1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Create and parse buffers containing CTF data.
28 */
29
30 #include <sys/types.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <strings.h>
34 #include <ctype.h>
35 #include <zlib.h>
36 #include <elf.h>
37
38 #include "ctf_headers.h"
39 #include "ctftools.h"
40 #include "strtab.h"
41 #include "memory.h"
42
43 /*
44 * Name of the file currently being read, used to print error messages. We
45 * assume that only one file will be read at a time, and thus make no attempt
46 * to allow curfile to be used simultaneously by multiple threads.
47 *
48 * The value is only valid during a call to ctf_load.
49 */
50 char *curfile;
51
52 #define CTF_BUF_CHUNK_SIZE (64 * 1024)
53 #define RES_BUF_CHUNK_SIZE (64 * 1024)
54
55 struct ctf_buf {
56 strtab_t ctb_strtab; /* string table */
57 caddr_t ctb_base; /* pointer to base of buffer */
58 caddr_t ctb_end; /* pointer to end of buffer */
59 caddr_t ctb_ptr; /* pointer to empty buffer space */
60 size_t ctb_size; /* size of buffer */
61 int nptent; /* number of processed types */
62 int ntholes; /* number of type holes */
63 };
64
65 /*PRINTFLIKE1*/
66 static void
parseterminate(char * fmt,...)67 parseterminate(char *fmt, ...)
68 {
69 static char msgbuf[1024]; /* sigh */
70 va_list ap;
71
72 va_start(ap, fmt);
73 vsnprintf(msgbuf, sizeof (msgbuf), fmt, ap);
74 va_end(ap);
75
76 terminate("%s: %s\n", curfile, msgbuf);
77 }
78
79 void
ctf_buf_grow(ctf_buf_t * b)80 ctf_buf_grow(ctf_buf_t *b)
81 {
82 off_t ptroff = b->ctb_ptr - b->ctb_base;
83
84 b->ctb_size += CTF_BUF_CHUNK_SIZE;
85 b->ctb_base = xrealloc(b->ctb_base, b->ctb_size);
86 b->ctb_end = b->ctb_base + b->ctb_size;
87 b->ctb_ptr = b->ctb_base + ptroff;
88 }
89
90 ctf_buf_t *
ctf_buf_new(void)91 ctf_buf_new(void)
92 {
93 ctf_buf_t *b = xcalloc(sizeof (ctf_buf_t));
94
95 strtab_create(&b->ctb_strtab);
96 ctf_buf_grow(b);
97
98 return (b);
99 }
100
101 void
ctf_buf_free(ctf_buf_t * b)102 ctf_buf_free(ctf_buf_t *b)
103 {
104 strtab_destroy(&b->ctb_strtab);
105 free(b->ctb_base);
106 free(b);
107 }
108
109 uint_t
ctf_buf_cur(ctf_buf_t * b)110 ctf_buf_cur(ctf_buf_t *b)
111 {
112 return (b->ctb_ptr - b->ctb_base);
113 }
114
115 void
ctf_buf_write(ctf_buf_t * b,const void * p,size_t n)116 ctf_buf_write(ctf_buf_t *b, const void *p, size_t n)
117 {
118 size_t len;
119
120 while (n != 0) {
121 if (b->ctb_ptr == b->ctb_end)
122 ctf_buf_grow(b);
123
124 len = MIN((size_t)(b->ctb_end - b->ctb_ptr), n);
125 bcopy(p, b->ctb_ptr, len);
126 b->ctb_ptr += len;
127
128 p = (char *)p + len;
129 n -= len;
130 }
131 }
132
133 static int
write_label(labelent_t * le,ctf_buf_t * b)134 write_label(labelent_t *le, ctf_buf_t *b)
135 {
136 ctf_lblent_t ctl;
137
138 ctl.ctl_label = strtab_insert(&b->ctb_strtab, le->le_name);
139 ctl.ctl_typeidx = le->le_idx;
140
141 ctf_buf_write(b, &ctl, sizeof (ctl));
142
143 return (1);
144 }
145
146 static void
write_objects(iidesc_t * idp,ctf_buf_t * b)147 write_objects(iidesc_t *idp, ctf_buf_t *b)
148 {
149 ushort_t id = (idp ? idp->ii_dtype->t_id : 0);
150
151 ctf_buf_write(b, &id, sizeof (id));
152
153 debug(3, "Wrote object %s (%d)\n", (idp ? idp->ii_name : "(null)"), id);
154 }
155
156 static void
write_functions(iidesc_t * idp,ctf_buf_t * b)157 write_functions(iidesc_t *idp, ctf_buf_t *b)
158 {
159 ushort_t fdata[2];
160 ushort_t id;
161 int nargs;
162 int i;
163
164 if (!idp) {
165 fdata[0] = 0;
166 ctf_buf_write(b, &fdata[0], sizeof (fdata[0]));
167
168 debug(3, "Wrote function (null)\n");
169 return;
170 }
171
172 nargs = idp->ii_nargs + (idp->ii_vargs != 0);
173
174 if (nargs > CTF_MAX_VLEN) {
175 terminate("function %s has too many args: %d > %d\n",
176 idp->ii_name, nargs, CTF_MAX_VLEN);
177 }
178
179 fdata[0] = CTF_TYPE_INFO(CTF_K_FUNCTION, 1, nargs);
180 fdata[1] = idp->ii_dtype->t_id;
181 ctf_buf_write(b, fdata, sizeof (fdata));
182
183 for (i = 0; i < idp->ii_nargs; i++) {
184 id = idp->ii_args[i]->t_id;
185 ctf_buf_write(b, &id, sizeof (id));
186 }
187
188 if (idp->ii_vargs) {
189 id = 0;
190 ctf_buf_write(b, &id, sizeof (id));
191 }
192
193 debug(3, "Wrote function %s (%d args)\n", idp->ii_name, nargs);
194 }
195
196 /*
197 * Depending on the size of the type being described, either a ctf_stype_t (for
198 * types with size < CTF_LSTRUCT_THRESH) or a ctf_type_t (all others) will be
199 * written. We isolate the determination here so the rest of the writer code
200 * doesn't need to care.
