4751 	if (eoff > soff) {
4752 		vm_page_set_validclean(
4753 		    m,
4754 		   (vm_offset_t) (soff & PAGE_MASK),
4755 		   (vm_offset_t) (eoff - soff)
4756 		);
4757 	}
4758 }
4759 
4760 /*
4761  * Acquire a shared busy on all pages in the buf.
4762  */
4763 void
vfs_busy_pages_acquire(struct buf * bp)4764 vfs_busy_pages_acquire(struct buf *bp)
4765 {
4766 	int i;
4767 
4768 	for (i = 0; i < bp->b_npages; i++)
4769 		vm_page_busy_acquire(bp->b_pages[i], VM_ALLOC_SBUSY);
4770 }
4771 
4772 void
vfs_busy_pages_release(struct buf * bp)4773 vfs_busy_pages_release(struct buf *bp)
4774 {
4775 	int i;
4776 
4777 	for (i = 0; i < bp->b_npages; i++)
4778 		vm_page_sunbusy(bp->b_pages[i]);
4779 }
4780 
4781 /*
4782  * This routine is called before a device strategy routine.
4783  * It is used to tell the VM system that paging I/O is in
4784  * progress, and treat the pages associated with the buffer
4785  * almost as being exclusive busy.  Also the object paging_in_progress
4786  * flag is handled to make sure that the object doesn't become
4787  * inconsistent.
4788  *
4789  * Since I/O has not been initiated yet, certain buffer flags
4790  * such as BIO_ERROR or B_INVAL may be in an inconsistent state
4791  * and should be ignored.
4792  */
4793 void
vfs_busy_pages(struct buf * bp,int clear_modify)4794 vfs_busy_pages(struct buf *bp, int clear_modify)
4795 {
4796 	vm_object_t obj;
4797 	vm_ooffset_t foff;
4798 	vm_page_t m;
4799 	int i;
4800 	bool bogus;
4801 
4802 	if (!(bp->b_flags & B_VMIO))
4803 		return;
4804 
4805 	obj = bp->b_bufobj->bo_object;
4806 	foff = bp->b_offset;
4807 	KASSERT(bp->b_offset != NOOFFSET,
4808 	    ("vfs_busy_pages: no buffer offset"));
4809 	if ((bp->b_flags & B_CLUSTER) == 0) {
4810 		vm_object_pip_add(obj, bp->b_npages);
4811 		vfs_busy_pages_acquire(bp);
4812 	}
4813 	if (bp->b_bufsize != 0)
4814 		vfs_setdirty_range(bp);
4815 	bogus = false;
4816 	for (i = 0; i < bp->b_npages; i++) {
4817 		m = bp->b_pages[i];
4818 		vm_page_assert_sbusied(m);
4819 
4820 		/*
4821 		 * When readying a buffer for a read ( i.e
4822 		 * clear_modify == 0 ), it is important to do
4823 		 * bogus_page replacement for valid pages in
4824 		 * partially instantiated buffers.  Partially
4825 		 * instantiated buffers can, in turn, occur when
4826 		 * reconstituting a buffer from its VM backing store
4827 		 * base.  We only have to do this if B_CACHE is
4828 		 * clear ( which causes the I/O to occur in the
4829 		 * first place ).  The replacement prevents the read
4830 		 * I/O from overwriting potentially dirty VM-backed
4831 		 * pages.  XXX bogus page replacement is, uh, bogus.
4832 		 * It may not work properly with small-block devices.
4833 		 * We need to find a better way.
4834 		 */
4835 		if (clear_modify) {
4836 			pmap_remove_write(m);
4837 			vfs_page_set_validclean(bp, foff, m);
4838 		} else if (vm_page_all_valid(m) &&
4839 		    (bp->b_flags & B_CACHE) == 0) {
4840 			bp->b_pages[i] = bogus_page;
4841 			bogus = true;
4842 		}
4843 		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4844 	}
4845 	if (bogus && buf_mapped(bp)) {
4846 		BUF_CHECK_MAPPED(bp);
4847 		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4848 		    bp->b_pages, bp->b_npages);
4849 	}
4850 }
4851 
4852 /*
4853  *	vfs_bio_set_valid:
4854  *
4855  *	Set the range within the buffer to valid.  The range is
4856  *	relative to the beginning of the buffer, b_offset.  Note that
4857  *	b_offset itself may be offset from the beginning of the first
4858  *	page.
4859  */
4860 void
vfs_bio_set_valid(struct buf * bp,int base,int size)4861 vfs_bio_set_valid(struct buf *bp, int base, int size)
4862 {
4863 	int i, n;
4864 	vm_page_t m;
4865 
4866 	if (!(bp->b_flags & B_VMIO))
4867 		return;
4868 
4869 	/*
4870 	 * Fixup base to be relative to beginning of first page.
