xref: /freebsd/sys/dev/bce/if_bce.c (revision aa3860851b9f6a6002d135b1cac7736e0995eedc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2006-2014 QLogic Corporation
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26  * THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 /*
31  * The following controllers are supported by this driver:
32  *   BCM5706C A2, A3
33  *   BCM5706S A2, A3
34  *   BCM5708C B1, B2
35  *   BCM5708S B1, B2
36  *   BCM5709C A1, C0
37  *   BCM5709S A1, C0
38  *   BCM5716C C0
39  *   BCM5716S C0
40  *
41  * The following controllers are not supported by this driver:
42  *   BCM5706C A0, A1 (pre-production)
43  *   BCM5706S A0, A1 (pre-production)
44  *   BCM5708C A0, B0 (pre-production)
45  *   BCM5708S A0, B0 (pre-production)
46  *   BCM5709C A0  B0, B1, B2 (pre-production)
47  *   BCM5709S A0, B0, B1, B2 (pre-production)
48  */
49 
50 #include "opt_bce.h"
51 
52 #include <sys/param.h>
53 #include <sys/endian.h>
54 #include <sys/systm.h>
55 #include <sys/sockio.h>
56 #include <sys/lock.h>
57 #include <sys/mbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/kernel.h>
61 #include <sys/module.h>
62 #include <sys/socket.h>
63 #include <sys/sysctl.h>
64 #include <sys/queue.h>
65 
66 #include <net/bpf.h>
67 #include <net/ethernet.h>
68 #include <net/if.h>
69 #include <net/if_var.h>
70 #include <net/if_arp.h>
71 #include <net/if_dl.h>
72 #include <net/if_media.h>
73 
74 #include <net/if_types.h>
75 #include <net/if_vlan_var.h>
76 
77 #include <netinet/in_systm.h>
78 #include <netinet/in.h>
79 #include <netinet/if_ether.h>
80 #include <netinet/ip.h>
81 #include <netinet/ip6.h>
82 #include <netinet/tcp.h>
83 #include <netinet/udp.h>
84 
85 #include <machine/bus.h>
86 #include <machine/resource.h>
87 #include <sys/bus.h>
88 #include <sys/rman.h>
89 
90 #include <dev/mii/mii.h>
91 #include <dev/mii/miivar.h>
92 #include "miidevs.h"
93 #include <dev/mii/brgphyreg.h>
94 
95 #include <dev/pci/pcireg.h>
96 #include <dev/pci/pcivar.h>
97 
98 #include "miibus_if.h"
99 
100 #include <dev/bce/if_bcereg.h>
101 #include <dev/bce/if_bcefw.h>
102 
103 /****************************************************************************/
104 /* BCE Debug Options                                                        */
105 /****************************************************************************/
106 #ifdef BCE_DEBUG
107 	u32 bce_debug = BCE_WARN;
108 
109 	/*          0 = Never              */
110 	/*          1 = 1 in 2,147,483,648 */
111 	/*        256 = 1 in     8,388,608 */
112 	/*       2048 = 1 in     1,048,576 */
113 	/*      65536 = 1 in        32,768 */
114 	/*    1048576 = 1 in         2,048 */
115 	/*  268435456 =	1 in             8 */
116 	/*  536870912 = 1 in             4 */
117 	/* 1073741824 = 1 in             2 */
118 
119 	/* Controls how often the l2_fhdr frame error check will fail. */
120 	int l2fhdr_error_sim_control = 0;
121 
122 	/* Controls how often the unexpected attention check will fail. */
123 	int unexpected_attention_sim_control = 0;
124 
125 	/* Controls how often to simulate an mbuf allocation failure. */
126 	int mbuf_alloc_failed_sim_control = 0;
127 
128 	/* Controls how often to simulate a DMA mapping failure. */
129 	int dma_map_addr_failed_sim_control = 0;
130 
131 	/* Controls how often to simulate a bootcode failure. */
132 	int bootcode_running_failure_sim_control = 0;
133 #endif
134 
135 /****************************************************************************/
136 /* PCI Device ID Table                                                      */
137 /*                                                                          */
138 /* Used by bce_probe() to identify the devices supported by this driver.    */
139 /****************************************************************************/
140 #define BCE_DEVDESC_MAX		64
141 
142 static const struct bce_type bce_devs[] = {
143 	/* BCM5706C Controllers and OEM boards. */
144 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3101,
145 		"HP NC370T Multifunction Gigabit Server Adapter" },
146 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3106,
147 		"HP NC370i Multifunction Gigabit Server Adapter" },
148 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x3070,
149 		"HP NC380T PCIe DP Multifunc Gig Server Adapter" },
150 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  HP_VENDORID, 0x1709,
151 		"HP NC371i Multifunction Gigabit Server Adapter" },
152 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706,  PCI_ANY_ID,  PCI_ANY_ID,
153 		"QLogic NetXtreme II BCM5706 1000Base-T" },
154 
155 	/* BCM5706S controllers and OEM boards. */
156 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
157 		"HP NC370F Multifunction Gigabit Server Adapter" },
158 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID,  PCI_ANY_ID,
159 		"QLogic NetXtreme II BCM5706 1000Base-SX" },
160 
161 	/* BCM5708C controllers and OEM boards. */
162 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7037,
163 		"HP NC373T PCIe Multifunction Gig Server Adapter" },
164 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7038,
165 		"HP NC373i Multifunction Gigabit Server Adapter" },
166 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  HP_VENDORID, 0x7045,
167 		"HP NC374m PCIe Multifunction Adapter" },
168 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708,  PCI_ANY_ID,  PCI_ANY_ID,
169 		"QLogic NetXtreme II BCM5708 1000Base-T" },
170 
171 	/* BCM5708S controllers and OEM boards. */
172 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x1706,
173 		"HP NC373m Multifunction Gigabit Server Adapter" },
174 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703b,
175 		"HP NC373i Multifunction Gigabit Server Adapter" },
176 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  HP_VENDORID, 0x703d,
177 		"HP NC373F PCIe Multifunc Giga Server Adapter" },
178 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708S,  PCI_ANY_ID,  PCI_ANY_ID,
179 		"QLogic NetXtreme II BCM5708 1000Base-SX" },
180 
181 	/* BCM5709C controllers and OEM boards. */
182 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7055,
183 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
184 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  HP_VENDORID, 0x7059,
185 		"HP NC382T PCIe DP Multifunction Gigabit Server Adapter" },
186 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709,  PCI_ANY_ID,  PCI_ANY_ID,
187 		"QLogic NetXtreme II BCM5709 1000Base-T" },
188 
189 	/* BCM5709S controllers and OEM boards. */
190 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x171d,
191 		"HP NC382m DP 1GbE Multifunction BL-c Adapter" },
192 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  HP_VENDORID, 0x7056,
193 		"HP NC382i DP Multifunction Gigabit Server Adapter" },
194 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5709S,  PCI_ANY_ID,  PCI_ANY_ID,
195 		"QLogic NetXtreme II BCM5709 1000Base-SX" },
196 
197 	/* BCM5716 controllers and OEM boards. */
198 	{ BRCM_VENDORID, BRCM_DEVICEID_BCM5716,  PCI_ANY_ID,  PCI_ANY_ID,
199 		"QLogic NetXtreme II BCM5716 1000Base-T" },
200 	{ 0, 0, 0, 0, NULL }
201 };
202 
203 /****************************************************************************/
204 /* Supported Flash NVRAM device data.                                       */
205 /****************************************************************************/
206 static const struct flash_spec flash_table[] =
207 {
208 #define BUFFERED_FLAGS		(BCE_NV_BUFFERED | BCE_NV_TRANSLATE)
209 #define NONBUFFERED_FLAGS	(BCE_NV_WREN)
210 
211 	/* Slow EEPROM */
212 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
213 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
214 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
215 	 "EEPROM - slow"},
216 	/* Expansion entry 0001 */
217 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
218 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
219 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
220 	 "Entry 0001"},
221 	/* Saifun SA25F010 (non-buffered flash) */
222 	/* strap, cfg1, & write1 need updates */
223 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
226 	 "Non-buffered flash (128kB)"},
227 	/* Saifun SA25F020 (non-buffered flash) */
228 	/* strap, cfg1, & write1 need updates */
229 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
230 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
231 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
232 	 "Non-buffered flash (256kB)"},
233 	/* Expansion entry 0100 */
234 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
235 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
236 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
237 	 "Entry 0100"},
238 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
239 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
240 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
241 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
242 	 "Entry 0101: ST M45PE10 (128kB non-buffered)"},
243 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
244 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
245 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
246 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
247 	 "Entry 0110: ST M45PE20 (256kB non-buffered)"},
248 	/* Saifun SA25F005 (non-buffered flash) */
249 	/* strap, cfg1, & write1 need updates */
250 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
253 	 "Non-buffered flash (64kB)"},
254 	/* Fast EEPROM */
255 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
256 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
257 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
258 	 "EEPROM - fast"},
259 	/* Expansion entry 1001 */
260 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
261 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
262 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
263 	 "Entry 1001"},
264 	/* Expansion entry 1010 */
265 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
266 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
267 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
268 	 "Entry 1010"},
269 	/* ATMEL AT45DB011B (buffered flash) */
270 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
271 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
272 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
273 	 "Buffered flash (128kB)"},
274 	/* Expansion entry 1100 */
275 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
276 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
277 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
278 	 "Entry 1100"},
279 	/* Expansion entry 1101 */
280 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
281 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
282 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
283 	 "Entry 1101"},
284 	/* Ateml Expansion entry 1110 */
285 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
286 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
287 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
288 	 "Entry 1110 (Atmel)"},
289 	/* ATMEL AT45DB021B (buffered flash) */
290 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
291 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
292 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
293 	 "Buffered flash (256kB)"},
294 };
295 
296 /*
297  * The BCM5709 controllers transparently handle the
298  * differences between Atmel 264 byte pages and all
299  * flash devices which use 256 byte pages, so no
300  * logical-to-physical mapping is required in the
301  * driver.
302  */
303 static const struct flash_spec flash_5709 = {
304 	.flags		= BCE_NV_BUFFERED,
305 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
306 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
307 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
308 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
309 	.name		= "5709/5716 buffered flash (256kB)",
310 };
311 
312 /****************************************************************************/
313 /* FreeBSD device entry points.                                             */
314 /****************************************************************************/
315 static int  bce_probe			(device_t);
316 static int  bce_attach			(device_t);
317 static int  bce_detach			(device_t);
318 static int  bce_shutdown		(device_t);
319 
320 /****************************************************************************/
321 /* BCE Debug Data Structure Dump Routines                                   */
322 /****************************************************************************/
323 #ifdef BCE_DEBUG
324 static u32  bce_reg_rd				(struct bce_softc *, u32);
325 static void bce_reg_wr				(struct bce_softc *, u32, u32);
326 static void bce_reg_wr16			(struct bce_softc *, u32, u16);
327 static u32  bce_ctx_rd				(struct bce_softc *, u32, u32);
328 static void bce_dump_enet			(struct bce_softc *, struct mbuf *);
329 static void bce_dump_mbuf			(struct bce_softc *, struct mbuf *);
330 static void bce_dump_tx_mbuf_chain	(struct bce_softc *, u16, int);
331 static void bce_dump_rx_mbuf_chain	(struct bce_softc *, u16, int);
332 static void bce_dump_pg_mbuf_chain	(struct bce_softc *, u16, int);
333 static void bce_dump_txbd			(struct bce_softc *,
334     int, struct tx_bd *);
335 static void bce_dump_rxbd			(struct bce_softc *,
336     int, struct rx_bd *);
337 static void bce_dump_pgbd			(struct bce_softc *,
338     int, struct rx_bd *);
339 static void bce_dump_l2fhdr		(struct bce_softc *,
340     int, struct l2_fhdr *);
341 static void bce_dump_ctx			(struct bce_softc *, u16);
342 static void bce_dump_ftqs			(struct bce_softc *);
343 static void bce_dump_tx_chain		(struct bce_softc *, u16, int);
344 static void bce_dump_rx_bd_chain	(struct bce_softc *, u16, int);
345 static void bce_dump_pg_chain		(struct bce_softc *, u16, int);
346 static void bce_dump_status_block	(struct bce_softc *);
347 static void bce_dump_stats_block	(struct bce_softc *);
348 static void bce_dump_driver_state	(struct bce_softc *);
349 static void bce_dump_hw_state		(struct bce_softc *);
350 static void bce_dump_shmem_state	(struct bce_softc *);
351 static void bce_dump_mq_regs		(struct bce_softc *);
352 static void bce_dump_bc_state		(struct bce_softc *);
353 static void bce_dump_txp_state		(struct bce_softc *, int);
354 static void bce_dump_rxp_state		(struct bce_softc *, int);
355 static void bce_dump_tpat_state	(struct bce_softc *, int);
356 static void bce_dump_cp_state		(struct bce_softc *, int);
357 static void bce_dump_com_state		(struct bce_softc *, int);
358 static void bce_dump_rv2p_state	(struct bce_softc *);
359 static void bce_breakpoint			(struct bce_softc *);
360 #endif /*BCE_DEBUG */
361 
362 /****************************************************************************/
363 /* BCE Register/Memory Access Routines                                      */
364 /****************************************************************************/
365 static u32  bce_reg_rd_ind		(struct bce_softc *, u32);
366 static void bce_reg_wr_ind		(struct bce_softc *, u32, u32);
367 static void bce_shmem_wr		(struct bce_softc *, u32, u32);
368 static u32  bce_shmem_rd		(struct bce_softc *, u32);
369 static void bce_ctx_wr			(struct bce_softc *, u32, u32, u32);
370 static int  bce_miibus_read_reg		(device_t, int, int);
371 static int  bce_miibus_write_reg	(device_t, int, int, int);
372 static void bce_miibus_statchg		(device_t);
373 
374 #ifdef BCE_DEBUG
375 static int bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS);
376 #ifdef BCE_NVRAM_WRITE_SUPPORT
377 static int bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS);
378 #endif
379 #endif
380 
381 /****************************************************************************/
382 /* BCE NVRAM Access Routines                                                */
383 /****************************************************************************/
384 static int  bce_acquire_nvram_lock	(struct bce_softc *);
385 static int  bce_release_nvram_lock	(struct bce_softc *);
386 static void bce_enable_nvram_access(struct bce_softc *);
387 static void bce_disable_nvram_access(struct bce_softc *);
388 static int  bce_nvram_read_dword	(struct bce_softc *, u32, u8 *, u32);
389 static int  bce_init_nvram			(struct bce_softc *);
390 static int  bce_nvram_read			(struct bce_softc *, u32, u8 *, int);
391 static int  bce_nvram_test			(struct bce_softc *);
392 #ifdef BCE_NVRAM_WRITE_SUPPORT
393 static int  bce_enable_nvram_write	(struct bce_softc *);
394 static void bce_disable_nvram_write(struct bce_softc *);
395 static int  bce_nvram_erase_page	(struct bce_softc *, u32);
396 static int  bce_nvram_write_dword	(struct bce_softc *, u32, u8 *, u32);
397 static int  bce_nvram_write		(struct bce_softc *, u32, u8 *, int);
398 #endif
399 
400 /****************************************************************************/
401 /*                                                                          */
402 /****************************************************************************/
403 static void bce_get_rx_buffer_sizes(struct bce_softc *, int);
404 static void bce_get_media			(struct bce_softc *);
405 static void bce_init_media			(struct bce_softc *);
406 static u32 bce_get_rphy_link		(struct bce_softc *);
407 static void bce_dma_map_addr		(void *, bus_dma_segment_t *, int, int);
408 static int  bce_dma_alloc			(device_t);
409 static void bce_dma_free			(struct bce_softc *);
410 static void bce_release_resources	(struct bce_softc *);
411 
412 /****************************************************************************/
413 /* BCE Firmware Synchronization and Load                                    */
414 /****************************************************************************/
415 static void bce_fw_cap_init			(struct bce_softc *);
416 static int  bce_fw_sync			(struct bce_softc *, u32);
417 static void bce_load_rv2p_fw		(struct bce_softc *, const u32 *, u32,
418     u32);
419 static void bce_load_cpu_fw		(struct bce_softc *,
420     struct cpu_reg *, struct fw_info *);
421 static void bce_start_cpu			(struct bce_softc *, struct cpu_reg *);
422 static void bce_halt_cpu			(struct bce_softc *, struct cpu_reg *);
423 static void bce_start_rxp_cpu		(struct bce_softc *);
424 static void bce_init_rxp_cpu		(struct bce_softc *);
425 static void bce_init_txp_cpu 		(struct bce_softc *);
426 static void bce_init_tpat_cpu		(struct bce_softc *);
427 static void bce_init_cp_cpu	  	(struct bce_softc *);
428 static void bce_init_com_cpu	  	(struct bce_softc *);
429 static void bce_init_cpus			(struct bce_softc *);
430 
431 static void bce_print_adapter_info	(struct bce_softc *);
432 static void bce_probe_pci_caps		(device_t, struct bce_softc *);
433 static void bce_stop				(struct bce_softc *);
434 static int  bce_reset				(struct bce_softc *, u32);
435 static int  bce_chipinit 			(struct bce_softc *);
436 static int  bce_blockinit 			(struct bce_softc *);
437 
438 static int  bce_init_tx_chain		(struct bce_softc *);
439 static void bce_free_tx_chain		(struct bce_softc *);
440 
441 static int  bce_get_rx_buf		(struct bce_softc *, u16, u16, u32 *);
442 static int  bce_init_rx_chain		(struct bce_softc *);
443 static void bce_fill_rx_chain		(struct bce_softc *);
444 static void bce_free_rx_chain		(struct bce_softc *);
445 
446 static int  bce_get_pg_buf		(struct bce_softc *, u16, u16);
447 static int  bce_init_pg_chain		(struct bce_softc *);
448 static void bce_fill_pg_chain		(struct bce_softc *);
449 static void bce_free_pg_chain		(struct bce_softc *);
450 
451 static struct mbuf *bce_tso_setup	(struct bce_softc *,
452     struct mbuf **, u16 *);
453 static int  bce_tx_encap			(struct bce_softc *, struct mbuf **);
454 static void bce_start_locked		(if_t);
455 static void bce_start			(if_t);
456 static int  bce_ioctl			(if_t, u_long, caddr_t);
457 static uint64_t bce_get_counter		(if_t, ift_counter);
458 static void bce_watchdog		(struct bce_softc *);
459 static int  bce_ifmedia_upd		(if_t);
460 static int  bce_ifmedia_upd_locked	(if_t);
461 static void bce_ifmedia_sts		(if_t, struct ifmediareq *);
462 static void bce_ifmedia_sts_rphy	(struct bce_softc *, struct ifmediareq *);
463 static void bce_init_locked		(struct bce_softc *);
464 static void bce_init				(void *);
465 static void bce_mgmt_init_locked	(struct bce_softc *sc);
466 
467 static int  bce_init_ctx			(struct bce_softc *);
468 static void bce_get_mac_addr		(struct bce_softc *);
469 static void bce_set_mac_addr		(struct bce_softc *);
470 static void bce_phy_intr			(struct bce_softc *);
471 static inline u16 bce_get_hw_rx_cons	(struct bce_softc *);
472 static void bce_rx_intr			(struct bce_softc *);
473 static void bce_tx_intr			(struct bce_softc *);
474 static void bce_disable_intr		(struct bce_softc *);
475 static void bce_enable_intr		(struct bce_softc *, int);
476 
477 static void bce_intr				(void *);
478 static void bce_set_rx_mode		(struct bce_softc *);
479 static void bce_stats_update		(struct bce_softc *);
480 static void bce_tick				(void *);
481 static void bce_pulse				(void *);
482 static void bce_add_sysctls		(struct bce_softc *);
483 
484 /****************************************************************************/
485 /* FreeBSD device dispatch table.                                           */
486 /****************************************************************************/
487 static device_method_t bce_methods[] = {
488 	/* Device interface (device_if.h) */
489 	DEVMETHOD(device_probe,		bce_probe),
490 	DEVMETHOD(device_attach,	bce_attach),
491 	DEVMETHOD(device_detach,	bce_detach),
492 	DEVMETHOD(device_shutdown,	bce_shutdown),
493 /* Supported by device interface but not used here. */
494 /*	DEVMETHOD(device_identify,	bce_identify),      */
495 /*	DEVMETHOD(device_suspend,	bce_suspend),       */
496 /*	DEVMETHOD(device_resume,	bce_resume),        */
497 /*	DEVMETHOD(device_quiesce,	bce_quiesce),       */
498 
499 	/* MII interface (miibus_if.h) */
500 	DEVMETHOD(miibus_readreg,	bce_miibus_read_reg),
501 	DEVMETHOD(miibus_writereg,	bce_miibus_write_reg),
502 	DEVMETHOD(miibus_statchg,	bce_miibus_statchg),
503 /* Supported by MII interface but not used here.       */
504 /*	DEVMETHOD(miibus_linkchg,	bce_miibus_linkchg),   */
505 /*	DEVMETHOD(miibus_mediainit,	bce_miibus_mediainit), */
506 
507 	DEVMETHOD_END
508 };
509 
510 static driver_t bce_driver = {
511 	"bce",
512 	bce_methods,
513 	sizeof(struct bce_softc)
514 };
515 
516 MODULE_DEPEND(bce, pci, 1, 1, 1);
517 MODULE_DEPEND(bce, ether, 1, 1, 1);
518 MODULE_DEPEND(bce, miibus, 1, 1, 1);
519 
520 DRIVER_MODULE(bce, pci, bce_driver, NULL, NULL);
521 DRIVER_MODULE(miibus, bce, miibus_driver, NULL, NULL);
522 MODULE_PNP_INFO("U16:vendor;U16:device;U16:#;U16:#;D:#", pci, bce,
523     bce_devs, nitems(bce_devs) - 1);
524 
525 /****************************************************************************/
526 /* Tunable device values                                                    */
527 /****************************************************************************/
528 static SYSCTL_NODE(_hw, OID_AUTO, bce, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
529     "bce driver parameters");
530 
531 /* Allowable values are TRUE or FALSE */
532 static int bce_verbose = TRUE;
533 SYSCTL_INT(_hw_bce, OID_AUTO, verbose, CTLFLAG_RDTUN, &bce_verbose, 0,
534     "Verbose output enable/disable");
535 
536 /* Allowable values are TRUE or FALSE */
537 static int bce_tso_enable = TRUE;
538 SYSCTL_INT(_hw_bce, OID_AUTO, tso_enable, CTLFLAG_RDTUN, &bce_tso_enable, 0,
539     "TSO Enable/Disable");
540 
541 /* Allowable values are 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
542 /* ToDo: Add MSI-X support. */
543 static int bce_msi_enable = 1;
544 SYSCTL_INT(_hw_bce, OID_AUTO, msi_enable, CTLFLAG_RDTUN, &bce_msi_enable, 0,
545     "MSI-X|MSI|INTx selector");
546 
547 /* Allowable values are 1, 2, 4, 8. */
548 static int bce_rx_pages = DEFAULT_RX_PAGES;
549 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_pages, CTLFLAG_RDTUN, &bce_rx_pages, 0,
550     "Receive buffer descriptor pages (1 page = 255 buffer descriptors)");
551 
552 /* Allowable values are 1, 2, 4, 8. */
553 static int bce_tx_pages = DEFAULT_TX_PAGES;
554 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_pages, CTLFLAG_RDTUN, &bce_tx_pages, 0,
555     "Transmit buffer descriptor pages (1 page = 255 buffer descriptors)");
556 
557 /* Allowable values are TRUE or FALSE. */
558 static int bce_hdr_split = TRUE;
559 SYSCTL_UINT(_hw_bce, OID_AUTO, hdr_split, CTLFLAG_RDTUN, &bce_hdr_split, 0,
560     "Frame header/payload splitting Enable/Disable");
561 
562 /* Allowable values are TRUE or FALSE. */
563 static int bce_strict_rx_mtu = FALSE;
564 SYSCTL_UINT(_hw_bce, OID_AUTO, strict_rx_mtu, CTLFLAG_RDTUN,
565     &bce_strict_rx_mtu, 0,
566     "Enable/Disable strict RX frame size checking");
567 
568 /* Allowable values are 0 ... 100 */
569 #ifdef BCE_DEBUG
570 /* Generate 1 interrupt for every transmit completion. */
571 static int bce_tx_quick_cons_trip_int = 1;
572 #else
573 /* Generate 1 interrupt for every 20 transmit completions. */
574 static int bce_tx_quick_cons_trip_int = DEFAULT_TX_QUICK_CONS_TRIP_INT;
575 #endif
576 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip_int, CTLFLAG_RDTUN,
577     &bce_tx_quick_cons_trip_int, 0,
578     "Transmit BD trip point during interrupts");
579 
580 /* Allowable values are 0 ... 100 */
581 /* Generate 1 interrupt for every transmit completion. */
582 #ifdef BCE_DEBUG
583 static int bce_tx_quick_cons_trip = 1;
584 #else
585 /* Generate 1 interrupt for every 20 transmit completions. */
586 static int bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
587 #endif
588 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_quick_cons_trip, CTLFLAG_RDTUN,
589     &bce_tx_quick_cons_trip, 0,
590     "Transmit BD trip point");
591 
592 /* Allowable values are 0 ... 100 */
593 #ifdef BCE_DEBUG
594 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
595 static int bce_tx_ticks_int = 0;
596 #else
597 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
598 static int bce_tx_ticks_int = DEFAULT_TX_TICKS_INT;
599 #endif
600 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks_int, CTLFLAG_RDTUN,
601     &bce_tx_ticks_int, 0, "Transmit ticks count during interrupt");
602 
603 /* Allowable values are 0 ... 100 */
604 #ifdef BCE_DEBUG
605 /* Generate an interrupt if 0us have elapsed since the last TX completion. */
606 static int bce_tx_ticks = 0;
607 #else
608 /* Generate an interrupt if 80us have elapsed since the last TX completion. */
609 static int bce_tx_ticks = DEFAULT_TX_TICKS;
610 #endif
611 SYSCTL_UINT(_hw_bce, OID_AUTO, tx_ticks, CTLFLAG_RDTUN,
612     &bce_tx_ticks, 0, "Transmit ticks count");
613 
614 /* Allowable values are 1 ... 100 */
615 #ifdef BCE_DEBUG
616 /* Generate 1 interrupt for every received frame. */
617 static int bce_rx_quick_cons_trip_int = 1;
618 #else
619 /* Generate 1 interrupt for every 6 received frames. */
620 static int bce_rx_quick_cons_trip_int = DEFAULT_RX_QUICK_CONS_TRIP_INT;
621 #endif
622 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip_int, CTLFLAG_RDTUN,
623     &bce_rx_quick_cons_trip_int, 0,
624     "Receive BD trip point during interrupts");
625 
626 /* Allowable values are 1 ... 100 */
627 #ifdef BCE_DEBUG
628 /* Generate 1 interrupt for every received frame. */
629 static int bce_rx_quick_cons_trip = 1;
630 #else
631 /* Generate 1 interrupt for every 6 received frames. */
632 static int bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
633 #endif
634 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_quick_cons_trip, CTLFLAG_RDTUN,
635     &bce_rx_quick_cons_trip, 0,
636     "Receive BD trip point");
637 
638 /* Allowable values are 0 ... 100 */
639 #ifdef BCE_DEBUG
640 /* Generate an int. if 0us have elapsed since the last received frame. */
641 static int bce_rx_ticks_int = 0;
642 #else
643 /* Generate an int. if 18us have elapsed since the last received frame. */
644 static int bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
645 #endif
646 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks_int, CTLFLAG_RDTUN,
647     &bce_rx_ticks_int, 0, "Receive ticks count during interrupt");
648 
649 /* Allowable values are 0 ... 100 */
650 #ifdef BCE_DEBUG
651 /* Generate an int. if 0us have elapsed since the last received frame. */
652 static int bce_rx_ticks = 0;
653 #else
654 /* Generate an int. if 18us have elapsed since the last received frame. */
655 static int bce_rx_ticks = DEFAULT_RX_TICKS;
656 #endif
657 SYSCTL_UINT(_hw_bce, OID_AUTO, rx_ticks, CTLFLAG_RDTUN,
658     &bce_rx_ticks, 0, "Receive ticks count");
659 
660 /****************************************************************************/
661 /* Device probe function.                                                   */
662 /*                                                                          */
663 /* Compares the device to the driver's list of supported devices and        */
664 /* reports back to the OS whether this is the right driver for the device.  */
665 /*                                                                          */
666 /* Returns:                                                                 */
667 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
668 /****************************************************************************/
669 static int
bce_probe(device_t dev)670 bce_probe(device_t dev)
671 {
672 	const struct bce_type *t;
673 	struct bce_softc *sc;
674 	u16 vid = 0, did = 0, svid = 0, sdid = 0;
675 
676 	t = bce_devs;
677 
678 	sc = device_get_softc(dev);
679 	sc->bce_unit = device_get_unit(dev);
680 	sc->bce_dev = dev;
681 
682 	/* Get the data for the device to be probed. */
683 	vid  = pci_get_vendor(dev);
684 	did  = pci_get_device(dev);
685 	svid = pci_get_subvendor(dev);
686 	sdid = pci_get_subdevice(dev);
687 
688 	DBPRINT(sc, BCE_EXTREME_LOAD,
689 	    "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
690 	    "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
691 
692 	/* Look through the list of known devices for a match. */
693 	while(t->bce_name != NULL) {
694 		if ((vid == t->bce_vid) && (did == t->bce_did) &&
695 		    ((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
696 		    ((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
697 			device_set_descf(dev, "%s (%c%d)",
698 			    t->bce_name, (((pci_read_config(dev,
699 			    PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
700 			    (pci_read_config(dev, PCIR_REVID, 4) & 0xf));
701 			return(BUS_PROBE_DEFAULT);
702 		}
703 		t++;
704 	}
705 
706 	return(ENXIO);
707 }
708 
709 /****************************************************************************/
710 /* PCI Capabilities Probe Function.                                         */
711 /*                                                                          */
712 /* Walks the PCI capabiites list for the device to find what features are   */
713 /* supported.                                                               */
714 /*                                                                          */
715 /* Returns:                                                                 */
716 /*   None.                                                                  */
717 /****************************************************************************/
718 static void
bce_print_adapter_info(struct bce_softc * sc)719 bce_print_adapter_info(struct bce_softc *sc)
720 {
721 	int i = 0;
722 
723 	DBENTER(BCE_VERBOSE_LOAD);
724 
725 	if (bce_verbose || bootverbose) {
726 		BCE_PRINTF("ASIC (0x%08X); ", sc->bce_chipid);
727 		printf("Rev (%c%d); ", ((BCE_CHIP_ID(sc) & 0xf000) >>
728 		    12) + 'A', ((BCE_CHIP_ID(sc) & 0x0ff0) >> 4));
729 
730 		/* Bus info. */
731 		if (sc->bce_flags & BCE_PCIE_FLAG) {
732 			printf("Bus (PCIe x%d, ", sc->link_width);
733 			switch (sc->link_speed) {
734 			case 1: printf("2.5Gbps); "); break;
735 			case 2:	printf("5Gbps); "); break;
736 			default: printf("Unknown link speed); ");
737 			}
738 		} else {
739 			printf("Bus (PCI%s, %s, %dMHz); ",
740 			    ((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
741 			    ((sc->bce_flags & BCE_PCI_32BIT_FLAG) ?
742 			    "32-bit" : "64-bit"), sc->bus_speed_mhz);
743 		}
744 
745 		/* Firmware version and device features. */
746 		printf("B/C (%s); Bufs (RX:%d;TX:%d;PG:%d); Flags (",
747 		    sc->bce_bc_ver,	sc->rx_pages, sc->tx_pages,
748 		    (bce_hdr_split == TRUE ? sc->pg_pages: 0));
749 
750 		if (bce_hdr_split == TRUE) {
751 			printf("SPLT");
752 			i++;
753 		}
754 
755 		if (sc->bce_flags & BCE_USING_MSI_FLAG) {
756 			if (i > 0) printf("|");
757 			printf("MSI"); i++;
758 		}
759 
760 		if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
761 			if (i > 0) printf("|");
762 			printf("MSI-X"); i++;
763 		}
764 
765 		if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
766 			if (i > 0) printf("|");
767 			printf("2.5G"); i++;
768 		}
769 
770 		if (sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) {
771 			if (i > 0) printf("|");
772 			printf("Remote PHY(%s)",
773 			    sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG ?
774 			    "FIBER" : "TP"); i++;
775 		}
776 
777 		if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
778 			if (i > 0) printf("|");
779 			printf("MFW); MFW (%s)\n", sc->bce_mfw_ver);
780 		} else {
781 			printf(")\n");
782 		}
783 
784 		printf("Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
785 		    sc->bce_rx_quick_cons_trip_int,
786 		    sc->bce_rx_quick_cons_trip,
787 		    sc->bce_rx_ticks_int,
788 		    sc->bce_rx_ticks,
789 		    sc->bce_tx_quick_cons_trip_int,
790 		    sc->bce_tx_quick_cons_trip,
791 		    sc->bce_tx_ticks_int,
792 		    sc->bce_tx_ticks);
793 	}
794 
795 	DBEXIT(BCE_VERBOSE_LOAD);
796 }
797 
798 /****************************************************************************/
799 /* PCI Capabilities Probe Function.                                         */
800 /*                                                                          */
801 /* Walks the PCI capabiites list for the device to find what features are   */
802 /* supported.                                                               */
803 /*                                                                          */
804 /* Returns:                                                                 */
805 /*   None.                                                                  */
806 /****************************************************************************/
807 static void
bce_probe_pci_caps(device_t dev,struct bce_softc * sc)808 bce_probe_pci_caps(device_t dev, struct bce_softc *sc)
809 {
810 	u32 reg;
811 
812 	DBENTER(BCE_VERBOSE_LOAD);
813 
814 	/* Check if PCI-X capability is enabled. */
815 	if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0) {
816 		if (reg != 0)
817 			sc->bce_cap_flags |= BCE_PCIX_CAPABLE_FLAG;
818 	}
819 
820 	/* Check if PCIe capability is enabled. */
821 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
822 		if (reg != 0) {
823 			u16 link_status = pci_read_config(dev, reg + 0x12, 2);
824 			DBPRINT(sc, BCE_INFO_LOAD, "PCIe link_status = "
825 			    "0x%08X\n",	link_status);
826 			sc->link_speed = link_status & 0xf;
827 			sc->link_width = (link_status >> 4) & 0x3f;
828 			sc->bce_cap_flags |= BCE_PCIE_CAPABLE_FLAG;
829 			sc->bce_flags |= BCE_PCIE_FLAG;
830 		}
831 	}
832 
833 	/* Check if MSI capability is enabled. */
834 	if (pci_find_cap(dev, PCIY_MSI, &reg) == 0) {
835 		if (reg != 0)
836 			sc->bce_cap_flags |= BCE_MSI_CAPABLE_FLAG;
837 	}
838 
839 	/* Check if MSI-X capability is enabled. */
840 	if (pci_find_cap(dev, PCIY_MSIX, &reg) == 0) {
841 		if (reg != 0)
842 			sc->bce_cap_flags |= BCE_MSIX_CAPABLE_FLAG;
843 	}
844 
845 	DBEXIT(BCE_VERBOSE_LOAD);
846 }
847 
848 /****************************************************************************/
849 /* Load and validate user tunable settings.                                 */
850 /*                                                                          */
851 /* Returns:                                                                 */
852 /*   Nothing.                                                               */
853 /****************************************************************************/
854 static void
bce_set_tunables(struct bce_softc * sc)855 bce_set_tunables(struct bce_softc *sc)
856 {
857 	/* Set sysctl values for RX page count. */
858 	switch (bce_rx_pages) {
859 	case 1:
860 		/* fall-through */
861 	case 2:
862 		/* fall-through */
863 	case 4:
864 		/* fall-through */
865 	case 8:
866 		sc->rx_pages = bce_rx_pages;
867 		break;
868 	default:
869 		sc->rx_pages = DEFAULT_RX_PAGES;
870 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
871 		    "hw.bce.rx_pages!  Setting default of %d.\n",
872 		    __FILE__, __LINE__, bce_rx_pages, DEFAULT_RX_PAGES);
873 	}
874 
875 	/* ToDo: Consider allowing user setting for pg_pages. */
876 	sc->pg_pages = min((sc->rx_pages * 4), MAX_PG_PAGES);
877 
878 	/* Set sysctl values for TX page count. */
879 	switch (bce_tx_pages) {
880 	case 1:
881 		/* fall-through */
882 	case 2:
883 		/* fall-through */
884 	case 4:
885 		/* fall-through */
886 	case 8:
887 		sc->tx_pages = bce_tx_pages;
888 		break;
889 	default:
890 		sc->tx_pages = DEFAULT_TX_PAGES;
891 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
892 		    "hw.bce.tx_pages!  Setting default of %d.\n",
893 		    __FILE__, __LINE__, bce_tx_pages, DEFAULT_TX_PAGES);
894 	}
895 
896 	/*
897 	 * Validate the TX trip point (i.e. the number of
898 	 * TX completions before a status block update is
899 	 * generated and an interrupt is asserted.
900 	 */
901 	if (bce_tx_quick_cons_trip_int <= 100) {
902 		sc->bce_tx_quick_cons_trip_int =
903 		    bce_tx_quick_cons_trip_int;
904 	} else {
905 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
906 		    "hw.bce.tx_quick_cons_trip_int!  Setting default of %d.\n",
907 		    __FILE__, __LINE__, bce_tx_quick_cons_trip_int,
908 		    DEFAULT_TX_QUICK_CONS_TRIP_INT);
909 		sc->bce_tx_quick_cons_trip_int =
910 		    DEFAULT_TX_QUICK_CONS_TRIP_INT;
911 	}
912 
913 	if (bce_tx_quick_cons_trip <= 100) {
914 		sc->bce_tx_quick_cons_trip =
915 		    bce_tx_quick_cons_trip;
916 	} else {
917 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
918 		    "hw.bce.tx_quick_cons_trip!  Setting default of %d.\n",
919 		    __FILE__, __LINE__, bce_tx_quick_cons_trip,
920 		    DEFAULT_TX_QUICK_CONS_TRIP);
921 		sc->bce_tx_quick_cons_trip =
922 		    DEFAULT_TX_QUICK_CONS_TRIP;
923 	}
924 
925 	/*
926 	 * Validate the TX ticks count (i.e. the maximum amount
927 	 * of time to wait after the last TX completion has
928 	 * occurred before a status block update is generated
929 	 * and an interrupt is asserted.
930 	 */
931 	if (bce_tx_ticks_int <= 100) {
932 		sc->bce_tx_ticks_int =
933 		    bce_tx_ticks_int;
934 	} else {
935 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
936 		    "hw.bce.tx_ticks_int!  Setting default of %d.\n",
937 		    __FILE__, __LINE__, bce_tx_ticks_int,
938 		    DEFAULT_TX_TICKS_INT);
939 		sc->bce_tx_ticks_int =
940 		    DEFAULT_TX_TICKS_INT;
941 	   }
942 
943 	if (bce_tx_ticks <= 100) {
944 		sc->bce_tx_ticks =
945 		    bce_tx_ticks;
946 	} else {
947 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
948 		    "hw.bce.tx_ticks!  Setting default of %d.\n",
949 		    __FILE__, __LINE__, bce_tx_ticks,
950 		    DEFAULT_TX_TICKS);
951 		sc->bce_tx_ticks =
952 		    DEFAULT_TX_TICKS;
953 	}
954 
955 	/*
956 	 * Validate the RX trip point (i.e. the number of
957 	 * RX frames received before a status block update is
958 	 * generated and an interrupt is asserted.
959 	 */
960 	if (bce_rx_quick_cons_trip_int <= 100) {
961 		sc->bce_rx_quick_cons_trip_int =
962 		    bce_rx_quick_cons_trip_int;
963 	} else {
964 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
965 		    "hw.bce.rx_quick_cons_trip_int!  Setting default of %d.\n",
966 		    __FILE__, __LINE__, bce_rx_quick_cons_trip_int,
967 		    DEFAULT_RX_QUICK_CONS_TRIP_INT);
968 		sc->bce_rx_quick_cons_trip_int =
969 		    DEFAULT_RX_QUICK_CONS_TRIP_INT;
970 	}
971 
972 	if (bce_rx_quick_cons_trip <= 100) {
973 		sc->bce_rx_quick_cons_trip =
974 		    bce_rx_quick_cons_trip;
975 	} else {
976 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
977 		    "hw.bce.rx_quick_cons_trip!  Setting default of %d.\n",
978 		    __FILE__, __LINE__, bce_rx_quick_cons_trip,
979 		    DEFAULT_RX_QUICK_CONS_TRIP);
980 		sc->bce_rx_quick_cons_trip =
981 		    DEFAULT_RX_QUICK_CONS_TRIP;
982 	}
983 
984 	/*
985 	 * Validate the RX ticks count (i.e. the maximum amount
986 	 * of time to wait after the last RX frame has been
987 	 * received before a status block update is generated
988 	 * and an interrupt is asserted.
989 	 */
990 	if (bce_rx_ticks_int <= 100) {
991 		sc->bce_rx_ticks_int = bce_rx_ticks_int;
992 	} else {
993 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
994 		    "hw.bce.rx_ticks_int!  Setting default of %d.\n",
995 		    __FILE__, __LINE__, bce_rx_ticks_int,
996 		    DEFAULT_RX_TICKS_INT);
997 		sc->bce_rx_ticks_int = DEFAULT_RX_TICKS_INT;
998 	}
999 
1000 	if (bce_rx_ticks <= 100) {
1001 		sc->bce_rx_ticks = bce_rx_ticks;
1002 	} else {
1003 		BCE_PRINTF("%s(%d): Illegal value (%d) specified for "
1004 		    "hw.bce.rx_ticks!  Setting default of %d.\n",
1005 		    __FILE__, __LINE__, bce_rx_ticks,
1006 		    DEFAULT_RX_TICKS);
1007 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1008 	}
1009 
1010 	/* Disabling both RX ticks and RX trips will prevent interrupts. */
1011 	if ((bce_rx_quick_cons_trip == 0) && (bce_rx_ticks == 0)) {
1012 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.rx_ticks and "
1013 		    "hw.bce.rx_quick_cons_trip to 0. Setting default values.\n",
1014 		   __FILE__, __LINE__);
1015 		sc->bce_rx_ticks = DEFAULT_RX_TICKS;
1016 		sc->bce_rx_quick_cons_trip = DEFAULT_RX_QUICK_CONS_TRIP;
1017 	}
1018 
1019 	/* Disabling both TX ticks and TX trips will prevent interrupts. */
1020 	if ((bce_tx_quick_cons_trip == 0) && (bce_tx_ticks == 0)) {
1021 		BCE_PRINTF("%s(%d): Cannot set both hw.bce.tx_ticks and "
1022 		    "hw.bce.tx_quick_cons_trip to 0. Setting default values.\n",
1023 		   __FILE__, __LINE__);
1024 		sc->bce_tx_ticks = DEFAULT_TX_TICKS;
1025 		sc->bce_tx_quick_cons_trip = DEFAULT_TX_QUICK_CONS_TRIP;
1026 	}
1027 }
1028 
1029 /****************************************************************************/
1030 /* Device attach function.                                                  */
1031 /*                                                                          */
1032 /* Allocates device resources, performs secondary chip identification,      */
1033 /* resets and initializes the hardware, and initializes driver instance     */
1034 /* variables.                                                               */
1035 /*                                                                          */
1036 /* Returns:                                                                 */
1037 /*   0 on success, positive value on failure.                               */
1038 /****************************************************************************/
1039 static int
bce_attach(device_t dev)1040 bce_attach(device_t dev)
1041 {
1042 	struct bce_softc *sc;
1043 	if_t ifp;
1044 	u32 val;
1045 	int count, error, rc = 0, rid;
1046 
1047 	sc = device_get_softc(dev);
1048 	sc->bce_dev = dev;
1049 
1050 	DBENTER(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1051 
1052 	sc->bce_unit = device_get_unit(dev);
1053 
1054 	/* Set initial device and PHY flags */
1055 	sc->bce_flags = 0;
1056 	sc->bce_phy_flags = 0;
1057 
1058 	bce_set_tunables(sc);
1059 
1060 	pci_enable_busmaster(dev);
1061 
1062 	/* Allocate PCI memory resources. */
1063 	rid = PCIR_BAR(0);
1064 	sc->bce_res_mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1065 		&rid, RF_ACTIVE);
1066 
1067 	if (sc->bce_res_mem == NULL) {
1068 		BCE_PRINTF("%s(%d): PCI memory allocation failed\n",
1069 		    __FILE__, __LINE__);
1070 		rc = ENXIO;
1071 		goto bce_attach_fail;
1072 	}
1073 
1074 	/* Get various resource handles. */
1075 	sc->bce_btag    = rman_get_bustag(sc->bce_res_mem);
1076 	sc->bce_bhandle = rman_get_bushandle(sc->bce_res_mem);
1077 	sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res_mem);
1078 
1079 	bce_probe_pci_caps(dev, sc);
1080 
1081 	rid = 1;
1082 	count = 0;
1083 #if 0
1084 	/* Try allocating MSI-X interrupts. */
1085 	if ((sc->bce_cap_flags & BCE_MSIX_CAPABLE_FLAG) &&
1086 		(bce_msi_enable >= 2) &&
1087 		((sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1088 		&rid, RF_ACTIVE)) != NULL)) {
1089 		msi_needed = count = 1;
1090 
1091 		if (((error = pci_alloc_msix(dev, &count)) != 0) ||
1092 			(count != msi_needed)) {
1093 			BCE_PRINTF("%s(%d): MSI-X allocation failed! Requested = %d,"
1094 				"Received = %d, error = %d\n", __FILE__, __LINE__,
1095 				msi_needed, count, error);
1096 			count = 0;
1097 			pci_release_msi(dev);
1098 			bus_release_resource(dev, SYS_RES_MEMORY, rid,
1099 				sc->bce_res_irq);
1100 			sc->bce_res_irq = NULL;
1101 		} else {
1102 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI-X interrupt.\n",
1103 				__FUNCTION__);
1104 			sc->bce_flags |= BCE_USING_MSIX_FLAG;
1105 		}
1106 	}
1107 #endif
1108 
1109 	/* Try allocating a MSI interrupt. */
1110 	if ((sc->bce_cap_flags & BCE_MSI_CAPABLE_FLAG) &&
1111 		(bce_msi_enable >= 1) && (count == 0)) {
1112 		count = 1;
1113 		if ((error = pci_alloc_msi(dev, &count)) != 0) {
1114 			BCE_PRINTF("%s(%d): MSI allocation failed! "
1115 			    "error = %d\n", __FILE__, __LINE__, error);
1116 			count = 0;
1117 			pci_release_msi(dev);
1118 		} else {
1119 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using MSI "
1120 			    "interrupt.\n", __FUNCTION__);
1121 			sc->bce_flags |= BCE_USING_MSI_FLAG;
1122 			if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
1123 				sc->bce_flags |= BCE_ONE_SHOT_MSI_FLAG;
1124 			rid = 1;
1125 		}
1126 	}
1127 
1128 	/* Try allocating a legacy interrupt. */
1129 	if (count == 0) {
1130 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Using INTx interrupt.\n",
1131 			__FUNCTION__);
1132 		rid = 0;
1133 	}
1134 
1135 	sc->bce_res_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
1136 	    &rid, RF_ACTIVE | (count != 0 ? 0 : RF_SHAREABLE));
1137 
1138 	/* Report any IRQ allocation errors. */
1139 	if (sc->bce_res_irq == NULL) {
1140 		BCE_PRINTF("%s(%d): PCI map interrupt failed!\n",
1141 		    __FILE__, __LINE__);
1142 		rc = ENXIO;
1143 		goto bce_attach_fail;
1144 	}
1145 
1146 	/* Initialize mutex for the current device instance. */
1147 	BCE_LOCK_INIT(sc, device_get_nameunit(dev));
1148 
1149 	/*
1150 	 * Configure byte swap and enable indirect register access.
1151 	 * Rely on CPU to do target byte swapping on big endian systems.
1152 	 * Access to registers outside of PCI configurtion space are not
1153 	 * valid until this is done.
1154 	 */
1155 	pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
1156 	    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
1157 	    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
1158 
1159 	/* Save ASIC revsion info. */
1160 	sc->bce_chipid =  REG_RD(sc, BCE_MISC_ID);
1161 
1162 	/* Weed out any non-production controller revisions. */
1163 	switch(BCE_CHIP_ID(sc)) {
1164 	case BCE_CHIP_ID_5706_A0:
1165 	case BCE_CHIP_ID_5706_A1:
1166 	case BCE_CHIP_ID_5708_A0:
1167 	case BCE_CHIP_ID_5708_B0:
1168 	case BCE_CHIP_ID_5709_A0:
1169 	case BCE_CHIP_ID_5709_B0:
1170 	case BCE_CHIP_ID_5709_B1:
1171 	case BCE_CHIP_ID_5709_B2:
1172 		BCE_PRINTF("%s(%d): Unsupported controller "
1173 		    "revision (%c%d)!\n", __FILE__, __LINE__,
1174 		    (((pci_read_config(dev, PCIR_REVID, 4) &
1175 		    0xf0) >> 4) + 'A'), (pci_read_config(dev,
1176 		    PCIR_REVID, 4) & 0xf));
1177 		rc = ENODEV;
1178 		goto bce_attach_fail;
1179 	}
1180 
1181 	/*
1182 	 * The embedded PCIe to PCI-X bridge (EPB)
1183 	 * in the 5708 cannot address memory above
1184 	 * 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
1185 	 */
1186 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
1187 		sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
1188 	else
1189 		sc->max_bus_addr = BUS_SPACE_MAXADDR;
1190 
1191 	/*
1192 	 * Find the base address for shared memory access.
1193 	 * Newer versions of bootcode use a signature and offset
1194 	 * while older versions use a fixed address.
1195 	 */
1196 	val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
1197 	if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
1198 		/* Multi-port devices use different offsets in shared memory. */
1199 		sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0 +
1200 		    (pci_get_function(sc->bce_dev) << 2));
1201 	else
1202 		sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
1203 
1204 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): bce_shmem_base = 0x%08X\n",
1205 	    __FUNCTION__, sc->bce_shmem_base);
1206 
1207 	/* Fetch the bootcode revision. */
1208 	val = bce_shmem_rd(sc, BCE_DEV_INFO_BC_REV);
1209 	for (int i = 0, j = 0; i < 3; i++) {
1210 		u8 num;
1211 
1212 		num = (u8) (val >> (24 - (i * 8)));
1213 		for (int k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
1214 			if (num >= k || !skip0 || k == 1) {
1215 				sc->bce_bc_ver[j++] = (num / k) + '0';
1216 				skip0 = 0;
1217 			}
1218 		}
1219 
1220 		if (i != 2)
1221 			sc->bce_bc_ver[j++] = '.';
1222 	}
1223 
1224 	/* Check if any management firwmare is enabled. */
1225 	val = bce_shmem_rd(sc, BCE_PORT_FEATURE);
1226 	if (val & BCE_PORT_FEATURE_ASF_ENABLED) {
1227 		sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
1228 
1229 		/* Allow time for firmware to enter the running state. */
1230 		for (int i = 0; i < 30; i++) {
1231 			val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1232 			if (val & BCE_CONDITION_MFW_RUN_MASK)
1233 				break;
1234 			DELAY(10000);
1235 		}
1236 
1237 		/* Check if management firmware is running. */
1238 		val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
1239 		val &= BCE_CONDITION_MFW_RUN_MASK;
1240 		if ((val != BCE_CONDITION_MFW_RUN_UNKNOWN) &&
1241 		    (val != BCE_CONDITION_MFW_RUN_NONE)) {
1242 			u32 addr = bce_shmem_rd(sc, BCE_MFW_VER_PTR);
1243 			int i = 0;
1244 
1245 			/* Read the management firmware version string. */
1246 			for (int j = 0; j < 3; j++) {
1247 				val = bce_reg_rd_ind(sc, addr + j * 4);
1248 				val = bswap32(val);
1249 				memcpy(&sc->bce_mfw_ver[i], &val, 4);
1250 				i += 4;
1251 			}
1252 		} else {
1253 			/* May cause firmware synchronization timeouts. */
1254 			BCE_PRINTF("%s(%d): Management firmware enabled "
1255 			    "but not running!\n", __FILE__, __LINE__);
1256 			strcpy(sc->bce_mfw_ver, "NOT RUNNING!");
1257 
1258 			/* ToDo: Any action the driver should take? */
1259 		}
1260 	}
1261 
1262 	/* Get PCI bus information (speed and type). */
1263 	val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
1264 	if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
1265 		u32 clkreg;
1266 
1267 		sc->bce_flags |= BCE_PCIX_FLAG;
1268 
1269 		clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
1270 
1271 		clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
1272 		switch (clkreg) {
1273 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
1274 			sc->bus_speed_mhz = 133;
1275 			break;
1276 
1277 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
1278 			sc->bus_speed_mhz = 100;
1279 			break;
1280 
1281 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
1282 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
1283 			sc->bus_speed_mhz = 66;
1284 			break;
1285 
1286 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
1287 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
1288 			sc->bus_speed_mhz = 50;
1289 			break;
1290 
1291 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
1292 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
1293 		case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
1294 			sc->bus_speed_mhz = 33;
1295 			break;
1296 		}
1297 	} else {
1298 		if (val & BCE_PCICFG_MISC_STATUS_M66EN)
1299 			sc->bus_speed_mhz = 66;
1300 		else
1301 			sc->bus_speed_mhz = 33;
1302 	}
1303 
1304 	if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
1305 		sc->bce_flags |= BCE_PCI_32BIT_FLAG;
1306 
1307 	/* Find the media type for the adapter. */
1308 	bce_get_media(sc);
1309 
1310 	/* Reset controller and announce to bootcode that driver is present. */
1311 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
1312 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
1313 		    __FILE__, __LINE__);
1314 		rc = ENXIO;
1315 		goto bce_attach_fail;
1316 	}
1317 
1318 	/* Initialize the controller. */
1319 	if (bce_chipinit(sc)) {
1320 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
1321 		    __FILE__, __LINE__);
1322 		rc = ENXIO;
1323 		goto bce_attach_fail;
1324 	}
1325 
1326 	/* Perform NVRAM test. */
1327 	if (bce_nvram_test(sc)) {
1328 		BCE_PRINTF("%s(%d): NVRAM test failed!\n",
1329 		    __FILE__, __LINE__);
1330 		rc = ENXIO;
1331 		goto bce_attach_fail;
1332 	}
1333 
1334 	/* Fetch the permanent Ethernet MAC address. */
1335 	bce_get_mac_addr(sc);
1336 
1337 	/* Update statistics once every second. */
1338 	sc->bce_stats_ticks = 1000000 & 0xffff00;
1339 
1340 	/* Store data needed by PHY driver for backplane applications */
1341 	sc->bce_shared_hw_cfg = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
1342 	sc->bce_port_hw_cfg   = bce_shmem_rd(sc, BCE_PORT_HW_CFG_CONFIG);
1343 
1344 	/* Allocate DMA memory resources. */
1345 	if (bce_dma_alloc(dev)) {
1346 		BCE_PRINTF("%s(%d): DMA resource allocation failed!\n",
1347 		    __FILE__, __LINE__);
1348 		rc = ENXIO;
1349 		goto bce_attach_fail;
1350 	}
1351 
1352 	/* Allocate an ifnet structure. */
1353 	ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
1354 
1355 	/* Initialize the ifnet interface. */
1356 	if_setsoftc(ifp, sc);
1357 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1358 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1359 	if_setioctlfn(ifp, bce_ioctl);
1360 	if_setstartfn(ifp, bce_start);
1361 	if_setgetcounterfn(ifp, bce_get_counter);
1362 	if_setinitfn(ifp, bce_init);
1363 	if_setmtu(ifp, ETHERMTU);
1364 
1365 	if (bce_tso_enable) {
1366 		if_sethwassist(ifp, BCE_IF_HWASSIST | CSUM_TSO);
1367 		if_setcapabilities(ifp, BCE_IF_CAPABILITIES | IFCAP_TSO4 |
1368 		    IFCAP_VLAN_HWTSO);
1369 	} else {
1370 		if_sethwassist(ifp, BCE_IF_HWASSIST);
1371 		if_setcapabilities(ifp, BCE_IF_CAPABILITIES);
1372 	}
1373 
1374 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1375 		if_setcapabilitiesbit(ifp, IFCAP_LINKSTATE, 0);
1376 
1377 	if_setcapenable(ifp, if_getcapabilities(ifp));
1378 
1379 	/*
1380 	 * Assume standard mbuf sizes for buffer allocation.
1381 	 * This may change later if the MTU size is set to
1382 	 * something other than 1500.
1383 	 */
1384 	bce_get_rx_buffer_sizes(sc,
1385 	    (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN));
1386 
1387 	/* Recalculate our buffer allocation sizes. */
1388 	if_setsendqlen(ifp, USABLE_TX_BD_ALLOC);
1389 	if_setsendqready(ifp);
1390 
1391 	if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
1392 		if_setbaudrate(ifp, IF_Mbps(2500ULL));
1393 	else
1394 		if_setbaudrate(ifp, IF_Mbps(1000));
1395 
1396 	/* Handle any special PHY initialization for SerDes PHYs. */
1397 	bce_init_media(sc);
1398 
1399 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1400 		ifmedia_init(&sc->bce_ifmedia, IFM_IMASK, bce_ifmedia_upd,
1401 		    bce_ifmedia_sts);
1402 		/*
1403 		 * We can't manually override remote PHY's link and assume
1404 		 * PHY port configuration(Fiber or TP) is not changed after
1405 		 * device attach.  This may not be correct though.