201 */
202 static void
write_sized_type_rec(ctf_buf_t * b,ctf_type_t * ctt,size_t size)203 write_sized_type_rec(ctf_buf_t *b, ctf_type_t *ctt, size_t size)
204 {
205 if (size > CTF_MAX_SIZE) {
206 ctt->ctt_size = CTF_LSIZE_SENT;
207 ctt->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size);
208 ctt->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size);
209 ctf_buf_write(b, ctt, sizeof (*ctt));
210 } else {
211 ctf_stype_t *cts = (ctf_stype_t *)ctt;
212
213 cts->ctt_size = (ushort_t)size;
214 ctf_buf_write(b, cts, sizeof (*cts));
215 }
216 }
217
218 static void
write_unsized_type_rec(ctf_buf_t * b,ctf_type_t * ctt)219 write_unsized_type_rec(ctf_buf_t *b, ctf_type_t *ctt)
220 {
221 ctf_stype_t *cts = (ctf_stype_t *)ctt;
222
223 ctf_buf_write(b, cts, sizeof (*cts));
224 }
225
226 static int
write_type(tdesc_t * tp,ctf_buf_t * b)227 write_type(tdesc_t *tp, ctf_buf_t *b)
228 {
229 elist_t *ep;
230 mlist_t *mp;
231 intr_t *ip;
232
233 size_t offset;
234 uint_t encoding;
235 uint_t data;
236 int isroot = tp->t_flags & TDESC_F_ISROOT;
237 int i;
238
239 ctf_type_t ctt;
240 ctf_array_t cta;
241 ctf_member_t ctm;
242 ctf_lmember_t ctlm;
243 ctf_enum_t cte;
244 ushort_t id;
245
246 ctlm.ctlm_pad = 0;
247
248 /*
249 * There shouldn't be any holes in the type list (where a hole is
250 * defined as two consecutive tdescs without consecutive ids), but
251 * check for them just in case. If we do find holes, we need to make
252 * fake entries to fill the holes, or we won't be able to reconstruct
253 * the tree from the written data.
254 */
255 if (++b->nptent < CTF_TYPE_TO_INDEX(tp->t_id)) {
256 debug(2, "genctf: type hole from %d < x < %d\n",
257 b->nptent - 1, CTF_TYPE_TO_INDEX(tp->t_id));
258
259 ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, 0);
260 ctt.ctt_info = CTF_TYPE_INFO(0, 0, 0);
261 while (b->nptent < CTF_TYPE_TO_INDEX(tp->t_id)) {
262 write_sized_type_rec(b, &ctt, 0);
263 b->nptent++;
264 }
265 }
266
267 offset = strtab_insert(&b->ctb_strtab, tp->t_name);
268 ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
269
270 switch (tp->t_type) {
271 case INTRINSIC:
272 ip = tp->t_intr;
273 if (ip->intr_type == INTR_INT)
274 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_INTEGER,
275 isroot, 1);
276 else
277 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FLOAT, isroot, 1);
278 write_sized_type_rec(b, &ctt, tp->t_size);
279
280 encoding = 0;
281
282 if (ip->intr_type == INTR_INT) {
283 if (ip->intr_signed)
284 encoding |= CTF_INT_SIGNED;
285 if (ip->intr_iformat == 'c')
286 encoding |= CTF_INT_CHAR;
287 else if (ip->intr_iformat == 'b')
288 encoding |= CTF_INT_BOOL;
289 else if (ip->intr_iformat == 'v')
290 encoding |= CTF_INT_VARARGS;
291 } else
292 encoding = ip->intr_fformat;
293
294 data = CTF_INT_DATA(encoding, ip->intr_offset, ip->intr_nbits);
295 ctf_buf_write(b, &data, sizeof (data));
296 break;
297
298 case POINTER:
299 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_POINTER, isroot, 0);
300 ctt.ctt_type = tp->t_tdesc->t_id;
301 write_unsized_type_rec(b, &ctt);
302 break;
303
304 case ARRAY:
305 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_ARRAY, isroot, 1);
306 write_sized_type_rec(b, &ctt, tp->t_size);
307
308 cta.cta_contents = tp->t_ardef->ad_contents->t_id;
309 cta.cta_index = tp->t_ardef->ad_idxtype->t_id;
310 cta.cta_nelems = tp->t_ardef->ad_nelems;
311 ctf_buf_write(b, &cta, sizeof (cta));
312 break;
313
314 case STRUCT:
315 case UNION:
316 for (i = 0, mp = tp->t_members; mp != NULL; mp = mp->ml_next)
317 i++; /* count up struct or union members */
318
319 if (i > CTF_MAX_VLEN) {
320 terminate("sou %s has too many members: %d > %d\n",
321 tdesc_name(tp), i, CTF_MAX_VLEN);
322 }
323
324 if (tp->t_type == STRUCT)
325 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_STRUCT, isroot, i);
326 else
327 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_UNION, isroot, i);
328
329 write_sized_type_rec(b, &ctt, tp->t_size);
330
331 if (tp->t_size < CTF_LSTRUCT_THRESH) {
332 for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
333 offset = strtab_insert(&b->ctb_strtab,
334 mp->ml_name);
335
336 ctm.ctm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
337 offset);
338 ctm.ctm_type = mp->ml_type->t_id;
339 ctm.ctm_offset = mp->ml_offset;
340 ctf_buf_write(b, &ctm, sizeof (ctm));
341 }
342 } else {
343 for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
344 offset = strtab_insert(&b->ctb_strtab,
345 mp->ml_name);
346