4871 	 * Set initial n to be the maximum number of bytes in the
4872 	 * first page that can be validated.
4873 	 */
4874 	base += (bp->b_offset & PAGE_MASK);
4875 	n = PAGE_SIZE - (base & PAGE_MASK);
4876 
4877 	/*
4878 	 * Busy may not be strictly necessary here because the pages are
4879 	 * unlikely to be fully valid and the vnode lock will synchronize
4880 	 * their access via getpages.  It is grabbed for consistency with
4881 	 * other page validation.
4882 	 */
4883 	vfs_busy_pages_acquire(bp);
4884 	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4885 		m = bp->b_pages[i];
4886 		if (n > size)
4887 			n = size;
4888 		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4889 		base += n;
4890 		size -= n;
4891 		n = PAGE_SIZE;
4892 	}
4893 	vfs_busy_pages_release(bp);
4894 }
4895 
4896 /*
4897  *	vfs_bio_clrbuf:
4898  *
4899  *	If the specified buffer is a non-VMIO buffer, clear the entire
4900  *	buffer.  If the specified buffer is a VMIO buffer, clear and
4901  *	validate only the previously invalid portions of the buffer.
4902  *	This routine essentially fakes an I/O, so we need to clear
4903  *	BIO_ERROR and B_INVAL.
4904  *
4905  *	Note that while we only theoretically need to clear through b_bcount,
4906  *	we go ahead and clear through b_bufsize.
4907  */
4908 void
vfs_bio_clrbuf(struct buf * bp)4909 vfs_bio_clrbuf(struct buf *bp)
4910 {
4911 	int i, j, sa, ea, slide, zbits;
4912 	vm_page_bits_t mask;
4913 
4914 	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4915 		clrbuf(bp);
4916 		return;
4917 	}
4918 	bp->b_flags &= ~B_INVAL;
4919 	bp->b_ioflags &= ~BIO_ERROR;
4920 	vfs_busy_pages_acquire(bp);
4921 	sa = bp->b_offset & PAGE_MASK;
4922 	slide = 0;
4923 	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4924 		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4925 		ea = slide & PAGE_MASK;
4926 		if (ea == 0)
4927 			ea = PAGE_SIZE;
4928 		if (bp->b_pages[i] == bogus_page)
4929 			continue;
4930 		j = sa / DEV_BSIZE;
4931 		zbits = (sizeof(vm_page_bits_t) * NBBY) -
4932 		    (ea - sa) / DEV_BSIZE;
4933 		mask = (VM_PAGE_BITS_ALL >> zbits) << j;
4934 		if ((bp->b_pages[i]->valid & mask) == mask)
4935 			continue;
4936 		if ((bp->b_pages[i]->valid & mask) == 0)
4937 			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4938 		else {
4939 			for (; sa < ea; sa += DEV_BSIZE, j++) {
4940 				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4941 					pmap_zero_page_area(bp->b_pages[i],
4942 					    sa, DEV_BSIZE);
4943 				}
4944 			}
4945 		}
4946 		vm_page_set_valid_range(bp->b_pages[i], j * DEV_BSIZE,
4947 		    roundup2(ea - sa, DEV_BSIZE));
4948 	}
4949 	vfs_busy_pages_release(bp);
4950 	bp->b_resid = 0;
4951 }
4952 
4953 void
vfs_bio_bzero_buf(struct buf * bp,int base,int size)4954 vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4955 {
4956 	vm_page_t m;
4957 	int i, n;
4958 
4959 	if (buf_mapped(bp)) {
4960 		BUF_CHECK_MAPPED(bp);
4961 		bzero(bp->b_data + base, size);
4962 	} else {
4963 		BUF_CHECK_UNMAPPED(bp);
4964 		n = PAGE_SIZE - (base & PAGE_MASK);
4965 		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4966 			m = bp->b_pages[i];
4967 			if (n > size)
4968 				n = size;
4969 			pmap_zero_page_area(m, base & PAGE_MASK, n);
4970 			base += n;
4971 			size -= n;
4972 			n = PAGE_SIZE;
4973 		}
4974 	}
4975 }
4976 
4977 /*
4978  * Update buffer flags based on I/O request parameters, optionally releasing the
4979  * buffer.  If it's VMIO or direct I/O, the buffer pages are released to the VM,
4980  * where they may be placed on a page queue (VMIO) or freed immediately (direct
4981  * I/O).  Otherwise the buffer is released to the cache.