1406 		 */
1407 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0) {
1408 			if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG) {
1409 				ifmedia_add(&sc->bce_ifmedia,
1410 				    IFM_ETHER | IFM_2500_SX, 0, NULL);
1411 				ifmedia_add(&sc->bce_ifmedia,
1412 				    IFM_ETHER | IFM_2500_SX | IFM_FDX, 0, NULL);
1413 			}
1414 			ifmedia_add(&sc->bce_ifmedia,
1415 			    IFM_ETHER | IFM_1000_SX, 0, NULL);
1416 			ifmedia_add(&sc->bce_ifmedia,
1417 			    IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
1418 		} else {
1419 			ifmedia_add(&sc->bce_ifmedia,
1420 			    IFM_ETHER | IFM_10_T, 0, NULL);
1421 			ifmedia_add(&sc->bce_ifmedia,
1422 			    IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL);
1423 			ifmedia_add(&sc->bce_ifmedia,
1424 			    IFM_ETHER | IFM_100_TX, 0, NULL);
1425 			ifmedia_add(&sc->bce_ifmedia,
1426 			    IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL);
1427 			ifmedia_add(&sc->bce_ifmedia,
1428 			    IFM_ETHER | IFM_1000_T, 0, NULL);
1429 			ifmedia_add(&sc->bce_ifmedia,
1430 			    IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL);
1431 		}
1432 		ifmedia_add(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
1433 		ifmedia_set(&sc->bce_ifmedia, IFM_ETHER | IFM_AUTO);
1434 		sc->bce_ifmedia.ifm_media = sc->bce_ifmedia.ifm_cur->ifm_media;
1435 	} else {
1436 		/* MII child bus by attaching the PHY. */
1437 		rc = mii_attach(dev, &sc->bce_miibus, ifp, bce_ifmedia_upd,
1438 		    bce_ifmedia_sts, BMSR_DEFCAPMASK, sc->bce_phy_addr,
1439 		    MII_OFFSET_ANY, MIIF_DOPAUSE);
1440 		if (rc != 0) {
1441 			BCE_PRINTF("%s(%d): attaching PHYs failed\n", __FILE__,
1442 			    __LINE__);
1443 			goto bce_attach_fail;
1444 		}
1445 	}
1446 
1447 	/* Attach to the Ethernet interface list. */
1448 	ether_ifattach(ifp, sc->eaddr);
1449 
1450 	callout_init_mtx(&sc->bce_tick_callout, &sc->bce_mtx, 0);
1451 	callout_init_mtx(&sc->bce_pulse_callout, &sc->bce_mtx, 0);
1452 
1453 	/* Hookup IRQ last. */
1454 	rc = bus_setup_intr(dev, sc->bce_res_irq, INTR_TYPE_NET | INTR_MPSAFE,
1455 		NULL, bce_intr, sc, &sc->bce_intrhand);
1456 
1457 	if (rc) {
1458 		BCE_PRINTF("%s(%d): Failed to setup IRQ!\n",
1459 		    __FILE__, __LINE__);
1460 		bce_detach(dev);
1461 		goto bce_attach_exit;
1462 	}
1463 
1464 	/*
1465 	 * At this point we've acquired all the resources
1466 	 * we need to run so there's no turning back, we're
1467 	 * cleared for launch.
1468 	 */
1469 
1470 	/* Print some important debugging info. */
1471 	DBRUNMSG(BCE_INFO, bce_dump_driver_state(sc));
1472 
1473 	/* Add the supported sysctls to the kernel. */
1474 	bce_add_sysctls(sc);
1475 
1476 	BCE_LOCK(sc);
1477 
1478 	/*
1479 	 * The chip reset earlier notified the bootcode that
1480 	 * a driver is present.  We now need to start our pulse
1481 	 * routine so that the bootcode is reminded that we're
1482 	 * still running.
1483 	 */
1484 	bce_pulse(sc);
1485 
1486 	bce_mgmt_init_locked(sc);
1487 	BCE_UNLOCK(sc);
1488 
1489 	/* Finally, print some useful adapter info */
1490 	bce_print_adapter_info(sc);
1491 	DBPRINT(sc, BCE_FATAL, "%s(): sc = %p\n",
1492 		__FUNCTION__, sc);
1493 
1494 	goto bce_attach_exit;
1495 
1496 bce_attach_fail:
1497 	bce_release_resources(sc);
1498 
1499 bce_attach_exit:
1500 
1501 	DBEXIT(BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
1502 
1503 	return(rc);
1504 }
1505 
1506 /****************************************************************************/
1507 /* Device detach function.                                                  */
1508 /*                                                                          */
1509 /* Stops the controller, resets the controller, and releases resources.     */
1510 /*                                                                          */
1511 /* Returns:                                                                 */
1512 /*   0 on success, positive value on failure.                               */
1513 /****************************************************************************/
1514 static int
bce_detach(device_t dev)1515 bce_detach(device_t dev)
1516 {
1517 	struct bce_softc *sc = device_get_softc(dev);
1518 	if_t ifp;
1519 	u32 msg;
1520 
1521 	DBENTER(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1522 
1523 	ifp = sc->bce_ifp;
1524 
1525 	/* Stop and reset the controller. */
1526 	BCE_LOCK(sc);
1527 
1528 	/* Stop the pulse so the bootcode can go to driver absent state. */
1529 	callout_stop(&sc->bce_pulse_callout);
1530 
1531 	bce_stop(sc);
1532 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1533 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1534 	else
1535 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1536 	bce_reset(sc, msg);
1537 
1538 	BCE_UNLOCK(sc);
1539 
1540 	ether_ifdetach(ifp);
1541 
1542 	/* If we have a child device on the MII bus remove it too. */
1543 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
1544 		ifmedia_removeall(&sc->bce_ifmedia);
1545 	else {
1546 		bus_generic_detach(dev);
1547 		device_delete_child(dev, sc->bce_miibus);
1548 	}
1549 
1550 	/* Release all remaining resources. */
1551 	bce_release_resources(sc);
1552 
1553 	DBEXIT(BCE_VERBOSE_UNLOAD | BCE_VERBOSE_RESET);
1554 
1555 	return(0);
1556 }
1557 
1558 /****************************************************************************/
1559 /* Device shutdown function.                                                */
1560 /*                                                                          */
1561 /* Stops and resets the controller.                                         */
1562 /*                                                                          */
1563 /* Returns:                                                                 */
1564 /*   0 on success, positive value on failure.                               */
1565 /****************************************************************************/
1566 static int
bce_shutdown(device_t dev)1567 bce_shutdown(device_t dev)
1568 {
1569 	struct bce_softc *sc = device_get_softc(dev);
1570 	u32 msg;
1571 
1572 	DBENTER(BCE_VERBOSE);
1573 
1574 	BCE_LOCK(sc);
1575 	bce_stop(sc);
1576 	if (sc->bce_flags & BCE_NO_WOL_FLAG)
1577 		msg = BCE_DRV_MSG_CODE_UNLOAD_LNK_DN;
1578 	else
1579 		msg = BCE_DRV_MSG_CODE_UNLOAD;
1580 	bce_reset(sc, msg);
1581 	BCE_UNLOCK(sc);
1582 
1583 	DBEXIT(BCE_VERBOSE);
1584 
1585 	return (0);
1586 }
1587 
1588 #ifdef BCE_DEBUG
1589 /****************************************************************************/
1590 /* Register read.                                                           */
1591 /*                                                                          */
1592 /* Returns:                                                                 */
1593 /*   The value of the register.                                             */
1594 /****************************************************************************/
1595 static u32
bce_reg_rd(struct bce_softc * sc,u32 offset)1596 bce_reg_rd(struct bce_softc *sc, u32 offset)
1597 {
1598 	u32 val = REG_RD(sc, offset);
1599 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1600 		__FUNCTION__, offset, val);
1601 	return val;
1602 }
1603 
1604 /****************************************************************************/
1605 /* Register write (16 bit).                                                 */
1606 /*                                                                          */
1607 /* Returns:                                                                 */
1608 /*   Nothing.                                                               */
1609 /****************************************************************************/
1610 static void
bce_reg_wr16(struct bce_softc * sc,u32 offset,u16 val)1611 bce_reg_wr16(struct bce_softc *sc, u32 offset, u16 val)
1612 {
1613 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%04X\n",
1614 		__FUNCTION__, offset, val);
1615 	REG_WR16(sc, offset, val);
1616 }
1617 
1618 /****************************************************************************/
1619 /* Register write.                                                          */
1620 /*                                                                          */
1621 /* Returns:                                                                 */
1622 /*   Nothing.                                                               */
1623 /****************************************************************************/
1624 static void
bce_reg_wr(struct bce_softc * sc,u32 offset,u32 val)1625 bce_reg_wr(struct bce_softc *sc, u32 offset, u32 val)
1626 {
1627 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1628 		__FUNCTION__, offset, val);
1629 	REG_WR(sc, offset, val);
1630 }
1631 #endif
1632 
1633 /****************************************************************************/
1634 /* Indirect register read.                                                  */
1635 /*                                                                          */
1636 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
1637 /* configuration space.  Using this mechanism avoids issues with posted     */
1638 /* reads but is much slower than memory-mapped I/O.                         */
1639 /*                                                                          */
1640 /* Returns:                                                                 */
1641 /*   The value of the register.                                             */
1642 /****************************************************************************/
1643 static u32
bce_reg_rd_ind(struct bce_softc * sc,u32 offset)1644 bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
1645 {
1646 	device_t dev;
1647 	dev = sc->bce_dev;
1648 
1649 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1650 #ifdef BCE_DEBUG
1651 	{
1652 		u32 val;
1653 		val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1654 		DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1655 			__FUNCTION__, offset, val);
1656 		return val;
1657 	}
1658 #else
1659 	return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
1660 #endif
1661 }
1662 
1663 /****************************************************************************/
1664 /* Indirect register write.                                                 */
1665 /*                                                                          */
1666 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
1667 /* configuration space.  Using this mechanism avoids issues with posted     */
1668 /* writes but is muchh slower than memory-mapped I/O.                       */
1669 /*                                                                          */
1670 /* Returns:                                                                 */
1671 /*   Nothing.                                                               */
1672 /****************************************************************************/
1673 static void
bce_reg_wr_ind(struct bce_softc * sc,u32 offset,u32 val)1674 bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
1675 {
1676 	device_t dev;
1677 	dev = sc->bce_dev;
1678 
1679 	DBPRINT(sc, BCE_INSANE_REG, "%s(); offset = 0x%08X, val = 0x%08X\n",
1680 		__FUNCTION__, offset, val);
1681 
1682 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
1683 	pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
1684 }
1685 
1686 /****************************************************************************/
1687 /* Shared memory write.                                                     */
1688 /*                                                                          */
1689 /* Writes NetXtreme II shared memory region.                                */
1690 /*                                                                          */
1691 /* Returns:                                                                 */
1692 /*   Nothing.                                                               */
1693 /****************************************************************************/
1694 static void
bce_shmem_wr(struct bce_softc * sc,u32 offset,u32 val)1695 bce_shmem_wr(struct bce_softc *sc, u32 offset, u32 val)
1696 {
1697 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Writing 0x%08X  to  "
1698 	    "0x%08X\n",	__FUNCTION__, val, offset);
1699 
1700 	bce_reg_wr_ind(sc, sc->bce_shmem_base + offset, val);
1701 }
1702 
1703 /****************************************************************************/
1704 /* Shared memory read.                                                      */
1705 /*                                                                          */
1706 /* Reads NetXtreme II shared memory region.                                 */
1707 /*                                                                          */
1708 /* Returns:                                                                 */
1709 /*   The 32 bit value read.                                                 */
1710 /****************************************************************************/
1711 static u32
bce_shmem_rd(struct bce_softc * sc,u32 offset)1712 bce_shmem_rd(struct bce_softc *sc, u32 offset)
1713 {
1714 	u32 val = bce_reg_rd_ind(sc, sc->bce_shmem_base + offset);
1715 
1716 	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "%s(): Reading 0x%08X from "
1717 	    "0x%08X\n",	__FUNCTION__, val, offset);
1718 
1719 	return val;
1720 }
1721 
1722 #ifdef BCE_DEBUG
1723 /****************************************************************************/
1724 /* Context memory read.                                                     */
1725 /*                                                                          */
1726 /* The NetXtreme II controller uses context memory to track connection      */
1727 /* information for L2 and higher network protocols.                         */
1728 /*                                                                          */
1729 /* Returns:                                                                 */
1730 /*   The requested 32 bit value of context memory.                          */
1731 /****************************************************************************/
1732 static u32
bce_ctx_rd(struct bce_softc * sc,u32 cid_addr,u32 ctx_offset)1733 bce_ctx_rd(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset)
1734 {
1735 	u32 idx, offset, retry_cnt = 5, val;
1736 
1737 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 ||
1738 	    cid_addr & CTX_MASK), BCE_PRINTF("%s(): Invalid CID "
1739 	    "address: 0x%08X.\n", __FUNCTION__, cid_addr));
1740 
1741 	offset = ctx_offset + cid_addr;
1742 
1743 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1744 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_READ_REQ));
1745 
1746 		for (idx = 0; idx < retry_cnt; idx++) {
1747 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1748 			if ((val & BCE_CTX_CTX_CTRL_READ_REQ) == 0)
1749 				break;
1750 			DELAY(5);
1751 		}
1752 
1753 		if (val & BCE_CTX_CTX_CTRL_READ_REQ)
1754 			BCE_PRINTF("%s(%d); Unable to read CTX memory: "
1755 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1756 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1757 
1758 		val = REG_RD(sc, BCE_CTX_CTX_DATA);
1759 	} else {
1760 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1761 		val = REG_RD(sc, BCE_CTX_DATA);
1762 	}
1763 
1764 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1765 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, val);
1766 
1767 	return(val);
1768 }
1769 #endif
1770 
1771 /****************************************************************************/
1772 /* Context memory write.                                                    */
1773 /*                                                                          */
1774 /* The NetXtreme II controller uses context memory to track connection      */
1775 /* information for L2 and higher network protocols.                         */
1776 /*                                                                          */
1777 /* Returns:                                                                 */
1778 /*   Nothing.                                                               */
1779 /****************************************************************************/
1780 static void
bce_ctx_wr(struct bce_softc * sc,u32 cid_addr,u32 ctx_offset,u32 ctx_val)1781 bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 ctx_offset, u32 ctx_val)
1782 {
1783 	u32 idx, offset = ctx_offset + cid_addr;
1784 	u32 val, retry_cnt = 5;
1785 
1786 	DBPRINT(sc, BCE_EXTREME_CTX, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
1787 		"val = 0x%08X\n", __FUNCTION__, cid_addr, ctx_offset, ctx_val);
1788 
1789 	DBRUNIF((cid_addr > MAX_CID_ADDR || ctx_offset & 0x3 || cid_addr & CTX_MASK),
1790 		BCE_PRINTF("%s(): Invalid CID address: 0x%08X.\n",
1791 		    __FUNCTION__, cid_addr));
1792 
1793 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
1794 		REG_WR(sc, BCE_CTX_CTX_DATA, ctx_val);
1795 		REG_WR(sc, BCE_CTX_CTX_CTRL, (offset | BCE_CTX_CTX_CTRL_WRITE_REQ));
1796 
1797 		for (idx = 0; idx < retry_cnt; idx++) {
1798 			val = REG_RD(sc, BCE_CTX_CTX_CTRL);
1799 			if ((val & BCE_CTX_CTX_CTRL_WRITE_REQ) == 0)
1800 				break;
1801 			DELAY(5);
1802 		}
1803 
1804 		if (val & BCE_CTX_CTX_CTRL_WRITE_REQ)
1805 			BCE_PRINTF("%s(%d); Unable to write CTX memory: "
1806 			    "cid_addr = 0x%08X, offset = 0x%08X!\n",
1807 			    __FILE__, __LINE__, cid_addr, ctx_offset);
1808 
1809 	} else {
1810 		REG_WR(sc, BCE_CTX_DATA_ADR, offset);
1811 		REG_WR(sc, BCE_CTX_DATA, ctx_val);
1812 	}
1813 }
1814 
1815 /****************************************************************************/
1816 /* PHY register read.                                                       */
1817 /*                                                                          */
1818 /* Implements register reads on the MII bus.                                */
1819 /*                                                                          */
1820 /* Returns:                                                                 */
1821 /*   The value of the register.                                             */
1822 /****************************************************************************/
1823 static int
bce_miibus_read_reg(device_t dev,int phy,int reg)1824 bce_miibus_read_reg(device_t dev, int phy, int reg)
1825 {
1826 	struct bce_softc *sc;
1827 	u32 val;
1828 	int i;
1829 
1830 	sc = device_get_softc(dev);
1831 
1832     /*
1833      * The 5709S PHY is an IEEE Clause 45 PHY
1834      * with special mappings to work with IEEE
1835      * Clause 22 register accesses.
1836      */
1837 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1838 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1839 			reg += 0x10;
1840 	}
1841 
1842     if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1843 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1844 		val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1845 
1846 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1847 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1848 
1849 		DELAY(40);
1850 	}
1851 
1852 	val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
1853 	    BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
1854 	    BCE_EMAC_MDIO_COMM_START_BUSY;
1855 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
1856 
1857 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1858 		DELAY(10);
1859 
1860 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1861 		if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1862 			DELAY(5);
1863 
1864 			val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1865 			val &= BCE_EMAC_MDIO_COMM_DATA;
1866 
1867 			break;
1868 		}
1869 	}
1870 
1871 	if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
1872 		BCE_PRINTF("%s(%d): Error: PHY read timeout! phy = %d, "
1873 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1874 		val = 0x0;
1875 	} else {
1876 		val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1877 	}
1878 
1879 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1880 		val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1881 		val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1882 
1883 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
1884 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1885 
1886 		DELAY(40);
1887 	}
1888 
1889 	DB_PRINT_PHY_REG(reg, val);
1890 	return (val & 0xffff);
1891 }
1892 
1893 /****************************************************************************/
1894 /* PHY register write.                                                      */
1895 /*                                                                          */
1896 /* Implements register writes on the MII bus.                               */
1897 /*                                                                          */
1898 /* Returns:                                                                 */
1899 /*   The value of the register.                                             */
1900 /****************************************************************************/
1901 static int
bce_miibus_write_reg(device_t dev,int phy,int reg,int val)1902 bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
1903 {
1904 	struct bce_softc *sc;
1905 	u32 val1;
1906 	int i;
1907 
1908 	sc = device_get_softc(dev);
1909 
1910 	DB_PRINT_PHY_REG(reg, val);
1911 
1912 	/*
1913 	 * The 5709S PHY is an IEEE Clause 45 PHY
1914 	 * with special mappings to work with IEEE
1915 	 * Clause 22 register accesses.
1916 	 */
1917 	if ((sc->bce_phy_flags & BCE_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1918 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1919 			reg += 0x10;
1920 	}
1921 
1922 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1923 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1924 		val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
1925 
1926 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1927 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1928 
1929 		DELAY(40);
1930 	}
1931 
1932 	val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
1933 	    BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
1934 	    BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
1935 	REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
1936 
1937 	for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
1938 		DELAY(10);
1939 
1940 		val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
1941 		if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
1942 			DELAY(5);
1943 			break;
1944 		}
1945 	}
1946 
1947 	if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
1948 		BCE_PRINTF("%s(%d): PHY write timeout!\n",
1949 		    __FILE__, __LINE__);
1950 
1951 	if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1952 		val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
1953 		val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
1954 
1955 		REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
1956 		REG_RD(sc, BCE_EMAC_MDIO_MODE);
1957 
1958 		DELAY(40);
1959 	}
1960 
1961 	return 0;
1962 }
1963 
1964 /****************************************************************************/
1965 /* MII bus status change.                                                   */
1966 /*                                                                          */
1967 /* Called by the MII bus driver when the PHY establishes link to set the    */
1968 /* MAC interface registers.                                                 */
1969 /*                                                                          */
1970 /* Returns:                                                                 */
1971 /*   Nothing.                                                               */
1972 /****************************************************************************/
1973 static void
bce_miibus_statchg(device_t dev)1974 bce_miibus_statchg(device_t dev)
1975 {
1976 	struct bce_softc *sc;
1977 	struct mii_data *mii;
1978 	struct ifmediareq ifmr;
1979 	int media_active, media_status, val;
1980 
1981 	sc = device_get_softc(dev);
1982 
1983 	DBENTER(BCE_VERBOSE_PHY);
1984 
1985 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
1986 		bzero(&ifmr, sizeof(ifmr));
1987 		bce_ifmedia_sts_rphy(sc, &ifmr);
1988 		media_active = ifmr.ifm_active;
1989 		media_status = ifmr.ifm_status;
1990 	} else {
1991 		mii = device_get_softc(sc->bce_miibus);
1992 		media_active = mii->mii_media_active;
1993 		media_status = mii->mii_media_status;
1994 	}
1995 
1996 	/* Ignore invalid media status. */
1997 	if ((media_status & (IFM_ACTIVE | IFM_AVALID)) !=
1998 	    (IFM_ACTIVE | IFM_AVALID))
1999 		goto bce_miibus_statchg_exit;
2000 
2001 	val = REG_RD(sc, BCE_EMAC_MODE);
2002 	val &= ~(BCE_EMAC_MODE_PORT | BCE_EMAC_MODE_HALF_DUPLEX |
2003 	    BCE_EMAC_MODE_MAC_LOOP | BCE_EMAC_MODE_FORCE_LINK |
2004 	    BCE_EMAC_MODE_25G);
2005 
2006 	/* Set MII or GMII interface based on the PHY speed. */
2007 	switch (IFM_SUBTYPE(media_active)) {
2008 	case IFM_10_T:
2009 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
2010 			DBPRINT(sc, BCE_INFO_PHY,
2011 			    "Enabling 10Mb interface.\n");
2012 			val |= BCE_EMAC_MODE_PORT_MII_10;
2013 			break;
2014 		}
2015 		/* fall-through */
2016 	case IFM_100_TX:
2017 		DBPRINT(sc, BCE_INFO_PHY, "Enabling MII interface.\n");
2018 		val |= BCE_EMAC_MODE_PORT_MII;
2019 		break;
2020 	case IFM_2500_SX:
2021 		DBPRINT(sc, BCE_INFO_PHY, "Enabling 2.5G MAC mode.\n");
2022 		val |= BCE_EMAC_MODE_25G;
2023 		/* fall-through */
2024 	case IFM_1000_T:
2025 	case IFM_1000_SX:
2026 		DBPRINT(sc, BCE_INFO_PHY, "Enabling GMII interface.\n");
2027 		val |= BCE_EMAC_MODE_PORT_GMII;
2028 		break;
2029 	default:
2030 		DBPRINT(sc, BCE_INFO_PHY, "Unknown link speed, enabling "
2031 		    "default GMII interface.\n");
2032 		val |= BCE_EMAC_MODE_PORT_GMII;
2033 	}
2034 
2035 	/* Set half or full duplex based on PHY settings. */
2036 	if ((IFM_OPTIONS(media_active) & IFM_FDX) == 0) {
2037 		DBPRINT(sc, BCE_INFO_PHY,
2038 		    "Setting Half-Duplex interface.\n");
2039 		val |= BCE_EMAC_MODE_HALF_DUPLEX;
2040 	} else
2041 		DBPRINT(sc, BCE_INFO_PHY,
2042 		    "Setting Full-Duplex interface.\n");
2043 
2044 	REG_WR(sc, BCE_EMAC_MODE, val);
2045 
2046 	if ((IFM_OPTIONS(media_active) & IFM_ETH_RXPAUSE) != 0) {
2047 		DBPRINT(sc, BCE_INFO_PHY,
2048 		    "%s(): Enabling RX flow control.\n", __FUNCTION__);
2049 		BCE_SETBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2050 		sc->bce_flags |= BCE_USING_RX_FLOW_CONTROL;
2051 	} else {
2052 		DBPRINT(sc, BCE_INFO_PHY,
2053 		    "%s(): Disabling RX flow control.\n", __FUNCTION__);
2054 		BCE_CLRBIT(sc, BCE_EMAC_RX_MODE, BCE_EMAC_RX_MODE_FLOW_EN);
2055 		sc->bce_flags &= ~BCE_USING_RX_FLOW_CONTROL;
2056 	}
2057 
2058 	if ((IFM_OPTIONS(media_active) & IFM_ETH_TXPAUSE) != 0) {
2059 		DBPRINT(sc, BCE_INFO_PHY,
2060 		    "%s(): Enabling TX flow control.\n", __FUNCTION__);
2061 		BCE_SETBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2062 		sc->bce_flags |= BCE_USING_TX_FLOW_CONTROL;
2063 	} else {
2064 		DBPRINT(sc, BCE_INFO_PHY,
2065 		    "%s(): Disabling TX flow control.\n", __FUNCTION__);
2066 		BCE_CLRBIT(sc, BCE_EMAC_TX_MODE, BCE_EMAC_TX_MODE_FLOW_EN);
2067 		sc->bce_flags &= ~BCE_USING_TX_FLOW_CONTROL;
2068 	}
2069 
2070 	/* ToDo: Update watermarks in bce_init_rx_context(). */
2071 
2072 bce_miibus_statchg_exit:
2073 	DBEXIT(BCE_VERBOSE_PHY);
2074 }
2075 
2076 /****************************************************************************/
2077 /* Acquire NVRAM lock.                                                      */
2078 /*                                                                          */
2079 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
2080 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2081 /* for use by the driver.                                                   */
2082 /*                                                                          */
2083 /* Returns:                                                                 */
2084 /*   0 on success, positive value on failure.                               */
2085 /****************************************************************************/
2086 static int
bce_acquire_nvram_lock(struct bce_softc * sc)2087 bce_acquire_nvram_lock(struct bce_softc *sc)
2088 {
2089 	u32 val;
2090 	int j, rc = 0;
2091 
2092 	DBENTER(BCE_VERBOSE_NVRAM);
2093 
2094 	/* Request access to the flash interface. */
2095 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
2096 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2097 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2098 		if (val & BCE_NVM_SW_ARB_ARB_ARB2)
2099 			break;
2100 
2101 		DELAY(5);
2102 	}
2103 
2104 	if (j >= NVRAM_TIMEOUT_COUNT) {
2105 		DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
2106 		rc = EBUSY;
2107 	}
2108 
2109 	DBEXIT(BCE_VERBOSE_NVRAM);
2110 	return (rc);
2111 }
2112 
2113 /****************************************************************************/
2114 /* Release NVRAM lock.                                                      */
2115 /*                                                                          */
2116 /* When the caller is finished accessing NVRAM the lock must be released.   */
2117 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
2118 /* for use by the driver.                                                   */
2119 /*                                                                          */
2120 /* Returns:                                                                 */
2121 /*   0 on success, positive value on failure.                               */
2122 /****************************************************************************/
2123 static int
bce_release_nvram_lock(struct bce_softc * sc)2124 bce_release_nvram_lock(struct bce_softc *sc)
2125 {
2126 	u32 val;
2127 	int j, rc = 0;
2128 
2129 	DBENTER(BCE_VERBOSE_NVRAM);
2130 
2131 	/*
2132 	 * Relinquish nvram interface.
2133 	 */
2134 	REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
2135 
2136 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2137 		val = REG_RD(sc, BCE_NVM_SW_ARB);
2138 		if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
2139 			break;
2140 
2141 		DELAY(5);
2142 	}
2143 
2144 	if (j >= NVRAM_TIMEOUT_COUNT) {
2145 		DBPRINT(sc, BCE_WARN, "Timeout releasing NVRAM lock!\n");
2146 		rc = EBUSY;
2147 	}
2148 
2149 	DBEXIT(BCE_VERBOSE_NVRAM);
2150 	return (rc);
2151 }
2152 
2153 #ifdef BCE_NVRAM_WRITE_SUPPORT
2154 /****************************************************************************/
2155 /* Enable NVRAM write access.                                               */
2156 /*                                                                          */
2157 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
2158 /*                                                                          */
2159 /* Returns:                                                                 */
2160 /*   0 on success, positive value on failure.                               */
2161 /****************************************************************************/
2162 static int
bce_enable_nvram_write(struct bce_softc * sc)2163 bce_enable_nvram_write(struct bce_softc *sc)
2164 {
2165 	u32 val;
2166 	int rc = 0;
2167 
2168 	DBENTER(BCE_VERBOSE_NVRAM);
2169 
2170 	val = REG_RD(sc, BCE_MISC_CFG);
2171 	REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
2172 
2173 	if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2174 		int j;
2175 
2176 		REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2177 		REG_WR(sc, BCE_NVM_COMMAND,	BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
2178 
2179 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2180 			DELAY(5);
2181 
2182 			val = REG_RD(sc, BCE_NVM_COMMAND);
2183 			if (val & BCE_NVM_COMMAND_DONE)
2184 				break;
2185 		}
2186 
2187 		if (j >= NVRAM_TIMEOUT_COUNT) {
2188 			DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
2189 			rc = EBUSY;
2190 		}
2191 	}
2192 
2193 	DBENTER(BCE_VERBOSE_NVRAM);
2194 	return (rc);
2195 }
2196 
2197 /****************************************************************************/
2198 /* Disable NVRAM write access.                                              */
2199 /*                                                                          */
2200 /* When the caller is finished writing to NVRAM write access must be        */
2201 /* disabled.                                                                */
2202 /*                                                                          */
2203 /* Returns:                                                                 */
2204 /*   Nothing.                                                               */
2205 /****************************************************************************/
2206 static void
bce_disable_nvram_write(struct bce_softc * sc)2207 bce_disable_nvram_write(struct bce_softc *sc)
2208 {
2209 	u32 val;
2210 
2211 	DBENTER(BCE_VERBOSE_NVRAM);
2212 
2213 	val = REG_RD(sc, BCE_MISC_CFG);
2214 	REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
2215 
2216 	DBEXIT(BCE_VERBOSE_NVRAM);
2217 
2218 }
2219 #endif
2220 
2221 /****************************************************************************/
2222 /* Enable NVRAM access.                                                     */
2223 /*                                                                          */
2224 /* Before accessing NVRAM for read or write operations the caller must      */
2225 /* enabled NVRAM access.                                                    */
2226 /*                                                                          */
2227 /* Returns:                                                                 */
2228 /*   Nothing.                                                               */
2229 /****************************************************************************/
2230 static void
bce_enable_nvram_access(struct bce_softc * sc)2231 bce_enable_nvram_access(struct bce_softc *sc)
2232 {
2233 	u32 val;
2234 
2235 	DBENTER(BCE_VERBOSE_NVRAM);
2236 
2237 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2238 	/* Enable both bits, even on read. */
2239 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val |
2240 	    BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
2241 
2242 	DBEXIT(BCE_VERBOSE_NVRAM);
2243 }
2244 
2245 /****************************************************************************/
2246 /* Disable NVRAM access.                                                    */
2247 /*                                                                          */
2248 /* When the caller is finished accessing NVRAM access must be disabled.     */
2249 /*                                                                          */
2250 /* Returns:                                                                 */
2251 /*   Nothing.                                                               */
2252 /****************************************************************************/
2253 static void
bce_disable_nvram_access(struct bce_softc * sc)2254 bce_disable_nvram_access(struct bce_softc *sc)
2255 {
2256 	u32 val;
2257 
2258 	DBENTER(BCE_VERBOSE_NVRAM);
2259 
2260 	val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
2261 
2262 	/* Disable both bits, even after read. */
2263 	REG_WR(sc, BCE_NVM_ACCESS_ENABLE, val &
2264 	    ~(BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN));
2265 
2266 	DBEXIT(BCE_VERBOSE_NVRAM);
2267 }
2268 
2269 #ifdef BCE_NVRAM_WRITE_SUPPORT
2270 /****************************************************************************/
2271 /* Erase NVRAM page before writing.                                         */
2272 /*                                                                          */
2273 /* Non-buffered flash parts require that a page be erased before it is      */
2274 /* written.                                                                 */
2275 /*                                                                          */
2276 /* Returns:                                                                 */
2277 /*   0 on success, positive value on failure.                               */
2278 /****************************************************************************/
2279 static int
bce_nvram_erase_page(struct bce_softc * sc,u32 offset)2280 bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
2281 {
2282 	u32 cmd;
2283 	int j, rc = 0;
2284 
2285 	DBENTER(BCE_VERBOSE_NVRAM);
2286 
2287 	/* Buffered flash doesn't require an erase. */
2288 	if (sc->bce_flash_info->flags & BCE_NV_BUFFERED)
2289 		goto bce_nvram_erase_page_exit;
2290 
2291 	/* Build an erase command. */
2292 	cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
2293 	    BCE_NVM_COMMAND_DOIT;
2294 
2295 	/*
2296 	 * Clear the DONE bit separately, set the NVRAM address to erase,
2297 	 * and issue the erase command.
2298 	 */
2299 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2300 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2301 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2302 
2303 	/* Wait for completion. */
2304 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2305 		u32 val;
2306 
2307 		DELAY(5);
2308 
2309 		val = REG_RD(sc, BCE_NVM_COMMAND);
2310 		if (val & BCE_NVM_COMMAND_DONE)
2311 			break;
2312 	}
2313 
2314 	if (j >= NVRAM_TIMEOUT_COUNT) {
2315 		DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
2316 		rc = EBUSY;
2317 	}
2318 
2319 bce_nvram_erase_page_exit:
2320 	DBEXIT(BCE_VERBOSE_NVRAM);
2321 	return (rc);
2322 }
2323 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2324 
2325 /****************************************************************************/
2326 /* Read a dword (32 bits) from NVRAM.                                       */
2327 /*                                                                          */
2328 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
2329 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
2330 /*                                                                          */
2331 /* Returns:                                                                 */
2332 /*   0 on success and the 32 bit value read, positive value on failure.     */
2333 /****************************************************************************/
2334 static int
bce_nvram_read_dword(struct bce_softc * sc,u32 offset,u8 * ret_val,u32 cmd_flags)2335 bce_nvram_read_dword(struct bce_softc *sc,
2336     u32 offset, u8 *ret_val, u32 cmd_flags)
2337 {
2338 	u32 cmd;
2339 	int i, rc = 0;
2340 
2341 	DBENTER(BCE_EXTREME_NVRAM);
2342 
2343 	/* Build the command word. */
2344 	cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
2345 
2346 	/* Calculate the offset for buffered flash if translation is used. */
2347 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2348 		offset = ((offset / sc->bce_flash_info->page_size) <<
2349 		    sc->bce_flash_info->page_bits) +
2350 		    (offset % sc->bce_flash_info->page_size);
2351 	}
2352 
2353 	/*
2354 	 * Clear the DONE bit separately, set the address to read,
2355 	 * and issue the read.
2356 	 */
2357 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2358 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2359 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2360 
2361 	/* Wait for completion. */
2362 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
2363 		u32 val;
2364 
2365 		DELAY(5);
2366 
2367 		val = REG_RD(sc, BCE_NVM_COMMAND);
2368 		if (val & BCE_NVM_COMMAND_DONE) {
2369 			val = REG_RD(sc, BCE_NVM_READ);
2370 
2371 			val = bce_be32toh(val);
2372 			memcpy(ret_val, &val, 4);
2373 			break;
2374 		}
2375 	}
2376 
2377 	/* Check for errors. */
2378 	if (i >= NVRAM_TIMEOUT_COUNT) {
2379 		BCE_PRINTF("%s(%d): Timeout error reading NVRAM at "
2380 		    "offset 0x%08X!\n",	__FILE__, __LINE__, offset);
2381 		rc = EBUSY;
2382 	}
2383 
2384 	DBEXIT(BCE_EXTREME_NVRAM);
2385 	return(rc);
2386 }
2387 
2388 #ifdef BCE_NVRAM_WRITE_SUPPORT
2389 /****************************************************************************/
2390 /* Write a dword (32 bits) to NVRAM.                                        */
2391 /*                                                                          */
2392 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
2393 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
2394 /* enabled NVRAM write access.                                              */
2395 /*                                                                          */
2396 /* Returns:                                                                 */
2397 /*   0 on success, positive value on failure.                               */
2398 /****************************************************************************/
2399 static int
bce_nvram_write_dword(struct bce_softc * sc,u32 offset,u8 * val,u32 cmd_flags)2400 bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
2401 	u32 cmd_flags)
2402 {
2403 	u32 cmd, val32;
2404 	int j, rc = 0;
2405 
2406 	DBENTER(BCE_VERBOSE_NVRAM);
2407 
2408 	/* Build the command word. */
2409 	cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
2410 
2411 	/* Calculate the offset for buffered flash if translation is used. */
2412 	if (sc->bce_flash_info->flags & BCE_NV_TRANSLATE) {
2413 		offset = ((offset / sc->bce_flash_info->page_size) <<
2414 		    sc->bce_flash_info->page_bits) +
2415 		    (offset % sc->bce_flash_info->page_size);
2416 	}
2417 
2418 	/*
2419 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
2420 	 * set the NVRAM address to write, and issue the write command
2421 	 */
2422 	REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
2423 	memcpy(&val32, val, 4);
2424 	val32 = htobe32(val32);
2425 	REG_WR(sc, BCE_NVM_WRITE, val32);
2426 	REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
2427 	REG_WR(sc, BCE_NVM_COMMAND, cmd);
2428 
2429 	/* Wait for completion. */
2430 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
2431 		DELAY(5);
2432 
2433 		if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
2434 			break;
2435 	}
2436 	if (j >= NVRAM_TIMEOUT_COUNT) {
2437 		BCE_PRINTF("%s(%d): Timeout error writing NVRAM at "
2438 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
2439 		rc = EBUSY;
2440 	}
2441 
2442 	DBEXIT(BCE_VERBOSE_NVRAM);
2443 	return (rc);
2444 }
2445 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2446 
2447 /****************************************************************************/
2448 /* Initialize NVRAM access.                                                 */
2449 /*                                                                          */
2450 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
2451 /* access that device.                                                      */
2452 /*                                                                          */
2453 /* Returns:                                                                 */
2454 /*   0 on success, positive value on failure.                               */
2455 /****************************************************************************/
2456 static int
bce_init_nvram(struct bce_softc * sc)2457 bce_init_nvram(struct bce_softc *sc)
2458 {
2459 	u32 val;
2460 	int j, entry_count, rc = 0;
2461 	const struct flash_spec *flash;
2462 
2463 	DBENTER(BCE_VERBOSE_NVRAM);
2464 
2465 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
2466 		sc->bce_flash_info = &flash_5709;
2467 		goto bce_init_nvram_get_flash_size;
2468 	}
2469 
2470 	/* Determine the selected interface. */
2471 	val = REG_RD(sc, BCE_NVM_CFG1);
2472 
2473 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
2474 
2475 	/*
2476 	 * Flash reconfiguration is required to support additional
2477 	 * NVRAM devices not directly supported in hardware.
2478 	 * Check if the flash interface was reconfigured
2479 	 * by the bootcode.
2480 	 */
2481 
2482 	if (val & 0x40000000) {
2483 		/* Flash interface reconfigured by bootcode. */
2484 
2485 		DBPRINT(sc,BCE_INFO_LOAD,
2486 			"bce_init_nvram(): Flash WAS reconfigured.\n");
2487 
2488 		for (j = 0, flash = &flash_table[0]; j < entry_count;
2489 		     j++, flash++) {
2490 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
2491 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
2492 				sc->bce_flash_info = flash;
2493 				break;
2494 			}
2495 		}
2496 	} else {
2497 		/* Flash interface not yet reconfigured. */
2498 		u32 mask;
2499 
2500 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): Flash was NOT reconfigured.\n",
2501 			__FUNCTION__);
2502 
2503 		if (val & (1 << 23))
2504 			mask = FLASH_BACKUP_STRAP_MASK;
2505 		else
2506 			mask = FLASH_STRAP_MASK;
2507 
2508 		/* Look for the matching NVRAM device configuration data. */
2509 		for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
2510 			/* Check if the device matches any of the known devices. */
2511 			if ((val & mask) == (flash->strapping & mask)) {
2512 				/* Found a device match. */
2513 				sc->bce_flash_info = flash;
2514 
2515 				/* Request access to the flash interface. */
2516 				if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2517 					return rc;
2518 
2519 				/* Reconfigure the flash interface. */
2520 				bce_enable_nvram_access(sc);
2521 				REG_WR(sc, BCE_NVM_CFG1, flash->config1);
2522 				REG_WR(sc, BCE_NVM_CFG2, flash->config2);
2523 				REG_WR(sc, BCE_NVM_CFG3, flash->config3);
2524 				REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
2525 				bce_disable_nvram_access(sc);
2526 				bce_release_nvram_lock(sc);
2527 
2528 				break;
2529 			}
2530 		}
2531 	}
2532 
2533 	/* Check if a matching device was found. */
2534 	if (j == entry_count) {
2535 		sc->bce_flash_info = NULL;
2536 		BCE_PRINTF("%s(%d): Unknown Flash NVRAM found!\n",
2537 		    __FILE__, __LINE__);
2538 		DBEXIT(BCE_VERBOSE_NVRAM);
2539 		return (ENODEV);
2540 	}
2541 
2542 bce_init_nvram_get_flash_size:
2543 	/* Write the flash config data to the shared memory interface. */
2544 	val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG2);
2545 	val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
2546 	if (val)
2547 		sc->bce_flash_size = val;
2548 	else
2549 		sc->bce_flash_size = sc->bce_flash_info->total_size;
2550 
2551 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Found %s, size = 0x%08X\n",
2552 	    __FUNCTION__, sc->bce_flash_info->name,
2553 	    sc->bce_flash_info->total_size);
2554 
2555 	DBEXIT(BCE_VERBOSE_NVRAM);
2556 	return rc;
2557 }
2558 
2559 /****************************************************************************/
2560 /* Read an arbitrary range of data from NVRAM.                              */
2561 /*                                                                          */
2562 /* Prepares the NVRAM interface for access and reads the requested data     */
2563 /* into the supplied buffer.                                                */
2564 /*                                                                          */
2565 /* Returns:                                                                 */
2566 /*   0 on success and the data read, positive value on failure.             */
2567 /****************************************************************************/
2568 static int
bce_nvram_read(struct bce_softc * sc,u32 offset,u8 * ret_buf,int buf_size)2569 bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
2570 	int buf_size)
2571 {
2572 	int rc = 0;
2573 	u32 cmd_flags, offset32, len32, extra;
2574 
2575 	DBENTER(BCE_VERBOSE_NVRAM);
2576 
2577 	if (buf_size == 0)
2578 		goto bce_nvram_read_exit;
2579 
2580 	/* Request access to the flash interface. */
2581 	if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2582 		goto bce_nvram_read_exit;
2583 
2584 	/* Enable access to flash interface */
2585 	bce_enable_nvram_access(sc);
2586 
2587 	len32 = buf_size;
2588 	offset32 = offset;
2589 	extra = 0;
2590 
2591 	cmd_flags = 0;
2592 
2593 	if (offset32 & 3) {
2594 		u8 buf[4];
2595 		u32 pre_len;
2596 
2597 		offset32 &= ~3;
2598 		pre_len = 4 - (offset & 3);
2599 
2600 		if (pre_len >= len32) {
2601 			pre_len = len32;
2602 			cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
2603 		}
2604 		else {
2605 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2606 		}
2607 
2608 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2609 
2610 		if (rc)
2611 			return rc;
2612 
2613 		memcpy(ret_buf, buf + (offset & 3), pre_len);
2614 
2615 		offset32 += 4;
2616 		ret_buf += pre_len;
2617 		len32 -= pre_len;
2618 	}
2619 
2620 	if (len32 & 3) {
2621 		extra = 4 - (len32 & 3);
2622 		len32 = (len32 + 4) & ~3;
2623 	}
2624 
2625 	if (len32 == 4) {
2626 		u8 buf[4];
2627 
2628 		if (cmd_flags)
2629 			cmd_flags = BCE_NVM_COMMAND_LAST;
2630 		else
2631 			cmd_flags = BCE_NVM_COMMAND_FIRST |
2632 				    BCE_NVM_COMMAND_LAST;
2633 
2634 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2635 
2636 		memcpy(ret_buf, buf, 4 - extra);
2637 	}
2638 	else if (len32 > 0) {
2639 		u8 buf[4];
2640 
2641 		/* Read the first word. */
2642 		if (cmd_flags)
2643 			cmd_flags = 0;
2644 		else
2645 			cmd_flags = BCE_NVM_COMMAND_FIRST;
2646 
2647 		rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
2648 
2649 		/* Advance to the next dword. */
2650 		offset32 += 4;
2651 		ret_buf += 4;
2652 		len32 -= 4;
2653 
2654 		while (len32 > 4 && rc == 0) {
2655 			rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
2656 
2657 			/* Advance to the next dword. */
2658 			offset32 += 4;
2659 			ret_buf += 4;
2660 			len32 -= 4;
2661 		}
2662 
2663 		if (rc)
2664 			goto bce_nvram_read_locked_exit;
2665 
2666 		cmd_flags = BCE_NVM_COMMAND_LAST;
2667 		rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
2668 
2669 		memcpy(ret_buf, buf, 4 - extra);
2670 	}
2671 
2672 bce_nvram_read_locked_exit:
2673 	/* Disable access to flash interface and release the lock. */
2674 	bce_disable_nvram_access(sc);
2675 	bce_release_nvram_lock(sc);
2676 
2677 bce_nvram_read_exit:
2678 	DBEXIT(BCE_VERBOSE_NVRAM);
2679 	return rc;
2680 }
2681 
2682 #ifdef BCE_NVRAM_WRITE_SUPPORT
2683 /****************************************************************************/
2684 /* Write an arbitrary range of data from NVRAM.                             */
2685 /*                                                                          */
2686 /* Prepares the NVRAM interface for write access and writes the requested   */
2687 /* data from the supplied buffer.  The caller is responsible for            */
2688 /* calculating any appropriate CRCs.                                        */
2689 /*                                                                          */
2690 /* Returns:                                                                 */
2691 /*   0 on success, positive value on failure.                               */
2692 /****************************************************************************/
2693 static int
bce_nvram_write(struct bce_softc * sc,u32 offset,u8 * data_buf,int buf_size)2694 bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
2695 	int buf_size)
2696 {
2697 	u32 written, offset32, len32;
2698 	u8 *buf, start[4], end[4];
2699 	int rc = 0;
2700 	int align_start, align_end;
2701 
2702 	DBENTER(BCE_VERBOSE_NVRAM);
2703 
2704 	buf = data_buf;
2705 	offset32 = offset;
2706 	len32 = buf_size;
2707 	align_start = align_end = 0;
2708 
2709 	if ((align_start = (offset32 & 3))) {
2710 		offset32 &= ~3;
2711 		len32 += align_start;
2712 		if ((rc = bce_nvram_read(sc, offset32, start, 4)))
2713 			goto bce_nvram_write_exit;
2714 	}
2715 
2716 	if (len32 & 3) {
2717 	       	if ((len32 > 4) || !align_start) {
2718 			align_end = 4 - (len32 & 3);
2719 			len32 += align_end;
2720 			if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
2721 				end, 4))) {
2722 				goto bce_nvram_write_exit;
2723 			}
2724 		}
2725 	}
2726 
2727 	if (align_start || align_end) {
2728 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
2729 		if (buf == NULL) {
2730 			rc = ENOMEM;
2731 			goto bce_nvram_write_exit;
2732 		}
2733 
2734 		if (align_start) {
2735 			memcpy(buf, start, 4);
2736 		}
2737 
2738 		if (align_end) {
2739 			memcpy(buf + len32 - 4, end, 4);
2740 		}
2741 		memcpy(buf + align_start, data_buf, buf_size);
2742 	}
2743 
2744 	written = 0;
2745 	while ((written < len32) && (rc == 0)) {
2746 		u32 page_start, page_end, data_start, data_end;
2747 		u32 addr, cmd_flags;
2748 		int i;
2749 		u8 flash_buffer[264];
2750 
2751 	    /* Find the page_start addr */
2752 		page_start = offset32 + written;
2753 		page_start -= (page_start % sc->bce_flash_info->page_size);
2754 		/* Find the page_end addr */
2755 		page_end = page_start + sc->bce_flash_info->page_size;
2756 		/* Find the data_start addr */
2757 		data_start = (written == 0) ? offset32 : page_start;
2758 		/* Find the data_end addr */
2759 		data_end = (page_end > offset32 + len32) ?
2760 			(offset32 + len32) : page_end;
2761 
2762 		/* Request access to the flash interface. */
2763 		if ((rc = bce_acquire_nvram_lock(sc)) != 0)
2764 			goto bce_nvram_write_exit;
2765 
2766 		/* Enable access to flash interface */
2767 		bce_enable_nvram_access(sc);
2768 
2769 		cmd_flags = BCE_NVM_COMMAND_FIRST;
2770 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2771 			int j;
2772 
2773 			/* Read the whole page into the buffer
2774 			 * (non-buffer flash only) */
2775 			for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
2776 				if (j == (sc->bce_flash_info->page_size - 4)) {
2777 					cmd_flags |= BCE_NVM_COMMAND_LAST;
2778 				}
2779 				rc = bce_nvram_read_dword(sc,
2780 					page_start + j,
2781 					&flash_buffer[j],
2782 					cmd_flags);
2783 
2784 				if (rc)
2785 					goto bce_nvram_write_locked_exit;
2786 
2787 				cmd_flags = 0;
2788 			}
2789 		}
2790 
2791 		/* Enable writes to flash interface (unlock write-protect) */
2792 		if ((rc = bce_enable_nvram_write(sc)) != 0)
2793 			goto bce_nvram_write_locked_exit;
2794 
2795 		/* Erase the page */
2796 		if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
2797 			goto bce_nvram_write_locked_exit;
2798 
2799 		/* Re-enable the write again for the actual write */
2800 		bce_enable_nvram_write(sc);
2801 
2802 		/* Loop to write back the buffer data from page_start to
2803 		 * data_start */
2804 		i = 0;
2805 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2806 			for (addr = page_start; addr < data_start;
2807 				addr += 4, i += 4) {
2808 				rc = bce_nvram_write_dword(sc, addr,
2809 					&flash_buffer[i], cmd_flags);
2810 
2811 				if (rc != 0)
2812 					goto bce_nvram_write_locked_exit;
2813 
2814 				cmd_flags = 0;
2815 			}
2816 		}
2817 
2818 		/* Loop to write the new data from data_start to data_end */
2819 		for (addr = data_start; addr < data_end; addr += 4, i++) {
2820 			if ((addr == page_end - 4) ||
2821 				((sc->bce_flash_info->flags & BCE_NV_BUFFERED) &&
2822 				(addr == data_end - 4))) {
2823 				cmd_flags |= BCE_NVM_COMMAND_LAST;
2824 			}
2825 			rc = bce_nvram_write_dword(sc, addr, buf,
2826 				cmd_flags);
2827 
2828 			if (rc != 0)
2829 				goto bce_nvram_write_locked_exit;
2830 
2831 			cmd_flags = 0;
2832 			buf += 4;
2833 		}
2834 
2835 		/* Loop to write back the buffer data from data_end
2836 		 * to page_end */
2837 		if (!(sc->bce_flash_info->flags & BCE_NV_BUFFERED)) {
2838 			for (addr = data_end; addr < page_end;
2839 				addr += 4, i += 4) {
2840 				if (addr == page_end-4) {
2841 					cmd_flags = BCE_NVM_COMMAND_LAST;
2842                 		}
2843 				rc = bce_nvram_write_dword(sc, addr,
2844 					&flash_buffer[i], cmd_flags);
2845 
2846 				if (rc != 0)
2847 					goto bce_nvram_write_locked_exit;
2848 
2849 				cmd_flags = 0;
2850 			}
2851 		}
2852 
2853 		/* Disable writes to flash interface (lock write-protect) */
2854 		bce_disable_nvram_write(sc);
2855 
2856 		/* Disable access to flash interface */
2857 		bce_disable_nvram_access(sc);
2858 		bce_release_nvram_lock(sc);
2859 
2860 		/* Increment written */
2861 		written += data_end - data_start;
2862 	}
2863 
2864 	goto bce_nvram_write_exit;
2865 
2866 bce_nvram_write_locked_exit:
2867 	bce_disable_nvram_write(sc);
2868 	bce_disable_nvram_access(sc);
2869 	bce_release_nvram_lock(sc);
2870 
2871 bce_nvram_write_exit:
2872 	if (align_start || align_end)
2873 		free(buf, M_DEVBUF);
2874 
2875 	DBEXIT(BCE_VERBOSE_NVRAM);
2876 	return (rc);
2877 }
2878 #endif /* BCE_NVRAM_WRITE_SUPPORT */
2879 
2880 /****************************************************************************/
2881 /* Verifies that NVRAM is accessible and contains valid data.               */
2882 /*                                                                          */
2883 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
2884 /* correct.                                                                 */
2885 /*                                                                          */
2886 /* Returns:                                                                 */
2887 /*   0 on success, positive value on failure.                               */
2888 /****************************************************************************/
2889 static int
bce_nvram_test(struct bce_softc * sc)2890 bce_nvram_test(struct bce_softc *sc)
2891 {
2892 	u32 buf[BCE_NVRAM_SIZE / 4];
2893 	u8 *data = (u8 *) buf;
2894 	int rc = 0;
2895 	u32 magic, csum;
2896 
2897 	DBENTER(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2898 
2899 	/*
2900 	 * Check that the device NVRAM is valid by reading
2901 	 * the magic value at offset 0.
2902 	 */
2903 	if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0) {
2904 		BCE_PRINTF("%s(%d): Unable to read NVRAM!\n",
2905 		    __FILE__, __LINE__);
2906 		goto bce_nvram_test_exit;
2907 	}
2908 
2909 	/*
2910 	 * Verify that offset 0 of the NVRAM contains
2911 	 * a valid magic number.
2912 	 */
2913 	magic = bce_be32toh(buf[0]);
2914 	if (magic != BCE_NVRAM_MAGIC) {
2915 		rc = ENODEV;
2916 		BCE_PRINTF("%s(%d): Invalid NVRAM magic value! "
2917 		    "Expected: 0x%08X, Found: 0x%08X\n",
2918 		    __FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
2919 		goto bce_nvram_test_exit;
2920 	}
2921 
2922 	/*
2923 	 * Verify that the device NVRAM includes valid
2924 	 * configuration data.
2925 	 */
2926 	if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0) {
2927 		BCE_PRINTF("%s(%d): Unable to read manufacturing "
2928 		    "Information from  NVRAM!\n", __FILE__, __LINE__);
2929 		goto bce_nvram_test_exit;
2930 	}
2931 
2932 	csum = ether_crc32_le(data, 0x100);
2933 	if (csum != BCE_CRC32_RESIDUAL) {
2934 		rc = ENODEV;
2935 		BCE_PRINTF("%s(%d): Invalid manufacturing information "
2936 		    "NVRAM CRC!	Expected: 0x%08X, Found: 0x%08X\n",
2937 		    __FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
2938 		goto bce_nvram_test_exit;
2939 	}
2940 
2941 	csum = ether_crc32_le(data + 0x100, 0x100);
2942 	if (csum != BCE_CRC32_RESIDUAL) {
2943 		rc = ENODEV;
2944 		BCE_PRINTF("%s(%d): Invalid feature configuration "
2945 		    "information NVRAM CRC! Expected: 0x%08X, "
2946 		    "Found: 08%08X\n", __FILE__, __LINE__,
2947 		    BCE_CRC32_RESIDUAL, csum);
2948 	}
2949 
2950 bce_nvram_test_exit:
2951 	DBEXIT(BCE_VERBOSE_NVRAM | BCE_VERBOSE_LOAD | BCE_VERBOSE_RESET);
2952 	return rc;
2953 }
2954 
2955 /****************************************************************************/
2956 /* Calculates the size of the buffers to allocate based on the MTU.         */
2957 /*                                                                          */
2958 /* Returns:                                                                 */
2959 /*   Nothing.                                                               */
2960 /****************************************************************************/
2961 static void
bce_get_rx_buffer_sizes(struct bce_softc * sc,int mtu)2962 bce_get_rx_buffer_sizes(struct bce_softc *sc, int mtu)
2963 {
2964 	DBENTER(BCE_VERBOSE_LOAD);
2965 
2966 	/* Use a single allocation type when header splitting enabled. */
2967 	if (bce_hdr_split == TRUE) {
2968 		sc->rx_bd_mbuf_alloc_size = MHLEN;
2969 		/* Make sure offset is 16 byte aligned for hardware. */
2970 		sc->rx_bd_mbuf_align_pad =
2971 			roundup2(MSIZE - MHLEN, 16) - (MSIZE - MHLEN);
2972 		sc->rx_bd_mbuf_data_len = sc->rx_bd_mbuf_alloc_size -
2973 			sc->rx_bd_mbuf_align_pad;
2974 	} else {
2975 		if ((mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2976 		    ETHER_CRC_LEN) > MCLBYTES) {
2977 			/* Setup for jumbo RX buffer allocations. */
2978 			sc->rx_bd_mbuf_alloc_size = MJUM9BYTES;
2979 			sc->rx_bd_mbuf_align_pad  =
2980 				roundup2(MJUM9BYTES, 16) - MJUM9BYTES;
2981 			sc->rx_bd_mbuf_data_len =
2982 			    sc->rx_bd_mbuf_alloc_size -
2983 			    sc->rx_bd_mbuf_align_pad;
2984 		} else {
2985 			/* Setup for standard RX buffer allocations. */
2986 			sc->rx_bd_mbuf_alloc_size = MCLBYTES;
2987 			sc->rx_bd_mbuf_align_pad  =
2988 			    roundup2(MCLBYTES, 16) - MCLBYTES;
2989 			sc->rx_bd_mbuf_data_len =
2990 			    sc->rx_bd_mbuf_alloc_size -
2991 			    sc->rx_bd_mbuf_align_pad;
2992 		}
2993 	}
2994 
2995 //	DBPRINT(sc, BCE_INFO_LOAD,
2996 	DBPRINT(sc, BCE_WARN,
2997 	   "%s(): rx_bd_mbuf_alloc_size = %d, rx_bd_mbuf_data_len = %d, "
2998 	   "rx_bd_mbuf_align_pad = %d\n", __FUNCTION__,
2999 	   sc->rx_bd_mbuf_alloc_size, sc->rx_bd_mbuf_data_len,
3000 	   sc->rx_bd_mbuf_align_pad);
3001 
3002 	DBEXIT(BCE_VERBOSE_LOAD);
3003 }
3004 
3005 /****************************************************************************/
3006 /* Identifies the current media type of the controller and sets the PHY     */
3007 /* address.                                                                 */
3008 /*                                                                          */
3009 /* Returns:                                                                 */
3010 /*   Nothing.                                                               */
3011 /****************************************************************************/
3012 static void
bce_get_media(struct bce_softc * sc)3013 bce_get_media(struct bce_softc *sc)
3014 {
3015 	u32 val;
3016 
3017 	DBENTER(BCE_VERBOSE_PHY);
3018 
3019 	/* Assume PHY address for copper controllers. */
3020 	sc->bce_phy_addr = 1;
3021 
3022 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3023  		u32 val = REG_RD(sc, BCE_MISC_DUAL_MEDIA_CTRL);
3024 		u32 bond_id = val & BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID;
3025 		u32 strap;
3026 
3027 		/*
3028 		 * The BCM5709S is software configurable
3029 		 * for Copper or SerDes operation.