347 ctlm.ctlm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
348 offset);
349 ctlm.ctlm_type = mp->ml_type->t_id;
350 ctlm.ctlm_offsethi =
351 CTF_OFFSET_TO_LMEMHI(mp->ml_offset);
352 ctlm.ctlm_offsetlo =
353 CTF_OFFSET_TO_LMEMLO(mp->ml_offset);
354 ctf_buf_write(b, &ctlm, sizeof (ctlm));
355 }
356 }
357 break;
358
359 case ENUM:
360 for (i = 0, ep = tp->t_emem; ep != NULL; ep = ep->el_next)
361 i++; /* count up enum members */
362
363 if (i > CTF_MAX_VLEN) {
364 terminate("enum %s has too many values: %d > %d\n",
365 tdesc_name(tp), i, CTF_MAX_VLEN);
366 }
367
368 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_ENUM, isroot, i);
369 write_sized_type_rec(b, &ctt, tp->t_size);
370
371 for (ep = tp->t_emem; ep != NULL; ep = ep->el_next) {
372 offset = strtab_insert(&b->ctb_strtab, ep->el_name);
373 cte.cte_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
374 cte.cte_value = ep->el_number;
375 ctf_buf_write(b, &cte, sizeof (cte));
376 }
377 break;
378
379 case FORWARD:
380 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FORWARD, isroot, 0);
381 ctt.ctt_type = 0;
382 write_unsized_type_rec(b, &ctt);
383 break;
384
385 case TYPEDEF:
386 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_TYPEDEF, isroot, 0);
387 ctt.ctt_type = tp->t_tdesc->t_id;
388 write_unsized_type_rec(b, &ctt);
389 break;
390
391 case VOLATILE:
392 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_VOLATILE, isroot, 0);
393 ctt.ctt_type = tp->t_tdesc->t_id;
394 write_unsized_type_rec(b, &ctt);
395 break;
396
397 case CONST:
398 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_CONST, isroot, 0);
399 ctt.ctt_type = tp->t_tdesc->t_id;
400 write_unsized_type_rec(b, &ctt);
401 break;
402
403 case FUNCTION:
404 i = tp->t_fndef->fn_nargs + tp->t_fndef->fn_vargs;
405
406 if (i > CTF_MAX_VLEN) {
407 terminate("function %s has too many args: %d > %d\n",
408 i, CTF_MAX_VLEN);
409 }
410
411 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_FUNCTION, isroot, i);
412 ctt.ctt_type = tp->t_fndef->fn_ret->t_id;
413 write_unsized_type_rec(b, &ctt);
414
415 for (i = 0; i < tp->t_fndef->fn_nargs; i++) {
416 id = tp->t_fndef->fn_args[i]->t_id;
417 ctf_buf_write(b, &id, sizeof (id));
418 }
419
420 if (tp->t_fndef->fn_vargs) {
421 id = 0;
422 ctf_buf_write(b, &id, sizeof (id));
423 i++;
424 }
425
426 if (i & 1) {
427 id = 0;
428 ctf_buf_write(b, &id, sizeof (id));
429 }
430 break;
431
432 case RESTRICT:
433 ctt.ctt_info = CTF_TYPE_INFO(CTF_K_RESTRICT, isroot, 0);
434 ctt.ctt_type = tp->t_tdesc->t_id;
435 write_unsized_type_rec(b, &ctt);
436 break;
437
438 default:
439 warning("Can't write unknown type %d\n", tp->t_type);
440 }
441
442 debug(3, "Wrote type %d %s\n", tp->t_id, tdesc_name(tp));
443
444 return (1);
445 }
446
447 typedef struct resbuf {
448 caddr_t rb_base;
449 caddr_t rb_ptr;
450 size_t rb_size;
451 z_stream rb_zstr;
452 } resbuf_t;
453
454 static void
rbzs_grow(resbuf_t * rb)455 rbzs_grow(resbuf_t *rb)
456 {
457 off_t ptroff = (caddr_t)rb->rb_zstr.next_out - rb->rb_base;
458
459 rb->rb_size += RES_BUF_CHUNK_SIZE;
460 rb->rb_base = xrealloc(rb->rb_base, rb->rb_size);
461 rb->rb_ptr = rb->rb_base + ptroff;
462 rb->rb_zstr.next_out = (Bytef *)(rb->rb_ptr);
463 rb->rb_zstr.avail_out += RES_BUF_CHUNK_SIZE;
464 }
465
466 static void
compress_start(resbuf_t * rb)467 compress_start(resbuf_t *rb)
468 {
469 int rc;
470
471 rb->rb_zstr.zalloc = (alloc_func)0;
472 rb->rb_zstr.zfree = (free_func)0;
473 rb->rb_zstr.opaque = (voidpf)0;
474
475 if ((rc = deflateInit(&rb->rb_zstr, Z_BEST_COMPRESSION)) != Z_OK)
476 parseterminate("zlib start failed: %s", zError(rc));
477 }
478
479 static ssize_t
compress_buffer(const void * buf,size_t n,void * data)480 compress_buffer(const void *buf, size_t n, void *data)
481 {
482 resbuf_t *rb = (resbuf_t *)data;
483 int rc;
484
485 rb->rb_zstr.next_out = (Bytef *)rb->rb_ptr;
486 rb->rb_zstr.avail_out = rb->rb_size - (rb->rb_ptr - rb->rb_base);
487 rb->rb_zstr.next_in = (Bytef *)buf;
488 rb->rb_zstr.avail_in = n;
489
490 while (rb->rb_zstr.avail_in) {
491 if (rb->rb_zstr.avail_out == 0)
492 rbzs_grow(rb);
493
494 if ((rc = deflate(&rb->rb_zstr, Z_NO_FLUSH)) != Z_OK)
495 parseterminate("zlib deflate failed: %s", zError(rc));
496 }
497 rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
498
499 return (n);
500 }
501
502 static void
compress_flush(resbuf_t * rb,int type)503 compress_flush(resbuf_t *rb, int type)
504 {
505 int rc;
506
507 for (;;) {
508 if (rb->rb_zstr.avail_out == 0)
509 rbzs_grow(rb);