4982  */
4983 static void
b_io_dismiss(struct buf * bp,int ioflag,bool release)4984 b_io_dismiss(struct buf *bp, int ioflag, bool release)
4985 {
4986 
4987 	KASSERT((ioflag & IO_NOREUSE) == 0 || (ioflag & IO_VMIO) != 0,
4988 	    ("buf %p non-VMIO noreuse", bp));
4989 
4990 	if ((ioflag & IO_DIRECT) != 0)
4991 		bp->b_flags |= B_DIRECT;
4992 	if ((ioflag & IO_EXT) != 0)
4993 		bp->b_xflags |= BX_ALTDATA;
4994 	if ((ioflag & (IO_VMIO | IO_DIRECT)) != 0 && LIST_EMPTY(&bp->b_dep)) {
4995 		bp->b_flags |= B_RELBUF;
4996 		if ((ioflag & IO_NOREUSE) != 0)
4997 			bp->b_flags |= B_NOREUSE;
4998 		if (release)
4999 			brelse(bp);
5000 	} else if (release)
5001 		bqrelse(bp);
5002 }
5003 
5004 void
vfs_bio_brelse(struct buf * bp,int ioflag)5005 vfs_bio_brelse(struct buf *bp, int ioflag)
5006 {
5007 
5008 	b_io_dismiss(bp, ioflag, true);
5009 }
5010 
5011 void
vfs_bio_set_flags(struct buf * bp,int ioflag)5012 vfs_bio_set_flags(struct buf *bp, int ioflag)
5013 {
5014 
5015 	b_io_dismiss(bp, ioflag, false);
5016 }
5017 
5018 /*
5019  * vm_hold_load_pages and vm_hold_free_pages get pages into
5020  * a buffers address space.  The pages are anonymous and are
5021  * not associated with a file object.
5022  */
5023 static void
vm_hold_load_pages(struct buf * bp,vm_offset_t from,vm_offset_t to)5024 vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
5025 {
5026 	vm_offset_t pg;
5027 	vm_page_t p;
5028 	int index;
5029 
5030 	BUF_CHECK_MAPPED(bp);
5031 
5032 	to = round_page(to);
5033 	from = round_page(from);
5034 	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5035 	MPASS((bp->b_flags & B_MAXPHYS) == 0);
5036 	KASSERT(to - from <= maxbcachebuf,
5037 	    ("vm_hold_load_pages too large %p %#jx %#jx %u",
5038 	    bp, (uintmax_t)from, (uintmax_t)to, maxbcachebuf));
5039 
5040 	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
5041 		/*
5042 		 * note: must allocate system pages since blocking here
5043 		 * could interfere with paging I/O, no matter which
5044 		 * process we are.
5045 		 */
5046 		p = vm_page_alloc_noobj(VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
5047 		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT) | VM_ALLOC_WAITOK);
5048 		pmap_qenter(pg, &p, 1);
5049 		bp->b_pages[index] = p;
5050 	}
5051 	bp->b_npages = index;
5052 }
5053 
5054 /* Return pages associated with this buf to the vm system */
5055 static void
vm_hold_free_pages(struct buf * bp,int newbsize)5056 vm_hold_free_pages(struct buf *bp, int newbsize)
5057 {
5058 	vm_offset_t from;
5059 	vm_page_t p;
5060 	int index, newnpages;
5061 
5062 	BUF_CHECK_MAPPED(bp);
5063 
5064 	from = round_page((vm_offset_t)bp->b_data + newbsize);
5065 	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
5066 	if (bp->b_npages > newnpages)
5067 		pmap_qremove(from, bp->b_npages - newnpages);
5068 	for (index = newnpages; index < bp->b_npages; index++) {
5069 		p = bp->b_pages[index];
5070 		bp->b_pages[index] = NULL;
5071 		vm_page_unwire_noq(p);
5072 		vm_page_free(p);
5073 	}
5074 	bp->b_npages = newnpages;
5075 }
5076 
5077 /*
5078  * Map an IO request into kernel virtual address space.
5079  *
5080  * All requests are (re)mapped into kernel VA space.
5081  * Notice that we use b_bufsize for the size of the buffer
5082  * to be mapped.  b_bcount might be modified by the driver.
5083  *
5084  * Note that even if the caller determines that the address space should
5085  * be valid, a race or a smaller-file mapped into a larger space may
5086  * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
5087  * check the return value.
5088  *
5089  * This function only works with pager buffers.
5090  */
5091 int
vmapbuf(struct buf * bp,void * uaddr,size_t len,int mapbuf)5092 vmapbuf(struct buf *bp, void *uaddr, size_t len, int mapbuf)
5093 {
5094 	vm_prot_t prot;
5095 	int pidx;
5096 
5097 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
5098 	prot = VM_PROT_READ;
5099 	if (bp->b_iocmd == BIO_READ)
5100 		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
5101 	pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
5102 	    (vm_offset_t)uaddr, len, prot, bp->b_pages, PBUF_PAGES);
5103 	if (pidx < 0)
5104 		return (-1);
5105 	bp->b_bufsize = len;
5106 	bp->b_npages = pidx;
5107 	bp->b_offset = ((vm_offset_t)uaddr) & PAGE_MASK;
5108 	if (mapbuf || !unmapped_buf_allowed) {
5109 		pmap_qenter((vm_offset_t)bp->b_kvabase, bp->b_pages, pidx);
5110 		bp->b_data = bp->b_kvabase + bp->b_offset;
5111 	} else
5112 		bp->b_data = unmapped_buf;
5113 	return (0);
5114 }
5115 
5116 /*
5117  * Free the io map PTEs associated with this IO operation.
