1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com> 4 * 5 * Uses a block device as cache for other block devices; optimized for SSDs. 6 * All allocation is done in buckets, which should match the erase block size 7 * of the device. 8 * 9 * Buckets containing cached data are kept on a heap sorted by priority; 10 * bucket priority is increased on cache hit, and periodically all the buckets 11 * on the heap have their priority scaled down. This currently is just used as 12 * an LRU but in the future should allow for more intelligent heuristics. 13 * 14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the 15 * counter. Garbage collection is used to remove stale pointers. 16 * 17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather 18 * as keys are inserted we only sort the pages that have not yet been written. 19 * When garbage collection is run, we resort the entire node. 20 * 21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst. 22 */ 23 24 #include "bcache.h" 25 #include "btree.h" 26 #include "debug.h" 27 #include "extents.h" 28 29 #include <linux/slab.h> 30 #include <linux/bitops.h> 31 #include <linux/hash.h> 32 #include <linux/kthread.h> 33 #include <linux/prefetch.h> 34 #include <linux/random.h> 35 #include <linux/rcupdate.h> 36 #include <linux/sched/clock.h> 37 #include <linux/rculist.h> 38 #include <linux/delay.h> 39 #include <linux/sort.h> 40 #include <trace/events/bcache.h> 41 42 /* 43 * Todo: 44 * register_bcache: Return errors out to userspace correctly 45 * 46 * Writeback: don't undirty key until after a cache flush 47 * 48 * Create an iterator for key pointers 49 * 50 * On btree write error, mark bucket such that it won't be freed from the cache 51 * 52 * Journalling: 53 * Check for bad keys in replay 54 * Propagate barriers 55 * Refcount journal entries in journal_replay 56 * 57 * Garbage collection: 58 * Finish incremental gc 59 * Gc should free old UUIDs, data for invalid UUIDs 60 * 61 * Provide a way to list backing device UUIDs we have data cached for, and 62 * probably how long it's been since we've seen them, and a way to invalidate 63 * dirty data for devices that will never be attached again 64 * 65 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so 66 * that based on that and how much dirty data we have we can keep writeback 67 * from being starved 68 * 69 * Add a tracepoint or somesuch to watch for writeback starvation 70 * 71 * When btree depth > 1 and splitting an interior node, we have to make sure 72 * alloc_bucket() cannot fail. This should be true but is not completely 73 * obvious. 74 * 75 * Plugging? 76 * 77 * If data write is less than hard sector size of ssd, round up offset in open 78 * bucket to the next whole sector 79 * 80 * Superblock needs to be fleshed out for multiple cache devices 81 * 82 * Add a sysfs tunable for the number of writeback IOs in flight 83 * 84 * Add a sysfs tunable for the number of open data buckets 85 * 86 * IO tracking: Can we track when one process is doing io on behalf of another? 87 * IO tracking: Don't use just an average, weigh more recent stuff higher 88 * 89 * Test module load/unload 90 */ 91 92 #define MAX_GC_TIMES_SHIFT 7 /* 128 loops */ 93 #define GC_NODES_MIN 10 94 #define GC_SLEEP_MS_MIN 10 95 #define GC_SLEEP_MS 100 96 97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) 98 99 #define PTR_HASH(c, k) \ 100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) 101 102 static struct workqueue_struct *btree_io_wq; 103 104 #define insert_lock(s, b) ((b)->level <= (s)->lock) 105 106 107 static inline struct bset *write_block(struct btree *b) 108 { 109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache); 110 } 111 112 static void bch_btree_init_next(struct btree *b) 113 { 114 /* If not a leaf node, always sort */ 115 if (b->level && b->keys.nsets) 116 bch_btree_sort(&b->keys, &b->c->sort); 117 else 118 bch_btree_sort_lazy(&b->keys, &b->c->sort); 119 120 if (b->written < btree_blocks(b)) 121 bch_bset_init_next(&b->keys, write_block(b), 122 bset_magic(&b->c->cache->sb)); 123 124 } 125 126 /* Btree key manipulation */ 127 128 void bkey_put(struct cache_set *c, struct bkey *k) 129 { 130 unsigned int i; 131 132 for (i = 0; i < KEY_PTRS(k); i++) 133 if (ptr_available(c, k, i)) 134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); 135 } 136 137 /* Btree IO */ 138 139 static uint64_t btree_csum_set(struct btree *b, struct bset *i) 140 { 141 uint64_t crc = b->key.ptr[0]; 142 void *data = (void *) i + 8, *end = bset_bkey_last(i); 143 144 crc = crc64_be(crc, data, end - data); 145 return crc ^ 0xffffffffffffffffULL; 146 } 147 148 void bch_btree_node_read_done(struct btree *b) 149 { 150 const char *err = "bad btree header"; 151 struct bset *i = btree_bset_first(b); 152 struct btree_iter *iter; 153 154 /* 155 * c->fill_iter can allocate an iterator with more memory space 156 * than static MAX_BSETS. 157 * See the comment arount cache_set->fill_iter. 158 */ 159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO); 160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size; 161 iter->used = 0; 162 163 #ifdef CONFIG_BCACHE_DEBUG 164 iter->b = &b->keys; 165 #endif 166 167 if (!i->seq) 168 goto err; 169 170 for (; 171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq; 172 i = write_block(b)) { 173 err = "unsupported bset version"; 174 if (i->version > BCACHE_BSET_VERSION) 175 goto err; 176 177 err = "bad btree header"; 178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) > 179 btree_blocks(b)) 180 goto err; 181 182 err = "bad magic"; 183 if (i->magic != bset_magic(&b->c->cache->sb)) 184 goto err; 185 186 err = "bad checksum"; 187 switch (i->version) { 188 case 0: 189 if (i->csum != csum_set(i)) 190 goto err; 191 break; 192 case BCACHE_BSET_VERSION: 193 if (i->csum != btree_csum_set(b, i)) 194 goto err; 195 break; 196 } 197 198 err = "empty set"; 199 if (i != b->keys.set[0].data && !i->keys) 200 goto err; 201 202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i)); 203 204 b->written += set_blocks(i, block_bytes(b->c->cache)); 205 } 206 207 err = "corrupted btree"; 208 for (i = write_block(b); 209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key); 210 i = ((void *) i) + block_bytes(b->c->cache)) 211 if (i->seq == b->keys.set[0].data->seq) 212 goto err; 213 214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort); 215 216 i = b->keys.set[0].data; 217 err = "short btree key"; 218 if (b->keys.set[0].size && 219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0) 220 goto err; 221 222 if (b->written < btree_blocks(b)) 223 bch_bset_init_next(&b->keys, write_block(b), 224 bset_magic(&b->c->cache->sb)); 225 out: 226 mempool_free(iter, &b->c->fill_iter); 227 return; 228 err: 229 set_btree_node_io_error(b); 230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys", 231 err, PTR_BUCKET_NR(b->c, &b->key, 0), 232 bset_block_offset(b, i), i->keys); 233 goto out; 234 } 235 236 static void btree_node_read_endio(struct bio *bio) 237 { 238 struct closure *cl = bio->bi_private; 239 240 closure_put(cl); 241 } 242 243 static void bch_btree_node_read(struct btree *b) 244 { 245 uint64_t start_time = local_clock(); 246 struct closure cl; 247 struct bio *bio; 248 249 trace_bcache_btree_read(b); 250 251 closure_init_stack(&cl); 252 253 bio = bch_bbio_alloc(b->c); 254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9; 255 bio->bi_end_io = btree_node_read_endio; 256 bio->bi_private = &cl; 257 bio->bi_opf = REQ_OP_READ | REQ_META; 258 259 bch_bio_map(bio, b->keys.set[0].data); 260 261 bch_submit_bbio(bio, b->c, &b->key, 0); 262 closure_sync(&cl); 263 264 if (bio->bi_status) 265 set_btree_node_io_error(b); 266 267 bch_bbio_free(bio, b->c); 268 269 if (btree_node_io_error(b)) 270 goto err; 271 272 bch_btree_node_read_done(b); 273 bch_time_stats_update(&b->c->btree_read_time, start_time); 274 275 return; 276 err: 277 bch_cache_set_error(b->c, "io error reading bucket %zu", 278 PTR_BUCKET_NR(b->c, &b->key, 0)); 279 } 280 281 static void btree_complete_write(struct btree *b, struct btree_write *w) 282 { 283 if (w->prio_blocked && 284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) 285 wake_up_allocators(b->c); 286 287 if (w->journal) { 288 atomic_dec_bug(w->journal); 289 __closure_wake_up(&b->c->journal.wait); 290 } 291 292 w->prio_blocked = 0; 293 w->journal = NULL; 294 } 295 296 static CLOSURE_CALLBACK(btree_node_write_unlock) 297 { 298 closure_type(b, struct btree, io); 299 300 up(&b->io_mutex); 301 } 302 303 static CLOSURE_CALLBACK(__btree_node_write_done) 304 { 305 closure_type(b, struct btree, io); 306 struct btree_write *w = btree_prev_write(b); 307 308 bch_bbio_free(b->bio, b->c); 309 b->bio = NULL; 310 btree_complete_write(b, w); 311 312 if (btree_node_dirty(b)) 313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 314 315 closure_return_with_destructor(cl, btree_node_write_unlock); 316 } 317 318 static CLOSURE_CALLBACK(btree_node_write_done) 319 { 320 closure_type(b, struct btree, io); 321 322 bio_free_pages(b->bio); 323 __btree_node_write_done(&cl->work); 324 } 325 326 static void btree_node_write_endio(struct bio *bio) 327 { 328 struct closure *cl = bio->bi_private; 329 struct btree *b = container_of(cl, struct btree, io); 330 331 if (bio->bi_status) 332 set_btree_node_io_error(b); 333 334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree"); 335 closure_put(cl); 336 } 337 338 static void do_btree_node_write(struct btree *b) 339 { 340 struct closure *cl = &b->io; 341 struct bset *i = btree_bset_last(b); 342 BKEY_PADDED(key) k; 343 344 i->version = BCACHE_BSET_VERSION; 345 i->csum = btree_csum_set(b, i); 346 347 BUG_ON(b->bio); 348 b->bio = bch_bbio_alloc(b->c); 349 350 b->bio->bi_end_io = btree_node_write_endio; 351 b->bio->bi_private = cl; 352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache)); 353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA; 354 bch_bio_map(b->bio, i); 355 356 /* 357 * If we're appending to a leaf node, we don't technically need FUA - 358 * this write just needs to be persisted before the next journal write, 359 * which will be marked FLUSH|FUA. 360 * 361 * Similarly if we're writing a new btree root - the pointer is going to 362 * be in the next journal entry. 