3030 		 */
3031 		if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
3032 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3033 			    "for copper.\n");
3034 			goto bce_get_media_exit;
3035 		} else if (bond_id == BCE_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
3036 			DBPRINT(sc, BCE_INFO_LOAD, "5709 bonded "
3037 			    "for dual media.\n");
3038 			sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3039 			goto bce_get_media_exit;
3040 		}
3041 
3042 		if (val & BCE_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
3043 			strap = (val &
3044 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
3045 		else
3046 			strap = (val &
3047 			    BCE_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
3048 
3049 		if (pci_get_function(sc->bce_dev) == 0) {
3050 			switch (strap) {
3051 			case 0x4:
3052 			case 0x5:
3053 			case 0x6:
3054 				DBPRINT(sc, BCE_INFO_LOAD,
3055 				    "BCM5709 s/w configured for SerDes.\n");
3056 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3057 				break;
3058 			default:
3059 				DBPRINT(sc, BCE_INFO_LOAD,
3060 				    "BCM5709 s/w configured for Copper.\n");
3061 				break;
3062 			}
3063 		} else {
3064 			switch (strap) {
3065 			case 0x1:
3066 			case 0x2:
3067 			case 0x4:
3068 				DBPRINT(sc, BCE_INFO_LOAD,
3069 				    "BCM5709 s/w configured for SerDes.\n");
3070 				sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3071 				break;
3072 			default:
3073 				DBPRINT(sc, BCE_INFO_LOAD,
3074 				    "BCM5709 s/w configured for Copper.\n");
3075 				break;
3076 			}
3077 		}
3078 
3079 	} else if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT)
3080 		sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
3081 
3082 	if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
3083 		sc->bce_flags |= BCE_NO_WOL_FLAG;
3084 
3085 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
3086 			sc->bce_phy_flags |= BCE_PHY_IEEE_CLAUSE_45_FLAG;
3087 
3088 		if (BCE_CHIP_NUM(sc) != BCE_CHIP_NUM_5706) {
3089 			/* 5708S/09S/16S use a separate PHY for SerDes. */
3090 			sc->bce_phy_addr = 2;
3091 
3092 			val = bce_shmem_rd(sc, BCE_SHARED_HW_CFG_CONFIG);
3093 			if (val & BCE_SHARED_HW_CFG_PHY_2_5G) {
3094 				sc->bce_phy_flags |=
3095 				    BCE_PHY_2_5G_CAPABLE_FLAG;
3096 				DBPRINT(sc, BCE_INFO_LOAD, "Found 2.5Gb "
3097 				    "capable adapter\n");
3098 			}
3099 		}
3100 	} else if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) ||
3101 	    (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708))
3102 		sc->bce_phy_flags |= BCE_PHY_CRC_FIX_FLAG;
3103 
3104 bce_get_media_exit:
3105 	DBPRINT(sc, (BCE_INFO_LOAD | BCE_INFO_PHY),
3106 		"Using PHY address %d.\n", sc->bce_phy_addr);
3107 
3108 	DBEXIT(BCE_VERBOSE_PHY);
3109 }
3110 
3111 /****************************************************************************/
3112 /* Performs PHY initialization required before MII drivers access the       */
3113 /* device.                                                                  */
3114 /*                                                                          */
3115 /* Returns:                                                                 */
3116 /*   Nothing.                                                               */
3117 /****************************************************************************/
3118 static void
bce_init_media(struct bce_softc * sc)3119 bce_init_media(struct bce_softc *sc)
3120 {
3121 	if ((sc->bce_phy_flags & (BCE_PHY_IEEE_CLAUSE_45_FLAG |
3122 	    BCE_PHY_REMOTE_CAP_FLAG)) == BCE_PHY_IEEE_CLAUSE_45_FLAG) {
3123 		/*
3124 		 * Configure 5709S/5716S PHYs to use traditional IEEE
3125 		 * Clause 22 method. Otherwise we have no way to attach
3126 		 * the PHY in mii(4) layer. PHY specific configuration
3127 		 * is done in mii layer.
3128 		 */
3129 
3130 		/* Select auto-negotiation MMD of the PHY. */
3131 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3132 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
3133 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3134 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
3135 
3136 		/* Set IEEE0 block of AN MMD (assumed in brgphy(4) code). */
3137 		bce_miibus_write_reg(sc->bce_dev, sc->bce_phy_addr,
3138 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
3139 	}
3140 }
3141 
3142 /****************************************************************************/
3143 /* Free any DMA memory owned by the driver.                                 */
3144 /*                                                                          */
3145 /* Scans through each data structure that requires DMA memory and frees     */
3146 /* the memory if allocated.                                                 */
3147 /*                                                                          */
3148 /* Returns:                                                                 */
3149 /*   Nothing.                                                               */
3150 /****************************************************************************/
3151 static void
bce_dma_free(struct bce_softc * sc)3152 bce_dma_free(struct bce_softc *sc)
3153 {
3154 	int i;
3155 
3156 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3157 
3158 	/* Free, unmap, and destroy the status block. */
3159 	if (sc->status_block_paddr != 0) {
3160 		bus_dmamap_unload(
3161 		    sc->status_tag,
3162 		    sc->status_map);
3163 		sc->status_block_paddr = 0;
3164 	}
3165 
3166 	if (sc->status_block != NULL) {
3167 		bus_dmamem_free(
3168 		   sc->status_tag,
3169 		    sc->status_block,
3170 		    sc->status_map);
3171 		sc->status_block = NULL;
3172 	}
3173 
3174 	if (sc->status_tag != NULL) {
3175 		bus_dma_tag_destroy(sc->status_tag);
3176 		sc->status_tag = NULL;
3177 	}
3178 
3179 	/* Free, unmap, and destroy the statistics block. */
3180 	if (sc->stats_block_paddr != 0) {
3181 		bus_dmamap_unload(
3182 		    sc->stats_tag,
3183 		    sc->stats_map);
3184 		sc->stats_block_paddr = 0;
3185 	}
3186 
3187 	if (sc->stats_block != NULL) {
3188 		bus_dmamem_free(
3189 		    sc->stats_tag,
3190 		    sc->stats_block,
3191 		    sc->stats_map);
3192 		sc->stats_block = NULL;
3193 	}
3194 
3195 	if (sc->stats_tag != NULL) {
3196 		bus_dma_tag_destroy(sc->stats_tag);
3197 		sc->stats_tag = NULL;
3198 	}
3199 
3200 	/* Free, unmap and destroy all context memory pages. */
3201 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3202 		for (i = 0; i < sc->ctx_pages; i++ ) {
3203 			if (sc->ctx_paddr[i] != 0) {
3204 				bus_dmamap_unload(
3205 				    sc->ctx_tag,
3206 				    sc->ctx_map[i]);
3207 				sc->ctx_paddr[i] = 0;
3208 			}
3209 
3210 			if (sc->ctx_block[i] != NULL) {
3211 				bus_dmamem_free(
3212 				    sc->ctx_tag,
3213 				    sc->ctx_block[i],
3214 				    sc->ctx_map[i]);
3215 				sc->ctx_block[i] = NULL;
3216 			}
3217 		}
3218 
3219 		/* Destroy the context memory tag. */
3220 		if (sc->ctx_tag != NULL) {
3221 			bus_dma_tag_destroy(sc->ctx_tag);
3222 			sc->ctx_tag = NULL;
3223 		}
3224 	}
3225 
3226 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
3227 	for (i = 0; i < sc->tx_pages; i++ ) {
3228 		if (sc->tx_bd_chain_paddr[i] != 0) {
3229 			bus_dmamap_unload(
3230 			    sc->tx_bd_chain_tag,
3231 			    sc->tx_bd_chain_map[i]);
3232 			sc->tx_bd_chain_paddr[i] = 0;
3233 		}
3234 
3235 		if (sc->tx_bd_chain[i] != NULL) {
3236 			bus_dmamem_free(
3237 			    sc->tx_bd_chain_tag,
3238 			    sc->tx_bd_chain[i],
3239 			    sc->tx_bd_chain_map[i]);
3240 			sc->tx_bd_chain[i] = NULL;
3241 		}
3242 	}
3243 
3244 	/* Destroy the TX buffer descriptor tag. */
3245 	if (sc->tx_bd_chain_tag != NULL) {
3246 		bus_dma_tag_destroy(sc->tx_bd_chain_tag);
3247 		sc->tx_bd_chain_tag = NULL;
3248 	}
3249 
3250 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
3251 	for (i = 0; i < sc->rx_pages; i++ ) {
3252 		if (sc->rx_bd_chain_paddr[i] != 0) {
3253 			bus_dmamap_unload(
3254 			    sc->rx_bd_chain_tag,
3255 			    sc->rx_bd_chain_map[i]);
3256 			sc->rx_bd_chain_paddr[i] = 0;
3257 		}
3258 
3259 		if (sc->rx_bd_chain[i] != NULL) {
3260 			bus_dmamem_free(
3261 			    sc->rx_bd_chain_tag,
3262 			    sc->rx_bd_chain[i],
3263 			    sc->rx_bd_chain_map[i]);
3264 			sc->rx_bd_chain[i] = NULL;
3265 		}
3266 	}
3267 
3268 	/* Destroy the RX buffer descriptor tag. */
3269 	if (sc->rx_bd_chain_tag != NULL) {
3270 		bus_dma_tag_destroy(sc->rx_bd_chain_tag);
3271 		sc->rx_bd_chain_tag = NULL;
3272 	}
3273 
3274 	/* Free, unmap and destroy all page buffer descriptor chain pages. */
3275 	if (bce_hdr_split == TRUE) {
3276 		for (i = 0; i < sc->pg_pages; i++ ) {
3277 			if (sc->pg_bd_chain_paddr[i] != 0) {
3278 				bus_dmamap_unload(
3279 				    sc->pg_bd_chain_tag,
3280 				    sc->pg_bd_chain_map[i]);
3281 				sc->pg_bd_chain_paddr[i] = 0;
3282 			}
3283 
3284 			if (sc->pg_bd_chain[i] != NULL) {
3285 				bus_dmamem_free(
3286 				    sc->pg_bd_chain_tag,
3287 				    sc->pg_bd_chain[i],
3288 				    sc->pg_bd_chain_map[i]);
3289 				sc->pg_bd_chain[i] = NULL;
3290 			}
3291 		}
3292 
3293 		/* Destroy the page buffer descriptor tag. */
3294 		if (sc->pg_bd_chain_tag != NULL) {
3295 			bus_dma_tag_destroy(sc->pg_bd_chain_tag);
3296 			sc->pg_bd_chain_tag = NULL;
3297 		}
3298 	}
3299 
3300 	/* Unload and destroy the TX mbuf maps. */
3301 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
3302 		if (sc->tx_mbuf_map[i] != NULL) {
3303 			bus_dmamap_unload(sc->tx_mbuf_tag,
3304 			    sc->tx_mbuf_map[i]);
3305 			bus_dmamap_destroy(sc->tx_mbuf_tag,
3306 	 		    sc->tx_mbuf_map[i]);
3307 			sc->tx_mbuf_map[i] = NULL;
3308 		}
3309 	}
3310 
3311 	/* Destroy the TX mbuf tag. */
3312 	if (sc->tx_mbuf_tag != NULL) {
3313 		bus_dma_tag_destroy(sc->tx_mbuf_tag);
3314 		sc->tx_mbuf_tag = NULL;
3315 	}
3316 
3317 	/* Unload and destroy the RX mbuf maps. */
3318 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
3319 		if (sc->rx_mbuf_map[i] != NULL) {
3320 			bus_dmamap_unload(sc->rx_mbuf_tag,
3321 			    sc->rx_mbuf_map[i]);
3322 			bus_dmamap_destroy(sc->rx_mbuf_tag,
3323 	 		    sc->rx_mbuf_map[i]);
3324 			sc->rx_mbuf_map[i] = NULL;
3325 		}
3326 	}
3327 
3328 	/* Destroy the RX mbuf tag. */
3329 	if (sc->rx_mbuf_tag != NULL) {
3330 		bus_dma_tag_destroy(sc->rx_mbuf_tag);
3331 		sc->rx_mbuf_tag = NULL;
3332 	}
3333 
3334 	/* Unload and destroy the page mbuf maps. */
3335 	if (bce_hdr_split == TRUE) {
3336 		for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
3337 			if (sc->pg_mbuf_map[i] != NULL) {
3338 				bus_dmamap_unload(sc->pg_mbuf_tag,
3339 				    sc->pg_mbuf_map[i]);
3340 				bus_dmamap_destroy(sc->pg_mbuf_tag,
3341 				    sc->pg_mbuf_map[i]);
3342 				sc->pg_mbuf_map[i] = NULL;
3343 			}
3344 		}
3345 
3346 		/* Destroy the page mbuf tag. */
3347 		if (sc->pg_mbuf_tag != NULL) {
3348 			bus_dma_tag_destroy(sc->pg_mbuf_tag);
3349 			sc->pg_mbuf_tag = NULL;
3350 		}
3351 	}
3352 
3353 	/* Destroy the parent tag */
3354 	if (sc->parent_tag != NULL) {
3355 		bus_dma_tag_destroy(sc->parent_tag);
3356 		sc->parent_tag = NULL;
3357 	}
3358 
3359 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_UNLOAD | BCE_VERBOSE_CTX);
3360 }
3361 
3362 /****************************************************************************/
3363 /* Get DMA memory from the OS.                                              */
3364 /*                                                                          */
3365 /* Validates that the OS has provided DMA buffers in response to a          */
3366 /* bus_dmamap_load() call and saves the physical address of those buffers.  */
3367 /* When the callback is used the OS will return 0 for the mapping function  */
3368 /* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any  */
3369 /* failures back to the caller.                                             */
3370 /*                                                                          */
3371 /* Returns:                                                                 */
3372 /*   Nothing.                                                               */
3373 /****************************************************************************/
3374 static void
bce_dma_map_addr(void * arg,bus_dma_segment_t * segs,int nseg,int error)3375 bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3376 {
3377 	bus_addr_t *busaddr = arg;
3378 
3379 	KASSERT(nseg == 1, ("%s(): Too many segments returned (%d)!",
3380 	    __FUNCTION__, nseg));
3381 	/* Simulate a mapping failure. */
3382 	DBRUNIF(DB_RANDOMTRUE(dma_map_addr_failed_sim_control),
3383 	    error = ENOMEM);
3384 
3385 	/* ToDo: How to increment debug sim_count variable here? */
3386 
3387 	/* Check for an error and signal the caller that an error occurred. */
3388 	if (error) {
3389 		*busaddr = 0;
3390 	} else {
3391 		*busaddr = segs->ds_addr;
3392 	}
3393 }
3394 
3395 /****************************************************************************/
3396 /* Allocate any DMA memory needed by the driver.                            */
3397 /*                                                                          */
3398 /* Allocates DMA memory needed for the various global structures needed by  */
3399 /* hardware.                                                                */
3400 /*                                                                          */
3401 /* Memory alignment requirements:                                           */
3402 /* +-----------------+----------+----------+----------+----------+          */
3403 /* |                 |   5706   |   5708   |   5709   |   5716   |          */
3404 /* +-----------------+----------+----------+----------+----------+          */
3405 /* |Status Block     | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3406 /* |Statistics Block | 8 bytes  | 8 bytes  | 16 bytes | 16 bytes |          */
3407 /* |RX Buffers       | 16 bytes | 16 bytes | 16 bytes | 16 bytes |          */
3408 /* |PG Buffers       |   none   |   none   |   none   |   none   |          */
3409 /* |TX Buffers       |   none   |   none   |   none   |   none   |          */
3410 /* |Chain Pages(1)   |   4KiB   |   4KiB   |   4KiB   |   4KiB   |          */
3411 /* |Context Memory   |          |          |          |          |          */
3412 /* +-----------------+----------+----------+----------+----------+          */
3413 /*                                                                          */
3414 /* (1) Must align with CPU page size (BCM_PAGE_SZIE).                       */
3415 /*                                                                          */
3416 /* Returns:                                                                 */
3417 /*   0 for success, positive value for failure.                             */
3418 /****************************************************************************/
3419 static int
bce_dma_alloc(device_t dev)3420 bce_dma_alloc(device_t dev)
3421 {
3422 	struct bce_softc *sc;
3423 	int i, error, rc = 0;
3424 	bus_size_t max_size, max_seg_size;
3425 	int max_segments;
3426 
3427 	sc = device_get_softc(dev);
3428 
3429 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3430 
3431 	/*
3432 	 * Allocate the parent bus DMA tag appropriate for PCI.
3433 	 */
3434 	if (bus_dma_tag_create(bus_get_dma_tag(dev), 1, BCE_DMA_BOUNDARY,
3435 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3436 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL,
3437 	    &sc->parent_tag)) {
3438 		BCE_PRINTF("%s(%d): Could not allocate parent DMA tag!\n",
3439 		    __FILE__, __LINE__);
3440 		rc = ENOMEM;
3441 		goto bce_dma_alloc_exit;
3442 	}
3443 
3444 	/*
3445 	 * Create a DMA tag for the status block, allocate and clear the
3446 	 * memory, map the memory into DMA space, and fetch the physical
3447 	 * address of the block.
3448 	 */
3449 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3450 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3451 	    NULL, NULL,	BCE_STATUS_BLK_SZ, 1, BCE_STATUS_BLK_SZ,
3452 	    0, NULL, NULL, &sc->status_tag)) {
3453 		BCE_PRINTF("%s(%d): Could not allocate status block "
3454 		    "DMA tag!\n", __FILE__, __LINE__);
3455 		rc = ENOMEM;
3456 		goto bce_dma_alloc_exit;
3457 	}
3458 
3459 	if(bus_dmamem_alloc(sc->status_tag, (void **)&sc->status_block,
3460 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3461 	    &sc->status_map)) {
3462 		BCE_PRINTF("%s(%d): Could not allocate status block "
3463 		    "DMA memory!\n", __FILE__, __LINE__);
3464 		rc = ENOMEM;
3465 		goto bce_dma_alloc_exit;
3466 	}
3467 
3468 	error = bus_dmamap_load(sc->status_tag,	sc->status_map,
3469 	    sc->status_block, BCE_STATUS_BLK_SZ, bce_dma_map_addr,
3470 	    &sc->status_block_paddr, BUS_DMA_NOWAIT);
3471 
3472 	if (error || sc->status_block_paddr == 0) {
3473 		BCE_PRINTF("%s(%d): Could not map status block "
3474 		    "DMA memory!\n", __FILE__, __LINE__);
3475 		rc = ENOMEM;
3476 		goto bce_dma_alloc_exit;
3477 	}
3478 
3479 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): status_block_paddr = 0x%jX\n",
3480 	    __FUNCTION__, (uintmax_t) sc->status_block_paddr);
3481 
3482 	/*
3483 	 * Create a DMA tag for the statistics block, allocate and clear the
3484 	 * memory, map the memory into DMA space, and fetch the physical
3485 	 * address of the block.
3486 	 */
3487 	if (bus_dma_tag_create(sc->parent_tag, BCE_DMA_ALIGN,
3488 	    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3489 	    NULL, NULL,	BCE_STATS_BLK_SZ, 1, BCE_STATS_BLK_SZ,
3490 	    0, NULL, NULL, &sc->stats_tag)) {
3491 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3492 		    "DMA tag!\n", __FILE__, __LINE__);
3493 		rc = ENOMEM;
3494 		goto bce_dma_alloc_exit;
3495 	}
3496 
3497 	if (bus_dmamem_alloc(sc->stats_tag, (void **)&sc->stats_block,
3498 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->stats_map)) {
3499 		BCE_PRINTF("%s(%d): Could not allocate statistics block "
3500 		    "DMA memory!\n", __FILE__, __LINE__);
3501 		rc = ENOMEM;
3502 		goto bce_dma_alloc_exit;
3503 	}
3504 
3505 	error = bus_dmamap_load(sc->stats_tag, sc->stats_map,
3506 	    sc->stats_block, BCE_STATS_BLK_SZ, bce_dma_map_addr,
3507 	    &sc->stats_block_paddr, BUS_DMA_NOWAIT);
3508 
3509 	if (error || sc->stats_block_paddr == 0) {
3510 		BCE_PRINTF("%s(%d): Could not map statistics block "
3511 		    "DMA memory!\n", __FILE__, __LINE__);
3512 		rc = ENOMEM;
3513 		goto bce_dma_alloc_exit;
3514 	}
3515 
3516 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): stats_block_paddr = 0x%jX\n",
3517 	    __FUNCTION__, (uintmax_t) sc->stats_block_paddr);
3518 
3519 	/* BCM5709 uses host memory as cache for context memory. */
3520 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
3521 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
3522 		if (sc->ctx_pages == 0)
3523 			sc->ctx_pages = 1;
3524 
3525 		DBRUNIF((sc->ctx_pages > 512),
3526 		    BCE_PRINTF("%s(%d): Too many CTX pages! %d > 512\n",
3527 		    __FILE__, __LINE__, sc->ctx_pages));
3528 
3529 		/*
3530 		 * Create a DMA tag for the context pages,
3531 		 * allocate and clear the memory, map the
3532 		 * memory into DMA space, and fetch the
3533 		 * physical address of the block.
3534 		 */
3535 		if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3536 		    BCE_DMA_BOUNDARY, sc->max_bus_addr,	BUS_SPACE_MAXADDR,
3537 		    NULL, NULL,	BCM_PAGE_SIZE, 1, BCM_PAGE_SIZE,
3538 		    0, NULL, NULL, &sc->ctx_tag)) {
3539 			BCE_PRINTF("%s(%d): Could not allocate CTX "
3540 			    "DMA tag!\n", __FILE__, __LINE__);
3541 			rc = ENOMEM;
3542 			goto bce_dma_alloc_exit;
3543 		}
3544 
3545 		for (i = 0; i < sc->ctx_pages; i++) {
3546 			if(bus_dmamem_alloc(sc->ctx_tag,
3547 			    (void **)&sc->ctx_block[i],
3548 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3549 			    &sc->ctx_map[i])) {
3550 				BCE_PRINTF("%s(%d): Could not allocate CTX "
3551 				    "DMA memory!\n", __FILE__, __LINE__);
3552 				rc = ENOMEM;
3553 				goto bce_dma_alloc_exit;
3554 			}
3555 
3556 			error = bus_dmamap_load(sc->ctx_tag, sc->ctx_map[i],
3557 			    sc->ctx_block[i], BCM_PAGE_SIZE, bce_dma_map_addr,
3558 			    &sc->ctx_paddr[i], BUS_DMA_NOWAIT);
3559 
3560 			if (error || sc->ctx_paddr[i] == 0) {
3561 				BCE_PRINTF("%s(%d): Could not map CTX "
3562 				    "DMA memory!\n", __FILE__, __LINE__);
3563 				rc = ENOMEM;
3564 				goto bce_dma_alloc_exit;
3565 			}
3566 
3567 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): ctx_paddr[%d] "
3568 			    "= 0x%jX\n", __FUNCTION__, i,
3569 			    (uintmax_t) sc->ctx_paddr[i]);
3570 		}
3571 	}
3572 
3573 	/*
3574 	 * Create a DMA tag for the TX buffer descriptor chain,
3575 	 * allocate and clear the  memory, and fetch the
3576 	 * physical address of the block.
3577 	 */
3578 	if(bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE, BCE_DMA_BOUNDARY,
3579 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3580 	    BCE_TX_CHAIN_PAGE_SZ, 1, BCE_TX_CHAIN_PAGE_SZ, 0,
3581 	    NULL, NULL,	&sc->tx_bd_chain_tag)) {
3582 		BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3583 		    "chain DMA tag!\n", __FILE__, __LINE__);
3584 		rc = ENOMEM;
3585 		goto bce_dma_alloc_exit;
3586 	}
3587 
3588 	for (i = 0; i < sc->tx_pages; i++) {
3589 		if(bus_dmamem_alloc(sc->tx_bd_chain_tag,
3590 		    (void **)&sc->tx_bd_chain[i],
3591 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3592 		    &sc->tx_bd_chain_map[i])) {
3593 			BCE_PRINTF("%s(%d): Could not allocate TX descriptor "
3594 			    "chain DMA memory!\n", __FILE__, __LINE__);
3595 			rc = ENOMEM;
3596 			goto bce_dma_alloc_exit;
3597 		}
3598 
3599 		error = bus_dmamap_load(sc->tx_bd_chain_tag,
3600 		    sc->tx_bd_chain_map[i], sc->tx_bd_chain[i],
3601 		    BCE_TX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3602 		    &sc->tx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3603 
3604 		if (error || sc->tx_bd_chain_paddr[i] == 0) {
3605 			BCE_PRINTF("%s(%d): Could not map TX descriptor "
3606 			    "chain DMA memory!\n", __FILE__, __LINE__);
3607 			rc = ENOMEM;
3608 			goto bce_dma_alloc_exit;
3609 		}
3610 
3611 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): tx_bd_chain_paddr[%d] = "
3612 		    "0x%jX\n", __FUNCTION__, i,
3613 		    (uintmax_t) sc->tx_bd_chain_paddr[i]);
3614 	}
3615 
3616 	/* Check the required size before mapping to conserve resources. */
3617 	if (bce_tso_enable) {
3618 		max_size     = BCE_TSO_MAX_SIZE;
3619 		max_segments = BCE_MAX_SEGMENTS;
3620 		max_seg_size = BCE_TSO_MAX_SEG_SIZE;
3621 	} else {
3622 		max_size     = MCLBYTES * BCE_MAX_SEGMENTS;
3623 		max_segments = BCE_MAX_SEGMENTS;
3624 		max_seg_size = MCLBYTES;
3625 	}
3626 
3627 	/* Create a DMA tag for TX mbufs. */
3628 	if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3629 	    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, max_size,
3630 	    max_segments, max_seg_size,	0, NULL, NULL, &sc->tx_mbuf_tag)) {
3631 		BCE_PRINTF("%s(%d): Could not allocate TX mbuf DMA tag!\n",
3632 		    __FILE__, __LINE__);
3633 		rc = ENOMEM;
3634 		goto bce_dma_alloc_exit;
3635 	}
3636 
3637 	/* Create DMA maps for the TX mbufs clusters. */
3638 	for (i = 0; i < TOTAL_TX_BD_ALLOC; i++) {
3639 		if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
3640 			&sc->tx_mbuf_map[i])) {
3641 			BCE_PRINTF("%s(%d): Unable to create TX mbuf DMA "
3642 			    "map!\n", __FILE__, __LINE__);
3643 			rc = ENOMEM;
3644 			goto bce_dma_alloc_exit;
3645 		}
3646 	}
3647 
3648 	/*
3649 	 * Create a DMA tag for the RX buffer descriptor chain,
3650 	 * allocate and clear the memory, and fetch the physical
3651 	 * address of the blocks.
3652 	 */
3653 	if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3654 			BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR,
3655 			sc->max_bus_addr, NULL, NULL,
3656 			BCE_RX_CHAIN_PAGE_SZ, 1, BCE_RX_CHAIN_PAGE_SZ,
3657 			0, NULL, NULL, &sc->rx_bd_chain_tag)) {
3658 		BCE_PRINTF("%s(%d): Could not allocate RX descriptor chain "
3659 		    "DMA tag!\n", __FILE__, __LINE__);
3660 		rc = ENOMEM;
3661 		goto bce_dma_alloc_exit;
3662 	}
3663 
3664 	for (i = 0; i < sc->rx_pages; i++) {
3665 		if (bus_dmamem_alloc(sc->rx_bd_chain_tag,
3666 		    (void **)&sc->rx_bd_chain[i],
3667 		    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3668 		    &sc->rx_bd_chain_map[i])) {
3669 			BCE_PRINTF("%s(%d): Could not allocate RX descriptor "
3670 			    "chain DMA memory!\n", __FILE__, __LINE__);
3671 			rc = ENOMEM;
3672 			goto bce_dma_alloc_exit;
3673 		}
3674 
3675 		error = bus_dmamap_load(sc->rx_bd_chain_tag,
3676 		    sc->rx_bd_chain_map[i], sc->rx_bd_chain[i],
3677 		    BCE_RX_CHAIN_PAGE_SZ, bce_dma_map_addr,
3678 		    &sc->rx_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3679 
3680 		if (error || sc->rx_bd_chain_paddr[i] == 0) {
3681 			BCE_PRINTF("%s(%d): Could not map RX descriptor "
3682 			    "chain DMA memory!\n", __FILE__, __LINE__);
3683 			rc = ENOMEM;
3684 			goto bce_dma_alloc_exit;
3685 		}
3686 
3687 		DBPRINT(sc, BCE_INFO_LOAD, "%s(): rx_bd_chain_paddr[%d] = "
3688 		    "0x%jX\n", __FUNCTION__, i,
3689 		    (uintmax_t) sc->rx_bd_chain_paddr[i]);
3690 	}
3691 
3692 	/*
3693 	 * Create a DMA tag for RX mbufs.
3694 	 */
3695 	if (bce_hdr_split == TRUE)
3696 		max_size = ((sc->rx_bd_mbuf_alloc_size < MCLBYTES) ?
3697 		    MCLBYTES : sc->rx_bd_mbuf_alloc_size);
3698 	else
3699 		max_size = MJUM9BYTES;
3700 
3701 	DBPRINT(sc, BCE_INFO_LOAD, "%s(): Creating rx_mbuf_tag "
3702 	    "(max size = 0x%jX)\n", __FUNCTION__, (uintmax_t)max_size);
3703 
3704 	if (bus_dma_tag_create(sc->parent_tag, BCE_RX_BUF_ALIGN,
3705 	    BCE_DMA_BOUNDARY, sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL,
3706 	    max_size, 1, max_size, 0, NULL, NULL, &sc->rx_mbuf_tag)) {
3707 		BCE_PRINTF("%s(%d): Could not allocate RX mbuf DMA tag!\n",
3708 		    __FILE__, __LINE__);
3709 		rc = ENOMEM;
3710 		goto bce_dma_alloc_exit;
3711 	}
3712 
3713 	/* Create DMA maps for the RX mbuf clusters. */
3714 	for (i = 0; i < TOTAL_RX_BD_ALLOC; i++) {
3715 		if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
3716 		    &sc->rx_mbuf_map[i])) {
3717 			BCE_PRINTF("%s(%d): Unable to create RX mbuf "
3718 			    "DMA map!\n", __FILE__, __LINE__);
3719 			rc = ENOMEM;
3720 			goto bce_dma_alloc_exit;
3721 		}
3722 	}
3723 
3724 	if (bce_hdr_split == TRUE) {
3725 		/*
3726 		 * Create a DMA tag for the page buffer descriptor chain,
3727 		 * allocate and clear the memory, and fetch the physical
3728 		 * address of the blocks.
3729 		 */
3730 		if (bus_dma_tag_create(sc->parent_tag, BCM_PAGE_SIZE,
3731 			    BCE_DMA_BOUNDARY, BUS_SPACE_MAXADDR, sc->max_bus_addr,
3732 			    NULL, NULL,	BCE_PG_CHAIN_PAGE_SZ, 1, BCE_PG_CHAIN_PAGE_SZ,
3733 			    0, NULL, NULL, &sc->pg_bd_chain_tag)) {
3734 			BCE_PRINTF("%s(%d): Could not allocate page descriptor "
3735 			    "chain DMA tag!\n",	__FILE__, __LINE__);
3736 			rc = ENOMEM;
3737 			goto bce_dma_alloc_exit;
3738 		}
3739 
3740 		for (i = 0; i < sc->pg_pages; i++) {
3741 			if (bus_dmamem_alloc(sc->pg_bd_chain_tag,
3742 			    (void **)&sc->pg_bd_chain[i],
3743 			    BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
3744 			    &sc->pg_bd_chain_map[i])) {
3745 				BCE_PRINTF("%s(%d): Could not allocate page "
3746 				    "descriptor chain DMA memory!\n",
3747 				    __FILE__, __LINE__);
3748 				rc = ENOMEM;
3749 				goto bce_dma_alloc_exit;
3750 			}
3751 
3752 			error = bus_dmamap_load(sc->pg_bd_chain_tag,
3753 			    sc->pg_bd_chain_map[i], sc->pg_bd_chain[i],
3754 			    BCE_PG_CHAIN_PAGE_SZ, bce_dma_map_addr,
3755 			    &sc->pg_bd_chain_paddr[i], BUS_DMA_NOWAIT);
3756 
3757 			if (error || sc->pg_bd_chain_paddr[i] == 0) {
3758 				BCE_PRINTF("%s(%d): Could not map page descriptor "
3759 					"chain DMA memory!\n", __FILE__, __LINE__);
3760 				rc = ENOMEM;
3761 				goto bce_dma_alloc_exit;
3762 			}
3763 
3764 			DBPRINT(sc, BCE_INFO_LOAD, "%s(): pg_bd_chain_paddr[%d] = "
3765 				"0x%jX\n", __FUNCTION__, i,
3766 				(uintmax_t) sc->pg_bd_chain_paddr[i]);
3767 		}
3768 
3769 		/*
3770 		 * Create a DMA tag for page mbufs.
3771 		 */
3772 		if (bus_dma_tag_create(sc->parent_tag, 1, BCE_DMA_BOUNDARY,
3773 		    sc->max_bus_addr, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
3774 		    1, MCLBYTES, 0, NULL, NULL, &sc->pg_mbuf_tag)) {
3775 			BCE_PRINTF("%s(%d): Could not allocate page mbuf "
3776 				"DMA tag!\n", __FILE__, __LINE__);
3777 			rc = ENOMEM;
3778 			goto bce_dma_alloc_exit;
3779 		}
3780 
3781 		/* Create DMA maps for the page mbuf clusters. */
3782 		for (i = 0; i < TOTAL_PG_BD_ALLOC; i++) {
3783 			if (bus_dmamap_create(sc->pg_mbuf_tag, BUS_DMA_NOWAIT,
3784 				&sc->pg_mbuf_map[i])) {
3785 				BCE_PRINTF("%s(%d): Unable to create page mbuf "
3786 					"DMA map!\n", __FILE__, __LINE__);
3787 				rc = ENOMEM;
3788 				goto bce_dma_alloc_exit;
3789 			}
3790 		}
3791 	}
3792 
3793 bce_dma_alloc_exit:
3794 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
3795 	return(rc);
3796 }
3797 
3798 /****************************************************************************/
3799 /* Release all resources used by the driver.                                */
3800 /*                                                                          */
3801 /* Releases all resources acquired by the driver including interrupts,      */
3802 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
3803 /*                                                                          */
3804 /* Returns:                                                                 */
3805 /*   Nothing.                                                               */
3806 /****************************************************************************/
3807 static void
bce_release_resources(struct bce_softc * sc)3808 bce_release_resources(struct bce_softc *sc)
3809 {
3810 	device_t dev;
3811 
3812 	DBENTER(BCE_VERBOSE_RESET);
3813 
3814 	dev = sc->bce_dev;
3815 
3816 	bce_dma_free(sc);
3817 
3818 	if (sc->bce_intrhand != NULL) {
3819 		DBPRINT(sc, BCE_INFO_RESET, "Removing interrupt handler.\n");
3820 		bus_teardown_intr(dev, sc->bce_res_irq, sc->bce_intrhand);
3821 	}
3822 
3823 	if (sc->bce_res_irq != NULL) {
3824 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IRQ.\n");
3825 		bus_release_resource(dev, SYS_RES_IRQ,
3826 		    rman_get_rid(sc->bce_res_irq), sc->bce_res_irq);
3827 	}
3828 
3829 	if (sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) {
3830 		DBPRINT(sc, BCE_INFO_RESET, "Releasing MSI/MSI-X vector.\n");
3831 		pci_release_msi(dev);
3832 	}
3833 
3834 	if (sc->bce_res_mem != NULL) {
3835 		DBPRINT(sc, BCE_INFO_RESET, "Releasing PCI memory.\n");
3836 		    bus_release_resource(dev, SYS_RES_MEMORY, PCIR_BAR(0),
3837 		    sc->bce_res_mem);
3838 	}
3839 
3840 	if (sc->bce_ifp != NULL) {
3841 		DBPRINT(sc, BCE_INFO_RESET, "Releasing IF.\n");
3842 		if_free(sc->bce_ifp);
3843 	}
3844 
3845 	if (mtx_initialized(&sc->bce_mtx))
3846 		BCE_LOCK_DESTROY(sc);
3847 
3848 	DBEXIT(BCE_VERBOSE_RESET);
3849 }
3850 
3851 /****************************************************************************/
3852 /* Firmware synchronization.                                                */
3853 /*                                                                          */
3854 /* Before performing certain events such as a chip reset, synchronize with  */
3855 /* the firmware first.                                                      */
3856 /*                                                                          */
3857 /* Returns:                                                                 */
3858 /*   0 for success, positive value for failure.                             */
3859 /****************************************************************************/
3860 static int
bce_fw_sync(struct bce_softc * sc,u32 msg_data)3861 bce_fw_sync(struct bce_softc *sc, u32 msg_data)
3862 {
3863 	int i, rc = 0;
3864 	u32 val;
3865 
3866 	DBENTER(BCE_VERBOSE_RESET);
3867 
3868 	/* Don't waste any time if we've timed out before. */
3869 	if (sc->bce_fw_timed_out == TRUE) {
3870 		rc = EBUSY;
3871 		goto bce_fw_sync_exit;
3872 	}
3873 
3874 	/* Increment the message sequence number. */
3875 	sc->bce_fw_wr_seq++;
3876 	msg_data |= sc->bce_fw_wr_seq;
3877 
3878  	DBPRINT(sc, BCE_VERBOSE_FIRMWARE, "bce_fw_sync(): msg_data = "
3879 	    "0x%08X\n",	msg_data);
3880 
3881 	/* Send the message to the bootcode driver mailbox. */
3882 	bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3883 
3884 	/* Wait for the bootcode to acknowledge the message. */
3885 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
3886 		/* Check for a response in the bootcode firmware mailbox. */
3887 		val = bce_shmem_rd(sc, BCE_FW_MB);
3888 		if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
3889 			break;
3890 		DELAY(1000);
3891 	}
3892 
3893 	/* If we've timed out, tell bootcode that we've stopped waiting. */
3894 	if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
3895 	    ((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
3896 		BCE_PRINTF("%s(%d): Firmware synchronization timeout! "
3897 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
3898 
3899 		msg_data &= ~BCE_DRV_MSG_CODE;
3900 		msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
3901 
3902 		bce_shmem_wr(sc, BCE_DRV_MB, msg_data);
3903 
3904 		sc->bce_fw_timed_out = TRUE;
3905 		rc = EBUSY;
3906 	}
3907 
3908 bce_fw_sync_exit:
3909 	DBEXIT(BCE_VERBOSE_RESET);
3910 	return (rc);
3911 }
3912 
3913 /****************************************************************************/
3914 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
3915 /*                                                                          */
3916 /* Returns:                                                                 */
3917 /*   Nothing.                                                               */
3918 /****************************************************************************/
3919 static void
bce_load_rv2p_fw(struct bce_softc * sc,const u32 * rv2p_code,u32 rv2p_code_len,u32 rv2p_proc)3920 bce_load_rv2p_fw(struct bce_softc *sc, const u32 *rv2p_code,
3921 	u32 rv2p_code_len, u32 rv2p_proc)
3922 {
3923 	int i;
3924 	u32 val;
3925 
3926 	DBENTER(BCE_VERBOSE_RESET);
3927 
3928 	/* Set the page size used by RV2P. */
3929 	if (rv2p_proc == RV2P_PROC2) {
3930 		BCE_RV2P_PROC2_CHG_MAX_BD_PAGE(USABLE_RX_BD_PER_PAGE);
3931 	}
3932 
3933 	for (i = 0; i < rv2p_code_len; i += 8) {
3934 		REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
3935 		rv2p_code++;
3936 		REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
3937 		rv2p_code++;
3938 
3939 		if (rv2p_proc == RV2P_PROC1) {
3940 			val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
3941 			REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
3942 		}
3943 		else {
3944 			val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
3945 			REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
3946 		}
3947 	}
3948 
3949 	/* Reset the processor, un-stall is done later. */
3950 	if (rv2p_proc == RV2P_PROC1) {
3951 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
3952 	}
3953 	else {
3954 		REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
3955 	}
3956 
3957 	DBEXIT(BCE_VERBOSE_RESET);
3958 }
3959 
3960 /****************************************************************************/
3961 /* Load RISC processor firmware.                                            */
3962 /*                                                                          */
3963 /* Loads firmware from the file if_bcefw.h into the scratchpad memory       */
3964 /* associated with a particular processor.                                  */
3965 /*                                                                          */
3966 /* Returns:                                                                 */
3967 /*   Nothing.                                                               */
3968 /****************************************************************************/
3969 static void
bce_load_cpu_fw(struct bce_softc * sc,struct cpu_reg * cpu_reg,struct fw_info * fw)3970 bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
3971 	struct fw_info *fw)
3972 {
3973 	u32 offset;
3974 
3975 	DBENTER(BCE_VERBOSE_RESET);
3976 
3977     bce_halt_cpu(sc, cpu_reg);
3978 
3979 	/* Load the Text area. */
3980 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
3981 	if (fw->text) {
3982 		int j;
3983 
3984 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
3985 			REG_WR_IND(sc, offset, fw->text[j]);
3986 	        }
3987 	}
3988 
3989 	/* Load the Data area. */
3990 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
3991 	if (fw->data) {
3992 		int j;
3993 
3994 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
3995 			REG_WR_IND(sc, offset, fw->data[j]);
3996 		}
3997 	}
3998 
3999 	/* Load the SBSS area. */
4000 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
4001 	if (fw->sbss) {
4002 		int j;
4003 
4004 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
4005 			REG_WR_IND(sc, offset, fw->sbss[j]);
4006 		}
4007 	}
4008 
4009 	/* Load the BSS area. */
4010 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
4011 	if (fw->bss) {
4012 		int j;
4013 
4014 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
4015 			REG_WR_IND(sc, offset, fw->bss[j]);
4016 		}
4017 	}
4018 
4019 	/* Load the Read-Only area. */
4020 	offset = cpu_reg->spad_base +
4021 		(fw->rodata_addr - cpu_reg->mips_view_base);
4022 	if (fw->rodata) {
4023 		int j;
4024 
4025 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
4026 			REG_WR_IND(sc, offset, fw->rodata[j]);
4027 		}
4028 	}
4029 
4030 	/* Clear the pre-fetch instruction and set the FW start address. */
4031 	REG_WR_IND(sc, cpu_reg->inst, 0);
4032 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
4033 
4034 	DBEXIT(BCE_VERBOSE_RESET);
4035 }
4036 
4037 /****************************************************************************/
4038 /* Starts the RISC processor.                                               */
4039 /*                                                                          */
4040 /* Assumes the CPU starting address has already been set.                   */
4041 /*                                                                          */
4042 /* Returns:                                                                 */
4043 /*   Nothing.                                                               */
4044 /****************************************************************************/
4045 static void
bce_start_cpu(struct bce_softc * sc,struct cpu_reg * cpu_reg)4046 bce_start_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4047 {
4048 	u32 val;
4049 
4050 	DBENTER(BCE_VERBOSE_RESET);
4051 
4052 	/* Start the CPU. */
4053 	val = REG_RD_IND(sc, cpu_reg->mode);
4054 	val &= ~cpu_reg->mode_value_halt;
4055 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4056 	REG_WR_IND(sc, cpu_reg->mode, val);
4057 
4058 	DBEXIT(BCE_VERBOSE_RESET);
4059 }
4060 
4061 /****************************************************************************/
4062 /* Halts the RISC processor.                                                */
4063 /*                                                                          */
4064 /* Returns:                                                                 */
4065 /*   Nothing.                                                               */
4066 /****************************************************************************/
4067 static void
bce_halt_cpu(struct bce_softc * sc,struct cpu_reg * cpu_reg)4068 bce_halt_cpu(struct bce_softc *sc, struct cpu_reg *cpu_reg)
4069 {
4070 	u32 val;
4071 
4072 	DBENTER(BCE_VERBOSE_RESET);
4073 
4074 	/* Halt the CPU. */
4075 	val = REG_RD_IND(sc, cpu_reg->mode);
4076 	val |= cpu_reg->mode_value_halt;
4077 	REG_WR_IND(sc, cpu_reg->mode, val);
4078 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
4079 
4080 	DBEXIT(BCE_VERBOSE_RESET);
4081 }
4082 
4083 /****************************************************************************/
4084 /* Initialize the RX CPU.                                                   */
4085 /*                                                                          */
4086 /* Returns:                                                                 */
4087 /*   Nothing.                                                               */
4088 /****************************************************************************/
4089 static void
bce_start_rxp_cpu(struct bce_softc * sc)4090 bce_start_rxp_cpu(struct bce_softc *sc)
4091 {
4092 	struct cpu_reg cpu_reg;
4093 
4094 	DBENTER(BCE_VERBOSE_RESET);
4095 
4096 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4097 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4098 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4099 	cpu_reg.state = BCE_RXP_CPU_STATE;
4100 	cpu_reg.state_value_clear = 0xffffff;
4101 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4102 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4103 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4104 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4105 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4106 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4107 	cpu_reg.mips_view_base = 0x8000000;
4108 
4109 	DBPRINT(sc, BCE_INFO_RESET, "Starting RX firmware.\n");
4110 	bce_start_cpu(sc, &cpu_reg);
4111 
4112 	DBEXIT(BCE_VERBOSE_RESET);
4113 }
4114 
4115 /****************************************************************************/
4116 /* Initialize the RX CPU.                                                   */
4117 /*                                                                          */
4118 /* Returns:                                                                 */
4119 /*   Nothing.                                                               */
4120 /****************************************************************************/
4121 static void
bce_init_rxp_cpu(struct bce_softc * sc)4122 bce_init_rxp_cpu(struct bce_softc *sc)
4123 {
4124 	struct cpu_reg cpu_reg;
4125 	struct fw_info fw;
4126 
4127 	DBENTER(BCE_VERBOSE_RESET);
4128 
4129 	cpu_reg.mode = BCE_RXP_CPU_MODE;
4130 	cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
4131 	cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
4132 	cpu_reg.state = BCE_RXP_CPU_STATE;
4133 	cpu_reg.state_value_clear = 0xffffff;
4134 	cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
4135 	cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
4136 	cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
4137 	cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
4138 	cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
4139 	cpu_reg.spad_base = BCE_RXP_SCRATCH;
4140 	cpu_reg.mips_view_base = 0x8000000;
4141 
4142 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4143  		fw.ver_major = bce_RXP_b09FwReleaseMajor;
4144 		fw.ver_minor = bce_RXP_b09FwReleaseMinor;
4145 		fw.ver_fix = bce_RXP_b09FwReleaseFix;
4146 		fw.start_addr = bce_RXP_b09FwStartAddr;
4147 
4148 		fw.text_addr = bce_RXP_b09FwTextAddr;
4149 		fw.text_len = bce_RXP_b09FwTextLen;
4150 		fw.text_index = 0;
4151 		fw.text = bce_RXP_b09FwText;
4152 
4153 		fw.data_addr = bce_RXP_b09FwDataAddr;
4154 		fw.data_len = bce_RXP_b09FwDataLen;
4155 		fw.data_index = 0;
4156 		fw.data = bce_RXP_b09FwData;
4157 
4158 		fw.sbss_addr = bce_RXP_b09FwSbssAddr;
4159 		fw.sbss_len = bce_RXP_b09FwSbssLen;
4160 		fw.sbss_index = 0;
4161 		fw.sbss = bce_RXP_b09FwSbss;
4162 
4163 		fw.bss_addr = bce_RXP_b09FwBssAddr;
4164 		fw.bss_len = bce_RXP_b09FwBssLen;
4165 		fw.bss_index = 0;
4166 		fw.bss = bce_RXP_b09FwBss;
4167 
4168 		fw.rodata_addr = bce_RXP_b09FwRodataAddr;
4169 		fw.rodata_len = bce_RXP_b09FwRodataLen;
4170 		fw.rodata_index = 0;
4171 		fw.rodata = bce_RXP_b09FwRodata;
4172 	} else {
4173 		fw.ver_major = bce_RXP_b06FwReleaseMajor;
4174 		fw.ver_minor = bce_RXP_b06FwReleaseMinor;
4175 		fw.ver_fix = bce_RXP_b06FwReleaseFix;
4176 		fw.start_addr = bce_RXP_b06FwStartAddr;
4177 
4178 		fw.text_addr = bce_RXP_b06FwTextAddr;
4179 		fw.text_len = bce_RXP_b06FwTextLen;
4180 		fw.text_index = 0;
4181 		fw.text = bce_RXP_b06FwText;
4182 
4183 		fw.data_addr = bce_RXP_b06FwDataAddr;
4184 		fw.data_len = bce_RXP_b06FwDataLen;
4185 		fw.data_index = 0;
4186 		fw.data = bce_RXP_b06FwData;
4187 
4188 		fw.sbss_addr = bce_RXP_b06FwSbssAddr;
4189 		fw.sbss_len = bce_RXP_b06FwSbssLen;
4190 		fw.sbss_index = 0;
4191 		fw.sbss = bce_RXP_b06FwSbss;
4192 
4193 		fw.bss_addr = bce_RXP_b06FwBssAddr;
4194 		fw.bss_len = bce_RXP_b06FwBssLen;
4195 		fw.bss_index = 0;
4196 		fw.bss = bce_RXP_b06FwBss;
4197 
4198 		fw.rodata_addr = bce_RXP_b06FwRodataAddr;
4199 		fw.rodata_len = bce_RXP_b06FwRodataLen;
4200 		fw.rodata_index = 0;
4201 		fw.rodata = bce_RXP_b06FwRodata;
4202 	}
4203 
4204 	DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
4205 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4206 
4207     /* Delay RXP start until initialization is complete. */
4208 
4209 	DBEXIT(BCE_VERBOSE_RESET);
4210 }
4211 
4212 /****************************************************************************/
4213 /* Initialize the TX CPU.                                                   */
4214 /*                                                                          */
4215 /* Returns:                                                                 */
4216 /*   Nothing.                                                               */
4217 /****************************************************************************/
4218 static void
bce_init_txp_cpu(struct bce_softc * sc)4219 bce_init_txp_cpu(struct bce_softc *sc)
4220 {
4221 	struct cpu_reg cpu_reg;
4222 	struct fw_info fw;
4223 
4224 	DBENTER(BCE_VERBOSE_RESET);
4225 
4226 	cpu_reg.mode = BCE_TXP_CPU_MODE;
4227 	cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
4228 	cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
4229 	cpu_reg.state = BCE_TXP_CPU_STATE;
4230 	cpu_reg.state_value_clear = 0xffffff;
4231 	cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
4232 	cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
4233 	cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
4234 	cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
4235 	cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
4236 	cpu_reg.spad_base = BCE_TXP_SCRATCH;
4237 	cpu_reg.mips_view_base = 0x8000000;
4238 
4239 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4240 		fw.ver_major = bce_TXP_b09FwReleaseMajor;
4241 		fw.ver_minor = bce_TXP_b09FwReleaseMinor;
4242 		fw.ver_fix = bce_TXP_b09FwReleaseFix;
4243 		fw.start_addr = bce_TXP_b09FwStartAddr;
4244 
4245 		fw.text_addr = bce_TXP_b09FwTextAddr;
4246 		fw.text_len = bce_TXP_b09FwTextLen;
4247 		fw.text_index = 0;
4248 		fw.text = bce_TXP_b09FwText;
4249 
4250 		fw.data_addr = bce_TXP_b09FwDataAddr;
4251 		fw.data_len = bce_TXP_b09FwDataLen;
4252 		fw.data_index = 0;
4253 		fw.data = bce_TXP_b09FwData;
4254 
4255 		fw.sbss_addr = bce_TXP_b09FwSbssAddr;
4256 		fw.sbss_len = bce_TXP_b09FwSbssLen;
4257 		fw.sbss_index = 0;
4258 		fw.sbss = bce_TXP_b09FwSbss;
4259 
4260 		fw.bss_addr = bce_TXP_b09FwBssAddr;
4261 		fw.bss_len = bce_TXP_b09FwBssLen;
4262 		fw.bss_index = 0;
4263 		fw.bss = bce_TXP_b09FwBss;
4264 
4265 		fw.rodata_addr = bce_TXP_b09FwRodataAddr;
4266 		fw.rodata_len = bce_TXP_b09FwRodataLen;
4267 		fw.rodata_index = 0;
4268 		fw.rodata = bce_TXP_b09FwRodata;
4269 	} else {
4270 		fw.ver_major = bce_TXP_b06FwReleaseMajor;
4271 		fw.ver_minor = bce_TXP_b06FwReleaseMinor;
4272 		fw.ver_fix = bce_TXP_b06FwReleaseFix;
4273 		fw.start_addr = bce_TXP_b06FwStartAddr;
4274 
4275 		fw.text_addr = bce_TXP_b06FwTextAddr;
4276 		fw.text_len = bce_TXP_b06FwTextLen;
4277 		fw.text_index = 0;
4278 		fw.text = bce_TXP_b06FwText;
4279 
4280 		fw.data_addr = bce_TXP_b06FwDataAddr;
4281 		fw.data_len = bce_TXP_b06FwDataLen;
4282 		fw.data_index = 0;
4283 		fw.data = bce_TXP_b06FwData;
4284 
4285 		fw.sbss_addr = bce_TXP_b06FwSbssAddr;
4286 		fw.sbss_len = bce_TXP_b06FwSbssLen;
4287 		fw.sbss_index = 0;
4288 		fw.sbss = bce_TXP_b06FwSbss;
4289 
4290 		fw.bss_addr = bce_TXP_b06FwBssAddr;
4291 		fw.bss_len = bce_TXP_b06FwBssLen;
4292 		fw.bss_index = 0;
4293 		fw.bss = bce_TXP_b06FwBss;
4294 
4295 		fw.rodata_addr = bce_TXP_b06FwRodataAddr;
4296 		fw.rodata_len = bce_TXP_b06FwRodataLen;
4297 		fw.rodata_index = 0;
4298 		fw.rodata = bce_TXP_b06FwRodata;
4299 	}
4300 
4301 	DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
4302 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4303     bce_start_cpu(sc, &cpu_reg);
4304 
4305 	DBEXIT(BCE_VERBOSE_RESET);
4306 }
4307 
4308 /****************************************************************************/
4309 /* Initialize the TPAT CPU.                                                 */
4310 /*                                                                          */
4311 /* Returns:                                                                 */
4312 /*   Nothing.                                                               */
4313 /****************************************************************************/
4314 static void
bce_init_tpat_cpu(struct bce_softc * sc)4315 bce_init_tpat_cpu(struct bce_softc *sc)
4316 {
4317 	struct cpu_reg cpu_reg;
4318 	struct fw_info fw;
4319 
4320 	DBENTER(BCE_VERBOSE_RESET);
4321 
4322 	cpu_reg.mode = BCE_TPAT_CPU_MODE;
4323 	cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
4324 	cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
4325 	cpu_reg.state = BCE_TPAT_CPU_STATE;
4326 	cpu_reg.state_value_clear = 0xffffff;
4327 	cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
4328 	cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
4329 	cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
4330 	cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
4331 	cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
4332 	cpu_reg.spad_base = BCE_TPAT_SCRATCH;
4333 	cpu_reg.mips_view_base = 0x8000000;
4334 
4335 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4336 		fw.ver_major = bce_TPAT_b09FwReleaseMajor;
4337 		fw.ver_minor = bce_TPAT_b09FwReleaseMinor;
4338 		fw.ver_fix = bce_TPAT_b09FwReleaseFix;
4339 		fw.start_addr = bce_TPAT_b09FwStartAddr;
4340 
4341 		fw.text_addr = bce_TPAT_b09FwTextAddr;
4342 		fw.text_len = bce_TPAT_b09FwTextLen;
4343 		fw.text_index = 0;
4344 		fw.text = bce_TPAT_b09FwText;
4345 
4346 		fw.data_addr = bce_TPAT_b09FwDataAddr;
4347 		fw.data_len = bce_TPAT_b09FwDataLen;
4348 		fw.data_index = 0;
4349 		fw.data = bce_TPAT_b09FwData;
4350 
4351 		fw.sbss_addr = bce_TPAT_b09FwSbssAddr;
4352 		fw.sbss_len = bce_TPAT_b09FwSbssLen;
4353 		fw.sbss_index = 0;
4354 		fw.sbss = bce_TPAT_b09FwSbss;
4355 
4356 		fw.bss_addr = bce_TPAT_b09FwBssAddr;
4357 		fw.bss_len = bce_TPAT_b09FwBssLen;
4358 		fw.bss_index = 0;
4359 		fw.bss = bce_TPAT_b09FwBss;
4360 
4361 		fw.rodata_addr = bce_TPAT_b09FwRodataAddr;
4362 		fw.rodata_len = bce_TPAT_b09FwRodataLen;
4363 		fw.rodata_index = 0;
4364 		fw.rodata = bce_TPAT_b09FwRodata;
4365 	} else {
4366 		fw.ver_major = bce_TPAT_b06FwReleaseMajor;
4367 		fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
4368 		fw.ver_fix = bce_TPAT_b06FwReleaseFix;
4369 		fw.start_addr = bce_TPAT_b06FwStartAddr;
4370 
4371 		fw.text_addr = bce_TPAT_b06FwTextAddr;
4372 		fw.text_len = bce_TPAT_b06FwTextLen;
4373 		fw.text_index = 0;
4374 		fw.text = bce_TPAT_b06FwText;
4375 
4376 		fw.data_addr = bce_TPAT_b06FwDataAddr;
4377 		fw.data_len = bce_TPAT_b06FwDataLen;
4378 		fw.data_index = 0;
4379 		fw.data = bce_TPAT_b06FwData;
4380 
4381 		fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
4382 		fw.sbss_len = bce_TPAT_b06FwSbssLen;
4383 		fw.sbss_index = 0;
4384 		fw.sbss = bce_TPAT_b06FwSbss;
4385 
4386 		fw.bss_addr = bce_TPAT_b06FwBssAddr;
4387 		fw.bss_len = bce_TPAT_b06FwBssLen;
4388 		fw.bss_index = 0;
4389 		fw.bss = bce_TPAT_b06FwBss;
4390 
4391 		fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
4392 		fw.rodata_len = bce_TPAT_b06FwRodataLen;
4393 		fw.rodata_index = 0;
4394 		fw.rodata = bce_TPAT_b06FwRodata;
4395 	}
4396 
4397 	DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
4398 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4399 	bce_start_cpu(sc, &cpu_reg);
4400 
4401 	DBEXIT(BCE_VERBOSE_RESET);
4402 }
4403 
4404 /****************************************************************************/
4405 /* Initialize the CP CPU.                                                   */
4406 /*                                                                          */
4407 /* Returns:                                                                 */
4408 /*   Nothing.                                                               */
4409 /****************************************************************************/
4410 static void
bce_init_cp_cpu(struct bce_softc * sc)4411 bce_init_cp_cpu(struct bce_softc *sc)
4412 {
4413 	struct cpu_reg cpu_reg;
4414 	struct fw_info fw;
4415 
4416 	DBENTER(BCE_VERBOSE_RESET);
4417 
4418 	cpu_reg.mode = BCE_CP_CPU_MODE;
4419 	cpu_reg.mode_value_halt = BCE_CP_CPU_MODE_SOFT_HALT;
4420 	cpu_reg.mode_value_sstep = BCE_CP_CPU_MODE_STEP_ENA;
4421 	cpu_reg.state = BCE_CP_CPU_STATE;
4422 	cpu_reg.state_value_clear = 0xffffff;
4423 	cpu_reg.gpr0 = BCE_CP_CPU_REG_FILE;
4424 	cpu_reg.evmask = BCE_CP_CPU_EVENT_MASK;
4425 	cpu_reg.pc = BCE_CP_CPU_PROGRAM_COUNTER;
4426 	cpu_reg.inst = BCE_CP_CPU_INSTRUCTION;
4427 	cpu_reg.bp = BCE_CP_CPU_HW_BREAKPOINT;
4428 	cpu_reg.spad_base = BCE_CP_SCRATCH;
4429 	cpu_reg.mips_view_base = 0x8000000;
4430 
4431 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4432 		fw.ver_major = bce_CP_b09FwReleaseMajor;
4433 		fw.ver_minor = bce_CP_b09FwReleaseMinor;
4434 		fw.ver_fix = bce_CP_b09FwReleaseFix;
4435 		fw.start_addr = bce_CP_b09FwStartAddr;
4436 
4437 		fw.text_addr = bce_CP_b09FwTextAddr;
4438 		fw.text_len = bce_CP_b09FwTextLen;
4439 		fw.text_index = 0;
4440 		fw.text = bce_CP_b09FwText;
4441 
4442 		fw.data_addr = bce_CP_b09FwDataAddr;
4443 		fw.data_len = bce_CP_b09FwDataLen;
4444 		fw.data_index = 0;
4445 		fw.data = bce_CP_b09FwData;
4446 
4447 		fw.sbss_addr = bce_CP_b09FwSbssAddr;
4448 		fw.sbss_len = bce_CP_b09FwSbssLen;
4449 		fw.sbss_index = 0;
4450 		fw.sbss = bce_CP_b09FwSbss;
4451 
4452 		fw.bss_addr = bce_CP_b09FwBssAddr;
4453 		fw.bss_len = bce_CP_b09FwBssLen;
4454 		fw.bss_index = 0;
4455 		fw.bss = bce_CP_b09FwBss;
4456 
4457 		fw.rodata_addr = bce_CP_b09FwRodataAddr;
4458 		fw.rodata_len = bce_CP_b09FwRodataLen;
4459 		fw.rodata_index = 0;
4460 		fw.rodata = bce_CP_b09FwRodata;
4461 	} else {
4462 		fw.ver_major = bce_CP_b06FwReleaseMajor;
4463 		fw.ver_minor = bce_CP_b06FwReleaseMinor;
4464 		fw.ver_fix = bce_CP_b06FwReleaseFix;
4465 		fw.start_addr = bce_CP_b06FwStartAddr;
4466 
4467 		fw.text_addr = bce_CP_b06FwTextAddr;
4468 		fw.text_len = bce_CP_b06FwTextLen;
4469 		fw.text_index = 0;
4470 		fw.text = bce_CP_b06FwText;
4471 
4472 		fw.data_addr = bce_CP_b06FwDataAddr;
4473 		fw.data_len = bce_CP_b06FwDataLen;
4474 		fw.data_index = 0;
4475 		fw.data = bce_CP_b06FwData;
4476 
4477 		fw.sbss_addr = bce_CP_b06FwSbssAddr;
4478 		fw.sbss_len = bce_CP_b06FwSbssLen;
4479 		fw.sbss_index = 0;
4480 		fw.sbss = bce_CP_b06FwSbss;
4481 
4482 		fw.bss_addr = bce_CP_b06FwBssAddr;
4483 		fw.bss_len = bce_CP_b06FwBssLen;
4484 		fw.bss_index = 0;
4485 		fw.bss = bce_CP_b06FwBss;
4486 
4487 		fw.rodata_addr = bce_CP_b06FwRodataAddr;
4488 		fw.rodata_len = bce_CP_b06FwRodataLen;
4489 		fw.rodata_index = 0;
4490 		fw.rodata = bce_CP_b06FwRodata;
4491 	}
4492 
4493 	DBPRINT(sc, BCE_INFO_RESET, "Loading CP firmware.\n");
4494 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4495 	bce_start_cpu(sc, &cpu_reg);
4496 
4497 	DBEXIT(BCE_VERBOSE_RESET);
4498 }
4499 
4500 /****************************************************************************/
4501 /* Initialize the COM CPU.                                                 */
4502 /*                                                                          */
4503 /* Returns:                                                                 */
4504 /*   Nothing.                                                               */
4505 /****************************************************************************/
4506 static void
bce_init_com_cpu(struct bce_softc * sc)4507 bce_init_com_cpu(struct bce_softc *sc)
4508 {
4509 	struct cpu_reg cpu_reg;
4510 	struct fw_info fw;
4511 
4512 	DBENTER(BCE_VERBOSE_RESET);
4513 
4514 	cpu_reg.mode = BCE_COM_CPU_MODE;
4515 	cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
4516 	cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
4517 	cpu_reg.state = BCE_COM_CPU_STATE;
4518 	cpu_reg.state_value_clear = 0xffffff;
4519 	cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
4520 	cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
4521 	cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
4522 	cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
4523 	cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
4524 	cpu_reg.spad_base = BCE_COM_SCRATCH;
4525 	cpu_reg.mips_view_base = 0x8000000;
4526 
4527 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4528 		fw.ver_major = bce_COM_b09FwReleaseMajor;
4529 		fw.ver_minor = bce_COM_b09FwReleaseMinor;
4530 		fw.ver_fix = bce_COM_b09FwReleaseFix;
4531 		fw.start_addr = bce_COM_b09FwStartAddr;
4532 
4533 		fw.text_addr = bce_COM_b09FwTextAddr;
4534 		fw.text_len = bce_COM_b09FwTextLen;
4535 		fw.text_index = 0;
4536 		fw.text = bce_COM_b09FwText;
4537 
4538 		fw.data_addr = bce_COM_b09FwDataAddr;
4539 		fw.data_len = bce_COM_b09FwDataLen;
4540 		fw.data_index = 0;
4541 		fw.data = bce_COM_b09FwData;
4542 
4543 		fw.sbss_addr = bce_COM_b09FwSbssAddr;
4544 		fw.sbss_len = bce_COM_b09FwSbssLen;
4545 		fw.sbss_index = 0;
4546 		fw.sbss = bce_COM_b09FwSbss;
4547 
4548 		fw.bss_addr = bce_COM_b09FwBssAddr;
4549 		fw.bss_len = bce_COM_b09FwBssLen;
4550 		fw.bss_index = 0;
4551 		fw.bss = bce_COM_b09FwBss;
4552 
4553 		fw.rodata_addr = bce_COM_b09FwRodataAddr;
4554 		fw.rodata_len = bce_COM_b09FwRodataLen;
4555 		fw.rodata_index = 0;
4556 		fw.rodata = bce_COM_b09FwRodata;
4557 	} else {
4558 		fw.ver_major = bce_COM_b06FwReleaseMajor;
4559 		fw.ver_minor = bce_COM_b06FwReleaseMinor;
4560 		fw.ver_fix = bce_COM_b06FwReleaseFix;
4561 		fw.start_addr = bce_COM_b06FwStartAddr;
4562 
4563 		fw.text_addr = bce_COM_b06FwTextAddr;
4564 		fw.text_len = bce_COM_b06FwTextLen;
4565 		fw.text_index = 0;
4566 		fw.text = bce_COM_b06FwText;
4567 
4568 		fw.data_addr = bce_COM_b06FwDataAddr;
4569 		fw.data_len = bce_COM_b06FwDataLen;
4570 		fw.data_index = 0;
4571 		fw.data = bce_COM_b06FwData;
4572 
4573 		fw.sbss_addr = bce_COM_b06FwSbssAddr;
4574 		fw.sbss_len = bce_COM_b06FwSbssLen;
4575 		fw.sbss_index = 0;
4576 		fw.sbss = bce_COM_b06FwSbss;
4577 
4578 		fw.bss_addr = bce_COM_b06FwBssAddr;
4579 		fw.bss_len = bce_COM_b06FwBssLen;
4580 		fw.bss_index = 0;
4581 		fw.bss = bce_COM_b06FwBss;
4582 
4583 		fw.rodata_addr = bce_COM_b06FwRodataAddr;
4584 		fw.rodata_len = bce_COM_b06FwRodataLen;
4585 		fw.rodata_index = 0;
4586 		fw.rodata = bce_COM_b06FwRodata;
4587 	}
4588 
4589 	DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
4590 	bce_load_cpu_fw(sc, &cpu_reg, &fw);
4591 	bce_start_cpu(sc, &cpu_reg);
4592 
4593 	DBEXIT(BCE_VERBOSE_RESET);
4594 }
4595 
4596 /****************************************************************************/
4597 /* Initialize the RV2P, RX, TX, TPAT, COM, and CP CPUs.                     */
4598 /*                                                                          */
4599 /* Loads the firmware for each CPU and starts the CPU.                      */
4600 /*                                                                          */
4601 /* Returns:                                                                 */
4602 /*   Nothing.                                                               */
4603 /****************************************************************************/
4604 static void
bce_init_cpus(struct bce_softc * sc)4605 bce_init_cpus(struct bce_softc *sc)
4606 {
4607 	DBENTER(BCE_VERBOSE_RESET);
4608 
4609 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4610 		if ((BCE_CHIP_REV(sc) == BCE_CHIP_REV_Ax)) {
4611 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc1,
4612 			    sizeof(bce_xi90_rv2p_proc1), RV2P_PROC1);
4613 			bce_load_rv2p_fw(sc, bce_xi90_rv2p_proc2,
4614 			    sizeof(bce_xi90_rv2p_proc2), RV2P_PROC2);
4615 		} else {
4616 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc1,
4617 			    sizeof(bce_xi_rv2p_proc1), RV2P_PROC1);
4618 			bce_load_rv2p_fw(sc, bce_xi_rv2p_proc2,
4619 			    sizeof(bce_xi_rv2p_proc2), RV2P_PROC2);
4620 		}
4621 
4622 	} else {
4623 		bce_load_rv2p_fw(sc, bce_rv2p_proc1,
4624 		    sizeof(bce_rv2p_proc1), RV2P_PROC1);
4625 		bce_load_rv2p_fw(sc, bce_rv2p_proc2,
4626 		    sizeof(bce_rv2p_proc2), RV2P_PROC2);
4627 	}
4628 
4629 	bce_init_rxp_cpu(sc);
4630 	bce_init_txp_cpu(sc);
4631 	bce_init_tpat_cpu(sc);
4632 	bce_init_com_cpu(sc);
4633 	bce_init_cp_cpu(sc);
4634 
4635 	DBEXIT(BCE_VERBOSE_RESET);
4636 }
4637 
4638 /****************************************************************************/
4639 /* Initialize context memory.                                               */
4640 /*                                                                          */
4641 /* Clears the memory associated with each Context ID (CID).                 */
4642 /*                                                                          */
4643 /* Returns:                                                                 */
4644 /*   Nothing.                                                               */
4645 /****************************************************************************/
4646 static int
bce_init_ctx(struct bce_softc * sc)4647 bce_init_ctx(struct bce_softc *sc)
4648 {
4649 	u32 offset, val, vcid_addr;
4650 	int i, j, rc, retry_cnt;
4651 
4652 	rc = 0;
4653 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4654 
4655 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4656 		retry_cnt = CTX_INIT_RETRY_COUNT;
4657 
4658 		DBPRINT(sc, BCE_INFO_CTX, "Initializing 5709 context.\n");
4659 
4660 		/*
4661 		 * BCM5709 context memory may be cached
4662 		 * in host memory so prepare the host memory
4663 		 * for access.