5118  * We also invalidate the TLB entries and restore the original b_addr.
5119  *
5120  * This function only works with pager buffers.
5121  */
5122 void
vunmapbuf(struct buf * bp)5123 vunmapbuf(struct buf *bp)
5124 {
5125 	int npages;
5126 
5127 	npages = bp->b_npages;
5128 	if (buf_mapped(bp))
5129 		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
5130 	vm_page_unhold_pages(bp->b_pages, npages);
5131 
5132 	bp->b_data = unmapped_buf;
5133 }
5134 
5135 void
bdone(struct buf * bp)5136 bdone(struct buf *bp)
5137 {
5138 	struct mtx *mtxp;
5139 
5140 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5141 	mtx_lock(mtxp);
5142 	bp->b_flags |= B_DONE;
5143 	wakeup(bp);
5144 	mtx_unlock(mtxp);
5145 }
5146 
5147 void
bwait(struct buf * bp,u_char pri,const char * wchan)5148 bwait(struct buf *bp, u_char pri, const char *wchan)
5149 {
5150 	struct mtx *mtxp;
5151 
5152 	mtxp = mtx_pool_find(mtxpool_sleep, bp);
5153 	mtx_lock(mtxp);
5154 	while ((bp->b_flags & B_DONE) == 0)
5155 		msleep(bp, mtxp, pri, wchan, 0);
5156 	mtx_unlock(mtxp);
5157 }
5158 
5159 int
bufsync(struct bufobj * bo,int waitfor)5160 bufsync(struct bufobj *bo, int waitfor)
5161 {
5162 
5163 	return (VOP_FSYNC(bo2vnode(bo), waitfor, curthread));
5164 }
5165 
5166 void
bufstrategy(struct bufobj * bo,struct buf * bp)5167 bufstrategy(struct bufobj *bo, struct buf *bp)
5168 {
5169 	int i __unused;
5170 	struct vnode *vp;
5171 
5172 	vp = bp->b_vp;
5173 	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
5174 	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
5175 	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
5176 	i = VOP_STRATEGY(vp, bp);
5177 	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
5178 }
5179 
5180 /*
5181  * Initialize a struct bufobj before use.  Memory is assumed zero filled.
5182  */
5183 void
bufobj_init(struct bufobj * bo,void * private)5184 bufobj_init(struct bufobj *bo, void *private)
5185 {
5186 	static volatile int bufobj_cleanq;
5187 
5188         bo->bo_domain =
5189             atomic_fetchadd_int(&bufobj_cleanq, 1) % buf_domains;
5190         rw_init(BO_LOCKPTR(bo), "bufobj interlock");
5191         bo->bo_private = private;
5192         TAILQ_INIT(&bo->bo_clean.bv_hd);
5193 	pctrie_init(&bo->bo_clean.bv_root);
5194         TAILQ_INIT(&bo->bo_dirty.bv_hd);
5195 	pctrie_init(&bo->bo_dirty.bv_root);
5196 }
5197 
5198 void
bufobj_wrefl(struct bufobj * bo)5199 bufobj_wrefl(struct bufobj *bo)
5200 {
5201 
5202 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5203 	ASSERT_BO_WLOCKED(bo);
5204 	bo->bo_numoutput++;
5205 }
5206 
5207 void
bufobj_wref(struct bufobj * bo)5208 bufobj_wref(struct bufobj *bo)
5209 {
5210 
5211 	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
5212 	BO_LOCK(bo);
5213 	bo->bo_numoutput++;
5214 	BO_UNLOCK(bo);
5215 }
5216 
5217 void
bufobj_wdrop(struct bufobj * bo)5218 bufobj_wdrop(struct bufobj *bo)
5219 {
5220 
5221 	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
5222 	BO_LOCK(bo);
5223 	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
5224 	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
5225 		bo->bo_flag &= ~BO_WWAIT;
5226 		wakeup(&bo->bo_numoutput);
5227 	}
5228 	BO_UNLOCK(bo);
5229 }
5230 
5231 int
bufobj_wwait(struct bufobj * bo,int slpflag,int timeo)5232 bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
5233 {
5234 	int error;
5235 
5236 	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
5237 	ASSERT_BO_WLOCKED(bo);
5238 	error = 0;
5239 	while (bo->bo_numoutput) {
5240 		bo->bo_flag |= BO_WWAIT;
5241 		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
5242 		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
5243 		if (error)
5244 			break;
5245 	}
5246 	return (error);
5247 }
5248 
5249 /*
5250  * Set bio_data or bio_ma for struct bio from the struct buf.