363 * 364 * But if we're writing a new btree node (that isn't a root) or 365 * appending to a non leaf btree node, we need either FUA or a flush 366 * when we write the parent with the new pointer. FUA is cheaper than a 367 * flush, and writes appending to leaf nodes aren't blocking anything so 368 * just make all btree node writes FUA to keep things sane. 369 */ 370 371 bkey_copy(&k.key, &b->key); 372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + 373 bset_sector_offset(&b->keys, i)); 374 375 if (!bch_bio_alloc_pages(b->bio, GFP_NOWAIT)) { 376 struct bio_vec *bv; 377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); 378 struct bvec_iter_all iter_all; 379 380 bio_for_each_segment_all(bv, b->bio, iter_all) { 381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE); 382 addr += PAGE_SIZE; 383 } 384 385 bch_submit_bbio(b->bio, b->c, &k.key, 0); 386 387 continue_at(cl, btree_node_write_done, NULL); 388 } else { 389 /* 390 * No problem for multipage bvec since the bio is 391 * just allocated 392 */ 393 b->bio->bi_vcnt = 0; 394 bch_bio_map(b->bio, i); 395 396 bch_submit_bbio(b->bio, b->c, &k.key, 0); 397 398 closure_sync(cl); 399 continue_at_nobarrier(cl, __btree_node_write_done, NULL); 400 } 401 } 402 403 void __bch_btree_node_write(struct btree *b, struct closure *parent) 404 { 405 struct bset *i = btree_bset_last(b); 406 407 lockdep_assert_held(&b->write_lock); 408 409 trace_bcache_btree_write(b); 410 411 BUG_ON(current->bio_list); 412 BUG_ON(b->written >= btree_blocks(b)); 413 BUG_ON(b->written && !i->keys); 414 BUG_ON(btree_bset_first(b)->seq != i->seq); 415 bch_check_keys(&b->keys, "writing"); 416 417 cancel_delayed_work(&b->work); 418 419 /* If caller isn't waiting for write, parent refcount is cache set */ 420 down(&b->io_mutex); 421 closure_init(&b->io, parent ?: &b->c->cl); 422 423 clear_bit(BTREE_NODE_dirty, &b->flags); 424 change_bit(BTREE_NODE_write_idx, &b->flags); 425 426 do_btree_node_write(b); 427 428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size, 429 &b->c->cache->btree_sectors_written); 430 431 b->written += set_blocks(i, block_bytes(b->c->cache)); 432 } 433 434 void bch_btree_node_write(struct btree *b, struct closure *parent) 435 { 436 unsigned int nsets = b->keys.nsets; 437 438 lockdep_assert_held(&b->lock); 439 440 __bch_btree_node_write(b, parent); 441 442 /* 443 * do verify if there was more than one set initially (i.e. we did a 444 * sort) and we sorted down to a single set: 445 */ 446 if (nsets && !b->keys.nsets) 447 bch_btree_verify(b); 448 449 bch_btree_init_next(b); 450 } 451 452 static void bch_btree_node_write_sync(struct btree *b) 453 { 454 struct closure cl; 455 456 closure_init_stack(&cl); 457 458 mutex_lock(&b->write_lock); 459 bch_btree_node_write(b, &cl); 460 mutex_unlock(&b->write_lock); 461 462 closure_sync(&cl); 463 } 464 465 static void btree_node_write_work(struct work_struct *w) 466 { 467 struct btree *b = container_of(to_delayed_work(w), struct btree, work); 468 469 mutex_lock(&b->write_lock); 470 if (btree_node_dirty(b)) 471 __bch_btree_node_write(b, NULL); 472 mutex_unlock(&b->write_lock); 473 } 474 475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) 476 { 477 struct bset *i = btree_bset_last(b); 478 struct btree_write *w = btree_current_write(b); 479 480 lockdep_assert_held(&b->write_lock); 481 482 BUG_ON(!b->written); 483 BUG_ON(!i->keys); 484 485 if (!btree_node_dirty(b)) 486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); 487 488 set_btree_node_dirty(b); 489 490 /* 491 * w->journal is always the oldest journal pin of all bkeys 492 * in the leaf node, to make sure the oldest jset seq won't 493 * be increased before this btree node is flushed. 494 */ 495 if (journal_ref) { 496 if (w->journal && 497 journal_pin_cmp(b->c, w->journal, journal_ref)) { 498 atomic_dec_bug(w->journal); 499 w->journal = NULL; 500 } 501 502 if (!w->journal) { 503 w->journal = journal_ref; 504 atomic_inc(w->journal); 505 } 506 } 507 508 /* Force write if set is too big */ 509 if (set_bytes(i) > PAGE_SIZE - 48 && 510 !current->bio_list) 511 bch_btree_node_write(b, NULL); 512 } 513 514 /* 515 * Btree in memory cache - allocation/freeing 516 * mca -> memory cache 517 */ 518 519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \ 520 ? c->root->level : 1) * 8 + 16) 521 #define mca_can_free(c) \ 522 max_t(int, 0, c->btree_cache_used - mca_reserve(c)) 523 524 static void mca_data_free(struct btree *b) 525 { 526 BUG_ON(b->io_mutex.count != 1); 527 528 bch_btree_keys_free(&b->keys); 529 530 b->c->btree_cache_used--; 531 list_move(&b->list, &b->c->btree_cache_freed); 532 } 533 534 static void mca_bucket_free(struct btree *b) 535 { 536 BUG_ON(btree_node_dirty(b)); 537 538 b->key.ptr[0] = 0; 539 hlist_del_init_rcu(&b->hash); 540 list_move(&b->list, &b->c->btree_cache_freeable); 541 } 542 543 static unsigned int btree_order(struct bkey *k) 544 { 545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); 546 } 547 548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) 549 { 550 if (!bch_btree_keys_alloc(&b->keys, 551 max_t(unsigned int, 552 ilog2(b->c->btree_pages), 553 btree_order(k)), 554 gfp)) { 555 b->c->btree_cache_used++; 556 list_move(&b->list, &b->c->btree_cache); 557 } else { 558 list_move(&b->list, &b->c->btree_cache_freed); 559 } 560 } 561 562 #ifdef CONFIG_PROVE_LOCKING 563 static int btree_lock_cmp_fn(const struct lockdep_map *_a, 564 const struct lockdep_map *_b) 565 { 566 const struct btree *a = container_of(_a, struct btree, lock.dep_map); 567 const struct btree *b = container_of(_b, struct btree, lock.dep_map); 568 569 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key); 570 } 571 572 static void btree_lock_print_fn(const struct lockdep_map *map) 573 { 574 const struct btree *b = container_of(map, struct btree, lock.dep_map); 575 576 printk(KERN_CONT " l=%u %llu:%llu", b->level, 577 KEY_INODE(&b->key), KEY_OFFSET(&b->key)); 578 } 579 #endif 580 581 static struct btree *mca_bucket_alloc(struct cache_set *c, 582 struct bkey *k, gfp_t gfp) 583 { 584 /* 585 * kzalloc() is necessary here for initialization, 586 * see code comments in bch_btree_keys_init(). 587 */ 588 struct btree *b = kzalloc(sizeof(struct btree), gfp); 589 590 if (!b) 591 return NULL; 592 593 init_rwsem(&b->lock); 594 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn); 595 mutex_init(&b->write_lock); 596 lockdep_set_novalidate_class(&b->write_lock); 597 INIT_LIST_HEAD(&b->list); 598 INIT_DELAYED_WORK(&b->work, btree_node_write_work); 599 b->c = c; 600 sema_init(&b->io_mutex, 1); 601 602 mca_data_alloc(b, k, gfp); 603 return b; 604 } 605 606 static int mca_reap(struct btree *b, unsigned int min_order, bool flush) 607 { 608 struct closure cl; 609 610 closure_init_stack(&cl); 611 lockdep_assert_held(&b->c->bucket_lock); 612 613 if (!down_write_trylock(&b->lock)) 614 return -ENOMEM; 615 616 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data); 617 618 if (b->keys.page_order < min_order) 619 goto out_unlock; 620 621 if (!flush) { 622 if (btree_node_dirty(b)) 623 goto out_unlock; 624 625 if (down_trylock(&b->io_mutex)) 626 goto out_unlock; 627 up(&b->io_mutex); 628 } 629 630 retry: 631 /* 632 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by 633 * __bch_btree_node_write(). To avoid an extra flush, acquire 634 * b->write_lock before checking BTREE_NODE_dirty bit. 635 */ 636 mutex_lock(&b->write_lock); 637 /* 638 * If this btree node is selected in btree_flush_write() by journal 639 * code, delay and retry until the node is flushed by journal code 640 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write(). 