4664 		 */
4665 		val = BCE_CTX_COMMAND_ENABLED |
4666 		    BCE_CTX_COMMAND_MEM_INIT | (1 << 12);
4667 		val |= (BCM_PAGE_BITS - 8) << 16;
4668 		REG_WR(sc, BCE_CTX_COMMAND, val);
4669 
4670 		/* Wait for mem init command to complete. */
4671 		for (i = 0; i < retry_cnt; i++) {
4672 			val = REG_RD(sc, BCE_CTX_COMMAND);
4673 			if (!(val & BCE_CTX_COMMAND_MEM_INIT))
4674 				break;
4675 			DELAY(2);
4676 		}
4677 		if ((val & BCE_CTX_COMMAND_MEM_INIT) != 0) {
4678 			BCE_PRINTF("%s(): Context memory initialization failed!\n",
4679 			    __FUNCTION__);
4680 			rc = EBUSY;
4681 			goto init_ctx_fail;
4682 		}
4683 
4684 		for (i = 0; i < sc->ctx_pages; i++) {
4685 			/* Set the physical address of the context memory. */
4686 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA0,
4687 			    BCE_ADDR_LO(sc->ctx_paddr[i] & 0xfffffff0) |
4688 			    BCE_CTX_HOST_PAGE_TBL_DATA0_VALID);
4689 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_DATA1,
4690 			    BCE_ADDR_HI(sc->ctx_paddr[i]));
4691 			REG_WR(sc, BCE_CTX_HOST_PAGE_TBL_CTRL, i |
4692 			    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
4693 
4694 			/* Verify the context memory write was successful. */
4695 			for (j = 0; j < retry_cnt; j++) {
4696 				val = REG_RD(sc, BCE_CTX_HOST_PAGE_TBL_CTRL);
4697 				if ((val &
4698 				    BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
4699 					break;
4700 				DELAY(5);
4701 			}
4702 			if ((val & BCE_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) != 0) {
4703 				BCE_PRINTF("%s(): Failed to initialize "
4704 				    "context page %d!\n", __FUNCTION__, i);
4705 				rc = EBUSY;
4706 				goto init_ctx_fail;
4707 			}
4708 		}
4709 	} else {
4710 		DBPRINT(sc, BCE_INFO, "Initializing 5706/5708 context.\n");
4711 
4712 		/*
4713 		 * For the 5706/5708, context memory is local to
4714 		 * the controller, so initialize the controller
4715 		 * context memory.
4716 		 */
4717 
4718 		vcid_addr = GET_CID_ADDR(96);
4719 		while (vcid_addr) {
4720 			vcid_addr -= PHY_CTX_SIZE;
4721 
4722 			REG_WR(sc, BCE_CTX_VIRT_ADDR, 0);
4723 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4724 
4725 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
4726 				CTX_WR(sc, 0x00, offset, 0);
4727 			}
4728 
4729 			REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
4730 			REG_WR(sc, BCE_CTX_PAGE_TBL, vcid_addr);
4731 		}
4732 	}
4733 init_ctx_fail:
4734 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_CTX);
4735 	return (rc);
4736 }
4737 
4738 /****************************************************************************/
4739 /* Fetch the permanent MAC address of the controller.                       */
4740 /*                                                                          */
4741 /* Returns:                                                                 */
4742 /*   Nothing.                                                               */
4743 /****************************************************************************/
4744 static void
bce_get_mac_addr(struct bce_softc * sc)4745 bce_get_mac_addr(struct bce_softc *sc)
4746 {
4747 	u32 mac_lo = 0, mac_hi = 0;
4748 
4749 	DBENTER(BCE_VERBOSE_RESET);
4750 
4751 	/*
4752 	 * The NetXtreme II bootcode populates various NIC
4753 	 * power-on and runtime configuration items in a
4754 	 * shared memory area.  The factory configured MAC
4755 	 * address is available from both NVRAM and the
4756 	 * shared memory area so we'll read the value from
4757 	 * shared memory for speed.
4758 	 */
4759 
4760 	mac_hi = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_UPPER);
4761 	mac_lo = bce_shmem_rd(sc, BCE_PORT_HW_CFG_MAC_LOWER);
4762 
4763 	if ((mac_lo == 0) && (mac_hi == 0)) {
4764 		BCE_PRINTF("%s(%d): Invalid Ethernet address!\n",
4765 		    __FILE__, __LINE__);
4766 	} else {
4767 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
4768 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
4769 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
4770 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
4771 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
4772 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
4773 	}
4774 
4775 	DBPRINT(sc, BCE_INFO_MISC, "Permanent Ethernet "
4776 	    "address = %6D\n", sc->eaddr, ":");
4777 	DBEXIT(BCE_VERBOSE_RESET);
4778 }
4779 
4780 /****************************************************************************/
4781 /* Program the MAC address.                                                 */
4782 /*                                                                          */
4783 /* Returns:                                                                 */
4784 /*   Nothing.                                                               */
4785 /****************************************************************************/
4786 static void
bce_set_mac_addr(struct bce_softc * sc)4787 bce_set_mac_addr(struct bce_softc *sc)
4788 {
4789 	u32 val;
4790 	u8 *mac_addr = sc->eaddr;
4791 
4792 	/* ToDo: Add support for setting multiple MAC addresses. */
4793 
4794 	DBENTER(BCE_VERBOSE_RESET);
4795 	DBPRINT(sc, BCE_INFO_MISC, "Setting Ethernet address = "
4796 	    "%6D\n", sc->eaddr, ":");
4797 
4798 	val = (mac_addr[0] << 8) | mac_addr[1];
4799 
4800 	REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
4801 
4802 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
4803 	    (mac_addr[4] << 8) | mac_addr[5];
4804 
4805 	REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
4806 
4807 	DBEXIT(BCE_VERBOSE_RESET);
4808 }
4809 
4810 /****************************************************************************/
4811 /* Stop the controller.                                                     */
4812 /*                                                                          */
4813 /* Returns:                                                                 */
4814 /*   Nothing.                                                               */
4815 /****************************************************************************/
4816 static void
bce_stop(struct bce_softc * sc)4817 bce_stop(struct bce_softc *sc)
4818 {
4819 	if_t ifp;
4820 
4821 	DBENTER(BCE_VERBOSE_RESET);
4822 
4823 	BCE_LOCK_ASSERT(sc);
4824 
4825 	ifp = sc->bce_ifp;
4826 
4827 	callout_stop(&sc->bce_tick_callout);
4828 
4829 	/* Disable the transmit/receive blocks. */
4830 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, BCE_MISC_ENABLE_CLR_DEFAULT);
4831 	REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4832 	DELAY(20);
4833 
4834 	bce_disable_intr(sc);
4835 
4836 	/* Free RX buffers. */
4837 	if (bce_hdr_split == TRUE) {
4838 		bce_free_pg_chain(sc);
4839 	}
4840 	bce_free_rx_chain(sc);
4841 
4842 	/* Free TX buffers. */
4843 	bce_free_tx_chain(sc);
4844 
4845 	sc->watchdog_timer = 0;
4846 
4847 	sc->bce_link_up = FALSE;
4848 
4849 	if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
4850 
4851 	DBEXIT(BCE_VERBOSE_RESET);
4852 }
4853 
4854 static int
bce_reset(struct bce_softc * sc,u32 reset_code)4855 bce_reset(struct bce_softc *sc, u32 reset_code)
4856 {
4857 	u32 emac_mode_save, val;
4858 	int i, rc = 0;
4859 	static const u32 emac_mode_mask = BCE_EMAC_MODE_PORT |
4860 	    BCE_EMAC_MODE_HALF_DUPLEX | BCE_EMAC_MODE_25G;
4861 
4862 	DBENTER(BCE_VERBOSE_RESET);
4863 
4864 	DBPRINT(sc, BCE_VERBOSE_RESET, "%s(): reset_code = 0x%08X\n",
4865 	    __FUNCTION__, reset_code);
4866 
4867 	/*
4868 	 * If ASF/IPMI is operational, then the EMAC Mode register already
4869 	 * contains appropriate values for the link settings that have
4870 	 * been auto-negotiated.  Resetting the chip will clobber those
4871 	 * values.  Save the important bits so we can restore them after
4872 	 * the reset.
4873 	 */
4874 	emac_mode_save = REG_RD(sc, BCE_EMAC_MODE) & emac_mode_mask;
4875 
4876 	/* Wait for pending PCI transactions to complete. */
4877 	REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
4878 	    BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
4879 	    BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
4880 	    BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
4881 	    BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
4882 	val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
4883 	DELAY(5);
4884 
4885 	/* Disable DMA */
4886 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4887 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
4888 		val &= ~BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
4889 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
4890 	}
4891 
4892 	/* Assume bootcode is running. */
4893 	sc->bce_fw_timed_out = FALSE;
4894 	sc->bce_drv_cardiac_arrest = FALSE;
4895 
4896 	/* Give the firmware a chance to prepare for the reset. */
4897 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
4898 	if (rc)
4899 		goto bce_reset_exit;
4900 
4901 	/* Set a firmware reminder that this is a soft reset. */
4902 	bce_shmem_wr(sc, BCE_DRV_RESET_SIGNATURE, BCE_DRV_RESET_SIGNATURE_MAGIC);
4903 
4904 	/* Dummy read to force the chip to complete all current transactions. */
4905 	val = REG_RD(sc, BCE_MISC_ID);
4906 
4907 	/* Chip reset. */
4908 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
4909 		REG_WR(sc, BCE_MISC_COMMAND, BCE_MISC_COMMAND_SW_RESET);
4910 		REG_RD(sc, BCE_MISC_COMMAND);
4911 		DELAY(5);
4912 
4913 		val = BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4914 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4915 
4916 		pci_write_config(sc->bce_dev, BCE_PCICFG_MISC_CONFIG, val, 4);
4917 	} else {
4918 		val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4919 		    BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
4920 		    BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
4921 		REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
4922 
4923 		/* Allow up to 30us for reset to complete. */
4924 		for (i = 0; i < 10; i++) {
4925 			val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
4926 			if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4927 			    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
4928 				break;
4929 			}
4930 			DELAY(10);
4931 		}
4932 
4933 		/* Check that reset completed successfully. */
4934 		if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
4935 		    BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
4936 			BCE_PRINTF("%s(%d): Reset failed!\n",
4937 			    __FILE__, __LINE__);
4938 			rc = EBUSY;
4939 			goto bce_reset_exit;
4940 		}
4941 	}
4942 
4943 	/* Make sure byte swapping is properly configured. */
4944 	val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
4945 	if (val != 0x01020304) {
4946 		BCE_PRINTF("%s(%d): Byte swap is incorrect!\n",
4947 		    __FILE__, __LINE__);
4948 		rc = ENODEV;
4949 		goto bce_reset_exit;
4950 	}
4951 
4952 	/* Just completed a reset, assume that firmware is running again. */
4953 	sc->bce_fw_timed_out = FALSE;
4954 	sc->bce_drv_cardiac_arrest = FALSE;
4955 
4956 	/* Wait for the firmware to finish its initialization. */
4957 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
4958 	if (rc)
4959 		BCE_PRINTF("%s(%d): Firmware did not complete "
4960 		    "initialization!\n", __FILE__, __LINE__);
4961 	/* Get firmware capabilities. */
4962 	bce_fw_cap_init(sc);
4963 
4964 bce_reset_exit:
4965 	/* Restore EMAC Mode bits needed to keep ASF/IPMI running. */
4966 	if (reset_code == BCE_DRV_MSG_CODE_RESET) {
4967 		val = REG_RD(sc, BCE_EMAC_MODE);
4968 		val = (val & ~emac_mode_mask) | emac_mode_save;
4969 		REG_WR(sc, BCE_EMAC_MODE, val);
4970 	}
4971 
4972 	DBEXIT(BCE_VERBOSE_RESET);
4973 	return (rc);
4974 }
4975 
4976 static int
bce_chipinit(struct bce_softc * sc)4977 bce_chipinit(struct bce_softc *sc)
4978 {
4979 	u32 val;
4980 	int rc = 0;
4981 
4982 	DBENTER(BCE_VERBOSE_RESET);
4983 
4984 	bce_disable_intr(sc);
4985 
4986 	/*
4987 	 * Initialize DMA byte/word swapping, configure the number of DMA
4988 	 * channels and PCI clock compensation delay.
4989 	 */
4990 	val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
4991 	    BCE_DMA_CONFIG_DATA_WORD_SWAP |
4992 #if BYTE_ORDER == BIG_ENDIAN
4993 	    BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
4994 #endif
4995 	    BCE_DMA_CONFIG_CNTL_WORD_SWAP |
4996 	    DMA_READ_CHANS << 12 |
4997 	    DMA_WRITE_CHANS << 16;
4998 
4999 	val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
5000 
5001 	if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
5002 		val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
5003 
5004 	/*
5005 	 * This setting resolves a problem observed on certain Intel PCI
5006 	 * chipsets that cannot handle multiple outstanding DMA operations.
5007 	 * See errata E9_5706A1_65.
5008 	 */
5009 	if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
5010 	    (BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
5011 	    !(sc->bce_flags & BCE_PCIX_FLAG))
5012 		val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
5013 
5014 	REG_WR(sc, BCE_DMA_CONFIG, val);
5015 
5016 	/* Enable the RX_V2P and Context state machines before access. */
5017 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5018 	    BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
5019 	    BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
5020 	    BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
5021 
5022 	/* Initialize context mapping and zero out the quick contexts. */
5023 	if ((rc = bce_init_ctx(sc)) != 0)
5024 		goto bce_chipinit_exit;
5025 
5026 	/* Initialize the on-boards CPUs */
5027 	bce_init_cpus(sc);
5028 
5029 	/* Enable management frames (NC-SI) to flow to the MCP. */
5030 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5031 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) | BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5032 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5033 	}
5034 
5035 	/* Prepare NVRAM for access. */
5036 	if ((rc = bce_init_nvram(sc)) != 0)
5037 		goto bce_chipinit_exit;
5038 
5039 	/* Set the kernel bypass block size */
5040 	val = REG_RD(sc, BCE_MQ_CONFIG);
5041 	val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
5042 	val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
5043 
5044 	/* Enable bins used on the 5709. */
5045 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5046 		val |= BCE_MQ_CONFIG_BIN_MQ_MODE;
5047 		if (BCE_CHIP_ID(sc) == BCE_CHIP_ID_5709_A1)
5048 			val |= BCE_MQ_CONFIG_HALT_DIS;
5049 	}
5050 
5051 	REG_WR(sc, BCE_MQ_CONFIG, val);
5052 
5053 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
5054 	REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
5055 	REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
5056 
5057 	/* Set the page size and clear the RV2P processor stall bits. */
5058 	val = (BCM_PAGE_BITS - 8) << 24;
5059 	REG_WR(sc, BCE_RV2P_CONFIG, val);
5060 
5061 	/* Configure page size. */
5062 	val = REG_RD(sc, BCE_TBDR_CONFIG);
5063 	val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
5064 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
5065 	REG_WR(sc, BCE_TBDR_CONFIG, val);
5066 
5067 	/* Set the perfect match control register to default. */
5068 	REG_WR_IND(sc, BCE_RXP_PM_CTRL, 0);
5069 
5070 bce_chipinit_exit:
5071 	DBEXIT(BCE_VERBOSE_RESET);
5072 
5073 	return(rc);
5074 }
5075 
5076 /****************************************************************************/
5077 /* Initialize the controller in preparation to send/receive traffic.        */
5078 /*                                                                          */
5079 /* Returns:                                                                 */
5080 /*   0 for success, positive value for failure.                             */
5081 /****************************************************************************/
5082 static int
bce_blockinit(struct bce_softc * sc)5083 bce_blockinit(struct bce_softc *sc)
5084 {
5085 	u32 reg, val;
5086 	int rc = 0;
5087 
5088 	DBENTER(BCE_VERBOSE_RESET);
5089 
5090 	/* Load the hardware default MAC address. */
5091 	bce_set_mac_addr(sc);
5092 
5093 	/* Set the Ethernet backoff seed value */
5094 	val = sc->eaddr[0]         + (sc->eaddr[1] << 8) +
5095 	      (sc->eaddr[2] << 16) + (sc->eaddr[3]     ) +
5096 	      (sc->eaddr[4] << 8)  + (sc->eaddr[5] << 16);
5097 	REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
5098 
5099 	sc->last_status_idx = 0;
5100 	sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
5101 
5102 	/* Set up link change interrupt generation. */
5103 	REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
5104 
5105 	/* Program the physical address of the status block. */
5106 	REG_WR(sc, BCE_HC_STATUS_ADDR_L,
5107 	    BCE_ADDR_LO(sc->status_block_paddr));
5108 	REG_WR(sc, BCE_HC_STATUS_ADDR_H,
5109 	    BCE_ADDR_HI(sc->status_block_paddr));
5110 
5111 	/* Program the physical address of the statistics block. */
5112 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
5113 	    BCE_ADDR_LO(sc->stats_block_paddr));
5114 	REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
5115 	    BCE_ADDR_HI(sc->stats_block_paddr));
5116 
5117 	/*
5118 	 * Program various host coalescing parameters.
5119 	 * Trip points control how many BDs should be ready before generating
5120 	 * an interrupt while ticks control how long a BD can sit in the chain
5121 	 * before generating an interrupt.
5122 	 */
5123 	REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
5124 	    (sc->bce_tx_quick_cons_trip_int << 16) |
5125 	    sc->bce_tx_quick_cons_trip);
5126 	REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
5127 	    (sc->bce_rx_quick_cons_trip_int << 16) |
5128 	    sc->bce_rx_quick_cons_trip);
5129 	REG_WR(sc, BCE_HC_TX_TICKS,
5130 	    (sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
5131 	REG_WR(sc, BCE_HC_RX_TICKS,
5132 	    (sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
5133 	REG_WR(sc, BCE_HC_STATS_TICKS, sc->bce_stats_ticks & 0xffff00);
5134 	REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
5135 	/* Not used for L2. */
5136 	REG_WR(sc, BCE_HC_COMP_PROD_TRIP, 0);
5137 	REG_WR(sc, BCE_HC_COM_TICKS, 0);
5138 	REG_WR(sc, BCE_HC_CMD_TICKS, 0);
5139 
5140 	/* Configure the Host Coalescing block. */
5141 	val = BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
5142 	    BCE_HC_CONFIG_COLLECT_STATS;
5143 
5144 #if 0
5145 	/* ToDo: Add MSI-X support. */
5146 	if (sc->bce_flags & BCE_USING_MSIX_FLAG) {
5147 		u32 base = ((BCE_TX_VEC - 1) * BCE_HC_SB_CONFIG_SIZE) +
5148 		    BCE_HC_SB_CONFIG_1;
5149 
5150 		REG_WR(sc, BCE_HC_MSIX_BIT_VECTOR, BCE_HC_MSIX_BIT_VECTOR_VAL);
5151 
5152 		REG_WR(sc, base, BCE_HC_SB_CONFIG_1_TX_TMR_MODE |
5153 		    BCE_HC_SB_CONFIG_1_ONE_SHOT);
5154 
5155 		REG_WR(sc, base + BCE_HC_TX_QUICK_CONS_TRIP_OFF,
5156 		    (sc->tx_quick_cons_trip_int << 16) |
5157 		     sc->tx_quick_cons_trip);
5158 
5159 		REG_WR(sc, base + BCE_HC_TX_TICKS_OFF,
5160 		    (sc->tx_ticks_int << 16) | sc->tx_ticks);
5161 
5162 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5163 	}
5164 
5165 	/*
5166 	 * Tell the HC block to automatically set the
5167 	 * INT_MASK bit after an MSI/MSI-X interrupt
5168 	 * is generated so the driver doesn't have to.
5169 	 */
5170 	if (sc->bce_flags & BCE_ONE_SHOT_MSI_FLAG)
5171 		val |= BCE_HC_CONFIG_ONE_SHOT;
5172 
5173 	/* Set the MSI-X status blocks to 128 byte boundaries. */
5174 	if (sc->bce_flags & BCE_USING_MSIX_FLAG)
5175 		val |= BCE_HC_CONFIG_SB_ADDR_INC_128B;
5176 #endif
5177 
5178 	REG_WR(sc, BCE_HC_CONFIG, val);
5179 
5180 	/* Clear the internal statistics counters. */
5181 	REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
5182 
5183 	/* Verify that bootcode is running. */
5184 	reg = bce_shmem_rd(sc, BCE_DEV_INFO_SIGNATURE);
5185 
5186 	DBRUNIF(DB_RANDOMTRUE(bootcode_running_failure_sim_control),
5187 	    BCE_PRINTF("%s(%d): Simulating bootcode failure.\n",
5188 	    __FILE__, __LINE__);
5189 	    reg = 0);
5190 
5191 	if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
5192 	    BCE_DEV_INFO_SIGNATURE_MAGIC) {
5193 		BCE_PRINTF("%s(%d): Bootcode not running! Found: 0x%08X, "
5194 		    "Expected: 08%08X\n", __FILE__, __LINE__,
5195 		    (reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
5196 		    BCE_DEV_INFO_SIGNATURE_MAGIC);
5197 		rc = ENODEV;
5198 		goto bce_blockinit_exit;
5199 	}
5200 
5201 	/* Enable DMA */
5202 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5203 		val = REG_RD(sc, BCE_MISC_NEW_CORE_CTL);
5204 		val |= BCE_MISC_NEW_CORE_CTL_DMA_ENABLE;
5205 		REG_WR(sc, BCE_MISC_NEW_CORE_CTL, val);
5206 	}
5207 
5208 	/* Allow bootcode to apply additional fixes before enabling MAC. */
5209 	rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 |
5210 	    BCE_DRV_MSG_CODE_RESET);
5211 
5212 	/* Enable link state change interrupt generation. */
5213 	REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
5214 
5215 	/* Enable the RXP. */
5216 	bce_start_rxp_cpu(sc);
5217 
5218 	/* Disable management frames (NC-SI) from flowing to the MCP. */
5219 	if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
5220 		val = REG_RD(sc, BCE_RPM_MGMT_PKT_CTRL) &
5221 		    ~BCE_RPM_MGMT_PKT_CTRL_MGMT_EN;
5222 		REG_WR(sc, BCE_RPM_MGMT_PKT_CTRL, val);
5223 	}
5224 
5225 	/* Enable all remaining blocks in the MAC. */
5226 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5227 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5228 		    BCE_MISC_ENABLE_DEFAULT_XI);
5229 	else
5230 		REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
5231 		    BCE_MISC_ENABLE_DEFAULT);
5232 
5233 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
5234 	DELAY(20);
5235 
5236 	/* Save the current host coalescing block settings. */
5237 	sc->hc_command = REG_RD(sc, BCE_HC_COMMAND);
5238 
5239 bce_blockinit_exit:
5240 	DBEXIT(BCE_VERBOSE_RESET);
5241 
5242 	return (rc);
5243 }
5244 
5245 /****************************************************************************/
5246 /* Encapsulate an mbuf into the rx_bd chain.                                */
5247 /*                                                                          */
5248 /* Returns:                                                                 */
5249 /*   0 for success, positive value for failure.                             */
5250 /****************************************************************************/
5251 static int
bce_get_rx_buf(struct bce_softc * sc,u16 prod,u16 chain_prod,u32 * prod_bseq)5252 bce_get_rx_buf(struct bce_softc *sc, u16 prod, u16 chain_prod, u32 *prod_bseq)
5253 {
5254 	bus_dma_segment_t segs[1];
5255 	struct mbuf *m_new = NULL;
5256 	struct rx_bd *rxbd;
5257 	int nsegs, error, rc = 0;
5258 #ifdef BCE_DEBUG
5259 	u16 debug_chain_prod = chain_prod;
5260 #endif
5261 
5262 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5263 
5264 	/* Make sure the inputs are valid. */
5265 	DBRUNIF((chain_prod > MAX_RX_BD_ALLOC),
5266 	    BCE_PRINTF("%s(%d): RX producer out of range: "
5267 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5268 	    chain_prod, (u16)MAX_RX_BD_ALLOC));
5269 
5270 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5271 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__,
5272 	    prod, chain_prod, *prod_bseq);
5273 
5274 	/* Update some debug statistic counters */
5275 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
5276 	    sc->rx_low_watermark = sc->free_rx_bd);
5277 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
5278 	    sc->rx_empty_count++);
5279 
5280 	/* Simulate an mbuf allocation failure. */
5281 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5282 	    sc->mbuf_alloc_failed_count++;
5283 	    sc->mbuf_alloc_failed_sim_count++;
5284 	    rc = ENOBUFS;
5285 	    goto bce_get_rx_buf_exit);
5286 
5287 	/* This is a new mbuf allocation. */
5288 	if (bce_hdr_split == TRUE)
5289 		MGETHDR(m_new, M_NOWAIT, MT_DATA);
5290 	else
5291 		m_new = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR,
5292 		    sc->rx_bd_mbuf_alloc_size);
5293 
5294 	if (m_new == NULL) {
5295 		sc->mbuf_alloc_failed_count++;
5296 		rc = ENOBUFS;
5297 		goto bce_get_rx_buf_exit;
5298 	}
5299 
5300 	DBRUN(sc->debug_rx_mbuf_alloc++);
5301 
5302 	/* Make sure we have a valid packet header. */
5303 	M_ASSERTPKTHDR(m_new);
5304 
5305 	/* Initialize the mbuf size and pad if necessary for alignment. */
5306 	m_new->m_pkthdr.len = m_new->m_len = sc->rx_bd_mbuf_alloc_size;
5307 	m_adj(m_new, sc->rx_bd_mbuf_align_pad);
5308 
5309 	/* ToDo: Consider calling m_fragment() to test error handling. */
5310 
5311 	/* Map the mbuf cluster into device memory. */
5312 	error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag,
5313 	    sc->rx_mbuf_map[chain_prod], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5314 
5315 	/* Handle any mapping errors. */
5316 	if (error) {
5317 		BCE_PRINTF("%s(%d): Error mapping mbuf into RX "
5318 		    "chain (%d)!\n", __FILE__, __LINE__, error);
5319 
5320 		sc->dma_map_addr_rx_failed_count++;
5321 		m_freem(m_new);
5322 
5323 		DBRUN(sc->debug_rx_mbuf_alloc--);
5324 
5325 		rc = ENOBUFS;
5326 		goto bce_get_rx_buf_exit;
5327 	}
5328 
5329 	/* All mbufs must map to a single segment. */
5330 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5331 	    __FUNCTION__, nsegs));
5332 
5333 	/* Setup the rx_bd for the segment. */
5334 	rxbd = &sc->rx_bd_chain[RX_PAGE(chain_prod)][RX_IDX(chain_prod)];
5335 
5336 	rxbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5337 	rxbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5338 	rxbd->rx_bd_len       = htole32(segs[0].ds_len);
5339 	rxbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5340 	*prod_bseq += segs[0].ds_len;
5341 
5342 	/* Save the mbuf and update our counter. */
5343 	sc->rx_mbuf_ptr[chain_prod] = m_new;
5344 	sc->free_rx_bd -= nsegs;
5345 
5346 	DBRUNMSG(BCE_INSANE_RECV,
5347 	    bce_dump_rx_mbuf_chain(sc, debug_chain_prod, nsegs));
5348 
5349 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5350 	    "chain_prod = 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, prod,
5351 	    chain_prod, *prod_bseq);
5352 
5353 bce_get_rx_buf_exit:
5354 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5355 
5356 	return(rc);
5357 }
5358 
5359 /****************************************************************************/
5360 /* Encapsulate an mbuf cluster into the page chain.                         */
5361 /*                                                                          */
5362 /* Returns:                                                                 */
5363 /*   0 for success, positive value for failure.                             */
5364 /****************************************************************************/
5365 static int
bce_get_pg_buf(struct bce_softc * sc,u16 prod,u16 prod_idx)5366 bce_get_pg_buf(struct bce_softc *sc, u16 prod, u16 prod_idx)
5367 {
5368 	bus_dma_segment_t segs[1];
5369 	struct mbuf *m_new = NULL;
5370 	struct rx_bd *pgbd;
5371 	int error, nsegs, rc = 0;
5372 #ifdef BCE_DEBUG
5373 	u16 debug_prod_idx = prod_idx;
5374 #endif
5375 
5376 	DBENTER(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5377 
5378 	/* Make sure the inputs are valid. */
5379 	DBRUNIF((prod_idx > MAX_PG_BD_ALLOC),
5380 	    BCE_PRINTF("%s(%d): page producer out of range: "
5381 	    "0x%04X > 0x%04X\n", __FILE__, __LINE__,
5382 	    prod_idx, (u16)MAX_PG_BD_ALLOC));
5383 
5384 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): prod = 0x%04X, "
5385 	    "chain_prod = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5386 
5387 	/* Update counters if we've hit a new low or run out of pages. */
5388 	DBRUNIF((sc->free_pg_bd < sc->pg_low_watermark),
5389 	    sc->pg_low_watermark = sc->free_pg_bd);
5390 	DBRUNIF((sc->free_pg_bd == sc->max_pg_bd), sc->pg_empty_count++);
5391 
5392 	/* Simulate an mbuf allocation failure. */
5393 	DBRUNIF(DB_RANDOMTRUE(mbuf_alloc_failed_sim_control),
5394 	    sc->mbuf_alloc_failed_count++;
5395 	    sc->mbuf_alloc_failed_sim_count++;
5396 	    rc = ENOBUFS;
5397 	    goto bce_get_pg_buf_exit);
5398 
5399 	/* This is a new mbuf allocation. */
5400 	m_new = m_getcl(M_NOWAIT, MT_DATA, 0);
5401 	if (m_new == NULL) {
5402 		sc->mbuf_alloc_failed_count++;
5403 		rc = ENOBUFS;
5404 		goto bce_get_pg_buf_exit;
5405 	}
5406 
5407 	DBRUN(sc->debug_pg_mbuf_alloc++);
5408 
5409 	m_new->m_len = MCLBYTES;
5410 
5411 	/* ToDo: Consider calling m_fragment() to test error handling. */
5412 
5413 	/* Map the mbuf cluster into device memory. */
5414 	error = bus_dmamap_load_mbuf_sg(sc->pg_mbuf_tag,
5415 	    sc->pg_mbuf_map[prod_idx], m_new, segs, &nsegs, BUS_DMA_NOWAIT);
5416 
5417 	/* Handle any mapping errors. */
5418 	if (error) {
5419 		BCE_PRINTF("%s(%d): Error mapping mbuf into page chain!\n",
5420 		    __FILE__, __LINE__);
5421 
5422 		m_freem(m_new);
5423 		DBRUN(sc->debug_pg_mbuf_alloc--);
5424 
5425 		rc = ENOBUFS;
5426 		goto bce_get_pg_buf_exit;
5427 	}
5428 
5429 	/* All mbufs must map to a single segment. */
5430 	KASSERT(nsegs == 1, ("%s(): Too many segments returned (%d)!",
5431 	    __FUNCTION__, nsegs));
5432 
5433 	/* ToDo: Do we need bus_dmamap_sync(,,BUS_DMASYNC_PREREAD) here? */
5434 
5435 	/*
5436 	 * The page chain uses the same rx_bd data structure
5437 	 * as the receive chain but doesn't require a byte sequence (bseq).
5438 	 */
5439 	pgbd = &sc->pg_bd_chain[PG_PAGE(prod_idx)][PG_IDX(prod_idx)];
5440 
5441 	pgbd->rx_bd_haddr_lo  = htole32(BCE_ADDR_LO(segs[0].ds_addr));
5442 	pgbd->rx_bd_haddr_hi  = htole32(BCE_ADDR_HI(segs[0].ds_addr));
5443 	pgbd->rx_bd_len       = htole32(MCLBYTES);
5444 	pgbd->rx_bd_flags     = htole32(RX_BD_FLAGS_START | RX_BD_FLAGS_END);
5445 
5446 	/* Save the mbuf and update our counter. */
5447 	sc->pg_mbuf_ptr[prod_idx] = m_new;
5448 	sc->free_pg_bd--;
5449 
5450 	DBRUNMSG(BCE_INSANE_RECV,
5451 	    bce_dump_pg_mbuf_chain(sc, debug_prod_idx, 1));
5452 
5453 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): prod = 0x%04X, "
5454 	    "prod_idx = 0x%04X\n", __FUNCTION__, prod, prod_idx);
5455 
5456 bce_get_pg_buf_exit:
5457 	DBEXIT(BCE_EXTREME_RESET | BCE_EXTREME_RECV | BCE_EXTREME_LOAD);
5458 
5459 	return(rc);
5460 }
5461 
5462 /****************************************************************************/
5463 /* Initialize the TX context memory.                                        */
5464 /*                                                                          */
5465 /* Returns:                                                                 */
5466 /*   Nothing                                                                */
5467 /****************************************************************************/
5468 static void
bce_init_tx_context(struct bce_softc * sc)5469 bce_init_tx_context(struct bce_softc *sc)
5470 {
5471 	u32 val;
5472 
5473 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5474 
5475 	/* Initialize the context ID for an L2 TX chain. */
5476 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5477 		/* Set the CID type to support an L2 connection. */
5478 		val = BCE_L2CTX_TX_TYPE_TYPE_L2_XI |
5479 		    BCE_L2CTX_TX_TYPE_SIZE_L2_XI;
5480 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE_XI, val);
5481 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2_XI | (8 << 16);
5482 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5483 		    BCE_L2CTX_TX_CMD_TYPE_XI, val);
5484 
5485 		/* Point the hardware to the first page in the chain. */
5486 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5487 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5488 		    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI, val);
5489 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5490 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5491 		    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI, val);
5492 	} else {
5493 		/* Set the CID type to support an L2 connection. */
5494 		val = BCE_L2CTX_TX_TYPE_TYPE_L2 | BCE_L2CTX_TX_TYPE_SIZE_L2;
5495 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_TYPE, val);
5496 		val = BCE_L2CTX_TX_CMD_TYPE_TYPE_L2 | (8 << 16);
5497 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TX_CMD_TYPE, val);
5498 
5499 		/* Point the hardware to the first page in the chain. */
5500 		val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
5501 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5502 		    BCE_L2CTX_TX_TBDR_BHADDR_HI, val);
5503 		val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
5504 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
5505 		    BCE_L2CTX_TX_TBDR_BHADDR_LO, val);
5506 	}
5507 
5508 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
5509 }
5510 
5511 /****************************************************************************/
5512 /* Allocate memory and initialize the TX data structures.                   */
5513 /*                                                                          */
5514 /* Returns:                                                                 */
5515 /*   0 for success, positive value for failure.                             */
5516 /****************************************************************************/
5517 static int
bce_init_tx_chain(struct bce_softc * sc)5518 bce_init_tx_chain(struct bce_softc *sc)
5519 {
5520 	struct tx_bd *txbd;
5521 	int i, rc = 0;
5522 
5523 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5524 
5525 	/* Set the initial TX producer/consumer indices. */
5526 	sc->tx_prod        = 0;
5527 	sc->tx_cons        = 0;
5528 	sc->tx_prod_bseq   = 0;
5529 	sc->used_tx_bd     = 0;
5530 	sc->max_tx_bd      = USABLE_TX_BD_ALLOC;
5531 	DBRUN(sc->tx_hi_watermark = 0);
5532 	DBRUN(sc->tx_full_count = 0);
5533 
5534 	/*
5535 	 * The NetXtreme II supports a linked-list structure called
5536 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
5537 	 * consists of a series of 1 or more chain pages, each of which
5538 	 * consists of a fixed number of BD entries.
5539 	 * The last BD entry on each page is a pointer to the next page
5540 	 * in the chain, and the last pointer in the BD chain
5541 	 * points back to the beginning of the chain.
5542 	 */
5543 
5544 	/* Set the TX next pointer chain entries. */
5545 	for (i = 0; i < sc->tx_pages; i++) {
5546 		int j;
5547 
5548 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
5549 
5550 		/* Check if we've reached the last page. */
5551 		if (i == (sc->tx_pages - 1))
5552 			j = 0;
5553 		else
5554 			j = i + 1;
5555 
5556 		txbd->tx_bd_haddr_hi =
5557 		    htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
5558 		txbd->tx_bd_haddr_lo =
5559 		    htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
5560 	}
5561 
5562 	bce_init_tx_context(sc);
5563 
5564 	DBRUNMSG(BCE_INSANE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC));
5565 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_LOAD);
5566 
5567 	return(rc);
5568 }
5569 
5570 /****************************************************************************/
5571 /* Free memory and clear the TX data structures.                            */
5572 /*                                                                          */
5573 /* Returns:                                                                 */
5574 /*   Nothing.                                                               */
5575 /****************************************************************************/
5576 static void
bce_free_tx_chain(struct bce_softc * sc)5577 bce_free_tx_chain(struct bce_softc *sc)
5578 {
5579 	int i;
5580 
5581 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5582 
5583 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
5584 	for (i = 0; i < MAX_TX_BD_AVAIL; i++) {
5585 		if (sc->tx_mbuf_ptr[i] != NULL) {
5586 			if (sc->tx_mbuf_map[i] != NULL)
5587 				bus_dmamap_sync(sc->tx_mbuf_tag,
5588 				    sc->tx_mbuf_map[i],
5589 				    BUS_DMASYNC_POSTWRITE);
5590 			m_freem(sc->tx_mbuf_ptr[i]);
5591 			sc->tx_mbuf_ptr[i] = NULL;
5592 			DBRUN(sc->debug_tx_mbuf_alloc--);
5593 		}
5594 	}
5595 
5596 	/* Clear each TX chain page. */
5597 	for (i = 0; i < sc->tx_pages; i++)
5598 		bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
5599 
5600 	sc->used_tx_bd = 0;
5601 
5602 	/* Check if we lost any mbufs in the process. */
5603 	DBRUNIF((sc->debug_tx_mbuf_alloc),
5604 	    BCE_PRINTF("%s(%d): Memory leak! Lost %d mbufs "
5605 	    "from tx chain!\n",	__FILE__, __LINE__,
5606 	    sc->debug_tx_mbuf_alloc));
5607 
5608 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_SEND | BCE_VERBOSE_UNLOAD);
5609 }
5610 
5611 /****************************************************************************/
5612 /* Initialize the RX context memory.                                        */
5613 /*                                                                          */
5614 /* Returns:                                                                 */
5615 /*   Nothing                                                                */
5616 /****************************************************************************/
5617 static void
bce_init_rx_context(struct bce_softc * sc)5618 bce_init_rx_context(struct bce_softc *sc)
5619 {
5620 	u32 val;
5621 
5622 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5623 
5624 	/* Init the type, size, and BD cache levels for the RX context. */
5625 	val = BCE_L2CTX_RX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
5626 	    BCE_L2CTX_RX_CTX_TYPE_SIZE_L2 |
5627 	    (0x02 << BCE_L2CTX_RX_BD_PRE_READ_SHIFT);
5628 
5629 	/*
5630 	 * Set the level for generating pause frames
5631 	 * when the number of available rx_bd's gets
5632 	 * too low (the low watermark) and the level
5633 	 * when pause frames can be stopped (the high
5634 	 * watermark).
