xref: /freebsd/sys/cam/cam_xpt.c (revision 99651c30b15afd085eca921a42e6ce2e67093609)
1 /*-
2  * Implementation of the Common Access Method Transport (XPT) layer.
3  *
4  * SPDX-License-Identifier: BSD-2-Clause
5  *
6  * Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
7  * Copyright (c) 1997, 1998, 1999 Kenneth D. Merry.
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions, and the following disclaimer,
15  *    without modification, immediately at the beginning of the file.
16  * 2. The name of the author may not be used to endorse or promote products
17  *    derived from this software without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_printf.h"
33 
34 #include <sys/param.h>
35 #include <sys/bio.h>
36 #include <sys/bus.h>
37 #include <sys/systm.h>
38 #include <sys/types.h>
39 #include <sys/malloc.h>
40 #include <sys/kernel.h>
41 #include <sys/time.h>
42 #include <sys/conf.h>
43 #include <sys/fcntl.h>
44 #include <sys/proc.h>
45 #include <sys/sbuf.h>
46 #include <sys/smp.h>
47 #include <sys/stdarg.h>
48 #include <sys/taskqueue.h>
49 
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/sysctl.h>
53 #include <sys/kthread.h>
54 
55 #include <cam/cam.h>
56 #include <cam/cam_ccb.h>
57 #include <cam/cam_iosched.h>
58 #include <cam/cam_periph.h>
59 #include <cam/cam_queue.h>
60 #include <cam/cam_sim.h>
61 #include <cam/cam_xpt.h>
62 #include <cam/cam_xpt_sim.h>
63 #include <cam/cam_xpt_periph.h>
64 #include <cam/cam_xpt_internal.h>
65 #include <cam/cam_debug.h>
66 #include <cam/cam_compat.h>
67 
68 #include <cam/scsi/scsi_all.h>
69 #include <cam/scsi/scsi_message.h>
70 #include <cam/scsi/scsi_pass.h>
71 
72 
73 /* Wild guess based on not wanting to grow the stack too much */
74 #define XPT_PRINT_MAXLEN	512
75 #ifdef PRINTF_BUFR_SIZE
76 #define XPT_PRINT_LEN	PRINTF_BUFR_SIZE
77 #else
78 #define XPT_PRINT_LEN	128
79 #endif
80 _Static_assert(XPT_PRINT_LEN <= XPT_PRINT_MAXLEN, "XPT_PRINT_LEN is too large");
81 
82 /*
83  * This is the maximum number of high powered commands (e.g. start unit)
84  * that can be outstanding at a particular time.
85  */
86 #ifndef CAM_MAX_HIGHPOWER
87 #define CAM_MAX_HIGHPOWER  4
88 #endif
89 
90 /* Datastructures internal to the xpt layer */
91 MALLOC_DEFINE(M_CAMXPT, "CAM XPT", "CAM XPT buffers");
92 MALLOC_DEFINE(M_CAMDEV, "CAM DEV", "CAM devices");
93 MALLOC_DEFINE(M_CAMCCB, "CAM CCB", "CAM CCBs");
94 MALLOC_DEFINE(M_CAMPATH, "CAM path", "CAM paths");
95 
96 struct xpt_softc {
97 	uint32_t		xpt_generation;
98 
99 	/* number of high powered commands that can go through right now */
100 	struct mtx		xpt_highpower_lock;
101 	STAILQ_HEAD(highpowerlist, cam_ed)	highpowerq;
102 	int			num_highpower;
103 
104 	/* queue for handling async rescan requests. */
105 	TAILQ_HEAD(, ccb_hdr) ccb_scanq;
106 	int buses_to_config;
107 	int buses_config_done;
108 
109 	/*
110 	 * Registered buses
111 	 *
112 	 * N.B., "busses" is an archaic spelling of "buses".  In new code
113 	 * "buses" is preferred.
114 	 */
115 	TAILQ_HEAD(,cam_eb)	xpt_busses;
116 	u_int			bus_generation;
117 
118 	int			boot_delay;
119 	struct callout 		boot_callout;
120 	struct task		boot_task;
121 	struct root_hold_token	xpt_rootmount;
122 
123 	struct mtx		xpt_topo_lock;
124 	struct taskqueue	*xpt_taskq;
125 };
126 
127 typedef enum {
128 	DM_RET_COPY		= 0x01,
129 	DM_RET_FLAG_MASK	= 0x0f,
130 	DM_RET_NONE		= 0x00,
131 	DM_RET_STOP		= 0x10,
132 	DM_RET_DESCEND		= 0x20,
133 	DM_RET_ERROR		= 0x30,
134 	DM_RET_ACTION_MASK	= 0xf0
135 } dev_match_ret;
136 
137 typedef enum {
138 	XPT_DEPTH_BUS,
139 	XPT_DEPTH_TARGET,
140 	XPT_DEPTH_DEVICE,
141 	XPT_DEPTH_PERIPH
142 } xpt_traverse_depth;
143 
144 struct xpt_traverse_config {
145 	xpt_traverse_depth	depth;
146 	void			*tr_func;
147 	void			*tr_arg;
148 };
149 
150 typedef	int	xpt_busfunc_t (struct cam_eb *bus, void *arg);
151 typedef	int	xpt_targetfunc_t (struct cam_et *target, void *arg);
152 typedef	int	xpt_devicefunc_t (struct cam_ed *device, void *arg);
153 typedef	int	xpt_periphfunc_t (struct cam_periph *periph, void *arg);
154 typedef int	xpt_pdrvfunc_t (struct periph_driver **pdrv, void *arg);
155 
156 /* Transport layer configuration information */
157 static struct xpt_softc xsoftc;
158 
159 MTX_SYSINIT(xpt_topo_init, &xsoftc.xpt_topo_lock, "XPT topology lock", MTX_DEF);
160 
161 SYSCTL_INT(_kern_cam, OID_AUTO, boot_delay, CTLFLAG_RDTUN,
162            &xsoftc.boot_delay, 0, "Bus registration wait time");
163 SYSCTL_UINT(_kern_cam, OID_AUTO, xpt_generation, CTLFLAG_RD,
164 	    &xsoftc.xpt_generation, 0, "CAM peripheral generation count");
165 
166 struct cam_doneq {
167 	struct mtx_padalign	cam_doneq_mtx;
168 	STAILQ_HEAD(, ccb_hdr)	cam_doneq;
169 	int			cam_doneq_sleep;
170 };
171 
172 static struct cam_doneq cam_doneqs[MAXCPU];
173 static u_int __read_mostly cam_num_doneqs;
174 static struct proc *cam_proc;
175 static struct cam_doneq cam_async;
176 
177 SYSCTL_INT(_kern_cam, OID_AUTO, num_doneqs, CTLFLAG_RDTUN,
178            &cam_num_doneqs, 0, "Number of completion queues/threads");
179 
180 struct cam_periph *xpt_periph;
181 
182 static periph_init_t xpt_periph_init;
183 
184 static struct periph_driver xpt_driver =
185 {
186 	xpt_periph_init, "xpt",
187 	TAILQ_HEAD_INITIALIZER(xpt_driver.units), /* generation */ 0,
188 	CAM_PERIPH_DRV_EARLY
189 };
190 
191 PERIPHDRIVER_DECLARE(xpt, xpt_driver);
192 
193 static d_open_t xptopen;
194 static d_close_t xptclose;
195 static d_ioctl_t xptioctl;
196 static d_ioctl_t xptdoioctl;
197 
198 static struct cdevsw xpt_cdevsw = {
199 	.d_version =	D_VERSION,
200 	.d_flags =	0,
201 	.d_open =	xptopen,
202 	.d_close =	xptclose,
203 	.d_ioctl =	xptioctl,
204 	.d_name =	"xpt",
205 };
206 
207 /* Storage for debugging datastructures */
208 struct cam_path *cam_dpath;
209 uint32_t __read_mostly cam_dflags = CAM_DEBUG_FLAGS;
210 SYSCTL_UINT(_kern_cam, OID_AUTO, dflags, CTLFLAG_RWTUN,
211 	&cam_dflags, 0, "Enabled debug flags");
212 uint32_t cam_debug_delay = CAM_DEBUG_DELAY;
213 SYSCTL_UINT(_kern_cam, OID_AUTO, debug_delay, CTLFLAG_RWTUN,
214 	&cam_debug_delay, 0, "Delay in us after each debug message");
215 
216 /* Our boot-time initialization hook */
217 static int cam_module_event_handler(module_t, int /*modeventtype_t*/, void *);
218 
219 static moduledata_t cam_moduledata = {
220 	"cam",
221 	cam_module_event_handler,
222 	NULL
223 };
224 
225 static int	xpt_init(void *);
226 
227 DECLARE_MODULE(cam, cam_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
228 MODULE_VERSION(cam, 1);
229 
230 static void		xpt_async_bcast(struct async_list *async_head,
231 					uint32_t async_code,
232 					struct cam_path *path,
233 					void *async_arg);
234 static path_id_t xptnextfreepathid(void);
235 static path_id_t xptpathid(const char *sim_name, int sim_unit, int sim_bus);
236 static union ccb *xpt_get_ccb(struct cam_periph *periph);
237 static union ccb *xpt_get_ccb_nowait(struct cam_periph *periph);
238 static void	 xpt_run_allocq(struct cam_periph *periph, int sleep);
239 static void	 xpt_run_allocq_task(void *context, int pending);
240 static void	 xpt_run_devq(struct cam_devq *devq);
241 static callout_func_t xpt_release_devq_timeout;
242 static void	 xpt_acquire_bus(struct cam_eb *bus);
243 static void	 xpt_release_bus(struct cam_eb *bus);
244 static uint32_t	 xpt_freeze_devq_device(struct cam_ed *dev, u_int count);
245 static int	 xpt_release_devq_device(struct cam_ed *dev, u_int count,
246 		    int run_queue);
247 static struct cam_et*
248 		 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id);
249 static void	 xpt_acquire_target(struct cam_et *target);
250 static void	 xpt_release_target(struct cam_et *target);
251 static struct cam_eb*
252 		 xpt_find_bus(path_id_t path_id);
253 static struct cam_et*
254 		 xpt_find_target(struct cam_eb *bus, target_id_t target_id);
255 static struct cam_ed*
256 		 xpt_find_device(struct cam_et *target, lun_id_t lun_id);
257 static void	 xpt_config(void *arg);
258 static void	 xpt_hold_boot_locked(void);
259 static int	 xpt_schedule_dev(struct camq *queue, cam_pinfo *dev_pinfo,
260 				 uint32_t new_priority);
261 static xpt_devicefunc_t xptpassannouncefunc;
262 static void	 xptaction(struct cam_sim *sim, union ccb *work_ccb);
263 static void	 xptpoll(struct cam_sim *sim);
264 static void	 camisr_runqueue(void);
265 static void	 xpt_done_process(struct ccb_hdr *ccb_h);
266 static void	 xpt_done_td(void *);
267 static void	 xpt_async_td(void *);
268 static dev_match_ret	xptbusmatch(struct dev_match_pattern *patterns,
269 				    u_int num_patterns, struct cam_eb *bus);
270 static dev_match_ret	xptdevicematch(struct dev_match_pattern *patterns,
271 				       u_int num_patterns,
272 				       struct cam_ed *device);
273 static dev_match_ret	xptperiphmatch(struct dev_match_pattern *patterns,
274 				       u_int num_patterns,
275 				       struct cam_periph *periph);
276 static xpt_busfunc_t	xptedtbusfunc;
277 static xpt_targetfunc_t	xptedttargetfunc;
278 static xpt_devicefunc_t	xptedtdevicefunc;
279 static xpt_periphfunc_t	xptedtperiphfunc;
280 static xpt_pdrvfunc_t	xptplistpdrvfunc;
281 static xpt_periphfunc_t	xptplistperiphfunc;
282 static int		xptedtmatch(struct ccb_dev_match *cdm);
283 static int		xptperiphlistmatch(struct ccb_dev_match *cdm);
284 static int		xptbustraverse(struct cam_eb *start_bus,
285 				       xpt_busfunc_t *tr_func, void *arg);
286 static int		xpttargettraverse(struct cam_eb *bus,
287 					  struct cam_et *start_target,
288 					  xpt_targetfunc_t *tr_func, void *arg);
289 static int		xptdevicetraverse(struct cam_et *target,
290 					  struct cam_ed *start_device,
291 					  xpt_devicefunc_t *tr_func, void *arg);
292 static int		xptperiphtraverse(struct cam_ed *device,
293 					  struct cam_periph *start_periph,
294 					  xpt_periphfunc_t *tr_func, void *arg);
295 static int		xptpdrvtraverse(struct periph_driver **start_pdrv,
296 					xpt_pdrvfunc_t *tr_func, void *arg);
297 static int		xptpdperiphtraverse(struct periph_driver **pdrv,
298 					    struct cam_periph *start_periph,
299 					    xpt_periphfunc_t *tr_func,
300 					    void *arg);
301 static xpt_busfunc_t	xptdefbusfunc;
302 static xpt_targetfunc_t	xptdeftargetfunc;
303 static xpt_devicefunc_t	xptdefdevicefunc;
304 static xpt_periphfunc_t	xptdefperiphfunc;
305 static void		xpt_finishconfig_task(void *context, int pending);
306 static void		xpt_dev_async_default(uint32_t async_code,
307 					      struct cam_eb *bus,
308 					      struct cam_et *target,
309 					      struct cam_ed *device,
310 					      void *async_arg);
311 static struct cam_ed *	xpt_alloc_device_default(struct cam_eb *bus,
312 						 struct cam_et *target,
313 						 lun_id_t lun_id);
314 static xpt_devicefunc_t	xptsetasyncfunc;
315 static xpt_busfunc_t	xptsetasyncbusfunc;
316 static cam_status	xptregister(struct cam_periph *periph,
317 				    void *arg);
318 
319 static __inline int
xpt_schedule_devq(struct cam_devq * devq,struct cam_ed * dev)320 xpt_schedule_devq(struct cam_devq *devq, struct cam_ed *dev)
321 {
322 	int	retval;
323 
324 	mtx_assert(&devq->send_mtx, MA_OWNED);
325 	if ((dev->ccbq.queue.entries > 0) &&
326 	    (dev->ccbq.dev_openings > 0) &&
327 	    (dev->ccbq.queue.qfrozen_cnt == 0)) {
328 		/*
329 		 * The priority of a device waiting for controller
330 		 * resources is that of the highest priority CCB
331 		 * enqueued.
332 		 */
333 		retval =
334 		    xpt_schedule_dev(&devq->send_queue,
335 				     &dev->devq_entry,
336 				     CAMQ_GET_PRIO(&dev->ccbq.queue));
337 	} else {
338 		retval = 0;
339 	}
340 	return (retval);
341 }
342 
343 static __inline int
device_is_queued(struct cam_ed * device)344 device_is_queued(struct cam_ed *device)
345 {
346 	return (device->devq_entry.index != CAM_UNQUEUED_INDEX);
347 }
348 
349 static void
xpt_periph_init(void)350 xpt_periph_init(void)
351 {
352 	make_dev(&xpt_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600, "xpt0");
353 }
354 
355 static int
xptopen(struct cdev * dev,int flags,int fmt,struct thread * td)356 xptopen(struct cdev *dev, int flags, int fmt, struct thread *td)
357 {
358 
359 	/*
360 	 * Only allow read-write access.
361 	 */
362 	if (((flags & FWRITE) == 0) || ((flags & FREAD) == 0))
363 		return(EPERM);
364 
365 	/*
366 	 * We don't allow nonblocking access.
367 	 */
368 	if ((flags & O_NONBLOCK) != 0) {
369 		printf("%s: can't do nonblocking access\n", devtoname(dev));
370 		return(ENODEV);
371 	}
372 
373 	return(0);
374 }
375 
376 static int
xptclose(struct cdev * dev,int flag,int fmt,struct thread * td)377 xptclose(struct cdev *dev, int flag, int fmt, struct thread *td)
378 {
379 
380 	return(0);
381 }
382 
383 /*
384  * Don't automatically grab the xpt softc lock here even though this is going
385  * through the xpt device.  The xpt device is really just a back door for
386  * accessing other devices and SIMs, so the right thing to do is to grab
387  * the appropriate SIM lock once the bus/SIM is located.
388  */
389 static int
xptioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)390 xptioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
391 {
392 	int error;
393 
394 	if ((error = xptdoioctl(dev, cmd, addr, flag, td)) == ENOTTY) {
395 		error = cam_compat_ioctl(dev, cmd, addr, flag, td, xptdoioctl);
396 	}
397 	return (error);
398 }
399 
400 static int
xptdoioctl(struct cdev * dev,u_long cmd,caddr_t addr,int flag,struct thread * td)401 xptdoioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
402 {
403 	int error;
404 
405 	error = 0;
406 
407 	switch(cmd) {
408 	/*
409 	 * For the transport layer CAMIOCOMMAND ioctl, we really only want
410 	 * to accept CCB types that don't quite make sense to send through a
411 	 * passthrough driver. XPT_PATH_INQ is an exception to this, as stated
412 	 * in the CAM spec.
413 	 */
414 	case CAMIOCOMMAND: {
415 		union ccb *ccb;
416 		union ccb *inccb;
417 		struct cam_eb *bus;
418 
419 		inccb = (union ccb *)addr;
420 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
421 		if (inccb->ccb_h.func_code == XPT_SCSI_IO)
422 			inccb->csio.bio = NULL;
423 #endif
424 
425 		if (inccb->ccb_h.flags & CAM_UNLOCKED)
426 			return (EINVAL);
427 
428 		bus = xpt_find_bus(inccb->ccb_h.path_id);
429 		if (bus == NULL)
430 			return (EINVAL);
431 
432 		switch (inccb->ccb_h.func_code) {
433 		case XPT_SCAN_BUS:
434 		case XPT_RESET_BUS:
435 			if (inccb->ccb_h.target_id != CAM_TARGET_WILDCARD ||
436 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
437 				xpt_release_bus(bus);
438 				return (EINVAL);
439 			}
440 			break;
441 		case XPT_SCAN_TGT:
442 			if (inccb->ccb_h.target_id == CAM_TARGET_WILDCARD ||
443 			    inccb->ccb_h.target_lun != CAM_LUN_WILDCARD) {
444 				xpt_release_bus(bus);
445 				return (EINVAL);
446 			}
447 			break;
448 		default:
449 			break;
450 		}
451 
452 		switch(inccb->ccb_h.func_code) {
453 		case XPT_SCAN_BUS:
454 		case XPT_RESET_BUS:
455 		case XPT_PATH_INQ:
456 		case XPT_ENG_INQ:
457 		case XPT_SCAN_LUN:
458 		case XPT_SCAN_TGT:
459 
460 			ccb = xpt_alloc_ccb();
461 
462 			/*
463 			 * Create a path using the bus, target, and lun the
464 			 * user passed in.
465 			 */
466 			if (xpt_create_path(&ccb->ccb_h.path, NULL,
467 					    inccb->ccb_h.path_id,
468 					    inccb->ccb_h.target_id,
469 					    inccb->ccb_h.target_lun) !=
470 					    CAM_REQ_CMP){
471 				error = EINVAL;
472 				xpt_free_ccb(ccb);
473 				break;
474 			}
475 			/* Ensure all of our fields are correct */
476 			xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path,
477 				      inccb->ccb_h.pinfo.priority);
478 			xpt_merge_ccb(ccb, inccb);
479 			xpt_path_lock(ccb->ccb_h.path);
480 			cam_periph_runccb(ccb, NULL, 0, 0, NULL);
481 			xpt_path_unlock(ccb->ccb_h.path);
482 			bcopy(ccb, inccb, sizeof(union ccb));
483 			xpt_free_path(ccb->ccb_h.path);
484 			xpt_free_ccb(ccb);
485 			break;
486 
487 		case XPT_DEBUG: {
488 			union ccb ccb;
489 
490 			/*
491 			 * This is an immediate CCB, so it's okay to
492 			 * allocate it on the stack.
493 			 */
494 			memset(&ccb, 0, sizeof(ccb));
495 
496 			/*
497 			 * Create a path using the bus, target, and lun the
498 			 * user passed in.
499 			 */
500 			if (xpt_create_path(&ccb.ccb_h.path, NULL,
501 					    inccb->ccb_h.path_id,
502 					    inccb->ccb_h.target_id,
503 					    inccb->ccb_h.target_lun) !=
504 					    CAM_REQ_CMP){
505 				error = EINVAL;
506 				break;
507 			}
508 			/* Ensure all of our fields are correct */
509 			xpt_setup_ccb(&ccb.ccb_h, ccb.ccb_h.path,
510 				      inccb->ccb_h.pinfo.priority);
511 			xpt_merge_ccb(&ccb, inccb);
512 			xpt_action(&ccb);
513 			bcopy(&ccb, inccb, sizeof(union ccb));
514 			xpt_free_path(ccb.ccb_h.path);
515 			break;
516 		}
517 		case XPT_DEV_MATCH: {
518 			struct cam_periph_map_info mapinfo;
519 			struct cam_path *old_path;
520 
521 			/*
522 			 * We can't deal with physical addresses for this
523 			 * type of transaction.
524 			 */
525 			if ((inccb->ccb_h.flags & CAM_DATA_MASK) !=
526 			    CAM_DATA_VADDR) {
527 				error = EINVAL;
528 				break;
529 			}
530 
531 			/*
532 			 * Save this in case the caller had it set to
533 			 * something in particular.
534 			 */
535 			old_path = inccb->ccb_h.path;
536 
537 			/*
538 			 * We really don't need a path for the matching
539 			 * code.  The path is needed because of the
540 			 * debugging statements in xpt_action().  They
541 			 * assume that the CCB has a valid path.
542 			 */
543 			inccb->ccb_h.path = xpt_periph->path;
544 
545 			bzero(&mapinfo, sizeof(mapinfo));
546 
547 			/*
548 			 * Map the pattern and match buffers into kernel
549 			 * virtual address space.
550 			 */
551 			error = cam_periph_mapmem(inccb, &mapinfo, maxphys);
552 
553 			if (error) {
554 				inccb->ccb_h.path = old_path;
555 				break;
556 			}
557 
558 			/*
559 			 * This is an immediate CCB, we can send it on directly.
560 			 */
561 			xpt_action(inccb);
562 
563 			/*
564 			 * Map the buffers back into user space.