5251  */
5252 void
bdata2bio(struct buf * bp,struct bio * bip)5253 bdata2bio(struct buf *bp, struct bio *bip)
5254 {
5255 
5256 	if (!buf_mapped(bp)) {
5257 		KASSERT(unmapped_buf_allowed, ("unmapped"));
5258 		bip->bio_ma = bp->b_pages;
5259 		bip->bio_ma_n = bp->b_npages;
5260 		bip->bio_data = unmapped_buf;
5261 		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
5262 		bip->bio_flags |= BIO_UNMAPPED;
5263 		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
5264 		    PAGE_SIZE == bp->b_npages,
5265 		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
5266 		    (long long)bip->bio_length, bip->bio_ma_n));
5267 	} else {
5268 		bip->bio_data = bp->b_data;
5269 		bip->bio_ma = NULL;
5270 	}
5271 }
5272 
5273 struct memdesc
memdesc_bio(struct bio * bio)5274 memdesc_bio(struct bio *bio)
5275 {
5276 	if ((bio->bio_flags & BIO_VLIST) != 0)
5277 		return (memdesc_vlist((struct bus_dma_segment *)bio->bio_data,
5278 		    bio->bio_ma_n));
5279 
5280 	if ((bio->bio_flags & BIO_UNMAPPED) != 0)
5281 		return (memdesc_vmpages(bio->bio_ma, bio->bio_bcount,
5282 		    bio->bio_ma_offset));
5283 
5284 	return (memdesc_vaddr(bio->bio_data, bio->bio_bcount));
5285 }
5286 
5287 static int buf_pager_relbuf;
5288 SYSCTL_INT(_vfs, OID_AUTO, buf_pager_relbuf, CTLFLAG_RWTUN,
5289     &buf_pager_relbuf, 0,
5290     "Make buffer pager release buffers after reading");
5291 
5292 /*
5293  * The buffer pager.  It uses buffer reads to validate pages.
5294  *
5295  * In contrast to the generic local pager from vm/vnode_pager.c, this
5296  * pager correctly and easily handles volumes where the underlying
5297  * device block size is greater than the machine page size.  The
5298  * buffer cache transparently extends the requested page run to be
5299  * aligned at the block boundary, and does the necessary bogus page
5300  * replacements in the addends to avoid obliterating already valid
5301  * pages.
5302  *
5303  * The only non-trivial issue is that the exclusive busy state for
5304  * pages, which is assumed by the vm_pager_getpages() interface, is
5305  * incompatible with the VMIO buffer cache's desire to share-busy the
5306  * pages.  This function performs a trivial downgrade of the pages'
5307  * state before reading buffers, and a less trivial upgrade from the
5308  * shared-busy to excl-busy state after the read.
5309  */
5310 int
vfs_bio_getpages(struct vnode * vp,vm_page_t * ma,int count,int * rbehind,int * rahead,vbg_get_lblkno_t get_lblkno,vbg_get_blksize_t get_blksize)5311 vfs_bio_getpages(struct vnode *vp, vm_page_t *ma, int count,
5312     int *rbehind, int *rahead, vbg_get_lblkno_t get_lblkno,
5313     vbg_get_blksize_t get_blksize)
5314 {
5315 	vm_page_t m;
5316 	vm_object_t object;
5317 	struct buf *bp;
5318 	struct mount *mp;
5319 	daddr_t lbn, lbnp;
5320 	vm_ooffset_t la, lb, poff, poffe;
5321 	long bo_bs, bsize;
5322 	int br_flags, error, i, pgsin, pgsin_a, pgsin_b;
5323 	bool redo, lpart;
5324 
5325 	object = vp->v_object;
5326 	mp = vp->v_mount;
5327 	error = 0;
5328 	la = IDX_TO_OFF(ma[count - 1]->pindex);
5329 	if (la >= object->un_pager.vnp.vnp_size)
5330 		return (VM_PAGER_BAD);
5331 
5332 	/*
5333 	 * Change the meaning of la from where the last requested page starts
5334 	 * to where it ends, because that's the end of the requested region
5335 	 * and the start of the potential read-ahead region.
5336 	 */
5337 	la += PAGE_SIZE;
5338 	lpart = la > object->un_pager.vnp.vnp_size;
5339 	error = get_blksize(vp, get_lblkno(vp, IDX_TO_OFF(ma[0]->pindex)),
5340 	    &bo_bs);
5341 	if (error != 0)
5342 		return (VM_PAGER_ERROR);
5343 
5344 	/*
5345 	 * Calculate read-ahead, behind and total pages.