5635 	 */
5636 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5637 		u32 lo_water, hi_water;
5638 
5639 		if (sc->bce_flags & BCE_USING_TX_FLOW_CONTROL) {
5640 			lo_water = BCE_L2CTX_RX_LO_WATER_MARK_DEFAULT;
5641 		} else {
5642 			lo_water = 0;
5643 		}
5644 
5645 		if (lo_water >= USABLE_RX_BD_ALLOC) {
5646 			lo_water = 0;
5647 		}
5648 
5649 		hi_water = USABLE_RX_BD_ALLOC / 4;
5650 
5651 		if (hi_water <= lo_water) {
5652 			lo_water = 0;
5653 		}
5654 
5655 		lo_water /= BCE_L2CTX_RX_LO_WATER_MARK_SCALE;
5656 		hi_water /= BCE_L2CTX_RX_HI_WATER_MARK_SCALE;
5657 
5658 		if (hi_water > 0xf)
5659 			hi_water = 0xf;
5660 		else if (hi_water == 0)
5661 			lo_water = 0;
5662 
5663 		val |= (lo_water << BCE_L2CTX_RX_LO_WATER_MARK_SHIFT) |
5664 		    (hi_water << BCE_L2CTX_RX_HI_WATER_MARK_SHIFT);
5665 	}
5666 
5667 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_CTX_TYPE, val);
5668 
5669 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
5670 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
5671 		val = REG_RD(sc, BCE_MQ_MAP_L2_5);
5672 		REG_WR(sc, BCE_MQ_MAP_L2_5, val | BCE_MQ_MAP_L2_5_ARM);
5673 	}
5674 
5675 	/* Point the hardware to the first page in the chain. */
5676 	val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
5677 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_HI, val);
5678 	val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
5679 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_BDHADDR_LO, val);
5680 
5681 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_CTX);
5682 }
5683 
5684 /****************************************************************************/
5685 /* Allocate memory and initialize the RX data structures.                   */
5686 /*                                                                          */
5687 /* Returns:                                                                 */
5688 /*   0 for success, positive value for failure.                             */
5689 /****************************************************************************/
5690 static int
bce_init_rx_chain(struct bce_softc * sc)5691 bce_init_rx_chain(struct bce_softc *sc)
5692 {
5693 	struct rx_bd *rxbd;
5694 	int i, rc = 0;
5695 
5696 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5697 	    BCE_VERBOSE_CTX);
5698 
5699 	/* Initialize the RX producer and consumer indices. */
5700 	sc->rx_prod        = 0;
5701 	sc->rx_cons        = 0;
5702 	sc->rx_prod_bseq   = 0;
5703 	sc->free_rx_bd     = USABLE_RX_BD_ALLOC;
5704 	sc->max_rx_bd      = USABLE_RX_BD_ALLOC;
5705 
5706 	/* Initialize the RX next pointer chain entries. */
5707 	for (i = 0; i < sc->rx_pages; i++) {
5708 		int j;
5709 
5710 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
5711 
5712 		/* Check if we've reached the last page. */
5713 		if (i == (sc->rx_pages - 1))
5714 			j = 0;
5715 		else
5716 			j = i + 1;
5717 
5718 		/* Setup the chain page pointers. */
5719 		rxbd->rx_bd_haddr_hi =
5720 		    htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
5721 		rxbd->rx_bd_haddr_lo =
5722 		    htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
5723 	}
5724 
5725 	/* Fill up the RX chain. */
5726 	bce_fill_rx_chain(sc);
5727 
5728 	DBRUN(sc->rx_low_watermark = USABLE_RX_BD_ALLOC);
5729 	DBRUN(sc->rx_empty_count = 0);
5730 	for (i = 0; i < sc->rx_pages; i++) {
5731 		bus_dmamap_sync(sc->rx_bd_chain_tag, sc->rx_bd_chain_map[i],
5732 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5733 	}
5734 
5735 	bce_init_rx_context(sc);
5736 
5737 	DBRUNMSG(BCE_EXTREME_RECV,
5738 	    bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC));
5739 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5740 	    BCE_VERBOSE_CTX);
5741 
5742 	/* ToDo: Are there possible failure modes here? */
5743 
5744 	return(rc);
5745 }
5746 
5747 /****************************************************************************/
5748 /* Add mbufs to the RX chain until its full or an mbuf allocation error     */
5749 /* occurs.                                                                  */
5750 /*                                                                          */
5751 /* Returns:                                                                 */
5752 /*   Nothing                                                                */
5753 /****************************************************************************/
5754 static void
bce_fill_rx_chain(struct bce_softc * sc)5755 bce_fill_rx_chain(struct bce_softc *sc)
5756 {
5757 	u16 prod, prod_idx;
5758 	u32 prod_bseq;
5759 
5760 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5761 	    BCE_VERBOSE_CTX);
5762 
5763 	/* Get the RX chain producer indices. */
5764 	prod      = sc->rx_prod;
5765 	prod_bseq = sc->rx_prod_bseq;
5766 
5767 	/* Keep filling the RX chain until it's full. */
5768 	while (sc->free_rx_bd > 0) {
5769 		prod_idx = RX_CHAIN_IDX(prod);
5770 		if (bce_get_rx_buf(sc, prod, prod_idx, &prod_bseq)) {
5771 			/* Bail out if we can't add an mbuf to the chain. */
5772 			break;
5773 		}
5774 		prod = NEXT_RX_BD(prod);
5775 	}
5776 
5777 	/* Save the RX chain producer indices. */
5778 	sc->rx_prod      = prod;
5779 	sc->rx_prod_bseq = prod_bseq;
5780 
5781 	/* We should never end up pointing to a next page pointer. */
5782 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5783 	    BCE_PRINTF("%s(): Invalid rx_prod value: 0x%04X\n",
5784 	    __FUNCTION__, rx_prod));
5785 
5786 	/* Write the mailbox and tell the chip about the waiting rx_bd's. */
5787 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BDIDX, prod);
5788 	REG_WR(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_BSEQ, prod_bseq);
5789 
5790 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5791 	    BCE_VERBOSE_CTX);
5792 }
5793 
5794 /****************************************************************************/
5795 /* Free memory and clear the RX data structures.                            */
5796 /*                                                                          */
5797 /* Returns:                                                                 */
5798 /*   Nothing.                                                               */
5799 /****************************************************************************/
5800 static void
bce_free_rx_chain(struct bce_softc * sc)5801 bce_free_rx_chain(struct bce_softc *sc)
5802 {
5803 	int i;
5804 
5805 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5806 
5807 	/* Free any mbufs still in the RX mbuf chain. */
5808 	for (i = 0; i < MAX_RX_BD_AVAIL; i++) {
5809 		if (sc->rx_mbuf_ptr[i] != NULL) {
5810 			if (sc->rx_mbuf_map[i] != NULL)
5811 				bus_dmamap_sync(sc->rx_mbuf_tag,
5812 				    sc->rx_mbuf_map[i],
5813 				    BUS_DMASYNC_POSTREAD);
5814 			m_freem(sc->rx_mbuf_ptr[i]);
5815 			sc->rx_mbuf_ptr[i] = NULL;
5816 			DBRUN(sc->debug_rx_mbuf_alloc--);
5817 		}
5818 	}
5819 
5820 	/* Clear each RX chain page. */
5821 	for (i = 0; i < sc->rx_pages; i++)
5822 		if (sc->rx_bd_chain[i] != NULL)
5823 			bzero((char *)sc->rx_bd_chain[i],
5824 			    BCE_RX_CHAIN_PAGE_SZ);
5825 
5826 	sc->free_rx_bd = sc->max_rx_bd;
5827 
5828 	/* Check if we lost any mbufs in the process. */
5829 	DBRUNIF((sc->debug_rx_mbuf_alloc),
5830 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from rx chain!\n",
5831 	    __FUNCTION__, sc->debug_rx_mbuf_alloc));
5832 
5833 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5834 }
5835 
5836 /****************************************************************************/
5837 /* Allocate memory and initialize the page data structures.                 */
5838 /* Assumes that bce_init_rx_chain() has not already been called.            */
5839 /*                                                                          */
5840 /* Returns:                                                                 */
5841 /*   0 for success, positive value for failure.                             */
5842 /****************************************************************************/
5843 static int
bce_init_pg_chain(struct bce_softc * sc)5844 bce_init_pg_chain(struct bce_softc *sc)
5845 {
5846 	struct rx_bd *pgbd;
5847 	int i, rc = 0;
5848 	u32 val;
5849 
5850 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5851 		BCE_VERBOSE_CTX);
5852 
5853 	/* Initialize the page producer and consumer indices. */
5854 	sc->pg_prod        = 0;
5855 	sc->pg_cons        = 0;
5856 	sc->free_pg_bd     = USABLE_PG_BD_ALLOC;
5857 	sc->max_pg_bd      = USABLE_PG_BD_ALLOC;
5858 	DBRUN(sc->pg_low_watermark = sc->max_pg_bd);
5859 	DBRUN(sc->pg_empty_count = 0);
5860 
5861 	/* Initialize the page next pointer chain entries. */
5862 	for (i = 0; i < sc->pg_pages; i++) {
5863 		int j;
5864 
5865 		pgbd = &sc->pg_bd_chain[i][USABLE_PG_BD_PER_PAGE];
5866 
5867 		/* Check if we've reached the last page. */
5868 		if (i == (sc->pg_pages - 1))
5869 			j = 0;
5870 		else
5871 			j = i + 1;
5872 
5873 		/* Setup the chain page pointers. */
5874 		pgbd->rx_bd_haddr_hi =
5875 		    htole32(BCE_ADDR_HI(sc->pg_bd_chain_paddr[j]));
5876 		pgbd->rx_bd_haddr_lo =
5877 		    htole32(BCE_ADDR_LO(sc->pg_bd_chain_paddr[j]));
5878 	}
5879 
5880 	/* Setup the MQ BIN mapping for host_pg_bidx. */
5881 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
5882 		REG_WR(sc, BCE_MQ_MAP_L2_3, BCE_MQ_MAP_L2_3_DEFAULT);
5883 
5884 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, 0);
5885 
5886 	/* Configure the rx_bd and page chain mbuf cluster size. */
5887 	val = (sc->rx_bd_mbuf_data_len << 16) | MCLBYTES;
5888 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_PG_BUF_SIZE, val);
5889 
5890 	/* Configure the context reserved for jumbo support. */
5891 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_RBDC_KEY,
5892 		BCE_L2CTX_RX_RBDC_JUMBO_KEY);
5893 
5894 	/* Point the hardware to the first page in the page chain. */
5895 	val = BCE_ADDR_HI(sc->pg_bd_chain_paddr[0]);
5896 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_HI, val);
5897 	val = BCE_ADDR_LO(sc->pg_bd_chain_paddr[0]);
5898 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_RX_NX_PG_BDHADDR_LO, val);
5899 
5900 	/* Fill up the page chain. */
5901 	bce_fill_pg_chain(sc);
5902 
5903 	for (i = 0; i < sc->pg_pages; i++) {
5904 		bus_dmamap_sync(sc->pg_bd_chain_tag, sc->pg_bd_chain_map[i],
5905 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
5906 	}
5907 
5908 	DBRUNMSG(BCE_EXTREME_RECV,
5909 	    bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC));
5910 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_LOAD |
5911 		BCE_VERBOSE_CTX);
5912 	return(rc);
5913 }
5914 
5915 /****************************************************************************/
5916 /* Add mbufs to the page chain until its full or an mbuf allocation error   */
5917 /* occurs.                                                                  */
5918 /*                                                                          */
5919 /* Returns:                                                                 */
5920 /*   Nothing                                                                */
5921 /****************************************************************************/
5922 static void
bce_fill_pg_chain(struct bce_softc * sc)5923 bce_fill_pg_chain(struct bce_softc *sc)
5924 {
5925 	u16 prod, prod_idx;
5926 
5927 	DBENTER(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5928 	    BCE_VERBOSE_CTX);
5929 
5930 	/* Get the page chain prodcuer index. */
5931 	prod = sc->pg_prod;
5932 
5933 	/* Keep filling the page chain until it's full. */
5934 	while (sc->free_pg_bd > 0) {
5935 		prod_idx = PG_CHAIN_IDX(prod);
5936 		if (bce_get_pg_buf(sc, prod, prod_idx)) {
5937 			/* Bail out if we can't add an mbuf to the chain. */
5938 			break;
5939 		}
5940 		prod = NEXT_PG_BD(prod);
5941 	}
5942 
5943 	/* Save the page chain producer index. */
5944 	sc->pg_prod = prod;
5945 
5946 	DBRUNIF(((prod & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE),
5947 	    BCE_PRINTF("%s(): Invalid pg_prod value: 0x%04X\n",
5948 	    __FUNCTION__, pg_prod));
5949 
5950 	/*
5951 	 * Write the mailbox and tell the chip about
5952 	 * the new rx_bd's in the page chain.
5953 	 */
5954 	REG_WR16(sc, MB_GET_CID_ADDR(RX_CID) + BCE_L2MQ_RX_HOST_PG_BDIDX,
5955 	    prod);
5956 
5957 	DBEXIT(BCE_VERBOSE_RESET | BCE_EXTREME_RECV | BCE_VERBOSE_LOAD |
5958 	    BCE_VERBOSE_CTX);
5959 }
5960 
5961 /****************************************************************************/
5962 /* Free memory and clear the RX data structures.                            */
5963 /*                                                                          */
5964 /* Returns:                                                                 */
5965 /*   Nothing.                                                               */
5966 /****************************************************************************/
5967 static void
bce_free_pg_chain(struct bce_softc * sc)5968 bce_free_pg_chain(struct bce_softc *sc)
5969 {
5970 	int i;
5971 
5972 	DBENTER(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5973 
5974 	/* Free any mbufs still in the mbuf page chain. */
5975 	for (i = 0; i < MAX_PG_BD_AVAIL; i++) {
5976 		if (sc->pg_mbuf_ptr[i] != NULL) {
5977 			if (sc->pg_mbuf_map[i] != NULL)
5978 				bus_dmamap_sync(sc->pg_mbuf_tag,
5979 				    sc->pg_mbuf_map[i],
5980 				    BUS_DMASYNC_POSTREAD);
5981 			m_freem(sc->pg_mbuf_ptr[i]);
5982 			sc->pg_mbuf_ptr[i] = NULL;
5983 			DBRUN(sc->debug_pg_mbuf_alloc--);
5984 		}
5985 	}
5986 
5987 	/* Clear each page chain pages. */
5988 	for (i = 0; i < sc->pg_pages; i++)
5989 		bzero((char *)sc->pg_bd_chain[i], BCE_PG_CHAIN_PAGE_SZ);
5990 
5991 	sc->free_pg_bd = sc->max_pg_bd;
5992 
5993 	/* Check if we lost any mbufs in the process. */
5994 	DBRUNIF((sc->debug_pg_mbuf_alloc),
5995 	    BCE_PRINTF("%s(): Memory leak! Lost %d mbufs from page chain!\n",
5996 	    __FUNCTION__, sc->debug_pg_mbuf_alloc));
5997 
5998 	DBEXIT(BCE_VERBOSE_RESET | BCE_VERBOSE_RECV | BCE_VERBOSE_UNLOAD);
5999 }
6000 
6001 static u32
bce_get_rphy_link(struct bce_softc * sc)6002 bce_get_rphy_link(struct bce_softc *sc)
6003 {
6004 	u32 advertise, link;
6005 	int fdpx;
6006 
6007 	advertise = 0;
6008 	fdpx = 0;
6009 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) != 0)
6010 		link = bce_shmem_rd(sc, BCE_RPHY_SERDES_LINK);
6011 	else
6012 		link = bce_shmem_rd(sc, BCE_RPHY_COPPER_LINK);
6013 	if (link & BCE_NETLINK_ANEG_ENB)
6014 		advertise |= BCE_NETLINK_ANEG_ENB;
6015 	if (link & BCE_NETLINK_SPEED_10HALF)
6016 		advertise |= BCE_NETLINK_SPEED_10HALF;
6017 	if (link & BCE_NETLINK_SPEED_10FULL) {
6018 		advertise |= BCE_NETLINK_SPEED_10FULL;
6019 		fdpx++;
6020 	}
6021 	if (link & BCE_NETLINK_SPEED_100HALF)
6022 		advertise |= BCE_NETLINK_SPEED_100HALF;
6023 	if (link & BCE_NETLINK_SPEED_100FULL) {
6024 		advertise |= BCE_NETLINK_SPEED_100FULL;
6025 		fdpx++;
6026 	}
6027 	if (link & BCE_NETLINK_SPEED_1000HALF)
6028 		advertise |= BCE_NETLINK_SPEED_1000HALF;
6029 	if (link & BCE_NETLINK_SPEED_1000FULL) {
6030 		advertise |= BCE_NETLINK_SPEED_1000FULL;
6031 		fdpx++;
6032 	}
6033 	if (link & BCE_NETLINK_SPEED_2500HALF)
6034 		advertise |= BCE_NETLINK_SPEED_2500HALF;
6035 	if (link & BCE_NETLINK_SPEED_2500FULL) {
6036 		advertise |= BCE_NETLINK_SPEED_2500FULL;
6037 		fdpx++;
6038 	}
6039 	if (fdpx)
6040 		advertise |= BCE_NETLINK_FC_PAUSE_SYM |
6041 		    BCE_NETLINK_FC_PAUSE_ASYM;
6042 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6043 		advertise |= BCE_NETLINK_PHY_APP_REMOTE |
6044 		    BCE_NETLINK_ETH_AT_WIRESPEED;
6045 
6046 	return (advertise);
6047 }
6048 
6049 /****************************************************************************/
6050 /* Set media options.                                                       */
6051 /*                                                                          */
6052 /* Returns:                                                                 */
6053 /*   0 for success, positive value for failure.                             */
6054 /****************************************************************************/
6055 static int
bce_ifmedia_upd(if_t ifp)6056 bce_ifmedia_upd(if_t ifp)
6057 {
6058 	struct bce_softc *sc = if_getsoftc(ifp);
6059 	int error;
6060 
6061 	DBENTER(BCE_VERBOSE);
6062 
6063 	BCE_LOCK(sc);
6064 	error = bce_ifmedia_upd_locked(ifp);
6065 	BCE_UNLOCK(sc);
6066 
6067 	DBEXIT(BCE_VERBOSE);
6068 	return (error);
6069 }
6070 
6071 /****************************************************************************/
6072 /* Set media options.                                                       */
6073 /*                                                                          */
6074 /* Returns:                                                                 */
6075 /*   Nothing.                                                               */
6076 /****************************************************************************/
6077 static int
bce_ifmedia_upd_locked(if_t ifp)6078 bce_ifmedia_upd_locked(if_t ifp)
6079 {
6080 	struct bce_softc *sc = if_getsoftc(ifp);
6081 	struct mii_data *mii;
6082 	struct mii_softc *miisc;
6083 	struct ifmedia *ifm;
6084 	u32 link;
6085 	int error, fdx;
6086 
6087 	DBENTER(BCE_VERBOSE_PHY);
6088 
6089 	error = 0;
6090 	BCE_LOCK_ASSERT(sc);
6091 
6092 	sc->bce_link_up = FALSE;
6093 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6094 		ifm = &sc->bce_ifmedia;
6095 		if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
6096 			return (EINVAL);
6097 		link = 0;
6098 		fdx = IFM_OPTIONS(ifm->ifm_media) & IFM_FDX;
6099 		switch(IFM_SUBTYPE(ifm->ifm_media)) {
6100 		case IFM_AUTO:
6101 			/*
6102 			 * Check advertised link of remote PHY by reading
6103 			 * BCE_RPHY_SERDES_LINK or BCE_RPHY_COPPER_LINK.
6104 			 * Always use the same link type of remote PHY.
6105 			 */
6106 			link = bce_get_rphy_link(sc);
6107 			break;
6108 		case IFM_2500_SX:
6109 			if ((sc->bce_phy_flags &
6110 			    (BCE_PHY_REMOTE_PORT_FIBER_FLAG |
6111 			    BCE_PHY_2_5G_CAPABLE_FLAG)) == 0)
6112 				return (EINVAL);
6113 			/*
6114 			 * XXX
6115 			 * Have to enable forced 2.5Gbps configuration.
6116 			 */
6117 			if (fdx != 0)
6118 				link |= BCE_NETLINK_SPEED_2500FULL;
6119 			else
6120 				link |= BCE_NETLINK_SPEED_2500HALF;
6121 			break;
6122 		case IFM_1000_SX:
6123 			if ((sc->bce_phy_flags &
6124 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6125 				return (EINVAL);
6126 			/*
6127 			 * XXX
6128 			 * Have to disable 2.5Gbps configuration.
6129 			 */
6130 			if (fdx != 0)
6131 				link = BCE_NETLINK_SPEED_1000FULL;
6132 			else
6133 				link = BCE_NETLINK_SPEED_1000HALF;
6134 			break;
6135 		case IFM_1000_T:
6136 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6137 				return (EINVAL);
6138 			if (fdx != 0)
6139 				link = BCE_NETLINK_SPEED_1000FULL;
6140 			else
6141 				link = BCE_NETLINK_SPEED_1000HALF;
6142 			break;
6143 		case IFM_100_TX:
6144 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6145 				return (EINVAL);
6146 			if (fdx != 0)
6147 				link = BCE_NETLINK_SPEED_100FULL;
6148 			else
6149 				link = BCE_NETLINK_SPEED_100HALF;
6150 			break;
6151 		case IFM_10_T:
6152 			if (sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG)
6153 				return (EINVAL);
6154 			if (fdx != 0)
6155 				link = BCE_NETLINK_SPEED_10FULL;
6156 			else
6157 				link = BCE_NETLINK_SPEED_10HALF;
6158 			break;
6159 		default:
6160 			return (EINVAL);
6161 		}
6162 		if (IFM_SUBTYPE(ifm->ifm_media) != IFM_AUTO) {
6163 			/*
6164 			 * XXX
6165 			 * Advertise pause capability for full-duplex media.
6166 			 */
6167 			if (fdx != 0)
6168 				link |= BCE_NETLINK_FC_PAUSE_SYM |
6169 				    BCE_NETLINK_FC_PAUSE_ASYM;
6170 			if ((sc->bce_phy_flags &
6171 			    BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6172 				link |= BCE_NETLINK_PHY_APP_REMOTE |
6173 				    BCE_NETLINK_ETH_AT_WIRESPEED;
6174 		}
6175 
6176 		bce_shmem_wr(sc, BCE_MB_ARGS_0, link);
6177 		error = bce_fw_sync(sc, BCE_DRV_MSG_CODE_CMD_SET_LINK);
6178 	} else {
6179 		mii = device_get_softc(sc->bce_miibus);
6180 
6181 		/* Make sure the MII bus has been enumerated. */
6182 		if (mii) {
6183 			LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
6184 				PHY_RESET(miisc);
6185 			error = mii_mediachg(mii);
6186 		}
6187 	}
6188 
6189 	DBEXIT(BCE_VERBOSE_PHY);
6190 	return (error);
6191 }
6192 
6193 static void
bce_ifmedia_sts_rphy(struct bce_softc * sc,struct ifmediareq * ifmr)6194 bce_ifmedia_sts_rphy(struct bce_softc *sc, struct ifmediareq *ifmr)
6195 {
6196 	if_t ifp;
6197 	u32 link;
6198 
6199 	ifp = sc->bce_ifp;
6200 	BCE_LOCK_ASSERT(sc);
6201 
6202 	ifmr->ifm_status = IFM_AVALID;
6203 	ifmr->ifm_active = IFM_ETHER;
6204 	link = bce_shmem_rd(sc, BCE_LINK_STATUS);
6205 	/* XXX Handle heart beat status? */
6206 	if ((link & BCE_LINK_STATUS_LINK_UP) != 0)
6207 		ifmr->ifm_status |= IFM_ACTIVE;
6208 	else {
6209 		ifmr->ifm_active |= IFM_NONE;
6210 		if_setbaudrate(ifp, 0);
6211 		return;
6212 	}
6213 	switch (link & BCE_LINK_STATUS_SPEED_MASK) {
6214 	case BCE_LINK_STATUS_10HALF:
6215 		ifmr->ifm_active |= IFM_10_T | IFM_HDX;
6216 		if_setbaudrate(ifp, IF_Mbps(10UL));
6217 		break;
6218 	case BCE_LINK_STATUS_10FULL:
6219 		ifmr->ifm_active |= IFM_10_T | IFM_FDX;
6220 		if_setbaudrate(ifp, IF_Mbps(10UL));
6221 		break;
6222 	case BCE_LINK_STATUS_100HALF:
6223 		ifmr->ifm_active |= IFM_100_TX | IFM_HDX;
6224 		if_setbaudrate(ifp, IF_Mbps(100UL));
6225 		break;
6226 	case BCE_LINK_STATUS_100FULL:
6227 		ifmr->ifm_active |= IFM_100_TX | IFM_FDX;
6228 		if_setbaudrate(ifp, IF_Mbps(100UL));
6229 		break;
6230 	case BCE_LINK_STATUS_1000HALF:
6231 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6232 			ifmr->ifm_active |= IFM_1000_T | IFM_HDX;
6233 		else
6234 			ifmr->ifm_active |= IFM_1000_SX | IFM_HDX;
6235 		if_setbaudrate(ifp, IF_Mbps(1000UL));
6236 		break;
6237 	case BCE_LINK_STATUS_1000FULL:
6238 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0)
6239 			ifmr->ifm_active |= IFM_1000_T | IFM_FDX;
6240 		else
6241 			ifmr->ifm_active |= IFM_1000_SX | IFM_FDX;
6242 		if_setbaudrate(ifp, IF_Mbps(1000UL));
6243 		break;
6244 	case BCE_LINK_STATUS_2500HALF:
6245 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6246 			ifmr->ifm_active |= IFM_NONE;
6247 			return;
6248 		} else
6249 			ifmr->ifm_active |= IFM_2500_SX | IFM_HDX;
6250 		if_setbaudrate(ifp, IF_Mbps(2500UL));
6251 		break;
6252 	case BCE_LINK_STATUS_2500FULL:
6253 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_PORT_FIBER_FLAG) == 0) {
6254 			ifmr->ifm_active |= IFM_NONE;
6255 			return;
6256 		} else
6257 			ifmr->ifm_active |= IFM_2500_SX | IFM_FDX;
6258 		if_setbaudrate(ifp, IF_Mbps(2500UL));
6259 		break;
6260 	default:
6261 		ifmr->ifm_active |= IFM_NONE;
6262 		return;
6263 	}
6264 
6265 	if ((link & BCE_LINK_STATUS_RX_FC_ENABLED) != 0)
6266 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
6267 	if ((link & BCE_LINK_STATUS_TX_FC_ENABLED) != 0)
6268 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
6269 }
6270 
6271 /****************************************************************************/
6272 /* Reports current media status.                                            */
6273 /*                                                                          */
6274 /* Returns:                                                                 */
6275 /*   Nothing.                                                               */
6276 /****************************************************************************/
6277 static void
bce_ifmedia_sts(if_t ifp,struct ifmediareq * ifmr)6278 bce_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
6279 {
6280 	struct bce_softc *sc = if_getsoftc(ifp);
6281 	struct mii_data *mii;
6282 
6283 	DBENTER(BCE_VERBOSE_PHY);
6284 
6285 	BCE_LOCK(sc);
6286 
6287 	if ((if_getflags(ifp) & IFF_UP) == 0) {
6288 		BCE_UNLOCK(sc);
6289 		return;
6290 	}
6291 
6292 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
6293 		bce_ifmedia_sts_rphy(sc, ifmr);
6294 	else {
6295 		mii = device_get_softc(sc->bce_miibus);
6296 		mii_pollstat(mii);
6297 		ifmr->ifm_active = mii->mii_media_active;
6298 		ifmr->ifm_status = mii->mii_media_status;
6299 	}
6300 
6301 	BCE_UNLOCK(sc);
6302 
6303 	DBEXIT(BCE_VERBOSE_PHY);
6304 }
6305 
6306 /****************************************************************************/
6307 /* Handles PHY generated interrupt events.                                  */
6308 /*                                                                          */
6309 /* Returns:                                                                 */
6310 /*   Nothing.                                                               */
6311 /****************************************************************************/
6312 static void
bce_phy_intr(struct bce_softc * sc)6313 bce_phy_intr(struct bce_softc *sc)
6314 {
6315 	u32 new_link_state, old_link_state;
6316 
6317 	DBENTER(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6318 
6319 	DBRUN(sc->phy_interrupts++);
6320 
6321 	new_link_state = sc->status_block->status_attn_bits &
6322 	    STATUS_ATTN_BITS_LINK_STATE;
6323 	old_link_state = sc->status_block->status_attn_bits_ack &
6324 	    STATUS_ATTN_BITS_LINK_STATE;
6325 
6326 	/* Handle any changes if the link state has changed. */
6327 	if (new_link_state != old_link_state) {
6328 		/* Update the status_attn_bits_ack field. */
6329 		if (new_link_state) {
6330 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
6331 			    STATUS_ATTN_BITS_LINK_STATE);
6332 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now UP.\n",
6333 			    __FUNCTION__);
6334 		} else {
6335 			REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
6336 			    STATUS_ATTN_BITS_LINK_STATE);
6337 			DBPRINT(sc, BCE_INFO_PHY, "%s(): Link is now DOWN.\n",
6338 			    __FUNCTION__);
6339 		}
6340 
6341 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
6342 			if (new_link_state) {
6343 				if (bootverbose)
6344 					if_printf(sc->bce_ifp, "link UP\n");
6345 				if_link_state_change(sc->bce_ifp,
6346 				    LINK_STATE_UP);
6347 			} else {
6348 				if (bootverbose)
6349 					if_printf(sc->bce_ifp, "link DOWN\n");
6350 				if_link_state_change(sc->bce_ifp,
6351 				    LINK_STATE_DOWN);
6352 			}
6353 		}
6354 		/*
6355 		 * Assume link is down and allow
6356 		 * tick routine to update the state
6357 		 * based on the actual media state.
6358 		 */
6359 		sc->bce_link_up = FALSE;
6360 		callout_stop(&sc->bce_tick_callout);
6361 		bce_tick(sc);
6362 	}
6363 
6364 	/* Acknowledge the link change interrupt. */
6365 	REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
6366 
6367 	DBEXIT(BCE_VERBOSE_PHY | BCE_VERBOSE_INTR);
6368 }
6369 
6370 /****************************************************************************/
6371 /* Reads the receive consumer value from the status block (skipping over    */
6372 /* chain page pointer if necessary).                                        */
6373 /*                                                                          */
6374 /* Returns:                                                                 */
6375 /*   hw_cons                                                                */
6376 /****************************************************************************/
6377 static inline u16
bce_get_hw_rx_cons(struct bce_softc * sc)6378 bce_get_hw_rx_cons(struct bce_softc *sc)
6379 {
6380 	u16 hw_cons;
6381 
6382 	rmb();
6383 	hw_cons = sc->status_block->status_rx_quick_consumer_index0;
6384 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6385 		hw_cons++;
6386 
6387 	return hw_cons;
6388 }
6389 
6390 /****************************************************************************/
6391 /* Handles received frame interrupt events.                                 */
6392 /*                                                                          */
6393 /* Returns:                                                                 */
6394 /*   Nothing.                                                               */
6395 /****************************************************************************/
6396 static void
bce_rx_intr(struct bce_softc * sc)6397 bce_rx_intr(struct bce_softc *sc)
6398 {
6399 	if_t ifp = sc->bce_ifp;
6400 	struct l2_fhdr *l2fhdr;
6401 	struct ether_vlan_header *vh;
6402 	unsigned int pkt_len;
6403 	u16 sw_rx_cons, sw_rx_cons_idx, hw_rx_cons;
6404 	u32 status;
6405 	unsigned int rem_len;
6406 	u16 sw_pg_cons, sw_pg_cons_idx;
6407 
6408 	DBENTER(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6409 	DBRUN(sc->interrupts_rx++);
6410 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(enter): rx_prod = 0x%04X, "
6411 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6412 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6413 
6414 	/* Prepare the RX chain pages to be accessed by the host CPU. */
6415 	for (int i = 0; i < sc->rx_pages; i++)
6416 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6417 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6418 
6419 	/* Prepare the page chain pages to be accessed by the host CPU. */
6420 	if (bce_hdr_split == TRUE) {
6421 		for (int i = 0; i < sc->pg_pages; i++)
6422 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6423 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_POSTREAD);
6424 	}
6425 
6426 	/* Get the hardware's view of the RX consumer index. */
6427 	hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6428 
6429 	/* Get working copies of the driver's view of the consumer indices. */
6430 	sw_rx_cons = sc->rx_cons;
6431 	sw_pg_cons = sc->pg_cons;
6432 
6433 	/* Update some debug statistics counters */
6434 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
6435 	    sc->rx_low_watermark = sc->free_rx_bd);
6436 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd),
6437 	    sc->rx_empty_count++);
6438 
6439 	/* Scan through the receive chain as long as there is work to do */
6440 	/* ToDo: Consider setting a limit on the number of packets processed. */
6441 	rmb();
6442 	while (sw_rx_cons != hw_rx_cons) {
6443 		struct mbuf *m0;
6444 
6445 		/* Convert the producer/consumer indices to an actual rx_bd index. */
6446 		sw_rx_cons_idx = RX_CHAIN_IDX(sw_rx_cons);
6447 
6448 		/* Unmap the mbuf from DMA space. */
6449 		bus_dmamap_sync(sc->rx_mbuf_tag,
6450 		    sc->rx_mbuf_map[sw_rx_cons_idx],
6451 		    BUS_DMASYNC_POSTREAD);
6452 		bus_dmamap_unload(sc->rx_mbuf_tag,
6453 		    sc->rx_mbuf_map[sw_rx_cons_idx]);
6454 
6455 		/* Remove the mbuf from the RX chain. */
6456 		m0 = sc->rx_mbuf_ptr[sw_rx_cons_idx];
6457 		sc->rx_mbuf_ptr[sw_rx_cons_idx] = NULL;
6458 		DBRUN(sc->debug_rx_mbuf_alloc--);
6459 		sc->free_rx_bd++;
6460 
6461 		/*
6462  		 * Frames received on the NetXteme II are prepended
6463  		 * with an l2_fhdr structure which provides status
6464  		 * information about the received frame (including
6465  		 * VLAN tags and checksum info).  The frames are
6466 		 * also automatically adjusted to word align the IP
6467  		 * header (i.e. two null bytes are inserted before
6468  		 * the Ethernet	header).  As a result the data
6469  		 * DMA'd by the controller into	the mbuf looks
6470 		 * like this:
6471 		 *
6472 		 * +---------+-----+---------------------+-----+
6473 		 * | l2_fhdr | pad | packet data         | FCS |
6474 		 * +---------+-----+---------------------+-----+
6475 		 *
6476  		 * The l2_fhdr needs to be checked and skipped and
6477  		 * the FCS needs to be stripped before sending the
6478 		 * packet up the stack.
6479 		 */
6480 		l2fhdr  = mtod(m0, struct l2_fhdr *);
6481 
6482 		/* Get the packet data + FCS length and the status. */
6483 		pkt_len = l2fhdr->l2_fhdr_pkt_len;
6484 		status  = l2fhdr->l2_fhdr_status;
6485 
6486 		/*
6487 		 * Skip over the l2_fhdr and pad, resulting in the
6488 		 * following data in the mbuf:
6489 		 * +---------------------+-----+
6490 		 * | packet data         | FCS |
6491 		 * +---------------------+-----+
6492 		 */
6493 		m_adj(m0, sizeof(struct l2_fhdr) + ETHER_ALIGN);
6494 
6495 		/*
6496  		 * When split header mode is used, an ethernet frame
6497  		 * may be split across the receive chain and the
6498  		 * page chain. If that occurs an mbuf cluster must be
6499  		 * reassembled from the individual mbuf pieces.
6500 		 */
6501 		if (bce_hdr_split == TRUE) {
6502 			/*
6503 			 * Check whether the received frame fits in a single
6504 			 * mbuf or not (i.e. packet data + FCS <=
6505 			 * sc->rx_bd_mbuf_data_len bytes).
6506 			 */
6507 			if (pkt_len > m0->m_len) {
6508 				/*
6509 				 * The received frame is larger than a single mbuf.
6510 				 * If the frame was a TCP frame then only the TCP
6511 				 * header is placed in the mbuf, the remaining
6512 				 * payload (including FCS) is placed in the page
6513 				 * chain, the SPLIT flag is set, and the header
6514 				 * length is placed in the IP checksum field.
6515 				 * If the frame is not a TCP frame then the mbuf
6516 				 * is filled and the remaining bytes are placed
6517 				 * in the page chain.
6518 				 */
6519 
6520 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a large "
6521 					"packet.\n", __FUNCTION__);
6522 				DBRUN(sc->split_header_frames_rcvd++);
6523 
6524 				/*
6525 				 * When the page chain is enabled and the TCP
6526 				 * header has been split from the TCP payload,
6527 				 * the ip_xsum structure will reflect the length
6528 				 * of the TCP header, not the IP checksum.  Set
6529 				 * the packet length of the mbuf accordingly.
6530 				 */
6531 				if (status & L2_FHDR_STATUS_SPLIT) {
6532 					m0->m_len = l2fhdr->l2_fhdr_ip_xsum;
6533 					DBRUN(sc->split_header_tcp_frames_rcvd++);
6534 				}
6535 
6536 				rem_len = pkt_len - m0->m_len;
6537 
6538 				/* Pull mbufs off the page chain for any remaining data. */
6539 				while (rem_len > 0) {
6540 					struct mbuf *m_pg;
6541 
6542 					sw_pg_cons_idx = PG_CHAIN_IDX(sw_pg_cons);
6543 
6544 					/* Remove the mbuf from the page chain. */
6545 					m_pg = sc->pg_mbuf_ptr[sw_pg_cons_idx];
6546 					sc->pg_mbuf_ptr[sw_pg_cons_idx] = NULL;
6547 					DBRUN(sc->debug_pg_mbuf_alloc--);
6548 					sc->free_pg_bd++;
6549 
6550 					/* Unmap the page chain mbuf from DMA space. */
6551 					bus_dmamap_sync(sc->pg_mbuf_tag,
6552 						sc->pg_mbuf_map[sw_pg_cons_idx],
6553 						BUS_DMASYNC_POSTREAD);
6554 					bus_dmamap_unload(sc->pg_mbuf_tag,
6555 						sc->pg_mbuf_map[sw_pg_cons_idx]);
6556 
6557 					/* Adjust the mbuf length. */
6558 					if (rem_len < m_pg->m_len) {
6559 						/* The mbuf chain is complete. */
6560 						m_pg->m_len = rem_len;
6561 						rem_len = 0;
6562 					} else {
6563 						/* More packet data is waiting. */
6564 						rem_len -= m_pg->m_len;
6565 					}
6566 
6567 					/* Concatenate the mbuf cluster to the mbuf. */
6568 					m_cat(m0, m_pg);
6569 
6570 					sw_pg_cons = NEXT_PG_BD(sw_pg_cons);
6571 				}
6572 
6573 				/* Set the total packet length. */
6574 				m0->m_pkthdr.len = pkt_len;
6575 
6576 			} else {
6577 				/*
6578 				 * The received packet is small and fits in a
6579 				 * single mbuf (i.e. the l2_fhdr + pad + packet +
6580 				 * FCS <= MHLEN).  In other words, the packet is
6581 				 * 154 bytes or less in size.
6582 				 */
6583 
6584 				DBPRINT(sc, BCE_INFO_RECV, "%s(): Found a small "
6585 					"packet.\n", __FUNCTION__);
6586 
6587 				/* Set the total packet length. */
6588 				m0->m_pkthdr.len = m0->m_len = pkt_len;
6589 			}
6590 		} else
6591 			/* Set the total packet length. */
6592 			m0->m_pkthdr.len = m0->m_len = pkt_len;
6593 
6594 		/* Remove the trailing Ethernet FCS. */
6595 		m_adj(m0, -ETHER_CRC_LEN);
6596 
6597 		/* Check that the resulting mbuf chain is valid. */
6598 		DBRUN(m_sanity(m0, FALSE));
6599 		DBRUNIF(((m0->m_len < ETHER_HDR_LEN) |
6600 		    (m0->m_pkthdr.len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
6601 		    BCE_PRINTF("Invalid Ethernet frame size!\n");
6602 		    m_print(m0, 128));
6603 
6604 		DBRUNIF(DB_RANDOMTRUE(l2fhdr_error_sim_control),
6605 		    sc->l2fhdr_error_sim_count++;
6606 		    status = status | L2_FHDR_ERRORS_PHY_DECODE);
6607 
6608 		/* Check the received frame for errors. */
6609 		if (status & (L2_FHDR_ERRORS_BAD_CRC |
6610 		    L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
6611 		    L2_FHDR_ERRORS_TOO_SHORT  | L2_FHDR_ERRORS_GIANT_FRAME)) {
6612 			/* Log the error and release the mbuf. */
6613 			sc->l2fhdr_error_count++;
6614 			m_freem(m0);
6615 			m0 = NULL;
6616 			goto bce_rx_intr_next_rx;
6617 		}
6618 
6619 		/* Send the packet to the appropriate interface. */
6620 		m0->m_pkthdr.rcvif = ifp;
6621 
6622 		/* Assume no hardware checksum. */
6623 		m0->m_pkthdr.csum_flags = 0;
6624 
6625 		/* Validate the checksum if offload enabled. */
6626 		if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
6627 			/* Check for an IP datagram. */
6628 		 	if (!(status & L2_FHDR_STATUS_SPLIT) &&
6629 			    (status & L2_FHDR_STATUS_IP_DATAGRAM)) {
6630 				m0->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
6631 				DBRUN(sc->csum_offload_ip++);
6632 				/* Check if the IP checksum is valid. */
6633 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
6634 					m0->m_pkthdr.csum_flags |=
6635 					    CSUM_IP_VALID;
6636 			}
6637 
6638 			/* Check for a valid TCP/UDP frame. */
6639 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
6640 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
6641 				/* Check for a good TCP/UDP checksum. */
6642 				if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
6643 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
6644 					DBRUN(sc->csum_offload_tcp_udp++);
6645 					m0->m_pkthdr.csum_data =
6646 					    l2fhdr->l2_fhdr_tcp_udp_xsum;
6647 					m0->m_pkthdr.csum_flags |=
6648 					    (CSUM_DATA_VALID
6649 					    | CSUM_PSEUDO_HDR);
6650 				}
6651 			}
6652 		}
6653 
6654 		/* Attach the VLAN tag.	*/
6655 		if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
6656 		    !(sc->rx_mode & BCE_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
6657 			DBRUN(sc->vlan_tagged_frames_rcvd++);
6658 			if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) {
6659 				DBRUN(sc->vlan_tagged_frames_stripped++);
6660 				m0->m_pkthdr.ether_vtag =
6661 				    l2fhdr->l2_fhdr_vlan_tag;
6662 				m0->m_flags |= M_VLANTAG;
6663 			} else {
6664 				/*
6665 				 * bce(4) controllers can't disable VLAN
6666 				 * tag stripping if management firmware
6667 				 * (ASF/IPMI/UMP) is running. So we always
6668 				 * strip VLAN tag and manually reconstruct
6669 				 * the VLAN frame by appending stripped
6670 				 * VLAN tag in driver if VLAN tag stripping
6671 				 * was disabled.
6672 				 *
6673 				 * TODO: LLC SNAP handling.
6674 				 */
6675 				bcopy(mtod(m0, uint8_t *),
6676 				    mtod(m0, uint8_t *) - ETHER_VLAN_ENCAP_LEN,
6677 				    ETHER_ADDR_LEN * 2);
6678 				m0->m_data -= ETHER_VLAN_ENCAP_LEN;
6679 				vh = mtod(m0, struct ether_vlan_header *);
6680 				vh->evl_encap_proto = htons(ETHERTYPE_VLAN);
6681 				vh->evl_tag = htons(l2fhdr->l2_fhdr_vlan_tag);
6682 				m0->m_pkthdr.len += ETHER_VLAN_ENCAP_LEN;
6683 				m0->m_len += ETHER_VLAN_ENCAP_LEN;
6684 			}
6685 		}
6686 
6687 		/* Increment received packet statistics. */
6688 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
6689 
6690 bce_rx_intr_next_rx:
6691 		sw_rx_cons = NEXT_RX_BD(sw_rx_cons);
6692 
6693 		/* If we have a packet, pass it up the stack */
6694 		if (m0) {
6695 			/* Make sure we don't lose our place when we release the lock. */
6696 			sc->rx_cons = sw_rx_cons;
6697 			sc->pg_cons = sw_pg_cons;
6698 
6699 			BCE_UNLOCK(sc);
6700 			if_input(ifp, m0);
6701 			BCE_LOCK(sc);
6702 
6703 			/* Recover our place. */
6704 			sw_rx_cons = sc->rx_cons;
6705 			sw_pg_cons = sc->pg_cons;
6706 		}
6707 
6708 		/* Refresh hw_cons to see if there's new work */
6709 		if (sw_rx_cons == hw_rx_cons)
6710 			hw_rx_cons = sc->hw_rx_cons = bce_get_hw_rx_cons(sc);
6711 	}
6712 
6713 	/* No new packets.  Refill the page chain. */
6714 	if (bce_hdr_split == TRUE) {
6715 		sc->pg_cons = sw_pg_cons;
6716 		bce_fill_pg_chain(sc);
6717 	}
6718 
6719 	/* No new packets.  Refill the RX chain. */
6720 	sc->rx_cons = sw_rx_cons;
6721 	bce_fill_rx_chain(sc);
6722 
6723 	/* Prepare the page chain pages to be accessed by the NIC. */
6724 	for (int i = 0; i < sc->rx_pages; i++)
6725 		bus_dmamap_sync(sc->rx_bd_chain_tag,
6726 		    sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6727 
6728 	if (bce_hdr_split == TRUE) {
6729 		for (int i = 0; i < sc->pg_pages; i++)
6730 			bus_dmamap_sync(sc->pg_bd_chain_tag,
6731 			    sc->pg_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
6732 	}
6733 
6734 	DBPRINT(sc, BCE_EXTREME_RECV, "%s(exit): rx_prod = 0x%04X, "
6735 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
6736 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
6737 	DBEXIT(BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
6738 }
6739 
6740 /****************************************************************************/
6741 /* Reads the transmit consumer value from the status block (skipping over   */
6742 /* chain page pointer if necessary).                                        */
6743 /*                                                                          */
6744 /* Returns:                                                                 */
6745 /*   hw_cons                                                                */
6746 /****************************************************************************/
6747 static inline u16
bce_get_hw_tx_cons(struct bce_softc * sc)6748 bce_get_hw_tx_cons(struct bce_softc *sc)
6749 {
6750 	u16 hw_cons;
6751 
6752 	mb();
6753 	hw_cons = sc->status_block->status_tx_quick_consumer_index0;
6754 	if ((hw_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6755 		hw_cons++;
6756 
6757 	return hw_cons;
6758 }
6759 
6760 /****************************************************************************/
6761 /* Handles transmit completion interrupt events.                            */
6762 /*                                                                          */
6763 /* Returns:                                                                 */
6764 /*   Nothing.                                                               */
6765 /****************************************************************************/
6766 static void
bce_tx_intr(struct bce_softc * sc)6767 bce_tx_intr(struct bce_softc *sc)
6768 {
6769 	if_t ifp = sc->bce_ifp;
6770 	u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
6771 
6772 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6773 	DBRUN(sc->interrupts_tx++);
6774 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(enter): tx_prod = 0x%04X, "
6775 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6776 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6777 
6778 	BCE_LOCK_ASSERT(sc);
6779 
6780 	/* Get the hardware's view of the TX consumer index. */
6781 	hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6782 	sw_tx_cons = sc->tx_cons;
6783 
6784 	/* Prevent speculative reads of the status block. */
6785 	bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6786 	    BUS_SPACE_BARRIER_READ);
6787 
6788 	/* Cycle through any completed TX chain page entries. */
6789 	while (sw_tx_cons != hw_tx_cons) {
6790 #ifdef BCE_DEBUG
6791 		struct tx_bd *txbd = NULL;
6792 #endif
6793 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
6794 
6795 		DBPRINT(sc, BCE_INFO_SEND,
6796 		    "%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
6797 		    "sw_tx_chain_cons = 0x%04X\n",
6798 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
6799 
6800 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD_ALLOC),
6801 		    BCE_PRINTF("%s(%d): TX chain consumer out of range! "
6802 		    " 0x%04X > 0x%04X\n", __FILE__, __LINE__, sw_tx_chain_cons,
6803 		    (int) MAX_TX_BD_ALLOC);
6804 		    bce_breakpoint(sc));
6805 
6806 		DBRUN(txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
6807 		    [TX_IDX(sw_tx_chain_cons)]);
6808 
6809 		DBRUNIF((txbd == NULL),
6810 		    BCE_PRINTF("%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
6811 		    __FILE__, __LINE__, sw_tx_chain_cons);
6812 		    bce_breakpoint(sc));
6813 
6814 		DBRUNMSG(BCE_INFO_SEND, BCE_PRINTF("%s(): ", __FUNCTION__);
6815 		    bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
6816 
6817 		/*
6818 		 * Free the associated mbuf. Remember
6819 		 * that only the last tx_bd of a packet
6820 		 * has an mbuf pointer and DMA map.
6821 		 */
6822 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
6823 			/* Validate that this is the last tx_bd. */
6824 			DBRUNIF((!(txbd->tx_bd_flags & TX_BD_FLAGS_END)),
6825 			    BCE_PRINTF("%s(%d): tx_bd END flag not set but "
6826 			    "txmbuf == NULL!\n", __FILE__, __LINE__);
6827 			    bce_breakpoint(sc));
6828 
6829 			DBRUNMSG(BCE_INFO_SEND,
6830 			    BCE_PRINTF("%s(): Unloading map/freeing mbuf "
6831 			    "from tx_bd[0x%04X]\n", __FUNCTION__,
6832 			    sw_tx_chain_cons));
6833 
6834 			/* Unmap the mbuf. */
6835 			bus_dmamap_unload(sc->tx_mbuf_tag,
6836 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
6837 
6838 			/* Free the mbuf. */
6839 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
6840 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
6841 			DBRUN(sc->debug_tx_mbuf_alloc--);
6842 
6843 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
6844 		}
6845 
6846 		sc->used_tx_bd--;
6847 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
6848 
6849 		/* Refresh hw_cons to see if there's new work. */
6850 		hw_tx_cons = sc->hw_tx_cons = bce_get_hw_tx_cons(sc);
6851 
6852 		/* Prevent speculative reads of the status block. */
6853 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
6854 		    BUS_SPACE_BARRIER_READ);
6855 	}
6856 
6857 	/* Clear the TX timeout timer. */
6858 	sc->watchdog_timer = 0;
6859 
6860 	/* Clear the tx hardware queue full flag. */
6861 	if (sc->used_tx_bd < sc->max_tx_bd) {
6862 		DBRUNIF((if_getdrvflags(ifp) & IFF_DRV_OACTIVE),
6863 		    DBPRINT(sc, BCE_INFO_SEND,
6864 		    "%s(): Open TX chain! %d/%d (used/total)\n",
6865 		    __FUNCTION__, sc->used_tx_bd, sc->max_tx_bd));
6866 		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
6867 	}
6868 
6869 	sc->tx_cons = sw_tx_cons;
6870 
6871 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(exit): tx_prod = 0x%04X, "
6872 	    "tx_cons = 0x%04X, tx_prod_bseq = 0x%08X\n",
6873 	    __FUNCTION__, sc->tx_prod, sc->tx_cons, sc->tx_prod_bseq);
6874 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_INTR);
6875 }
6876 
6877 /****************************************************************************/
6878 /* Disables interrupt generation.                                           */
6879 /*                                                                          */
6880 /* Returns:                                                                 */
6881 /*   Nothing.                                                               */
6882 /****************************************************************************/
6883 static void
bce_disable_intr(struct bce_softc * sc)6884 bce_disable_intr(struct bce_softc *sc)
6885 {
6886 	DBENTER(BCE_VERBOSE_INTR);
6887 
6888 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
6889 	REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
6890 
6891 	DBEXIT(BCE_VERBOSE_INTR);
6892 }
6893 
6894 /****************************************************************************/
6895 /* Enables interrupt generation.                                            */
6896 /*                                                                          */
6897 /* Returns:                                                                 */
6898 /*   Nothing.                                                               */
6899 /****************************************************************************/
6900 static void
bce_enable_intr(struct bce_softc * sc,int coal_now)6901 bce_enable_intr(struct bce_softc *sc, int coal_now)
6902 {
6903 	DBENTER(BCE_VERBOSE_INTR);
6904 
6905 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6906 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
6907 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
6908 
6909 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
6910 	    BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
6911 
6912 	/* Force an immediate interrupt (whether there is new data or not). */
6913 	if (coal_now)
6914 		REG_WR(sc, BCE_HC_COMMAND, sc->hc_command | BCE_HC_COMMAND_COAL_NOW);
6915 
6916 	DBEXIT(BCE_VERBOSE_INTR);
6917 }
6918 
6919 /****************************************************************************/
6920 /* Handles controller initialization.                                       */
6921 /*                                                                          */
6922 /* Returns:                                                                 */
6923 /*   Nothing.                                                               */
6924 /****************************************************************************/
6925 static void
bce_init_locked(struct bce_softc * sc)6926 bce_init_locked(struct bce_softc *sc)
6927 {
6928 	if_t ifp;
6929 	u32 ether_mtu = 0;
6930 
6931 	DBENTER(BCE_VERBOSE_RESET);
6932 
6933 	BCE_LOCK_ASSERT(sc);
6934 
6935 	ifp = sc->bce_ifp;
6936 
6937 	/* Check if the driver is still running and bail out if it is. */
6938 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6939 		goto bce_init_locked_exit;
6940 
6941 	bce_stop(sc);
6942 
6943 	if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
6944 		BCE_PRINTF("%s(%d): Controller reset failed!\n",
6945 		    __FILE__, __LINE__);
6946 		goto bce_init_locked_exit;
6947 	}
6948 
6949 	if (bce_chipinit(sc)) {
6950 		BCE_PRINTF("%s(%d): Controller initialization failed!\n",
6951 		    __FILE__, __LINE__);
6952 		goto bce_init_locked_exit;
6953 	}
6954 
6955 	if (bce_blockinit(sc)) {
6956 		BCE_PRINTF("%s(%d): Block initialization failed!\n",
6957 		    __FILE__, __LINE__);
6958 		goto bce_init_locked_exit;
6959 	}
6960 
6961 	/* Load our MAC address. */
6962 	bcopy(if_getlladdr(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
6963 	bce_set_mac_addr(sc);
6964 
6965 	if (bce_hdr_split == FALSE)
6966 		bce_get_rx_buffer_sizes(sc, if_getmtu(ifp));
6967 	/*
6968 	 * Calculate and program the hardware Ethernet MTU
6969  	 * size. Be generous on the receive if we have room
6970  	 * and allowed by the user.
6971 	 */
6972 	if (bce_strict_rx_mtu == TRUE)
6973 		ether_mtu = if_getmtu(ifp);
6974 	else {
6975 		if (bce_hdr_split == TRUE) {
6976 			if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len + MCLBYTES)
6977 				ether_mtu = sc->rx_bd_mbuf_data_len +
6978 				    MCLBYTES;
6979 			else
6980 				ether_mtu = if_getmtu(ifp);
6981 		} else {
6982 			if (if_getmtu(ifp) <= sc->rx_bd_mbuf_data_len)
6983 				ether_mtu = sc->rx_bd_mbuf_data_len;
6984 			else
6985 				ether_mtu = if_getmtu(ifp);
6986 		}
6987 	}
6988 
6989 	ether_mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
6990 
6991 	DBPRINT(sc, BCE_INFO_MISC, "%s(): setting h/w mtu = %d\n",
6992 	    __FUNCTION__, ether_mtu);
6993 
6994 	/* Program the mtu, enabling jumbo frame support if necessary. */
6995 	if (ether_mtu > (ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN))
6996 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE,
6997 		    min(ether_mtu, BCE_MAX_JUMBO_ETHER_MTU) |
6998 		    BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
6999 	else
7000 		REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
7001 
7002 	/* Program appropriate promiscuous/multicast filtering. */
7003 	bce_set_rx_mode(sc);
7004 
7005 	if (bce_hdr_split == TRUE) {
7006 		/* Init page buffer descriptor chain. */
7007 		bce_init_pg_chain(sc);
7008 	}
7009 
7010 	/* Init RX buffer descriptor chain. */
7011 	bce_init_rx_chain(sc);
7012 
7013 	/* Init TX buffer descriptor chain. */
7014 	bce_init_tx_chain(sc);
7015 
7016 	/* Enable host interrupts. */
7017 	bce_enable_intr(sc, 1);
7018 
7019 	bce_ifmedia_upd_locked(ifp);
7020 
7021 	/* Let the OS know the driver is up and running. */
7022 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
7023 	if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
7024 
7025 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
7026 
7027 bce_init_locked_exit:
7028 	DBEXIT(BCE_VERBOSE_RESET);
7029 }
7030 
7031 /****************************************************************************/
7032 /* Initialize the controller just enough so that any management firmware    */
7033 /* running on the device will continue to operate correctly.                */
7034 /*                                                                          */
7035 /* Returns:                                                                 */
7036 /*   Nothing.                                                               */
7037 /****************************************************************************/
7038 static void
bce_mgmt_init_locked(struct bce_softc * sc)7039 bce_mgmt_init_locked(struct bce_softc *sc)
7040 {
7041 	if_t ifp;
7042 
7043 	DBENTER(BCE_VERBOSE_RESET);
7044 
7045 	BCE_LOCK_ASSERT(sc);
7046 
7047 	/* Bail out if management firmware is not running. */
7048 	if (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)) {
7049 		DBPRINT(sc, BCE_VERBOSE_SPECIAL,
7050 		    "No management firmware running...\n");
7051 		goto bce_mgmt_init_locked_exit;
7052 	}
7053 
7054 	ifp = sc->bce_ifp;
7055 
7056 	/* Enable all critical blocks in the MAC. */
7057 	REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, BCE_MISC_ENABLE_DEFAULT);
7058 	REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
7059 	DELAY(20);
7060 
7061 	bce_ifmedia_upd_locked(ifp);
7062 
7063 bce_mgmt_init_locked_exit:
7064 	DBEXIT(BCE_VERBOSE_RESET);
7065 }
7066 
7067 /****************************************************************************/
7068 /* Handles controller initialization when called from an unlocked routine.  */
7069 /*                                                                          */
7070 /* Returns:                                                                 */
7071 /*   Nothing.                                                               */
7072 /****************************************************************************/
7073 static void
bce_init(void * xsc)7074 bce_init(void *xsc)
7075 {
7076 	struct bce_softc *sc = xsc;
7077 
7078 	DBENTER(BCE_VERBOSE_RESET);
7079 
7080 	BCE_LOCK(sc);
7081 	bce_init_locked(sc);
7082 	BCE_UNLOCK(sc);
7083 
7084 	DBEXIT(BCE_VERBOSE_RESET);
7085 }
7086 
7087 /****************************************************************************/
7088 /* Modifies an mbuf for TSO on the hardware.                                */
7089 /*                                                                          */
7090 /* Returns:                                                                 */
7091 /*   Pointer to a modified mbuf.                                            */
7092 /****************************************************************************/
7093 static struct mbuf *
bce_tso_setup(struct bce_softc * sc,struct mbuf ** m_head,u16 * flags)7094 bce_tso_setup(struct bce_softc *sc, struct mbuf **m_head, u16 *flags)
7095 {
7096 	struct mbuf *m;
7097 	struct ether_header *eh;
7098 	struct ip *ip;
7099 	struct tcphdr *th;
7100 	u16 etype;
7101 	int hdr_len __unused, ip_len __unused, ip_hlen = 0, tcp_hlen = 0;
7102 
7103 	DBRUN(sc->tso_frames_requested++);
7104 
7105 	ip_len = 0;
7106 	/* Controller may modify mbuf chains. */
7107 	if (M_WRITABLE(*m_head) == 0) {
7108 		m = m_dup(*m_head, M_NOWAIT);
7109 		m_freem(*m_head);
7110 		if (m == NULL) {
7111 			sc->mbuf_alloc_failed_count++;
7112 			*m_head = NULL;
7113 			return (NULL);
7114 		}
7115 		*m_head = m;
7116 	}
7117 
7118 	/*
7119 	 * For TSO the controller needs two pieces of info,
7120 	 * the MSS and the IP+TCP options length.