565 			 */
566 			error = cam_periph_unmapmem(inccb, &mapinfo);
567 
568 			inccb->ccb_h.path = old_path;
569 			break;
570 		}
571 		default:
572 			error = ENOTSUP;
573 			break;
574 		}
575 		xpt_release_bus(bus);
576 		break;
577 	}
578 	/*
579 	 * This is the getpassthru ioctl. It takes a XPT_GDEVLIST ccb as input,
580 	 * with the periphal driver name and unit name filled in.  The other
581 	 * fields don't really matter as input.  The passthrough driver name
582 	 * ("pass"), and unit number are passed back in the ccb.  The current
583 	 * device generation number, and the index into the device peripheral
584 	 * driver list, and the status are also passed back.  Note that
585 	 * since we do everything in one pass, unlike the XPT_GDEVLIST ccb,
586 	 * we never return a status of CAM_GDEVLIST_LIST_CHANGED.  It is
587 	 * (or rather should be) impossible for the device peripheral driver
588 	 * list to change since we look at the whole thing in one pass, and
589 	 * we do it with lock protection.
590 	 *
591 	 */
592 	case CAMGETPASSTHRU: {
593 		union ccb *ccb;
594 		struct cam_periph *periph;
595 		struct periph_driver **p_drv;
596 		char   *name;
597 		u_int unit;
598 		bool base_periph_found;
599 
600 		ccb = (union ccb *)addr;
601 		unit = ccb->cgdl.unit_number;
602 		name = ccb->cgdl.periph_name;
603 		base_periph_found = false;
604 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
605 		if (ccb->ccb_h.func_code == XPT_SCSI_IO)
606 			ccb->csio.bio = NULL;
607 #endif
608 
609 		/*
610 		 * Sanity check -- make sure we don't get a null peripheral
611 		 * driver name.
612 		 */
613 		if (*ccb->cgdl.periph_name == '\0') {
614 			error = EINVAL;
615 			break;
616 		}
617 
618 		/* Keep the list from changing while we traverse it */
619 		xpt_lock_buses();
620 
621 		/* first find our driver in the list of drivers */
622 		for (p_drv = periph_drivers; *p_drv != NULL; p_drv++)
623 			if (strcmp((*p_drv)->driver_name, name) == 0)
624 				break;
625 
626 		if (*p_drv == NULL) {
627 			xpt_unlock_buses();
628 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
629 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
630 			*ccb->cgdl.periph_name = '\0';
631 			ccb->cgdl.unit_number = 0;
632 			error = ENOENT;
633 			break;
634 		}
635 
636 		/*
637 		 * Run through every peripheral instance of this driver
638 		 * and check to see whether it matches the unit passed
639 		 * in by the user.  If it does, get out of the loops and
640 		 * find the passthrough driver associated with that
641 		 * peripheral driver.
642 		 */
643 		for (periph = TAILQ_FIRST(&(*p_drv)->units); periph != NULL;
644 		     periph = TAILQ_NEXT(periph, unit_links)) {
645 			if (periph->unit_number == unit)
646 				break;
647 		}
648 		/*
649 		 * If we found the peripheral driver that the user passed
650 		 * in, go through all of the peripheral drivers for that
651 		 * particular device and look for a passthrough driver.
652 		 */
653 		if (periph != NULL) {
654 			struct cam_ed *device;
655 			int i;
656 
657 			base_periph_found = true;
658 			device = periph->path->device;
659 			for (i = 0, periph = SLIST_FIRST(&device->periphs);
660 			     periph != NULL;
661 			     periph = SLIST_NEXT(periph, periph_links), i++) {
662 				/*
663 				 * Check to see whether we have a
664 				 * passthrough device or not.
665 				 */
666 				if (strcmp(periph->periph_name, "pass") == 0) {
667 					/*
668 					 * Fill in the getdevlist fields.
669 					 */
670 					strlcpy(ccb->cgdl.periph_name,
671 					       periph->periph_name,
672 					       sizeof(ccb->cgdl.periph_name));
673 					ccb->cgdl.unit_number =
674 						periph->unit_number;
675 					if (SLIST_NEXT(periph, periph_links))
676 						ccb->cgdl.status =
677 							CAM_GDEVLIST_MORE_DEVS;
678 					else
679 						ccb->cgdl.status =
680 						       CAM_GDEVLIST_LAST_DEVICE;
681 					ccb->cgdl.generation =
682 						device->generation;
683 					ccb->cgdl.index = i;
684 					/*
685 					 * Fill in some CCB header fields
686 					 * that the user may want.
687 					 */
688 					ccb->ccb_h.path_id =
689 						periph->path->bus->path_id;
690 					ccb->ccb_h.target_id =
691 						periph->path->target->target_id;
692 					ccb->ccb_h.target_lun =
693 						periph->path->device->lun_id;
694 					ccb->ccb_h.status = CAM_REQ_CMP;
695 					break;
696 				}
697 			}
698 		}
699 
700 		/*
701 		 * If the periph is null here, one of two things has
702 		 * happened.  The first possibility is that we couldn't
703 		 * find the unit number of the particular peripheral driver
704 		 * that the user is asking about.  e.g. the user asks for
705 		 * the passthrough driver for "da11".  We find the list of
706 		 * "da" peripherals all right, but there is no unit 11.
707 		 * The other possibility is that we went through the list
708 		 * of peripheral drivers attached to the device structure,
709 		 * but didn't find one with the name "pass".  Either way,
710 		 * we return ENOENT, since we couldn't find something.
711 		 */
712 		if (periph == NULL) {
713 			ccb->ccb_h.status = CAM_REQ_CMP_ERR;
714 			ccb->cgdl.status = CAM_GDEVLIST_ERROR;
715 			*ccb->cgdl.periph_name = '\0';
716 			ccb->cgdl.unit_number = 0;
717 			error = ENOENT;
718 			/*
719 			 * It is unfortunate that this is even necessary,
720 			 * but there are many, many clueless users out there.
721 			 * If this is true, the user is looking for the
722 			 * passthrough driver, but doesn't have one in his
723 			 * kernel.
724 			 */
725 			if (base_periph_found) {
726 				printf(
727 		"xptioctl: pass driver is not in the kernel\n"
728 		"xptioctl: put \"device pass\" in your kernel config file\n");
729 			}
730 		}
731 		xpt_unlock_buses();
732 		break;
733 		}
734 	default:
735 		error = ENOTTY;
736 		break;
737 	}
738 
739 	return(error);
740 }
741 
742 static int
cam_module_event_handler(module_t mod,int what,void * arg)743 cam_module_event_handler(module_t mod, int what, void *arg)
744 {
745 	int error;
746 
747 	switch (what) {
748 	case MOD_LOAD:
749 		if ((error = xpt_init(NULL)) != 0)
750 			return (error);
751 		break;
752 	case MOD_UNLOAD:
753 		return EBUSY;
754 	default:
755 		return EOPNOTSUPP;
756 	}
757 
758 	return 0;
759 }
760 
761 static struct xpt_proto *
xpt_proto_find(cam_proto proto)762 xpt_proto_find(cam_proto proto)
763 {
764 	struct xpt_proto **pp;
765 
766 	SET_FOREACH(pp, cam_xpt_proto_set) {
767 		if ((*pp)->proto == proto)
768 			return *pp;
769 	}
770 
771 	return NULL;
772 }
773 
774 static void
xpt_rescan_done(struct cam_periph * periph,union ccb * done_ccb)775 xpt_rescan_done(struct cam_periph *periph, union ccb *done_ccb)
776 {
777 
778 	if (done_ccb->ccb_h.ppriv_ptr1 == NULL) {
779 		xpt_free_path(done_ccb->ccb_h.path);
780 		xpt_free_ccb(done_ccb);
781 	} else {
782 		done_ccb->ccb_h.cbfcnp = done_ccb->ccb_h.ppriv_ptr1;
783 		(*done_ccb->ccb_h.cbfcnp)(periph, done_ccb);
784 	}
785 	xpt_release_boot();
786 }
787 
788 /* thread to handle bus rescans */
789 static void
xpt_scanner_thread(void * dummy)790 xpt_scanner_thread(void *dummy)
791 {
792 	union ccb	*ccb;
793 	struct mtx	*mtx;
794 	struct cam_ed	*device;
795 
796 	xpt_lock_buses();
797 	for (;;) {
798 		if (TAILQ_EMPTY(&xsoftc.ccb_scanq))
799 			msleep(&xsoftc.ccb_scanq, &xsoftc.xpt_topo_lock, PRIBIO,
800 			       "-", 0);
801 		if ((ccb = (union ccb *)TAILQ_FIRST(&xsoftc.ccb_scanq)) != NULL) {
802 			TAILQ_REMOVE(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
803 			xpt_unlock_buses();
804 
805 			/*
806 			 * We need to lock the device's mutex which we use as
807 			 * the path mutex. We can't do it directly because the
808 			 * cam_path in the ccb may wind up going away because
809 			 * the path lock may be dropped and the path retired in
810 			 * the completion callback. We do this directly to keep
811 			 * the reference counts in cam_path sane. We also have
812 			 * to copy the device pointer because ccb_h.path may
813 			 * be freed in the callback.
814 			 */
815 			mtx = xpt_path_mtx(ccb->ccb_h.path);
816 			device = ccb->ccb_h.path->device;
817 			xpt_acquire_device(device);
818 			mtx_lock(mtx);
819 			xpt_action(ccb);
820 			mtx_unlock(mtx);
821 			xpt_release_device(device);
822 
823 			xpt_lock_buses();
824 		}
825 	}
826 }
827 
828 void
xpt_rescan(union ccb * ccb)829 xpt_rescan(union ccb *ccb)
830 {
831 	struct ccb_hdr *hdr;
832 
833 	/* Prepare request */
834 	if (ccb->ccb_h.path->target->target_id == CAM_TARGET_WILDCARD &&
835 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
836 		ccb->ccb_h.func_code = XPT_SCAN_BUS;
837 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
838 	    ccb->ccb_h.path->device->lun_id == CAM_LUN_WILDCARD)
839 		ccb->ccb_h.func_code = XPT_SCAN_TGT;
840 	else if (ccb->ccb_h.path->target->target_id != CAM_TARGET_WILDCARD &&
841 	    ccb->ccb_h.path->device->lun_id != CAM_LUN_WILDCARD)
842 		ccb->ccb_h.func_code = XPT_SCAN_LUN;
843 	else {
844 		xpt_print(ccb->ccb_h.path, "illegal scan path\n");
845 		xpt_free_path(ccb->ccb_h.path);
846 		xpt_free_ccb(ccb);
847 		return;
848 	}
849 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
850 	    ("xpt_rescan: func %#x %s\n", ccb->ccb_h.func_code,
851  		xpt_action_name(ccb->ccb_h.func_code)));
852 
853 	ccb->ccb_h.ppriv_ptr1 = ccb->ccb_h.cbfcnp;
854 	ccb->ccb_h.cbfcnp = xpt_rescan_done;
855 	xpt_setup_ccb(&ccb->ccb_h, ccb->ccb_h.path, CAM_PRIORITY_XPT);
856 	/* Don't make duplicate entries for the same paths. */
857 	xpt_lock_buses();
858 	if (ccb->ccb_h.ppriv_ptr1 == NULL) {
859 		TAILQ_FOREACH(hdr, &xsoftc.ccb_scanq, sim_links.tqe) {
860 			if (xpt_path_comp(hdr->path, ccb->ccb_h.path) == 0) {
861 				wakeup(&xsoftc.ccb_scanq);
862 				xpt_unlock_buses();
863 				xpt_print(ccb->ccb_h.path, "rescan already queued\n");
864 				xpt_free_path(ccb->ccb_h.path);
865 				xpt_free_ccb(ccb);
866 				return;
867 			}
868 		}
869 	}
870 	TAILQ_INSERT_TAIL(&xsoftc.ccb_scanq, &ccb->ccb_h, sim_links.tqe);
871 	xpt_hold_boot_locked();
872 	wakeup(&xsoftc.ccb_scanq);
873 	xpt_unlock_buses();
874 }
875 
876 /* Functions accessed by the peripheral drivers */
877 static int
xpt_init(void * dummy)878 xpt_init(void *dummy)
879 {
880 	struct cam_sim *xpt_sim;
881 	struct cam_path *path;
882 	struct cam_devq *devq;
883 	cam_status status;
884 	int error, i;
885 
886 	TAILQ_INIT(&xsoftc.xpt_busses);
887 	TAILQ_INIT(&xsoftc.ccb_scanq);
888 	STAILQ_INIT(&xsoftc.highpowerq);
889 	xsoftc.num_highpower = CAM_MAX_HIGHPOWER;
890 
891 	mtx_init(&xsoftc.xpt_highpower_lock, "XPT highpower lock", NULL, MTX_DEF);
892 	xsoftc.xpt_taskq = taskqueue_create("CAM XPT task", M_WAITOK,
893 	    taskqueue_thread_enqueue, /*context*/&xsoftc.xpt_taskq);
894 
895 #ifdef CAM_BOOT_DELAY
896 	/*
897 	 * Override this value at compile time to assist our users
898 	 * who don't use loader to boot a kernel.
899 	 */
900 	xsoftc.boot_delay = CAM_BOOT_DELAY;
901 #endif
902 
903 	/*
904 	 * The xpt layer is, itself, the equivalent of a SIM.
905 	 * Allow 16 ccbs in the ccb pool for it.  This should
906 	 * give decent parallelism when we probe buses and
907 	 * perform other XPT functions.
908 	 */
909 	devq = cam_simq_alloc(16);
910 	if (devq == NULL)
911 		return (ENOMEM);
912 	xpt_sim = cam_sim_alloc(xptaction,
913 				xptpoll,
914 				"xpt",
915 				/*softc*/NULL,
916 				/*unit*/0,
917 				/*mtx*/NULL,
918 				/*max_dev_transactions*/0,
919 				/*max_tagged_dev_transactions*/0,
920 				devq);
921 	if (xpt_sim == NULL)
922 		return (ENOMEM);
923 
924 	if ((error = xpt_bus_register(xpt_sim, NULL, 0)) != CAM_SUCCESS) {
925 		printf(
926 		    "xpt_init: xpt_bus_register failed with errno %d, failing attach\n",
927 		    error);
928 		return (EINVAL);
929 	}
930 
931 	/*
932 	 * Looking at the XPT from the SIM layer, the XPT is
933 	 * the equivalent of a peripheral driver.  Allocate
934 	 * a peripheral driver entry for us.
935 	 */
936 	if ((status = xpt_create_path(&path, NULL, CAM_XPT_PATH_ID,
937 				      CAM_TARGET_WILDCARD,
938 				      CAM_LUN_WILDCARD)) != CAM_REQ_CMP) {
939 		printf(
940 	"xpt_init: xpt_create_path failed with status %#x, failing attach\n",
941 		    status);
942 		return (EINVAL);
943 	}
944 	xpt_path_lock(path);
945 	cam_periph_alloc(xptregister, NULL, NULL, NULL, "xpt", CAM_PERIPH_BIO,
946 			 path, NULL, 0, xpt_sim);
947 	xpt_path_unlock(path);
948 	xpt_free_path(path);
949 
950 	if (cam_num_doneqs < 1)
951 		cam_num_doneqs = 1 + mp_ncpus / 6;
952 	else if (cam_num_doneqs > MAXCPU)
953 		cam_num_doneqs = MAXCPU;
954 	for (i = 0; i < cam_num_doneqs; i++) {
955 		mtx_init(&cam_doneqs[i].cam_doneq_mtx, "CAM doneq", NULL,
956 		    MTX_DEF);
957 		STAILQ_INIT(&cam_doneqs[i].cam_doneq);
958 		error = kproc_kthread_add(xpt_done_td, &cam_doneqs[i],
959 		    &cam_proc, NULL, 0, 0, "cam", "doneq%d", i);
960 		if (error != 0) {
961 			cam_num_doneqs = i;
962 			break;
963 		}
964 	}
965 	if (cam_num_doneqs < 1) {
966 		printf("xpt_init: Cannot init completion queues - failing attach\n");
967 		return (ENOMEM);
968 	}
969 
970 	mtx_init(&cam_async.cam_doneq_mtx, "CAM async", NULL, MTX_DEF);
971 	STAILQ_INIT(&cam_async.cam_doneq);
972 	if (kproc_kthread_add(xpt_async_td, &cam_async,
973 		&cam_proc, NULL, 0, 0, "cam", "async") != 0) {
974 		printf("xpt_init: Cannot init async thread - failing attach\n");
975 		return (ENOMEM);
976 	}
977 
978 	/*
979 	 * Register a callback for when interrupts are enabled.
980 	 */
981 	config_intrhook_oneshot(xpt_config, NULL);
982 
983 	return (0);
984 }
985 
986 static cam_status
xptregister(struct cam_periph * periph,void * arg)987 xptregister(struct cam_periph *periph, void *arg)
988 {
989 	struct cam_sim *xpt_sim;
990 
991 	if (periph == NULL) {
992 		printf("xptregister: periph was NULL!!\n");
993 		return(CAM_REQ_CMP_ERR);
994 	}
995 
996 	xpt_sim = (struct cam_sim *)arg;
997 	xpt_sim->softc = periph;
998 	xpt_periph = periph;
999 	periph->softc = NULL;
1000 
1001 	return(CAM_REQ_CMP);
1002 }
1003 
1004 int32_t
xpt_add_periph(struct cam_periph * periph)1005 xpt_add_periph(struct cam_periph *periph)
1006 {
1007 	struct cam_ed *device;
1008 	int32_t	 status;
1009 
1010 	TASK_INIT(&periph->periph_run_task, 0, xpt_run_allocq_task, periph);
1011 	device = periph->path->device;
1012 	status = CAM_REQ_CMP;
1013 	if (device != NULL) {
1014 		mtx_lock(&device->target->bus->eb_mtx);
1015 		device->generation++;
1016 		SLIST_INSERT_HEAD(&device->periphs, periph, periph_links);
1017 		mtx_unlock(&device->target->bus->eb_mtx);
1018 		atomic_add_32(&xsoftc.xpt_generation, 1);
1019 	}
1020 
1021 	return (status);
1022 }
1023 
1024 void
xpt_remove_periph(struct cam_periph * periph)1025 xpt_remove_periph(struct cam_periph *periph)
1026 {
1027 	struct cam_ed *device;
1028 
1029 	device = periph->path->device;
1030 	if (device != NULL) {
1031 		mtx_lock(&device->target->bus->eb_mtx);
1032 		device->generation++;
1033 		SLIST_REMOVE(&device->periphs, periph, cam_periph, periph_links);
1034 		mtx_unlock(&device->target->bus->eb_mtx);
1035 		atomic_add_32(&xsoftc.xpt_generation, 1);
1036 	}
1037 }
1038 
1039 void
xpt_announce_periph(struct cam_periph * periph,char * announce_string)1040 xpt_announce_periph(struct cam_periph *periph, char *announce_string)
1041 {
1042 	char buf[128];
1043 	struct sbuf sb;
1044 
1045 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1046 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1047 	xpt_announce_periph_sbuf(periph, &sb, announce_string);
1048 	(void)sbuf_finish(&sb);
1049 	(void)sbuf_delete(&sb);
1050 }
1051 
1052 void
xpt_announce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb,char * announce_string)1053 xpt_announce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb,
1054     char *announce_string)
1055 {
1056 	struct	cam_path *path = periph->path;
1057 	struct  xpt_proto *proto;
1058 
1059 	cam_periph_assert(periph, MA_OWNED);
1060 	periph->flags |= CAM_PERIPH_ANNOUNCED;
1061 
1062 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1063 	    periph->periph_name, periph->unit_number,
1064 	    path->bus->sim->sim_name,
1065 	    path->bus->sim->unit_number,
1066 	    path->bus->sim->bus_id,
1067 	    path->bus->path_id,
1068 	    path->target->target_id,
1069 	    (uintmax_t)path->device->lun_id);
1070 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1071 	proto = xpt_proto_find(path->device->protocol);
1072 	if (proto)
1073 		proto->ops->announce_sbuf(path->device, sb);
1074 	else
1075 		sbuf_printf(sb, "Unknown protocol device %d\n",
1076 		    path->device->protocol);
1077 	if (path->device->serial_num_len > 0) {
1078 		/* Don't wrap the screen  - print only the first 60 chars */
1079 		sbuf_printf(sb, "%s%d: Serial Number %.60s\n",
1080 		    periph->periph_name, periph->unit_number,
1081 		    path->device->serial_num);
1082 	}
1083 	/* Announce transport details. */
1084 	path->bus->xport->ops->announce_sbuf(periph, sb);
1085 	/* Announce command queueing. */
1086 	if (path->device->inq_flags & SID_CmdQue
1087 	 || path->device->flags & CAM_DEV_TAG_AFTER_COUNT) {
1088 		sbuf_printf(sb, "%s%d: Command Queueing enabled\n",
1089 		    periph->periph_name, periph->unit_number);
1090 	}
1091 	/* Announce caller's details if they've passed in. */
1092 	if (announce_string != NULL)
1093 		sbuf_printf(sb, "%s%d: %s\n", periph->periph_name,
1094 		    periph->unit_number, announce_string);
1095 }
1096 
1097 void
xpt_announce_quirks(struct cam_periph * periph,int quirks,char * bit_string)1098 xpt_announce_quirks(struct cam_periph *periph, int quirks, char *bit_string)
1099 {
1100 	if (quirks != 0) {
1101 		printf("%s%d: quirks=0x%b\n", periph->periph_name,
1102 		    periph->unit_number, quirks, bit_string);
1103 	}
1104 }
1105 
1106 void
xpt_announce_quirks_sbuf(struct cam_periph * periph,struct sbuf * sb,int quirks,char * bit_string)1107 xpt_announce_quirks_sbuf(struct cam_periph *periph, struct sbuf *sb,
1108 			 int quirks, char *bit_string)
1109 {
1110 	if (quirks != 0) {
1111 		sbuf_printf(sb, "%s%d: quirks=0x%b\n", periph->periph_name,
1112 		    periph->unit_number, quirks, bit_string);
1113 	}
1114 }
1115 
1116 void
xpt_denounce_periph(struct cam_periph * periph)1117 xpt_denounce_periph(struct cam_periph *periph)
1118 {
1119 	char buf[128];
1120 	struct sbuf sb;
1121 
1122 	(void)sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
1123 	sbuf_set_drain(&sb, sbuf_printf_drain, NULL);
1124 	xpt_denounce_periph_sbuf(periph, &sb);
1125 	(void)sbuf_finish(&sb);
1126 	(void)sbuf_delete(&sb);
1127 }
1128 
1129 void
xpt_denounce_periph_sbuf(struct cam_periph * periph,struct sbuf * sb)1130 xpt_denounce_periph_sbuf(struct cam_periph *periph, struct sbuf *sb)
1131 {
1132 	struct cam_path *path = periph->path;
1133 	struct xpt_proto *proto;
1134 
1135 	cam_periph_assert(periph, MA_OWNED);
1136 
1137 	sbuf_printf(sb, "%s%d at %s%d bus %d scbus%d target %d lun %jx\n",
1138 	    periph->periph_name, periph->unit_number,
1139 	    path->bus->sim->sim_name,
1140 	    path->bus->sim->unit_number,
1141 	    path->bus->sim->bus_id,
1142 	    path->bus->path_id,
1143 	    path->target->target_id,
1144 	    (uintmax_t)path->device->lun_id);
1145 	sbuf_printf(sb, "%s%d: ", periph->periph_name, periph->unit_number);
1146 	proto = xpt_proto_find(path->device->protocol);
1147 	if (proto)
1148 		proto->ops->denounce_sbuf(path->device, sb);
1149 	else
1150 		sbuf_printf(sb, "Unknown protocol device %d",
1151 		    path->device->protocol);
1152 	if (path->device->serial_num_len > 0)
1153 		sbuf_printf(sb, " s/n %.60s", path->device->serial_num);
1154 	sbuf_cat(sb, " detached\n");
1155 }
1156 
1157 int
xpt_getattr(char * buf,size_t len,const char * attr,struct cam_path * path)1158 xpt_getattr(char *buf, size_t len, const char *attr, struct cam_path *path)
1159 {
1160 	int ret = -1, l, o;
1161 	struct ccb_dev_advinfo cdai;
1162 	struct scsi_vpd_device_id *did;
1163 	struct scsi_vpd_id_descriptor *idd;
1164 
1165 	xpt_path_assert(path, MA_OWNED);
1166 
1167 	memset(&cdai, 0, sizeof(cdai));
1168 	xpt_setup_ccb(&cdai.ccb_h, path, CAM_PRIORITY_NORMAL);
1169 	cdai.ccb_h.func_code = XPT_DEV_ADVINFO;
1170 	cdai.flags = CDAI_FLAG_NONE;
1171 	cdai.bufsiz = len;
1172 	cdai.buf = buf;
1173 
1174 	if (!strcmp(attr, "GEOM::ident"))
1175 		cdai.buftype = CDAI_TYPE_SERIAL_NUM;
1176 	else if (!strcmp(attr, "GEOM::physpath"))
1177 		cdai.buftype = CDAI_TYPE_PHYS_PATH;
1178 	else if (strcmp(attr, "GEOM::lunid") == 0 ||
1179 		 strcmp(attr, "GEOM::lunname") == 0) {
1180 		cdai.buftype = CDAI_TYPE_SCSI_DEVID;
1181 		cdai.bufsiz = CAM_SCSI_DEVID_MAXLEN;
1182 		cdai.buf = malloc(cdai.bufsiz, M_CAMXPT, M_NOWAIT);
1183 		if (cdai.buf == NULL) {
1184 			ret = ENOMEM;
1185 			goto out;
1186 		}
1187 	} else
1188 		goto out;
1189 
1190 	xpt_action((union ccb *)&cdai); /* can only be synchronous */
1191 	if ((cdai.ccb_h.status & CAM_DEV_QFRZN) != 0)
1192 		cam_release_devq(cdai.ccb_h.path, 0, 0, 0, FALSE);
1193 	if (cdai.provsiz == 0)
1194 		goto out;
1195 	switch(cdai.buftype) {
1196 	case CDAI_TYPE_SCSI_DEVID:
1197 		did = (struct scsi_vpd_device_id *)cdai.buf;
1198 		if (strcmp(attr, "GEOM::lunid") == 0) {
1199 			idd = scsi_get_devid(did, cdai.provsiz,
1200 			    scsi_devid_is_lun_naa);
1201 			if (idd == NULL)
1202 				idd = scsi_get_devid(did, cdai.provsiz,
1203 				    scsi_devid_is_lun_eui64);
1204 			if (idd == NULL)
1205 				idd = scsi_get_devid(did, cdai.provsiz,
1206 				    scsi_devid_is_lun_uuid);
1207 			if (idd == NULL)
1208 				idd = scsi_get_devid(did, cdai.provsiz,
1209 				    scsi_devid_is_lun_md5);
1210 		} else
1211 			idd = NULL;
1212 
1213 		if (idd == NULL)
1214 			idd = scsi_get_devid(did, cdai.provsiz,
1215 			    scsi_devid_is_lun_t10);
1216 		if (idd == NULL)
1217 			idd = scsi_get_devid(did, cdai.provsiz,
1218 			    scsi_devid_is_lun_name);
1219 		if (idd == NULL)
1220 			break;
1221 
1222 		ret = 0;
1223 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1224 		    SVPD_ID_CODESET_ASCII) {
1225 			if (idd->length < len) {
1226 				for (l = 0; l < idd->length; l++)
1227 					buf[l] = idd->identifier[l] ?