641 */ 642 if (btree_node_journal_flush(b)) { 643 pr_debug("bnode %p is flushing by journal, retry\n", b); 644 mutex_unlock(&b->write_lock); 645 udelay(1); 646 goto retry; 647 } 648 649 if (btree_node_dirty(b)) 650 __bch_btree_node_write(b, &cl); 651 mutex_unlock(&b->write_lock); 652 653 closure_sync(&cl); 654 655 /* wait for any in flight btree write */ 656 down(&b->io_mutex); 657 up(&b->io_mutex); 658 659 return 0; 660 out_unlock: 661 rw_unlock(true, b); 662 return -ENOMEM; 663 } 664 665 static unsigned long bch_mca_scan(struct shrinker *shrink, 666 struct shrink_control *sc) 667 { 668 struct cache_set *c = shrink->private_data; 669 struct btree *b, *t; 670 unsigned long i, nr = sc->nr_to_scan; 671 unsigned long freed = 0; 672 unsigned int btree_cache_used; 673 674 if (c->shrinker_disabled) 675 return SHRINK_STOP; 676 677 if (c->btree_cache_alloc_lock) 678 return SHRINK_STOP; 679 680 /* Return -1 if we can't do anything right now */ 681 if (sc->gfp_mask & __GFP_IO) 682 mutex_lock(&c->bucket_lock); 683 else if (!mutex_trylock(&c->bucket_lock)) 684 return -1; 685 686 /* 687 * It's _really_ critical that we don't free too many btree nodes - we 688 * have to always leave ourselves a reserve. The reserve is how we 689 * guarantee that allocating memory for a new btree node can always 690 * succeed, so that inserting keys into the btree can always succeed and 691 * IO can always make forward progress: 692 */ 693 nr /= c->btree_pages; 694 if (nr == 0) 695 nr = 1; 696 nr = min_t(unsigned long, nr, mca_can_free(c)); 697 698 i = 0; 699 btree_cache_used = c->btree_cache_used; 700 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) { 701 if (nr <= 0) 702 goto out; 703 704 if (!mca_reap(b, 0, false)) { 705 mca_data_free(b); 706 rw_unlock(true, b); 707 freed++; 708 } 709 nr--; 710 i++; 711 } 712 713 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) { 714 if (nr <= 0 || i >= btree_cache_used) 715 goto out; 716 717 if (!mca_reap(b, 0, false)) { 718 mca_bucket_free(b); 719 mca_data_free(b); 720 rw_unlock(true, b); 721 freed++; 722 } 723 724 nr--; 725 i++; 726 } 727 out: 728 mutex_unlock(&c->bucket_lock); 729 return freed * c->btree_pages; 730 } 731 732 static unsigned long bch_mca_count(struct shrinker *shrink, 733 struct shrink_control *sc) 734 { 735 struct cache_set *c = shrink->private_data; 736 737 if (c->shrinker_disabled) 738 return 0; 739 740 if (c->btree_cache_alloc_lock) 741 return 0; 742 743 return mca_can_free(c) * c->btree_pages; 744 } 745 746 void bch_btree_cache_free(struct cache_set *c) 747 { 748 struct btree *b; 749 struct closure cl; 750 751 closure_init_stack(&cl); 752 753 if (c->shrink) 754 shrinker_free(c->shrink); 755 756 mutex_lock(&c->bucket_lock); 757 758 #ifdef CONFIG_BCACHE_DEBUG 759 if (c->verify_data) 760 list_move(&c->verify_data->list, &c->btree_cache); 761 762 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb))); 763 #endif 764 765 list_splice(&c->btree_cache_freeable, 766 &c->btree_cache); 767 768 while (!list_empty(&c->btree_cache)) { 769 b = list_first_entry(&c->btree_cache, struct btree, list); 770 771 /* 772 * This function is called by cache_set_free(), no I/O 773 * request on cache now, it is unnecessary to acquire 774 * b->write_lock before clearing BTREE_NODE_dirty anymore. 775 */ 776 if (btree_node_dirty(b)) { 777 btree_complete_write(b, btree_current_write(b)); 778 clear_bit(BTREE_NODE_dirty, &b->flags); 779 } 780 mca_data_free(b); 781 } 782 783 while (!list_empty(&c->btree_cache_freed)) { 784 b = list_first_entry(&c->btree_cache_freed, 785 struct btree, list); 786 list_del(&b->list); 787 cancel_delayed_work_sync(&b->work); 788 kfree(b); 789 } 790 791 mutex_unlock(&c->bucket_lock); 792 } 793 794 int bch_btree_cache_alloc(struct cache_set *c) 795 { 796 unsigned int i; 797 798 for (i = 0; i < mca_reserve(c); i++) 799 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) 800 return -ENOMEM; 801 802 list_splice_init(&c->btree_cache, 803 &c->btree_cache_freeable); 804 805 #ifdef CONFIG_BCACHE_DEBUG 806 mutex_init(&c->verify_lock); 807 808 c->verify_ondisk = (void *) 809 __get_free_pages(GFP_KERNEL|__GFP_COMP, 810 ilog2(meta_bucket_pages(&c->cache->sb))); 811 if (!c->verify_ondisk) { 812 /* 813 * Don't worry about the mca_rereserve buckets 814 * allocated in previous for-loop, they will be 815 * handled properly in bch_cache_set_unregister(). 816 */ 817 return -ENOMEM; 818 } 819 820 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); 821 822 if (c->verify_data && 823 c->verify_data->keys.set->data) 824 list_del_init(&c->verify_data->list); 825 else 826 c->verify_data = NULL; 827 #endif 828 829 c->shrink = shrinker_alloc(0, "md-bcache:%pU", c->set_uuid); 830 if (!c->shrink) { 831 pr_warn("bcache: %s: could not allocate shrinker\n", __func__); 832 return 0; 833 } 834 835 c->shrink->count_objects = bch_mca_count; 836 c->shrink->scan_objects = bch_mca_scan; 837 c->shrink->seeks = 4; 838 c->shrink->batch = c->btree_pages * 2; 839 c->shrink->private_data = c; 840 841 shrinker_register(c->shrink); 842 843 return 0; 844 } 845 846 /* Btree in memory cache - hash table */ 847 848 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) 849 { 850 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; 851 } 852 853 static struct btree *mca_find(struct cache_set *c, struct bkey *k) 854 { 855 struct btree *b; 856 857 rcu_read_lock(); 858 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) 859 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) 860 goto out; 861 b = NULL; 862 out: 863 rcu_read_unlock(); 864 return b; 865 } 866 867 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op) 868 { 869 spin_lock(&c->btree_cannibalize_lock); 870 if (likely(c->btree_cache_alloc_lock == NULL)) { 871 c->btree_cache_alloc_lock = current; 872 } else if (c->btree_cache_alloc_lock != current) { 873 if (op) 874 prepare_to_wait(&c->btree_cache_wait, &op->wait, 875 TASK_UNINTERRUPTIBLE); 876 spin_unlock(&c->btree_cannibalize_lock); 877 return -EINTR; 878 } 879 spin_unlock(&c->btree_cannibalize_lock); 880 881 return 0; 882 } 883 884 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op, 885 struct bkey *k) 886 { 887 struct btree *b; 888 889 trace_bcache_btree_cache_cannibalize(c); 890 891 if (mca_cannibalize_lock(c, op)) 892 return ERR_PTR(-EINTR); 893 894 list_for_each_entry_reverse(b, &c->btree_cache, list) 895 if (!mca_reap(b, btree_order(k), false)) 896 return b; 897 898 list_for_each_entry_reverse(b, &c->btree_cache, list) 899 if (!mca_reap(b, btree_order(k), true)) 900 return b; 901 902 WARN(1, "btree cache cannibalize failed\n"); 903 return ERR_PTR(-ENOMEM); 904 } 905 906 /* 907 * We can only have one thread cannibalizing other cached btree nodes at a time, 908 * or we'll deadlock. We use an open coded mutex to ensure that, which a 909 * cannibalize_bucket() will take. This means every time we unlock the root of 910 * the btree, we need to release this lock if we have it held. 911 */ 912 void bch_cannibalize_unlock(struct cache_set *c) 913 { 914 spin_lock(&c->btree_cannibalize_lock); 915 if (c->btree_cache_alloc_lock == current) { 916 c->btree_cache_alloc_lock = NULL; 917 wake_up(&c->btree_cache_wait); 918 } 919 spin_unlock(&c->btree_cannibalize_lock); 920 } 921 922 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op, 923 struct bkey *k, int level) 924 { 925 struct btree *b; 926 927 BUG_ON(current->bio_list); 928 929 lockdep_assert_held(&c->bucket_lock); 930 931 if (mca_find(c, k)) 932 return NULL; 933 934 /* btree_free() doesn't free memory; it sticks the node on the end of 935 * the list. Check if there's any freed nodes there: 936 */ 937 list_for_each_entry(b, &c->btree_cache_freeable, list) 938 if (!mca_reap(b, btree_order(k), false)) 939 goto out; 940 941 /* We never free struct btree itself, just the memory that holds the on 942 * disk node. Check the freed list before allocating a new one: 943 */ 944 list_for_each_entry(b, &c->btree_cache_freed, list) 945 if (!mca_reap(b, 0, false)) { 946 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); 947 if (!b->keys.set[0].data) 948 goto err; 949 else 950 goto out; 951 } 952 953 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); 954 if (!b) 955 goto err; 956 957 BUG_ON(!down_write_trylock(&b->lock)); 958 if (!b->keys.set->data) 959 goto err; 960 out: 961 BUG_ON(b->io_mutex.count != 1); 962 963 bkey_copy(&b->key, k); 964 list_move(&b->list, &c->btree_cache); 965 hlist_del_init_rcu(&b->hash); 966 hlist_add_head_rcu(&b->hash, mca_hash(c, k)); 967 968 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); 969 b->parent = (void *) ~0UL; 970 b->flags = 0; 971 b->written = 0; 972 b->level = level; 973 974 if (!b->level) 975 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops, 976 &b->c->expensive_debug_checks); 977 else 978 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops, 979 &b->c->expensive_debug_checks); 980 981 return b; 982 err: 983 if (b) 984 rw_unlock(true, b); 985 986 b = mca_cannibalize(c, op, k); 987 if (!IS_ERR(b)) 988 goto out; 989 990 return b; 991 } 992 993 /* 994 * bch_btree_node_get - find a btree node in the cache and lock it, reading it 995 * in from disk if necessary. 996 * 997 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN. 998 * 999 * The btree node will have either a read or a write lock held, depending on 1000 * level and op->lock. 1001 * 1002 * Note: Only error code or btree pointer will be returned, it is unncessary 1003 * for callers to check NULL pointer. 