7121 	 */
7122 	m = m_pullup(*m_head, sizeof(struct ether_header) + sizeof(struct ip));
7123 	if (m == NULL) {
7124 		*m_head = NULL;
7125 		return (NULL);
7126 	}
7127 	eh = mtod(m, struct ether_header *);
7128 	etype = ntohs(eh->ether_type);
7129 
7130 	/* Check for supported TSO Ethernet types (only IPv4 for now) */
7131 	switch (etype) {
7132 	case ETHERTYPE_IP:
7133 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7134 		/* TSO only supported for TCP protocol. */
7135 		if (ip->ip_p != IPPROTO_TCP) {
7136 			BCE_PRINTF("%s(%d): TSO enabled for non-TCP frame!.\n",
7137 			    __FILE__, __LINE__);
7138 			m_freem(*m_head);
7139 			*m_head = NULL;
7140 			return (NULL);
7141 		}
7142 
7143 		/* Get IP header length in bytes (min 20) */
7144 		ip_hlen = ip->ip_hl << 2;
7145 		m = m_pullup(*m_head, sizeof(struct ether_header) + ip_hlen +
7146 		    sizeof(struct tcphdr));
7147 		if (m == NULL) {
7148 			*m_head = NULL;
7149 			return (NULL);
7150 		}
7151 
7152 		/* Get the TCP header length in bytes (min 20) */
7153 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7154 		th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
7155 		tcp_hlen = (th->th_off << 2);
7156 
7157 		/* Make sure all IP/TCP options live in the same buffer. */
7158 		m = m_pullup(*m_head,  sizeof(struct ether_header)+ ip_hlen +
7159 		    tcp_hlen);
7160 		if (m == NULL) {
7161 			*m_head = NULL;
7162 			return (NULL);
7163 		}
7164 
7165 		/* Clear IP header length and checksum, will be calc'd by h/w. */
7166 		ip = (struct ip *)(m->m_data + sizeof(struct ether_header));
7167 		ip_len = ip->ip_len;
7168 		ip->ip_len = 0;
7169 		ip->ip_sum = 0;
7170 		break;
7171 	case ETHERTYPE_IPV6:
7172 		BCE_PRINTF("%s(%d): TSO over IPv6 not supported!.\n",
7173 		    __FILE__, __LINE__);
7174 		m_freem(*m_head);
7175 		*m_head = NULL;
7176 		return (NULL);
7177 		/* NOT REACHED */
7178 	default:
7179 		BCE_PRINTF("%s(%d): TSO enabled for unsupported protocol!.\n",
7180 		    __FILE__, __LINE__);
7181 		m_freem(*m_head);
7182 		*m_head = NULL;
7183 		return (NULL);
7184 	}
7185 
7186 	hdr_len = sizeof(struct ether_header) + ip_hlen + tcp_hlen;
7187 
7188 	DBPRINT(sc, BCE_EXTREME_SEND, "%s(): hdr_len = %d, e_hlen = %d, "
7189 	    "ip_hlen = %d, tcp_hlen = %d, ip_len = %d\n",
7190 	    __FUNCTION__, hdr_len, (int) sizeof(struct ether_header), ip_hlen,
7191 	    tcp_hlen, ip_len);
7192 
7193 	/* Set the LSO flag in the TX BD */
7194 	*flags |= TX_BD_FLAGS_SW_LSO;
7195 
7196 	/* Set the length of IP + TCP options (in 32 bit words) */
7197 	*flags |= (((ip_hlen + tcp_hlen - sizeof(struct ip) -
7198 	    sizeof(struct tcphdr)) >> 2) << 8);
7199 
7200 	DBRUN(sc->tso_frames_completed++);
7201 	return (*m_head);
7202 }
7203 
7204 /****************************************************************************/
7205 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
7206 /* memory visible to the controller.                                        */
7207 /*                                                                          */
7208 /* Returns:                                                                 */
7209 /*   0 for success, positive value for failure.                             */
7210 /* Modified:                                                                */
7211 /*   m_head: May be set to NULL if MBUF is excessively fragmented.          */
7212 /****************************************************************************/
7213 static int
bce_tx_encap(struct bce_softc * sc,struct mbuf ** m_head)7214 bce_tx_encap(struct bce_softc *sc, struct mbuf **m_head)
7215 {
7216 	bus_dma_segment_t segs[BCE_MAX_SEGMENTS];
7217 	bus_dmamap_t map;
7218 	struct tx_bd *txbd = NULL;
7219 	struct mbuf *m0;
7220 	u16 prod, chain_prod, mss = 0, vlan_tag = 0, flags = 0;
7221 	u32 prod_bseq;
7222 
7223 #ifdef BCE_DEBUG
7224 	u16 debug_prod;
7225 #endif
7226 
7227 	int i, error, nsegs, rc = 0;
7228 
7229 	DBENTER(BCE_VERBOSE_SEND);
7230 
7231 	/* Make sure we have room in the TX chain. */
7232 	if (sc->used_tx_bd >= sc->max_tx_bd)
7233 		goto bce_tx_encap_exit;
7234 
7235 	/* Transfer any checksum offload flags to the bd. */
7236 	m0 = *m_head;
7237 	if (m0->m_pkthdr.csum_flags) {
7238 		if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
7239 			m0 = bce_tso_setup(sc, m_head, &flags);
7240 			if (m0 == NULL) {
7241 				DBRUN(sc->tso_frames_failed++);
7242 				goto bce_tx_encap_exit;
7243 			}
7244 			mss = htole16(m0->m_pkthdr.tso_segsz);
7245 		} else {
7246 			if (m0->m_pkthdr.csum_flags & CSUM_IP)
7247 				flags |= TX_BD_FLAGS_IP_CKSUM;
7248 			if (m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
7249 				flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
7250 		}
7251 	}
7252 
7253 	/* Transfer any VLAN tags to the bd. */
7254 	if (m0->m_flags & M_VLANTAG) {
7255 		flags |= TX_BD_FLAGS_VLAN_TAG;
7256 		vlan_tag = m0->m_pkthdr.ether_vtag;
7257 	}
7258 
7259 	/* Map the mbuf into DMAable memory. */
7260 	prod = sc->tx_prod;
7261 	chain_prod = TX_CHAIN_IDX(prod);
7262 	map = sc->tx_mbuf_map[chain_prod];
7263 
7264 	/* Map the mbuf into our DMA address space. */
7265 	error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag, map, m0,
7266 	    segs, &nsegs, BUS_DMA_NOWAIT);
7267 
7268 	/* Check if the DMA mapping was successful */
7269 	if (error == EFBIG) {
7270 		sc->mbuf_frag_count++;
7271 
7272 		/* Try to defrag the mbuf. */
7273 		m0 = m_collapse(*m_head, M_NOWAIT, BCE_MAX_SEGMENTS);
7274 		if (m0 == NULL) {
7275 			/* Defrag was unsuccessful */
7276 			m_freem(*m_head);
7277 			*m_head = NULL;
7278 			sc->mbuf_alloc_failed_count++;
7279 			rc = ENOBUFS;
7280 			goto bce_tx_encap_exit;
7281 		}
7282 
7283 		/* Defrag was successful, try mapping again */
7284 		*m_head = m0;
7285 		error = bus_dmamap_load_mbuf_sg(sc->tx_mbuf_tag,
7286 		    map, m0, segs, &nsegs, BUS_DMA_NOWAIT);
7287 
7288 		/* Still getting an error after a defrag. */
7289 		if (error == ENOMEM) {
7290 			/* Insufficient DMA buffers available. */
7291 			sc->dma_map_addr_tx_failed_count++;
7292 			rc = error;
7293 			goto bce_tx_encap_exit;
7294 		} else if (error != 0) {
7295 			/* Release it and return an error. */
7296 			BCE_PRINTF("%s(%d): Unknown error mapping mbuf into "
7297 			    "TX chain!\n", __FILE__, __LINE__);
7298 			m_freem(m0);
7299 			*m_head = NULL;
7300 			sc->dma_map_addr_tx_failed_count++;
7301 			rc = ENOBUFS;
7302 			goto bce_tx_encap_exit;
7303 		}
7304 	} else if (error == ENOMEM) {
7305 		/* Insufficient DMA buffers available. */
7306 		sc->dma_map_addr_tx_failed_count++;
7307 		rc = error;
7308 		goto bce_tx_encap_exit;
7309 	} else if (error != 0) {
7310 		m_freem(m0);
7311 		*m_head = NULL;
7312 		sc->dma_map_addr_tx_failed_count++;
7313 		rc = error;
7314 		goto bce_tx_encap_exit;
7315 	}
7316 
7317 	/* Make sure there's room in the chain */
7318 	if (nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
7319 		bus_dmamap_unload(sc->tx_mbuf_tag, map);
7320 		rc = ENOBUFS;
7321 		goto bce_tx_encap_exit;
7322 	}
7323 
7324 	/* prod points to an empty tx_bd at this point. */
7325 	prod_bseq  = sc->tx_prod_bseq;
7326 
7327 #ifdef BCE_DEBUG
7328 	debug_prod = chain_prod;
7329 #endif
7330 
7331 	DBPRINT(sc, BCE_INFO_SEND,
7332 	    "%s(start): prod = 0x%04X, chain_prod = 0x%04X, "
7333 	    "prod_bseq = 0x%08X\n",
7334 	    __FUNCTION__, prod, chain_prod, prod_bseq);
7335 
7336 	/*
7337 	 * Cycle through each mbuf segment that makes up
7338 	 * the outgoing frame, gathering the mapping info
7339 	 * for that segment and creating a tx_bd for
7340 	 * the mbuf.
7341 	 */
7342 	for (i = 0; i < nsegs ; i++) {
7343 		chain_prod = TX_CHAIN_IDX(prod);
7344 		txbd= &sc->tx_bd_chain[TX_PAGE(chain_prod)]
7345 		    [TX_IDX(chain_prod)];
7346 
7347 		txbd->tx_bd_haddr_lo =
7348 		    htole32(BCE_ADDR_LO(segs[i].ds_addr));
7349 		txbd->tx_bd_haddr_hi =
7350 		    htole32(BCE_ADDR_HI(segs[i].ds_addr));
7351 		txbd->tx_bd_mss_nbytes = htole32(mss << 16) |
7352 		    htole16(segs[i].ds_len);
7353 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
7354 		txbd->tx_bd_flags = htole16(flags);
7355 		prod_bseq += segs[i].ds_len;
7356 		if (i == 0)
7357 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
7358 		prod = NEXT_TX_BD(prod);
7359 	}
7360 
7361 	/* Set the END flag on the last TX buffer descriptor. */
7362 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
7363 
7364 	DBRUNMSG(BCE_EXTREME_SEND,
7365 	    bce_dump_tx_chain(sc, debug_prod, nsegs));
7366 
7367 	/*
7368 	 * Ensure that the mbuf pointer for this transmission
7369 	 * is placed at the array index of the last
7370 	 * descriptor in this chain.  This is done
7371 	 * because a single map is used for all
7372 	 * segments of the mbuf and we don't want to
7373 	 * unload the map before all of the segments
7374 	 * have been freed.
7375 	 */
7376 	sc->tx_mbuf_ptr[chain_prod] = m0;
7377 	sc->used_tx_bd += nsegs;
7378 
7379 	/* Update some debug statistic counters */
7380 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
7381 	    sc->tx_hi_watermark = sc->used_tx_bd);
7382 	DBRUNIF((sc->used_tx_bd == sc->max_tx_bd), sc->tx_full_count++);
7383 	DBRUNIF(sc->debug_tx_mbuf_alloc++);
7384 
7385 	DBRUNMSG(BCE_EXTREME_SEND, bce_dump_tx_mbuf_chain(sc, chain_prod, 1));
7386 
7387 	/* prod points to the next free tx_bd at this point. */
7388 	sc->tx_prod = prod;
7389 	sc->tx_prod_bseq = prod_bseq;
7390 
7391 	/* Tell the chip about the waiting TX frames. */
7392 	REG_WR16(sc, MB_GET_CID_ADDR(TX_CID) +
7393 	    BCE_L2MQ_TX_HOST_BIDX, sc->tx_prod);
7394 	REG_WR(sc, MB_GET_CID_ADDR(TX_CID) +
7395 	    BCE_L2MQ_TX_HOST_BSEQ, sc->tx_prod_bseq);
7396 
7397 bce_tx_encap_exit:
7398 	DBEXIT(BCE_VERBOSE_SEND);
7399 	return(rc);
7400 }
7401 
7402 /****************************************************************************/
7403 /* Main transmit routine when called from another routine with a lock.      */
7404 /*                                                                          */
7405 /* Returns:                                                                 */
7406 /*   Nothing.                                                               */
7407 /****************************************************************************/
7408 static void
bce_start_locked(if_t ifp)7409 bce_start_locked(if_t ifp)
7410 {
7411 	struct bce_softc *sc = if_getsoftc(ifp);
7412 	struct mbuf *m_head = NULL;
7413 	int count = 0;
7414 	u16 tx_prod, tx_chain_prod __unused;
7415 
7416 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7417 
7418 	BCE_LOCK_ASSERT(sc);
7419 
7420 	/* prod points to the next free tx_bd. */
7421 	tx_prod = sc->tx_prod;
7422 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
7423 
7424 	DBPRINT(sc, BCE_INFO_SEND,
7425 	    "%s(enter): tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
7426 	    "tx_prod_bseq = 0x%08X\n",
7427 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
7428 
7429 	/* If there's no link or the transmit queue is empty then just exit. */
7430 	if (sc->bce_link_up == FALSE) {
7431 		DBPRINT(sc, BCE_INFO_SEND, "%s(): No link.\n",
7432 		    __FUNCTION__);
7433 		goto bce_start_locked_exit;
7434 	}
7435 
7436 	if (if_sendq_empty(ifp)) {
7437 		DBPRINT(sc, BCE_INFO_SEND, "%s(): Transmit queue empty.\n",
7438 		    __FUNCTION__);
7439 		goto bce_start_locked_exit;
7440 	}
7441 
7442 	/*
7443 	 * Keep adding entries while there is space in the ring.
7444 	 */
7445 	while (sc->used_tx_bd < sc->max_tx_bd) {
7446 		/* Check for any frames to send. */
7447 		m_head = if_dequeue(ifp);
7448 
7449 		/* Stop when the transmit queue is empty. */
7450 		if (m_head == NULL)
7451 			break;
7452 
7453 		/*
7454 		 * Pack the data into the transmit ring. If we
7455 		 * don't have room, place the mbuf back at the
7456 		 * head of the queue and set the OACTIVE flag
7457 		 * to wait for the NIC to drain the chain.
7458 		 */
7459 		if (bce_tx_encap(sc, &m_head)) {
7460 			if (m_head != NULL)
7461 				if_sendq_prepend(ifp, m_head);
7462 			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
7463 			DBPRINT(sc, BCE_INFO_SEND,
7464 			    "TX chain is closed for business! Total "
7465 			    "tx_bd used = %d\n", sc->used_tx_bd);
7466 			break;
7467 		}
7468 
7469 		count++;
7470 
7471 		/* Send a copy of the frame to any BPF listeners. */
7472 		ETHER_BPF_MTAP(ifp, m_head);
7473 	}
7474 
7475 	/* Exit if no packets were dequeued. */
7476 	if (count == 0) {
7477 		DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were "
7478 		    "dequeued\n", __FUNCTION__);
7479 		goto bce_start_locked_exit;
7480 	}
7481 
7482 	DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): Inserted %d frames into "
7483 	    "send queue.\n", __FUNCTION__, count);
7484 
7485 	/* Set the tx timeout. */
7486 	sc->watchdog_timer = BCE_TX_TIMEOUT;
7487 
7488 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_ctx(sc, TX_CID));
7489 	DBRUNMSG(BCE_VERBOSE_SEND, bce_dump_mq_regs(sc));
7490 
7491 bce_start_locked_exit:
7492 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_CTX);
7493 }
7494 
7495 /****************************************************************************/
7496 /* Main transmit routine when called from another routine without a lock.   */
7497 /*                                                                          */
7498 /* Returns:                                                                 */
7499 /*   Nothing.                                                               */
7500 /****************************************************************************/
7501 static void
bce_start(if_t ifp)7502 bce_start(if_t ifp)
7503 {
7504 	struct bce_softc *sc = if_getsoftc(ifp);
7505 
7506 	DBENTER(BCE_VERBOSE_SEND);
7507 
7508 	BCE_LOCK(sc);
7509 	bce_start_locked(ifp);
7510 	BCE_UNLOCK(sc);
7511 
7512 	DBEXIT(BCE_VERBOSE_SEND);
7513 }
7514 
7515 /****************************************************************************/
7516 /* Handles any IOCTL calls from the operating system.                       */
7517 /*                                                                          */
7518 /* Returns:                                                                 */
7519 /*   0 for success, positive value for failure.                             */
7520 /****************************************************************************/
7521 static int
bce_ioctl(if_t ifp,u_long command,caddr_t data)7522 bce_ioctl(if_t ifp, u_long command, caddr_t data)
7523 {
7524 	struct bce_softc *sc = if_getsoftc(ifp);
7525 	struct ifreq *ifr = (struct ifreq *) data;
7526 	struct mii_data *mii;
7527 	int mask, error = 0;
7528 
7529 	DBENTER(BCE_VERBOSE_MISC);
7530 
7531 	switch(command) {
7532 	/* Set the interface MTU. */
7533 	case SIOCSIFMTU:
7534 		/* Check that the MTU setting is supported. */
7535 		if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
7536 			(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
7537 			error = EINVAL;
7538 			break;
7539 		}
7540 
7541 		DBPRINT(sc, BCE_INFO_MISC,
7542 		    "SIOCSIFMTU: Changing MTU from %d to %d\n",
7543 		    (int) if_getmtu(ifp), (int) ifr->ifr_mtu);
7544 
7545 		BCE_LOCK(sc);
7546 		if_setmtu(ifp, ifr->ifr_mtu);
7547 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7548 			if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
7549 			bce_init_locked(sc);
7550 		}
7551 		BCE_UNLOCK(sc);
7552 		break;
7553 
7554 	/* Set interface flags. */
7555 	case SIOCSIFFLAGS:
7556 		DBPRINT(sc, BCE_VERBOSE_SPECIAL, "Received SIOCSIFFLAGS\n");
7557 
7558 		BCE_LOCK(sc);
7559 
7560 		/* Check if the interface is up. */
7561 		if (if_getflags(ifp) & IFF_UP) {
7562 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7563 				/* Change promiscuous/multicast flags as necessary. */
7564 				bce_set_rx_mode(sc);
7565 			} else {
7566 				/* Start the HW */
7567 				bce_init_locked(sc);
7568 			}
7569 		} else {
7570 			/* The interface is down, check if driver is running. */
7571 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
7572 				bce_stop(sc);
7573 
7574 				/* If MFW is running, restart the controller a bit. */
7575 				if (sc->bce_flags & BCE_MFW_ENABLE_FLAG) {
7576 					bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
7577 					bce_chipinit(sc);
7578 					bce_mgmt_init_locked(sc);
7579 				}
7580 			}
7581 		}
7582 
7583 		BCE_UNLOCK(sc);
7584 		break;
7585 
7586 	/* Add/Delete multicast address */
7587 	case SIOCADDMULTI:
7588 	case SIOCDELMULTI:
7589 		DBPRINT(sc, BCE_VERBOSE_MISC,
7590 		    "Received SIOCADDMULTI/SIOCDELMULTI\n");
7591 
7592 		BCE_LOCK(sc);
7593 		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
7594 			bce_set_rx_mode(sc);
7595 		BCE_UNLOCK(sc);
7596 
7597 		break;
7598 
7599 	/* Set/Get Interface media */
7600 	case SIOCSIFMEDIA:
7601 	case SIOCGIFMEDIA:
7602 		DBPRINT(sc, BCE_VERBOSE_MISC,
7603 		    "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
7604 		if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0)
7605 			error = ifmedia_ioctl(ifp, ifr, &sc->bce_ifmedia,
7606 			    command);
7607 		else {
7608 			mii = device_get_softc(sc->bce_miibus);
7609 			error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
7610 			    command);
7611 		}
7612 		break;
7613 
7614 	/* Set interface capability */
7615 	case SIOCSIFCAP:
7616 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
7617 		DBPRINT(sc, BCE_INFO_MISC,
7618 		    "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
7619 
7620 		/* Toggle the TX checksum capabilities enable flag. */
7621 		if (mask & IFCAP_TXCSUM &&
7622 		    if_getcapabilities(ifp) & IFCAP_TXCSUM) {
7623 			if_togglecapenable(ifp, IFCAP_TXCSUM);
7624 			if (IFCAP_TXCSUM & if_getcapenable(ifp))
7625 				if_sethwassistbits(ifp, BCE_IF_HWASSIST, 0);
7626 			else
7627 				if_sethwassistbits(ifp, 0, BCE_IF_HWASSIST);
7628 		}
7629 
7630 		/* Toggle the RX checksum capabilities enable flag. */
7631 		if (mask & IFCAP_RXCSUM &&
7632 		    if_getcapabilities(ifp) & IFCAP_RXCSUM)
7633 			if_togglecapenable(ifp, IFCAP_RXCSUM);
7634 
7635 		/* Toggle the TSO capabilities enable flag. */
7636 		if (bce_tso_enable && (mask & IFCAP_TSO4) &&
7637 		    if_getcapabilities(ifp) & IFCAP_TSO4) {
7638 			if_togglecapenable(ifp, IFCAP_TSO4);
7639 			if (IFCAP_TSO4 & if_getcapenable(ifp))
7640 				if_sethwassistbits(ifp, CSUM_TSO, 0);
7641 			else
7642 				if_sethwassistbits(ifp, 0, CSUM_TSO);
7643 		}
7644 
7645 		if (mask & IFCAP_VLAN_HWCSUM &&
7646 		    if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM)
7647 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
7648 
7649 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
7650 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
7651 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
7652 		/*
7653 		 * Don't actually disable VLAN tag stripping as
7654 		 * management firmware (ASF/IPMI/UMP) requires the
7655 		 * feature. If VLAN tag stripping is disabled driver
7656 		 * will manually reconstruct the VLAN frame by
7657 		 * appending stripped VLAN tag.
7658 		 */
7659 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
7660 		    (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING)) {
7661 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
7662 			if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
7663 			    == 0)
7664 				if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
7665 		}
7666 		VLAN_CAPABILITIES(ifp);
7667 		break;
7668 	default:
7669 		/* We don't know how to handle the IOCTL, pass it on. */
7670 		error = ether_ioctl(ifp, command, data);
7671 		break;
7672 	}
7673 
7674 	DBEXIT(BCE_VERBOSE_MISC);
7675 	return(error);
7676 }
7677 
7678 /****************************************************************************/
7679 /* Transmit timeout handler.                                                */
7680 /*                                                                          */
7681 /* Returns:                                                                 */
7682 /*   Nothing.                                                               */
7683 /****************************************************************************/
7684 static void
bce_watchdog(struct bce_softc * sc)7685 bce_watchdog(struct bce_softc *sc)
7686 {
7687 	uint32_t status;
7688 
7689 	DBENTER(BCE_EXTREME_SEND);
7690 
7691 	BCE_LOCK_ASSERT(sc);
7692 
7693 	status = 0;
7694 	/* If the watchdog timer hasn't expired then just exit. */
7695 	if (sc->watchdog_timer == 0 || --sc->watchdog_timer)
7696 		goto bce_watchdog_exit;
7697 
7698 	status = REG_RD(sc, BCE_EMAC_RX_STATUS);
7699 	/* If pause frames are active then don't reset the hardware. */
7700 	if ((sc->bce_flags & BCE_USING_RX_FLOW_CONTROL) != 0) {
7701 		if ((status & BCE_EMAC_RX_STATUS_FFED) != 0) {
7702 			/*
7703 			 * If link partner has us in XOFF state then wait for
7704 			 * the condition to clear.
7705 			 */
7706 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7707 			goto bce_watchdog_exit;
7708 		} else if ((status & BCE_EMAC_RX_STATUS_FF_RECEIVED) != 0 &&
7709 			(status & BCE_EMAC_RX_STATUS_N_RECEIVED) != 0) {
7710 			/*
7711 			 * If we're not currently XOFF'ed but have recently
7712 			 * been XOFF'd/XON'd then assume that's delaying TX
7713 			 * this time around.
7714 			 */
7715 			sc->watchdog_timer = BCE_TX_TIMEOUT;
7716 			goto bce_watchdog_exit;
7717 		}
7718 		/*
7719 		 * Any other condition is unexpected and the controller
7720 		 * should be reset.
7721 		 */
7722 	}
7723 
7724 	BCE_PRINTF("%s(%d): Watchdog timeout occurred, resetting!\n",
7725 	    __FILE__, __LINE__);
7726 
7727 	DBRUNMSG(BCE_INFO,
7728 	    bce_dump_driver_state(sc);
7729 	    bce_dump_status_block(sc);
7730 	    bce_dump_stats_block(sc);
7731 	    bce_dump_ftqs(sc);
7732 	    bce_dump_txp_state(sc, 0);
7733 	    bce_dump_rxp_state(sc, 0);
7734 	    bce_dump_tpat_state(sc, 0);
7735 	    bce_dump_cp_state(sc, 0);
7736 	    bce_dump_com_state(sc, 0));
7737 
7738 	DBRUN(bce_breakpoint(sc));
7739 
7740 	if_setdrvflagbits(sc->bce_ifp, 0, IFF_DRV_RUNNING);
7741 
7742 	bce_init_locked(sc);
7743 	sc->watchdog_timeouts++;
7744 
7745 bce_watchdog_exit:
7746 	REG_WR(sc, BCE_EMAC_RX_STATUS, status);
7747 	DBEXIT(BCE_EXTREME_SEND);
7748 }
7749 
7750 /*
7751  * Interrupt handler.
7752  */
7753 /****************************************************************************/
7754 /* Main interrupt entry point.  Verifies that the controller generated the  */
7755 /* interrupt and then calls a separate routine for handle the various       */
7756 /* interrupt causes (PHY, TX, RX).                                          */
7757 /*                                                                          */
7758 /* Returns:                                                                 */
7759 /*   Nothing.                                                               */
7760 /****************************************************************************/
7761 static void
bce_intr(void * xsc)7762 bce_intr(void *xsc)
7763 {
7764 	struct bce_softc *sc;
7765 	if_t ifp;
7766 	u32 status_attn_bits;
7767 	u16 hw_rx_cons, hw_tx_cons;
7768 
7769 	sc = xsc;
7770 	ifp = sc->bce_ifp;
7771 
7772 	DBENTER(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7773 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
7774 	DBRUNMSG(BCE_VERBOSE_INTR, bce_dump_stats_block(sc));
7775 
7776 	BCE_LOCK(sc);
7777 
7778 	DBRUN(sc->interrupts_generated++);
7779 
7780 	/* Synchnorize before we read from interface's status block */
7781 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
7782 
7783 	/*
7784 	 * If the hardware status block index matches the last value read
7785 	 * by the driver and we haven't asserted our interrupt then there's
7786 	 * nothing to do.  This may only happen in case of INTx due to the
7787 	 * interrupt arriving at the CPU before the status block is updated.
7788 	 */
7789 	if ((sc->bce_flags & (BCE_USING_MSI_FLAG | BCE_USING_MSIX_FLAG)) == 0 &&
7790 	    sc->status_block->status_idx == sc->last_status_idx &&
7791 	    (REG_RD(sc, BCE_PCICFG_MISC_STATUS) &
7792 	     BCE_PCICFG_MISC_STATUS_INTA_VALUE)) {
7793 		DBPRINT(sc, BCE_VERBOSE_INTR, "%s(): Spurious interrupt.\n",
7794 		    __FUNCTION__);
7795 		goto bce_intr_exit;
7796 	}
7797 
7798 	/* Ack the interrupt and stop others from occurring. */
7799 	REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
7800 	    BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
7801 	    BCE_PCICFG_INT_ACK_CMD_MASK_INT);
7802 
7803 	/* Check if the hardware has finished any work. */
7804 	hw_rx_cons = bce_get_hw_rx_cons(sc);
7805 	hw_tx_cons = bce_get_hw_tx_cons(sc);
7806 
7807 	/* Keep processing data as long as there is work to do. */
7808 	for (;;) {
7809 		status_attn_bits = sc->status_block->status_attn_bits;
7810 
7811 		DBRUNIF(DB_RANDOMTRUE(unexpected_attention_sim_control),
7812 		    BCE_PRINTF("Simulating unexpected status attention "
7813 		    "bit set.");
7814 		    sc->unexpected_attention_sim_count++;
7815 		    status_attn_bits = status_attn_bits |
7816 		    STATUS_ATTN_BITS_PARITY_ERROR);
7817 
7818 		/* Was it a link change interrupt? */
7819 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
7820 		    (sc->status_block->status_attn_bits_ack &
7821 		     STATUS_ATTN_BITS_LINK_STATE)) {
7822 			bce_phy_intr(sc);
7823 
7824 			/* Clear transient updates during link state change. */
7825 			REG_WR(sc, BCE_HC_COMMAND, sc->hc_command |
7826 			    BCE_HC_COMMAND_COAL_NOW_WO_INT);
7827 			REG_RD(sc, BCE_HC_COMMAND);
7828 		}
7829 
7830 		/* If any other attention is asserted, the chip is toast. */
7831 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
7832 		    (sc->status_block->status_attn_bits_ack &
7833 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
7834 			sc->unexpected_attention_count++;
7835 
7836 			BCE_PRINTF("%s(%d): Fatal attention detected: "
7837 			    "0x%08X\n",	__FILE__, __LINE__,
7838 			    sc->status_block->status_attn_bits);
7839 
7840 			DBRUNMSG(BCE_FATAL,
7841 			    if (unexpected_attention_sim_control == 0)
7842 				bce_breakpoint(sc));
7843 
7844 			bce_init_locked(sc);
7845 			goto bce_intr_exit;
7846 		}
7847 
7848 		/* Check for any completed RX frames. */
7849 		if (hw_rx_cons != sc->hw_rx_cons)
7850 			bce_rx_intr(sc);
7851 
7852 		/* Check for any completed TX frames. */
7853 		if (hw_tx_cons != sc->hw_tx_cons)
7854 			bce_tx_intr(sc);
7855 
7856 		/* Save status block index value for the next interrupt. */
7857 		sc->last_status_idx = sc->status_block->status_idx;
7858 
7859  		/*
7860  		 * Prevent speculative reads from getting
7861  		 * ahead of the status block.
7862 		 */
7863 		bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
7864 		    BUS_SPACE_BARRIER_READ);
7865 
7866  		/*
7867  		 * If there's no work left then exit the
7868  		 * interrupt service routine.
7869 		 */
7870 		hw_rx_cons = bce_get_hw_rx_cons(sc);
7871 		hw_tx_cons = bce_get_hw_tx_cons(sc);
7872 
7873 		if ((hw_rx_cons == sc->hw_rx_cons) &&
7874 		    (hw_tx_cons == sc->hw_tx_cons))
7875 			break;
7876 	}
7877 
7878 	bus_dmamap_sync(sc->status_tag,	sc->status_map, BUS_DMASYNC_PREREAD);
7879 
7880 	/* Re-enable interrupts. */
7881 	bce_enable_intr(sc, 0);
7882 
7883 	/* Handle any frames that arrived while handling the interrupt. */
7884 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
7885 	    !if_sendq_empty(ifp))
7886 		bce_start_locked(ifp);
7887 
7888 bce_intr_exit:
7889 	BCE_UNLOCK(sc);
7890 
7891 	DBEXIT(BCE_VERBOSE_SEND | BCE_VERBOSE_RECV | BCE_VERBOSE_INTR);
7892 }
7893 
7894 /****************************************************************************/
7895 /* Programs the various packet receive modes (broadcast and multicast).     */
7896 /*                                                                          */
7897 /* Returns:                                                                 */
7898 /*   Nothing.                                                               */
7899 /****************************************************************************/
7900 static u_int
bce_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)7901 bce_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
7902 {
7903 	u32 *hashes = arg;
7904 	int h;
7905 
7906 	h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0xFF;
7907 	hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
7908 
7909 	return (1);
7910 }
7911 
7912 static void
bce_set_rx_mode(struct bce_softc * sc)7913 bce_set_rx_mode(struct bce_softc *sc)
7914 {
7915 	if_t ifp;
7916 	u32 hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
7917 	u32 rx_mode, sort_mode;
7918 	int i;
7919 
7920 	DBENTER(BCE_VERBOSE_MISC);
7921 
7922 	BCE_LOCK_ASSERT(sc);
7923 
7924 	ifp = sc->bce_ifp;
7925 
7926 	/* Initialize receive mode default settings. */
7927 	rx_mode   = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
7928 	    BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
7929 	sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
7930 
7931 	/*
7932 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
7933 	 * be enbled.
7934 	 */
7935 	if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
7936 	    (!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
7937 		rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
7938 
7939 	/*
7940 	 * Check for promiscuous, all multicast, or selected
7941 	 * multicast address filtering.
7942 	 */
7943 	if (if_getflags(ifp) & IFF_PROMISC) {
7944 		DBPRINT(sc, BCE_INFO_MISC, "Enabling promiscuous mode.\n");
7945 
7946 		/* Enable promiscuous mode. */
7947 		rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
7948 		sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
7949 	} else if (if_getflags(ifp) & IFF_ALLMULTI) {
7950 		DBPRINT(sc, BCE_INFO_MISC, "Enabling all multicast mode.\n");
7951 
7952 		/* Enable all multicast addresses. */
7953 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
7954 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4),
7955 			    0xffffffff);
7956 		}
7957 		sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
7958 	} else {
7959 		/* Accept one or more multicast(s). */
7960 		DBPRINT(sc, BCE_INFO_MISC, "Enabling selective multicast mode.\n");
7961 		if_foreach_llmaddr(ifp, bce_hash_maddr, hashes);
7962 
7963 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
7964 			REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
7965 
7966 		sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
7967 	}
7968 
7969 	/* Only make changes if the recive mode has actually changed. */
7970 	if (rx_mode != sc->rx_mode) {
7971 		DBPRINT(sc, BCE_VERBOSE_MISC, "Enabling new receive mode: "
7972 		    "0x%08X\n", rx_mode);
7973 
7974 		sc->rx_mode = rx_mode;
7975 		REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
7976 	}
7977 
7978 	/* Disable and clear the existing sort before enabling a new sort. */
7979 	REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
7980 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
7981 	REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
7982 
7983 	DBEXIT(BCE_VERBOSE_MISC);
7984 }
7985 
7986 /****************************************************************************/
7987 /* Called periodically to updates statistics from the controllers           */
7988 /* statistics block.                                                        */
7989 /*                                                                          */
7990 /* Returns:                                                                 */
7991 /*   Nothing.                                                               */
7992 /****************************************************************************/
7993 static void
bce_stats_update(struct bce_softc * sc)7994 bce_stats_update(struct bce_softc *sc)
7995 {
7996 	struct statistics_block *stats;
7997 
7998 	DBENTER(BCE_EXTREME_MISC);
7999 
8000 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
8001 
8002 	stats = (struct statistics_block *) sc->stats_block;
8003 
8004 	/*
8005 	 * Update the sysctl statistics from the
8006 	 * hardware statistics.
8007 	 */
8008 	sc->stat_IfHCInOctets =
8009 	    ((u64) stats->stat_IfHCInOctets_hi << 32) +
8010 	     (u64) stats->stat_IfHCInOctets_lo;
8011 
8012 	sc->stat_IfHCInBadOctets =
8013 	    ((u64) stats->stat_IfHCInBadOctets_hi << 32) +
8014 	     (u64) stats->stat_IfHCInBadOctets_lo;
8015 
8016 	sc->stat_IfHCOutOctets =
8017 	    ((u64) stats->stat_IfHCOutOctets_hi << 32) +
8018 	     (u64) stats->stat_IfHCOutOctets_lo;
8019 
8020 	sc->stat_IfHCOutBadOctets =
8021 	    ((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
8022 	     (u64) stats->stat_IfHCOutBadOctets_lo;
8023 
8024 	sc->stat_IfHCInUcastPkts =
8025 	    ((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
8026 	     (u64) stats->stat_IfHCInUcastPkts_lo;
8027 
8028 	sc->stat_IfHCInMulticastPkts =
8029 	    ((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
8030 	     (u64) stats->stat_IfHCInMulticastPkts_lo;
8031 
8032 	sc->stat_IfHCInBroadcastPkts =
8033 	    ((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
8034 	     (u64) stats->stat_IfHCInBroadcastPkts_lo;
8035 
8036 	sc->stat_IfHCOutUcastPkts =
8037 	    ((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
8038 	     (u64) stats->stat_IfHCOutUcastPkts_lo;
8039 
8040 	sc->stat_IfHCOutMulticastPkts =
8041 	    ((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
8042 	     (u64) stats->stat_IfHCOutMulticastPkts_lo;
8043 
8044 	sc->stat_IfHCOutBroadcastPkts =
8045 	    ((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
8046 	     (u64) stats->stat_IfHCOutBroadcastPkts_lo;
8047 
8048 	/* ToDo: Preserve counters beyond 32 bits? */
8049 	/* ToDo: Read the statistics from auto-clear regs? */
8050 
8051 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
8052 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
8053 
8054 	sc->stat_Dot3StatsCarrierSenseErrors =
8055 	    stats->stat_Dot3StatsCarrierSenseErrors;
8056 
8057 	sc->stat_Dot3StatsFCSErrors =
8058 	    stats->stat_Dot3StatsFCSErrors;
8059 
8060 	sc->stat_Dot3StatsAlignmentErrors =
8061 	    stats->stat_Dot3StatsAlignmentErrors;
8062 
8063 	sc->stat_Dot3StatsSingleCollisionFrames =
8064 	    stats->stat_Dot3StatsSingleCollisionFrames;
8065 
8066 	sc->stat_Dot3StatsMultipleCollisionFrames =
8067 	    stats->stat_Dot3StatsMultipleCollisionFrames;
8068 
8069 	sc->stat_Dot3StatsDeferredTransmissions =
8070 	    stats->stat_Dot3StatsDeferredTransmissions;
8071 
8072 	sc->stat_Dot3StatsExcessiveCollisions =
8073 	    stats->stat_Dot3StatsExcessiveCollisions;
8074 
8075 	sc->stat_Dot3StatsLateCollisions =
8076 	    stats->stat_Dot3StatsLateCollisions;
8077 
8078 	sc->stat_EtherStatsCollisions =
8079 	    stats->stat_EtherStatsCollisions;
8080 
8081 	sc->stat_EtherStatsFragments =
8082 	    stats->stat_EtherStatsFragments;
8083 
8084 	sc->stat_EtherStatsJabbers =
8085 	    stats->stat_EtherStatsJabbers;
8086 
8087 	sc->stat_EtherStatsUndersizePkts =
8088 	    stats->stat_EtherStatsUndersizePkts;
8089 
8090 	sc->stat_EtherStatsOversizePkts =
8091 	     stats->stat_EtherStatsOversizePkts;
8092 
8093 	sc->stat_EtherStatsPktsRx64Octets =
8094 	    stats->stat_EtherStatsPktsRx64Octets;
8095 
8096 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
8097 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
8098 
8099 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
8100 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
8101 
8102 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
8103 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
8104 
8105 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
8106 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
8107 
8108 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
8109 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
8110 
8111 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
8112 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
8113 
8114 	sc->stat_EtherStatsPktsTx64Octets =
8115 	    stats->stat_EtherStatsPktsTx64Octets;
8116 
8117 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
8118 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
8119 
8120 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
8121 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
8122 
8123 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
8124 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
8125 
8126 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
8127 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
8128 
8129 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
8130 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
8131 
8132 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
8133 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
8134 
8135 	sc->stat_XonPauseFramesReceived =
8136 	    stats->stat_XonPauseFramesReceived;
8137 
8138 	sc->stat_XoffPauseFramesReceived =
8139 	    stats->stat_XoffPauseFramesReceived;
8140 
8141 	sc->stat_OutXonSent =
8142 	    stats->stat_OutXonSent;
8143 
8144 	sc->stat_OutXoffSent =
8145 	    stats->stat_OutXoffSent;
8146 
8147 	sc->stat_FlowControlDone =
8148 	    stats->stat_FlowControlDone;
8149 
8150 	sc->stat_MacControlFramesReceived =
8151 	    stats->stat_MacControlFramesReceived;
8152 
8153 	sc->stat_XoffStateEntered =
8154 	    stats->stat_XoffStateEntered;
8155 
8156 	sc->stat_IfInFramesL2FilterDiscards =
8157 	    stats->stat_IfInFramesL2FilterDiscards;
8158 
8159 	sc->stat_IfInRuleCheckerDiscards =
8160 	    stats->stat_IfInRuleCheckerDiscards;
8161 
8162 	sc->stat_IfInFTQDiscards =
8163 	    stats->stat_IfInFTQDiscards;
8164 
8165 	sc->stat_IfInMBUFDiscards =
8166 	    stats->stat_IfInMBUFDiscards;
8167 
8168 	sc->stat_IfInRuleCheckerP4Hit =
8169 	    stats->stat_IfInRuleCheckerP4Hit;
8170 
8171 	sc->stat_CatchupInRuleCheckerDiscards =
8172 	    stats->stat_CatchupInRuleCheckerDiscards;
8173 
8174 	sc->stat_CatchupInFTQDiscards =
8175 	    stats->stat_CatchupInFTQDiscards;
8176 
8177 	sc->stat_CatchupInMBUFDiscards =
8178 	    stats->stat_CatchupInMBUFDiscards;
8179 
8180 	sc->stat_CatchupInRuleCheckerP4Hit =
8181 	    stats->stat_CatchupInRuleCheckerP4Hit;
8182 
8183 	sc->com_no_buffers = REG_RD_IND(sc, 0x120084);
8184 
8185 	/* ToDo: Add additional statistics? */
8186 
8187 	DBEXIT(BCE_EXTREME_MISC);
8188 }
8189 
8190 static uint64_t
bce_get_counter(if_t ifp,ift_counter cnt)8191 bce_get_counter(if_t ifp, ift_counter cnt)
8192 {
8193 	struct bce_softc *sc;
8194 	uint64_t rv;
8195 
8196 	sc = if_getsoftc(ifp);
8197 
8198 	switch (cnt) {
8199 	case IFCOUNTER_COLLISIONS:
8200 		return (sc->stat_EtherStatsCollisions);
8201 	case IFCOUNTER_IERRORS:
8202 		return (sc->stat_EtherStatsUndersizePkts +
8203 		    sc->stat_EtherStatsOversizePkts +
8204 		    sc->stat_IfInMBUFDiscards +
8205 		    sc->stat_Dot3StatsAlignmentErrors +
8206 		    sc->stat_Dot3StatsFCSErrors +
8207 		    sc->stat_IfInRuleCheckerDiscards +
8208 		    sc->stat_IfInFTQDiscards +
8209 		    sc->l2fhdr_error_count +
8210 		    sc->com_no_buffers);
8211 	case IFCOUNTER_OERRORS:
8212 		rv = sc->stat_Dot3StatsExcessiveCollisions +
8213 		    sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
8214 		    sc->stat_Dot3StatsLateCollisions +
8215 		    sc->watchdog_timeouts;
8216 		/*
8217 		 * Certain controllers don't report
8218 		 * carrier sense errors correctly.
8219 		 * See errata E11_5708CA0_1165.
8220 		 */
8221 		if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
8222 		    !(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
8223 			rv += sc->stat_Dot3StatsCarrierSenseErrors;
8224 		return (rv);
8225 	default:
8226 		return (if_get_counter_default(ifp, cnt));
8227 	}
8228 }
8229 
8230 /****************************************************************************/
8231 /* Periodic function to notify the bootcode that the driver is still        */
8232 /* present.                                                                 */
8233 /*                                                                          */
8234 /* Returns:                                                                 */
8235 /*   Nothing.                                                               */
8236 /****************************************************************************/
8237 static void
bce_pulse(void * xsc)8238 bce_pulse(void *xsc)
8239 {
8240 	struct bce_softc *sc = xsc;
8241 	u32 msg;
8242 
8243 	DBENTER(BCE_EXTREME_MISC);
8244 
8245 	BCE_LOCK_ASSERT(sc);
8246 
8247 	/* Tell the firmware that the driver is still running. */
8248 	msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
8249 	bce_shmem_wr(sc, BCE_DRV_PULSE_MB, msg);
8250 
8251 	/* Update the bootcode condition. */
8252 	sc->bc_state = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
8253 
8254 	/* Report whether the bootcode still knows the driver is running. */
8255 	if (bce_verbose || bootverbose) {
8256 		if (sc->bce_drv_cardiac_arrest == FALSE) {
8257 			if (!(sc->bc_state & BCE_CONDITION_DRV_PRESENT)) {
8258 				sc->bce_drv_cardiac_arrest = TRUE;
8259 				BCE_PRINTF("%s(): Warning: bootcode "
8260 				    "thinks driver is absent! "
8261 				    "(bc_state = 0x%08X)\n",
8262 				    __FUNCTION__, sc->bc_state);
8263 			}
8264 		} else {
8265 			/*
8266 			 * Not supported by all bootcode versions.
8267 			 * (v5.0.11+ and v5.2.1+)  Older bootcode
8268 			 * will require the driver to reset the
8269 			 * controller to clear this condition.