1228 					    idd->identifier[l] : ' ';
1229 				buf[l] = 0;
1230 			} else
1231 				ret = EFAULT;
1232 			break;
1233 		}
1234 		if ((idd->proto_codeset & SVPD_ID_CODESET_MASK) ==
1235 		    SVPD_ID_CODESET_UTF8) {
1236 			l = strnlen(idd->identifier, idd->length);
1237 			if (l < len) {
1238 				bcopy(idd->identifier, buf, l);
1239 				buf[l] = 0;
1240 			} else
1241 				ret = EFAULT;
1242 			break;
1243 		}
1244 		if ((idd->id_type & SVPD_ID_TYPE_MASK) ==
1245 		    SVPD_ID_TYPE_UUID && idd->identifier[0] == 0x10) {
1246 			if ((idd->length - 2) * 2 + 4 >= len) {
1247 				ret = EFAULT;
1248 				break;
1249 			}
1250 			for (l = 2, o = 0; l < idd->length; l++) {
1251 				if (l == 6 || l == 8 || l == 10 || l == 12)
1252 				    o += sprintf(buf + o, "-");
1253 				o += sprintf(buf + o, "%02x",
1254 				    idd->identifier[l]);
1255 			}
1256 			break;
1257 		}
1258 		if (idd->length * 2 < len) {
1259 			for (l = 0; l < idd->length; l++)
1260 				sprintf(buf + l * 2, "%02x",
1261 				    idd->identifier[l]);
1262 		} else
1263 				ret = EFAULT;
1264 		break;
1265 	default:
1266 		if (cdai.provsiz < len) {
1267 			cdai.buf[cdai.provsiz] = 0;
1268 			ret = 0;
1269 		} else
1270 			ret = EFAULT;
1271 		break;
1272 	}
1273 
1274 out:
1275 	if ((char *)cdai.buf != buf)
1276 		free(cdai.buf, M_CAMXPT);
1277 	return ret;
1278 }
1279 
1280 static dev_match_ret
xptbusmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_eb * bus)1281 xptbusmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1282 	    struct cam_eb *bus)
1283 {
1284 	dev_match_ret retval;
1285 	u_int i;
1286 
1287 	retval = DM_RET_NONE;
1288 
1289 	/*
1290 	 * If we aren't given something to match against, that's an error.
1291 	 */
1292 	if (bus == NULL)
1293 		return(DM_RET_ERROR);
1294 
1295 	/*
1296 	 * If there are no match entries, then this bus matches no
1297 	 * matter what.
1298 	 */
1299 	if ((patterns == NULL) || (num_patterns == 0))
1300 		return(DM_RET_DESCEND | DM_RET_COPY);
1301 
1302 	for (i = 0; i < num_patterns; i++) {
1303 		struct bus_match_pattern *cur_pattern;
1304 		struct device_match_pattern *dp = &patterns[i].pattern.device_pattern;
1305 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1306 
1307 		/*
1308 		 * If the pattern in question isn't for a bus node, we
1309 		 * aren't interested.  However, we do indicate to the
1310 		 * calling routine that we should continue descending the
1311 		 * tree, since the user wants to match against lower-level
1312 		 * EDT elements.
1313 		 */
1314 		if (patterns[i].type == DEV_MATCH_DEVICE &&
1315 		    (dp->flags & DEV_MATCH_PATH) != 0 &&
1316 		    dp->path_id != bus->path_id)
1317 			continue;
1318 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1319 		    (pp->flags & PERIPH_MATCH_PATH) != 0 &&
1320 		    pp->path_id != bus->path_id)
1321 			continue;
1322 		if (patterns[i].type != DEV_MATCH_BUS) {
1323 			if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1324 				retval |= DM_RET_DESCEND;
1325 			continue;
1326 		}
1327 
1328 		cur_pattern = &patterns[i].pattern.bus_pattern;
1329 
1330 		if (((cur_pattern->flags & BUS_MATCH_PATH) != 0)
1331 		 && (cur_pattern->path_id != bus->path_id))
1332 			continue;
1333 
1334 		if (((cur_pattern->flags & BUS_MATCH_BUS_ID) != 0)
1335 		 && (cur_pattern->bus_id != bus->sim->bus_id))
1336 			continue;
1337 
1338 		if (((cur_pattern->flags & BUS_MATCH_UNIT) != 0)
1339 		 && (cur_pattern->unit_number != bus->sim->unit_number))
1340 			continue;
1341 
1342 		if (((cur_pattern->flags & BUS_MATCH_NAME) != 0)
1343 		 && (strncmp(cur_pattern->dev_name, bus->sim->sim_name,
1344 			     DEV_IDLEN) != 0))
1345 			continue;
1346 
1347 		/*
1348 		 * If we get to this point, the user definitely wants
1349 		 * information on this bus.  So tell the caller to copy the
1350 		 * data out.
1351 		 */
1352 		retval |= DM_RET_COPY;
1353 
1354 		/*
1355 		 * If the return action has been set to descend, then we
1356 		 * know that we've already seen a non-bus matching
1357 		 * expression, therefore we need to further descend the tree.
1358 		 * This won't change by continuing around the loop, so we
1359 		 * go ahead and return.  If we haven't seen a non-bus
1360 		 * matching expression, we keep going around the loop until
1361 		 * we exhaust the matching expressions.  We'll set the stop
1362 		 * flag once we fall out of the loop.
1363 		 */
1364 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1365 			return(retval);
1366 	}
1367 
1368 	/*
1369 	 * If the return action hasn't been set to descend yet, that means
1370 	 * we haven't seen anything other than bus matching patterns.  So
1371 	 * tell the caller to stop descending the tree -- the user doesn't
1372 	 * want to match against lower level tree elements.
1373 	 */
1374 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1375 		retval |= DM_RET_STOP;
1376 
1377 	return(retval);
1378 }
1379 
1380 static dev_match_ret
xptdevicematch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_ed * device)1381 xptdevicematch(struct dev_match_pattern *patterns, u_int num_patterns,
1382 	       struct cam_ed *device)
1383 {
1384 	dev_match_ret retval;
1385 	u_int i;
1386 
1387 	retval = DM_RET_NONE;
1388 
1389 	/*
1390 	 * If we aren't given something to match against, that's an error.
1391 	 */
1392 	if (device == NULL)
1393 		return(DM_RET_ERROR);
1394 
1395 	/*
1396 	 * If there are no match entries, then this device matches no
1397 	 * matter what.
1398 	 */
1399 	if ((patterns == NULL) || (num_patterns == 0))
1400 		return(DM_RET_DESCEND | DM_RET_COPY);
1401 
1402 	for (i = 0; i < num_patterns; i++) {
1403 		struct device_match_pattern *cur_pattern;
1404 		struct scsi_vpd_device_id *device_id_page;
1405 		struct periph_match_pattern *pp = &patterns[i].pattern.periph_pattern;
1406 
1407 		/*
1408 		 * If the pattern in question isn't for a device node, we
1409 		 * aren't interested.
1410 		 */
1411 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1412 		    (pp->flags & PERIPH_MATCH_TARGET) != 0 &&
1413 		    pp->target_id != device->target->target_id)
1414 			continue;
1415 		if (patterns[i].type == DEV_MATCH_PERIPH &&
1416 		    (pp->flags & PERIPH_MATCH_LUN) != 0 &&
1417 		    pp->target_lun != device->lun_id)
1418 			continue;
1419 		if (patterns[i].type != DEV_MATCH_DEVICE) {
1420 			if ((patterns[i].type == DEV_MATCH_PERIPH)
1421 			 && ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE))
1422 				retval |= DM_RET_DESCEND;
1423 			continue;
1424 		}
1425 
1426 		cur_pattern = &patterns[i].pattern.device_pattern;
1427 
1428 		/* Error out if mutually exclusive options are specified. */
1429 		if ((cur_pattern->flags & (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1430 		 == (DEV_MATCH_INQUIRY|DEV_MATCH_DEVID))
1431 			return(DM_RET_ERROR);
1432 
1433 		if (((cur_pattern->flags & DEV_MATCH_PATH) != 0)
1434 		 && (cur_pattern->path_id != device->target->bus->path_id))
1435 			continue;
1436 
1437 		if (((cur_pattern->flags & DEV_MATCH_TARGET) != 0)
1438 		 && (cur_pattern->target_id != device->target->target_id))
1439 			continue;
1440 
1441 		if (((cur_pattern->flags & DEV_MATCH_LUN) != 0)
1442 		 && (cur_pattern->target_lun != device->lun_id))
1443 			continue;
1444 
1445 		if (((cur_pattern->flags & DEV_MATCH_INQUIRY) != 0)
1446 		 && (cam_quirkmatch((caddr_t)&device->inq_data,
1447 				    (caddr_t)&cur_pattern->data.inq_pat,
1448 				    1, sizeof(cur_pattern->data.inq_pat),
1449 				    scsi_static_inquiry_match) == NULL))
1450 			continue;
1451 
1452 		device_id_page = (struct scsi_vpd_device_id *)device->device_id;
1453 		if (((cur_pattern->flags & DEV_MATCH_DEVID) != 0)
1454 		 && (device->device_id_len < SVPD_DEVICE_ID_HDR_LEN
1455 		  || scsi_devid_match((uint8_t *)device_id_page->desc_list,
1456 				      device->device_id_len
1457 				    - SVPD_DEVICE_ID_HDR_LEN,
1458 				      cur_pattern->data.devid_pat.id,
1459 				      cur_pattern->data.devid_pat.id_len) != 0))
1460 			continue;
1461 
1462 		/*
1463 		 * If we get to this point, the user definitely wants
1464 		 * information on this device.  So tell the caller to copy
1465 		 * the data out.
1466 		 */
1467 		retval |= DM_RET_COPY;
1468 
1469 		/*
1470 		 * If the return action has been set to descend, then we
1471 		 * know that we've already seen a peripheral matching
1472 		 * expression, therefore we need to further descend the tree.
1473 		 * This won't change by continuing around the loop, so we
1474 		 * go ahead and return.  If we haven't seen a peripheral
1475 		 * matching expression, we keep going around the loop until
1476 		 * we exhaust the matching expressions.  We'll set the stop
1477 		 * flag once we fall out of the loop.
1478 		 */
1479 		if ((retval & DM_RET_ACTION_MASK) == DM_RET_DESCEND)
1480 			return(retval);
1481 	}
1482 
1483 	/*
1484 	 * If the return action hasn't been set to descend yet, that means
1485 	 * we haven't seen any peripheral matching patterns.  So tell the
1486 	 * caller to stop descending the tree -- the user doesn't want to
1487 	 * match against lower level tree elements.
1488 	 */
1489 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_NONE)
1490 		retval |= DM_RET_STOP;
1491 
1492 	return(retval);
1493 }
1494 
1495 /*
1496  * Match a single peripheral against any number of match patterns.
1497  */
1498 static dev_match_ret
xptperiphmatch(struct dev_match_pattern * patterns,u_int num_patterns,struct cam_periph * periph)1499 xptperiphmatch(struct dev_match_pattern *patterns, u_int num_patterns,
1500 	       struct cam_periph *periph)
1501 {
1502 	dev_match_ret retval;
1503 	u_int i;
1504 
1505 	/*
1506 	 * If we aren't given something to match against, that's an error.
1507 	 */
1508 	if (periph == NULL)
1509 		return(DM_RET_ERROR);
1510 
1511 	/*
1512 	 * If there are no match entries, then this peripheral matches no
1513 	 * matter what.
1514 	 */
1515 	if ((patterns == NULL) || (num_patterns == 0))
1516 		return(DM_RET_STOP | DM_RET_COPY);
1517 
1518 	/*
1519 	 * There aren't any nodes below a peripheral node, so there's no
1520 	 * reason to descend the tree any further.
1521 	 */
1522 	retval = DM_RET_STOP;
1523 
1524 	for (i = 0; i < num_patterns; i++) {
1525 		struct periph_match_pattern *cur_pattern;
1526 
1527 		/*
1528 		 * If the pattern in question isn't for a peripheral, we
1529 		 * aren't interested.
1530 		 */
1531 		if (patterns[i].type != DEV_MATCH_PERIPH)
1532 			continue;
1533 
1534 		cur_pattern = &patterns[i].pattern.periph_pattern;
1535 
1536 		if (((cur_pattern->flags & PERIPH_MATCH_PATH) != 0)
1537 		 && (cur_pattern->path_id != periph->path->bus->path_id))
1538 			continue;
1539 
1540 		/*
1541 		 * For the target and lun id's, we have to make sure the
1542 		 * target and lun pointers aren't NULL.  The xpt peripheral
1543 		 * has a wildcard target and device.
1544 		 */
1545 		if (((cur_pattern->flags & PERIPH_MATCH_TARGET) != 0)
1546 		 && ((periph->path->target == NULL)
1547 		 ||(cur_pattern->target_id != periph->path->target->target_id)))
1548 			continue;
1549 
1550 		if (((cur_pattern->flags & PERIPH_MATCH_LUN) != 0)
1551 		 && ((periph->path->device == NULL)
1552 		 || (cur_pattern->target_lun != periph->path->device->lun_id)))
1553 			continue;
1554 
1555 		if (((cur_pattern->flags & PERIPH_MATCH_UNIT) != 0)
1556 		 && (cur_pattern->unit_number != periph->unit_number))
1557 			continue;
1558 
1559 		if (((cur_pattern->flags & PERIPH_MATCH_NAME) != 0)
1560 		 && (strncmp(cur_pattern->periph_name, periph->periph_name,
1561 			     DEV_IDLEN) != 0))
1562 			continue;
1563 
1564 		/*
1565 		 * If we get to this point, the user definitely wants
1566 		 * information on this peripheral.  So tell the caller to
1567 		 * copy the data out.
1568 		 */
1569 		retval |= DM_RET_COPY;
1570 
1571 		/*
1572 		 * The return action has already been set to stop, since
1573 		 * peripherals don't have any nodes below them in the EDT.
1574 		 */
1575 		return(retval);
1576 	}
1577 
1578 	/*
1579 	 * If we get to this point, the peripheral that was passed in
1580 	 * doesn't match any of the patterns.
1581 	 */
1582 	return(retval);
1583 }
1584 
1585 static int
xptedtbusfunc(struct cam_eb * bus,void * arg)1586 xptedtbusfunc(struct cam_eb *bus, void *arg)
1587 {
1588 	struct ccb_dev_match *cdm;
1589 	struct cam_et *target;
1590 	dev_match_ret retval;
1591 
1592 	cdm = (struct ccb_dev_match *)arg;
1593 
1594 	/*
1595 	 * If our position is for something deeper in the tree, that means
1596 	 * that we've already seen this node.  So, we keep going down.
1597 	 */
1598 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1599 	 && (cdm->pos.cookie.bus == bus)
1600 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1601 	 && (cdm->pos.cookie.target != NULL))
1602 		retval = DM_RET_DESCEND;
1603 	else
1604 		retval = xptbusmatch(cdm->patterns, cdm->num_patterns, bus);
1605 
1606 	/*
1607 	 * If we got an error, bail out of the search.
1608 	 */
1609 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1610 		cdm->status = CAM_DEV_MATCH_ERROR;
1611 		return(0);
1612 	}
1613 
1614 	/*
1615 	 * If the copy flag is set, copy this bus out.
1616 	 */
1617 	if (retval & DM_RET_COPY) {
1618 		int spaceleft, j;
1619 
1620 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1621 			sizeof(struct dev_match_result));
1622 
1623 		/*
1624 		 * If we don't have enough space to put in another
1625 		 * match result, save our position and tell the
1626 		 * user there are more devices to check.
1627 		 */
1628 		if (spaceleft < sizeof(struct dev_match_result)) {
1629 			bzero(&cdm->pos, sizeof(cdm->pos));
1630 			cdm->pos.position_type =
1631 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS;
1632 
1633 			cdm->pos.cookie.bus = bus;
1634 			cdm->pos.generations[CAM_BUS_GENERATION]=
1635 				xsoftc.bus_generation;
1636 			cdm->status = CAM_DEV_MATCH_MORE;
1637 			return(0);
1638 		}
1639 		j = cdm->num_matches;
1640 		cdm->num_matches++;
1641 		cdm->matches[j].type = DEV_MATCH_BUS;
1642 		cdm->matches[j].result.bus_result.path_id = bus->path_id;
1643 		cdm->matches[j].result.bus_result.bus_id = bus->sim->bus_id;
1644 		cdm->matches[j].result.bus_result.unit_number =
1645 			bus->sim->unit_number;
1646 		strlcpy(cdm->matches[j].result.bus_result.dev_name,
1647 			bus->sim->sim_name,
1648 			sizeof(cdm->matches[j].result.bus_result.dev_name));
1649 	}
1650 
1651 	/*
1652 	 * If the user is only interested in buses, there's no
1653 	 * reason to descend to the next level in the tree.
1654 	 */
1655 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1656 		return(1);
1657 
1658 	/*
1659 	 * If there is a target generation recorded, check it to
1660 	 * make sure the target list hasn't changed.
1661 	 */
1662 	mtx_lock(&bus->eb_mtx);
1663 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1664 	 && (cdm->pos.cookie.bus == bus)
1665 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1666 	 && (cdm->pos.cookie.target != NULL)) {
1667 		if ((cdm->pos.generations[CAM_TARGET_GENERATION] !=
1668 		    bus->generation)) {
1669 			mtx_unlock(&bus->eb_mtx);
1670 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1671 			return (0);
1672 		}
1673 		target = (struct cam_et *)cdm->pos.cookie.target;
1674 		target->refcount++;
1675 	} else
1676 		target = NULL;
1677 	mtx_unlock(&bus->eb_mtx);
1678 
1679 	return (xpttargettraverse(bus, target, xptedttargetfunc, arg));
1680 }
1681 
1682 static int
xptedttargetfunc(struct cam_et * target,void * arg)1683 xptedttargetfunc(struct cam_et *target, void *arg)
1684 {
1685 	struct ccb_dev_match *cdm;
1686 	struct cam_eb *bus;
1687 	struct cam_ed *device;
1688 
1689 	cdm = (struct ccb_dev_match *)arg;
1690 	bus = target->bus;
1691 
1692 	/*
1693 	 * If there is a device list generation recorded, check it to
1694 	 * make sure the device list hasn't changed.