5346 	 */
5347 	pgsin = count;
5348 	lb = IDX_TO_OFF(ma[0]->pindex);
5349 	pgsin_b = OFF_TO_IDX(lb - rounddown2(lb, bo_bs));
5350 	pgsin += pgsin_b;
5351 	if (rbehind != NULL)
5352 		*rbehind = pgsin_b;
5353 	pgsin_a = OFF_TO_IDX(roundup2(la, bo_bs) - la);
5354 	if (la + IDX_TO_OFF(pgsin_a) >= object->un_pager.vnp.vnp_size)
5355 		pgsin_a = OFF_TO_IDX(roundup2(object->un_pager.vnp.vnp_size,
5356 		    PAGE_SIZE) - la);
5357 	pgsin += pgsin_a;
5358 	if (rahead != NULL)
5359 		*rahead = pgsin_a;
5360 	VM_CNT_INC(v_vnodein);
5361 	VM_CNT_ADD(v_vnodepgsin, pgsin);
5362 
5363 	br_flags = (mp != NULL && (mp->mnt_kern_flag & MNTK_UNMAPPED_BUFS)
5364 	    != 0) ? GB_UNMAPPED : 0;
5365 again:
5366 	for (i = 0; i < count; i++) {
5367 		if (ma[i] != bogus_page)
5368 			vm_page_busy_downgrade(ma[i]);
5369 	}
5370 
5371 	lbnp = -1;
5372 	for (i = 0; i < count; i++) {
5373 		m = ma[i];
5374 		if (m == bogus_page)
5375 			continue;
5376 
5377 		/*
5378 		 * Pages are shared busy and the object lock is not
5379 		 * owned, which together allow for the pages'
5380 		 * invalidation.  The racy test for validity avoids
5381 		 * useless creation of the buffer for the most typical
5382 		 * case when invalidation is not used in redo or for
5383 		 * parallel read.  The shared->excl upgrade loop at
5384 		 * the end of the function catches the race in a
5385 		 * reliable way (protected by the object lock).
5386 		 */
5387 		if (vm_page_all_valid(m))
5388 			continue;
5389 
5390 		poff = IDX_TO_OFF(m->pindex);
5391 		poffe = MIN(poff + PAGE_SIZE, object->un_pager.vnp.vnp_size);
5392 		for (; poff < poffe; poff += bsize) {
5393 			lbn = get_lblkno(vp, poff);
5394 			if (lbn == lbnp)
5395 				goto next_page;
5396 			lbnp = lbn;
5397 
5398 			error = get_blksize(vp, lbn, &bsize);
5399 			if (error == 0)
5400 				error = bread_gb(vp, lbn, bsize,
5401 				    curthread->td_ucred, br_flags, &bp);
5402 			if (error != 0)
5403 				goto end_pages;
5404 			if (bp->b_rcred == curthread->td_ucred) {
5405 				crfree(bp->b_rcred);
5406 				bp->b_rcred = NOCRED;
5407 			}
5408 			if (LIST_EMPTY(&bp->b_dep)) {
5409 				/*
5410 				 * Invalidation clears m->valid, but
5411 				 * may leave B_CACHE flag if the
5412 				 * buffer existed at the invalidation
5413 				 * time.  In this case, recycle the
5414 				 * buffer to do real read on next
5415 				 * bread() after redo.
5416 				 *
5417 				 * Otherwise B_RELBUF is not strictly
5418 				 * necessary, enable to reduce buf
5419 				 * cache pressure.
5420 				 */
5421 				if (buf_pager_relbuf ||
5422 				    !vm_page_all_valid(m))
5423 					bp->b_flags |= B_RELBUF;
5424 
5425 				bp->b_flags &= ~B_NOCACHE;
5426 				brelse(bp);
5427 			} else {
5428 				bqrelse(bp);
5429 			}
5430 		}
5431 		KASSERT(1 /* racy, enable for debugging */ ||
5432 		    vm_page_all_valid(m) || i == count - 1,
5433 		    ("buf %d %p invalid", i, m));
5434 		if (i == count - 1 && lpart) {
5435 			if (!vm_page_none_valid(m) &&
5436 			    !vm_page_all_valid(m))
5437 				vm_page_zero_invalid(m, TRUE);
5438 		}
5439 next_page:;
5440 	}
5441 end_pages:
5442 
5443 	redo = false;
5444 	for (i = 0; i < count; i++) {
5445 		if (ma[i] == bogus_page)
5446 			continue;
5447 		if (vm_page_busy_tryupgrade(ma[i]) == 0) {
5448 			vm_page_sunbusy(ma[i]);
5449 			ma[i] = vm_page_grab_unlocked(object, ma[i]->pindex,
5450 			    VM_ALLOC_NORMAL);
5451 		}
5452 
5453 		/*
5454 		 * Since the pages were only sbusy while neither the
5455 		 * buffer nor the object lock was held by us, or
5456 		 * reallocated while vm_page_grab() slept for busy
5457 		 * relinguish, they could have been invalidated.
5458 		 * Recheck the valid bits and re-read as needed.