510
511 rc = deflate(&rb->rb_zstr, type);
512 if ((type == Z_FULL_FLUSH && rc == Z_BUF_ERROR) ||
513 (type == Z_FINISH && rc == Z_STREAM_END))
514 break;
515 else if (rc != Z_OK)
516 parseterminate("zlib finish failed: %s", zError(rc));
517 }
518 rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
519 }
520
521 static void
compress_end(resbuf_t * rb)522 compress_end(resbuf_t *rb)
523 {
524 int rc;
525
526 compress_flush(rb, Z_FINISH);
527
528 if ((rc = deflateEnd(&rb->rb_zstr)) != Z_OK)
529 parseterminate("zlib end failed: %s", zError(rc));
530 }
531
532 /*
533 * Pad the buffer to a power-of-2 boundary
534 */
535 static void
pad_buffer(ctf_buf_t * buf,int align)536 pad_buffer(ctf_buf_t *buf, int align)
537 {
538 uint_t cur = ctf_buf_cur(buf);
539 ssize_t topad = (align - (cur % align)) % align;
540 static const char pad[8] = { 0 };
541
542 while (topad > 0) {
543 ctf_buf_write(buf, pad, (topad > 8 ? 8 : topad));
544 topad -= 8;
545 }
546 }
547
548 static ssize_t
bcopy_data(const void * buf,size_t n,void * data)549 bcopy_data(const void *buf, size_t n, void *data)
550 {
551 caddr_t *posp = (caddr_t *)data;
552 bcopy(buf, *posp, n);
553 *posp += n;
554 return (n);
555 }
556
557 static caddr_t
write_buffer(ctf_header_t * h,ctf_buf_t * buf,size_t * resszp)558 write_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
559 {
560 caddr_t outbuf;
561 caddr_t bufpos;
562
563 outbuf = xmalloc(sizeof (ctf_header_t) + (buf->ctb_ptr - buf->ctb_base)
564 + buf->ctb_strtab.str_size);
565
566 bufpos = outbuf;
567 (void) bcopy_data(h, sizeof (ctf_header_t), &bufpos);
568 (void) bcopy_data(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
569 &bufpos);
570 (void) strtab_write(&buf->ctb_strtab, bcopy_data, &bufpos);
571 *resszp = bufpos - outbuf;
572 return (outbuf);
573 }
574
575 /*
576 * Create the compression buffer, and fill it with the CTF and string
577 * table data. We flush the compression state between the two so the
578 * dictionary used for the string tables won't be polluted with values
579 * that made sense for the CTF data.
580 */
581 static caddr_t
write_compressed_buffer(ctf_header_t * h,ctf_buf_t * buf,size_t * resszp)582 write_compressed_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
583 {
584 resbuf_t resbuf;
585 resbuf.rb_size = RES_BUF_CHUNK_SIZE;
586 resbuf.rb_base = xmalloc(resbuf.rb_size);
587 bcopy(h, resbuf.rb_base, sizeof (ctf_header_t));
588 resbuf.rb_ptr = resbuf.rb_base + sizeof (ctf_header_t);
589
590 compress_start(&resbuf);
591 (void) compress_buffer(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
592 &resbuf);
593 compress_flush(&resbuf, Z_FULL_FLUSH);
594 (void) strtab_write(&buf->ctb_strtab, compress_buffer, &resbuf);
595 compress_end(&resbuf);
596
597 *resszp = (resbuf.rb_ptr - resbuf.rb_base);
598 return (resbuf.rb_base);
599 }
600
601 caddr_t
ctf_gen(iiburst_t * iiburst,size_t * resszp,int do_compress)602 ctf_gen(iiburst_t *iiburst, size_t *resszp, int do_compress)
603 {
604 ctf_buf_t *buf = ctf_buf_new();
605 ctf_header_t h;
606 caddr_t outbuf;
607
608 int i;
609
610 /*
611 * Prepare the header, and create the CTF output buffers. The data
612 * object section and function section are both lists of 2-byte
613 * integers; we pad these out to the next 4-byte boundary if needed.
614 */
615 h.cth_magic = CTF_MAGIC;
616 h.cth_version = CTF_VERSION;
617 h.cth_flags = do_compress ? CTF_F_COMPRESS : 0;
618 h.cth_parlabel = strtab_insert(&buf->ctb_strtab,
619 iiburst->iib_td->td_parlabel);
620 h.cth_parname = strtab_insert(&buf->ctb_strtab,
621 iiburst->iib_td->td_parname);
622
623 h.cth_lbloff = 0;
624 (void) list_iter(iiburst->iib_td->td_labels, (int (*)())write_label,
625 buf);
626
627 pad_buffer(buf, 2);
628 h.cth_objtoff = ctf_buf_cur(buf);
629 for (i = 0; i < iiburst->iib_nobjts; i++)
630 write_objects(iiburst->iib_objts[i], buf);
631
632 pad_buffer(buf, 2);
633 h.cth_funcoff = ctf_buf_cur(buf);
634 for (i = 0; i < iiburst->iib_nfuncs; i++)
635 write_functions(iiburst->iib_funcs[i], buf);
636
637 pad_buffer(buf, 4);
638 h.cth_typeoff = ctf_buf_cur(buf);
639 (void) list_iter(iiburst->iib_types, (int (*)())write_type, buf);
640
641 debug(2, "CTF wrote %d types\n", list_count(iiburst->iib_types));
642
643 h.cth_stroff = ctf_buf_cur(buf);
644 h.cth_strlen = strtab_size(&buf->ctb_strtab);
645
646 /*
647 * We only do compression for ctfmerge, as ctfconvert is only
648 * supposed to be used on intermediary build objects. This is
649 * significantly faster.