1695 	 */
1696 	mtx_lock(&bus->eb_mtx);
1697 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1698 	 && (cdm->pos.cookie.bus == bus)
1699 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1700 	 && (cdm->pos.cookie.target == target)
1701 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1702 	 && (cdm->pos.cookie.device != NULL)) {
1703 		if (cdm->pos.generations[CAM_DEV_GENERATION] !=
1704 		    target->generation) {
1705 			mtx_unlock(&bus->eb_mtx);
1706 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1707 			return(0);
1708 		}
1709 		device = (struct cam_ed *)cdm->pos.cookie.device;
1710 		device->refcount++;
1711 	} else
1712 		device = NULL;
1713 	mtx_unlock(&bus->eb_mtx);
1714 
1715 	return (xptdevicetraverse(target, device, xptedtdevicefunc, arg));
1716 }
1717 
1718 static int
xptedtdevicefunc(struct cam_ed * device,void * arg)1719 xptedtdevicefunc(struct cam_ed *device, void *arg)
1720 {
1721 	struct cam_eb *bus;
1722 	struct cam_periph *periph;
1723 	struct ccb_dev_match *cdm;
1724 	dev_match_ret retval;
1725 
1726 	cdm = (struct ccb_dev_match *)arg;
1727 	bus = device->target->bus;
1728 
1729 	/*
1730 	 * If our position is for something deeper in the tree, that means
1731 	 * that we've already seen this node.  So, we keep going down.
1732 	 */
1733 	if ((cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1734 	 && (cdm->pos.cookie.device == device)
1735 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1736 	 && (cdm->pos.cookie.periph != NULL))
1737 		retval = DM_RET_DESCEND;
1738 	else
1739 		retval = xptdevicematch(cdm->patterns, cdm->num_patterns,
1740 					device);
1741 
1742 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1743 		cdm->status = CAM_DEV_MATCH_ERROR;
1744 		return(0);
1745 	}
1746 
1747 	/*
1748 	 * If the copy flag is set, copy this device out.
1749 	 */
1750 	if (retval & DM_RET_COPY) {
1751 		int spaceleft, j;
1752 
1753 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1754 			sizeof(struct dev_match_result));
1755 
1756 		/*
1757 		 * If we don't have enough space to put in another
1758 		 * match result, save our position and tell the
1759 		 * user there are more devices to check.
1760 		 */
1761 		if (spaceleft < sizeof(struct dev_match_result)) {
1762 			bzero(&cdm->pos, sizeof(cdm->pos));
1763 			cdm->pos.position_type =
1764 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1765 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE;
1766 
1767 			cdm->pos.cookie.bus = device->target->bus;
1768 			cdm->pos.generations[CAM_BUS_GENERATION]=
1769 				xsoftc.bus_generation;
1770 			cdm->pos.cookie.target = device->target;
1771 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1772 				device->target->bus->generation;
1773 			cdm->pos.cookie.device = device;
1774 			cdm->pos.generations[CAM_DEV_GENERATION] =
1775 				device->target->generation;
1776 			cdm->status = CAM_DEV_MATCH_MORE;
1777 			return(0);
1778 		}
1779 		j = cdm->num_matches;
1780 		cdm->num_matches++;
1781 		cdm->matches[j].type = DEV_MATCH_DEVICE;
1782 		cdm->matches[j].result.device_result.path_id =
1783 			device->target->bus->path_id;
1784 		cdm->matches[j].result.device_result.target_id =
1785 			device->target->target_id;
1786 		cdm->matches[j].result.device_result.target_lun =
1787 			device->lun_id;
1788 		cdm->matches[j].result.device_result.protocol =
1789 			device->protocol;
1790 		bcopy(&device->inq_data,
1791 		      &cdm->matches[j].result.device_result.inq_data,
1792 		      sizeof(struct scsi_inquiry_data));
1793 		bcopy(&device->ident_data,
1794 		      &cdm->matches[j].result.device_result.ident_data,
1795 		      sizeof(struct ata_params));
1796 
1797 		/* Let the user know whether this device is unconfigured */
1798 		if (device->flags & CAM_DEV_UNCONFIGURED)
1799 			cdm->matches[j].result.device_result.flags =
1800 				DEV_RESULT_UNCONFIGURED;
1801 		else
1802 			cdm->matches[j].result.device_result.flags =
1803 				DEV_RESULT_NOFLAG;
1804 	}
1805 
1806 	/*
1807 	 * If the user isn't interested in peripherals, don't descend
1808 	 * the tree any further.
1809 	 */
1810 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_STOP)
1811 		return(1);
1812 
1813 	/*
1814 	 * If there is a peripheral list generation recorded, make sure
1815 	 * it hasn't changed.
1816 	 */
1817 	xpt_lock_buses();
1818 	mtx_lock(&bus->eb_mtx);
1819 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1820 	 && (cdm->pos.cookie.bus == bus)
1821 	 && (cdm->pos.position_type & CAM_DEV_POS_TARGET)
1822 	 && (cdm->pos.cookie.target == device->target)
1823 	 && (cdm->pos.position_type & CAM_DEV_POS_DEVICE)
1824 	 && (cdm->pos.cookie.device == device)
1825 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1826 	 && (cdm->pos.cookie.periph != NULL)) {
1827 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1828 		    device->generation) {
1829 			mtx_unlock(&bus->eb_mtx);
1830 			xpt_unlock_buses();
1831 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1832 			return(0);
1833 		}
1834 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1835 		periph->refcount++;
1836 	} else
1837 		periph = NULL;
1838 	mtx_unlock(&bus->eb_mtx);
1839 	xpt_unlock_buses();
1840 
1841 	return (xptperiphtraverse(device, periph, xptedtperiphfunc, arg));
1842 }
1843 
1844 static int
xptedtperiphfunc(struct cam_periph * periph,void * arg)1845 xptedtperiphfunc(struct cam_periph *periph, void *arg)
1846 {
1847 	struct ccb_dev_match *cdm;
1848 	dev_match_ret retval;
1849 
1850 	cdm = (struct ccb_dev_match *)arg;
1851 
1852 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1853 
1854 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1855 		cdm->status = CAM_DEV_MATCH_ERROR;
1856 		return(0);
1857 	}
1858 
1859 	/*
1860 	 * If the copy flag is set, copy this peripheral out.
1861 	 */
1862 	if (retval & DM_RET_COPY) {
1863 		int spaceleft, j;
1864 		size_t l;
1865 
1866 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
1867 			sizeof(struct dev_match_result));
1868 
1869 		/*
1870 		 * If we don't have enough space to put in another
1871 		 * match result, save our position and tell the
1872 		 * user there are more devices to check.
1873 		 */
1874 		if (spaceleft < sizeof(struct dev_match_result)) {
1875 			bzero(&cdm->pos, sizeof(cdm->pos));
1876 			cdm->pos.position_type =
1877 				CAM_DEV_POS_EDT | CAM_DEV_POS_BUS |
1878 				CAM_DEV_POS_TARGET | CAM_DEV_POS_DEVICE |
1879 				CAM_DEV_POS_PERIPH;
1880 
1881 			cdm->pos.cookie.bus = periph->path->bus;
1882 			cdm->pos.generations[CAM_BUS_GENERATION]=
1883 				xsoftc.bus_generation;
1884 			cdm->pos.cookie.target = periph->path->target;
1885 			cdm->pos.generations[CAM_TARGET_GENERATION] =
1886 				periph->path->bus->generation;
1887 			cdm->pos.cookie.device = periph->path->device;
1888 			cdm->pos.generations[CAM_DEV_GENERATION] =
1889 				periph->path->target->generation;
1890 			cdm->pos.cookie.periph = periph;
1891 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
1892 				periph->path->device->generation;
1893 			cdm->status = CAM_DEV_MATCH_MORE;
1894 			return(0);
1895 		}
1896 
1897 		j = cdm->num_matches;
1898 		cdm->num_matches++;
1899 		cdm->matches[j].type = DEV_MATCH_PERIPH;
1900 		cdm->matches[j].result.periph_result.path_id =
1901 			periph->path->bus->path_id;
1902 		cdm->matches[j].result.periph_result.target_id =
1903 			periph->path->target->target_id;
1904 		cdm->matches[j].result.periph_result.target_lun =
1905 			periph->path->device->lun_id;
1906 		cdm->matches[j].result.periph_result.unit_number =
1907 			periph->unit_number;
1908 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
1909 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
1910 			periph->periph_name, l);
1911 	}
1912 
1913 	return(1);
1914 }
1915 
1916 static int
xptedtmatch(struct ccb_dev_match * cdm)1917 xptedtmatch(struct ccb_dev_match *cdm)
1918 {
1919 	struct cam_eb *bus;
1920 	int ret;
1921 
1922 	cdm->num_matches = 0;
1923 
1924 	/*
1925 	 * Check the bus list generation.  If it has changed, the user
1926 	 * needs to reset everything and start over.
1927 	 */
1928 	xpt_lock_buses();
1929 	if ((cdm->pos.position_type & CAM_DEV_POS_BUS)
1930 	 && (cdm->pos.cookie.bus != NULL)) {
1931 		if (cdm->pos.generations[CAM_BUS_GENERATION] !=
1932 		    xsoftc.bus_generation) {
1933 			xpt_unlock_buses();
1934 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1935 			return(0);
1936 		}
1937 		bus = (struct cam_eb *)cdm->pos.cookie.bus;
1938 		bus->refcount++;
1939 	} else
1940 		bus = NULL;
1941 	xpt_unlock_buses();
1942 
1943 	ret = xptbustraverse(bus, xptedtbusfunc, cdm);
1944 
1945 	/*
1946 	 * If we get back 0, that means that we had to stop before fully
1947 	 * traversing the EDT.  It also means that one of the subroutines
1948 	 * has set the status field to the proper value.  If we get back 1,
1949 	 * we've fully traversed the EDT and copied out any matching entries.
1950 	 */
1951 	if (ret == 1)
1952 		cdm->status = CAM_DEV_MATCH_LAST;
1953 
1954 	return(ret);
1955 }
1956 
1957 static int
xptplistpdrvfunc(struct periph_driver ** pdrv,void * arg)1958 xptplistpdrvfunc(struct periph_driver **pdrv, void *arg)
1959 {
1960 	struct cam_periph *periph;
1961 	struct ccb_dev_match *cdm;
1962 
1963 	cdm = (struct ccb_dev_match *)arg;
1964 
1965 	xpt_lock_buses();
1966 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
1967 	 && (cdm->pos.cookie.pdrv == pdrv)
1968 	 && (cdm->pos.position_type & CAM_DEV_POS_PERIPH)
1969 	 && (cdm->pos.cookie.periph != NULL)) {
1970 		if (cdm->pos.generations[CAM_PERIPH_GENERATION] !=
1971 		    (*pdrv)->generation) {
1972 			xpt_unlock_buses();
1973 			cdm->status = CAM_DEV_MATCH_LIST_CHANGED;
1974 			return(0);
1975 		}
1976 		periph = (struct cam_periph *)cdm->pos.cookie.periph;
1977 		periph->refcount++;
1978 	} else
1979 		periph = NULL;
1980 	xpt_unlock_buses();
1981 
1982 	return (xptpdperiphtraverse(pdrv, periph, xptplistperiphfunc, arg));
1983 }
1984 
1985 static int
xptplistperiphfunc(struct cam_periph * periph,void * arg)1986 xptplistperiphfunc(struct cam_periph *periph, void *arg)
1987 {
1988 	struct ccb_dev_match *cdm;
1989 	dev_match_ret retval;
1990 
1991 	cdm = (struct ccb_dev_match *)arg;
1992 
1993 	retval = xptperiphmatch(cdm->patterns, cdm->num_patterns, periph);
1994 
1995 	if ((retval & DM_RET_ACTION_MASK) == DM_RET_ERROR) {
1996 		cdm->status = CAM_DEV_MATCH_ERROR;
1997 		return(0);
1998 	}
1999 
2000 	/*
2001 	 * If the copy flag is set, copy this peripheral out.
2002 	 */
2003 	if (retval & DM_RET_COPY) {
2004 		int spaceleft, j;
2005 		size_t l;
2006 
2007 		spaceleft = cdm->match_buf_len - (cdm->num_matches *
2008 			sizeof(struct dev_match_result));
2009 
2010 		/*
2011 		 * If we don't have enough space to put in another
2012 		 * match result, save our position and tell the
2013 		 * user there are more devices to check.
2014 		 */
2015 		if (spaceleft < sizeof(struct dev_match_result)) {
2016 			struct periph_driver **pdrv;
2017 
2018 			pdrv = NULL;
2019 			bzero(&cdm->pos, sizeof(cdm->pos));
2020 			cdm->pos.position_type =
2021 				CAM_DEV_POS_PDRV | CAM_DEV_POS_PDPTR |
2022 				CAM_DEV_POS_PERIPH;
2023 
2024 			/*
2025 			 * This may look a bit non-sensical, but it is
2026 			 * actually quite logical.  There are very few
2027 			 * peripheral drivers, and bloating every peripheral
2028 			 * structure with a pointer back to its parent
2029 			 * peripheral driver linker set entry would cost
2030 			 * more in the long run than doing this quick lookup.
2031 			 */
2032 			for (pdrv = periph_drivers; *pdrv != NULL; pdrv++) {
2033 				if (strcmp((*pdrv)->driver_name,
2034 				    periph->periph_name) == 0)
2035 					break;
2036 			}
2037 
2038 			if (*pdrv == NULL) {
2039 				cdm->status = CAM_DEV_MATCH_ERROR;
2040 				return(0);
2041 			}
2042 
2043 			cdm->pos.cookie.pdrv = pdrv;
2044 			/*
2045 			 * The periph generation slot does double duty, as
2046 			 * does the periph pointer slot.  They are used for
2047 			 * both edt and pdrv lookups and positioning.
2048 			 */
2049 			cdm->pos.cookie.periph = periph;
2050 			cdm->pos.generations[CAM_PERIPH_GENERATION] =
2051 				(*pdrv)->generation;
2052 			cdm->status = CAM_DEV_MATCH_MORE;
2053 			return(0);
2054 		}
2055 
2056 		j = cdm->num_matches;
2057 		cdm->num_matches++;
2058 		cdm->matches[j].type = DEV_MATCH_PERIPH;
2059 		cdm->matches[j].result.periph_result.path_id =
2060 			periph->path->bus->path_id;
2061 
2062 		/*
2063 		 * The transport layer peripheral doesn't have a target or
2064 		 * lun.
2065 		 */
2066 		if (periph->path->target)
2067 			cdm->matches[j].result.periph_result.target_id =
2068 				periph->path->target->target_id;
2069 		else
2070 			cdm->matches[j].result.periph_result.target_id =
2071 				CAM_TARGET_WILDCARD;
2072 
2073 		if (periph->path->device)
2074 			cdm->matches[j].result.periph_result.target_lun =
2075 				periph->path->device->lun_id;
2076 		else
2077 			cdm->matches[j].result.periph_result.target_lun =
2078 				CAM_LUN_WILDCARD;
2079 
2080 		cdm->matches[j].result.periph_result.unit_number =
2081 			periph->unit_number;
2082 		l = sizeof(cdm->matches[j].result.periph_result.periph_name);
2083 		strlcpy(cdm->matches[j].result.periph_result.periph_name,
2084 			periph->periph_name, l);
2085 	}
2086 
2087 	return(1);
2088 }
2089 
2090 static int
xptperiphlistmatch(struct ccb_dev_match * cdm)2091 xptperiphlistmatch(struct ccb_dev_match *cdm)
2092 {
2093 	int ret;
2094 
2095 	cdm->num_matches = 0;
2096 
2097 	/*
2098 	 * At this point in the edt traversal function, we check the bus
2099 	 * list generation to make sure that no buses have been added or
2100 	 * removed since the user last sent a XPT_DEV_MATCH ccb through.
2101 	 * For the peripheral driver list traversal function, however, we
2102 	 * don't have to worry about new peripheral driver types coming or
2103 	 * going; they're in a linker set, and therefore can't change
2104 	 * without a recompile.
2105 	 */
2106 
2107 	if ((cdm->pos.position_type & CAM_DEV_POS_PDPTR)
2108 	 && (cdm->pos.cookie.pdrv != NULL))
2109 		ret = xptpdrvtraverse(
2110 				(struct periph_driver **)cdm->pos.cookie.pdrv,
2111 				xptplistpdrvfunc, cdm);
2112 	else
2113 		ret = xptpdrvtraverse(NULL, xptplistpdrvfunc, cdm);
2114 
2115 	/*
2116 	 * If we get back 0, that means that we had to stop before fully
2117 	 * traversing the peripheral driver tree.  It also means that one of
2118 	 * the subroutines has set the status field to the proper value.  If
2119 	 * we get back 1, we've fully traversed the EDT and copied out any
2120 	 * matching entries.
2121 	 */
2122 	if (ret == 1)
2123 		cdm->status = CAM_DEV_MATCH_LAST;
2124 
2125 	return(ret);
2126 }
2127 
2128 static int
xptbustraverse(struct cam_eb * start_bus,xpt_busfunc_t * tr_func,void * arg)2129 xptbustraverse(struct cam_eb *start_bus, xpt_busfunc_t *tr_func, void *arg)
2130 {
2131 	struct cam_eb *bus, *next_bus;
2132 	int retval;
2133 
2134 	retval = 1;
2135 	if (start_bus)
2136 		bus = start_bus;
2137 	else {
2138 		xpt_lock_buses();
2139 		bus = TAILQ_FIRST(&xsoftc.xpt_busses);
2140 		if (bus == NULL) {
2141 			xpt_unlock_buses();
2142 			return (retval);
2143 		}
2144 		bus->refcount++;
2145 		xpt_unlock_buses();
2146 	}
2147 	for (; bus != NULL; bus = next_bus) {
2148 		retval = tr_func(bus, arg);
2149 		if (retval == 0) {
2150 			xpt_release_bus(bus);
2151 			break;
2152 		}
2153 		xpt_lock_buses();
2154 		next_bus = TAILQ_NEXT(bus, links);
2155 		if (next_bus)
2156 			next_bus->refcount++;
2157 		xpt_unlock_buses();
2158 		xpt_release_bus(bus);
2159 	}
2160 	return(retval);
2161 }
2162 
2163 static int
xpttargettraverse(struct cam_eb * bus,struct cam_et * start_target,xpt_targetfunc_t * tr_func,void * arg)2164 xpttargettraverse(struct cam_eb *bus, struct cam_et *start_target,
2165 		  xpt_targetfunc_t *tr_func, void *arg)
2166 {
2167 	struct cam_et *target, *next_target;
2168 	int retval;
2169 
2170 	retval = 1;
2171 	if (start_target)
2172 		target = start_target;
2173 	else {
2174 		mtx_lock(&bus->eb_mtx);
2175 		target = TAILQ_FIRST(&bus->et_entries);
2176 		if (target == NULL) {
2177 			mtx_unlock(&bus->eb_mtx);
2178 			return (retval);
2179 		}
2180 		target->refcount++;
2181 		mtx_unlock(&bus->eb_mtx);
2182 	}
2183 	for (; target != NULL; target = next_target) {
2184 		retval = tr_func(target, arg);
2185 		if (retval == 0) {
2186 			xpt_release_target(target);
2187 			break;
2188 		}
2189 		mtx_lock(&bus->eb_mtx);
2190 		next_target = TAILQ_NEXT(target, links);
2191 		if (next_target)
2192 			next_target->refcount++;
2193 		mtx_unlock(&bus->eb_mtx);
2194 		xpt_release_target(target);
2195 	}
2196 	return(retval);
2197 }
2198 
2199 static int
xptdevicetraverse(struct cam_et * target,struct cam_ed * start_device,xpt_devicefunc_t * tr_func,void * arg)2200 xptdevicetraverse(struct cam_et *target, struct cam_ed *start_device,
2201 		  xpt_devicefunc_t *tr_func, void *arg)
2202 {
2203 	struct cam_eb *bus;
2204 	struct cam_ed *device, *next_device;
2205 	int retval;
2206 
2207 	retval = 1;
2208 	bus = target->bus;
2209 	if (start_device)
2210 		device = start_device;
2211 	else {
2212 		mtx_lock(&bus->eb_mtx);
2213 		device = TAILQ_FIRST(&target->ed_entries);
2214 		if (device == NULL) {
2215 			mtx_unlock(&bus->eb_mtx);
2216 			return (retval);
2217 		}
2218 		device->refcount++;
2219 		mtx_unlock(&bus->eb_mtx);
2220 	}
2221 	for (; device != NULL; device = next_device) {
2222 		mtx_lock(&device->device_mtx);
2223 		retval = tr_func(device, arg);
2224 		mtx_unlock(&device->device_mtx);
2225 		if (retval == 0) {
2226 			xpt_release_device(device);
2227 			break;
2228 		}
2229 		mtx_lock(&bus->eb_mtx);
2230 		next_device = TAILQ_NEXT(device, links);
2231 		if (next_device)
2232 			next_device->refcount++;
2233 		mtx_unlock(&bus->eb_mtx);
2234 		xpt_release_device(device);
2235 	}
2236 	return(retval);
2237 }
2238 
2239 static int
xptperiphtraverse(struct cam_ed * device,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2240 xptperiphtraverse(struct cam_ed *device, struct cam_periph *start_periph,
2241 		  xpt_periphfunc_t *tr_func, void *arg)
2242 {
2243 	struct cam_eb *bus;
2244 	struct cam_periph *periph, *next_periph;
2245 	int retval;
2246 
2247 	retval = 1;
2248 
2249 	bus = device->target->bus;
2250 	if (start_periph)
2251 		periph = start_periph;
2252 	else {
2253 		xpt_lock_buses();
2254 		mtx_lock(&bus->eb_mtx);
2255 		periph = SLIST_FIRST(&device->periphs);
2256 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2257 			periph = SLIST_NEXT(periph, periph_links);
2258 		if (periph == NULL) {
2259 			mtx_unlock(&bus->eb_mtx);
2260 			xpt_unlock_buses();
2261 			return (retval);
2262 		}
2263 		periph->refcount++;
2264 		mtx_unlock(&bus->eb_mtx);
2265 		xpt_unlock_buses();
2266 	}
2267 	for (; periph != NULL; periph = next_periph) {
2268 		retval = tr_func(periph, arg);
2269 		if (retval == 0) {
2270 			cam_periph_release_locked(periph);
2271 			break;
2272 		}
2273 		xpt_lock_buses();
2274 		mtx_lock(&bus->eb_mtx);
2275 		next_periph = SLIST_NEXT(periph, periph_links);
2276 		while (next_periph != NULL &&
2277 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2278 			next_periph = SLIST_NEXT(next_periph, periph_links);
2279 		if (next_periph)
2280 			next_periph->refcount++;
2281 		mtx_unlock(&bus->eb_mtx);
2282 		xpt_unlock_buses();
2283 		cam_periph_release_locked(periph);
2284 	}
2285 	return(retval);
2286 }
2287 
2288 static int
xptpdrvtraverse(struct periph_driver ** start_pdrv,xpt_pdrvfunc_t * tr_func,void * arg)2289 xptpdrvtraverse(struct periph_driver **start_pdrv,
2290 		xpt_pdrvfunc_t *tr_func, void *arg)
2291 {
2292 	struct periph_driver **pdrv;
2293 	int retval;
2294 
2295 	retval = 1;
2296 
2297 	/*
2298 	 * We don't traverse the peripheral driver list like we do the
2299 	 * other lists, because it is a linker set, and therefore cannot be
2300 	 * changed during runtime.  If the peripheral driver list is ever
2301 	 * re-done to be something other than a linker set (i.e. it can
2302 	 * change while the system is running), the list traversal should
2303 	 * be modified to work like the other traversal functions.