5459 		 *
5460 		 * Note that the last page is made fully valid in the
5461 		 * read loop, and partial validity for the page at
5462 		 * index count - 1 could mean that the page was
5463 		 * invalidated or removed, so we must restart for
5464 		 * safety as well.
5465 		 */
5466 		if (!vm_page_all_valid(ma[i]))
5467 			redo = true;
5468 	}
5469 	if (redo && error == 0)
5470 		goto again;
5471 	return (error != 0 ? VM_PAGER_ERROR : VM_PAGER_OK);
5472 }
5473 
5474 #include "opt_ddb.h"
5475 #ifdef DDB
5476 #include <ddb/ddb.h>
5477 
5478 /* DDB command to show buffer data */
DB_SHOW_COMMAND(buffer,db_show_buffer)5479 DB_SHOW_COMMAND(buffer, db_show_buffer)
5480 {
5481 	/* get args */
5482 	struct buf *bp = (struct buf *)addr;
5483 #ifdef FULL_BUF_TRACKING
5484 	uint32_t i, j;
5485 #endif
5486 
5487 	if (!have_addr) {
5488 		db_printf("usage: show buffer <addr>\n");
5489 		return;
5490 	}
5491 
5492 	db_printf("buf at %p\n", bp);
5493 	db_printf("b_flags = 0x%b, b_xflags = 0x%b\n",
5494 	    (u_int)bp->b_flags, PRINT_BUF_FLAGS,
5495 	    (u_int)bp->b_xflags, PRINT_BUF_XFLAGS);
5496 	db_printf("b_vflags = 0x%b, b_ioflags = 0x%b\n",
5497 	    (u_int)bp->b_vflags, PRINT_BUF_VFLAGS,
5498 	    (u_int)bp->b_ioflags, PRINT_BIO_FLAGS);
5499 	db_printf(
5500 	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
5501 	    "b_bufobj = %p, b_data = %p\n"
5502 	    "b_blkno = %jd, b_lblkno = %jd, b_vp = %p, b_dep = %p\n",
5503 	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
5504 	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
5505 	    (intmax_t)bp->b_lblkno, bp->b_vp, bp->b_dep.lh_first);
5506 	db_printf("b_kvabase = %p, b_kvasize = %d\n",
5507 	    bp->b_kvabase, bp->b_kvasize);
5508 	if (bp->b_npages) {
5509 		int i;
5510 		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
5511 		for (i = 0; i < bp->b_npages; i++) {
5512 			vm_page_t m;
5513 			m = bp->b_pages[i];
5514 			if (m != NULL)
5515 				db_printf("(%p, 0x%lx, 0x%lx)", m->object,
5516 				    (u_long)m->pindex,
5517 				    (u_long)VM_PAGE_TO_PHYS(m));
5518 			else
5519 				db_printf("( ??? )");
5520 			if ((i + 1) < bp->b_npages)
5521 				db_printf(",");
5522 		}
5523 		db_printf("\n");
5524 	}
5525 	BUF_LOCKPRINTINFO(bp);
5526 #if defined(FULL_BUF_TRACKING)
5527 	db_printf("b_io_tracking: b_io_tcnt = %u\n", bp->b_io_tcnt);
5528 
5529 	i = bp->b_io_tcnt % BUF_TRACKING_SIZE;
5530 	for (j = 1; j <= BUF_TRACKING_SIZE; j++) {
5531 		if (bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)] == NULL)
5532 			continue;
5533 		db_printf(" %2u: %s\n", j,
5534 		    bp->b_io_tracking[BUF_TRACKING_ENTRY(i - j)]);
5535 	}
5536 #elif defined(BUF_TRACKING)
5537 	db_printf("b_io_tracking: %s\n", bp->b_io_tracking);
5538 #endif
5539 }
5540 
DB_SHOW_COMMAND_FLAGS(bufqueues,bufqueues,DB_CMD_MEMSAFE)5541 DB_SHOW_COMMAND_FLAGS(bufqueues, bufqueues, DB_CMD_MEMSAFE)
5542 {
5543 	struct bufdomain *bd;
5544 	struct buf *bp;
5545 	long total;
5546 	int i, j, cnt;
5547 
5548 	db_printf("bqempty: %d\n", bqempty.bq_len);
5549 
5550 	for (i = 0; i < buf_domains; i++) {
5551 		bd = &bdomain[i];
5552 		db_printf("Buf domain %d\n", i);
5553 		db_printf("\tfreebufs\t%d\n", bd->bd_freebuffers);
5554 		db_printf("\tlofreebufs\t%d\n", bd->bd_lofreebuffers);
5555 		db_printf("\thifreebufs\t%d\n", bd->bd_hifreebuffers);
5556 		db_printf("\n");
5557 		db_printf("\tbufspace\t%ld\n", bd->bd_bufspace);
5558 		db_printf("\tmaxbufspace\t%ld\n", bd->bd_maxbufspace);