1004 */ 1005 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op, 1006 struct bkey *k, int level, bool write, 1007 struct btree *parent) 1008 { 1009 int i = 0; 1010 struct btree *b; 1011 1012 BUG_ON(level < 0); 1013 retry: 1014 b = mca_find(c, k); 1015 1016 if (!b) { 1017 if (current->bio_list) 1018 return ERR_PTR(-EAGAIN); 1019 1020 mutex_lock(&c->bucket_lock); 1021 b = mca_alloc(c, op, k, level); 1022 mutex_unlock(&c->bucket_lock); 1023 1024 if (!b) 1025 goto retry; 1026 if (IS_ERR(b)) 1027 return b; 1028 1029 bch_btree_node_read(b); 1030 1031 if (!write) 1032 downgrade_write(&b->lock); 1033 } else { 1034 rw_lock(write, b, level); 1035 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { 1036 rw_unlock(write, b); 1037 goto retry; 1038 } 1039 BUG_ON(b->level != level); 1040 } 1041 1042 if (btree_node_io_error(b)) { 1043 rw_unlock(write, b); 1044 return ERR_PTR(-EIO); 1045 } 1046 1047 BUG_ON(!b->written); 1048 1049 b->parent = parent; 1050 1051 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) { 1052 prefetch(b->keys.set[i].tree); 1053 prefetch(b->keys.set[i].data); 1054 } 1055 1056 for (; i <= b->keys.nsets; i++) 1057 prefetch(b->keys.set[i].data); 1058 1059 return b; 1060 } 1061 1062 static void btree_node_prefetch(struct btree *parent, struct bkey *k) 1063 { 1064 struct btree *b; 1065 1066 mutex_lock(&parent->c->bucket_lock); 1067 b = mca_alloc(parent->c, NULL, k, parent->level - 1); 1068 mutex_unlock(&parent->c->bucket_lock); 1069 1070 if (!IS_ERR_OR_NULL(b)) { 1071 b->parent = parent; 1072 bch_btree_node_read(b); 1073 rw_unlock(true, b); 1074 } 1075 } 1076 1077 /* Btree alloc */ 1078 1079 static void btree_node_free(struct btree *b) 1080 { 1081 trace_bcache_btree_node_free(b); 1082 1083 BUG_ON(b == b->c->root); 1084 1085 retry: 1086 mutex_lock(&b->write_lock); 1087 /* 1088 * If the btree node is selected and flushing in btree_flush_write(), 1089 * delay and retry until the BTREE_NODE_journal_flush bit cleared, 1090 * then it is safe to free the btree node here. Otherwise this btree 1091 * node will be in race condition. 1092 */ 1093 if (btree_node_journal_flush(b)) { 1094 mutex_unlock(&b->write_lock); 1095 pr_debug("bnode %p journal_flush set, retry\n", b); 1096 udelay(1); 1097 goto retry; 1098 } 1099 1100 if (btree_node_dirty(b)) { 1101 btree_complete_write(b, btree_current_write(b)); 1102 clear_bit(BTREE_NODE_dirty, &b->flags); 1103 } 1104 1105 mutex_unlock(&b->write_lock); 1106 1107 cancel_delayed_work(&b->work); 1108 1109 mutex_lock(&b->c->bucket_lock); 1110 bch_bucket_free(b->c, &b->key); 1111 mca_bucket_free(b); 1112 mutex_unlock(&b->c->bucket_lock); 1113 } 1114 1115 /* 1116 * Only error code or btree pointer will be returned, it is unncessary for 1117 * callers to check NULL pointer. 1118 */ 1119 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op, 1120 int level, bool wait, 1121 struct btree *parent) 1122 { 1123 BKEY_PADDED(key) k; 1124 struct btree *b; 1125 1126 mutex_lock(&c->bucket_lock); 1127 retry: 1128 /* return ERR_PTR(-EAGAIN) when it fails */ 1129 b = ERR_PTR(-EAGAIN); 1130 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait)) 1131 goto err; 1132 1133 bkey_put(c, &k.key); 1134 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); 1135 1136 b = mca_alloc(c, op, &k.key, level); 1137 if (IS_ERR(b)) 1138 goto err_free; 1139 1140 if (!b) { 1141 cache_bug(c, 1142 "Tried to allocate bucket that was in btree cache"); 1143 goto retry; 1144 } 1145 1146 b->parent = parent; 1147 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb)); 1148 1149 mutex_unlock(&c->bucket_lock); 1150 1151 trace_bcache_btree_node_alloc(b); 1152 return b; 1153 err_free: 1154 bch_bucket_free(c, &k.key); 1155 err: 1156 mutex_unlock(&c->bucket_lock); 1157 1158 trace_bcache_btree_node_alloc_fail(c); 1159 return b; 1160 } 1161 1162 static struct btree *bch_btree_node_alloc(struct cache_set *c, 1163 struct btree_op *op, int level, 1164 struct btree *parent) 1165 { 1166 return __bch_btree_node_alloc(c, op, level, op != NULL, parent); 1167 } 1168 1169 static struct btree *btree_node_alloc_replacement(struct btree *b, 1170 struct btree_op *op) 1171 { 1172 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent); 1173 1174 if (!IS_ERR(n)) { 1175 mutex_lock(&n->write_lock); 1176 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort); 1177 bkey_copy_key(&n->key, &b->key); 1178 mutex_unlock(&n->write_lock); 1179 } 1180 1181 return n; 1182 } 1183 1184 static void make_btree_freeing_key(struct btree *b, struct bkey *k) 1185 { 1186 unsigned int i; 1187 1188 mutex_lock(&b->c->bucket_lock); 1189 1190 atomic_inc(&b->c->prio_blocked); 1191 1192 bkey_copy(k, &b->key); 1193 bkey_copy_key(k, &ZERO_KEY); 1194 1195 for (i = 0; i < KEY_PTRS(k); i++) 1196 SET_PTR_GEN(k, i, 1197 bch_inc_gen(b->c->cache, 1198 PTR_BUCKET(b->c, &b->key, i))); 1199 1200 mutex_unlock(&b->c->bucket_lock); 1201 } 1202 1203 static int btree_check_reserve(struct btree *b, struct btree_op *op) 1204 { 1205 struct cache_set *c = b->c; 1206 struct cache *ca = c->cache; 1207 unsigned int reserve = (c->root->level - b->level) * 2 + 1; 1208 1209 mutex_lock(&c->bucket_lock); 1210 1211 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) { 1212 if (op) 1213 prepare_to_wait(&c->btree_cache_wait, &op->wait, 1214 TASK_UNINTERRUPTIBLE); 1215 mutex_unlock(&c->bucket_lock); 1216 return -EINTR; 1217 } 1218 1219 mutex_unlock(&c->bucket_lock); 1220 1221 return mca_cannibalize_lock(b->c, op); 1222 } 1223 1224 /* Garbage collection */ 1225 1226 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level, 1227 struct bkey *k) 1228 { 1229 uint8_t stale = 0; 1230 unsigned int i; 1231 struct bucket *g; 1232 1233 /* 1234 * ptr_invalid() can't return true for the keys that mark btree nodes as 1235 * freed, but since ptr_bad() returns true we'll never actually use them 1236 * for anything and thus we don't want mark their pointers here 1237 */ 1238 if (!bkey_cmp(k, &ZERO_KEY)) 1239 return stale; 1240 1241 for (i = 0; i < KEY_PTRS(k); i++) { 1242 if (!ptr_available(c, k, i)) 1243 continue; 1244 1245 g = PTR_BUCKET(c, k, i); 1246 1247 if (gen_after(g->last_gc, PTR_GEN(k, i))) 1248 g->last_gc = PTR_GEN(k, i); 1249 1250 if (ptr_stale(c, k, i)) { 1251 stale = max(stale, ptr_stale(c, k, i)); 1252 continue; 1253 } 1254 1255 cache_bug_on(GC_MARK(g) && 1256 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), 1257 c, "inconsistent ptrs: mark = %llu, level = %i", 1258 GC_MARK(g), level); 1259 1260 if (level) 1261 SET_GC_MARK(g, GC_MARK_METADATA); 1262 else if (KEY_DIRTY(k)) 1263 SET_GC_MARK(g, GC_MARK_DIRTY); 1264 else if (!GC_MARK(g)) 1265 SET_GC_MARK(g, GC_MARK_RECLAIMABLE); 1266 1267 /* guard against overflow */ 1268 SET_GC_SECTORS_USED(g, min_t(unsigned int, 1269 GC_SECTORS_USED(g) + KEY_SIZE(k), 1270 MAX_GC_SECTORS_USED)); 1271 1272 BUG_ON(!GC_SECTORS_USED(g)); 1273 } 1274 1275 return stale; 1276 } 1277 1278 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) 1279 1280 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k) 1281 { 1282 unsigned int i; 1283 1284 for (i = 0; i < KEY_PTRS(k); i++) 1285 if (ptr_available(c, k, i) && 1286 !ptr_stale(c, k, i)) { 1287 struct bucket *b = PTR_BUCKET(c, k, i); 1288 1289 b->gen = PTR_GEN(k, i); 1290 1291 if (level && bkey_cmp(k, &ZERO_KEY)) 1292 b->prio = BTREE_PRIO; 1293 else if (!level && b->prio == BTREE_PRIO) 1294 b->prio = INITIAL_PRIO; 1295 } 1296 1297 __bch_btree_mark_key(c, level, k); 1298 } 1299 1300 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats) 1301 { 1302 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets; 1303 } 1304 1305 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc) 1306 { 1307 uint8_t stale = 0; 1308 unsigned int keys = 0, good_keys = 0; 1309 struct bkey *k; 1310 struct btree_iter_stack iter; 1311 struct bset_tree *t; 1312 1313 gc->nodes++; 1314 1315 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) { 1316 stale = max(stale, btree_mark_key(b, k)); 1317 keys++; 1318 1319 if (bch_ptr_bad(&b->keys, k)) 1320 continue; 1321 1322 gc->key_bytes += bkey_u64s(k); 1323 gc->nkeys++; 1324 good_keys++; 1325 1326 gc->data += KEY_SIZE(k); 1327 } 1328 1329 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++) 1330 btree_bug_on(t->size && 1331 bset_written(&b->keys, t) && 1332 bkey_cmp(&b->key, &t->end) < 0, 1333 b, "found short btree key in gc"); 1334 1335 if (b->c->gc_always_rewrite) 1336 return true; 1337 1338 if (stale > 10) 1339 return true; 1340 1341 if ((keys - good_keys) * 2 > keys) 1342 return true; 1343 1344 return false; 1345 } 1346 1347 #define GC_MERGE_NODES 4U 1348 1349 struct gc_merge_info { 1350 struct btree *b; 1351 unsigned int keys; 1352 }; 1353 1354 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 1355 struct keylist *insert_keys, 1356 atomic_t *journal_ref, 1357 struct bkey *replace_key); 1358 1359 static int btree_gc_coalesce(struct btree *b, struct btree_op *op, 1360 struct gc_stat *gc, struct gc_merge_info *r) 1361 { 1362 unsigned int i, nodes = 0, keys = 0, blocks; 1363 struct btree *new_nodes[GC_MERGE_NODES]; 1364 struct keylist keylist; 1365 struct closure cl; 1366 struct bkey *k; 1367 1368 bch_keylist_init(&keylist); 1369 1370 if (btree_check_reserve(b, NULL)) 1371 return 0; 1372 1373 memset(new_nodes, 0, sizeof(new_nodes)); 1374 closure_init_stack(&cl); 1375 1376 while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b)) 1377 keys += r[nodes++].keys; 1378 1379 blocks = btree_default_blocks(b->c) * 2 / 3; 1380 1381 if (nodes < 2 || 1382 __set_blocks(b->keys.set[0].data, keys, 1383 block_bytes(b->c->cache)) > blocks * (nodes - 1)) 1384 return 0; 1385 1386 for (i = 0; i < nodes; i++) { 1387 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL); 1388 if (IS_ERR(new_nodes[i])) 1389 goto out_nocoalesce; 1390 } 1391 1392 /* 1393 * We have to check the reserve here, after we've allocated our new 1394 * nodes, to make sure the insert below will succeed - we also check 1395 * before as an optimization to potentially avoid a bunch of expensive 1396 * allocs/sorts 1397 */ 1398 if (btree_check_reserve(b, NULL)) 1399 goto out_nocoalesce; 1400 1401 for (i = 0; i < nodes; i++) 1402 mutex_lock(&new_nodes[i]->write_lock); 1403 1404 for (i = nodes - 1; i > 0; --i) { 1405 struct bset *n1 = btree_bset_first(new_nodes[i]); 1406 struct bset *n2 = btree_bset_first(new_nodes[i - 1]); 1407 struct bkey *k, *last = NULL; 1408 1409 keys = 0; 1410 1411 if (i > 1) { 1412 for (k = n2->start; 1413 k < bset_bkey_last(n2); 1414 k = bkey_next(k)) { 1415 if (__set_blocks(n1, n1->keys + keys + 1416 bkey_u64s(k), 1417 block_bytes(b->c->cache)) > blocks) 1418 break; 1419 1420 last = k; 1421 keys += bkey_u64s(k); 1422 } 1423 } else { 1424 /* 1425 * Last node we're not getting rid of - we're getting 1426 * rid of the node at r[0]. Have to try and fit all of 1427 * the remaining keys into this node; we can't ensure 1428 * they will always fit due to rounding and variable 1429 * length keys (shouldn't be possible in practice, 1430 * though) 1431 */ 1432 if (__set_blocks(n1, n1->keys + n2->keys, 1433 block_bytes(b->c->cache)) > 1434 btree_blocks(new_nodes[i])) 1435 goto out_unlock_nocoalesce; 1436 1437 keys = n2->keys; 1438 /* Take the key of the node we're getting rid of */ 1439 last = &r->b->key; 1440 } 1441 1442 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) > 1443 btree_blocks(new_nodes[i])); 1444 1445 if (last) 1446 bkey_copy_key(&new_nodes[i]->key, last); 1447 1448 memcpy(bset_bkey_last(n1), 1449 n2->start, 1450 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start); 1451 1452 n1->keys += keys; 1453 r[i].keys = n1->keys; 1454 1455 memmove(n2->start, 1456 bset_bkey_idx(n2, keys), 1457 (void *) bset_bkey_last(n2) - 1458 (void *) bset_bkey_idx(n2, keys)); 1459 1460 n2->keys -= keys; 1461 1462 if (__bch_keylist_realloc(&keylist, 1463 bkey_u64s(&new_nodes[i]->key))) 1464 goto out_unlock_nocoalesce; 1465 1466 bch_btree_node_write(new_nodes[i], &cl); 1467 bch_keylist_add(&keylist, &new_nodes[i]->key); 1468 } 1469 1470 for (i = 0; i < nodes; i++) 1471 mutex_unlock(&new_nodes[i]->write_lock); 1472 1473 closure_sync(&cl); 1474 1475 /* We emptied out this node */ 1476 BUG_ON(btree_bset_first(new_nodes[0])->keys); 1477 btree_node_free(new_nodes[0]); 1478 rw_unlock(true, new_nodes[0]); 1479 new_nodes[0] = NULL; 1480 1481 for (i = 0; i < nodes; i++) { 1482 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key))) 1483 goto out_nocoalesce; 1484 1485 make_btree_freeing_key(r[i].b, keylist.top); 1486 bch_keylist_push(&keylist); 1487 } 1488 1489 bch_btree_insert_node(b, op, &keylist, NULL, NULL); 1490 BUG_ON(!bch_keylist_empty(&keylist)); 1491 1492 for (i = 0; i < nodes; i++) { 1493 btree_node_free(r[i].b); 1494 rw_unlock(true, r[i].b); 1495 1496 r[i].b = new_nodes[i]; 1497 } 1498 1499 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1)); 1500 r[nodes - 1].b = ERR_PTR(-EINTR); 1501 1502 trace_bcache_btree_gc_coalesce(nodes); 1503 gc->nodes--; 1504 1505 bch_keylist_free(&keylist); 1506 1507 /* Invalidated our iterator */ 1508 return -EINTR; 1509 1510 out_unlock_nocoalesce: 1511 for (i = 0; i < nodes; i++) 1512 mutex_unlock(&new_nodes[i]->write_lock); 1513 1514 out_nocoalesce: 1515 closure_sync(&cl); 1516 1517 while ((k = bch_keylist_pop(&keylist))) 1518 if (!bkey_cmp(k, &ZERO_KEY)) 1519 atomic_dec(&b->c->prio_blocked); 1520 bch_keylist_free(&keylist); 1521 1522 for (i = 0; i < nodes; i++) 1523 if (!IS_ERR_OR_NULL(new_nodes[i])) { 1524 btree_node_free(new_nodes[i]); 1525 rw_unlock(true, new_nodes[i]); 1526 } 1527 return 0; 1528 } 1529 1530 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op, 1531 struct btree *replace) 1532 { 1533 struct keylist keys; 1534 struct btree *n; 1535 1536 if (btree_check_reserve(b, NULL)) 1537 return 0; 1538 1539 n = btree_node_alloc_replacement(replace, NULL); 1540 if (IS_ERR(n)) 1541 return 0; 1542 1543 /* recheck reserve after allocating replacement node */ 1544 if (btree_check_reserve(b, NULL)) { 1545 btree_node_free(n); 1546 rw_unlock(true, n); 1547 return 0; 1548 } 1549 1550 bch_btree_node_write_sync(n); 1551 1552 bch_keylist_init(&keys); 1553 bch_keylist_add(&keys, &n->key); 1554 1555 make_btree_freeing_key(replace, keys.top); 1556 bch_keylist_push(&keys); 1557 1558 bch_btree_insert_node(b, op, &keys, NULL, NULL); 1559 BUG_ON(!bch_keylist_empty(&keys)); 1560 1561 btree_node_free(replace); 1562 rw_unlock(true, n); 1563 1564 /* Invalidated our iterator */ 1565 return -EINTR; 1566 } 1567 1568 static unsigned int btree_gc_count_keys(struct btree *b) 1569 { 1570 struct bkey *k; 1571 struct btree_iter_stack iter; 1572 unsigned int ret = 0; 1573 1574 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad) 1575 ret += bkey_u64s(k); 1576 1577 return ret; 1578 } 1579 1580 static size_t btree_gc_min_nodes(struct cache_set *c) 1581 { 1582 size_t min_nodes = GC_NODES_MIN; 1583 1584 if (atomic_read(&c->search_inflight) == 0) { 1585 size_t n = c->gc_stats.nodes >> MAX_GC_TIMES_SHIFT; 1586 1587 if (min_nodes < n) 1588 min_nodes = n; 1589 } 1590 1591 return min_nodes; 1592 } 1593 1594 static uint64_t btree_gc_sleep_ms(struct cache_set *c) 1595 { 1596 uint64_t sleep_ms; 1597 1598 if (atomic_read(&c->bucket_wait_cnt) > 0) 1599 sleep_ms = GC_SLEEP_MS_MIN; 1600 else 1601 sleep_ms = GC_SLEEP_MS; 1602 1603 return sleep_ms; 1604 } 1605 1606 static int btree_gc_recurse(struct btree *b, struct btree_op *op, 1607 struct closure *writes, struct gc_stat *gc) 1608 { 1609 int ret = 0; 1610 bool should_rewrite; 1611 struct bkey *k; 1612 struct btree_iter_stack iter; 1613 struct gc_merge_info r[GC_MERGE_NODES]; 1614 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1; 1615 1616 bch_btree_iter_stack_init(&b->keys, &iter, &b->c->gc_done); 1617 1618 for (i = r; i < r + ARRAY_SIZE(r); i++) 1619 i->b = ERR_PTR(-EINTR); 1620 1621 while (1) { 1622 k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 1623 bch_ptr_bad); 1624 if (k) { 1625 r->b = bch_btree_node_get(b->c, op, k, b->level - 1, 1626 true, b); 1627 if (IS_ERR(r->b)) { 1628 ret = PTR_ERR(r->b); 1629 break; 1630 } 1631 1632 r->keys = btree_gc_count_keys(r->b); 1633 1634 ret = btree_gc_coalesce(b, op, gc, r); 1635 if (ret) 1636 break; 1637 } 1638 1639 if (!last->b) 1640 break; 1641 1642 if (!IS_ERR(last->b)) { 1643 should_rewrite = btree_gc_mark_node(last->b, gc); 1644 if (should_rewrite) { 1645 ret = btree_gc_rewrite_node(b, op, last->b); 1646 if (ret) 1647 break; 1648 } 1649 1650 if (last->b->level) { 1651 ret = btree_gc_recurse(last->b, op, writes, gc); 1652 if (ret) 1653 break; 1654 } 1655 1656 bkey_copy_key(&b->c->gc_done, &last->b->key); 1657 1658 /* 1659 * Must flush leaf nodes before gc ends, since replace 1660 * operations aren't journalled 1661 */ 1662 mutex_lock(&last->b->write_lock); 1663 if (btree_node_dirty(last->b)) 1664 bch_btree_node_write(last->b, writes); 1665 mutex_unlock(&last->b->write_lock); 1666 rw_unlock(true, last->b); 1667 } 1668 1669 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1)); 1670 r->b = NULL; 1671 1672 if (gc->nodes >= (gc->nodes_pre + btree_gc_min_nodes(b->c))) { 1673 gc->nodes_pre = gc->nodes; 1674 ret = -EAGAIN; 1675 break; 1676 } 1677 1678 if (need_resched()) { 1679 ret = -EAGAIN; 1680 break; 1681 } 1682 } 1683 1684 for (i = r; i < r + ARRAY_SIZE(r); i++) 1685 if (!IS_ERR_OR_NULL(i->b)) { 1686 mutex_lock(&i->b->write_lock); 1687 if (btree_node_dirty(i->b)) 1688 bch_btree_node_write(i->b, writes); 1689 mutex_unlock(&i->b->write_lock); 1690 rw_unlock(true, i->b); 1691 } 1692 1693 return ret; 1694 } 1695 1696 static int bch_btree_gc_root(struct btree *b, struct btree_op *op, 1697 struct closure *writes, struct gc_stat *gc) 1698 { 1699 struct btree *n = NULL; 1700 int ret = 0; 1701 bool should_rewrite; 1702 1703 should_rewrite = btree_gc_mark_node(b, gc); 1704 if (should_rewrite) { 1705 n = btree_node_alloc_replacement(b, NULL); 1706 1707 if (!IS_ERR(n)) { 1708 bch_btree_node_write_sync(n); 1709 1710 bch_btree_set_root(n); 1711 btree_node_free(b); 1712 rw_unlock(true, n); 1713 1714 return -EINTR; 1715 } 1716 } 1717 1718 __bch_btree_mark_key(b->c, b->level + 1, &b->key); 1719 1720 if (b->level) { 1721 ret = btree_gc_recurse(b, op, writes, gc); 1722 if (ret) 1723 return ret; 1724 } 1725 1726 bkey_copy_key(&b->c->gc_done, &b->key); 1727 1728 return ret; 1729 } 1730 1731 static void btree_gc_start(struct cache_set *c) 1732 { 1733 struct cache *ca; 1734 struct bucket *b; 1735 1736 if (!c->gc_mark_valid) 1737 return; 1738 1739 mutex_lock(&c->bucket_lock); 1740 1741 c->gc_done = ZERO_KEY; 1742 1743 ca = c->cache; 1744 for_each_bucket(b, ca) { 1745 b->last_gc = b->gen; 1746 if (bch_can_invalidate_bucket(ca, b)) 1747 b->reclaimable_in_gc = 1; 1748 if (!atomic_read(&b->pin)) { 1749 SET_GC_MARK(b, 0); 1750 SET_GC_SECTORS_USED(b, 0); 1751 } 1752 } 1753 1754 c->gc_mark_valid = 0; 1755 mutex_unlock(&c->bucket_lock); 1756 } 1757 1758 static void bch_btree_gc_finish(struct cache_set *c) 1759 { 1760 struct bucket *b; 1761 struct cache *ca; 1762 unsigned int i, j; 1763 uint64_t *k; 1764 1765 mutex_lock(&c->bucket_lock); 1766 1767 set_gc_sectors(c); 1768 c->gc_mark_valid = 1; 1769 c->need_gc = 0; 1770 1771 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) 1772 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), 1773 GC_MARK_METADATA); 1774 1775 /* don't reclaim buckets to which writeback keys point */ 1776 rcu_read_lock(); 1777 for (i = 0; i < c->devices_max_used; i++) { 1778 struct bcache_device *d = c->devices[i]; 1779 struct cached_dev *dc; 1780 struct keybuf_key *w, *n; 1781 1782 if (!d || UUID_FLASH_ONLY(&c->uuids[i])) 1783 continue; 1784 dc = container_of(d, struct cached_dev, disk); 1785 1786 spin_lock(&dc->writeback_keys.lock); 1787 rbtree_postorder_for_each_entry_safe(w, n, 1788 &dc->writeback_keys.keys, node) 1789 for (j = 0; j < KEY_PTRS(&w->key); j++) 1790 SET_GC_MARK(PTR_BUCKET(c, &w->key, j), 1791 GC_MARK_DIRTY); 1792 spin_unlock(&dc->writeback_keys.lock); 1793 } 1794 rcu_read_unlock(); 1795 1796 c->avail_nbuckets = 0; 1797 1798 ca = c->cache; 1799 ca->invalidate_needs_gc = 0; 1800 1801 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++) 1802 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1803 1804 for (k = ca->prio_buckets; 1805 k < ca->prio_buckets + prio_buckets(ca) * 2; k++) 1806 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA); 1807 1808 for_each_bucket(b, ca) { 1809 c->need_gc = max(c->need_gc, bucket_gc_gen(b)); 1810 1811 if (b->reclaimable_in_gc) 1812 b->reclaimable_in_gc = 0; 1813 1814 if (atomic_read(&b->pin)) 1815 continue; 1816 1817 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b)); 1818 1819 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE) 1820 c->avail_nbuckets++; 1821 } 1822 1823 mutex_unlock(&c->bucket_lock); 1824 } 1825 1826 static void bch_btree_gc(struct cache_set *c) 1827 { 1828 int ret; 1829 struct gc_stat stats; 1830 struct closure writes; 1831 struct btree_op op; 1832 uint64_t start_time = local_clock(); 1833 1834 trace_bcache_gc_start(c); 1835 1836 memset(&stats, 0, sizeof(struct gc_stat)); 1837 closure_init_stack(&writes); 1838 bch_btree_op_init(&op, SHRT_MAX); 1839 1840 btree_gc_start(c); 1841 1842 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */ 1843 do { 1844 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats); 1845 closure_sync(&writes); 1846 cond_resched(); 1847 1848 if (ret == -EAGAIN) 1849 schedule_timeout_interruptible( 1850 msecs_to_jiffies(btree_gc_sleep_ms(c))); 1851 else if (ret) 1852 pr_warn("gc failed!\n"); 1853 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags)); 1854 1855 bch_btree_gc_finish(c); 1856 wake_up_allocators(c); 1857 1858 bch_time_stats_update(&c->btree_gc_time, start_time); 1859 1860 stats.key_bytes *= sizeof(uint64_t); 1861 stats.data <<= 9; 1862 bch_update_bucket_in_use(c, &stats); 1863 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); 1864 1865 trace_bcache_gc_end(c); 1866 1867 bch_moving_gc(c); 1868 } 1869 1870 static bool gc_should_run(struct cache_set *c) 1871 { 1872 struct cache *ca = c->cache; 1873 1874 if (ca->invalidate_needs_gc) 1875 return true; 1876 1877 if (atomic_read(&c->sectors_to_gc) < 0) 1878 return true; 1879 1880 return false; 1881 } 1882 1883 static int bch_gc_thread(void *arg) 1884 { 1885 struct cache_set *c = arg; 1886 1887 while (1) { 1888 wait_event_interruptible(c->gc_wait, 1889 kthread_should_stop() || 1890 test_bit(CACHE_SET_IO_DISABLE, &c->flags) || 1891 gc_should_run(c)); 1892 1893 if (kthread_should_stop() || 1894 test_bit(CACHE_SET_IO_DISABLE, &c->flags)) 1895 break; 1896 1897 set_gc_sectors(c); 1898 bch_btree_gc(c); 1899 } 1900 1901 wait_for_kthread_stop(); 1902 return 0; 1903 } 1904 1905 int bch_gc_thread_start(struct cache_set *c) 1906 { 1907 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc"); 1908 return PTR_ERR_OR_ZERO(c->gc_thread); 1909 } 1910 1911 /* Initial partial gc */ 1912 1913 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op) 1914 { 1915 int ret = 0; 1916 struct bkey *k, *p = NULL; 1917 struct btree_iter_stack iter; 1918 1919 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) 1920 bch_initial_mark_key(b->c, b->level, k); 1921 1922 bch_initial_mark_key(b->c, b->level + 1, &b->key); 1923 1924 if (b->level) { 1925 bch_btree_iter_stack_init(&b->keys, &iter, NULL); 1926 1927 do { 1928 k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 1929 bch_ptr_bad); 1930 if (k) { 1931 btree_node_prefetch(b, k); 1932 /* 1933 * initiallize c->gc_stats.nodes 1934 * for incremental GC 1935 */ 1936 b->c->gc_stats.nodes++; 1937 } 1938 1939 if (p) 1940 ret = bcache_btree(check_recurse, p, b, op); 1941 1942 p = k; 1943 } while (p && !ret); 1944 } 1945 1946 return ret; 1947 } 1948 1949 1950 static int bch_btree_check_thread(void *arg) 1951 { 1952 int ret; 1953 struct btree_check_info *info = arg; 1954 struct btree_check_state *check_state = info->state; 1955 struct cache_set *c = check_state->c; 1956 struct btree_iter_stack iter; 1957 struct bkey *k, *p; 1958 int cur_idx, prev_idx, skip_nr; 1959 1960 k = p = NULL; 1961 cur_idx = prev_idx = 0; 1962 ret = 0; 1963 1964 /* root node keys are checked before thread created */ 1965 bch_btree_iter_stack_init(&c->root->keys, &iter, NULL); 1966 k = bch_btree_iter_next_filter(&iter.iter, &c->root->keys, bch_ptr_bad); 1967 BUG_ON(!k); 1968 1969 p = k; 1970 while (k) { 1971 /* 1972 * Fetch a root node key index, skip the keys which 1973 * should be fetched by other threads, then check the 1974 * sub-tree indexed by the fetched key. 1975 */ 1976 spin_lock(&check_state->idx_lock); 1977 cur_idx = check_state->key_idx; 1978 check_state->key_idx++; 1979 spin_unlock(&check_state->idx_lock); 1980 1981 skip_nr = cur_idx - prev_idx; 1982 1983 while (skip_nr) { 1984 k = bch_btree_iter_next_filter(&iter.iter, 1985 &c->root->keys, 1986 bch_ptr_bad); 1987 if (k) 1988 p = k; 1989 else { 1990 /* 1991 * No more keys to check in root node, 1992 * current checking threads are enough, 1993 * stop creating more. 1994 */ 1995 atomic_set(&check_state->enough, 1); 1996 /* Update check_state->enough earlier */ 1997 smp_mb__after_atomic(); 1998 goto out; 1999 } 2000 skip_nr--; 2001 cond_resched(); 2002 } 2003 2004 if (p) { 2005 struct btree_op op; 2006 2007 btree_node_prefetch(c->root, p); 2008 c->gc_stats.nodes++; 2009 bch_btree_op_init(&op, 0); 2010 ret = bcache_btree(check_recurse, p, c->root, &op); 2011 /* 2012 * The op may be added to cache_set's btree_cache_wait 2013 * in mca_cannibalize(), must ensure it is removed from 2014 * the list and release btree_cache_alloc_lock before 2015 * free op memory. 2016 * Otherwise, the btree_cache_wait will be damaged. 2017 */ 2018 bch_cannibalize_unlock(c); 2019 finish_wait(&c->btree_cache_wait, &(&op)->wait); 2020 if (ret) 2021 goto out; 2022 } 2023 p = NULL; 2024 prev_idx = cur_idx; 2025 cond_resched(); 2026 } 2027 2028 out: 2029 info->result = ret; 2030 /* update check_state->started among all CPUs */ 2031 smp_mb__before_atomic(); 2032 if (atomic_dec_and_test(&check_state->started)) 2033 wake_up(&check_state->wait); 2034 2035 return ret; 2036 } 2037 2038 2039 2040 static int bch_btree_chkthread_nr(void) 2041 { 2042 int n = num_online_cpus()/2; 2043 2044 if (n == 0) 2045 n = 1; 2046 else if (n > BCH_BTR_CHKTHREAD_MAX) 2047 n = BCH_BTR_CHKTHREAD_MAX; 2048 2049 return n; 2050 } 2051 2052 int bch_btree_check(struct cache_set *c) 2053 { 2054 int ret = 0; 2055 int i; 2056 struct bkey *k = NULL; 2057 struct btree_iter_stack iter; 2058 struct btree_check_state check_state; 2059 2060 /* check and mark root node keys */ 2061 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid) 2062 bch_initial_mark_key(c, c->root->level, k); 2063 2064 bch_initial_mark_key(c, c->root->level + 1, &c->root->key); 2065 2066 if (c->root->level == 0) 2067 return 0; 2068 2069 memset(&check_state, 0, sizeof(struct btree_check_state)); 2070 check_state.c = c; 2071 check_state.total_threads = bch_btree_chkthread_nr(); 2072 check_state.key_idx = 0; 2073 spin_lock_init(&check_state.idx_lock); 2074 atomic_set(&check_state.started, 0); 2075 atomic_set(&check_state.enough, 0); 2076 init_waitqueue_head(&check_state.wait); 2077 2078 rw_lock(0, c->root, c->root->level); 2079 /* 2080 * Run multiple threads to check btree nodes in parallel, 2081 * if check_state.enough is non-zero, it means current 2082 * running check threads are enough, unncessary to create 2083 * more. 2084 */ 2085 for (i = 0; i < check_state.total_threads; i++) { 2086 /* fetch latest check_state.enough earlier */ 2087 smp_mb__before_atomic(); 2088 if (atomic_read(&check_state.enough)) 2089 break; 2090 2091 check_state.infos[i].result = 0; 2092 check_state.infos[i].state = &check_state; 2093 2094 check_state.infos[i].thread = 2095 kthread_run(bch_btree_check_thread, 2096 &check_state.infos[i], 2097 "bch_btrchk[%d]", i); 2098 if (IS_ERR(check_state.infos[i].thread)) { 2099 pr_err("fails to run thread bch_btrchk[%d]\n", i); 2100 for (--i; i >= 0; i--) 2101 kthread_stop(check_state.infos[i].thread); 2102 ret = -ENOMEM; 2103 goto out; 2104 } 2105 atomic_inc(&check_state.started); 2106 } 2107 2108 /* 2109 * Must wait for all threads to stop. 2110 */ 2111 wait_event(check_state.wait, atomic_read(&check_state.started) == 0); 2112 2113 for (i = 0; i < check_state.total_threads; i++) { 2114 if (check_state.infos[i].result) { 2115 ret = check_state.infos[i].result; 2116 goto out; 2117 } 2118 } 2119 2120 out: 2121 rw_unlock(0, c->root); 2122 return ret; 2123 } 2124 2125 void bch_initial_gc_finish(struct cache_set *c) 2126 { 2127 struct cache *ca = c->cache; 2128 struct bucket *b; 2129 2130 bch_btree_gc_finish(c); 2131 2132 mutex_lock(&c->bucket_lock); 2133 2134 /* 2135 * We need to put some unused buckets directly on the prio freelist in 2136 * order to get the allocator thread started - it needs freed buckets in 2137 * order to rewrite the prios and gens, and it needs to rewrite prios 2138 * and gens in order to free buckets. 