650 */
651 if (do_compress)
652 outbuf = write_compressed_buffer(&h, buf, resszp);
653 else
654 outbuf = write_buffer(&h, buf, resszp);
655
656 ctf_buf_free(buf);
657 return (outbuf);
658 }
659
660 void
get_ctt_size(ctf_type_t * ctt,size_t * sizep,size_t * incrementp)661 get_ctt_size(ctf_type_t *ctt, size_t *sizep, size_t *incrementp)
662 {
663 if (ctt->ctt_size == CTF_LSIZE_SENT) {
664 *sizep = (size_t)CTF_TYPE_LSIZE(ctt);
665 *incrementp = sizeof (ctf_type_t);
666 } else {
667 *sizep = ctt->ctt_size;
668 *incrementp = sizeof (ctf_stype_t);
669 }
670 }
671
672 static int
count_types(ctf_header_t * h,caddr_t data)673 count_types(ctf_header_t *h, caddr_t data)
674 {
675 caddr_t dptr = data + h->cth_typeoff;
676 int count = 0;
677
678 dptr = data + h->cth_typeoff;
679 while (dptr < data + h->cth_stroff) {
680 /* LINTED - pointer alignment */
681 ctf_type_t *ctt = (ctf_type_t *)dptr;
682 size_t vlen = CTF_INFO_VLEN(ctt->ctt_info);
683 size_t size, increment;
684
685 get_ctt_size(ctt, &size, &increment);
686
687 switch (CTF_INFO_KIND(ctt->ctt_info)) {
688 case CTF_K_INTEGER:
689 case CTF_K_FLOAT:
690 dptr += 4;
691 break;
692 case CTF_K_POINTER:
693 case CTF_K_FORWARD:
694 case CTF_K_TYPEDEF:
695 case CTF_K_VOLATILE:
696 case CTF_K_CONST:
697 case CTF_K_RESTRICT:
698 case CTF_K_FUNCTION:
699 dptr += sizeof (ushort_t) * (vlen + (vlen & 1));
700 break;
701 case CTF_K_ARRAY:
702 dptr += sizeof (ctf_array_t);
703 break;
704 case CTF_K_STRUCT:
705 case CTF_K_UNION:
706 if (size < CTF_LSTRUCT_THRESH)
707 dptr += sizeof (ctf_member_t) * vlen;
708 else
709 dptr += sizeof (ctf_lmember_t) * vlen;
710 break;
711 case CTF_K_ENUM:
712 dptr += sizeof (ctf_enum_t) * vlen;
713 break;
714 case CTF_K_UNKNOWN:
715 break;
716 default:
717 parseterminate("Unknown CTF type %d (#%d) at %#x",
718 CTF_INFO_KIND(ctt->ctt_info), count, dptr - data);
719 }
720
721 dptr += increment;
722 count++;
723 }
724
725 debug(3, "CTF read %d types\n", count);
726
727 return (count);
728 }
729
730 /*
731 * Resurrect the labels stored in the CTF data, returning the index associated
732 * with a label provided by the caller. There are several cases, outlined
733 * below. Note that, given two labels, the one associated with the lesser type
734 * index is considered to be older than the other.
735 *
736 * 1. matchlbl == NULL - return the index of the most recent label.
737 * 2. matchlbl == "BASE" - return the index of the oldest label.
738 * 3. matchlbl != NULL, but doesn't match any labels in the section - warn
739 * the user, and proceed as if matchlbl == "BASE" (for safety).
740 * 4. matchlbl != NULL, and matches one of the labels in the section - return
741 * the type index associated with the label.
742 */
743 static int
resurrect_labels(ctf_header_t * h,tdata_t * td,caddr_t ctfdata,char * matchlbl)744 resurrect_labels(ctf_header_t *h, tdata_t *td, caddr_t ctfdata, char *matchlbl)
745 {
746 caddr_t buf = ctfdata + h->cth_lbloff;
747 caddr_t sbuf = ctfdata + h->cth_stroff;
748 size_t bufsz = h->cth_objtoff - h->cth_lbloff;
749 int lastidx = 0, baseidx = -1;
750 char *baselabel;
751 ctf_lblent_t *ctl;
752
753 /* LINTED - pointer alignment */
754 for (ctl = (ctf_lblent_t *)buf; (caddr_t)ctl < buf + bufsz; ctl++) {
755 char *label = sbuf + ctl->ctl_label;
756
757 lastidx = ctl->ctl_typeidx;
758
759 debug(3, "Resurrected label %s type idx %d\n", label, lastidx);
760
761 tdata_label_add(td, label, lastidx);
762
763 if (baseidx == -1) {
764 baseidx = lastidx;
765 baselabel = label;
766 if (matchlbl != NULL && streq(matchlbl, "BASE"))
767 return (lastidx);
768 }
769
770 if (matchlbl != NULL && streq(label, matchlbl))
771 return (lastidx);
772 }
773
774 if (matchlbl != NULL) {
775 /* User provided a label that didn't match */
776 warning("%s: Cannot find label `%s' - using base (%s)\n",
777 curfile, matchlbl, (baselabel ? baselabel : "NONE"));
778
779 tdata_label_free(td);
780 tdata_label_add(td, baselabel, baseidx);
781
782 return (baseidx);
783 }
784
785 return (lastidx);
786 }
787
788 static void
resurrect_objects(ctf_header_t * h,tdata_t * td,tdesc_t ** tdarr,int tdsize,caddr_t ctfdata,symit_data_t * si)789 resurrect_objects(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
790 caddr_t ctfdata, symit_data_t *si)
791 {
792 caddr_t buf = ctfdata + h->cth_objtoff;
793 size_t bufsz = h->cth_funcoff - h->cth_objtoff;
794 caddr_t dptr;
795
796 symit_reset(si);
797 for (dptr = buf; dptr < buf + bufsz; dptr += 2) {
798 /* LINTED - pointer alignment */
799 ushort_t id = *((ushort_t *)dptr);
800 iidesc_t *ii;
801 GElf_Sym *sym;
802
803 if (!(sym = symit_next(si, STT_OBJECT)) && id != 0) {
804 parseterminate(
805 "Unexpected end of object symbols at %x of %x",
806 dptr - buf, bufsz);
807 }
808
809 if (id == 0) {
810 debug(3, "Skipping null object\n");
811 continue;
812 } else if (id >= tdsize) {