2304 	 */
2305 	for (pdrv = (start_pdrv ? start_pdrv : periph_drivers);
2306 	     *pdrv != NULL; pdrv++) {
2307 		retval = tr_func(pdrv, arg);
2308 
2309 		if (retval == 0)
2310 			return(retval);
2311 	}
2312 
2313 	return(retval);
2314 }
2315 
2316 static int
xptpdperiphtraverse(struct periph_driver ** pdrv,struct cam_periph * start_periph,xpt_periphfunc_t * tr_func,void * arg)2317 xptpdperiphtraverse(struct periph_driver **pdrv,
2318 		    struct cam_periph *start_periph,
2319 		    xpt_periphfunc_t *tr_func, void *arg)
2320 {
2321 	struct cam_periph *periph, *next_periph;
2322 	int retval;
2323 
2324 	retval = 1;
2325 
2326 	if (start_periph)
2327 		periph = start_periph;
2328 	else {
2329 		xpt_lock_buses();
2330 		periph = TAILQ_FIRST(&(*pdrv)->units);
2331 		while (periph != NULL && (periph->flags & CAM_PERIPH_FREE) != 0)
2332 			periph = TAILQ_NEXT(periph, unit_links);
2333 		if (periph == NULL) {
2334 			xpt_unlock_buses();
2335 			return (retval);
2336 		}
2337 		periph->refcount++;
2338 		xpt_unlock_buses();
2339 	}
2340 	for (; periph != NULL; periph = next_periph) {
2341 		cam_periph_lock(periph);
2342 		retval = tr_func(periph, arg);
2343 		cam_periph_unlock(periph);
2344 		if (retval == 0) {
2345 			cam_periph_release(periph);
2346 			break;
2347 		}
2348 		xpt_lock_buses();
2349 		next_periph = TAILQ_NEXT(periph, unit_links);
2350 		while (next_periph != NULL &&
2351 		    (next_periph->flags & CAM_PERIPH_FREE) != 0)
2352 			next_periph = TAILQ_NEXT(next_periph, unit_links);
2353 		if (next_periph)
2354 			next_periph->refcount++;
2355 		xpt_unlock_buses();
2356 		cam_periph_release(periph);
2357 	}
2358 	return(retval);
2359 }
2360 
2361 static int
xptdefbusfunc(struct cam_eb * bus,void * arg)2362 xptdefbusfunc(struct cam_eb *bus, void *arg)
2363 {
2364 	struct xpt_traverse_config *tr_config;
2365 
2366 	tr_config = (struct xpt_traverse_config *)arg;
2367 
2368 	if (tr_config->depth == XPT_DEPTH_BUS) {
2369 		xpt_busfunc_t *tr_func;
2370 
2371 		tr_func = (xpt_busfunc_t *)tr_config->tr_func;
2372 
2373 		return(tr_func(bus, tr_config->tr_arg));
2374 	} else
2375 		return(xpttargettraverse(bus, NULL, xptdeftargetfunc, arg));
2376 }
2377 
2378 static int
xptdeftargetfunc(struct cam_et * target,void * arg)2379 xptdeftargetfunc(struct cam_et *target, void *arg)
2380 {
2381 	struct xpt_traverse_config *tr_config;
2382 
2383 	tr_config = (struct xpt_traverse_config *)arg;
2384 
2385 	if (tr_config->depth == XPT_DEPTH_TARGET) {
2386 		xpt_targetfunc_t *tr_func;
2387 
2388 		tr_func = (xpt_targetfunc_t *)tr_config->tr_func;
2389 
2390 		return(tr_func(target, tr_config->tr_arg));
2391 	} else
2392 		return(xptdevicetraverse(target, NULL, xptdefdevicefunc, arg));
2393 }
2394 
2395 static int
xptdefdevicefunc(struct cam_ed * device,void * arg)2396 xptdefdevicefunc(struct cam_ed *device, void *arg)
2397 {
2398 	struct xpt_traverse_config *tr_config;
2399 
2400 	tr_config = (struct xpt_traverse_config *)arg;
2401 
2402 	if (tr_config->depth == XPT_DEPTH_DEVICE) {
2403 		xpt_devicefunc_t *tr_func;
2404 
2405 		tr_func = (xpt_devicefunc_t *)tr_config->tr_func;
2406 
2407 		return(tr_func(device, tr_config->tr_arg));
2408 	} else
2409 		return(xptperiphtraverse(device, NULL, xptdefperiphfunc, arg));
2410 }
2411 
2412 static int
xptdefperiphfunc(struct cam_periph * periph,void * arg)2413 xptdefperiphfunc(struct cam_periph *periph, void *arg)
2414 {
2415 	struct xpt_traverse_config *tr_config;
2416 	xpt_periphfunc_t *tr_func;
2417 
2418 	tr_config = (struct xpt_traverse_config *)arg;
2419 
2420 	tr_func = (xpt_periphfunc_t *)tr_config->tr_func;
2421 
2422 	/*
2423 	 * Unlike the other default functions, we don't check for depth
2424 	 * here.  The peripheral driver level is the last level in the EDT,
2425 	 * so if we're here, we should execute the function in question.
2426 	 */
2427 	return(tr_func(periph, tr_config->tr_arg));
2428 }
2429 
2430 /*
2431  * Execute the given function for every bus in the EDT.
2432  */
2433 static int
xpt_for_all_busses(xpt_busfunc_t * tr_func,void * arg)2434 xpt_for_all_busses(xpt_busfunc_t *tr_func, void *arg)
2435 {
2436 	struct xpt_traverse_config tr_config;
2437 
2438 	tr_config.depth = XPT_DEPTH_BUS;
2439 	tr_config.tr_func = tr_func;
2440 	tr_config.tr_arg = arg;
2441 
2442 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2443 }
2444 
2445 /*
2446  * Execute the given function for every device in the EDT.
2447  */
2448 static int
xpt_for_all_devices(xpt_devicefunc_t * tr_func,void * arg)2449 xpt_for_all_devices(xpt_devicefunc_t *tr_func, void *arg)
2450 {
2451 	struct xpt_traverse_config tr_config;
2452 
2453 	tr_config.depth = XPT_DEPTH_DEVICE;
2454 	tr_config.tr_func = tr_func;
2455 	tr_config.tr_arg = arg;
2456 
2457 	return(xptbustraverse(NULL, xptdefbusfunc, &tr_config));
2458 }
2459 
2460 static int
xptsetasyncfunc(struct cam_ed * device,void * arg)2461 xptsetasyncfunc(struct cam_ed *device, void *arg)
2462 {
2463 	struct cam_path path;
2464 	struct ccb_getdev cgd;
2465 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2466 
2467 	/*
2468 	 * Don't report unconfigured devices (Wildcard devs,
2469 	 * devices only for target mode, device instances
2470 	 * that have been invalidated but are waiting for
2471 	 * their last reference count to be released).
2472 	 */
2473 	if ((device->flags & CAM_DEV_UNCONFIGURED) != 0)
2474 		return (1);
2475 
2476 	xpt_compile_path(&path,
2477 			 NULL,
2478 			 device->target->bus->path_id,
2479 			 device->target->target_id,
2480 			 device->lun_id);
2481 	xpt_gdev_type(&cgd, &path);
2482 	csa->callback(csa->callback_arg,
2483 			    AC_FOUND_DEVICE,
2484 			    &path, &cgd);
2485 	xpt_release_path(&path);
2486 
2487 	return(1);
2488 }
2489 
2490 static int
xptsetasyncbusfunc(struct cam_eb * bus,void * arg)2491 xptsetasyncbusfunc(struct cam_eb *bus, void *arg)
2492 {
2493 	struct cam_path path;
2494 	struct ccb_pathinq cpi;
2495 	struct ccb_setasync *csa = (struct ccb_setasync *)arg;
2496 
2497 	xpt_compile_path(&path, /*periph*/NULL,
2498 			 bus->path_id,
2499 			 CAM_TARGET_WILDCARD,
2500 			 CAM_LUN_WILDCARD);
2501 	xpt_path_lock(&path);
2502 	xpt_path_inq(&cpi, &path);
2503 	csa->callback(csa->callback_arg,
2504 			    AC_PATH_REGISTERED,
2505 			    &path, &cpi);
2506 	xpt_path_unlock(&path);
2507 	xpt_release_path(&path);
2508 
2509 	return(1);
2510 }
2511 
2512 void
xpt_action(union ccb * start_ccb)2513 xpt_action(union ccb *start_ccb)
2514 {
2515 
2516 	CAM_DEBUG(start_ccb->ccb_h.path, CAM_DEBUG_TRACE,
2517 	    ("xpt_action: func %#x %s\n", start_ccb->ccb_h.func_code,
2518 		xpt_action_name(start_ccb->ccb_h.func_code)));
2519 
2520 	/*
2521 	 * Either it isn't queued, or it has a real priority. There still too
2522 	 * many places that reuse CCBs with a real priority to do immediate
2523 	 * queries to do the other side of this assert.
2524 	 */
2525 	KASSERT((start_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0 ||
2526 	    start_ccb->ccb_h.pinfo.priority != CAM_PRIORITY_NONE,
2527 	    ("%s: queued ccb and CAM_PRIORITY_NONE illegal.", __func__));
2528 
2529 	start_ccb->ccb_h.status = CAM_REQ_INPROG;
2530 	(*(start_ccb->ccb_h.path->bus->xport->ops->action))(start_ccb);
2531 }
2532 
2533 void
xpt_action_default(union ccb * start_ccb)2534 xpt_action_default(union ccb *start_ccb)
2535 {
2536 	struct cam_path *path;
2537 	struct cam_sim *sim;
2538 	struct mtx *mtx;
2539 
2540 	path = start_ccb->ccb_h.path;
2541 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
2542 	    ("xpt_action_default: func %#x %s\n", start_ccb->ccb_h.func_code,
2543 		xpt_action_name(start_ccb->ccb_h.func_code)));
2544 
2545 	switch (start_ccb->ccb_h.func_code) {
2546 	case XPT_SCSI_IO:
2547 	{
2548 		struct cam_ed *device;
2549 
2550 		/*
2551 		 * For the sake of compatibility with SCSI-1
2552 		 * devices that may not understand the identify
2553 		 * message, we include lun information in the
2554 		 * second byte of all commands.  SCSI-1 specifies
2555 		 * that luns are a 3 bit value and reserves only 3
2556 		 * bits for lun information in the CDB.  Later
2557 		 * revisions of the SCSI spec allow for more than 8
2558 		 * luns, but have deprecated lun information in the
2559 		 * CDB.  So, if the lun won't fit, we must omit.
2560 		 *
2561 		 * Also be aware that during initial probing for devices,
2562 		 * the inquiry information is unknown but initialized to 0.
2563 		 * This means that this code will be exercised while probing
2564 		 * devices with an ANSI revision greater than 2.
2565 		 */
2566 		device = path->device;
2567 		if (device->protocol_version <= SCSI_REV_2
2568 		 && start_ccb->ccb_h.target_lun < 8
2569 		 && (start_ccb->ccb_h.flags & CAM_CDB_POINTER) == 0) {
2570 			start_ccb->csio.cdb_io.cdb_bytes[1] |=
2571 			    start_ccb->ccb_h.target_lun << 5;
2572 		}
2573 		start_ccb->csio.scsi_status = SCSI_STATUS_OK;
2574 	}
2575 	/* FALLTHROUGH */
2576 	case XPT_TARGET_IO:
2577 	case XPT_CONT_TARGET_IO:
2578 		start_ccb->csio.sense_resid = 0;
2579 		start_ccb->csio.resid = 0;
2580 		/* FALLTHROUGH */
2581 	case XPT_ATA_IO:
2582 		if (start_ccb->ccb_h.func_code == XPT_ATA_IO)
2583 			start_ccb->ataio.resid = 0;
2584 		/* FALLTHROUGH */
2585 	case XPT_NVME_IO:
2586 	case XPT_NVME_ADMIN:
2587 	case XPT_MMC_IO:
2588 	case XPT_MMC_GET_TRAN_SETTINGS:
2589 	case XPT_MMC_SET_TRAN_SETTINGS:
2590 	case XPT_RESET_DEV:
2591 	case XPT_ENG_EXEC:
2592 	case XPT_SMP_IO:
2593 	{
2594 		struct cam_devq *devq;
2595 
2596 		devq = path->bus->sim->devq;
2597 		mtx_lock(&devq->send_mtx);
2598 		cam_ccbq_insert_ccb(&path->device->ccbq, start_ccb);
2599 		if (xpt_schedule_devq(devq, path->device) != 0)
2600 			xpt_run_devq(devq);
2601 		mtx_unlock(&devq->send_mtx);
2602 		break;
2603 	}
2604 	case XPT_CALC_GEOMETRY:
2605 		/* Filter out garbage */
2606 		if (start_ccb->ccg.block_size == 0
2607 		 || start_ccb->ccg.volume_size == 0) {
2608 			start_ccb->ccg.cylinders = 0;
2609 			start_ccb->ccg.heads = 0;
2610 			start_ccb->ccg.secs_per_track = 0;
2611 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2612 			break;
2613 		}
2614 		goto call_sim;
2615 	case XPT_ABORT:
2616 	{
2617 		union ccb* abort_ccb;
2618 
2619 		abort_ccb = start_ccb->cab.abort_ccb;
2620 		if (XPT_FC_IS_DEV_QUEUED(abort_ccb)) {
2621 			struct cam_ed *device;
2622 			struct cam_devq *devq;
2623 
2624 			device = abort_ccb->ccb_h.path->device;
2625 			devq = device->sim->devq;
2626 
2627 			mtx_lock(&devq->send_mtx);
2628 			if (abort_ccb->ccb_h.pinfo.index > 0) {
2629 				cam_ccbq_remove_ccb(&device->ccbq, abort_ccb);
2630 				abort_ccb->ccb_h.status =
2631 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2632 				xpt_freeze_devq_device(device, 1);
2633 				mtx_unlock(&devq->send_mtx);
2634 				xpt_done(abort_ccb);
2635 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2636 				break;
2637 			}
2638 			mtx_unlock(&devq->send_mtx);
2639 
2640 			if (abort_ccb->ccb_h.pinfo.index == CAM_UNQUEUED_INDEX
2641 			 && (abort_ccb->ccb_h.status & CAM_SIM_QUEUED) == 0) {
2642 				/*
2643 				 * We've caught this ccb en route to
2644 				 * the SIM.  Flag it for abort and the
2645 				 * SIM will do so just before starting
2646 				 * real work on the CCB.
2647 				 */
2648 				abort_ccb->ccb_h.status =
2649 				    CAM_REQ_ABORTED|CAM_DEV_QFRZN;
2650 				xpt_freeze_devq(abort_ccb->ccb_h.path, 1);
2651 				start_ccb->ccb_h.status = CAM_REQ_CMP;
2652 				break;
2653 			}
2654 		}
2655 		if (XPT_FC_IS_QUEUED(abort_ccb)
2656 		 && (abort_ccb->ccb_h.pinfo.index == CAM_DONEQ_INDEX)) {
2657 			/*
2658 			 * It's already completed but waiting
2659 			 * for our SWI to get to it.
2660 			 */
2661 			start_ccb->ccb_h.status = CAM_UA_ABORT;
2662 			break;
2663 		}
2664 		/*
2665 		 * If we weren't able to take care of the abort request
2666 		 * in the XPT, pass the request down to the SIM for processing.
2667 		 */
2668 	}
2669 	/* FALLTHROUGH */
2670 	case XPT_ACCEPT_TARGET_IO:
2671 	case XPT_EN_LUN:
2672 	case XPT_IMMED_NOTIFY:
2673 	case XPT_NOTIFY_ACK:
2674 	case XPT_RESET_BUS:
2675 	case XPT_IMMEDIATE_NOTIFY:
2676 	case XPT_NOTIFY_ACKNOWLEDGE:
2677 	case XPT_GET_SIM_KNOB_OLD:
2678 	case XPT_GET_SIM_KNOB:
2679 	case XPT_SET_SIM_KNOB:
2680 	case XPT_GET_TRAN_SETTINGS:
2681 	case XPT_SET_TRAN_SETTINGS:
2682 	case XPT_PATH_INQ:
2683 call_sim:
2684 		sim = path->bus->sim;
2685 		mtx = sim->mtx;
2686 		if (mtx && !mtx_owned(mtx))
2687 			mtx_lock(mtx);
2688 		else
2689 			mtx = NULL;
2690 
2691 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2692 		    ("Calling sim->sim_action(): func=%#x\n", start_ccb->ccb_h.func_code));
2693 		(*(sim->sim_action))(sim, start_ccb);
2694 		CAM_DEBUG(path, CAM_DEBUG_TRACE,
2695 		    ("sim->sim_action returned: status=%#x\n", start_ccb->ccb_h.status));
2696 		if (mtx)
2697 			mtx_unlock(mtx);
2698 		break;
2699 	case XPT_PATH_STATS:
2700 		start_ccb->cpis.last_reset = path->bus->last_reset;
2701 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2702 		break;
2703 	case XPT_GDEV_TYPE:
2704 	{
2705 		struct cam_ed *dev;
2706 
2707 		dev = path->device;
2708 		if ((dev->flags & CAM_DEV_UNCONFIGURED) != 0) {
2709 			start_ccb->ccb_h.status = CAM_DEV_NOT_THERE;
2710 		} else {
2711 			struct ccb_getdev *cgd;
2712 
2713 			cgd = &start_ccb->cgd;
2714 			cgd->protocol = dev->protocol;
2715 			cgd->inq_data = dev->inq_data;
2716 			cgd->ident_data = dev->ident_data;
2717 			cgd->inq_flags = dev->inq_flags;
2718 			cgd->ccb_h.status = CAM_REQ_CMP;
2719 			cgd->serial_num_len = dev->serial_num_len;
2720 			if ((dev->serial_num_len > 0)
2721 			 && (dev->serial_num != NULL))
2722 				bcopy(dev->serial_num, cgd->serial_num,
2723 				      dev->serial_num_len);
2724 		}
2725 		break;
2726 	}
2727 	case XPT_GDEV_STATS:
2728 	{
2729 		struct ccb_getdevstats *cgds = &start_ccb->cgds;
2730 		struct cam_ed *dev = path->device;
2731 		struct cam_eb *bus = path->bus;
2732 		struct cam_et *tar = path->target;
2733 		struct cam_devq *devq = bus->sim->devq;
2734 
2735 		mtx_lock(&devq->send_mtx);
2736 		cgds->dev_openings = dev->ccbq.dev_openings;
2737 		cgds->dev_active = dev->ccbq.dev_active;
2738 		cgds->allocated = dev->ccbq.allocated;
2739 		cgds->queued = cam_ccbq_pending_ccb_count(&dev->ccbq);
2740 		cgds->held = cgds->allocated - cgds->dev_active - cgds->queued;
2741 		cgds->last_reset = tar->last_reset;
2742 		cgds->maxtags = dev->maxtags;
2743 		cgds->mintags = dev->mintags;
2744 		if (timevalcmp(&tar->last_reset, &bus->last_reset, <))
2745 			cgds->last_reset = bus->last_reset;
2746 		mtx_unlock(&devq->send_mtx);
2747 		cgds->ccb_h.status = CAM_REQ_CMP;
2748 		break;
2749 	}
2750 	case XPT_GDEVLIST:
2751 	{
2752 		struct cam_periph	*nperiph;
2753 		struct periph_list	*periph_head;
2754 		struct ccb_getdevlist	*cgdl;
2755 		u_int			i;
2756 		struct cam_ed		*device;
2757 		bool			found;
2758 
2759 		found = false;
2760 
2761 		/*
2762 		 * Don't want anyone mucking with our data.
2763 		 */
2764 		device = path->device;
2765 		periph_head = &device->periphs;
2766 		cgdl = &start_ccb->cgdl;
2767 
2768 		/*
2769 		 * Check and see if the list has changed since the user
2770 		 * last requested a list member.  If so, tell them that the
2771 		 * list has changed, and therefore they need to start over
2772 		 * from the beginning.
2773 		 */
2774 		if ((cgdl->index != 0) &&
2775 		    (cgdl->generation != device->generation)) {
2776 			cgdl->status = CAM_GDEVLIST_LIST_CHANGED;
2777 			break;
2778 		}
2779 
2780 		/*
2781 		 * Traverse the list of peripherals and attempt to find
2782 		 * the requested peripheral.
2783 		 */
2784 		for (nperiph = SLIST_FIRST(periph_head), i = 0;
2785 		     (nperiph != NULL) && (i <= cgdl->index);
2786 		     nperiph = SLIST_NEXT(nperiph, periph_links), i++) {
2787 			if (i == cgdl->index) {
2788 				strlcpy(cgdl->periph_name,
2789 					nperiph->periph_name,
2790 					sizeof(cgdl->periph_name));
2791 				cgdl->unit_number = nperiph->unit_number;
2792 				found = true;
2793 			}
2794 		}
2795 		if (!found) {
2796 			cgdl->status = CAM_GDEVLIST_ERROR;
2797 			break;
2798 		}
2799 
2800 		if (nperiph == NULL)
2801 			cgdl->status = CAM_GDEVLIST_LAST_DEVICE;
2802 		else
2803 			cgdl->status = CAM_GDEVLIST_MORE_DEVS;
2804 
2805 		cgdl->index++;
2806 		cgdl->generation = device->generation;
2807 
2808 		cgdl->ccb_h.status = CAM_REQ_CMP;
2809 		break;
2810 	}
2811 	case XPT_DEV_MATCH:
2812 	{
2813 		dev_pos_type position_type;
2814 		struct ccb_dev_match *cdm;
2815 
2816 		cdm = &start_ccb->cdm;
2817 
2818 		/*
2819 		 * There are two ways of getting at information in the EDT.
2820 		 * The first way is via the primary EDT tree.  It starts
2821 		 * with a list of buses, then a list of targets on a bus,
2822 		 * then devices/luns on a target, and then peripherals on a
2823 		 * device/lun.  The "other" way is by the peripheral driver
2824 		 * lists.  The peripheral driver lists are organized by
2825 		 * peripheral driver.  (obviously)  So it makes sense to
2826 		 * use the peripheral driver list if the user is looking
2827 		 * for something like "da1", or all "da" devices.  If the
2828 		 * user is looking for something on a particular bus/target
2829 		 * or lun, it's generally better to go through the EDT tree.