2139 * 2140 * This is only safe for buckets that have no live data in them, which 2141 * there should always be some of. 2142 */ 2143 for_each_bucket(b, ca) { 2144 if (fifo_full(&ca->free[RESERVE_PRIO]) && 2145 fifo_full(&ca->free[RESERVE_BTREE])) 2146 break; 2147 2148 if (bch_can_invalidate_bucket(ca, b) && 2149 !GC_MARK(b)) { 2150 __bch_invalidate_one_bucket(ca, b); 2151 if (!fifo_push(&ca->free[RESERVE_PRIO], 2152 b - ca->buckets)) 2153 fifo_push(&ca->free[RESERVE_BTREE], 2154 b - ca->buckets); 2155 } 2156 } 2157 2158 mutex_unlock(&c->bucket_lock); 2159 } 2160 2161 /* Btree insertion */ 2162 2163 static bool btree_insert_key(struct btree *b, struct bkey *k, 2164 struct bkey *replace_key) 2165 { 2166 unsigned int status; 2167 2168 BUG_ON(bkey_cmp(k, &b->key) > 0); 2169 2170 status = bch_btree_insert_key(&b->keys, k, replace_key); 2171 if (status != BTREE_INSERT_STATUS_NO_INSERT) { 2172 bch_check_keys(&b->keys, "%u for %s", status, 2173 replace_key ? "replace" : "insert"); 2174 2175 trace_bcache_btree_insert_key(b, k, replace_key != NULL, 2176 status); 2177 return true; 2178 } else 2179 return false; 2180 } 2181 2182 static size_t insert_u64s_remaining(struct btree *b) 2183 { 2184 long ret = bch_btree_keys_u64s_remaining(&b->keys); 2185 2186 /* 2187 * Might land in the middle of an existing extent and have to split it 2188 */ 2189 if (b->keys.ops->is_extents) 2190 ret -= KEY_MAX_U64S; 2191 2192 return max(ret, 0L); 2193 } 2194 2195 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, 2196 struct keylist *insert_keys, 2197 struct bkey *replace_key) 2198 { 2199 bool ret = false; 2200 int oldsize = bch_count_data(&b->keys); 2201 2202 while (!bch_keylist_empty(insert_keys)) { 2203 struct bkey *k = insert_keys->keys; 2204 2205 if (bkey_u64s(k) > insert_u64s_remaining(b)) 2206 break; 2207 2208 if (bkey_cmp(k, &b->key) <= 0) { 2209 if (!b->level) 2210 bkey_put(b->c, k); 2211 2212 ret |= btree_insert_key(b, k, replace_key); 2213 bch_keylist_pop_front(insert_keys); 2214 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { 2215 BKEY_PADDED(key) temp; 2216 bkey_copy(&temp.key, insert_keys->keys); 2217 2218 bch_cut_back(&b->key, &temp.key); 2219 bch_cut_front(&b->key, insert_keys->keys); 2220 2221 ret |= btree_insert_key(b, &temp.key, replace_key); 2222 break; 2223 } else { 2224 break; 2225 } 2226 } 2227 2228 if (!ret) 2229 op->insert_collision = true; 2230 2231 BUG_ON(!bch_keylist_empty(insert_keys) && b->level); 2232 2233 BUG_ON(bch_count_data(&b->keys) < oldsize); 2234 return ret; 2235 } 2236 2237 static int btree_split(struct btree *b, struct btree_op *op, 2238 struct keylist *insert_keys, 2239 struct bkey *replace_key) 2240 { 2241 bool split; 2242 struct btree *n1, *n2 = NULL, *n3 = NULL; 2243 uint64_t start_time = local_clock(); 2244 struct closure cl; 2245 struct keylist parent_keys; 2246 2247 closure_init_stack(&cl); 2248 bch_keylist_init(&parent_keys); 2249 2250 if (btree_check_reserve(b, op)) { 2251 if (!b->level) 2252 return -EINTR; 2253 else 2254 WARN(1, "insufficient reserve for split\n"); 2255 } 2256 2257 n1 = btree_node_alloc_replacement(b, op); 2258 if (IS_ERR(n1)) 2259 goto err; 2260 2261 split = set_blocks(btree_bset_first(n1), 2262 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5; 2263 2264 if (split) { 2265 unsigned int keys = 0; 2266 2267 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys); 2268 2269 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent); 2270 if (IS_ERR(n2)) 2271 goto err_free1; 2272 2273 if (!b->parent) { 2274 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL); 2275 if (IS_ERR(n3)) 2276 goto err_free2; 2277 } 2278 2279 mutex_lock(&n1->write_lock); 2280 mutex_lock(&n2->write_lock); 2281 2282 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2283 2284 /* 2285 * Has to be a linear search because we don't have an auxiliary 2286 * search tree yet 2287 */ 2288 2289 while (keys < (btree_bset_first(n1)->keys * 3) / 5) 2290 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), 2291 keys)); 2292 2293 bkey_copy_key(&n1->key, 2294 bset_bkey_idx(btree_bset_first(n1), keys)); 2295 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys)); 2296 2297 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys; 2298 btree_bset_first(n1)->keys = keys; 2299 2300 memcpy(btree_bset_first(n2)->start, 2301 bset_bkey_last(btree_bset_first(n1)), 2302 btree_bset_first(n2)->keys * sizeof(uint64_t)); 2303 2304 bkey_copy_key(&n2->key, &b->key); 2305 2306 bch_keylist_add(&parent_keys, &n2->key); 2307 bch_btree_node_write(n2, &cl); 2308 mutex_unlock(&n2->write_lock); 2309 rw_unlock(true, n2); 2310 } else { 2311 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys); 2312 2313 mutex_lock(&n1->write_lock); 2314 bch_btree_insert_keys(n1, op, insert_keys, replace_key); 2315 } 2316 2317 bch_keylist_add(&parent_keys, &n1->key); 2318 bch_btree_node_write(n1, &cl); 2319 mutex_unlock(&n1->write_lock); 2320 2321 if (n3) { 2322 /* Depth increases, make a new root */ 2323 mutex_lock(&n3->write_lock); 2324 bkey_copy_key(&n3->key, &MAX_KEY); 2325 bch_btree_insert_keys(n3, op, &parent_keys, NULL); 2326 bch_btree_node_write(n3, &cl); 2327 mutex_unlock(&n3->write_lock); 2328 2329 closure_sync(&cl); 2330 bch_btree_set_root(n3); 2331 rw_unlock(true, n3); 2332 } else if (!b->parent) { 2333 /* Root filled up but didn't need to be split */ 2334 closure_sync(&cl); 2335 bch_btree_set_root(n1); 2336 } else { 2337 /* Split a non root node */ 2338 closure_sync(&cl); 2339 make_btree_freeing_key(b, parent_keys.top); 2340 bch_keylist_push(&parent_keys); 2341 2342 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL); 2343 BUG_ON(!bch_keylist_empty(&parent_keys)); 2344 } 2345 2346 btree_node_free(b); 2347 rw_unlock(true, n1); 2348 2349 bch_time_stats_update(&b->c->btree_split_time, start_time); 2350 2351 return 0; 2352 err_free2: 2353 bkey_put(b->c, &n2->key); 2354 btree_node_free(n2); 2355 rw_unlock(true, n2); 2356 err_free1: 2357 bkey_put(b->c, &n1->key); 2358 btree_node_free(n1); 2359 rw_unlock(true, n1); 2360 err: 2361 WARN(1, "bcache: btree split failed (level %u)", b->level); 2362 2363 if (n3 == ERR_PTR(-EAGAIN) || 2364 n2 == ERR_PTR(-EAGAIN) || 2365 n1 == ERR_PTR(-EAGAIN)) 2366 return -EAGAIN; 2367 2368 return -ENOMEM; 2369 } 2370 2371 static int bch_btree_insert_node(struct btree *b, struct btree_op *op, 2372 struct keylist *insert_keys, 2373 atomic_t *journal_ref, 2374 struct bkey *replace_key) 2375 { 2376 struct closure cl; 2377 2378 BUG_ON(b->level && replace_key); 2379 2380 closure_init_stack(&cl); 2381 2382 mutex_lock(&b->write_lock); 2383 2384 if (write_block(b) != btree_bset_last(b) && 2385 b->keys.last_set_unwritten) 2386 bch_btree_init_next(b); /* just wrote a set */ 2387 2388 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) { 2389 mutex_unlock(&b->write_lock); 2390 goto split; 2391 } 2392 2393 BUG_ON(write_block(b) != btree_bset_last(b)); 2394 2395 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { 2396 if (!b->level) 2397 bch_btree_leaf_dirty(b, journal_ref); 2398 else 2399 bch_btree_node_write(b, &cl); 2400 } 2401 2402 mutex_unlock(&b->write_lock); 2403 2404 /* wait for btree node write if necessary, after unlock */ 2405 closure_sync(&cl); 2406 2407 return 0; 2408 split: 2409 if (current->bio_list) { 2410 op->lock = b->c->root->level + 1; 2411 return -EAGAIN; 2412 } else if (op->lock <= b->c->root->level) { 2413 op->lock = b->c->root->level + 1; 2414 return -EINTR; 2415 } else { 2416 /* Invalidated all iterators */ 2417 int ret = btree_split(b, op, insert_keys, replace_key); 2418 2419 if (bch_keylist_empty(insert_keys)) 2420 return 0; 2421 else if (!ret) 2422 return -EINTR; 2423 return ret; 2424 } 2425 } 2426 2427 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, 2428 struct bkey *check_key) 2429 { 2430 int ret = -EINTR; 2431 uint64_t btree_ptr = b->key.ptr[0]; 2432 unsigned long seq = b->seq; 2433 struct keylist insert; 2434 bool upgrade = op->lock == -1; 2435 2436 bch_keylist_init(&insert); 2437 2438 if (upgrade) { 2439 rw_unlock(false, b); 2440 rw_lock(true, b, b->level); 