813 parseterminate("Reference to invalid type %d", id);
814 }
815
816 ii = iidesc_new(symit_name(si));
817 ii->ii_dtype = tdarr[id];
818 if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
819 ii->ii_type = II_SVAR;
820 ii->ii_owner = xstrdup(symit_curfile(si));
821 } else
822 ii->ii_type = II_GVAR;
823 hash_add(td->td_iihash, ii);
824
825 debug(3, "Resurrected %s object %s (%d) from %s\n",
826 (ii->ii_type == II_GVAR ? "global" : "static"),
827 ii->ii_name, id, (ii->ii_owner ? ii->ii_owner : "(none)"));
828 }
829 }
830
831 static void
resurrect_functions(ctf_header_t * h,tdata_t * td,tdesc_t ** tdarr,int tdsize,caddr_t ctfdata,symit_data_t * si)832 resurrect_functions(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
833 caddr_t ctfdata, symit_data_t *si)
834 {
835 caddr_t buf = ctfdata + h->cth_funcoff;
836 size_t bufsz = h->cth_typeoff - h->cth_funcoff;
837 caddr_t dptr = buf;
838 iidesc_t *ii;
839 ushort_t info;
840 ushort_t retid;
841 GElf_Sym *sym;
842 int i;
843
844 symit_reset(si);
845 while (dptr < buf + bufsz) {
846 /* LINTED - pointer alignment */
847 info = *((ushort_t *)dptr);
848 dptr += 2;
849
850 if (!(sym = symit_next(si, STT_FUNC)) && info != 0)
851 parseterminate("Unexpected end of function symbols");
852
853 if (info == 0) {
854 debug(3, "Skipping null function (%s)\n",
855 symit_name(si));
856 continue;
857 }
858
859 /* LINTED - pointer alignment */
860 retid = *((ushort_t *)dptr);
861 dptr += 2;
862
863 if (retid >= tdsize)
864 parseterminate("Reference to invalid type %d", retid);
865
866 ii = iidesc_new(symit_name(si));
867 ii->ii_dtype = tdarr[retid];
868 if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
869 ii->ii_type = II_SFUN;
870 ii->ii_owner = xstrdup(symit_curfile(si));
871 } else
872 ii->ii_type = II_GFUN;
873 ii->ii_nargs = CTF_INFO_VLEN(info);
874 if (ii->ii_nargs)
875 ii->ii_args =
876 xmalloc(sizeof (tdesc_t *) * ii->ii_nargs);
877
878 for (i = 0; i < ii->ii_nargs; i++, dptr += 2) {
879 /* LINTED - pointer alignment */
880 ushort_t id = *((ushort_t *)dptr);
881 if (id >= tdsize)
882 parseterminate("Reference to invalid type %d",
883 id);
884 ii->ii_args[i] = tdarr[id];
885 }
886
887 if (ii->ii_nargs && ii->ii_args[ii->ii_nargs - 1] == NULL) {
888 ii->ii_nargs--;
889 ii->ii_vargs = 1;
890 }
891
892 hash_add(td->td_iihash, ii);
893
894 debug(3, "Resurrected %s function %s (%d, %d args)\n",
895 (ii->ii_type == II_GFUN ? "global" : "static"),
896 ii->ii_name, retid, ii->ii_nargs);
897 }
898 }
899
900 static void
resurrect_types(ctf_header_t * h,tdata_t * td,tdesc_t ** tdarr,int tdsize,caddr_t ctfdata,int maxid)901 resurrect_types(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
902 caddr_t ctfdata, int maxid)
903 {
904 caddr_t buf = ctfdata + h->cth_typeoff;
905 size_t bufsz = h->cth_stroff - h->cth_typeoff;
906 caddr_t sbuf = ctfdata + h->cth_stroff;
907 caddr_t dptr = buf;
908 tdesc_t *tdp;
909 uint_t data;
910 uint_t encoding;
911 size_t size, increment;
912 int tcnt;
913 int iicnt = 0;
914 tid_t tid, argid;
915 int kind, vlen;
916 int i;
917
918 elist_t **epp;
919 mlist_t **mpp;
920 intr_t *ip;
921
922 ctf_type_t *ctt;
923 ctf_array_t *cta;
924 ctf_enum_t *cte;
925
926 /*
927 * A maxid of zero indicates a request to resurrect all types, so reset
928 * maxid to the maximum type id.
929 */
930 if (maxid == 0)
931 maxid = CTF_MAX_TYPE;
932
933 for (dptr = buf, tcnt = 0, tid = 1; dptr < buf + bufsz; tcnt++, tid++) {
934 if (tid > maxid)
935 break;
936
937 if (tid >= tdsize)
938 parseterminate("Reference to invalid type %d", tid);
939
940 /* LINTED - pointer alignment */
941 ctt = (ctf_type_t *)dptr;
942
943 get_ctt_size(ctt, &size, &increment);
944 dptr += increment;
945
946 tdp = tdarr[tid];
947
948 if (CTF_NAME_STID(ctt->ctt_name) != CTF_STRTAB_0)
949 parseterminate(
950 "Unable to cope with non-zero strtab id");
951 if (CTF_NAME_OFFSET(ctt->ctt_name) != 0) {
952 tdp->t_name =
953 xstrdup(sbuf + CTF_NAME_OFFSET(ctt->ctt_name));
954 } else
955 tdp->t_name = NULL;
956
957 kind = CTF_INFO_KIND(ctt->ctt_info);
958 vlen = CTF_INFO_VLEN(ctt->ctt_info);
959
960 switch (kind) {
961 case CTF_K_INTEGER:
962 tdp->t_type = INTRINSIC;
963 tdp->t_size = size;
964
965 /* LINTED - pointer alignment */
966 data = *((uint_t *)dptr);
967 dptr += sizeof (uint_t);
968 encoding = CTF_INT_ENCODING(data);
969
970 ip = xmalloc(sizeof (intr_t));
971 ip->intr_type = INTR_INT;
972 ip->intr_signed = (encoding & CTF_INT_SIGNED) ? 1 : 0;
973
974 if (encoding & CTF_INT_CHAR)
975 ip->intr_iformat = 'c';
976 else if (encoding & CTF_INT_BOOL)
977 ip->intr_iformat = 'b';
978 else if (encoding & CTF_INT_VARARGS)
979 ip->intr_iformat = 'v';
980 else
981 ip->intr_iformat = '\0';
982
983 ip->intr_offset = CTF_INT_OFFSET(data);
984 ip->intr_nbits = CTF_INT_BITS(data);
985 tdp->t_intr = ip;
986 break;
987