8270 			 */
8271 			if (sc->bc_state & BCE_CONDITION_DRV_PRESENT) {
8272 				sc->bce_drv_cardiac_arrest = FALSE;
8273 				BCE_PRINTF("%s(): Bootcode found the "
8274 				    "driver pulse! (bc_state = 0x%08X)\n",
8275 				    __FUNCTION__, sc->bc_state);
8276 			}
8277 		}
8278 	}
8279 
8280 	/* Schedule the next pulse. */
8281 	callout_reset(&sc->bce_pulse_callout, hz, bce_pulse, sc);
8282 
8283 	DBEXIT(BCE_EXTREME_MISC);
8284 }
8285 
8286 /****************************************************************************/
8287 /* Periodic function to perform maintenance tasks.                          */
8288 /*                                                                          */
8289 /* Returns:                                                                 */
8290 /*   Nothing.                                                               */
8291 /****************************************************************************/
8292 static void
bce_tick(void * xsc)8293 bce_tick(void *xsc)
8294 {
8295 	struct bce_softc *sc = xsc;
8296 	struct mii_data *mii;
8297 	if_t ifp;
8298 	struct ifmediareq ifmr;
8299 
8300 	ifp = sc->bce_ifp;
8301 
8302 	DBENTER(BCE_EXTREME_MISC);
8303 
8304 	BCE_LOCK_ASSERT(sc);
8305 
8306 	/* Schedule the next tick. */
8307 	callout_reset(&sc->bce_tick_callout, hz, bce_tick, sc);
8308 
8309 	/* Update the statistics from the hardware statistics block. */
8310 	bce_stats_update(sc);
8311 
8312  	/* Ensure page and RX chains get refilled in low-memory situations. */
8313 	if (bce_hdr_split == TRUE)
8314 		bce_fill_pg_chain(sc);
8315 	bce_fill_rx_chain(sc);
8316 
8317 	/* Check that chip hasn't hung. */
8318 	bce_watchdog(sc);
8319 
8320 	/* If link is up already up then we're done. */
8321 	if (sc->bce_link_up == TRUE)
8322 		goto bce_tick_exit;
8323 
8324 	/* Link is down.  Check what the PHY's doing. */
8325 	if ((sc->bce_phy_flags & BCE_PHY_REMOTE_CAP_FLAG) != 0) {
8326 		bzero(&ifmr, sizeof(ifmr));
8327 		bce_ifmedia_sts_rphy(sc, &ifmr);
8328 		if ((ifmr.ifm_status & (IFM_ACTIVE | IFM_AVALID)) ==
8329 		    (IFM_ACTIVE | IFM_AVALID)) {
8330 			sc->bce_link_up = TRUE;
8331 			bce_miibus_statchg(sc->bce_dev);
8332 		}
8333 	} else {
8334 		mii = device_get_softc(sc->bce_miibus);
8335 		mii_tick(mii);
8336 		/* Check if the link has come up. */
8337 		if ((mii->mii_media_status & IFM_ACTIVE) &&
8338 		    (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)) {
8339 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Link up!\n",
8340 			    __FUNCTION__);
8341 			sc->bce_link_up = TRUE;
8342 			if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
8343 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX ||
8344 			    IFM_SUBTYPE(mii->mii_media_active) == IFM_2500_SX) &&
8345 			    (bce_verbose || bootverbose))
8346 				BCE_PRINTF("Gigabit link up!\n");
8347 		}
8348 	}
8349 	if (sc->bce_link_up == TRUE) {
8350 		/* Now that link is up, handle any outstanding TX traffic. */
8351 		if (!if_sendq_empty(ifp)) {
8352 			DBPRINT(sc, BCE_VERBOSE_MISC, "%s(): Found "
8353 			    "pending TX traffic.\n", __FUNCTION__);
8354 			bce_start_locked(ifp);
8355 		}
8356 	}
8357 
8358 bce_tick_exit:
8359 	DBEXIT(BCE_EXTREME_MISC);
8360 }
8361 
8362 static void
bce_fw_cap_init(struct bce_softc * sc)8363 bce_fw_cap_init(struct bce_softc *sc)
8364 {
8365 	u32 ack, cap, link;
8366 
8367 	ack = 0;
8368 	cap = bce_shmem_rd(sc, BCE_FW_CAP_MB);
8369 	if ((cap & BCE_FW_CAP_SIGNATURE_MAGIC_MASK) !=
8370 	    BCE_FW_CAP_SIGNATURE_MAGIC)
8371 		return;
8372 	if ((cap & (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN)) ==
8373 	    (BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN))
8374 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8375 		    BCE_FW_CAP_MFW_KEEP_VLAN | BCE_FW_CAP_BC_KEEP_VLAN;
8376 	if ((sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) != 0 &&
8377 	    (cap & BCE_FW_CAP_REMOTE_PHY_CAP) != 0) {
8378 		sc->bce_phy_flags &= ~BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8379 		sc->bce_phy_flags |= BCE_PHY_REMOTE_CAP_FLAG;
8380 		link = bce_shmem_rd(sc, BCE_LINK_STATUS);
8381 		if ((link & BCE_LINK_STATUS_SERDES_LINK) != 0)
8382 			sc->bce_phy_flags |= BCE_PHY_REMOTE_PORT_FIBER_FLAG;
8383 		ack |= BCE_DRV_ACK_CAP_SIGNATURE_MAGIC |
8384 		    BCE_FW_CAP_REMOTE_PHY_CAP;
8385 	}
8386 
8387 	if (ack != 0)
8388 		bce_shmem_wr(sc, BCE_DRV_ACK_CAP_MB, ack);
8389 }
8390 
8391 #ifdef BCE_DEBUG
8392 /****************************************************************************/
8393 /* Allows the driver state to be dumped through the sysctl interface.       */
8394 /*                                                                          */
8395 /* Returns:                                                                 */
8396 /*   0 for success, positive value for failure.                             */
8397 /****************************************************************************/
8398 static int
bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)8399 bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
8400 {
8401 	int error;
8402 	int result;
8403 	struct bce_softc *sc;
8404 
8405 	result = -1;
8406 	error = sysctl_handle_int(oidp, &result, 0, req);
8407 
8408 	if (error || !req->newptr)
8409 		return (error);
8410 
8411 	if (result == 1) {
8412 		sc = (struct bce_softc *)arg1;
8413 		bce_dump_driver_state(sc);
8414 	}
8415 
8416 	return error;
8417 }
8418 
8419 /****************************************************************************/
8420 /* Allows the hardware state to be dumped through the sysctl interface.     */
8421 /*                                                                          */
8422 /* Returns:                                                                 */
8423 /*   0 for success, positive value for failure.                             */
8424 /****************************************************************************/
8425 static int
bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)8426 bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
8427 {
8428 	int error;
8429 	int result;
8430 	struct bce_softc *sc;
8431 
8432 	result = -1;
8433 	error = sysctl_handle_int(oidp, &result, 0, req);
8434 
8435 	if (error || !req->newptr)
8436 		return (error);
8437 
8438 	if (result == 1) {
8439 		sc = (struct bce_softc *)arg1;
8440 		bce_dump_hw_state(sc);
8441 	}
8442 
8443 	return error;
8444 }
8445 
8446 /****************************************************************************/
8447 /* Allows the status block to be dumped through the sysctl interface.       */
8448 /*                                                                          */
8449 /* Returns:                                                                 */
8450 /*   0 for success, positive value for failure.                             */
8451 /****************************************************************************/
8452 static int
bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)8453 bce_sysctl_status_block(SYSCTL_HANDLER_ARGS)
8454 {
8455 	int error;
8456 	int result;
8457 	struct bce_softc *sc;
8458 
8459 	result = -1;
8460 	error = sysctl_handle_int(oidp, &result, 0, req);
8461 
8462 	if (error || !req->newptr)
8463 		return (error);
8464 
8465 	if (result == 1) {
8466 		sc = (struct bce_softc *)arg1;
8467 		bce_dump_status_block(sc);
8468 	}
8469 
8470 	return error;
8471 }
8472 
8473 /****************************************************************************/
8474 /* Allows the stats block to be dumped through the sysctl interface.        */
8475 /*                                                                          */
8476 /* Returns:                                                                 */
8477 /*   0 for success, positive value for failure.                             */
8478 /****************************************************************************/
8479 static int
bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)8480 bce_sysctl_stats_block(SYSCTL_HANDLER_ARGS)
8481 {
8482 	int error;
8483 	int result;
8484 	struct bce_softc *sc;
8485 
8486 	result = -1;
8487 	error = sysctl_handle_int(oidp, &result, 0, req);
8488 
8489 	if (error || !req->newptr)
8490 		return (error);
8491 
8492 	if (result == 1) {
8493 		sc = (struct bce_softc *)arg1;
8494 		bce_dump_stats_block(sc);
8495 	}
8496 
8497 	return error;
8498 }
8499 
8500 /****************************************************************************/
8501 /* Allows the stat counters to be cleared without unloading/reloading the   */
8502 /* driver.                                                                  */
8503 /*                                                                          */
8504 /* Returns:                                                                 */
8505 /*   0 for success, positive value for failure.                             */
8506 /****************************************************************************/
8507 static int
bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)8508 bce_sysctl_stats_clear(SYSCTL_HANDLER_ARGS)
8509 {
8510 	int error;
8511 	int result;
8512 	struct bce_softc *sc;
8513 
8514 	result = -1;
8515 	error = sysctl_handle_int(oidp, &result, 0, req);
8516 
8517 	if (error || !req->newptr)
8518 		return (error);
8519 
8520 	if (result == 1) {
8521 		sc = (struct bce_softc *)arg1;
8522 		struct statistics_block *stats;
8523 
8524 		stats = (struct statistics_block *) sc->stats_block;
8525 		bzero(stats, sizeof(struct statistics_block));
8526 		bus_dmamap_sync(sc->stats_tag, sc->stats_map,
8527 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
8528 
8529 		/* Clear the internal H/W statistics counters. */
8530 		REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
8531 
8532 		/* Reset the driver maintained statistics. */
8533 		sc->interrupts_rx =
8534 		    sc->interrupts_tx = 0;
8535 		sc->tso_frames_requested =
8536 		    sc->tso_frames_completed =
8537 		    sc->tso_frames_failed = 0;
8538 		sc->rx_empty_count =
8539 		    sc->tx_full_count = 0;
8540 		sc->rx_low_watermark = USABLE_RX_BD_ALLOC;
8541 		sc->tx_hi_watermark = 0;
8542 		sc->l2fhdr_error_count =
8543 		    sc->l2fhdr_error_sim_count = 0;
8544 		sc->mbuf_alloc_failed_count =
8545 		    sc->mbuf_alloc_failed_sim_count = 0;
8546 		sc->dma_map_addr_rx_failed_count =
8547 		    sc->dma_map_addr_tx_failed_count = 0;
8548 		sc->mbuf_frag_count = 0;
8549 		sc->csum_offload_tcp_udp =
8550 		    sc->csum_offload_ip = 0;
8551 		sc->vlan_tagged_frames_rcvd =
8552 		    sc->vlan_tagged_frames_stripped = 0;
8553 		sc->split_header_frames_rcvd =
8554 		    sc->split_header_tcp_frames_rcvd = 0;
8555 
8556 		/* Clear firmware maintained statistics. */
8557 		REG_WR_IND(sc, 0x120084, 0);
8558 	}
8559 
8560 	return error;
8561 }
8562 
8563 /****************************************************************************/
8564 /* Allows the shared memory contents to be dumped through the sysctl  .     */
8565 /* interface.                                                               */
8566 /*                                                                          */
8567 /* Returns:                                                                 */
8568 /*   0 for success, positive value for failure.                             */
8569 /****************************************************************************/
8570 static int
bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)8571 bce_sysctl_shmem_state(SYSCTL_HANDLER_ARGS)
8572 {
8573 	int error;
8574 	int result;
8575 	struct bce_softc *sc;
8576 
8577 	result = -1;
8578 	error = sysctl_handle_int(oidp, &result, 0, req);
8579 
8580 	if (error || !req->newptr)
8581 		return (error);
8582 
8583 	if (result == 1) {
8584 		sc = (struct bce_softc *)arg1;
8585 		bce_dump_shmem_state(sc);
8586 	}
8587 
8588 	return error;
8589 }
8590 
8591 /****************************************************************************/
8592 /* Allows the bootcode state to be dumped through the sysctl interface.     */
8593 /*                                                                          */
8594 /* Returns:                                                                 */
8595 /*   0 for success, positive value for failure.                             */
8596 /****************************************************************************/
8597 static int
bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)8598 bce_sysctl_bc_state(SYSCTL_HANDLER_ARGS)
8599 {
8600 	int error;
8601 	int result;
8602 	struct bce_softc *sc;
8603 
8604 	result = -1;
8605 	error = sysctl_handle_int(oidp, &result, 0, req);
8606 
8607 	if (error || !req->newptr)
8608 		return (error);
8609 
8610 	if (result == 1) {
8611 		sc = (struct bce_softc *)arg1;
8612 		bce_dump_bc_state(sc);
8613 	}
8614 
8615 	return error;
8616 }
8617 
8618 /****************************************************************************/
8619 /* Provides a sysctl interface to allow dumping the RX BD chain.            */
8620 /*                                                                          */
8621 /* Returns:                                                                 */
8622 /*   0 for success, positive value for failure.                             */
8623 /****************************************************************************/
8624 static int
bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)8625 bce_sysctl_dump_rx_bd_chain(SYSCTL_HANDLER_ARGS)
8626 {
8627 	int error;
8628 	int result;
8629 	struct bce_softc *sc;
8630 
8631 	result = -1;
8632 	error = sysctl_handle_int(oidp, &result, 0, req);
8633 
8634 	if (error || !req->newptr)
8635 		return (error);
8636 
8637 	if (result == 1) {
8638 		sc = (struct bce_softc *)arg1;
8639 		bce_dump_rx_bd_chain(sc, 0, TOTAL_RX_BD_ALLOC);
8640 	}
8641 
8642 	return error;
8643 }
8644 
8645 /****************************************************************************/
8646 /* Provides a sysctl interface to allow dumping the RX MBUF chain.          */
8647 /*                                                                          */
8648 /* Returns:                                                                 */
8649 /*   0 for success, positive value for failure.                             */
8650 /****************************************************************************/
8651 static int
bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)8652 bce_sysctl_dump_rx_mbuf_chain(SYSCTL_HANDLER_ARGS)
8653 {
8654 	int error;
8655 	int result;
8656 	struct bce_softc *sc;
8657 
8658 	result = -1;
8659 	error = sysctl_handle_int(oidp, &result, 0, req);
8660 
8661 	if (error || !req->newptr)
8662 		return (error);
8663 
8664 	if (result == 1) {
8665 		sc = (struct bce_softc *)arg1;
8666 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
8667 	}
8668 
8669 	return error;
8670 }
8671 
8672 /****************************************************************************/
8673 /* Provides a sysctl interface to allow dumping the TX chain.               */
8674 /*                                                                          */
8675 /* Returns:                                                                 */
8676 /*   0 for success, positive value for failure.                             */
8677 /****************************************************************************/
8678 static int
bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)8679 bce_sysctl_dump_tx_chain(SYSCTL_HANDLER_ARGS)
8680 {
8681 	int error;
8682 	int result;
8683 	struct bce_softc *sc;
8684 
8685 	result = -1;
8686 	error = sysctl_handle_int(oidp, &result, 0, req);
8687 
8688 	if (error || !req->newptr)
8689 		return (error);
8690 
8691 	if (result == 1) {
8692 		sc = (struct bce_softc *)arg1;
8693 		bce_dump_tx_chain(sc, 0, TOTAL_TX_BD_ALLOC);
8694 	}
8695 
8696 	return error;
8697 }
8698 
8699 /****************************************************************************/
8700 /* Provides a sysctl interface to allow dumping the page chain.             */
8701 /*                                                                          */
8702 /* Returns:                                                                 */
8703 /*   0 for success, positive value for failure.                             */
8704 /****************************************************************************/
8705 static int
bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)8706 bce_sysctl_dump_pg_chain(SYSCTL_HANDLER_ARGS)
8707 {
8708 	int error;
8709 	int result;
8710 	struct bce_softc *sc;
8711 
8712 	result = -1;
8713 	error = sysctl_handle_int(oidp, &result, 0, req);
8714 
8715 	if (error || !req->newptr)
8716 		return (error);
8717 
8718 	if (result == 1) {
8719 		sc = (struct bce_softc *)arg1;
8720 		bce_dump_pg_chain(sc, 0, TOTAL_PG_BD_ALLOC);
8721 	}
8722 
8723 	return error;
8724 }
8725 
8726 /****************************************************************************/
8727 /* Provides a sysctl interface to allow reading arbitrary NVRAM offsets in  */
8728 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8729 /*                                                                          */
8730 /* Returns:                                                                 */
8731 /*   0 for success, positive value for failure.                             */
8732 /****************************************************************************/
8733 static int
bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)8734 bce_sysctl_nvram_read(SYSCTL_HANDLER_ARGS)
8735 {
8736 	struct bce_softc *sc = (struct bce_softc *)arg1;
8737 	int error;
8738 	u32 result;
8739 	u32 val[1];
8740 	u8 *data = (u8 *) val;
8741 
8742 	result = -1;
8743 	error = sysctl_handle_int(oidp, &result, 0, req);
8744 	if (error || (req->newptr == NULL))
8745 		return (error);
8746 
8747 	error = bce_nvram_read(sc, result, data, 4);
8748 
8749 	BCE_PRINTF("offset 0x%08X = 0x%08X\n", result, bce_be32toh(val[0]));
8750 
8751 	return (error);
8752 }
8753 
8754 /****************************************************************************/
8755 /* Provides a sysctl interface to allow reading arbitrary registers in the  */
8756 /* device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                            */
8757 /*                                                                          */
8758 /* Returns:                                                                 */
8759 /*   0 for success, positive value for failure.                             */
8760 /****************************************************************************/
8761 static int
bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)8762 bce_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
8763 {
8764 	struct bce_softc *sc = (struct bce_softc *)arg1;
8765 	int error;
8766 	u32 val, result;
8767 
8768 	result = -1;
8769 	error = sysctl_handle_int(oidp, &result, 0, req);
8770 	if (error || (req->newptr == NULL))
8771 		return (error);
8772 
8773 	/* Make sure the register is accessible. */
8774 	if (result < 0x8000) {
8775 		val = REG_RD(sc, result);
8776 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8777 	} else if (result < 0x0280000) {
8778 		val = REG_RD_IND(sc, result);
8779 		BCE_PRINTF("reg 0x%08X = 0x%08X\n", result, val);
8780 	}
8781 
8782 	return (error);
8783 }
8784 
8785 /****************************************************************************/
8786 /* Provides a sysctl interface to allow reading arbitrary PHY registers in  */
8787 /* the device.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                        */
8788 /*                                                                          */
8789 /* Returns:                                                                 */
8790 /*   0 for success, positive value for failure.                             */
8791 /****************************************************************************/
8792 static int
bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)8793 bce_sysctl_phy_read(SYSCTL_HANDLER_ARGS)
8794 {
8795 	struct bce_softc *sc;
8796 	device_t dev;
8797 	int error, result;
8798 	u16 val;
8799 
8800 	result = -1;
8801 	error = sysctl_handle_int(oidp, &result, 0, req);
8802 	if (error || (req->newptr == NULL))
8803 		return (error);
8804 
8805 	/* Make sure the register is accessible. */
8806 	if (result < 0x20) {
8807 		sc = (struct bce_softc *)arg1;
8808 		dev = sc->bce_dev;
8809 		val = bce_miibus_read_reg(dev, sc->bce_phy_addr, result);
8810 		BCE_PRINTF("phy 0x%02X = 0x%04X\n", result, val);
8811 	}
8812 	return (error);
8813 }
8814 
8815 /****************************************************************************/
8816 /* Provides a sysctl interface for dumping the nvram contents.              */
8817 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8818 /*									    */
8819 /* Returns:								    */
8820 /*   0 for success, positive errno for failure.				    */
8821 /****************************************************************************/
8822 static int
bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)8823 bce_sysctl_nvram_dump(SYSCTL_HANDLER_ARGS)
8824 {
8825 	struct bce_softc *sc = (struct bce_softc *)arg1;
8826 	int error, i;
8827 
8828 	if (sc->nvram_buf == NULL)
8829 		sc->nvram_buf = malloc(sc->bce_flash_size,
8830 				    M_TEMP, M_ZERO | M_WAITOK);
8831 
8832 	error = 0;
8833 	if (req->oldlen == sc->bce_flash_size) {
8834 		for (i = 0; i < sc->bce_flash_size && error == 0; i++)
8835 			error = bce_nvram_read(sc, i, &sc->nvram_buf[i], 1);
8836 	}
8837 
8838 	if (error == 0)
8839 		error = SYSCTL_OUT(req, sc->nvram_buf, sc->bce_flash_size);
8840 
8841 	return error;
8842 }
8843 
8844 #ifdef BCE_NVRAM_WRITE_SUPPORT
8845 /****************************************************************************/
8846 /* Provides a sysctl interface for writing to nvram.                        */
8847 /* DO NOT ENABLE ON PRODUCTION SYSTEMS!					    */
8848 /*									    */
8849 /* Returns:								    */
8850 /*   0 for success, positive errno for failure.				    */
8851 /****************************************************************************/
8852 static int
bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)8853 bce_sysctl_nvram_write(SYSCTL_HANDLER_ARGS)
8854 {
8855 	struct bce_softc *sc = (struct bce_softc *)arg1;
8856 	int error;
8857 
8858 	if (sc->nvram_buf == NULL)
8859 		sc->nvram_buf = malloc(sc->bce_flash_size,
8860 				    M_TEMP, M_ZERO | M_WAITOK);
8861 	else
8862 		bzero(sc->nvram_buf, sc->bce_flash_size);
8863 
8864 	error = SYSCTL_IN(req, sc->nvram_buf, sc->bce_flash_size);
8865 	if (error == 0)
8866 		return (error);
8867 
8868 	if (req->newlen == sc->bce_flash_size)
8869 		error = bce_nvram_write(sc, 0, sc->nvram_buf,
8870 			    sc->bce_flash_size);
8871 
8872 	return error;
8873 }
8874 #endif
8875 
8876 /****************************************************************************/
8877 /* Provides a sysctl interface to allow reading a CID.                      */
8878 /*                                                                          */
8879 /* Returns:                                                                 */
8880 /*   0 for success, positive value for failure.                             */
8881 /****************************************************************************/
8882 static int
bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)8883 bce_sysctl_dump_ctx(SYSCTL_HANDLER_ARGS)
8884 {
8885 	struct bce_softc *sc;
8886 	int error, result;
8887 
8888 	result = -1;
8889 	error = sysctl_handle_int(oidp, &result, 0, req);
8890 	if (error || (req->newptr == NULL))
8891 		return (error);
8892 
8893 	/* Make sure the register is accessible. */
8894 	if (result <= TX_CID) {
8895 		sc = (struct bce_softc *)arg1;
8896 		bce_dump_ctx(sc, result);
8897 	}
8898 
8899 	return (error);
8900 }
8901 
8902 /****************************************************************************/
8903 /* Provides a sysctl interface to forcing the driver to dump state and      */
8904 /* enter the debugger.  DO NOT ENABLE ON PRODUCTION SYSTEMS!                */
8905 /*                                                                          */
8906 /* Returns:                                                                 */
8907 /*   0 for success, positive value for failure.                             */
8908 /****************************************************************************/
8909 static int
bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)8910 bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
8911 {
8912 	int error;
8913 	int result;
8914 	struct bce_softc *sc;
8915 
8916 	result = -1;
8917 	error = sysctl_handle_int(oidp, &result, 0, req);
8918 
8919 	if (error || !req->newptr)
8920 		return (error);
8921 
8922 	if (result == 1) {
8923 		sc = (struct bce_softc *)arg1;
8924 		bce_breakpoint(sc);
8925 	}
8926 
8927 	return error;
8928 }
8929 #endif
8930 
8931 /****************************************************************************/
8932 /* Adds any sysctl parameters for tuning or debugging purposes.             */
8933 /*                                                                          */
8934 /* Returns:                                                                 */
8935 /*   0 for success, positive value for failure.                             */
8936 /****************************************************************************/
8937 static void
bce_add_sysctls(struct bce_softc * sc)8938 bce_add_sysctls(struct bce_softc *sc)
8939 {
8940 	struct sysctl_ctx_list *ctx;
8941 	struct sysctl_oid_list *children;
8942 
8943 	DBENTER(BCE_VERBOSE_MISC);
8944 
8945 	ctx = device_get_sysctl_ctx(sc->bce_dev);
8946 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
8947 
8948 #ifdef BCE_DEBUG
8949 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8950 	    "l2fhdr_error_sim_control",
8951 	    CTLFLAG_RW, &l2fhdr_error_sim_control,
8952 	    0, "Debug control to force l2fhdr errors");
8953 
8954 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8955 	    "l2fhdr_error_sim_count",
8956 	    CTLFLAG_RD, &sc->l2fhdr_error_sim_count,
8957 	    0, "Number of simulated l2_fhdr errors");
8958 #endif
8959 
8960 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8961 	    "l2fhdr_error_count",
8962 	    CTLFLAG_RD, &sc->l2fhdr_error_count,
8963 	    0, "Number of l2_fhdr errors");
8964 
8965 #ifdef BCE_DEBUG
8966 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8967 	    "mbuf_alloc_failed_sim_control",
8968 	    CTLFLAG_RW, &mbuf_alloc_failed_sim_control,
8969 	    0, "Debug control to force mbuf allocation failures");
8970 
8971 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8972 	    "mbuf_alloc_failed_sim_count",
8973 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_sim_count,
8974 	    0, "Number of simulated mbuf cluster allocation failures");
8975 #endif
8976 
8977 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8978 	    "mbuf_alloc_failed_count",
8979 	    CTLFLAG_RD, &sc->mbuf_alloc_failed_count,
8980 	    0, "Number of mbuf allocation failures");
8981 
8982 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8983 	    "mbuf_frag_count",
8984 	    CTLFLAG_RD, &sc->mbuf_frag_count,
8985 	    0, "Number of fragmented mbufs");
8986 
8987 #ifdef BCE_DEBUG
8988 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
8989 	    "dma_map_addr_failed_sim_control",
8990 	    CTLFLAG_RW, &dma_map_addr_failed_sim_control,
8991 	    0, "Debug control to force DMA mapping failures");
8992 
8993 	/* ToDo: Figure out how to update this value in bce_dma_map_addr(). */
8994 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
8995 	    "dma_map_addr_failed_sim_count",
8996 	    CTLFLAG_RD, &sc->dma_map_addr_failed_sim_count,
8997 	    0, "Number of simulated DMA mapping failures");
8998 
8999 #endif
9000 
9001 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9002 	    "dma_map_addr_rx_failed_count",
9003 	    CTLFLAG_RD, &sc->dma_map_addr_rx_failed_count,
9004 	    0, "Number of RX DMA mapping failures");
9005 
9006 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9007 	    "dma_map_addr_tx_failed_count",
9008 	    CTLFLAG_RD, &sc->dma_map_addr_tx_failed_count,
9009 	    0, "Number of TX DMA mapping failures");
9010 
9011 #ifdef BCE_DEBUG
9012 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9013 	    "unexpected_attention_sim_control",
9014 	    CTLFLAG_RW, &unexpected_attention_sim_control,
9015 	    0, "Debug control to simulate unexpected attentions");
9016 
9017 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9018 	    "unexpected_attention_sim_count",
9019 	    CTLFLAG_RW, &sc->unexpected_attention_sim_count,
9020 	    0, "Number of simulated unexpected attentions");
9021 #endif
9022 
9023 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9024 	    "unexpected_attention_count",
9025 	    CTLFLAG_RW, &sc->unexpected_attention_count,
9026 	    0, "Number of unexpected attentions");
9027 
9028 #ifdef BCE_DEBUG
9029 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9030 	    "debug_bootcode_running_failure",
9031 	    CTLFLAG_RW, &bootcode_running_failure_sim_control,
9032 	    0, "Debug control to force bootcode running failures");
9033 
9034 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9035 	    "rx_low_watermark",
9036 	    CTLFLAG_RD, &sc->rx_low_watermark,
9037 	    0, "Lowest level of free rx_bd's");
9038 
9039 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9040 	    "rx_empty_count",
9041 	    CTLFLAG_RD, &sc->rx_empty_count,
9042 	    "Number of times the RX chain was empty");
9043 
9044 	SYSCTL_ADD_INT(ctx, children, OID_AUTO,
9045 	    "tx_hi_watermark",
9046 	    CTLFLAG_RD, &sc->tx_hi_watermark,
9047 	    0, "Highest level of used tx_bd's");
9048 
9049 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9050 	    "tx_full_count",
9051 	    CTLFLAG_RD, &sc->tx_full_count,
9052 	    "Number of times the TX chain was full");
9053 
9054 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9055 	    "tso_frames_requested",
9056 	    CTLFLAG_RD, &sc->tso_frames_requested,
9057 	    "Number of TSO frames requested");
9058 
9059 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9060 	    "tso_frames_completed",
9061 	    CTLFLAG_RD, &sc->tso_frames_completed,
9062 	    "Number of TSO frames completed");
9063 
9064 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9065 	    "tso_frames_failed",
9066 	    CTLFLAG_RD, &sc->tso_frames_failed,
9067 	    "Number of TSO frames failed");
9068 
9069 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9070 	    "csum_offload_ip",
9071 	    CTLFLAG_RD, &sc->csum_offload_ip,
9072 	    "Number of IP checksum offload frames");
9073 
9074 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9075 	    "csum_offload_tcp_udp",
9076 	    CTLFLAG_RD, &sc->csum_offload_tcp_udp,
9077 	    "Number of TCP/UDP checksum offload frames");
9078 
9079 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9080 	    "vlan_tagged_frames_rcvd",
9081 	    CTLFLAG_RD, &sc->vlan_tagged_frames_rcvd,
9082 	    "Number of VLAN tagged frames received");
9083 
9084 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9085 	    "vlan_tagged_frames_stripped",
9086 	    CTLFLAG_RD, &sc->vlan_tagged_frames_stripped,
9087 	    "Number of VLAN tagged frames stripped");
9088 
9089 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9090 	    "interrupts_rx",
9091 	    CTLFLAG_RD, &sc->interrupts_rx,
9092 	    "Number of RX interrupts");
9093 
9094 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9095 	    "interrupts_tx",
9096 	    CTLFLAG_RD, &sc->interrupts_tx,
9097 	    "Number of TX interrupts");
9098 
9099 	if (bce_hdr_split == TRUE) {
9100 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9101 		    "split_header_frames_rcvd",
9102 		    CTLFLAG_RD, &sc->split_header_frames_rcvd,
9103 		    "Number of split header frames received");
9104 
9105 		SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9106 		    "split_header_tcp_frames_rcvd",
9107 		    CTLFLAG_RD, &sc->split_header_tcp_frames_rcvd,
9108 		    "Number of split header TCP frames received");
9109 	}
9110 
9111 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9112 	    "nvram_dump", CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
9113 	    (void *)sc, 0,
9114 	    bce_sysctl_nvram_dump, "S", "");
9115 
9116 #ifdef BCE_NVRAM_WRITE_SUPPORT
9117 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9118 	    "nvram_write", CTLTYPE_OPAQUE | CTLFLAG_WR | CTLFLAG_NEEDGIANT,
9119 	    (void *)sc, 0,
9120 	    bce_sysctl_nvram_write, "S", "");
9121 #endif
9122 #endif /* BCE_DEBUG */
9123 
9124 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9125 	    "stat_IfHcInOctets",
9126 	    CTLFLAG_RD, &sc->stat_IfHCInOctets,
9127 	    "Bytes received");
9128 
9129 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9130 	    "stat_IfHCInBadOctets",
9131 	    CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
9132 	    "Bad bytes received");
9133 
9134 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9135 	    "stat_IfHCOutOctets",
9136 	    CTLFLAG_RD, &sc->stat_IfHCOutOctets,
9137 	    "Bytes sent");
9138 
9139 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9140 	    "stat_IfHCOutBadOctets",
9141 	    CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
9142 	    "Bad bytes sent");
9143 
9144 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9145 	    "stat_IfHCInUcastPkts",
9146 	    CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
9147 	    "Unicast packets received");
9148 
9149 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9150 	    "stat_IfHCInMulticastPkts",
9151 	    CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
9152 	    "Multicast packets received");
9153 
9154 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9155 	    "stat_IfHCInBroadcastPkts",
9156 	    CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
9157 	    "Broadcast packets received");
9158 
9159 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9160 	    "stat_IfHCOutUcastPkts",
9161 	    CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
9162 	    "Unicast packets sent");
9163 
9164 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9165 	    "stat_IfHCOutMulticastPkts",
9166 	    CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
9167 	    "Multicast packets sent");
9168 
9169 	SYSCTL_ADD_QUAD(ctx, children, OID_AUTO,
9170 	    "stat_IfHCOutBroadcastPkts",
9171 	    CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
9172 	    "Broadcast packets sent");
9173 
9174 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9175 	    "stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
9176 	    CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
9177 	    0, "Internal MAC transmit errors");
9178 
9179 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9180 	    "stat_Dot3StatsCarrierSenseErrors",
9181 	    CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
9182 	    0, "Carrier sense errors");
9183 
9184 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9185 	    "stat_Dot3StatsFCSErrors",
9186 	    CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
9187 	    0, "Frame check sequence errors");
9188 
9189 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9190 	    "stat_Dot3StatsAlignmentErrors",
9191 	    CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
9192 	    0, "Alignment errors");
9193 
9194 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9195 	    "stat_Dot3StatsSingleCollisionFrames",
9196 	    CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
9197 	    0, "Single Collision Frames");
9198 
9199 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9200 	    "stat_Dot3StatsMultipleCollisionFrames",
9201 	    CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
9202 	    0, "Multiple Collision Frames");
9203 
9204 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9205 	    "stat_Dot3StatsDeferredTransmissions",
9206 	    CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
9207 	    0, "Deferred Transmissions");
9208 
9209 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9210 	    "stat_Dot3StatsExcessiveCollisions",
9211 	    CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
9212 	    0, "Excessive Collisions");
9213 
9214 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9215 	    "stat_Dot3StatsLateCollisions",
9216 	    CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
9217 	    0, "Late Collisions");
9218 
9219 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9220 	    "stat_EtherStatsCollisions",
9221 	    CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
9222 	    0, "Collisions");
9223 
9224 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9225 	    "stat_EtherStatsFragments",
9226 	    CTLFLAG_RD, &sc->stat_EtherStatsFragments,
9227 	    0, "Fragments");
9228 
9229 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9230 	    "stat_EtherStatsJabbers",
9231 	    CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
9232 	    0, "Jabbers");
9233 
9234 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9235 	    "stat_EtherStatsUndersizePkts",
9236 	    CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
9237 	    0, "Undersize packets");
9238 
9239 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9240 	    "stat_EtherStatsOversizePkts",
9241 	    CTLFLAG_RD, &sc->stat_EtherStatsOversizePkts,
9242 	    0, "stat_EtherStatsOversizePkts");
9243 
9244 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9245 	    "stat_EtherStatsPktsRx64Octets",
9246 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
9247 	    0, "Bytes received in 64 byte packets");
9248 
9249 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9250 	    "stat_EtherStatsPktsRx65Octetsto127Octets",
9251 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
9252 	    0, "Bytes received in 65 to 127 byte packets");
9253 
9254 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9255 	    "stat_EtherStatsPktsRx128Octetsto255Octets",
9256 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
9257 	    0, "Bytes received in 128 to 255 byte packets");
9258 
9259 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9260 	    "stat_EtherStatsPktsRx256Octetsto511Octets",
9261 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
9262 	    0, "Bytes received in 256 to 511 byte packets");
9263 
9264 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9265 	    "stat_EtherStatsPktsRx512Octetsto1023Octets",
9266 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
9267 	    0, "Bytes received in 512 to 1023 byte packets");
9268 
9269 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9270 	    "stat_EtherStatsPktsRx1024Octetsto1522Octets",
9271 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
9272 	    0, "Bytes received in 1024 t0 1522 byte packets");
9273 
9274 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9275 	    "stat_EtherStatsPktsRx1523Octetsto9022Octets",
9276 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
9277 	    0, "Bytes received in 1523 to 9022 byte packets");
9278 
9279 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9280 	    "stat_EtherStatsPktsTx64Octets",
9281 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
9282 	    0, "Bytes sent in 64 byte packets");
9283 
9284 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9285 	    "stat_EtherStatsPktsTx65Octetsto127Octets",
9286 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
9287 	    0, "Bytes sent in 65 to 127 byte packets");
9288 
9289 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9290 	    "stat_EtherStatsPktsTx128Octetsto255Octets",
9291 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
9292 	    0, "Bytes sent in 128 to 255 byte packets");
9293 
9294 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9295 	    "stat_EtherStatsPktsTx256Octetsto511Octets",
9296 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
9297 	    0, "Bytes sent in 256 to 511 byte packets");
9298 
9299 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9300 	    "stat_EtherStatsPktsTx512Octetsto1023Octets",
9301 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
9302 	    0, "Bytes sent in 512 to 1023 byte packets");
9303 
9304 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9305 	    "stat_EtherStatsPktsTx1024Octetsto1522Octets",
9306 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
9307 	    0, "Bytes sent in 1024 to 1522 byte packets");
9308 
9309 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9310 	    "stat_EtherStatsPktsTx1523Octetsto9022Octets",
9311 	    CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
9312 	    0, "Bytes sent in 1523 to 9022 byte packets");
9313 
9314 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9315 	    "stat_XonPauseFramesReceived",
9316 	    CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
9317 	    0, "XON pause frames receved");
9318 
9319 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9320 	    "stat_XoffPauseFramesReceived",
9321 	    CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
9322 	    0, "XOFF pause frames received");
9323 
9324 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9325 	    "stat_OutXonSent",
9326 	    CTLFLAG_RD, &sc->stat_OutXonSent,
9327 	    0, "XON pause frames sent");
9328 
9329 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9330 	    "stat_OutXoffSent",
9331 	    CTLFLAG_RD, &sc->stat_OutXoffSent,
9332 	    0, "XOFF pause frames sent");
9333 
9334 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9335 	    "stat_FlowControlDone",
9336 	    CTLFLAG_RD, &sc->stat_FlowControlDone,
9337 	    0, "Flow control done");
9338 
9339 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9340 	    "stat_MacControlFramesReceived",
9341 	    CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
9342 	    0, "MAC control frames received");
9343 
9344 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9345 	    "stat_XoffStateEntered",
9346 	    CTLFLAG_RD, &sc->stat_XoffStateEntered,
9347 	    0, "XOFF state entered");
9348 
9349 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9350 	    "stat_IfInFramesL2FilterDiscards",
9351 	    CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
9352 	    0, "Received L2 packets discarded");
9353 
9354 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9355 	    "stat_IfInRuleCheckerDiscards",
9356 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
9357 	    0, "Received packets discarded by rule");
9358 
9359 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9360 	    "stat_IfInFTQDiscards",
9361 	    CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
9362 	    0, "Received packet FTQ discards");
9363 
9364 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9365 	    "stat_IfInMBUFDiscards",
9366 	    CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
9367 	    0, "Received packets discarded due to lack "
9368 	    "of controller buffer memory");
9369 
9370 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9371 	    "stat_IfInRuleCheckerP4Hit",
9372 	    CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
9373 	    0, "Received packets rule checker hits");
9374 
9375 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9376 	    "stat_CatchupInRuleCheckerDiscards",
9377 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
9378 	    0, "Received packets discarded in Catchup path");
9379 
9380 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9381 	    "stat_CatchupInFTQDiscards",
9382 	    CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
9383 	    0, "Received packets discarded in FTQ in Catchup path");
9384 
9385 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9386 	    "stat_CatchupInMBUFDiscards",
9387 	    CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
9388 	    0, "Received packets discarded in controller "
9389 	    "buffer memory in Catchup path");
9390 
9391 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9392 	    "stat_CatchupInRuleCheckerP4Hit",
9393 	    CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
9394 	    0, "Received packets rule checker hits in Catchup path");
9395 
9396 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
9397 	    "com_no_buffers",
9398 	    CTLFLAG_RD, &sc->com_no_buffers,
9399 	    0, "Valid packets received but no RX buffers available");
9400 
9401 #ifdef BCE_DEBUG
9402 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9403 	    "driver_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9404 	    (void *)sc, 0,
9405 	    bce_sysctl_driver_state, "I", "Drive state information");
9406 
9407 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9408 	    "hw_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9409 	    (void *)sc, 0,
9410 	    bce_sysctl_hw_state, "I", "Hardware state information");
9411 
9412 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9413 	    "status_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9414 	    (void *)sc, 0,
9415 	    bce_sysctl_status_block, "I", "Dump status block");
9416 
9417 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9418 	    "stats_block", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9419 	    (void *)sc, 0,
9420 	    bce_sysctl_stats_block, "I", "Dump statistics block");
9421 
9422 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9423 	    "stats_clear", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9424 	    (void *)sc, 0,
9425 	    bce_sysctl_stats_clear, "I", "Clear statistics block");
9426 
9427 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9428 	    "shmem_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9429 	    (void *)sc, 0,
9430 	    bce_sysctl_shmem_state, "I", "Shared memory state information");
9431 
9432 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9433 	    "bc_state", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9434 	    (void *)sc, 0,
9435 	    bce_sysctl_bc_state, "I", "Bootcode state information");
9436 
9437 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9438 	    "dump_rx_bd_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9439 	    (void *)sc, 0,
9440 	    bce_sysctl_dump_rx_bd_chain, "I", "Dump RX BD chain");
9441 
9442 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9443 	    "dump_rx_mbuf_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9444 	    (void *)sc, 0,
9445 	    bce_sysctl_dump_rx_mbuf_chain, "I", "Dump RX MBUF chain");
9446 
9447 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9448 	    "dump_tx_chain", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9449 	    (void *)sc, 0,
9450 	    bce_sysctl_dump_tx_chain, "I", "Dump tx_bd chain");
9451 
9452 	if (bce_hdr_split == TRUE) {
9453 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9454 		    "dump_pg_chain",
9455 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9456 		    (void *)sc, 0,
9457 		    bce_sysctl_dump_pg_chain, "I", "Dump page chain");
9458 	}
9459 
9460 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9461 	    "dump_ctx", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9462 	    (void *)sc, 0,
9463 	    bce_sysctl_dump_ctx, "I", "Dump context memory");
9464 
9465 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9466 	    "breakpoint", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9467 	    (void *)sc, 0,
9468 	    bce_sysctl_breakpoint, "I", "Driver breakpoint");
9469 
9470 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9471 	    "reg_read", CTLTYPE_INT | CTLFLAG_RW| CTLFLAG_NEEDGIANT,
9472 	    (void *)sc, 0,
9473 	    bce_sysctl_reg_read, "I", "Register read");
9474 
9475 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9476 	    "nvram_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9477 	    (void *)sc, 0,
9478 	    bce_sysctl_nvram_read, "I", "NVRAM read");
9479 
9480 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
9481 	    "phy_read", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
9482 	    (void *)sc, 0,
9483 	    bce_sysctl_phy_read, "I", "PHY register read");
9484 
9485 #endif
9486 
9487 	DBEXIT(BCE_VERBOSE_MISC);
9488 }
9489 
9490 /****************************************************************************/
9491 /* BCE Debug Routines                                                       */
9492 /****************************************************************************/
9493 #ifdef BCE_DEBUG
9494 
9495 /****************************************************************************/
9496 /* Freezes the controller to allow for a cohesive state dump.               */
9497 /*                                                                          */
9498 /* Returns:                                                                 */
9499 /*   Nothing.                                                               */
9500 /****************************************************************************/
9501 static __attribute__ ((noinline)) void
bce_freeze_controller(struct bce_softc * sc)9502 bce_freeze_controller(struct bce_softc *sc)
9503 {
9504 	u32 val;
9505 	val = REG_RD(sc, BCE_MISC_COMMAND);
9506 	val |= BCE_MISC_COMMAND_DISABLE_ALL;
9507 	REG_WR(sc, BCE_MISC_COMMAND, val);
9508 }
9509 
9510 /****************************************************************************/
9511 /* Unfreezes the controller after a freeze operation.  This may not always  */
9512 /* work and the controller will require a reset!                            */
9513 /*                                                                          */
9514 /* Returns:                                                                 */
9515 /*   Nothing.                                                               */
9516 /****************************************************************************/
9517 static __attribute__ ((noinline)) void
bce_unfreeze_controller(struct bce_softc * sc)9518 bce_unfreeze_controller(struct bce_softc *sc)
9519 {
9520 	u32 val;
9521 	val = REG_RD(sc, BCE_MISC_COMMAND);
9522 	val |= BCE_MISC_COMMAND_ENABLE_ALL;
9523 	REG_WR(sc, BCE_MISC_COMMAND, val);
9524 }
9525 
9526 /****************************************************************************/
9527 /* Prints out Ethernet frame information from an mbuf.                      */
9528 /*                                                                          */
9529 /* Partially decode an Ethernet frame to look at some important headers.    */
9530 /*                                                                          */
9531 /* Returns:                                                                 */
9532 /*   Nothing.                                                               */
9533 /****************************************************************************/
9534 static __attribute__ ((noinline)) void
bce_dump_enet(struct bce_softc * sc,struct mbuf * m)9535 bce_dump_enet(struct bce_softc *sc, struct mbuf *m)
9536 {
9537 	struct ether_vlan_header *eh;
9538 	u16 etype;
9539 	int ehlen;
9540 	struct ip *ip;
9541 	struct tcphdr *th;
9542 	struct udphdr *uh;
9543 	struct arphdr *ah;
9544 
9545 	BCE_PRINTF(
9546 	    "-----------------------------"
9547 	    " Frame Decode "
9548 	    "-----------------------------\n");
9549 
9550 	eh = mtod(m, struct ether_vlan_header *);
9551 
9552 	/* Handle VLAN encapsulation if present. */
9553 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
9554 		etype = ntohs(eh->evl_proto);
9555 		ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
9556 	} else {
9557 		etype = ntohs(eh->evl_encap_proto);
9558 		ehlen = ETHER_HDR_LEN;
9559 	}
9560 
9561 	/* ToDo: Add VLAN output. */
9562 	BCE_PRINTF("enet: dest = %6D, src = %6D, type = 0x%04X, hlen = %d\n",
9563 	    eh->evl_dhost, ":", eh->evl_shost, ":", etype, ehlen);
9564 
9565 	switch (etype) {
9566 	case ETHERTYPE_IP:
9567 		ip = (struct ip *)(m->m_data + ehlen);
9568 		BCE_PRINTF("--ip: dest = 0x%08X , src = 0x%08X, "
9569 		    "len = %d bytes, protocol = 0x%02X, xsum = 0x%04X\n",
9570 		    ntohl(ip->ip_dst.s_addr), ntohl(ip->ip_src.s_addr),
9571 		    ntohs(ip->ip_len), ip->ip_p, ntohs(ip->ip_sum));
9572 
9573 		switch (ip->ip_p) {
9574 		case IPPROTO_TCP:
9575 			th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9576 			BCE_PRINTF("-tcp: dest = %d, src = %d, hlen = "
9577 			    "%d bytes, flags = 0x%b, csum = 0x%04X\n",
9578 			    ntohs(th->th_dport), ntohs(th->th_sport),
9579 			    (th->th_off << 2), th->th_flags,
9580 			    "\20\10CWR\07ECE\06URG\05ACK\04PSH\03RST"
9581 			    "\02SYN\01FIN", ntohs(th->th_sum));
9582 			break;
9583 		case IPPROTO_UDP:
9584 			uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
9585 			BCE_PRINTF("-udp: dest = %d, src = %d, len = %d "
9586 			    "bytes, csum = 0x%04X\n", ntohs(uh->uh_dport),
9587 			    ntohs(uh->uh_sport), ntohs(uh->uh_ulen),
9588 			    ntohs(uh->uh_sum));
9589 			break;
9590 		case IPPROTO_ICMP:
9591 			BCE_PRINTF("icmp:\n");
9592 			break;
9593 		default:
9594 			BCE_PRINTF("----: Other IP protocol.\n");
9595 			}
9596 		break;
9597 	case ETHERTYPE_IPV6:
9598 		BCE_PRINTF("ipv6: No decode supported.\n");
9599 		break;
9600 	case ETHERTYPE_ARP:
9601 		BCE_PRINTF("-arp: ");
9602 		ah = (struct arphdr *) (m->m_data + ehlen);
9603 		switch (ntohs(ah->ar_op)) {
9604 		case ARPOP_REVREQUEST:
9605 			printf("reverse ARP request\n");
9606 			break;
9607 		case ARPOP_REVREPLY:
9608 			printf("reverse ARP reply\n");
9609 			break;
9610 		case ARPOP_REQUEST:
9611 			printf("ARP request\n");
9612 			break;
9613 		case ARPOP_REPLY:
9614 			printf("ARP reply\n");
9615 			break;
9616 		default:
9617 			printf("other ARP operation\n");
9618 		}
9619 		break;
9620 	default:
9621 		BCE_PRINTF("----: Other protocol.\n");
9622 	}
9623 
9624 	BCE_PRINTF(
9625 		"-----------------------------"
9626 		"--------------"
9627 		"-----------------------------\n");
9628 }
9629 
9630 /****************************************************************************/
9631 /* Prints out information about an mbuf.                                    */
9632 /*                                                                          */
9633 /* Returns:                                                                 */
9634 /*   Nothing.                                                               */
9635 /****************************************************************************/
9636 static __attribute__ ((noinline)) void
bce_dump_mbuf(struct bce_softc * sc,struct mbuf * m)9637 bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
9638 {
9639 	struct mbuf *mp = m;
9640 
9641 	if (m == NULL) {
9642 		BCE_PRINTF("mbuf: null pointer\n");
9643 		return;
9644 	}
9645 
9646 	while (mp) {
9647 		BCE_PRINTF("mbuf: %p, m_len = %d, m_flags = 0x%b, "
9648 		    "m_data = %p\n", mp, mp->m_len, mp->m_flags,
9649 		    "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", mp->m_data);
9650 
9651 		if (mp->m_flags & M_PKTHDR) {
9652 			BCE_PRINTF("- m_pkthdr: len = %d, flags = 0x%b, "
9653 			    "csum_flags = %b\n", mp->m_pkthdr.len,
9654 			    mp->m_flags, M_FLAG_PRINTF,
9655 			    mp->m_pkthdr.csum_flags, CSUM_BITS);
9656 		}
9657 
9658 		if (mp->m_flags & M_EXT) {
9659 			BCE_PRINTF("- m_ext: %p, ext_size = %d, type = ",
9660 			    mp->m_ext.ext_buf, mp->m_ext.ext_size);
9661 			switch (mp->m_ext.ext_type) {
9662 			case EXT_CLUSTER:
9663 				printf("EXT_CLUSTER\n"); break;
9664 			case EXT_SFBUF:
9665 				printf("EXT_SFBUF\n"); break;
9666 			case EXT_JUMBO9:
9667 				printf("EXT_JUMBO9\n"); break;
9668 			case EXT_JUMBO16:
9669 				printf("EXT_JUMBO16\n"); break;
9670 			case EXT_PACKET:
9671 				printf("EXT_PACKET\n"); break;
9672 			case EXT_MBUF:
9673 				printf("EXT_MBUF\n"); break;
9674 			case EXT_NET_DRV:
9675 				printf("EXT_NET_DRV\n"); break;
9676 			case EXT_MOD_TYPE:
9677 				printf("EXT_MDD_TYPE\n"); break;
9678 			case EXT_DISPOSABLE:
9679 				printf("EXT_DISPOSABLE\n"); break;
9680 			case EXT_EXTREF:
9681 				printf("EXT_EXTREF\n"); break;
9682 			default:
9683 				printf("UNKNOWN\n");
9684 			}
9685 		}
9686 
9687 		mp = mp->m_next;
9688 	}
9689 }
9690 
9691 /****************************************************************************/
9692 /* Prints out the mbufs in the TX mbuf chain.                               */
9693 /*                                                                          */
9694 /* Returns:                                                                 */
9695 /*   Nothing.                                                               */
9696 /****************************************************************************/
9697 static __attribute__ ((noinline)) void
bce_dump_tx_mbuf_chain(struct bce_softc * sc,u16 chain_prod,int count)9698 bce_dump_tx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9699 {
9700 	struct mbuf *m;
9701 
9702 	BCE_PRINTF(
9703 		"----------------------------"
9704 		"  tx mbuf data  "
9705 		"----------------------------\n");
9706 
9707 	for (int i = 0; i < count; i++) {
9708 	 	m = sc->tx_mbuf_ptr[chain_prod];
9709 		BCE_PRINTF("txmbuf[0x%04X]\n", chain_prod);
9710 		bce_dump_mbuf(sc, m);
9711 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
9712 	}
9713 
9714 	BCE_PRINTF(
9715 		"----------------------------"
9716 		"----------------"
9717 		"----------------------------\n");
9718 }
9719 
9720 /****************************************************************************/
9721 /* Prints out the mbufs in the RX mbuf chain.                               */
9722 /*                                                                          */
9723 /* Returns:                                                                 */
9724 /*   Nothing.                                                               */
9725 /****************************************************************************/
9726 static __attribute__ ((noinline)) void
bce_dump_rx_mbuf_chain(struct bce_softc * sc,u16 chain_prod,int count)9727 bce_dump_rx_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9728 {
9729 	struct mbuf *m;
9730 
9731 	BCE_PRINTF(
9732 		"----------------------------"
9733 		"  rx mbuf data  "
9734 		"----------------------------\n");
9735 
9736 	for (int i = 0; i < count; i++) {
9737 	 	m = sc->rx_mbuf_ptr[chain_prod];
9738 		BCE_PRINTF("rxmbuf[0x%04X]\n", chain_prod);
9739 		bce_dump_mbuf(sc, m);
9740 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
9741 	}
9742 
9743 	BCE_PRINTF(
9744 		"----------------------------"
9745 		"----------------"
9746 		"----------------------------\n");
9747 }
9748 
9749 /****************************************************************************/
9750 /* Prints out the mbufs in the mbuf page chain.                             */
9751 /*                                                                          */
9752 /* Returns:                                                                 */
9753 /*   Nothing.                                                               */
9754 /****************************************************************************/
9755 static __attribute__ ((noinline)) void
bce_dump_pg_mbuf_chain(struct bce_softc * sc,u16 chain_prod,int count)9756 bce_dump_pg_mbuf_chain(struct bce_softc *sc, u16 chain_prod, int count)
9757 {
9758 	struct mbuf *m;
9759 
9760 	BCE_PRINTF(
9761 		"----------------------------"
9762 		"  pg mbuf data  "
9763 		"----------------------------\n");
9764 
9765 	for (int i = 0; i < count; i++) {
9766 	 	m = sc->pg_mbuf_ptr[chain_prod];
9767 		BCE_PRINTF("pgmbuf[0x%04X]\n", chain_prod);
9768 		bce_dump_mbuf(sc, m);
9769 		chain_prod = PG_CHAIN_IDX(NEXT_PG_BD(chain_prod));
9770 	}
9771 
9772 	BCE_PRINTF(
9773 		"----------------------------"
9774 		"----------------"
9775 		"----------------------------\n");
9776 }
9777 
9778 /****************************************************************************/
9779 /* Prints out a tx_bd structure.                                            */
9780 /*                                                                          */
9781 /* Returns:                                                                 */
9782 /*   Nothing.                                                               */
9783 /****************************************************************************/
9784 static __attribute__ ((noinline)) void
bce_dump_txbd(struct bce_softc * sc,int idx,struct tx_bd * txbd)9785 bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
9786 {
9787 	int i = 0;
9788 
9789 	if (idx > MAX_TX_BD_ALLOC)
9790 		/* Index out of range. */
9791 		BCE_PRINTF("tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
9792 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
9793 		/* TX Chain page pointer. */
9794 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9795 		    "pointer\n", idx, txbd->tx_bd_haddr_hi,
9796 		    txbd->tx_bd_haddr_lo);
9797 	else {
9798 		/* Normal tx_bd entry. */
9799 		BCE_PRINTF("tx_bd[0x%04X]: haddr = 0x%08X:%08X, "
9800 		    "mss_nbytes = 0x%08X, vlan tag = 0x%04X, flags = "
9801 		    "0x%04X (", idx, txbd->tx_bd_haddr_hi,
9802 		    txbd->tx_bd_haddr_lo, txbd->tx_bd_mss_nbytes,
9803 		    txbd->tx_bd_vlan_tag, txbd->tx_bd_flags);
9804 
9805 		if (txbd->tx_bd_flags & TX_BD_FLAGS_CONN_FAULT) {
9806 			if (i>0)
9807 				printf("|");
9808 			printf("CONN_FAULT");
9809 			i++;
9810 		}
9811 
9812 		if (txbd->tx_bd_flags & TX_BD_FLAGS_TCP_UDP_CKSUM) {
9813 			if (i>0)
9814 				printf("|");
9815 			printf("TCP_UDP_CKSUM");
9816 			i++;
9817 		}
9818 
9819 		if (txbd->tx_bd_flags & TX_BD_FLAGS_IP_CKSUM) {
9820 			if (i>0)
9821 				printf("|");
9822 			printf("IP_CKSUM");
9823 			i++;
9824 		}
9825 
9826 		if (txbd->tx_bd_flags & TX_BD_FLAGS_VLAN_TAG) {
9827 			if (i>0)
9828 				printf("|");
9829 			printf("VLAN");
9830 			i++;
9831 		}
9832 
9833 		if (txbd->tx_bd_flags & TX_BD_FLAGS_COAL_NOW) {
9834 			if (i>0)
9835 				printf("|");
9836 			printf("COAL_NOW");
9837 			i++;
9838 		}
9839 
9840 		if (txbd->tx_bd_flags & TX_BD_FLAGS_DONT_GEN_CRC) {
9841 			if (i>0)
9842 				printf("|");
9843 			printf("DONT_GEN_CRC");
9844 			i++;
9845 		}
9846 
9847 		if (txbd->tx_bd_flags & TX_BD_FLAGS_START) {
9848 			if (i>0)
9849 				printf("|");
9850 			printf("START");
9851 			i++;
9852 		}
9853 
9854 		if (txbd->tx_bd_flags & TX_BD_FLAGS_END) {
9855 			if (i>0)
9856 				printf("|");
9857 			printf("END");
9858 			i++;
9859 		}
9860 
9861 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_LSO) {
9862 			if (i>0)
9863 				printf("|");
9864 			printf("LSO");
9865 			i++;
9866 		}
9867 
9868 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_OPTION_WORD) {
9869 			if (i>0)
9870 				printf("|");
9871 			printf("SW_OPTION=%d", ((txbd->tx_bd_flags &
9872 			    TX_BD_FLAGS_SW_OPTION_WORD) >> 8)); i++;
9873 		}
9874 
9875 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_FLAGS) {
9876 			if (i>0)
9877 				printf("|");
9878 			printf("SW_FLAGS");
9879 			i++;
9880 		}
9881 
9882 		if (txbd->tx_bd_flags & TX_BD_FLAGS_SW_SNAP) {
9883 			if (i>0)
9884 				printf("|");
9885 			printf("SNAP)");
9886 		} else {
9887 			printf(")\n");
9888 		}
9889 	}
9890 }
9891 
9892 /****************************************************************************/
9893 /* Prints out a rx_bd structure.                                            */
9894 /*                                                                          */
9895 /* Returns:                                                                 */
9896 /*   Nothing.                                                               */
9897 /****************************************************************************/
9898 static __attribute__ ((noinline)) void
bce_dump_rxbd(struct bce_softc * sc,int idx,struct rx_bd * rxbd)9899 bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
9900 {
9901 	if (idx > MAX_RX_BD_ALLOC)
9902 		/* Index out of range. */
9903 		BCE_PRINTF("rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
9904 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
9905 		/* RX Chain page pointer. */
9906 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
9907 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
9908 		    rxbd->rx_bd_haddr_lo);
9909 	else
9910 		/* Normal rx_bd entry. */
9911 		BCE_PRINTF("rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
9912 		    "0x%08X, flags = 0x%08X\n", idx, rxbd->rx_bd_haddr_hi,
9913 		    rxbd->rx_bd_haddr_lo, rxbd->rx_bd_len,
9914 		    rxbd->rx_bd_flags);
9915 }
9916 
9917 /****************************************************************************/
9918 /* Prints out a rx_bd structure in the page chain.                          */
9919 /*                                                                          */
9920 /* Returns:                                                                 */
9921 /*   Nothing.                                                               */
9922 /****************************************************************************/
9923 static __attribute__ ((noinline)) void
bce_dump_pgbd(struct bce_softc * sc,int idx,struct rx_bd * pgbd)9924 bce_dump_pgbd(struct bce_softc *sc, int idx, struct rx_bd *pgbd)
9925 {
9926 	if (idx > MAX_PG_BD_ALLOC)
9927 		/* Index out of range. */
9928 		BCE_PRINTF("pg_bd[0x%04X]: Invalid pg_bd index!\n", idx);
9929 	else if ((idx & USABLE_PG_BD_PER_PAGE) == USABLE_PG_BD_PER_PAGE)
9930 		/* Page Chain page pointer. */
9931 		BCE_PRINTF("px_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
9932 			idx, pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo);
9933 	else
9934 		/* Normal rx_bd entry. */
9935 		BCE_PRINTF("pg_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
9936 			"flags = 0x%08X\n", idx,
9937 			pgbd->rx_bd_haddr_hi, pgbd->rx_bd_haddr_lo,
9938 			pgbd->rx_bd_len, pgbd->rx_bd_flags);
9939 }
9940 
9941 /****************************************************************************/