2830 		 */
2831 
2832 		if (cdm->pos.position_type != CAM_DEV_POS_NONE)
2833 			position_type = cdm->pos.position_type;
2834 		else {
2835 			u_int i;
2836 
2837 			position_type = CAM_DEV_POS_NONE;
2838 
2839 			for (i = 0; i < cdm->num_patterns; i++) {
2840 				if ((cdm->patterns[i].type == DEV_MATCH_BUS)
2841 				 ||(cdm->patterns[i].type == DEV_MATCH_DEVICE)){
2842 					position_type = CAM_DEV_POS_EDT;
2843 					break;
2844 				}
2845 			}
2846 
2847 			if (cdm->num_patterns == 0)
2848 				position_type = CAM_DEV_POS_EDT;
2849 			else if (position_type == CAM_DEV_POS_NONE)
2850 				position_type = CAM_DEV_POS_PDRV;
2851 		}
2852 
2853 		switch(position_type & CAM_DEV_POS_TYPEMASK) {
2854 		case CAM_DEV_POS_EDT:
2855 			xptedtmatch(cdm);
2856 			break;
2857 		case CAM_DEV_POS_PDRV:
2858 			xptperiphlistmatch(cdm);
2859 			break;
2860 		default:
2861 			cdm->status = CAM_DEV_MATCH_ERROR;
2862 			break;
2863 		}
2864 
2865 		if (cdm->status == CAM_DEV_MATCH_ERROR)
2866 			start_ccb->ccb_h.status = CAM_REQ_CMP_ERR;
2867 		else
2868 			start_ccb->ccb_h.status = CAM_REQ_CMP;
2869 
2870 		break;
2871 	}
2872 	case XPT_SASYNC_CB:
2873 	{
2874 		struct ccb_setasync *csa;
2875 		struct async_node *cur_entry;
2876 		struct async_list *async_head;
2877 		uint32_t added;
2878 
2879 		csa = &start_ccb->csa;
2880 		added = csa->event_enable;
2881 		async_head = &path->device->asyncs;
2882 
2883 		/*
2884 		 * If there is already an entry for us, simply
2885 		 * update it.
2886 		 */
2887 		cur_entry = SLIST_FIRST(async_head);
2888 		while (cur_entry != NULL) {
2889 			if ((cur_entry->callback_arg == csa->callback_arg)
2890 			 && (cur_entry->callback == csa->callback))
2891 				break;
2892 			cur_entry = SLIST_NEXT(cur_entry, links);
2893 		}
2894 
2895 		if (cur_entry != NULL) {
2896 		 	/*
2897 			 * If the request has no flags set,
2898 			 * remove the entry.
2899 			 */
2900 			added &= ~cur_entry->event_enable;
2901 			if (csa->event_enable == 0) {
2902 				SLIST_REMOVE(async_head, cur_entry,
2903 					     async_node, links);
2904 				xpt_release_device(path->device);
2905 				free(cur_entry, M_CAMXPT);
2906 			} else {
2907 				cur_entry->event_enable = csa->event_enable;
2908 			}
2909 			csa->event_enable = added;
2910 		} else {
2911 			cur_entry = malloc(sizeof(*cur_entry), M_CAMXPT,
2912 					   M_NOWAIT);
2913 			if (cur_entry == NULL) {
2914 				csa->ccb_h.status = CAM_RESRC_UNAVAIL;
2915 				break;
2916 			}
2917 			cur_entry->event_enable = csa->event_enable;
2918 			cur_entry->event_lock = (path->bus->sim->mtx &&
2919 			    mtx_owned(path->bus->sim->mtx)) ? 1 : 0;
2920 			cur_entry->callback_arg = csa->callback_arg;
2921 			cur_entry->callback = csa->callback;
2922 			SLIST_INSERT_HEAD(async_head, cur_entry, links);
2923 			xpt_acquire_device(path->device);
2924 		}
2925 		start_ccb->ccb_h.status = CAM_REQ_CMP;
2926 		break;
2927 	}
2928 	case XPT_REL_SIMQ:
2929 	{
2930 		struct ccb_relsim *crs;
2931 		struct cam_ed *dev;
2932 
2933 		crs = &start_ccb->crs;
2934 		dev = path->device;
2935 		if (dev == NULL) {
2936 			crs->ccb_h.status = CAM_DEV_NOT_THERE;
2937 			break;
2938 		}
2939 
2940 		if ((crs->release_flags & RELSIM_ADJUST_OPENINGS) != 0) {
2941 			/* Don't ever go below one opening */
2942 			if (crs->openings > 0) {
2943 				xpt_dev_ccbq_resize(path, crs->openings);
2944 				if (bootverbose) {
2945 					xpt_print(path,
2946 					    "number of openings is now %d\n",
2947 					    crs->openings);
2948 				}
2949 			}
2950 		}
2951 
2952 		mtx_lock(&dev->sim->devq->send_mtx);
2953 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_TIMEOUT) != 0) {
2954 			if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
2955 				/*
2956 				 * Just extend the old timeout and decrement
2957 				 * the freeze count so that a single timeout
2958 				 * is sufficient for releasing the queue.
2959 				 */
2960 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2961 				callout_stop(&dev->callout);
2962 			} else {
2963 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2964 			}
2965 
2966 			callout_reset_sbt(&dev->callout,
2967 			    SBT_1MS * crs->release_timeout, SBT_1MS,
2968 			    xpt_release_devq_timeout, dev, 0);
2969 
2970 			dev->flags |= CAM_DEV_REL_TIMEOUT_PENDING;
2971 		}
2972 
2973 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_CMDCMPLT) != 0) {
2974 			if ((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0) {
2975 				/*
2976 				 * Decrement the freeze count so that a single
2977 				 * completion is still sufficient to unfreeze
2978 				 * the queue.
2979 				 */
2980 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2981 			} else {
2982 				dev->flags |= CAM_DEV_REL_ON_COMPLETE;
2983 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2984 			}
2985 		}
2986 
2987 		if ((crs->release_flags & RELSIM_RELEASE_AFTER_QEMPTY) != 0) {
2988 			if ((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
2989 			 || (dev->ccbq.dev_active == 0)) {
2990 				start_ccb->ccb_h.flags &= ~CAM_DEV_QFREEZE;
2991 			} else {
2992 				dev->flags |= CAM_DEV_REL_ON_QUEUE_EMPTY;
2993 				start_ccb->ccb_h.flags |= CAM_DEV_QFREEZE;
2994 			}
2995 		}
2996 		mtx_unlock(&dev->sim->devq->send_mtx);
2997 
2998 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) == 0)
2999 			xpt_release_devq(path, /*count*/1, /*run_queue*/TRUE);
3000 		start_ccb->crs.qfrozen_cnt = dev->ccbq.queue.qfrozen_cnt;
3001 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3002 		break;
3003 	}
3004 	case XPT_DEBUG: {
3005 		struct cam_path *oldpath;
3006 
3007 		/* Check that all request bits are supported. */
3008 		if (start_ccb->cdbg.flags & ~(CAM_DEBUG_COMPILE)) {
3009 			start_ccb->ccb_h.status = CAM_FUNC_NOTAVAIL;
3010 			break;
3011 		}
3012 
3013 		cam_dflags = CAM_DEBUG_NONE;
3014 		if (cam_dpath != NULL) {
3015 			oldpath = cam_dpath;
3016 			cam_dpath = NULL;
3017 			xpt_free_path(oldpath);
3018 		}
3019 		if (start_ccb->cdbg.flags != CAM_DEBUG_NONE) {
3020 			if (xpt_create_path(&cam_dpath, NULL,
3021 					    start_ccb->ccb_h.path_id,
3022 					    start_ccb->ccb_h.target_id,
3023 					    start_ccb->ccb_h.target_lun) !=
3024 					    CAM_REQ_CMP) {
3025 				start_ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
3026 			} else {
3027 				cam_dflags = start_ccb->cdbg.flags;
3028 				start_ccb->ccb_h.status = CAM_REQ_CMP;
3029 				xpt_print(cam_dpath, "debugging flags now %x\n",
3030 				    cam_dflags);
3031 			}
3032 		} else
3033 			start_ccb->ccb_h.status = CAM_REQ_CMP;
3034 		break;
3035 	}
3036 	case XPT_NOOP:
3037 		if ((start_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0)
3038 			xpt_freeze_devq(path, 1);
3039 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3040 		break;
3041 	case XPT_REPROBE_LUN:
3042 		xpt_async(AC_INQ_CHANGED, path, NULL);
3043 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3044 		xpt_done(start_ccb);
3045 		break;
3046 	case XPT_ASYNC:
3047 		/*
3048 		 * Queue the async operation so it can be run from a sleepable
3049 		 * context.
3050 		 */
3051 		start_ccb->ccb_h.status = CAM_REQ_CMP;
3052 		mtx_lock(&cam_async.cam_doneq_mtx);
3053 		STAILQ_INSERT_TAIL(&cam_async.cam_doneq, &start_ccb->ccb_h, sim_links.stqe);
3054 		start_ccb->ccb_h.pinfo.index = CAM_ASYNC_INDEX;
3055 		mtx_unlock(&cam_async.cam_doneq_mtx);
3056 		wakeup(&cam_async.cam_doneq);
3057 		break;
3058 	default:
3059 	case XPT_SDEV_TYPE:
3060 	case XPT_TERM_IO:
3061 	case XPT_ENG_INQ:
3062 		/* XXX Implement */
3063 		xpt_print(start_ccb->ccb_h.path,
3064 		    "%s: CCB type %#x %s not supported\n", __func__,
3065 		    start_ccb->ccb_h.func_code,
3066 		    xpt_action_name(start_ccb->ccb_h.func_code));
3067 		start_ccb->ccb_h.status = CAM_PROVIDE_FAIL;
3068 		if (start_ccb->ccb_h.func_code & XPT_FC_DEV_QUEUED) {
3069 			xpt_done(start_ccb);
3070 		}
3071 		break;
3072 	}
3073 	CAM_DEBUG(path, CAM_DEBUG_TRACE,
3074 	    ("xpt_action_default: func= %#x %s status %#x\n",
3075 		start_ccb->ccb_h.func_code,
3076  		xpt_action_name(start_ccb->ccb_h.func_code),
3077 		start_ccb->ccb_h.status));
3078 }
3079 
3080 /*
3081  * Call the sim poll routine to allow the sim to complete
3082  * any inflight requests, then call camisr_runqueue to
3083  * complete any CCB that the polling completed.
3084  */
3085 void
xpt_sim_poll(struct cam_sim * sim)3086 xpt_sim_poll(struct cam_sim *sim)
3087 {
3088 	struct mtx *mtx;
3089 
3090 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3091 	mtx = sim->mtx;
3092 	if (mtx)
3093 		mtx_lock(mtx);
3094 	(*(sim->sim_poll))(sim);
3095 	if (mtx)
3096 		mtx_unlock(mtx);
3097 	camisr_runqueue();
3098 }
3099 
3100 uint32_t
xpt_poll_setup(union ccb * start_ccb)3101 xpt_poll_setup(union ccb *start_ccb)
3102 {
3103 	uint32_t timeout;
3104 	struct	  cam_sim *sim;
3105 	struct	  cam_devq *devq;
3106 	struct	  cam_ed *dev;
3107 
3108 	timeout = start_ccb->ccb_h.timeout * 10;
3109 	sim = start_ccb->ccb_h.path->bus->sim;
3110 	devq = sim->devq;
3111 	dev = start_ccb->ccb_h.path->device;
3112 
3113 	KASSERT(cam_sim_pollable(sim), ("%s: non-pollable sim", __func__));
3114 
3115 	/*
3116 	 * Steal an opening so that no other queued requests
3117 	 * can get it before us while we simulate interrupts.
3118 	 */
3119 	mtx_lock(&devq->send_mtx);
3120 	dev->ccbq.dev_openings--;
3121 	while((devq->send_openings <= 0 || dev->ccbq.dev_openings < 0) &&
3122 	    (--timeout > 0)) {
3123 		mtx_unlock(&devq->send_mtx);
3124 		DELAY(100);
3125 		xpt_sim_poll(sim);
3126 		mtx_lock(&devq->send_mtx);
3127 	}
3128 	dev->ccbq.dev_openings++;
3129 	mtx_unlock(&devq->send_mtx);
3130 
3131 	return (timeout);
3132 }
3133 
3134 void
xpt_pollwait(union ccb * start_ccb,uint32_t timeout)3135 xpt_pollwait(union ccb *start_ccb, uint32_t timeout)
3136 {
3137 
3138 	KASSERT(cam_sim_pollable(start_ccb->ccb_h.path->bus->sim),
3139 	    ("%s: non-pollable sim", __func__));
3140 	while (--timeout > 0) {
3141 		xpt_sim_poll(start_ccb->ccb_h.path->bus->sim);
3142 		if ((start_ccb->ccb_h.status & CAM_STATUS_MASK)
3143 		    != CAM_REQ_INPROG)
3144 			break;
3145 		DELAY(100);
3146 	}
3147 
3148 	if (timeout == 0) {
3149 		/*
3150 		 * XXX Is it worth adding a sim_timeout entry
3151 		 * point so we can attempt recovery?  If
3152 		 * this is only used for dumps, I don't think
3153 		 * it is.
3154 		 */
3155 		start_ccb->ccb_h.status = CAM_CMD_TIMEOUT;
3156 	}
3157 }
3158 
3159 /*
3160  * Schedule a peripheral driver to receive a ccb when its
3161  * target device has space for more transactions.
3162  */
3163 void
xpt_schedule(struct cam_periph * periph,uint32_t new_priority)3164 xpt_schedule(struct cam_periph *periph, uint32_t new_priority)
3165 {
3166 
3167 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("xpt_schedule\n"));
3168 	cam_periph_assert(periph, MA_OWNED);
3169 	if (new_priority < periph->scheduled_priority) {
3170 		periph->scheduled_priority = new_priority;
3171 		xpt_run_allocq(periph, 0);
3172 	}
3173 }
3174 
3175 /*
3176  * Schedule a device to run on a given queue.
3177  * If the device was inserted as a new entry on the queue,
3178  * return 1 meaning the device queue should be run. If we
3179  * were already queued, implying someone else has already
3180  * started the queue, return 0 so the caller doesn't attempt
3181  * to run the queue.
3182  */
3183 static int
xpt_schedule_dev(struct camq * queue,cam_pinfo * pinfo,uint32_t new_priority)3184 xpt_schedule_dev(struct camq *queue, cam_pinfo *pinfo,
3185 		 uint32_t new_priority)
3186 {
3187 	int retval;
3188 	uint32_t old_priority;
3189 
3190 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_schedule_dev\n"));
3191 
3192 	old_priority = pinfo->priority;
3193 
3194 	/*
3195 	 * Are we already queued?
3196 	 */
3197 	if (pinfo->index != CAM_UNQUEUED_INDEX) {
3198 		/* Simply reorder based on new priority */
3199 		if (new_priority < old_priority) {
3200 			camq_change_priority(queue, pinfo->index,
3201 					     new_priority);
3202 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3203 					("changed priority to %d\n",
3204 					 new_priority));
3205 			retval = 1;
3206 		} else
3207 			retval = 0;
3208 	} else {
3209 		/* New entry on the queue */
3210 		if (new_priority < old_priority)
3211 			pinfo->priority = new_priority;
3212 
3213 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3214 				("Inserting onto queue\n"));
3215 		pinfo->generation = ++queue->generation;
3216 		camq_insert(queue, pinfo);
3217 		retval = 1;
3218 	}
3219 	return (retval);
3220 }
3221 
3222 static void
xpt_run_allocq_task(void * context,int pending)3223 xpt_run_allocq_task(void *context, int pending)
3224 {
3225 	struct cam_periph *periph = context;
3226 
3227 	cam_periph_lock(periph);
3228 	periph->flags &= ~CAM_PERIPH_RUN_TASK;
3229 	xpt_run_allocq(periph, 1);
3230 	cam_periph_unlock(periph);
3231 	cam_periph_release(periph);
3232 }
3233 
3234 static void
xpt_run_allocq(struct cam_periph * periph,int sleep)3235 xpt_run_allocq(struct cam_periph *periph, int sleep)
3236 {
3237 	struct cam_ed	*device;
3238 	union ccb	*ccb;
3239 	uint32_t	 prio;
3240 
3241 	cam_periph_assert(periph, MA_OWNED);
3242 	if (periph->periph_allocating)
3243 		return;
3244 	cam_periph_doacquire(periph);
3245 	periph->periph_allocating = 1;
3246 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_allocq(%p)\n", periph));
3247 	device = periph->path->device;
3248 	ccb = NULL;
3249 restart:
3250 	while ((prio = min(periph->scheduled_priority,
3251 	    periph->immediate_priority)) != CAM_PRIORITY_NONE &&
3252 	    (periph->periph_allocated - (ccb != NULL ? 1 : 0) <
3253 	     device->ccbq.total_openings || prio <= CAM_PRIORITY_OOB)) {
3254 		if (ccb == NULL &&
3255 		    (ccb = xpt_get_ccb_nowait(periph)) == NULL) {
3256 			if (sleep) {
3257 				ccb = xpt_get_ccb(periph);
3258 				goto restart;
3259 			}
3260 			if (periph->flags & CAM_PERIPH_RUN_TASK)
3261 				break;
3262 			cam_periph_doacquire(periph);
3263 			periph->flags |= CAM_PERIPH_RUN_TASK;
3264 			taskqueue_enqueue(xsoftc.xpt_taskq,
3265 			    &periph->periph_run_task);
3266 			break;
3267 		}
3268 		xpt_setup_ccb(&ccb->ccb_h, periph->path, prio);
3269 		if (prio == periph->immediate_priority) {
3270 			periph->immediate_priority = CAM_PRIORITY_NONE;
3271 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3272 					("waking cam_periph_getccb()\n"));
3273 			SLIST_INSERT_HEAD(&periph->ccb_list, &ccb->ccb_h,
3274 					  periph_links.sle);
3275 			wakeup(&periph->ccb_list);
3276 		} else {
3277 			periph->scheduled_priority = CAM_PRIORITY_NONE;
3278 			CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3279 					("calling periph_start()\n"));
3280 			periph->periph_start(periph, ccb);
3281 		}
3282 		ccb = NULL;
3283 	}
3284 	if (ccb != NULL)
3285 		xpt_release_ccb(ccb);
3286 	periph->periph_allocating = 0;
3287 	cam_periph_release_locked(periph);
3288 }
3289 
3290 static void
xpt_run_devq(struct cam_devq * devq)3291 xpt_run_devq(struct cam_devq *devq)
3292 {
3293 	struct mtx *mtx;
3294 
3295 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_run_devq\n"));
3296 
3297 	devq->send_queue.qfrozen_cnt++;
3298 	while ((devq->send_queue.entries > 0)
3299 	    && (devq->send_openings > 0)
3300 	    && (devq->send_queue.qfrozen_cnt <= 1)) {
3301 		struct	cam_ed *device;
3302 		union ccb *work_ccb;
3303 		struct	cam_sim *sim;
3304 		struct xpt_proto *proto;
3305 
3306 		device = (struct cam_ed *)camq_remove(&devq->send_queue,
3307 							   CAMQ_HEAD);
3308 		CAM_DEBUG_PRINT(CAM_DEBUG_XPT,
3309 				("running device %p\n", device));
3310 
3311 		work_ccb = cam_ccbq_peek_ccb(&device->ccbq, CAMQ_HEAD);
3312 		if (work_ccb == NULL) {
3313 			printf("device on run queue with no ccbs???\n");
3314 			continue;
3315 		}
3316 
3317 		if ((work_ccb->ccb_h.flags & CAM_HIGH_POWER) != 0) {
3318 			mtx_lock(&xsoftc.xpt_highpower_lock);
3319 		 	if (xsoftc.num_highpower <= 0) {
3320 				/*
3321 				 * We got a high power command, but we
3322 				 * don't have any available slots.  Freeze
3323 				 * the device queue until we have a slot
3324 				 * available.
3325 				 */
3326 				xpt_freeze_devq_device(device, 1);
3327 				STAILQ_INSERT_TAIL(&xsoftc.highpowerq, device,
3328 						   highpowerq_entry);
3329 
3330 				mtx_unlock(&xsoftc.xpt_highpower_lock);
3331 				continue;
3332 			} else {
3333 				/*
3334 				 * Consume a high power slot while
3335 				 * this ccb runs.
3336 				 */
3337 				xsoftc.num_highpower--;
3338 			}
3339 			mtx_unlock(&xsoftc.xpt_highpower_lock);
3340 		}
3341 		cam_ccbq_remove_ccb(&device->ccbq, work_ccb);
3342 		cam_ccbq_send_ccb(&device->ccbq, work_ccb);
3343 		devq->send_openings--;
3344 		devq->send_active++;
3345 		xpt_schedule_devq(devq, device);
3346 		mtx_unlock(&devq->send_mtx);
3347 
3348 		if ((work_ccb->ccb_h.flags & CAM_DEV_QFREEZE) != 0) {
3349 			/*
3350 			 * The client wants to freeze the queue
3351 			 * after this CCB is sent.
3352 			 */
3353 			xpt_freeze_devq(work_ccb->ccb_h.path, 1);
3354 		}
3355 
3356 		/* In Target mode, the peripheral driver knows best... */
3357 		if (work_ccb->ccb_h.func_code == XPT_SCSI_IO) {
3358 			if ((device->inq_flags & SID_CmdQue) != 0
3359 			 && work_ccb->csio.tag_action != CAM_TAG_ACTION_NONE)
3360 				work_ccb->ccb_h.flags |= CAM_TAG_ACTION_VALID;
3361 			else
3362 				/*
3363 				 * Clear this in case of a retried CCB that
3364 				 * failed due to a rejected tag.
3365 				 */
3366 				work_ccb->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
3367 		}
3368 
3369 		KASSERT(device == work_ccb->ccb_h.path->device,
3370 		    ("device (%p) / path->device (%p) mismatch",
3371 			device, work_ccb->ccb_h.path->device));
3372 		proto = xpt_proto_find(device->protocol);
3373 		if (proto && proto->ops->debug_out)
3374 			proto->ops->debug_out(work_ccb);
3375 
3376 		/*
3377 		 * Device queues can be shared among multiple SIM instances
3378 		 * that reside on different buses.  Use the SIM from the
3379 		 * queued device, rather than the one from the calling bus.
3380 		 */
3381 		sim = device->sim;
3382 		mtx = sim->mtx;
3383 		if (mtx && !mtx_owned(mtx))
3384 			mtx_lock(mtx);
3385 		else
3386 			mtx = NULL;
3387 		work_ccb->ccb_h.qos.periph_data = cam_iosched_now();
3388 		(*(sim->sim_action))(sim, work_ccb);
3389 		if (mtx)
3390 			mtx_unlock(mtx);
3391 		mtx_lock(&devq->send_mtx);
3392 	}
3393 	devq->send_queue.qfrozen_cnt--;
3394 }
3395 
3396 /*
3397  * This function merges stuff from the src ccb into the dst ccb, while keeping
3398  * important fields in the dst ccb constant.