988 case CTF_K_FLOAT:
989 tdp->t_type = INTRINSIC;
990 tdp->t_size = size;
991
992 /* LINTED - pointer alignment */
993 data = *((uint_t *)dptr);
994 dptr += sizeof (uint_t);
995
996 ip = xcalloc(sizeof (intr_t));
997 ip->intr_type = INTR_REAL;
998 ip->intr_fformat = CTF_FP_ENCODING(data);
999 ip->intr_offset = CTF_FP_OFFSET(data);
1000 ip->intr_nbits = CTF_FP_BITS(data);
1001 tdp->t_intr = ip;
1002 break;
1003
1004 case CTF_K_POINTER:
1005 tdp->t_type = POINTER;
1006 tdp->t_tdesc = tdarr[ctt->ctt_type];
1007 break;
1008
1009 case CTF_K_ARRAY:
1010 tdp->t_type = ARRAY;
1011 tdp->t_size = size;
1012
1013 /* LINTED - pointer alignment */
1014 cta = (ctf_array_t *)dptr;
1015 dptr += sizeof (ctf_array_t);
1016
1017 tdp->t_ardef = xmalloc(sizeof (ardef_t));
1018 tdp->t_ardef->ad_contents = tdarr[cta->cta_contents];
1019 tdp->t_ardef->ad_idxtype = tdarr[cta->cta_index];
1020 tdp->t_ardef->ad_nelems = cta->cta_nelems;
1021 break;
1022
1023 case CTF_K_STRUCT:
1024 case CTF_K_UNION:
1025 tdp->t_type = (kind == CTF_K_STRUCT ? STRUCT : UNION);
1026 tdp->t_size = size;
1027
1028 if (size < CTF_LSTRUCT_THRESH) {
1029 for (i = 0, mpp = &tdp->t_members; i < vlen;
1030 i++, mpp = &((*mpp)->ml_next)) {
1031 /* LINTED - pointer alignment */
1032 ctf_member_t *ctm = (ctf_member_t *)
1033 dptr;
1034 dptr += sizeof (ctf_member_t);
1035
1036 *mpp = xmalloc(sizeof (mlist_t));
1037 (*mpp)->ml_name = xstrdup(sbuf +
1038 ctm->ctm_name);
1039 (*mpp)->ml_type = tdarr[ctm->ctm_type];
1040 (*mpp)->ml_offset = ctm->ctm_offset;
1041 (*mpp)->ml_size = 0;
1042 }
1043 } else {
1044 for (i = 0, mpp = &tdp->t_members; i < vlen;
1045 i++, mpp = &((*mpp)->ml_next)) {
1046 /* LINTED - pointer alignment */
1047 ctf_lmember_t *ctlm = (ctf_lmember_t *)
1048 dptr;
1049 dptr += sizeof (ctf_lmember_t);
1050
1051 *mpp = xmalloc(sizeof (mlist_t));
1052 (*mpp)->ml_name = xstrdup(sbuf +
1053 ctlm->ctlm_name);
1054 (*mpp)->ml_type =
1055 tdarr[ctlm->ctlm_type];
1056 (*mpp)->ml_offset =
1057 (int)CTF_LMEM_OFFSET(ctlm);
1058 (*mpp)->ml_size = 0;
1059 }
1060 }
1061
1062 *mpp = NULL;
1063 break;
1064
1065 case CTF_K_ENUM:
1066 tdp->t_type = ENUM;
1067 tdp->t_size = size;
1068
1069 for (i = 0, epp = &tdp->t_emem; i < vlen;
1070 i++, epp = &((*epp)->el_next)) {
1071 /* LINTED - pointer alignment */
1072 cte = (ctf_enum_t *)dptr;
1073 dptr += sizeof (ctf_enum_t);
1074
1075 *epp = xmalloc(sizeof (elist_t));
1076 (*epp)->el_name = xstrdup(sbuf + cte->cte_name);
1077 (*epp)->el_number = cte->cte_value;
1078 }
1079 *epp = NULL;
1080 break;
1081
1082 case CTF_K_FORWARD:
1083 tdp->t_type = FORWARD;
1084 list_add(&td->td_fwdlist, tdp);
1085 break;
1086
1087 case CTF_K_TYPEDEF:
1088 tdp->t_type = TYPEDEF;
1089 tdp->t_tdesc = tdarr[ctt->ctt_type];
1090 break;
1091
1092 case CTF_K_VOLATILE:
1093 tdp->t_type = VOLATILE;
1094 tdp->t_tdesc = tdarr[ctt->ctt_type];
1095 break;
1096
1097 case CTF_K_CONST:
1098 tdp->t_type = CONST;
1099 tdp->t_tdesc = tdarr[ctt->ctt_type];
1100 break;
1101
1102 case CTF_K_FUNCTION:
1103 tdp->t_type = FUNCTION;
1104 tdp->t_fndef = xcalloc(sizeof (fndef_t));
1105 tdp->t_fndef->fn_ret = tdarr[ctt->ctt_type];
1106
1107 /* LINTED - pointer alignment */
1108 if (vlen > 0 && *(ushort_t *)(dptr +
1109 (sizeof (ushort_t) * (vlen - 1))) == 0)
1110 tdp->t_fndef->fn_vargs = 1;
1111
1112 tdp->t_fndef->fn_nargs = vlen - tdp->t_fndef->fn_vargs;
1113 tdp->t_fndef->fn_args = xcalloc(sizeof (tdesc_t) *
1114 vlen - tdp->t_fndef->fn_vargs);
1115
1116 for (i = 0; i < vlen; i++) {
1117 /* LINTED - pointer alignment */
1118 argid = *(ushort_t *)dptr;
1119 dptr += sizeof (ushort_t);
1120
1121 if (argid != 0)
1122 tdp->t_fndef->fn_args[i] = tdarr[argid];
1123 }
1124
1125 if (vlen & 1)
1126 dptr += sizeof (ushort_t);
1127 break;
1128
1129 case CTF_K_RESTRICT:
1130 tdp->t_type = RESTRICT;
1131 tdp->t_tdesc = tdarr[ctt->ctt_type];
1132 break;
1133
1134 case CTF_K_UNKNOWN:
1135 break;
1136
1137 default:
1138 warning("Can't parse unknown CTF type %d\n", kind);
1139 }
1140
1141 if (CTF_INFO_ISROOT(ctt->ctt_info)) {
1142 iidesc_t *ii = iidesc_new(tdp->t_name);
1143 if (tdp->t_type == STRUCT || tdp->t_type == UNION ||
1144 tdp->t_type == ENUM)
1145 ii->ii_type = II_SOU;
1146 else
1147 ii->ii_type = II_TYPE;
1148 ii->ii_dtype = tdp;
1149 hash_add(td->td_iihash, ii);
1150
1151 iicnt++;
1152 }
1153
1154 debug(3, "Resurrected %d %stype %s (%d)\n", tdp->t_type,
1155 (CTF_INFO_ISROOT(ctt->ctt_info) ? "root " : ""),
1156 tdesc_name(tdp), tdp->t_id);
1157 }
1158
1159 debug(3, "Resurrected %d types (%d were roots)\n", tcnt, iicnt);
1160 }
1161
1162 /*
1163 * For lack of other inspiration, we're going to take the boring route. We
1164 * count the number of types. This lets us malloc that many tdesc structs
1165 * before we start filling them in. This has the advantage of allowing us to
1166 * avoid a merge-esque remap step.