9942 /* Prints out a l2_fhdr structure.                                          */
9943 /*                                                                          */
9944 /* Returns:                                                                 */
9945 /*   Nothing.                                                               */
9946 /****************************************************************************/
9947 static __attribute__ ((noinline)) void
bce_dump_l2fhdr(struct bce_softc * sc,int idx,struct l2_fhdr * l2fhdr)9948 bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
9949 {
9950 	BCE_PRINTF("l2_fhdr[0x%04X]: status = 0x%b, "
9951 		"pkt_len = %d, vlan = 0x%04x, ip_xsum/hdr_len = 0x%04X, "
9952 		"tcp_udp_xsum = 0x%04X\n", idx,
9953 		l2fhdr->l2_fhdr_status, BCE_L2FHDR_PRINTFB,
9954 		l2fhdr->l2_fhdr_pkt_len, l2fhdr->l2_fhdr_vlan_tag,
9955 		l2fhdr->l2_fhdr_ip_xsum, l2fhdr->l2_fhdr_tcp_udp_xsum);
9956 }
9957 
9958 /****************************************************************************/
9959 /* Prints out context memory info.  (Only useful for CID 0 to 16.)          */
9960 /*                                                                          */
9961 /* Returns:                                                                 */
9962 /*   Nothing.                                                               */
9963 /****************************************************************************/
9964 static __attribute__ ((noinline)) void
bce_dump_ctx(struct bce_softc * sc,u16 cid)9965 bce_dump_ctx(struct bce_softc *sc, u16 cid)
9966 {
9967 	if (cid > TX_CID) {
9968 		BCE_PRINTF(" Unknown CID\n");
9969 		return;
9970 	}
9971 
9972 	BCE_PRINTF(
9973 	    "----------------------------"
9974 	    "    CTX Data    "
9975 	    "----------------------------\n");
9976 
9977 	BCE_PRINTF("     0x%04X - (CID) Context ID\n", cid);
9978 
9979 	if (cid == RX_CID) {
9980 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BDIDX) host rx "
9981 		   "producer index\n",
9982 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_HOST_BDIDX));
9983 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_BSEQ) host "
9984 		    "byte sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
9985 		    BCE_L2CTX_RX_HOST_BSEQ));
9986 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BSEQ) h/w byte sequence\n",
9987 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BSEQ));
9988 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_HI) h/w buffer "
9989 		    "descriptor address\n",
9990  		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_HI));
9991 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDHADDR_LO) h/w buffer "
9992 		    "descriptor address\n",
9993 		    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_RX_NX_BDHADDR_LO));
9994 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_BDIDX) h/w rx consumer "
9995 		    "index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9996 		    BCE_L2CTX_RX_NX_BDIDX));
9997 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_HOST_PG_BDIDX) host page "
9998 		    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
9999 		    BCE_L2CTX_RX_HOST_PG_BDIDX));
10000 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_PG_BUF_SIZE) host rx_bd/page "
10001 		    "buffer size\n", CTX_RD(sc, GET_CID_ADDR(cid),
10002 		    BCE_L2CTX_RX_PG_BUF_SIZE));
10003 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_HI) h/w page "
10004 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10005 		    BCE_L2CTX_RX_NX_PG_BDHADDR_HI));
10006 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDHADDR_LO) h/w page "
10007 		    "chain address\n", CTX_RD(sc, GET_CID_ADDR(cid),
10008 		    BCE_L2CTX_RX_NX_PG_BDHADDR_LO));
10009 		BCE_PRINTF(" 0x%08X - (L2CTX_RX_NX_PG_BDIDX) h/w page "
10010 		    "consumer index\n",	CTX_RD(sc, GET_CID_ADDR(cid),
10011 		    BCE_L2CTX_RX_NX_PG_BDIDX));
10012 	} else if (cid == TX_CID) {
10013 		if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10014 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE_XI) ctx type\n",
10015 			    CTX_RD(sc, GET_CID_ADDR(cid),
10016 			    BCE_L2CTX_TX_TYPE_XI));
10017 			BCE_PRINTF(" 0x%08X - (L2CTX_CMD_TX_TYPE_XI) ctx "
10018 			    "cmd\n", CTX_RD(sc, GET_CID_ADDR(cid),
10019 			    BCE_L2CTX_TX_CMD_TYPE_XI));
10020 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI_XI) "
10021 			    "h/w buffer descriptor address\n",
10022 			    CTX_RD(sc, GET_CID_ADDR(cid),
10023 			    BCE_L2CTX_TX_TBDR_BHADDR_HI_XI));
10024 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO_XI) "
10025 			    "h/w buffer	descriptor address\n",
10026 			    CTX_RD(sc, GET_CID_ADDR(cid),
10027 			    BCE_L2CTX_TX_TBDR_BHADDR_LO_XI));
10028 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX_XI) "
10029 			    "host producer index\n",
10030 			    CTX_RD(sc, GET_CID_ADDR(cid),
10031 			    BCE_L2CTX_TX_HOST_BIDX_XI));
10032 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ_XI) "
10033 			    "host byte sequence\n",
10034 			    CTX_RD(sc, GET_CID_ADDR(cid),
10035 			    BCE_L2CTX_TX_HOST_BSEQ_XI));
10036 		} else {
10037 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TYPE) ctx type\n",
10038 			    CTX_RD(sc, GET_CID_ADDR(cid), BCE_L2CTX_TX_TYPE));
10039 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_CMD_TYPE) ctx cmd\n",
10040 			    CTX_RD(sc, GET_CID_ADDR(cid),
10041 			    BCE_L2CTX_TX_CMD_TYPE));
10042 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BDHADDR_HI) "
10043 			    "h/w buffer	descriptor address\n",
10044 			    CTX_RD(sc, GET_CID_ADDR(cid),
10045 			    BCE_L2CTX_TX_TBDR_BHADDR_HI));
10046 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_TBDR_BHADDR_LO) "
10047 			    "h/w buffer	descriptor address\n",
10048 			    CTX_RD(sc, GET_CID_ADDR(cid),
10049 			    BCE_L2CTX_TX_TBDR_BHADDR_LO));
10050 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BIDX) host "
10051 			    "producer index\n", CTX_RD(sc, GET_CID_ADDR(cid),
10052 			    BCE_L2CTX_TX_HOST_BIDX));
10053 			BCE_PRINTF(" 0x%08X - (L2CTX_TX_HOST_BSEQ) host byte "
10054 			    "sequence\n", CTX_RD(sc, GET_CID_ADDR(cid),
10055 			    BCE_L2CTX_TX_HOST_BSEQ));
10056 		}
10057 	}
10058 
10059 	BCE_PRINTF(
10060 	   "----------------------------"
10061 	   "    Raw CTX     "
10062 	   "----------------------------\n");
10063 
10064 	for (int i = 0x0; i < 0x300; i += 0x10) {
10065 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n", i,
10066 		   CTX_RD(sc, GET_CID_ADDR(cid), i),
10067 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x4),
10068 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0x8),
10069 		   CTX_RD(sc, GET_CID_ADDR(cid), i + 0xc));
10070 	}
10071 
10072 	BCE_PRINTF(
10073 	   "----------------------------"
10074 	   "----------------"
10075 	   "----------------------------\n");
10076 }
10077 
10078 /****************************************************************************/
10079 /* Prints out the FTQ data.                                                 */
10080 /*                                                                          */
10081 /* Returns:                                                                */
10082 /*   Nothing.                                                               */
10083 /****************************************************************************/
10084 static __attribute__ ((noinline)) void
bce_dump_ftqs(struct bce_softc * sc)10085 bce_dump_ftqs(struct bce_softc *sc)
10086 {
10087 	u32 cmd, ctl, cur_depth, max_depth, valid_cnt, val;
10088 
10089 	BCE_PRINTF(
10090 	    "----------------------------"
10091 	    "    FTQ Data    "
10092 	    "----------------------------\n");
10093 
10094 	BCE_PRINTF("   FTQ    Command    Control   Depth_Now  "
10095 	    "Max_Depth  Valid_Cnt \n");
10096 	BCE_PRINTF(" ------- ---------- ---------- ---------- "
10097 	    "---------- ----------\n");
10098 
10099 	/* Setup the generic statistic counters for the FTQ valid count. */
10100 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PPQ_VALID_CNT << 24) |
10101 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPCQ_VALID_CNT  << 16) |
10102 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RXPQ_VALID_CNT   <<  8) |
10103 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RLUPQ_VALID_CNT);
10104 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10105 
10106 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TSCHQ_VALID_CNT  << 24) |
10107 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RDMAQ_VALID_CNT  << 16) |
10108 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PTQ_VALID_CNT <<  8) |
10109 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PMQ_VALID_CNT);
10110 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_1, val);
10111 
10112 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TPATQ_VALID_CNT  << 24) |
10113 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TDMAQ_VALID_CNT  << 16) |
10114 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TXPQ_VALID_CNT   <<  8) |
10115 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TBDRQ_VALID_CNT);
10116 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_2, val);
10117 
10118 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMQ_VALID_CNT   << 24) |
10119 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMTQ_VALID_CNT  << 16) |
10120 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_COMXQ_VALID_CNT  <<  8) |
10121 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_TASQ_VALID_CNT);
10122 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_3, val);
10123 
10124 	/* Input queue to the Receive Lookup state machine */
10125 	cmd = REG_RD(sc, BCE_RLUP_FTQ_CMD);
10126 	ctl = REG_RD(sc, BCE_RLUP_FTQ_CTL);
10127 	cur_depth = (ctl & BCE_RLUP_FTQ_CTL_CUR_DEPTH) >> 22;
10128 	max_depth = (ctl & BCE_RLUP_FTQ_CTL_MAX_DEPTH) >> 12;
10129 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10130 	BCE_PRINTF(" RLUP    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10131 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10132 
10133 	/* Input queue to the Receive Processor */
10134 	cmd = REG_RD_IND(sc, BCE_RXP_FTQ_CMD);
10135 	ctl = REG_RD_IND(sc, BCE_RXP_FTQ_CTL);
10136 	cur_depth = (ctl & BCE_RXP_FTQ_CTL_CUR_DEPTH) >> 22;
10137 	max_depth = (ctl & BCE_RXP_FTQ_CTL_MAX_DEPTH) >> 12;
10138 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10139 	BCE_PRINTF(" RXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10140 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10141 
10142 	/* Input queue to the Recevie Processor */
10143 	cmd = REG_RD_IND(sc, BCE_RXP_CFTQ_CMD);
10144 	ctl = REG_RD_IND(sc, BCE_RXP_CFTQ_CTL);
10145 	cur_depth = (ctl & BCE_RXP_CFTQ_CTL_CUR_DEPTH) >> 22;
10146 	max_depth = (ctl & BCE_RXP_CFTQ_CTL_MAX_DEPTH) >> 12;
10147 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10148 	BCE_PRINTF(" RXPC    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10149 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10150 
10151 	/* Input queue to the Receive Virtual to Physical state machine */
10152 	cmd = REG_RD(sc, BCE_RV2P_PFTQ_CMD);
10153 	ctl = REG_RD(sc, BCE_RV2P_PFTQ_CTL);
10154 	cur_depth = (ctl & BCE_RV2P_PFTQ_CTL_CUR_DEPTH) >> 22;
10155 	max_depth = (ctl & BCE_RV2P_PFTQ_CTL_MAX_DEPTH) >> 12;
10156 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10157 	BCE_PRINTF(" RV2PP   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10158 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10159 
10160 	/* Input queue to the Recevie Virtual to Physical state machine */
10161 	cmd = REG_RD(sc, BCE_RV2P_MFTQ_CMD);
10162 	ctl = REG_RD(sc, BCE_RV2P_MFTQ_CTL);
10163 	cur_depth = (ctl & BCE_RV2P_MFTQ_CTL_CUR_DEPTH) >> 22;
10164 	max_depth = (ctl & BCE_RV2P_MFTQ_CTL_MAX_DEPTH) >> 12;
10165 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT4);
10166 	BCE_PRINTF(" RV2PM   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10167 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10168 
10169 	/* Input queue to the Receive Virtual to Physical state machine */
10170 	cmd = REG_RD(sc, BCE_RV2P_TFTQ_CMD);
10171 	ctl = REG_RD(sc, BCE_RV2P_TFTQ_CTL);
10172 	cur_depth = (ctl & BCE_RV2P_TFTQ_CTL_CUR_DEPTH) >> 22;
10173 	max_depth = (ctl & BCE_RV2P_TFTQ_CTL_MAX_DEPTH) >> 12;
10174 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT5);
10175 	BCE_PRINTF(" RV2PT   0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10176 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10177 
10178 	/* Input queue to the Receive DMA state machine */
10179 	cmd = REG_RD(sc, BCE_RDMA_FTQ_CMD);
10180 	ctl = REG_RD(sc, BCE_RDMA_FTQ_CTL);
10181 	cur_depth = (ctl & BCE_RDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10182 	max_depth = (ctl & BCE_RDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10183 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT6);
10184 	BCE_PRINTF(" RDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10185 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10186 
10187 	/* Input queue to the Transmit Scheduler state machine */
10188 	cmd = REG_RD(sc, BCE_TSCH_FTQ_CMD);
10189 	ctl = REG_RD(sc, BCE_TSCH_FTQ_CTL);
10190 	cur_depth = (ctl & BCE_TSCH_FTQ_CTL_CUR_DEPTH) >> 22;
10191 	max_depth = (ctl & BCE_TSCH_FTQ_CTL_MAX_DEPTH) >> 12;
10192 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT7);
10193 	BCE_PRINTF(" TSCH    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10194 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10195 
10196 	/* Input queue to the Transmit Buffer Descriptor state machine */
10197 	cmd = REG_RD(sc, BCE_TBDR_FTQ_CMD);
10198 	ctl = REG_RD(sc, BCE_TBDR_FTQ_CTL);
10199 	cur_depth = (ctl & BCE_TBDR_FTQ_CTL_CUR_DEPTH) >> 22;
10200 	max_depth = (ctl & BCE_TBDR_FTQ_CTL_MAX_DEPTH) >> 12;
10201 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT8);
10202 	BCE_PRINTF(" TBDR    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10203 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10204 
10205 	/* Input queue to the Transmit Processor */
10206 	cmd = REG_RD_IND(sc, BCE_TXP_FTQ_CMD);
10207 	ctl = REG_RD_IND(sc, BCE_TXP_FTQ_CTL);
10208 	cur_depth = (ctl & BCE_TXP_FTQ_CTL_CUR_DEPTH) >> 22;
10209 	max_depth = (ctl & BCE_TXP_FTQ_CTL_MAX_DEPTH) >> 12;
10210 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT9);
10211 	BCE_PRINTF(" TXP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10212 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10213 
10214 	/* Input queue to the Transmit DMA state machine */
10215 	cmd = REG_RD(sc, BCE_TDMA_FTQ_CMD);
10216 	ctl = REG_RD(sc, BCE_TDMA_FTQ_CTL);
10217 	cur_depth = (ctl & BCE_TDMA_FTQ_CTL_CUR_DEPTH) >> 22;
10218 	max_depth = (ctl & BCE_TDMA_FTQ_CTL_MAX_DEPTH) >> 12;
10219 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT10);
10220 	BCE_PRINTF(" TDMA    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10221 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10222 
10223 	/* Input queue to the Transmit Patch-Up Processor */
10224 	cmd = REG_RD_IND(sc, BCE_TPAT_FTQ_CMD);
10225 	ctl = REG_RD_IND(sc, BCE_TPAT_FTQ_CTL);
10226 	cur_depth = (ctl & BCE_TPAT_FTQ_CTL_CUR_DEPTH) >> 22;
10227 	max_depth = (ctl & BCE_TPAT_FTQ_CTL_MAX_DEPTH) >> 12;
10228 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT11);
10229 	BCE_PRINTF(" TPAT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10230 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10231 
10232 	/* Input queue to the Transmit Assembler state machine */
10233 	cmd = REG_RD_IND(sc, BCE_TAS_FTQ_CMD);
10234 	ctl = REG_RD_IND(sc, BCE_TAS_FTQ_CTL);
10235 	cur_depth = (ctl & BCE_TAS_FTQ_CTL_CUR_DEPTH) >> 22;
10236 	max_depth = (ctl & BCE_TAS_FTQ_CTL_MAX_DEPTH) >> 12;
10237 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT12);
10238 	BCE_PRINTF(" TAS     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10239 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10240 
10241 	/* Input queue to the Completion Processor */
10242 	cmd = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CMD);
10243 	ctl = REG_RD_IND(sc, BCE_COM_COMXQ_FTQ_CTL);
10244 	cur_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_CUR_DEPTH) >> 22;
10245 	max_depth = (ctl & BCE_COM_COMXQ_FTQ_CTL_MAX_DEPTH) >> 12;
10246 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT13);
10247 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10248 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10249 
10250 	/* Input queue to the Completion Processor */
10251 	cmd = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CMD);
10252 	ctl = REG_RD_IND(sc, BCE_COM_COMTQ_FTQ_CTL);
10253 	cur_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_CUR_DEPTH) >> 22;
10254 	max_depth = (ctl & BCE_COM_COMTQ_FTQ_CTL_MAX_DEPTH) >> 12;
10255 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT14);
10256 	BCE_PRINTF(" COMT    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10257 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10258 
10259 	/* Input queue to the Completion Processor */
10260 	cmd = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CMD);
10261 	ctl = REG_RD_IND(sc, BCE_COM_COMQ_FTQ_CTL);
10262 	cur_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_CUR_DEPTH) >> 22;
10263 	max_depth = (ctl & BCE_COM_COMQ_FTQ_CTL_MAX_DEPTH) >> 12;
10264 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT15);
10265 	BCE_PRINTF(" COMX    0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10266 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10267 
10268 	/* Setup the generic statistic counters for the FTQ valid count. */
10269 	val = (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CSQ_VALID_CNT  << 16) |
10270 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_CPQ_VALID_CNT  <<  8) |
10271 	    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_MGMQ_VALID_CNT);
10272 
10273 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709)
10274 		val = val |
10275 		    (BCE_HC_STAT_GEN_SEL_0_GEN_SEL_0_RV2PCSQ_VALID_CNT_XI <<
10276 		     24);
10277 	REG_WR(sc, BCE_HC_STAT_GEN_SEL_0, val);
10278 
10279 	/* Input queue to the Management Control Processor */
10280 	cmd = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CMD);
10281 	ctl = REG_RD_IND(sc, BCE_MCP_MCPQ_FTQ_CTL);
10282 	cur_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10283 	max_depth = (ctl & BCE_MCP_MCPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10284 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT0);
10285 	BCE_PRINTF(" MCP     0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10286 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10287 
10288 	/* Input queue to the Command Processor */
10289 	cmd = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CMD);
10290 	ctl = REG_RD_IND(sc, BCE_CP_CPQ_FTQ_CTL);
10291 	cur_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_CUR_DEPTH) >> 22;
10292 	max_depth = (ctl & BCE_CP_CPQ_FTQ_CTL_MAX_DEPTH) >> 12;
10293 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT1);
10294 	BCE_PRINTF(" CP      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10295 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10296 
10297 	/* Input queue to the Completion Scheduler state machine */
10298 	cmd = REG_RD(sc, BCE_CSCH_CH_FTQ_CMD);
10299 	ctl = REG_RD(sc, BCE_CSCH_CH_FTQ_CTL);
10300 	cur_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_CUR_DEPTH) >> 22;
10301 	max_depth = (ctl & BCE_CSCH_CH_FTQ_CTL_MAX_DEPTH) >> 12;
10302 	valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT2);
10303 	BCE_PRINTF(" CS      0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10304 	    cmd, ctl, cur_depth, max_depth, valid_cnt);
10305 
10306 	if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5709) {
10307 		/* Input queue to the RV2P Command Scheduler */
10308 		cmd = REG_RD(sc, BCE_RV2PCSR_FTQ_CMD);
10309 		ctl = REG_RD(sc, BCE_RV2PCSR_FTQ_CTL);
10310 		cur_depth = (ctl & 0xFFC00000) >> 22;
10311 		max_depth = (ctl & 0x003FF000) >> 12;
10312 		valid_cnt = REG_RD(sc, BCE_HC_STAT_GEN_STAT3);
10313 		BCE_PRINTF(" RV2PCSR 0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n",
10314 		    cmd, ctl, cur_depth, max_depth, valid_cnt);
10315 	}
10316 
10317 	BCE_PRINTF(
10318 	    "----------------------------"
10319 	    "----------------"
10320 	    "----------------------------\n");
10321 }
10322 
10323 /****************************************************************************/
10324 /* Prints out the TX chain.                                                 */
10325 /*                                                                          */
10326 /* Returns:                                                                 */
10327 /*   Nothing.                                                               */
10328 /****************************************************************************/
10329 static __attribute__ ((noinline)) void
bce_dump_tx_chain(struct bce_softc * sc,u16 tx_prod,int count)10330 bce_dump_tx_chain(struct bce_softc *sc, u16 tx_prod, int count)
10331 {
10332 	struct tx_bd *txbd;
10333 
10334 	/* First some info about the tx_bd chain structure. */
10335 	BCE_PRINTF(
10336 	    "----------------------------"
10337 	    "  tx_bd  chain  "
10338 	    "----------------------------\n");
10339 
10340 	BCE_PRINTF("page size      = 0x%08X, tx chain pages        = 0x%08X\n",
10341 	    (u32) BCM_PAGE_SIZE, (u32) sc->tx_pages);
10342 	BCE_PRINTF("tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
10343 	    (u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
10344 	BCE_PRINTF("total tx_bd    = 0x%08X\n", (u32) TOTAL_TX_BD_ALLOC);
10345 
10346 	BCE_PRINTF(
10347 	    "----------------------------"
10348 	    "   tx_bd data   "
10349 	    "----------------------------\n");
10350 
10351 	/* Now print out a decoded list of TX buffer descriptors. */
10352 	for (int i = 0; i < count; i++) {
10353 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
10354 		bce_dump_txbd(sc, tx_prod, txbd);
10355 		tx_prod++;
10356 	}
10357 
10358 	BCE_PRINTF(
10359 	    "----------------------------"
10360 	    "----------------"
10361 	    "----------------------------\n");
10362 }
10363 
10364 /****************************************************************************/
10365 /* Prints out the RX chain.                                                 */
10366 /*                                                                          */
10367 /* Returns:                                                                 */
10368 /*   Nothing.                                                               */
10369 /****************************************************************************/
10370 static __attribute__ ((noinline)) void
bce_dump_rx_bd_chain(struct bce_softc * sc,u16 rx_prod,int count)10371 bce_dump_rx_bd_chain(struct bce_softc *sc, u16 rx_prod, int count)
10372 {
10373 	struct rx_bd *rxbd;
10374 
10375 	/* First some info about the rx_bd chain structure. */
10376 	BCE_PRINTF(
10377 	    "----------------------------"
10378 	    "  rx_bd  chain  "
10379 	    "----------------------------\n");
10380 
10381 	BCE_PRINTF("page size      = 0x%08X, rx chain pages        = 0x%08X\n",
10382 	    (u32) BCM_PAGE_SIZE, (u32) sc->rx_pages);
10383 
10384 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10385 	    (u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
10386 
10387 	BCE_PRINTF("total rx_bd    = 0x%08X\n", (u32) TOTAL_RX_BD_ALLOC);
10388 
10389 	BCE_PRINTF(
10390 	    "----------------------------"
10391 	    "   rx_bd data   "
10392 	    "----------------------------\n");
10393 
10394 	/* Now print out the rx_bd's themselves. */
10395 	for (int i = 0; i < count; i++) {
10396 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
10397 		bce_dump_rxbd(sc, rx_prod, rxbd);
10398 		rx_prod = RX_CHAIN_IDX(rx_prod + 1);
10399 	}
10400 
10401 	BCE_PRINTF(
10402 	    "----------------------------"
10403 	    "----------------"
10404 	    "----------------------------\n");
10405 }
10406 
10407 /****************************************************************************/
10408 /* Prints out the page chain.                                               */
10409 /*                                                                          */
10410 /* Returns:                                                                 */
10411 /*   Nothing.                                                               */
10412 /****************************************************************************/
10413 static __attribute__ ((noinline)) void
bce_dump_pg_chain(struct bce_softc * sc,u16 pg_prod,int count)10414 bce_dump_pg_chain(struct bce_softc *sc, u16 pg_prod, int count)
10415 {
10416 	struct rx_bd *pgbd;
10417 
10418 	/* First some info about the page chain structure. */
10419 	BCE_PRINTF(
10420 	    "----------------------------"
10421 	    "   page chain   "
10422 	    "----------------------------\n");
10423 
10424 	BCE_PRINTF("page size      = 0x%08X, pg chain pages        = 0x%08X\n",
10425 	    (u32) BCM_PAGE_SIZE, (u32) sc->pg_pages);
10426 
10427 	BCE_PRINTF("rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
10428 	    (u32) TOTAL_PG_BD_PER_PAGE, (u32) USABLE_PG_BD_PER_PAGE);
10429 
10430 	BCE_PRINTF("total pg_bd             = 0x%08X\n", (u32) TOTAL_PG_BD_ALLOC);
10431 
10432 	BCE_PRINTF(
10433 	    "----------------------------"
10434 	    "   page data    "
10435 	    "----------------------------\n");
10436 
10437 	/* Now print out the rx_bd's themselves. */
10438 	for (int i = 0; i < count; i++) {
10439 		pgbd = &sc->pg_bd_chain[PG_PAGE(pg_prod)][PG_IDX(pg_prod)];
10440 		bce_dump_pgbd(sc, pg_prod, pgbd);
10441 		pg_prod = PG_CHAIN_IDX(pg_prod + 1);
10442 	}
10443 
10444 	BCE_PRINTF(
10445 	    "----------------------------"
10446 	    "----------------"
10447 	    "----------------------------\n");
10448 }
10449 
10450 #define BCE_PRINT_RX_CONS(arg)						\
10451 if (sblk->status_rx_quick_consumer_index##arg)				\
10452 	BCE_PRINTF("0x%04X(0x%04X) - rx_quick_consumer_index%d\n",	\
10453 	    sblk->status_rx_quick_consumer_index##arg, (u16)		\
10454 	    RX_CHAIN_IDX(sblk->status_rx_quick_consumer_index##arg),	\
10455 	    arg);
10456 
10457 #define BCE_PRINT_TX_CONS(arg)						\
10458 if (sblk->status_tx_quick_consumer_index##arg)				\
10459 	BCE_PRINTF("0x%04X(0x%04X) - tx_quick_consumer_index%d\n",	\
10460 	    sblk->status_tx_quick_consumer_index##arg, (u16)		\
10461 	    TX_CHAIN_IDX(sblk->status_tx_quick_consumer_index##arg),	\
10462 	    arg);
10463 
10464 /****************************************************************************/
10465 /* Prints out the status block from host memory.                            */
10466 /*                                                                          */
10467 /* Returns:                                                                 */
10468 /*   Nothing.                                                               */
10469 /****************************************************************************/
10470 static __attribute__ ((noinline)) void
bce_dump_status_block(struct bce_softc * sc)10471 bce_dump_status_block(struct bce_softc *sc)
10472 {
10473 	struct status_block *sblk;
10474 
10475 	bus_dmamap_sync(sc->status_tag, sc->status_map, BUS_DMASYNC_POSTREAD);
10476 
10477 	sblk = sc->status_block;
10478 
10479 	BCE_PRINTF(
10480 	    "----------------------------"
10481 	    "  Status Block  "
10482 	    "----------------------------\n");
10483 
10484 	/* Theses indices are used for normal L2 drivers. */
10485 	BCE_PRINTF("    0x%08X - attn_bits\n",
10486 	    sblk->status_attn_bits);
10487 
10488 	BCE_PRINTF("    0x%08X - attn_bits_ack\n",
10489 	    sblk->status_attn_bits_ack);
10490 
10491 	BCE_PRINT_RX_CONS(0);
10492 	BCE_PRINT_TX_CONS(0)
10493 
10494 	BCE_PRINTF("        0x%04X - status_idx\n", sblk->status_idx);
10495 
10496 	/* Theses indices are not used for normal L2 drivers. */
10497 	BCE_PRINT_RX_CONS(1);   BCE_PRINT_RX_CONS(2);   BCE_PRINT_RX_CONS(3);
10498 	BCE_PRINT_RX_CONS(4);   BCE_PRINT_RX_CONS(5);   BCE_PRINT_RX_CONS(6);
10499 	BCE_PRINT_RX_CONS(7);   BCE_PRINT_RX_CONS(8);   BCE_PRINT_RX_CONS(9);
10500 	BCE_PRINT_RX_CONS(10);  BCE_PRINT_RX_CONS(11);  BCE_PRINT_RX_CONS(12);
10501 	BCE_PRINT_RX_CONS(13);  BCE_PRINT_RX_CONS(14);  BCE_PRINT_RX_CONS(15);
10502 
10503 	BCE_PRINT_TX_CONS(1);   BCE_PRINT_TX_CONS(2);   BCE_PRINT_TX_CONS(3);
10504 
10505 	if (sblk->status_completion_producer_index ||
10506 	    sblk->status_cmd_consumer_index)
10507 		BCE_PRINTF("com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
10508 		    sblk->status_completion_producer_index,
10509 		    sblk->status_cmd_consumer_index);
10510 
10511 	BCE_PRINTF(
10512 	    "----------------------------"
10513 	    "----------------"
10514 	    "----------------------------\n");
10515 }
10516 
10517 #define BCE_PRINT_64BIT_STAT(arg) 				\
10518 if (sblk->arg##_lo || sblk->arg##_hi)				\
10519 	BCE_PRINTF("0x%08X:%08X : %s\n", sblk->arg##_hi,	\
10520 	    sblk->arg##_lo, #arg);
10521 
10522 #define BCE_PRINT_32BIT_STAT(arg)				\
10523 if (sblk->arg)							\
10524 	BCE_PRINTF("         0x%08X : %s\n", 			\
10525 	    sblk->arg, #arg);
10526 
10527 /****************************************************************************/
10528 /* Prints out the statistics block from host memory.                        */
10529 /*                                                                          */
10530 /* Returns:                                                                 */
10531 /*   Nothing.                                                               */
10532 /****************************************************************************/
10533 static __attribute__ ((noinline)) void
bce_dump_stats_block(struct bce_softc * sc)10534 bce_dump_stats_block(struct bce_softc *sc)
10535 {
10536 	struct statistics_block *sblk;
10537 
10538 	bus_dmamap_sync(sc->stats_tag, sc->stats_map, BUS_DMASYNC_POSTREAD);
10539 
10540 	sblk = sc->stats_block;
10541 
10542 	BCE_PRINTF(
10543 	    "---------------"
10544 	    " Stats Block  (All Stats Not Shown Are 0) "
10545 	    "---------------\n");
10546 
10547 	BCE_PRINT_64BIT_STAT(stat_IfHCInOctets);
10548 	BCE_PRINT_64BIT_STAT(stat_IfHCInBadOctets);
10549 	BCE_PRINT_64BIT_STAT(stat_IfHCOutOctets);
10550 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBadOctets);
10551 	BCE_PRINT_64BIT_STAT(stat_IfHCInUcastPkts);
10552 	BCE_PRINT_64BIT_STAT(stat_IfHCInBroadcastPkts);
10553 	BCE_PRINT_64BIT_STAT(stat_IfHCInMulticastPkts);
10554 	BCE_PRINT_64BIT_STAT(stat_IfHCOutUcastPkts);
10555 	BCE_PRINT_64BIT_STAT(stat_IfHCOutBroadcastPkts);
10556 	BCE_PRINT_64BIT_STAT(stat_IfHCOutMulticastPkts);
10557 	BCE_PRINT_32BIT_STAT(
10558 	    stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
10559 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsCarrierSenseErrors);
10560 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsFCSErrors);
10561 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsAlignmentErrors);
10562 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsSingleCollisionFrames);
10563 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsMultipleCollisionFrames);
10564 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsDeferredTransmissions);
10565 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsExcessiveCollisions);
10566 	BCE_PRINT_32BIT_STAT(stat_Dot3StatsLateCollisions);
10567 	BCE_PRINT_32BIT_STAT(stat_EtherStatsCollisions);
10568 	BCE_PRINT_32BIT_STAT(stat_EtherStatsFragments);
10569 	BCE_PRINT_32BIT_STAT(stat_EtherStatsJabbers);
10570 	BCE_PRINT_32BIT_STAT(stat_EtherStatsUndersizePkts);
10571 	BCE_PRINT_32BIT_STAT(stat_EtherStatsOversizePkts);
10572 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx64Octets);
10573 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx65Octetsto127Octets);
10574 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx128Octetsto255Octets);
10575 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx256Octetsto511Octets);
10576 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx512Octetsto1023Octets);
10577 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1024Octetsto1522Octets);
10578 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsRx1523Octetsto9022Octets);
10579 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx64Octets);
10580 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx65Octetsto127Octets);
10581 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx128Octetsto255Octets);
10582 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx256Octetsto511Octets);
10583 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx512Octetsto1023Octets);
10584 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1024Octetsto1522Octets);
10585 	BCE_PRINT_32BIT_STAT(stat_EtherStatsPktsTx1523Octetsto9022Octets);
10586 	BCE_PRINT_32BIT_STAT(stat_XonPauseFramesReceived);
10587 	BCE_PRINT_32BIT_STAT(stat_XoffPauseFramesReceived);
10588 	BCE_PRINT_32BIT_STAT(stat_OutXonSent);
10589 	BCE_PRINT_32BIT_STAT(stat_OutXoffSent);
10590 	BCE_PRINT_32BIT_STAT(stat_FlowControlDone);
10591 	BCE_PRINT_32BIT_STAT(stat_MacControlFramesReceived);
10592 	BCE_PRINT_32BIT_STAT(stat_XoffStateEntered);
10593 	BCE_PRINT_32BIT_STAT(stat_IfInFramesL2FilterDiscards);
10594 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerDiscards);
10595 	BCE_PRINT_32BIT_STAT(stat_IfInFTQDiscards);
10596 	BCE_PRINT_32BIT_STAT(stat_IfInMBUFDiscards);
10597 	BCE_PRINT_32BIT_STAT(stat_IfInRuleCheckerP4Hit);
10598 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerDiscards);
10599 	BCE_PRINT_32BIT_STAT(stat_CatchupInFTQDiscards);
10600 	BCE_PRINT_32BIT_STAT(stat_CatchupInMBUFDiscards);
10601 	BCE_PRINT_32BIT_STAT(stat_CatchupInRuleCheckerP4Hit);
10602 
10603 	BCE_PRINTF(
10604 	    "----------------------------"
10605 	    "----------------"
10606 	    "----------------------------\n");
10607 }
10608 
10609 /****************************************************************************/
10610 /* Prints out a summary of the driver state.                                */
10611 /*                                                                          */
10612 /* Returns:                                                                 */
10613 /*   Nothing.                                                               */
10614 /****************************************************************************/
10615 static __attribute__ ((noinline)) void
bce_dump_driver_state(struct bce_softc * sc)10616 bce_dump_driver_state(struct bce_softc *sc)
10617 {
10618 	u32 val_hi, val_lo;
10619 
10620 	BCE_PRINTF(
10621 	    "-----------------------------"
10622 	    " Driver State "
10623 	    "-----------------------------\n");
10624 
10625 	val_hi = BCE_ADDR_HI(sc);
10626 	val_lo = BCE_ADDR_LO(sc);
10627 	BCE_PRINTF("0x%08X:%08X - (sc) driver softc structure virtual "
10628 	    "address\n", val_hi, val_lo);
10629 
10630 	val_hi = BCE_ADDR_HI(sc->bce_vhandle);
10631 	val_lo = BCE_ADDR_LO(sc->bce_vhandle);
10632 	BCE_PRINTF("0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual "
10633 	    "address\n", val_hi, val_lo);
10634 
10635 	val_hi = BCE_ADDR_HI(sc->status_block);
10636 	val_lo = BCE_ADDR_LO(sc->status_block);
10637 	BCE_PRINTF("0x%08X:%08X - (sc->status_block) status block "
10638 	    "virtual address\n",	val_hi, val_lo);
10639 
10640 	val_hi = BCE_ADDR_HI(sc->stats_block);
10641 	val_lo = BCE_ADDR_LO(sc->stats_block);
10642 	BCE_PRINTF("0x%08X:%08X - (sc->stats_block) statistics block "
10643 	    "virtual address\n", val_hi, val_lo);
10644 
10645 	val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
10646 	val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
10647 	BCE_PRINTF("0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain "
10648 	    "virtual address\n", val_hi, val_lo);
10649 
10650 	val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
10651 	val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
10652 	BCE_PRINTF("0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain "
10653 	    "virtual address\n", val_hi, val_lo);
10654 
10655 	if (bce_hdr_split == TRUE) {
10656 		val_hi = BCE_ADDR_HI(sc->pg_bd_chain);
10657 		val_lo = BCE_ADDR_LO(sc->pg_bd_chain);
10658 		BCE_PRINTF("0x%08X:%08X - (sc->pg_bd_chain) page chain "
10659 		    "virtual address\n", val_hi, val_lo);
10660 	}
10661 
10662 	val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
10663 	val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
10664 	BCE_PRINTF("0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain "
10665 	    "virtual address\n",	val_hi, val_lo);
10666 
10667 	val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
10668 	val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
10669 	BCE_PRINTF("0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain "
10670 	    "virtual address\n", val_hi, val_lo);
10671 
10672 	if (bce_hdr_split == TRUE) {
10673 		val_hi = BCE_ADDR_HI(sc->pg_mbuf_ptr);
10674 		val_lo = BCE_ADDR_LO(sc->pg_mbuf_ptr);
10675 		BCE_PRINTF("0x%08X:%08X - (sc->pg_mbuf_ptr) page mbuf chain "
10676 		    "virtual address\n", val_hi, val_lo);
10677 	}
10678 
10679 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_generated) "
10680 	    "h/w intrs\n",
10681 	    (long long unsigned int) sc->interrupts_generated);
10682 
10683 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_rx) "
10684 	    "rx interrupts handled\n",
10685 	    (long long unsigned int) sc->interrupts_rx);
10686 
10687 	BCE_PRINTF(" 0x%016llX - (sc->interrupts_tx) "
10688 	    "tx interrupts handled\n",
10689 	    (long long unsigned int) sc->interrupts_tx);
10690 
10691 	BCE_PRINTF(" 0x%016llX - (sc->phy_interrupts) "
10692 	    "phy interrupts handled\n",
10693 	    (long long unsigned int) sc->phy_interrupts);
10694 
10695 	BCE_PRINTF("         0x%08X - (sc->last_status_idx) "
10696 	    "status block index\n", sc->last_status_idx);
10697 
10698 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_prod) tx producer "
10699 	    "index\n", sc->tx_prod, (u16) TX_CHAIN_IDX(sc->tx_prod));
10700 
10701 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->tx_cons) tx consumer "
10702 	    "index\n", sc->tx_cons, (u16) TX_CHAIN_IDX(sc->tx_cons));
10703 
10704 	BCE_PRINTF("         0x%08X - (sc->tx_prod_bseq) tx producer "
10705 	    "byte seq index\n",	sc->tx_prod_bseq);
10706 
10707 	BCE_PRINTF("         0x%08X - (sc->debug_tx_mbuf_alloc) tx "
10708 	    "mbufs allocated\n", sc->debug_tx_mbuf_alloc);
10709 
10710 	BCE_PRINTF("         0x%08X - (sc->used_tx_bd) used "
10711 	    "tx_bd's\n", sc->used_tx_bd);
10712 
10713 	BCE_PRINTF("      0x%04X/0x%04X - (sc->tx_hi_watermark)/"
10714 	    "(sc->max_tx_bd)\n", sc->tx_hi_watermark, sc->max_tx_bd);
10715 
10716 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_prod) rx producer "
10717 	    "index\n", sc->rx_prod, (u16) RX_CHAIN_IDX(sc->rx_prod));
10718 
10719 	BCE_PRINTF("     0x%04X(0x%04X) - (sc->rx_cons) rx consumer "
10720 	    "index\n", sc->rx_cons, (u16) RX_CHAIN_IDX(sc->rx_cons));
10721 
10722 	BCE_PRINTF("         0x%08X - (sc->rx_prod_bseq) rx producer "
10723 	    "byte seq index\n",	sc->rx_prod_bseq);
10724 
10725 	BCE_PRINTF("      0x%04X/0x%04X - (sc->rx_low_watermark)/"
10726 		   "(sc->max_rx_bd)\n", sc->rx_low_watermark, sc->max_rx_bd);
10727 
10728 	BCE_PRINTF("         0x%08X - (sc->debug_rx_mbuf_alloc) rx "
10729 	    "mbufs allocated\n", sc->debug_rx_mbuf_alloc);
10730 
10731 	BCE_PRINTF("         0x%08X - (sc->free_rx_bd) free "
10732 	    "rx_bd's\n", sc->free_rx_bd);
10733 
10734 	if (bce_hdr_split == TRUE) {
10735 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_prod) page producer "
10736 		    "index\n", sc->pg_prod, (u16) PG_CHAIN_IDX(sc->pg_prod));
10737 
10738 		BCE_PRINTF("     0x%04X(0x%04X) - (sc->pg_cons) page consumer "
10739 		    "index\n", sc->pg_cons, (u16) PG_CHAIN_IDX(sc->pg_cons));
10740 
10741 		BCE_PRINTF("         0x%08X - (sc->debug_pg_mbuf_alloc) page "
10742 		    "mbufs allocated\n", sc->debug_pg_mbuf_alloc);
10743 	}
10744 
10745 	BCE_PRINTF("         0x%08X - (sc->free_pg_bd) free page "
10746 	    "rx_bd's\n", sc->free_pg_bd);
10747 
10748 	BCE_PRINTF("      0x%04X/0x%04X - (sc->pg_low_watermark)/"
10749 	    "(sc->max_pg_bd)\n", sc->pg_low_watermark, sc->max_pg_bd);
10750 
10751 	BCE_PRINTF("         0x%08X - (sc->mbuf_alloc_failed_count) "
10752 	    "mbuf alloc failures\n", sc->mbuf_alloc_failed_count);
10753 
10754 	BCE_PRINTF("         0x%08X - (sc->bce_flags) "
10755 	    "bce mac flags\n", sc->bce_flags);
10756 
10757 	BCE_PRINTF("         0x%08X - (sc->bce_phy_flags) "
10758 	    "bce phy flags\n", sc->bce_phy_flags);
10759 
10760 	BCE_PRINTF(
10761 	    "----------------------------"
10762 	    "----------------"
10763 	    "----------------------------\n");
10764 }
10765 
10766 /****************************************************************************/
10767 /* Prints out the hardware state through a summary of important register,   */
10768 /* followed by a complete register dump.                                    */
10769 /*                                                                          */
10770 /* Returns:                                                                 */
10771 /*   Nothing.                                                               */
10772 /****************************************************************************/
10773 static __attribute__ ((noinline)) void
bce_dump_hw_state(struct bce_softc * sc)10774 bce_dump_hw_state(struct bce_softc *sc)
10775 {
10776 	u32 val;
10777 
10778 	BCE_PRINTF(
10779 	    "----------------------------"
10780 	    " Hardware State "
10781 	    "----------------------------\n");
10782 
10783 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10784 
10785 	val = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
10786 	BCE_PRINTF("0x%08X - (0x%06X) misc_enable_status_bits\n",
10787 	    val, BCE_MISC_ENABLE_STATUS_BITS);
10788 
10789 	val = REG_RD(sc, BCE_DMA_STATUS);
10790 	BCE_PRINTF("0x%08X - (0x%06X) dma_status\n",
10791 	    val, BCE_DMA_STATUS);
10792 
10793 	val = REG_RD(sc, BCE_CTX_STATUS);
10794 	BCE_PRINTF("0x%08X - (0x%06X) ctx_status\n",
10795 	    val, BCE_CTX_STATUS);
10796 
10797 	val = REG_RD(sc, BCE_EMAC_STATUS);
10798 	BCE_PRINTF("0x%08X - (0x%06X) emac_status\n",
10799 	    val, BCE_EMAC_STATUS);
10800 
10801 	val = REG_RD(sc, BCE_RPM_STATUS);
10802 	BCE_PRINTF("0x%08X - (0x%06X) rpm_status\n",
10803 	    val, BCE_RPM_STATUS);
10804 
10805 	/* ToDo: Create a #define for this constant. */
10806 	val = REG_RD(sc, 0x2004);
10807 	BCE_PRINTF("0x%08X - (0x%06X) rlup_status\n",
10808 	    val, 0x2004);
10809 
10810 	val = REG_RD(sc, BCE_RV2P_STATUS);
10811 	BCE_PRINTF("0x%08X - (0x%06X) rv2p_status\n",
10812 	    val, BCE_RV2P_STATUS);
10813 
10814 	/* ToDo: Create a #define for this constant. */
10815 	val = REG_RD(sc, 0x2c04);
10816 	BCE_PRINTF("0x%08X - (0x%06X) rdma_status\n",
10817 	    val, 0x2c04);
10818 
10819 	val = REG_RD(sc, BCE_TBDR_STATUS);
10820 	BCE_PRINTF("0x%08X - (0x%06X) tbdr_status\n",
10821 	    val, BCE_TBDR_STATUS);
10822 
10823 	val = REG_RD(sc, BCE_TDMA_STATUS);
10824 	BCE_PRINTF("0x%08X - (0x%06X) tdma_status\n",
10825 	    val, BCE_TDMA_STATUS);
10826 
10827 	val = REG_RD(sc, BCE_HC_STATUS);
10828 	BCE_PRINTF("0x%08X - (0x%06X) hc_status\n",
10829 	    val, BCE_HC_STATUS);
10830 
10831 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
10832 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
10833 	    val, BCE_TXP_CPU_STATE);
10834 
10835 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
10836 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
10837 	    val, BCE_TPAT_CPU_STATE);
10838 
10839 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
10840 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
10841 	    val, BCE_RXP_CPU_STATE);
10842 
10843 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
10844 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
10845 	    val, BCE_COM_CPU_STATE);
10846 
10847 	val = REG_RD_IND(sc, BCE_MCP_CPU_STATE);
10848 	BCE_PRINTF("0x%08X - (0x%06X) mcp_cpu_state\n",
10849 	    val, BCE_MCP_CPU_STATE);
10850 
10851 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
10852 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
10853 	    val, BCE_CP_CPU_STATE);
10854 
10855 	BCE_PRINTF(
10856 	    "----------------------------"
10857 	    "----------------"
10858 	    "----------------------------\n");
10859 
10860 	BCE_PRINTF(
10861 	    "----------------------------"
10862 	    " Register  Dump "
10863 	    "----------------------------\n");
10864 
10865 	for (int i = 0x400; i < 0x8000; i += 0x10) {
10866 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10867 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10868 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10869 	}
10870 
10871 	BCE_PRINTF(
10872 	    "----------------------------"
10873 	    "----------------"
10874 	    "----------------------------\n");
10875 }
10876 
10877 /****************************************************************************/
10878 /* Prints out the contentst of shared memory which is used for host driver  */
10879 /* to bootcode firmware communication.                                      */
10880 /*                                                                          */
10881 /* Returns:                                                                 */
10882 /*   Nothing.                                                               */
10883 /****************************************************************************/
10884 static __attribute__ ((noinline)) void
bce_dump_shmem_state(struct bce_softc * sc)10885 bce_dump_shmem_state(struct bce_softc *sc)
10886 {
10887 	BCE_PRINTF(
10888 	    "----------------------------"
10889 	    " Hardware State "
10890 	    "----------------------------\n");
10891 
10892 	BCE_PRINTF("0x%08X - Shared memory base address\n",
10893 	    sc->bce_shmem_base);
10894 	BCE_PRINTF("%s - bootcode version\n",
10895 	    sc->bce_bc_ver);
10896 
10897 	BCE_PRINTF(
10898 	    "----------------------------"
10899 	    "   Shared Mem   "
10900 	    "----------------------------\n");
10901 
10902 	for (int i = 0x0; i < 0x200; i += 0x10) {
10903 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10904 		    i, bce_shmem_rd(sc, i), bce_shmem_rd(sc, i + 0x4),
10905 		    bce_shmem_rd(sc, i + 0x8), bce_shmem_rd(sc, i + 0xC));
10906 	}
10907 
10908 	BCE_PRINTF(
10909 	    "----------------------------"
10910 	    "----------------"
10911 	    "----------------------------\n");
10912 }
10913 
10914 /****************************************************************************/
10915 /* Prints out the mailbox queue registers.                                  */
10916 /*                                                                          */
10917 /* Returns:                                                                 */
10918 /*   Nothing.                                                               */
10919 /****************************************************************************/
10920 static __attribute__ ((noinline)) void
bce_dump_mq_regs(struct bce_softc * sc)10921 bce_dump_mq_regs(struct bce_softc *sc)
10922 {
10923 	BCE_PRINTF(
10924 	    "----------------------------"
10925 	    "    MQ Regs     "
10926 	    "----------------------------\n");
10927 
10928 	BCE_PRINTF(
10929 	    "----------------------------"
10930 	    "----------------"
10931 	    "----------------------------\n");
10932 
10933 	for (int i = 0x3c00; i < 0x4000; i += 0x10) {
10934 		BCE_PRINTF("0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
10935 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
10936 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
10937 	}
10938 
10939 	BCE_PRINTF(
10940 	    "----------------------------"
10941 	    "----------------"
10942 	    "----------------------------\n");
10943 }
10944 
10945 /****************************************************************************/
10946 /* Prints out the bootcode state.                                           */
10947 /*                                                                          */
10948 /* Returns:                                                                 */
10949 /*   Nothing.                                                               */
10950 /****************************************************************************/
10951 static __attribute__ ((noinline)) void
bce_dump_bc_state(struct bce_softc * sc)10952 bce_dump_bc_state(struct bce_softc *sc)
10953 {
10954 	u32 val;
10955 
10956 	BCE_PRINTF(
10957 	    "----------------------------"
10958 	    " Bootcode State "
10959 	    "----------------------------\n");
10960 
10961 	BCE_PRINTF("%s - bootcode version\n", sc->bce_bc_ver);
10962 
10963 	val = bce_shmem_rd(sc, BCE_BC_RESET_TYPE);
10964 	BCE_PRINTF("0x%08X - (0x%06X) reset_type\n",
10965 	    val, BCE_BC_RESET_TYPE);
10966 
10967 	val = bce_shmem_rd(sc, BCE_BC_STATE);
10968 	BCE_PRINTF("0x%08X - (0x%06X) state\n",
10969 	    val, BCE_BC_STATE);
10970 
10971 	val = bce_shmem_rd(sc, BCE_BC_STATE_CONDITION);
10972 	BCE_PRINTF("0x%08X - (0x%06X) condition\n",
10973 	    val, BCE_BC_STATE_CONDITION);
10974 
10975 	val = bce_shmem_rd(sc, BCE_BC_STATE_DEBUG_CMD);
10976 	BCE_PRINTF("0x%08X - (0x%06X) debug_cmd\n",
10977 	    val, BCE_BC_STATE_DEBUG_CMD);
10978 
10979 	BCE_PRINTF(
10980 	    "----------------------------"
10981 	    "----------------"
10982 	    "----------------------------\n");
10983 }
10984 
10985 /****************************************************************************/
10986 /* Prints out the TXP processor state.                                      */
10987 /*                                                                          */
10988 /* Returns:                                                                 */
10989 /*   Nothing.                                                               */
10990 /****************************************************************************/
10991 static __attribute__ ((noinline)) void
bce_dump_txp_state(struct bce_softc * sc,int regs)10992 bce_dump_txp_state(struct bce_softc *sc, int regs)
10993 {
10994 	u32 val;
10995 	u32 fw_version[3];
10996 
10997 	BCE_PRINTF(
10998 	    "----------------------------"
10999 	    "   TXP  State   "
11000 	    "----------------------------\n");
11001 
11002 	for (int i = 0; i < 3; i++)
11003 		fw_version[i] = htonl(REG_RD_IND(sc,
11004 		    (BCE_TXP_SCRATCH + 0x10 + i * 4)));
11005 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11006 
11007 	val = REG_RD_IND(sc, BCE_TXP_CPU_MODE);
11008 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_mode\n",
11009 	    val, BCE_TXP_CPU_MODE);
11010 
11011 	val = REG_RD_IND(sc, BCE_TXP_CPU_STATE);
11012 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_state\n",
11013 	    val, BCE_TXP_CPU_STATE);
11014 
11015 	val = REG_RD_IND(sc, BCE_TXP_CPU_EVENT_MASK);
11016 	BCE_PRINTF("0x%08X - (0x%06X) txp_cpu_event_mask\n",
11017 	    val, BCE_TXP_CPU_EVENT_MASK);
11018 
11019 	if (regs) {
11020 		BCE_PRINTF(
11021 		    "----------------------------"
11022 		    " Register  Dump "
11023 		    "----------------------------\n");
11024 
11025 		for (int i = BCE_TXP_CPU_MODE; i < 0x68000; i += 0x10) {
11026 			/* Skip the big blank spaces */
11027 			if (i < 0x454000 && i > 0x5ffff)
11028 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11029 				    "0x%08X 0x%08X\n", i,
11030 				    REG_RD_IND(sc, i),
11031 				    REG_RD_IND(sc, i + 0x4),
11032 				    REG_RD_IND(sc, i + 0x8),
11033 				    REG_RD_IND(sc, i + 0xC));
11034 		}
11035 	}
11036 
11037 	BCE_PRINTF(
11038 	    "----------------------------"
11039 	    "----------------"
11040 	    "----------------------------\n");
11041 }
11042 
11043 /****************************************************************************/
11044 /* Prints out the RXP processor state.                                      */
11045 /*                                                                          */
11046 /* Returns:                                                                 */
11047 /*   Nothing.                                                               */
11048 /****************************************************************************/
11049 static __attribute__ ((noinline)) void
bce_dump_rxp_state(struct bce_softc * sc,int regs)11050 bce_dump_rxp_state(struct bce_softc *sc, int regs)
11051 {
11052 	u32 val;
11053 	u32 fw_version[3];
11054 
11055 	BCE_PRINTF(
11056 	    "----------------------------"
11057 	    "   RXP  State   "
11058 	    "----------------------------\n");
11059 
11060 	for (int i = 0; i < 3; i++)
11061 		fw_version[i] = htonl(REG_RD_IND(sc,
11062 		    (BCE_RXP_SCRATCH + 0x10 + i * 4)));
11063 
11064 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11065 
11066 	val = REG_RD_IND(sc, BCE_RXP_CPU_MODE);
11067 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_mode\n",
11068 	    val, BCE_RXP_CPU_MODE);
11069 
11070 	val = REG_RD_IND(sc, BCE_RXP_CPU_STATE);
11071 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_state\n",
11072 	    val, BCE_RXP_CPU_STATE);
11073 
11074 	val = REG_RD_IND(sc, BCE_RXP_CPU_EVENT_MASK);
11075 	BCE_PRINTF("0x%08X - (0x%06X) rxp_cpu_event_mask\n",
11076 	    val, BCE_RXP_CPU_EVENT_MASK);
11077 
11078 	if (regs) {
11079 		BCE_PRINTF(
11080 		    "----------------------------"
11081 		    " Register  Dump "
11082 		    "----------------------------\n");
11083 
11084 		for (int i = BCE_RXP_CPU_MODE; i < 0xe8fff; i += 0x10) {
11085 			/* Skip the big blank sapces */
11086 			if (i < 0xc5400 && i > 0xdffff)
11087 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11088 				    "0x%08X 0x%08X\n", i,
11089 				    REG_RD_IND(sc, i),
11090 				    REG_RD_IND(sc, i + 0x4),
11091 				    REG_RD_IND(sc, i + 0x8),
11092 				    REG_RD_IND(sc, i + 0xC));
11093 		}
11094 	}
11095 
11096 	BCE_PRINTF(
11097 	    "----------------------------"
11098 	    "----------------"
11099 	    "----------------------------\n");
11100 }
11101 
11102 /****************************************************************************/
11103 /* Prints out the TPAT processor state.                                     */
11104 /*                                                                          */
11105 /* Returns:                                                                 */
11106 /*   Nothing.                                                               */
11107 /****************************************************************************/
11108 static __attribute__ ((noinline)) void
bce_dump_tpat_state(struct bce_softc * sc,int regs)11109 bce_dump_tpat_state(struct bce_softc *sc, int regs)
11110 {
11111 	u32 val;
11112 	u32 fw_version[3];
11113 
11114 	BCE_PRINTF(
11115 	    "----------------------------"
11116 	    "   TPAT State   "
11117 	    "----------------------------\n");
11118 
11119 	for (int i = 0; i < 3; i++)
11120 		fw_version[i] = htonl(REG_RD_IND(sc,
11121 		    (BCE_TPAT_SCRATCH + 0x410 + i * 4)));
11122 
11123 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11124 
11125 	val = REG_RD_IND(sc, BCE_TPAT_CPU_MODE);
11126 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_mode\n",
11127 	    val, BCE_TPAT_CPU_MODE);
11128 
11129 	val = REG_RD_IND(sc, BCE_TPAT_CPU_STATE);
11130 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_state\n",
11131 	    val, BCE_TPAT_CPU_STATE);
11132 
11133 	val = REG_RD_IND(sc, BCE_TPAT_CPU_EVENT_MASK);
11134 	BCE_PRINTF("0x%08X - (0x%06X) tpat_cpu_event_mask\n",
11135 	    val, BCE_TPAT_CPU_EVENT_MASK);
11136 
11137 	if (regs) {
11138 		BCE_PRINTF(
11139 		    "----------------------------"
11140 		    " Register  Dump "
11141 		    "----------------------------\n");
11142 
11143 		for (int i = BCE_TPAT_CPU_MODE; i < 0xa3fff; i += 0x10) {
11144 			/* Skip the big blank spaces */
11145 			if (i < 0x854000 && i > 0x9ffff)
11146 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11147 				    "0x%08X 0x%08X\n", i,
11148 				    REG_RD_IND(sc, i),
11149 				    REG_RD_IND(sc, i + 0x4),
11150 				    REG_RD_IND(sc, i + 0x8),
11151 				    REG_RD_IND(sc, i + 0xC));
11152 		}
11153 	}
11154 
11155 	BCE_PRINTF(
11156 		"----------------------------"
11157 		"----------------"
11158 		"----------------------------\n");
11159 }
11160 
11161 /****************************************************************************/
11162 /* Prints out the Command Procesor (CP) state.                              */
11163 /*                                                                          */
11164 /* Returns:                                                                 */
11165 /*   Nothing.                                                               */
11166 /****************************************************************************/
11167 static __attribute__ ((noinline)) void
bce_dump_cp_state(struct bce_softc * sc,int regs)11168 bce_dump_cp_state(struct bce_softc *sc, int regs)
11169 {
11170 	u32 val;
11171 	u32 fw_version[3];
11172 
11173 	BCE_PRINTF(
11174 	    "----------------------------"
11175 	    "    CP State    "
11176 	    "----------------------------\n");
11177 
11178 	for (int i = 0; i < 3; i++)
11179 		fw_version[i] = htonl(REG_RD_IND(sc,
11180 		    (BCE_CP_SCRATCH + 0x10 + i * 4)));
11181 
11182 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11183 
11184 	val = REG_RD_IND(sc, BCE_CP_CPU_MODE);
11185 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_mode\n",
11186 	    val, BCE_CP_CPU_MODE);
11187 
11188 	val = REG_RD_IND(sc, BCE_CP_CPU_STATE);
11189 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_state\n",
11190 	    val, BCE_CP_CPU_STATE);
11191 
11192 	val = REG_RD_IND(sc, BCE_CP_CPU_EVENT_MASK);
11193 	BCE_PRINTF("0x%08X - (0x%06X) cp_cpu_event_mask\n", val,
11194 	    BCE_CP_CPU_EVENT_MASK);
11195 
11196 	if (regs) {
11197 		BCE_PRINTF(
11198 		    "----------------------------"
11199 		    " Register  Dump "
11200 		    "----------------------------\n");
11201 
11202 		for (int i = BCE_CP_CPU_MODE; i < 0x1aa000; i += 0x10) {
11203 			/* Skip the big blank spaces */
11204 			if (i < 0x185400 && i > 0x19ffff)
11205 				BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11206 				    "0x%08X 0x%08X\n", i,
11207 				    REG_RD_IND(sc, i),
11208 				    REG_RD_IND(sc, i + 0x4),
11209 				    REG_RD_IND(sc, i + 0x8),
11210 				    REG_RD_IND(sc, i + 0xC));
11211 		}
11212 	}
11213 
11214 	BCE_PRINTF(
11215 	    "----------------------------"
11216 	    "----------------"
11217 	    "----------------------------\n");
11218 }
11219 
11220 /****************************************************************************/
11221 /* Prints out the Completion Procesor (COM) state.                          */
11222 /*                                                                          */
11223 /* Returns:                                                                 */
11224 /*   Nothing.                                                               */
11225 /****************************************************************************/
11226 static __attribute__ ((noinline)) void
bce_dump_com_state(struct bce_softc * sc,int regs)11227 bce_dump_com_state(struct bce_softc *sc, int regs)
11228 {
11229 	u32 val;
11230 	u32 fw_version[4];
11231 
11232 	BCE_PRINTF(
11233 	    "----------------------------"
11234 	    "   COM State    "
11235 	    "----------------------------\n");
11236 
11237 	for (int i = 0; i < 3; i++)
11238 		fw_version[i] = htonl(REG_RD_IND(sc,
11239 		    (BCE_COM_SCRATCH + 0x10 + i * 4)));
11240 
11241 	BCE_PRINTF("Firmware version - %s\n", (char *) fw_version);
11242 
11243 	val = REG_RD_IND(sc, BCE_COM_CPU_MODE);
11244 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_mode\n",
11245 	    val, BCE_COM_CPU_MODE);
11246 
11247 	val = REG_RD_IND(sc, BCE_COM_CPU_STATE);
11248 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_state\n",
11249 	    val, BCE_COM_CPU_STATE);
11250 
11251 	val = REG_RD_IND(sc, BCE_COM_CPU_EVENT_MASK);
11252 	BCE_PRINTF("0x%08X - (0x%06X) com_cpu_event_mask\n", val,
11253 	    BCE_COM_CPU_EVENT_MASK);
11254 
11255 	if (regs) {
11256 		BCE_PRINTF(
11257 		    "----------------------------"
11258 		    " Register  Dump "
11259 		    "----------------------------\n");
11260 
11261 		for (int i = BCE_COM_CPU_MODE; i < 0x1053e8; i += 0x10) {
11262 			BCE_PRINTF("0x%04X: 0x%08X 0x%08X "
11263 			    "0x%08X 0x%08X\n", i,
11264 			    REG_RD_IND(sc, i),
11265 			    REG_RD_IND(sc, i + 0x4),
11266 			    REG_RD_IND(sc, i + 0x8),
11267 			    REG_RD_IND(sc, i + 0xC));
11268 		}
11269 	}
11270 
11271 	BCE_PRINTF(
11272 		"----------------------------"
11273 		"----------------"
11274 		"----------------------------\n");
11275 }
11276 
11277 /****************************************************************************/
11278 /* Prints out the Receive Virtual 2 Physical (RV2P) state.                  */
11279 /*                                                                          */
11280 /* Returns:                                                                 */
11281 /*   Nothing.                                                               */
11282 /****************************************************************************/
11283 static __attribute__ ((noinline)) void
bce_dump_rv2p_state(struct bce_softc * sc)11284 bce_dump_rv2p_state(struct bce_softc *sc)
11285 {
11286 	u32 val, pc1, pc2, fw_ver_high, fw_ver_low;
11287 
11288 	BCE_PRINTF(
11289 	    "----------------------------"
11290 	    "   RV2P State   "
11291 	    "----------------------------\n");
11292 
11293 	/* Stall the RV2P processors. */
11294 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11295 	val |= BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2;
11296 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11297 
11298 	/* Read the firmware version. */
11299 	val = 0x00000001;
11300 	REG_WR_IND(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
11301 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11302 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11303 	    BCE_RV2P_INSTR_HIGH_HIGH;
11304 	BCE_PRINTF("RV2P1 Firmware version - 0x%08X:0x%08X\n",
11305 	    fw_ver_high, fw_ver_low);
11306 
11307 	val = 0x00000001;
11308 	REG_WR_IND(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
11309 	fw_ver_low = REG_RD_IND(sc, BCE_RV2P_INSTR_LOW);
11310 	fw_ver_high = REG_RD_IND(sc, BCE_RV2P_INSTR_HIGH) &
11311 	    BCE_RV2P_INSTR_HIGH_HIGH;
11312 	BCE_PRINTF("RV2P2 Firmware version - 0x%08X:0x%08X\n",
11313 	    fw_ver_high, fw_ver_low);
11314 
11315 	/* Resume the RV2P processors. */
11316 	val = REG_RD_IND(sc, BCE_RV2P_CONFIG);
11317 	val &= ~(BCE_RV2P_CONFIG_STALL_PROC1 | BCE_RV2P_CONFIG_STALL_PROC2);
11318 	REG_WR_IND(sc, BCE_RV2P_CONFIG, val);
11319 
11320 	/* Fetch the program counter value. */
11321 	val = 0x68007800;
11322 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11323 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11324 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11325 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11326 	BCE_PRINTF("0x%08X - RV2P1 program counter (1st read)\n", pc1);
11327 	BCE_PRINTF("0x%08X - RV2P2 program counter (1st read)\n", pc2);
11328 
11329 	/* Fetch the program counter value again to see if it is advancing. */
11330 	val = 0x68007800;
11331 	REG_WR_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK, val);
11332 	val = REG_RD_IND(sc, BCE_RV2P_DEBUG_VECT_PEEK);
11333 	pc1 = (val & BCE_RV2P_DEBUG_VECT_PEEK_1_VALUE);
11334 	pc2 = (val & BCE_RV2P_DEBUG_VECT_PEEK_2_VALUE) >> 16;
11335 	BCE_PRINTF("0x%08X - RV2P1 program counter (2nd read)\n", pc1);
11336 	BCE_PRINTF("0x%08X - RV2P2 program counter (2nd read)\n", pc2);
11337 
11338 	BCE_PRINTF(
11339 	    "----------------------------"
11340 	    "----------------"
11341 	    "----------------------------\n");
11342 }
11343 
11344 /****************************************************************************/
11345 /* Prints out the driver state and then enters the debugger.                */
11346 /*                                                                          */
11347 /* Returns:                                                                 */
11348 /*   Nothing.                                                               */
11349 /****************************************************************************/
11350 static __attribute__ ((noinline)) void
bce_breakpoint(struct bce_softc * sc)11351 bce_breakpoint(struct bce_softc *sc)
11352 {
11353 
11354 	/*
11355 	 * Unreachable code to silence compiler warnings
11356 	 * about unused functions.
11357 	 */
11358 	if (0) {
11359 		bce_freeze_controller(sc);
11360 		bce_unfreeze_controller(sc);
11361 		bce_dump_enet(sc, NULL);
11362 		bce_dump_txbd(sc, 0, NULL);
11363 		bce_dump_rxbd(sc, 0, NULL);
11364 		bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD_ALLOC);
11365 		bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD_ALLOC);
11366 		bce_dump_pg_mbuf_chain(sc, 0, USABLE_PG_BD_ALLOC);
11367 		bce_dump_l2fhdr(sc, 0, NULL);
11368 		bce_dump_ctx(sc, RX_CID);
11369 		bce_dump_ftqs(sc);
11370 		bce_dump_tx_chain(sc, 0, USABLE_TX_BD_ALLOC);
11371 		bce_dump_rx_bd_chain(sc, 0, USABLE_RX_BD_ALLOC);
11372 		bce_dump_pg_chain(sc, 0, USABLE_PG_BD_ALLOC);
11373 		bce_dump_status_block(sc);
11374 		bce_dump_stats_block(sc);
11375 		bce_dump_driver_state(sc);
11376 		bce_dump_hw_state(sc);
11377 		bce_dump_bc_state(sc);
11378 		bce_dump_txp_state(sc, 0);
11379 		bce_dump_rxp_state(sc, 0);
11380 		bce_dump_tpat_state(sc, 0);
11381 		bce_dump_cp_state(sc, 0);
11382 		bce_dump_com_state(sc, 0);
11383 		bce_dump_rv2p_state(sc);
11384 		bce_dump_pgbd(sc, 0, NULL);
11385 	}
11386 
11387 	bce_dump_status_block(sc);
11388 	bce_dump_driver_state(sc);
11389 
11390 	/* Call the debugger. */
11391 	breakpoint();
11392 }
11393 #endif
11394