5559 		db_printf("\thibufspace\t%ld\n", bd->bd_hibufspace);
5560 		db_printf("\tlobufspace\t%ld\n", bd->bd_lobufspace);
5561 		db_printf("\tbufspacethresh\t%ld\n", bd->bd_bufspacethresh);
5562 		db_printf("\n");
5563 		db_printf("\tnumdirtybuffers\t%d\n", bd->bd_numdirtybuffers);
5564 		db_printf("\tlodirtybuffers\t%d\n", bd->bd_lodirtybuffers);
5565 		db_printf("\thidirtybuffers\t%d\n", bd->bd_hidirtybuffers);
5566 		db_printf("\tdirtybufthresh\t%d\n", bd->bd_dirtybufthresh);
5567 		db_printf("\n");
5568 		total = 0;
5569 		TAILQ_FOREACH(bp, &bd->bd_cleanq->bq_queue, b_freelist)
5570 			total += bp->b_bufsize;
5571 		db_printf("\tcleanq count\t%d (%ld)\n",
5572 		    bd->bd_cleanq->bq_len, total);
5573 		total = 0;
5574 		TAILQ_FOREACH(bp, &bd->bd_dirtyq.bq_queue, b_freelist)
5575 			total += bp->b_bufsize;
5576 		db_printf("\tdirtyq count\t%d (%ld)\n",
5577 		    bd->bd_dirtyq.bq_len, total);
5578 		db_printf("\twakeup\t\t%d\n", bd->bd_wanted);
5579 		db_printf("\tlim\t\t%d\n", bd->bd_lim);
5580 		db_printf("\tCPU ");
5581 		for (j = 0; j <= mp_maxid; j++)
5582 			db_printf("%d, ", bd->bd_subq[j].bq_len);
5583 		db_printf("\n");
5584 		cnt = 0;
5585 		total = 0;
5586 		for (j = 0; j < nbuf; j++) {
5587 			bp = nbufp(j);
5588 			if (bp->b_domain == i && BUF_ISLOCKED(bp)) {
5589 				cnt++;
5590 				total += bp->b_bufsize;
5591 			}
5592 		}
5593 		db_printf("\tLocked buffers: %d space %ld\n", cnt, total);
5594 		cnt = 0;
5595 		total = 0;
5596 		for (j = 0; j < nbuf; j++) {
5597 			bp = nbufp(j);
5598 			if (bp->b_domain == i) {
5599 				cnt++;
5600 				total += bp->b_bufsize;
5601 			}
5602 		}
5603 		db_printf("\tTotal buffers: %d space %ld\n", cnt, total);
5604 	}
5605 }
5606 
DB_SHOW_COMMAND_FLAGS(lockedbufs,lockedbufs,DB_CMD_MEMSAFE)5607 DB_SHOW_COMMAND_FLAGS(lockedbufs, lockedbufs, DB_CMD_MEMSAFE)
5608 {
5609 	struct buf *bp;
5610 	int i;
5611 
5612 	for (i = 0; i < nbuf; i++) {
5613 		bp = nbufp(i);
5614 		if (BUF_ISLOCKED(bp)) {
5615 			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5616 			db_printf("\n");
5617 			if (db_pager_quit)
5618 				break;
5619 		}
5620 	}
5621 }
5622 
DB_SHOW_COMMAND(vnodebufs,db_show_vnodebufs)5623 DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
5624 {
5625 	struct vnode *vp;
5626 	struct buf *bp;
5627 
5628 	if (!have_addr) {
5629 		db_printf("usage: show vnodebufs <addr>\n");
5630 		return;
5631 	}
5632 	vp = (struct vnode *)addr;
5633 	db_printf("Clean buffers:\n");
5634 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
5635 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5636 		db_printf("\n");
5637 	}
5638 	db_printf("Dirty buffers:\n");
5639 	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
5640 		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
5641 		db_printf("\n");
5642 	}
5643 }
5644 
DB_COMMAND_FLAGS(countfreebufs,db_coundfreebufs,DB_CMD_MEMSAFE)5645 DB_COMMAND_FLAGS(countfreebufs, db_coundfreebufs, DB_CMD_MEMSAFE)
5646 {
5647 	struct buf *bp;
5648 	int i, used = 0, nfree = 0;
5649 
5650 	if (have_addr) {
5651 		db_printf("usage: countfreebufs\n");
5652 		return;
5653 	}
5654 
5655 	for (i = 0; i < nbuf; i++) {
5656 		bp = nbufp(i);
5657 		if (bp->b_qindex == QUEUE_EMPTY)
5658 			nfree++;
5659 		else
5660 			used++;
5661 	}
5662 
5663 	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
5664 	    nfree + used);
5665 	db_printf("numfreebuffers is %d\n", numfreebuffers);
5666 }
5667 #endif /* DDB */
5668