1167 */
1168 static tdata_t *
ctf_parse(ctf_header_t * h,caddr_t buf,symit_data_t * si,char * label)1169 ctf_parse(ctf_header_t *h, caddr_t buf, symit_data_t *si, char *label)
1170 {
1171 tdata_t *td = tdata_new();
1172 tdesc_t **tdarr;
1173 int ntypes = count_types(h, buf);
1174 int idx, i;
1175
1176 /* shudder */
1177 tdarr = xcalloc(sizeof (tdesc_t *) * (ntypes + 1));
1178 tdarr[0] = NULL;
1179 for (i = 1; i <= ntypes; i++) {
1180 tdarr[i] = xcalloc(sizeof (tdesc_t));
1181 tdarr[i]->t_id = i;
1182 }
1183
1184 td->td_parlabel = xstrdup(buf + h->cth_stroff + h->cth_parlabel);
1185
1186 /* we have the technology - we can rebuild them */
1187 idx = resurrect_labels(h, td, buf, label);
1188
1189 resurrect_objects(h, td, tdarr, ntypes + 1, buf, si);
1190 resurrect_functions(h, td, tdarr, ntypes + 1, buf, si);
1191 resurrect_types(h, td, tdarr, ntypes + 1, buf, idx);
1192
1193 free(tdarr);
1194
1195 td->td_nextid = ntypes + 1;
1196
1197 return (td);
1198 }
1199
1200 static size_t
decompress_ctf(caddr_t cbuf,size_t cbufsz,caddr_t dbuf,size_t dbufsz)1201 decompress_ctf(caddr_t cbuf, size_t cbufsz, caddr_t dbuf, size_t dbufsz)
1202 {
1203 z_stream zstr;
1204 int rc;
1205
1206 zstr.zalloc = (alloc_func)0;
1207 zstr.zfree = (free_func)0;
1208 zstr.opaque = (voidpf)0;
1209
1210 zstr.next_in = (Bytef *)cbuf;
1211 zstr.avail_in = cbufsz;
1212 zstr.next_out = (Bytef *)dbuf;
1213 zstr.avail_out = dbufsz;
1214
1215 if ((rc = inflateInit(&zstr)) != Z_OK ||
1216 (rc = inflate(&zstr, Z_NO_FLUSH)) != Z_STREAM_END ||
1217 (rc = inflateEnd(&zstr)) != Z_OK) {
1218 warning("CTF decompress zlib error %s\n", zError(rc));
1219 return (0);
1220 }
1221
1222 debug(3, "reflated %lu bytes to %lu, pointer at %d\n",
1223 zstr.total_in, zstr.total_out, (caddr_t)zstr.next_in - cbuf);
1224
1225 return (zstr.total_out);
1226 }
1227
1228 /*
1229 * Reconstruct the type tree from a given buffer of CTF data. Only the types
1230 * up to the type associated with the provided label, inclusive, will be
1231 * reconstructed. If a NULL label is provided, all types will be reconstructed.
1232 *
1233 * This function won't work on files that have been uniquified.
1234 */
1235 tdata_t *
ctf_load(char * file,caddr_t buf,size_t bufsz,symit_data_t * si,char * label)1236 ctf_load(char *file, caddr_t buf, size_t bufsz, symit_data_t *si, char *label)
1237 {
1238 ctf_header_t *h;
1239 caddr_t ctfdata;
1240 size_t ctfdatasz;
1241 tdata_t *td;
1242
1243 curfile = file;
1244
1245 if (bufsz < sizeof (ctf_header_t))
1246 parseterminate("Corrupt CTF - short header");
1247
1248 /* LINTED - pointer alignment */
1249 h = (ctf_header_t *)buf;
1250 buf += sizeof (ctf_header_t);
1251 bufsz -= sizeof (ctf_header_t);
1252
1253 if (h->cth_magic != CTF_MAGIC)
1254 parseterminate("Corrupt CTF - bad magic 0x%x", h->cth_magic);
1255
1256 if (h->cth_version != CTF_VERSION)
1257 parseterminate("Unknown CTF version %d", h->cth_version);
1258
1259 ctfdatasz = h->cth_stroff + h->cth_strlen;
1260 if (h->cth_flags & CTF_F_COMPRESS) {
1261 size_t actual;
1262
1263 ctfdata = xmalloc(ctfdatasz);
1264 if ((actual = decompress_ctf(buf, bufsz, ctfdata, ctfdatasz)) !=
1265 ctfdatasz) {
1266 parseterminate("Corrupt CTF - short decompression "
1267 "(was %d, expecting %d)", actual, ctfdatasz);
1268 }
1269 } else {
1270 ctfdata = buf;
1271 ctfdatasz = bufsz;
1272 }
1273
1274 td = ctf_parse(h, ctfdata, si, label);
1275
1276 if (h->cth_flags & CTF_F_COMPRESS)
1277 free(ctfdata);
1278
1279 curfile = NULL;
1280
1281 return (td);
1282 }
1283