3399  */
3400 void
xpt_merge_ccb(union ccb * dst_ccb,union ccb * src_ccb)3401 xpt_merge_ccb(union ccb *dst_ccb, union ccb *src_ccb)
3402 {
3403 
3404 	/*
3405 	 * Pull fields that are valid for peripheral drivers to set
3406 	 * into the dst CCB along with the CCB "payload".
3407 	 */
3408 	dst_ccb->ccb_h.retry_count = src_ccb->ccb_h.retry_count;
3409 	dst_ccb->ccb_h.func_code = src_ccb->ccb_h.func_code;
3410 	dst_ccb->ccb_h.timeout = src_ccb->ccb_h.timeout;
3411 	dst_ccb->ccb_h.flags = src_ccb->ccb_h.flags;
3412 	bcopy(&(&src_ccb->ccb_h)[1], &(&dst_ccb->ccb_h)[1],
3413 	      sizeof(union ccb) - sizeof(struct ccb_hdr));
3414 }
3415 
3416 void
xpt_setup_ccb_flags(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority,uint32_t flags)3417 xpt_setup_ccb_flags(struct ccb_hdr *ccb_h, struct cam_path *path,
3418 		    uint32_t priority, uint32_t flags)
3419 {
3420 
3421 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_setup_ccb\n"));
3422 	ccb_h->pinfo.priority = priority;
3423 	ccb_h->path = path;
3424 	ccb_h->path_id = path->bus->path_id;
3425 	if (path->target)
3426 		ccb_h->target_id = path->target->target_id;
3427 	else
3428 		ccb_h->target_id = CAM_TARGET_WILDCARD;
3429 	if (path->device) {
3430 		ccb_h->target_lun = path->device->lun_id;
3431 		ccb_h->pinfo.generation = ++path->device->ccbq.queue.generation;
3432 	} else {
3433 		ccb_h->target_lun = CAM_TARGET_WILDCARD;
3434 	}
3435 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
3436 	ccb_h->flags = flags;
3437 	ccb_h->xflags = 0;
3438 }
3439 
3440 void
xpt_setup_ccb(struct ccb_hdr * ccb_h,struct cam_path * path,uint32_t priority)3441 xpt_setup_ccb(struct ccb_hdr *ccb_h, struct cam_path *path, uint32_t priority)
3442 {
3443 	xpt_setup_ccb_flags(ccb_h, path, priority, /*flags*/ 0);
3444 }
3445 
3446 /* Path manipulation functions */
3447 cam_status
xpt_create_path(struct cam_path ** new_path_ptr,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3448 xpt_create_path(struct cam_path **new_path_ptr, struct cam_periph *perph,
3449 		path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3450 {
3451 	struct	   cam_path *path;
3452 	cam_status status;
3453 
3454 	path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3455 
3456 	if (path == NULL) {
3457 		status = CAM_RESRC_UNAVAIL;
3458 		return(status);
3459 	}
3460 	status = xpt_compile_path(path, perph, path_id, target_id, lun_id);
3461 	if (status != CAM_REQ_CMP) {
3462 		free(path, M_CAMPATH);
3463 		path = NULL;
3464 	}
3465 	*new_path_ptr = path;
3466 	return (status);
3467 }
3468 
3469 cam_status
xpt_create_path_unlocked(struct cam_path ** new_path_ptr,struct cam_periph * periph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3470 xpt_create_path_unlocked(struct cam_path **new_path_ptr,
3471 			 struct cam_periph *periph, path_id_t path_id,
3472 			 target_id_t target_id, lun_id_t lun_id)
3473 {
3474 
3475 	return (xpt_create_path(new_path_ptr, periph, path_id, target_id,
3476 	    lun_id));
3477 }
3478 
3479 cam_status
xpt_compile_path(struct cam_path * new_path,struct cam_periph * perph,path_id_t path_id,target_id_t target_id,lun_id_t lun_id)3480 xpt_compile_path(struct cam_path *new_path, struct cam_periph *perph,
3481 		 path_id_t path_id, target_id_t target_id, lun_id_t lun_id)
3482 {
3483 	struct	     cam_eb *bus;
3484 	struct	     cam_et *target;
3485 	struct	     cam_ed *device;
3486 	cam_status   status;
3487 
3488 	status = CAM_REQ_CMP;	/* Completed without error */
3489 	target = NULL;		/* Wildcarded */
3490 	device = NULL;		/* Wildcarded */
3491 
3492 	/*
3493 	 * We will potentially modify the EDT, so block interrupts
3494 	 * that may attempt to create cam paths.
3495 	 */
3496 	bus = xpt_find_bus(path_id);
3497 	if (bus == NULL) {
3498 		status = CAM_PATH_INVALID;
3499 	} else {
3500 		xpt_lock_buses();
3501 		mtx_lock(&bus->eb_mtx);
3502 		target = xpt_find_target(bus, target_id);
3503 		if (target == NULL) {
3504 			/* Create one */
3505 			struct cam_et *new_target;
3506 
3507 			new_target = xpt_alloc_target(bus, target_id);
3508 			if (new_target == NULL) {
3509 				status = CAM_RESRC_UNAVAIL;
3510 			} else {
3511 				target = new_target;
3512 			}
3513 		}
3514 		xpt_unlock_buses();
3515 		if (target != NULL) {
3516 			device = xpt_find_device(target, lun_id);
3517 			if (device == NULL) {
3518 				/* Create one */
3519 				struct cam_ed *new_device;
3520 
3521 				new_device =
3522 				    (*(bus->xport->ops->alloc_device))(bus,
3523 								       target,
3524 								       lun_id);
3525 				if (new_device == NULL) {
3526 					status = CAM_RESRC_UNAVAIL;
3527 				} else {
3528 					device = new_device;
3529 				}
3530 			}
3531 		}
3532 		mtx_unlock(&bus->eb_mtx);
3533 	}
3534 
3535 	/*
3536 	 * Only touch the user's data if we are successful.
3537 	 */
3538 	if (status == CAM_REQ_CMP) {
3539 		new_path->periph = perph;
3540 		new_path->bus = bus;
3541 		new_path->target = target;
3542 		new_path->device = device;
3543 		CAM_DEBUG(new_path, CAM_DEBUG_TRACE, ("xpt_compile_path\n"));
3544 	} else {
3545 		if (device != NULL)
3546 			xpt_release_device(device);
3547 		if (target != NULL)
3548 			xpt_release_target(target);
3549 		if (bus != NULL)
3550 			xpt_release_bus(bus);
3551 	}
3552 	return (status);
3553 }
3554 
3555 int
xpt_clone_path(struct cam_path ** new_path_ptr,struct cam_path * path)3556 xpt_clone_path(struct cam_path **new_path_ptr, struct cam_path *path)
3557 {
3558 	struct	   cam_path *new_path;
3559 
3560 	new_path = (struct cam_path *)malloc(sizeof(*path), M_CAMPATH, M_NOWAIT);
3561 	if (new_path == NULL)
3562 		return (ENOMEM);
3563 	*new_path = *path;
3564 	if (path->bus != NULL)
3565 		xpt_acquire_bus(path->bus);
3566 	if (path->target != NULL)
3567 		xpt_acquire_target(path->target);
3568 	if (path->device != NULL)
3569 		xpt_acquire_device(path->device);
3570 	*new_path_ptr = new_path;
3571 	return (0);
3572 }
3573 
3574 void
xpt_release_path(struct cam_path * path)3575 xpt_release_path(struct cam_path *path)
3576 {
3577 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_path\n"));
3578 	if (path->device != NULL) {
3579 		xpt_release_device(path->device);
3580 		path->device = NULL;
3581 	}
3582 	if (path->target != NULL) {
3583 		xpt_release_target(path->target);
3584 		path->target = NULL;
3585 	}
3586 	if (path->bus != NULL) {
3587 		xpt_release_bus(path->bus);
3588 		path->bus = NULL;
3589 	}
3590 }
3591 
3592 void
xpt_free_path(struct cam_path * path)3593 xpt_free_path(struct cam_path *path)
3594 {
3595 
3596 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_free_path\n"));
3597 	xpt_release_path(path);
3598 	free(path, M_CAMPATH);
3599 }
3600 
3601 void
xpt_path_counts(struct cam_path * path,uint32_t * bus_ref,uint32_t * periph_ref,uint32_t * target_ref,uint32_t * device_ref)3602 xpt_path_counts(struct cam_path *path, uint32_t *bus_ref,
3603     uint32_t *periph_ref, uint32_t *target_ref, uint32_t *device_ref)
3604 {
3605 
3606 	xpt_lock_buses();
3607 	if (bus_ref) {
3608 		if (path->bus)
3609 			*bus_ref = path->bus->refcount;
3610 		else
3611 			*bus_ref = 0;
3612 	}
3613 	if (periph_ref) {
3614 		if (path->periph)
3615 			*periph_ref = path->periph->refcount;
3616 		else
3617 			*periph_ref = 0;
3618 	}
3619 	xpt_unlock_buses();
3620 	if (target_ref) {
3621 		if (path->target)
3622 			*target_ref = path->target->refcount;
3623 		else
3624 			*target_ref = 0;
3625 	}
3626 	if (device_ref) {
3627 		if (path->device)
3628 			*device_ref = path->device->refcount;
3629 		else
3630 			*device_ref = 0;
3631 	}
3632 }
3633 
3634 /*
3635  * Return -1 for failure, 0 for exact match, 1 for match with wildcards
3636  * in path1, 2 for match with wildcards in path2.
3637  */
3638 int
xpt_path_comp(struct cam_path * path1,struct cam_path * path2)3639 xpt_path_comp(struct cam_path *path1, struct cam_path *path2)
3640 {
3641 	int retval = 0;
3642 
3643 	if (path1->bus != path2->bus) {
3644 		if (path1->bus->path_id == CAM_BUS_WILDCARD)
3645 			retval = 1;
3646 		else if (path2->bus->path_id == CAM_BUS_WILDCARD)
3647 			retval = 2;
3648 		else
3649 			return (-1);
3650 	}
3651 	if (path1->target != path2->target) {
3652 		if (path1->target->target_id == CAM_TARGET_WILDCARD) {
3653 			if (retval == 0)
3654 				retval = 1;
3655 		} else if (path2->target->target_id == CAM_TARGET_WILDCARD)
3656 			retval = 2;
3657 		else
3658 			return (-1);
3659 	}
3660 	if (path1->device != path2->device) {
3661 		if (path1->device->lun_id == CAM_LUN_WILDCARD) {
3662 			if (retval == 0)
3663 				retval = 1;
3664 		} else if (path2->device->lun_id == CAM_LUN_WILDCARD)
3665 			retval = 2;
3666 		else
3667 			return (-1);
3668 	}
3669 	return (retval);
3670 }
3671 
3672 int
xpt_path_comp_dev(struct cam_path * path,struct cam_ed * dev)3673 xpt_path_comp_dev(struct cam_path *path, struct cam_ed *dev)
3674 {
3675 	int retval = 0;
3676 
3677 	if (path->bus != dev->target->bus) {
3678 		if (path->bus->path_id == CAM_BUS_WILDCARD)
3679 			retval = 1;
3680 		else if (dev->target->bus->path_id == CAM_BUS_WILDCARD)
3681 			retval = 2;
3682 		else
3683 			return (-1);
3684 	}
3685 	if (path->target != dev->target) {
3686 		if (path->target->target_id == CAM_TARGET_WILDCARD) {
3687 			if (retval == 0)
3688 				retval = 1;
3689 		} else if (dev->target->target_id == CAM_TARGET_WILDCARD)
3690 			retval = 2;
3691 		else
3692 			return (-1);
3693 	}
3694 	if (path->device != dev) {
3695 		if (path->device->lun_id == CAM_LUN_WILDCARD) {
3696 			if (retval == 0)
3697 				retval = 1;
3698 		} else if (dev->lun_id == CAM_LUN_WILDCARD)
3699 			retval = 2;
3700 		else
3701 			return (-1);
3702 	}
3703 	return (retval);
3704 }
3705 
3706 void
xpt_print_path(struct cam_path * path)3707 xpt_print_path(struct cam_path *path)
3708 {
3709 	struct sbuf sb;
3710 	char buffer[XPT_PRINT_LEN];
3711 
3712 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3713 	xpt_path_sbuf(path, &sb);
3714 	sbuf_finish(&sb);
3715 	printf("%s", sbuf_data(&sb));
3716 	sbuf_delete(&sb);
3717 }
3718 
3719 static void
xpt_device_sbuf(struct cam_ed * device,struct sbuf * sb)3720 xpt_device_sbuf(struct cam_ed *device, struct sbuf *sb)
3721 {
3722 	if (device == NULL)
3723 		sbuf_cat(sb, "(nopath): ");
3724 	else {
3725 		sbuf_printf(sb, "(noperiph:%s%d:%d:%d:%jx): ",
3726 		    device->sim->sim_name,
3727 		    device->sim->unit_number,
3728 		    device->sim->bus_id,
3729 		    device->target->target_id,
3730 		    (uintmax_t)device->lun_id);
3731 	}
3732 }
3733 
3734 void
xpt_print(struct cam_path * path,const char * fmt,...)3735 xpt_print(struct cam_path *path, const char *fmt, ...)
3736 {
3737 	va_list ap;
3738 	struct sbuf sb;
3739 	char buffer[XPT_PRINT_LEN];
3740 
3741 	sbuf_new(&sb, buffer, XPT_PRINT_LEN, SBUF_FIXEDLEN);
3742 
3743 	xpt_path_sbuf(path, &sb);
3744 	va_start(ap, fmt);
3745 	sbuf_vprintf(&sb, fmt, ap);
3746 	va_end(ap);
3747 
3748 	sbuf_finish(&sb);
3749 	printf("%s", sbuf_data(&sb));
3750 	sbuf_delete(&sb);
3751 }
3752 
3753 char *
xpt_path_string(struct cam_path * path,char * str,size_t str_len)3754 xpt_path_string(struct cam_path *path, char *str, size_t str_len)
3755 {
3756 	struct sbuf sb;
3757 
3758 	sbuf_new(&sb, str, str_len, 0);
3759 	xpt_path_sbuf(path, &sb);
3760 	sbuf_finish(&sb);
3761 	return (str);
3762 }
3763 
3764 void
xpt_path_sbuf(struct cam_path * path,struct sbuf * sb)3765 xpt_path_sbuf(struct cam_path *path, struct sbuf *sb)
3766 {
3767 
3768 	if (path == NULL)
3769 		sbuf_cat(sb, "(nopath): ");
3770 	else {
3771 		if (path->periph != NULL)
3772 			sbuf_printf(sb, "(%s%d:", path->periph->periph_name,
3773 				    path->periph->unit_number);
3774 		else
3775 			sbuf_cat(sb, "(noperiph:");
3776 
3777 		if (path->bus != NULL)
3778 			sbuf_printf(sb, "%s%d:%d:", path->bus->sim->sim_name,
3779 				    path->bus->sim->unit_number,
3780 				    path->bus->sim->bus_id);
3781 		else
3782 			sbuf_cat(sb, "nobus:");
3783 
3784 		if (path->target != NULL)
3785 			sbuf_printf(sb, "%d:", path->target->target_id);
3786 		else
3787 			sbuf_cat(sb, "X:");
3788 
3789 		if (path->device != NULL)
3790 			sbuf_printf(sb, "%jx): ",
3791 			    (uintmax_t)path->device->lun_id);
3792 		else
3793 			sbuf_cat(sb, "X): ");
3794 	}
3795 }
3796 
3797 path_id_t
xpt_path_path_id(struct cam_path * path)3798 xpt_path_path_id(struct cam_path *path)
3799 {
3800 	return(path->bus->path_id);
3801 }
3802 
3803 target_id_t
xpt_path_target_id(struct cam_path * path)3804 xpt_path_target_id(struct cam_path *path)
3805 {
3806 	if (path->target != NULL)
3807 		return (path->target->target_id);
3808 	else
3809 		return (CAM_TARGET_WILDCARD);
3810 }
3811 
3812 lun_id_t
xpt_path_lun_id(struct cam_path * path)3813 xpt_path_lun_id(struct cam_path *path)
3814 {
3815 	if (path->device != NULL)
3816 		return (path->device->lun_id);
3817 	else
3818 		return (CAM_LUN_WILDCARD);
3819 }
3820 
3821 struct cam_sim *
xpt_path_sim(struct cam_path * path)3822 xpt_path_sim(struct cam_path *path)
3823 {
3824 
3825 	return (path->bus->sim);
3826 }
3827 
3828 struct cam_periph*
xpt_path_periph(struct cam_path * path)3829 xpt_path_periph(struct cam_path *path)
3830 {
3831 
3832 	return (path->periph);
3833 }
3834 
3835 /*
3836  * Release a CAM control block for the caller.  Remit the cost of the structure
3837  * to the device referenced by the path.  If the this device had no 'credits'
3838  * and peripheral drivers have registered async callbacks for this notification
3839  * call them now.
3840  */
3841 void
xpt_release_ccb(union ccb * free_ccb)3842 xpt_release_ccb(union ccb *free_ccb)
3843 {
3844 	struct	 cam_ed *device;
3845 	struct	 cam_periph *periph;
3846 
3847 	CAM_DEBUG_PRINT(CAM_DEBUG_XPT, ("xpt_release_ccb\n"));
3848 	xpt_path_assert(free_ccb->ccb_h.path, MA_OWNED);
3849 	device = free_ccb->ccb_h.path->device;
3850 	periph = free_ccb->ccb_h.path->periph;
3851 
3852 	xpt_free_ccb(free_ccb);
3853 	periph->periph_allocated--;
3854 	cam_ccbq_release_opening(&device->ccbq);
3855 	xpt_run_allocq(periph, 0);
3856 }
3857 
3858 /* Functions accessed by SIM drivers */
3859 
3860 static struct xpt_xport_ops xport_default_ops = {
3861 	.alloc_device = xpt_alloc_device_default,
3862 	.action = xpt_action_default,
3863 	.async = xpt_dev_async_default,
3864 };
3865 static struct xpt_xport xport_default = {
3866 	.xport = XPORT_UNKNOWN,
3867 	.name = "unknown",
3868 	.ops = &xport_default_ops,
3869 };
3870 
3871 CAM_XPT_XPORT(xport_default);
3872 
3873 /*
3874  * A sim structure, listing the SIM entry points and instance
3875  * identification info is passed to xpt_bus_register to hook the SIM
3876  * into the CAM framework.  xpt_bus_register creates a cam_eb entry
3877  * for this new bus and places it in the array of buses and assigns
3878  * it a path_id.  The path_id may be influenced by "hard wiring"
3879  * information specified by the user.  Once interrupt services are
3880  * available, the bus will be probed.
3881  */
3882 int
xpt_bus_register(struct cam_sim * sim,device_t parent,uint32_t bus)3883 xpt_bus_register(struct cam_sim *sim, device_t parent, uint32_t bus)
3884 {
3885 	struct cam_eb *new_bus;
3886 	struct cam_eb *old_bus;
3887 	struct ccb_pathinq cpi;
3888 	struct cam_path *path;
3889 	cam_status status;
3890 
3891 	sim->bus_id = bus;
3892 	new_bus = (struct cam_eb *)malloc(sizeof(*new_bus),
3893 					  M_CAMXPT, M_NOWAIT|M_ZERO);
3894 	if (new_bus == NULL) {
3895 		/* Couldn't satisfy request */
3896 		return (ENOMEM);
3897 	}
3898 
3899 	mtx_init(&new_bus->eb_mtx, "CAM bus lock", NULL, MTX_DEF);
3900 	TAILQ_INIT(&new_bus->et_entries);
3901 	cam_sim_hold(sim);
3902 	new_bus->sim = sim;
3903 	timevalclear(&new_bus->last_reset);
3904 	new_bus->flags = 0;
3905 	new_bus->refcount = 1;	/* Held until a bus_deregister event */
3906 	new_bus->generation = 0;
3907 	new_bus->parent_dev = parent;
3908 
3909 	xpt_lock_buses();
3910 	sim->path_id = new_bus->path_id =
3911 	    xptpathid(sim->sim_name, sim->unit_number, sim->bus_id);
3912 	old_bus = TAILQ_FIRST(&xsoftc.xpt_busses);
3913 	while (old_bus != NULL
3914 	    && old_bus->path_id < new_bus->path_id)
3915 		old_bus = TAILQ_NEXT(old_bus, links);
3916 	if (old_bus != NULL)
3917 		TAILQ_INSERT_BEFORE(old_bus, new_bus, links);
3918 	else
3919 		TAILQ_INSERT_TAIL(&xsoftc.xpt_busses, new_bus, links);
3920 	xsoftc.bus_generation++;
3921 	xpt_unlock_buses();
3922 
3923 	/*
3924 	 * Set a default transport so that a PATH_INQ can be issued to
3925 	 * the SIM.  This will then allow for probing and attaching of
3926 	 * a more appropriate transport.
3927 	 */
3928 	new_bus->xport = &xport_default;
3929 
3930 	status = xpt_create_path(&path, /*periph*/NULL, sim->path_id,
3931 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3932 	if (status != CAM_REQ_CMP) {
3933 		xpt_release_bus(new_bus);
3934 		return (ENOMEM);
3935 	}
3936 
3937 	xpt_path_inq(&cpi, path);
3938 
3939 	/*
3940 	 * Use the results of PATH_INQ to pick a transport.  Note that
3941 	 * the xpt bus (which uses XPORT_UNSPECIFIED) always uses
3942 	 * xport_default instead of a transport from
3943 	 * cam_xpt_port_set.