2441 2442 if (b->key.ptr[0] != btree_ptr || 2443 b->seq != seq + 1) { 2444 op->lock = b->level; 2445 goto out; 2446 } 2447 } 2448 2449 SET_KEY_PTRS(check_key, 1); 2450 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); 2451 2452 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); 2453 2454 bch_keylist_add(&insert, check_key); 2455 2456 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); 2457 2458 BUG_ON(!ret && !bch_keylist_empty(&insert)); 2459 out: 2460 if (upgrade) 2461 downgrade_write(&b->lock); 2462 return ret; 2463 } 2464 2465 struct btree_insert_op { 2466 struct btree_op op; 2467 struct keylist *keys; 2468 atomic_t *journal_ref; 2469 struct bkey *replace_key; 2470 }; 2471 2472 static int btree_insert_fn(struct btree_op *b_op, struct btree *b) 2473 { 2474 struct btree_insert_op *op = container_of(b_op, 2475 struct btree_insert_op, op); 2476 2477 int ret = bch_btree_insert_node(b, &op->op, op->keys, 2478 op->journal_ref, op->replace_key); 2479 if (ret && !bch_keylist_empty(op->keys)) 2480 return ret; 2481 else 2482 return MAP_DONE; 2483 } 2484 2485 int bch_btree_insert(struct cache_set *c, struct keylist *keys, 2486 atomic_t *journal_ref, struct bkey *replace_key) 2487 { 2488 struct btree_insert_op op; 2489 int ret = 0; 2490 2491 BUG_ON(current->bio_list); 2492 BUG_ON(bch_keylist_empty(keys)); 2493 2494 bch_btree_op_init(&op.op, 0); 2495 op.keys = keys; 2496 op.journal_ref = journal_ref; 2497 op.replace_key = replace_key; 2498 2499 while (!ret && !bch_keylist_empty(keys)) { 2500 op.op.lock = 0; 2501 ret = bch_btree_map_leaf_nodes(&op.op, c, 2502 &START_KEY(keys->keys), 2503 btree_insert_fn); 2504 } 2505 2506 if (ret) { 2507 struct bkey *k; 2508 2509 pr_err("error %i\n", ret); 2510 2511 while ((k = bch_keylist_pop(keys))) 2512 bkey_put(c, k); 2513 } else if (op.op.insert_collision) 2514 ret = -ESRCH; 2515 2516 return ret; 2517 } 2518 2519 void bch_btree_set_root(struct btree *b) 2520 { 2521 unsigned int i; 2522 struct closure cl; 2523 2524 closure_init_stack(&cl); 2525 2526 trace_bcache_btree_set_root(b); 2527 2528 BUG_ON(!b->written); 2529 2530 for (i = 0; i < KEY_PTRS(&b->key); i++) 2531 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); 2532 2533 mutex_lock(&b->c->bucket_lock); 2534 list_del_init(&b->list); 2535 mutex_unlock(&b->c->bucket_lock); 2536 2537 b->c->root = b; 2538 2539 bch_journal_meta(b->c, &cl); 2540 closure_sync(&cl); 2541 } 2542 2543 /* Map across nodes or keys */ 2544 2545 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, 2546 struct bkey *from, 2547 btree_map_nodes_fn *fn, int flags) 2548 { 2549 int ret = MAP_CONTINUE; 2550 2551 if (b->level) { 2552 struct bkey *k; 2553 struct btree_iter_stack iter; 2554 2555 bch_btree_iter_stack_init(&b->keys, &iter, from); 2556 2557 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 2558 bch_ptr_bad))) { 2559 ret = bcache_btree(map_nodes_recurse, k, b, 2560 op, from, fn, flags); 2561 from = NULL; 2562 2563 if (ret != MAP_CONTINUE) 2564 return ret; 2565 } 2566 } 2567 2568 if (!b->level || flags == MAP_ALL_NODES) 2569 ret = fn(op, b); 2570 2571 return ret; 2572 } 2573 2574 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, 2575 struct bkey *from, btree_map_nodes_fn *fn, int flags) 2576 { 2577 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags); 2578 } 2579 2580 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, 2581 struct bkey *from, btree_map_keys_fn *fn, 2582 int flags) 2583 { 2584 int ret = MAP_CONTINUE; 2585 struct bkey *k; 2586 struct btree_iter_stack iter; 2587 2588 bch_btree_iter_stack_init(&b->keys, &iter, from); 2589 2590 while ((k = bch_btree_iter_next_filter(&iter.iter, &b->keys, 2591 bch_ptr_bad))) { 2592 ret = !b->level 2593 ? fn(op, b, k) 2594 : bcache_btree(map_keys_recurse, k, 2595 b, op, from, fn, flags); 2596 from = NULL; 2597 2598 if (ret != MAP_CONTINUE) 2599 return ret; 2600 } 2601 2602 if (!b->level && (flags & MAP_END_KEY)) 2603 ret = fn(op, b, &KEY(KEY_INODE(&b->key), 2604 KEY_OFFSET(&b->key), 0)); 2605 2606 return ret; 2607 } 2608 2609 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, 2610 struct bkey *from, btree_map_keys_fn *fn, int flags) 2611 { 2612 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags); 2613 } 2614 2615 /* Keybuf code */ 2616 2617 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) 2618 { 2619 /* Overlapping keys compare equal */ 2620 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) 2621 return -1; 2622 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) 2623 return 1; 2624 return 0; 2625 } 2626 2627 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, 2628 struct keybuf_key *r) 2629 { 2630 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); 2631 } 2632 2633 struct refill { 2634 struct btree_op op; 2635 unsigned int nr_found; 2636 struct keybuf *buf; 2637 struct bkey *end; 2638 keybuf_pred_fn *pred; 2639 }; 2640 2641 static int refill_keybuf_fn(struct btree_op *op, struct btree *b, 2642 struct bkey *k) 2643 { 2644 struct refill *refill = container_of(op, struct refill, op); 2645 struct keybuf *buf = refill->buf; 2646 int ret = MAP_CONTINUE; 2647 2648 if (bkey_cmp(k, refill->end) > 0) { 2649 ret = MAP_DONE; 2650 goto out; 2651 } 2652 2653 if (!KEY_SIZE(k)) /* end key */ 2654 goto out; 2655 2656 if (refill->pred(buf, k)) { 2657 struct keybuf_key *w; 2658 2659 spin_lock(&buf->lock); 2660 2661 w = array_alloc(&buf->freelist); 2662 if (!w) { 2663 spin_unlock(&buf->lock); 2664 return MAP_DONE; 2665 } 2666 2667 w->private = NULL; 2668 bkey_copy(&w->key, k); 2669 2670 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) 2671 array_free(&buf->freelist, w); 2672 else 2673 refill->nr_found++; 2674 2675 if (array_freelist_empty(&buf->freelist)) 2676 ret = MAP_DONE; 2677 2678 spin_unlock(&buf->lock); 2679 } 2680 out: 2681 buf->last_scanned = *k; 2682 return ret; 2683 } 2684 2685 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, 2686 struct bkey *end, keybuf_pred_fn *pred) 2687 { 2688 struct bkey start = buf->last_scanned; 2689 struct refill refill; 2690 2691 cond_resched(); 2692 2693 bch_btree_op_init(&refill.op, -1); 2694 refill.nr_found = 0; 2695 refill.buf = buf; 2696 refill.end = end; 2697 refill.pred = pred; 2698 2699 bch_btree_map_keys(&refill.op, c, &buf->last_scanned, 2700 refill_keybuf_fn, MAP_END_KEY); 2701 2702 trace_bcache_keyscan(refill.nr_found, 2703 KEY_INODE(&start), KEY_OFFSET(&start), 2704 KEY_INODE(&buf->last_scanned), 2705 KEY_OFFSET(&buf->last_scanned)); 2706 2707 spin_lock(&buf->lock); 2708 2709 if (!RB_EMPTY_ROOT(&buf->keys)) { 2710 struct keybuf_key *w; 2711 2712 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2713 buf->start = START_KEY(&w->key); 2714 2715 w = RB_LAST(&buf->keys, struct keybuf_key, node); 2716 buf->end = w->key; 2717 } else { 2718 buf->start = MAX_KEY; 2719 buf->end = MAX_KEY; 2720 } 2721 2722 spin_unlock(&buf->lock); 2723 } 2724 2725 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2726 { 2727 rb_erase(&w->node, &buf->keys); 2728 array_free(&buf->freelist, w); 2729 } 2730 2731 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) 2732 { 2733 spin_lock(&buf->lock); 2734 __bch_keybuf_del(buf, w); 2735 spin_unlock(&buf->lock); 2736 } 2737 2738 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, 2739 struct bkey *end) 2740 { 2741 bool ret = false; 2742 struct keybuf_key *p, *w, s; 2743 2744 s.key = *start; 2745 2746 if (bkey_cmp(end, &buf->start) <= 0 || 2747 bkey_cmp(start, &buf->end) >= 0) 2748 return false; 2749 2750 spin_lock(&buf->lock); 2751 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); 2752 2753 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { 2754 p = w; 2755 w = RB_NEXT(w, node); 2756 2757 if (p->private) 2758 ret = true; 2759 else 2760 __bch_keybuf_del(buf, p); 2761 } 2762 2763 spin_unlock(&buf->lock); 2764 return ret; 2765 } 2766 2767 struct keybuf_key *bch_keybuf_next(struct keybuf *buf) 2768 { 2769 struct keybuf_key *w; 2770 2771 spin_lock(&buf->lock); 2772 2773 w = RB_FIRST(&buf->keys, struct keybuf_key, node); 2774 2775 while (w && w->private) 2776 w = RB_NEXT(w, node); 2777 2778 if (w) 2779 w->private = ERR_PTR(-EINTR); 2780 2781 spin_unlock(&buf->lock); 2782 return w; 2783 } 2784 2785 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, 2786 struct keybuf *buf, 2787 struct bkey *end, 2788 keybuf_pred_fn *pred) 2789 { 2790 struct keybuf_key *ret; 2791 2792 while (1) { 2793 ret = bch_keybuf_next(buf); 2794 if (ret) 2795 break; 2796 2797 if (bkey_cmp(&buf->last_scanned, end) >= 0) { 2798 pr_debug("scan finished\n"); 2799 break; 2800 } 2801 2802 bch_refill_keybuf(c, buf, end, pred); 2803 } 2804 2805 return ret; 2806 } 2807 2808 void bch_keybuf_init(struct keybuf *buf) 2809 { 2810 buf->last_scanned = MAX_KEY; 2811 buf->keys = RB_ROOT; 2812 2813 spin_lock_init(&buf->lock); 2814 array_allocator_init(&buf->freelist); 2815 } 2816 2817 void bch_btree_exit(void) 2818 { 2819 if (btree_io_wq) 2820 destroy_workqueue(btree_io_wq); 2821 } 2822 2823 int __init bch_btree_init(void) 2824 { 2825 btree_io_wq = alloc_workqueue("bch_btree_io", 2826 WQ_MEM_RECLAIM | WQ_PERCPU, 0); 2827 if (!btree_io_wq) 2828 return -ENOMEM; 2829 2830 return 0; 2831 } 2832