3944 	 */
3945 	if (cam_ccb_success((union ccb *)&cpi) &&
3946 	    cpi.transport != XPORT_UNSPECIFIED) {
3947 		struct xpt_xport **xpt;
3948 
3949 		SET_FOREACH(xpt, cam_xpt_xport_set) {
3950 			if ((*xpt)->xport == cpi.transport) {
3951 				new_bus->xport = *xpt;
3952 				break;
3953 			}
3954 		}
3955 		if (new_bus->xport == &xport_default) {
3956 			xpt_print(path,
3957 			    "No transport found for %d\n", cpi.transport);
3958 			xpt_release_bus(new_bus);
3959 			xpt_free_path(path);
3960 			return (EINVAL);
3961 		}
3962 	}
3963 
3964 	/* Notify interested parties */
3965 	if (sim->path_id != CAM_XPT_PATH_ID) {
3966 		xpt_async(AC_PATH_REGISTERED, path, &cpi);
3967 		if ((cpi.hba_misc & PIM_NOSCAN) == 0) {
3968 			union	ccb *scan_ccb;
3969 
3970 			/* Initiate bus rescan. */
3971 			scan_ccb = xpt_alloc_ccb_nowait();
3972 			if (scan_ccb != NULL) {
3973 				scan_ccb->ccb_h.path = path;
3974 				scan_ccb->ccb_h.func_code = XPT_SCAN_BUS;
3975 				scan_ccb->crcn.flags = 0;
3976 				xpt_rescan(scan_ccb);
3977 			} else {
3978 				xpt_print(path,
3979 					  "Can't allocate CCB to scan bus\n");
3980 				xpt_free_path(path);
3981 			}
3982 		} else
3983 			xpt_free_path(path);
3984 	} else
3985 		xpt_free_path(path);
3986 	return (CAM_SUCCESS);
3987 }
3988 
3989 int
xpt_bus_deregister(path_id_t pathid)3990 xpt_bus_deregister(path_id_t pathid)
3991 {
3992 	struct cam_path bus_path;
3993 	cam_status status;
3994 
3995 	status = xpt_compile_path(&bus_path, NULL, pathid,
3996 				  CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
3997 	if (status != CAM_REQ_CMP)
3998 		return (ENOMEM);
3999 
4000 	xpt_async(AC_LOST_DEVICE, &bus_path, NULL);
4001 	xpt_async(AC_PATH_DEREGISTERED, &bus_path, NULL);
4002 
4003 	/* Release the reference count held while registered. */
4004 	xpt_release_bus(bus_path.bus);
4005 	xpt_release_path(&bus_path);
4006 
4007 	return (CAM_SUCCESS);
4008 }
4009 
4010 static path_id_t
xptnextfreepathid(void)4011 xptnextfreepathid(void)
4012 {
4013 	struct cam_eb *bus;
4014 	path_id_t pathid;
4015 	const char *strval;
4016 
4017 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4018 	pathid = 0;
4019 	bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4020 retry:
4021 	/* Find an unoccupied pathid */
4022 	while (bus != NULL && bus->path_id <= pathid) {
4023 		if (bus->path_id == pathid)
4024 			pathid++;
4025 		bus = TAILQ_NEXT(bus, links);
4026 	}
4027 
4028 	/*
4029 	 * Ensure that this pathid is not reserved for
4030 	 * a bus that may be registered in the future.
4031 	 */
4032 	if (resource_string_value("scbus", pathid, "at", &strval) == 0) {
4033 		++pathid;
4034 		/* Start the search over */
4035 		goto retry;
4036 	}
4037 	return (pathid);
4038 }
4039 
4040 static path_id_t
xptpathid(const char * sim_name,int sim_unit,int sim_bus)4041 xptpathid(const char *sim_name, int sim_unit, int sim_bus)
4042 {
4043 	path_id_t pathid;
4044 	int i, dunit, val;
4045 	char buf[32];
4046 	const char *dname;
4047 
4048 	pathid = CAM_XPT_PATH_ID;
4049 	snprintf(buf, sizeof(buf), "%s%d", sim_name, sim_unit);
4050 	if (strcmp(buf, "xpt0") == 0 && sim_bus == 0)
4051 		return (pathid);
4052 	i = 0;
4053 	while ((resource_find_match(&i, &dname, &dunit, "at", buf)) == 0) {
4054 		if (strcmp(dname, "scbus")) {
4055 			/* Avoid a bit of foot shooting. */
4056 			continue;
4057 		}
4058 		if (dunit < 0)		/* unwired?! */
4059 			continue;
4060 		if (resource_int_value("scbus", dunit, "bus", &val) == 0) {
4061 			if (sim_bus == val) {
4062 				pathid = dunit;
4063 				break;
4064 			}
4065 		} else if (sim_bus == 0) {
4066 			/* Unspecified matches bus 0 */
4067 			pathid = dunit;
4068 			break;
4069 		} else {
4070 			printf(
4071 "Ambiguous scbus configuration for %s%d bus %d, cannot wire down.  The kernel\n"
4072 "config entry for scbus%d should specify a controller bus.\n"
4073 "Scbus will be assigned dynamically.\n",
4074 			    sim_name, sim_unit, sim_bus, dunit);
4075 			break;
4076 		}
4077 	}
4078 
4079 	if (pathid == CAM_XPT_PATH_ID)
4080 		pathid = xptnextfreepathid();
4081 	return (pathid);
4082 }
4083 
4084 static const char *
xpt_async_string(uint32_t async_code)4085 xpt_async_string(uint32_t async_code)
4086 {
4087 
4088 	switch (async_code) {
4089 	case AC_BUS_RESET: return ("AC_BUS_RESET");
4090 	case AC_UNSOL_RESEL: return ("AC_UNSOL_RESEL");
4091 	case AC_SCSI_AEN: return ("AC_SCSI_AEN");
4092 	case AC_SENT_BDR: return ("AC_SENT_BDR");
4093 	case AC_PATH_REGISTERED: return ("AC_PATH_REGISTERED");
4094 	case AC_PATH_DEREGISTERED: return ("AC_PATH_DEREGISTERED");
4095 	case AC_FOUND_DEVICE: return ("AC_FOUND_DEVICE");
4096 	case AC_LOST_DEVICE: return ("AC_LOST_DEVICE");
4097 	case AC_TRANSFER_NEG: return ("AC_TRANSFER_NEG");
4098 	case AC_INQ_CHANGED: return ("AC_INQ_CHANGED");
4099 	case AC_GETDEV_CHANGED: return ("AC_GETDEV_CHANGED");
4100 	case AC_CONTRACT: return ("AC_CONTRACT");
4101 	case AC_ADVINFO_CHANGED: return ("AC_ADVINFO_CHANGED");
4102 	case AC_UNIT_ATTENTION: return ("AC_UNIT_ATTENTION");
4103 	}
4104 	return ("AC_UNKNOWN");
4105 }
4106 
4107 static int
xpt_async_size(uint32_t async_code)4108 xpt_async_size(uint32_t async_code)
4109 {
4110 
4111 	switch (async_code) {
4112 	case AC_BUS_RESET: return (0);
4113 	case AC_UNSOL_RESEL: return (0);
4114 	case AC_SCSI_AEN: return (0);
4115 	case AC_SENT_BDR: return (0);
4116 	case AC_PATH_REGISTERED: return (sizeof(struct ccb_pathinq));
4117 	case AC_PATH_DEREGISTERED: return (0);
4118 	case AC_FOUND_DEVICE: return (sizeof(struct ccb_getdev));
4119 	case AC_LOST_DEVICE: return (0);
4120 	case AC_TRANSFER_NEG: return (sizeof(struct ccb_trans_settings));
4121 	case AC_INQ_CHANGED: return (0);
4122 	case AC_GETDEV_CHANGED: return (0);
4123 	case AC_CONTRACT: return (sizeof(struct ac_contract));
4124 	case AC_ADVINFO_CHANGED: return (-1);
4125 	case AC_UNIT_ATTENTION: return (sizeof(struct ccb_scsiio));
4126 	}
4127 	return (0);
4128 }
4129 
4130 static int
xpt_async_process_dev(struct cam_ed * device,void * arg)4131 xpt_async_process_dev(struct cam_ed *device, void *arg)
4132 {
4133 	union ccb *ccb = arg;
4134 	struct cam_path *path = ccb->ccb_h.path;
4135 	void *async_arg = ccb->casync.async_arg_ptr;
4136 	uint32_t async_code = ccb->casync.async_code;
4137 	bool relock;
4138 
4139 	if (path->device != device
4140 	 && path->device->lun_id != CAM_LUN_WILDCARD
4141 	 && device->lun_id != CAM_LUN_WILDCARD)
4142 		return (1);
4143 
4144 	/*
4145 	 * The async callback could free the device.
4146 	 * If it is a broadcast async, it doesn't hold
4147 	 * device reference, so take our own reference.
4148 	 */
4149 	xpt_acquire_device(device);
4150 
4151 	/*
4152 	 * If async for specific device is to be delivered to
4153 	 * the wildcard client, take the specific device lock.
4154 	 * XXX: We may need a way for client to specify it.
4155 	 */
4156 	if ((device->lun_id == CAM_LUN_WILDCARD &&
4157 	     path->device->lun_id != CAM_LUN_WILDCARD) ||
4158 	    (device->target->target_id == CAM_TARGET_WILDCARD &&
4159 	     path->target->target_id != CAM_TARGET_WILDCARD) ||
4160 	    (device->target->bus->path_id == CAM_BUS_WILDCARD &&
4161 	     path->target->bus->path_id != CAM_BUS_WILDCARD)) {
4162 		mtx_unlock(&device->device_mtx);
4163 		xpt_path_lock(path);
4164 		relock = true;
4165 	} else
4166 		relock = false;
4167 
4168 	(*(device->target->bus->xport->ops->async))(async_code,
4169 	    device->target->bus, device->target, device, async_arg);
4170 	xpt_async_bcast(&device->asyncs, async_code, path, async_arg);
4171 
4172 	if (relock) {
4173 		xpt_path_unlock(path);
4174 		mtx_lock(&device->device_mtx);
4175 	}
4176 	xpt_release_device(device);
4177 	return (1);
4178 }
4179 
4180 static int
xpt_async_process_tgt(struct cam_et * target,void * arg)4181 xpt_async_process_tgt(struct cam_et *target, void *arg)
4182 {
4183 	union ccb *ccb = arg;
4184 	struct cam_path *path = ccb->ccb_h.path;
4185 
4186 	if (path->target != target
4187 	 && path->target->target_id != CAM_TARGET_WILDCARD
4188 	 && target->target_id != CAM_TARGET_WILDCARD)
4189 		return (1);
4190 
4191 	if (ccb->casync.async_code == AC_SENT_BDR) {
4192 		/* Update our notion of when the last reset occurred */
4193 		microtime(&target->last_reset);
4194 	}
4195 
4196 	return (xptdevicetraverse(target, NULL, xpt_async_process_dev, ccb));
4197 }
4198 
4199 static void
xpt_async_process(struct cam_periph * periph,union ccb * ccb)4200 xpt_async_process(struct cam_periph *periph, union ccb *ccb)
4201 {
4202 	struct cam_eb *bus;
4203 	struct cam_path *path;
4204 	void *async_arg;
4205 	uint32_t async_code;
4206 
4207 	path = ccb->ccb_h.path;
4208 	async_code = ccb->casync.async_code;
4209 	async_arg = ccb->casync.async_arg_ptr;
4210 	CAM_DEBUG(path, CAM_DEBUG_TRACE | CAM_DEBUG_INFO,
4211 	    ("xpt_async(%s)\n", xpt_async_string(async_code)));
4212 	bus = path->bus;
4213 
4214 	if (async_code == AC_BUS_RESET) {
4215 		/* Update our notion of when the last reset occurred */
4216 		microtime(&bus->last_reset);
4217 	}
4218 
4219 	xpttargettraverse(bus, NULL, xpt_async_process_tgt, ccb);
4220 
4221 	/*
4222 	 * If this wasn't a fully wildcarded async, tell all
4223 	 * clients that want all async events.
4224 	 */
4225 	if (bus != xpt_periph->path->bus) {
4226 		xpt_path_lock(xpt_periph->path);
4227 		xpt_async_process_dev(xpt_periph->path->device, ccb);
4228 		xpt_path_unlock(xpt_periph->path);
4229 	}
4230 
4231 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4232 		xpt_release_devq(path, 1, TRUE);
4233 	else
4234 		xpt_release_simq(path->bus->sim, TRUE);
4235 	if (ccb->casync.async_arg_size > 0)
4236 		free(async_arg, M_CAMXPT);
4237 	xpt_free_path(path);
4238 	xpt_free_ccb(ccb);
4239 }
4240 
4241 static void
xpt_async_bcast(struct async_list * async_head,uint32_t async_code,struct cam_path * path,void * async_arg)4242 xpt_async_bcast(struct async_list *async_head,
4243 		uint32_t async_code,
4244 		struct cam_path *path, void *async_arg)
4245 {
4246 	struct async_node *cur_entry;
4247 	struct mtx *mtx;
4248 
4249 	cur_entry = SLIST_FIRST(async_head);
4250 	while (cur_entry != NULL) {
4251 		struct async_node *next_entry;
4252 		/*
4253 		 * Grab the next list entry before we call the current
4254 		 * entry's callback.  This is because the callback function
4255 		 * can delete its async callback entry.
4256 		 */
4257 		next_entry = SLIST_NEXT(cur_entry, links);
4258 		if ((cur_entry->event_enable & async_code) != 0) {
4259 			mtx = cur_entry->event_lock ?
4260 			    path->device->sim->mtx : NULL;
4261 			if (mtx)
4262 				mtx_lock(mtx);
4263 			cur_entry->callback(cur_entry->callback_arg,
4264 					    async_code, path,
4265 					    async_arg);
4266 			if (mtx)
4267 				mtx_unlock(mtx);
4268 		}
4269 		cur_entry = next_entry;
4270 	}
4271 }
4272 
4273 void
xpt_async(uint32_t async_code,struct cam_path * path,void * async_arg)4274 xpt_async(uint32_t async_code, struct cam_path *path, void *async_arg)
4275 {
4276 	union ccb *ccb;
4277 	int size;
4278 
4279 	ccb = xpt_alloc_ccb_nowait();
4280 	if (ccb == NULL) {
4281 		xpt_print(path, "Can't allocate CCB to send %s\n",
4282 		    xpt_async_string(async_code));
4283 		return;
4284 	}
4285 
4286 	if (xpt_clone_path(&ccb->ccb_h.path, path) != 0) {
4287 		xpt_print(path, "Can't allocate path to send %s\n",
4288 		    xpt_async_string(async_code));
4289 		xpt_free_ccb(ccb);
4290 		return;
4291 	}
4292 	ccb->ccb_h.path->periph = NULL;
4293 	ccb->ccb_h.func_code = XPT_ASYNC;
4294 	ccb->ccb_h.cbfcnp = xpt_async_process;
4295 	ccb->ccb_h.flags |= CAM_UNLOCKED;
4296 	ccb->casync.async_code = async_code;
4297 	ccb->casync.async_arg_size = 0;
4298 	size = xpt_async_size(async_code);
4299 	CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE,
4300 	    ("xpt_async: func %#x %s aync_code %d %s\n",
4301 		ccb->ccb_h.func_code,
4302 		xpt_action_name(ccb->ccb_h.func_code),
4303 		async_code,
4304 		xpt_async_string(async_code)));
4305 	if (size > 0 && async_arg != NULL) {
4306 		ccb->casync.async_arg_ptr = malloc(size, M_CAMXPT, M_NOWAIT);
4307 		if (ccb->casync.async_arg_ptr == NULL) {
4308 			xpt_print(path, "Can't allocate argument to send %s\n",
4309 			    xpt_async_string(async_code));
4310 			xpt_free_path(ccb->ccb_h.path);
4311 			xpt_free_ccb(ccb);
4312 			return;
4313 		}
4314 		memcpy(ccb->casync.async_arg_ptr, async_arg, size);
4315 		ccb->casync.async_arg_size = size;
4316 	} else if (size < 0) {
4317 		ccb->casync.async_arg_ptr = async_arg;
4318 		ccb->casync.async_arg_size = size;
4319 	}
4320 	if (path->device != NULL && path->device->lun_id != CAM_LUN_WILDCARD)
4321 		xpt_freeze_devq(path, 1);
4322 	else
4323 		xpt_freeze_simq(path->bus->sim, 1);
4324 	xpt_action(ccb);
4325 }
4326 
4327 static void
xpt_dev_async_default(uint32_t async_code,struct cam_eb * bus,struct cam_et * target,struct cam_ed * device,void * async_arg)4328 xpt_dev_async_default(uint32_t async_code, struct cam_eb *bus,
4329 		      struct cam_et *target, struct cam_ed *device,
4330 		      void *async_arg)
4331 {
4332 
4333 	/*
4334 	 * We only need to handle events for real devices.
4335 	 */
4336 	if (target->target_id == CAM_TARGET_WILDCARD
4337 	 || device->lun_id == CAM_LUN_WILDCARD)
4338 		return;
4339 
4340 	printf("%s called\n", __func__);
4341 }
4342 
4343 static uint32_t
xpt_freeze_devq_device(struct cam_ed * dev,u_int count)4344 xpt_freeze_devq_device(struct cam_ed *dev, u_int count)
4345 {
4346 	struct cam_devq	*devq;
4347 	uint32_t freeze;
4348 
4349 	devq = dev->sim->devq;
4350 	mtx_assert(&devq->send_mtx, MA_OWNED);
4351 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4352 	    ("xpt_freeze_devq_device(%d) %u->%u\n", count,
4353 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt + count));
4354 	freeze = (dev->ccbq.queue.qfrozen_cnt += count);
4355 	/* Remove frozen device from sendq. */
4356 	if (device_is_queued(dev))
4357 		camq_remove(&devq->send_queue, dev->devq_entry.index);
4358 	return (freeze);
4359 }
4360 
4361 uint32_t
xpt_freeze_devq(struct cam_path * path,u_int count)4362 xpt_freeze_devq(struct cam_path *path, u_int count)
4363 {
4364 	struct cam_ed	*dev = path->device;
4365 	struct cam_devq	*devq;
4366 	uint32_t	 freeze;
4367 
4368 	devq = dev->sim->devq;
4369 	mtx_lock(&devq->send_mtx);
4370 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_freeze_devq(%d)\n", count));
4371 	freeze = xpt_freeze_devq_device(dev, count);
4372 	mtx_unlock(&devq->send_mtx);
4373 	return (freeze);
4374 }
4375 
4376 uint32_t
xpt_freeze_simq(struct cam_sim * sim,u_int count)4377 xpt_freeze_simq(struct cam_sim *sim, u_int count)
4378 {
4379 	struct cam_devq	*devq;
4380 	uint32_t	 freeze;
4381 
4382 	devq = sim->devq;
4383 	mtx_lock(&devq->send_mtx);
4384 	freeze = (devq->send_queue.qfrozen_cnt += count);
4385 	mtx_unlock(&devq->send_mtx);
4386 	return (freeze);
4387 }
4388 
4389 static void
xpt_release_devq_timeout(void * arg)4390 xpt_release_devq_timeout(void *arg)
4391 {
4392 	struct cam_ed *dev;
4393 	struct cam_devq *devq;
4394 
4395 	dev = (struct cam_ed *)arg;
4396 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE, ("xpt_release_devq_timeout\n"));
4397 	devq = dev->sim->devq;
4398 	mtx_assert(&devq->send_mtx, MA_OWNED);
4399 	if (xpt_release_devq_device(dev, /*count*/1, /*run_queue*/TRUE))
4400 		xpt_run_devq(devq);
4401 }
4402 
4403 void
xpt_release_devq(struct cam_path * path,u_int count,int run_queue)4404 xpt_release_devq(struct cam_path *path, u_int count, int run_queue)
4405 {
4406 	struct cam_ed *dev;
4407 	struct cam_devq *devq;
4408 
4409 	CAM_DEBUG(path, CAM_DEBUG_TRACE, ("xpt_release_devq(%d, %d)\n",
4410 	    count, run_queue));
4411 	dev = path->device;
4412 	devq = dev->sim->devq;
4413 	mtx_lock(&devq->send_mtx);
4414 	if (xpt_release_devq_device(dev, count, run_queue))
4415 		xpt_run_devq(dev->sim->devq);
4416 	mtx_unlock(&devq->send_mtx);
4417 }
4418 
4419 static int
xpt_release_devq_device(struct cam_ed * dev,u_int count,int run_queue)4420 xpt_release_devq_device(struct cam_ed *dev, u_int count, int run_queue)
4421 {
4422 
4423 	mtx_assert(&dev->sim->devq->send_mtx, MA_OWNED);
4424 	CAM_DEBUG_DEV(dev, CAM_DEBUG_TRACE,
4425 	    ("xpt_release_devq_device(%d, %d) %u->%u\n", count, run_queue,
4426 	    dev->ccbq.queue.qfrozen_cnt, dev->ccbq.queue.qfrozen_cnt - count));
4427 	if (count > dev->ccbq.queue.qfrozen_cnt) {
4428 #ifdef INVARIANTS
4429 		printf("xpt_release_devq(): requested %u > present %u\n",
4430 		    count, dev->ccbq.queue.qfrozen_cnt);
4431 #endif
4432 		count = dev->ccbq.queue.qfrozen_cnt;
4433 	}
4434 	dev->ccbq.queue.qfrozen_cnt -= count;
4435 	if (dev->ccbq.queue.qfrozen_cnt == 0) {
4436 		/*
4437 		 * No longer need to wait for a successful
4438 		 * command completion.
4439 		 */
4440 		dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
4441 		/*
4442 		 * Remove any timeouts that might be scheduled
4443 		 * to release this queue.
4444 		 */
4445 		if ((dev->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0) {
4446 			callout_stop(&dev->callout);
4447 			dev->flags &= ~CAM_DEV_REL_TIMEOUT_PENDING;
4448 		}
4449 		/*
4450 		 * Now that we are unfrozen schedule the
4451 		 * device so any pending transactions are
4452 		 * run.
4453 		 */
4454 		xpt_schedule_devq(dev->sim->devq, dev);
4455 	} else
4456 		run_queue = 0;
4457 	return (run_queue);
4458 }
4459 
4460 void
xpt_release_simq(struct cam_sim * sim,int run_queue)4461 xpt_release_simq(struct cam_sim *sim, int run_queue)
4462 {
4463 	struct cam_devq	*devq;
4464 
4465 	devq = sim->devq;
4466 	mtx_lock(&devq->send_mtx);
4467 	if (devq->send_queue.qfrozen_cnt <= 0) {
4468 #ifdef INVARIANTS
4469 		printf("xpt_release_simq: requested 1 > present %u\n",
4470 		    devq->send_queue.qfrozen_cnt);
4471 #endif
4472 	} else
4473 		devq->send_queue.qfrozen_cnt--;
4474 	if (devq->send_queue.qfrozen_cnt == 0) {
4475 		if (run_queue) {
4476 			/*
4477 			 * Now that we are unfrozen run the send queue.
4478 			 */
4479 			xpt_run_devq(sim->devq);
4480 		}
4481 	}
4482 	mtx_unlock(&devq->send_mtx);
4483 }
4484 
4485 void
xpt_done(union ccb * done_ccb)4486 xpt_done(union ccb *done_ccb)
4487 {
4488 	struct cam_doneq *queue;
4489 	int	run, hash;
4490 
4491 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
4492 	if (done_ccb->ccb_h.func_code == XPT_SCSI_IO &&
4493 	    done_ccb->csio.bio != NULL)
4494 		biotrack(done_ccb->csio.bio, __func__);
4495 #endif
4496 
4497 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4498 	    ("xpt_done: func= %#x %s status %#x\n",
4499 		done_ccb->ccb_h.func_code,
4500 		xpt_action_name(done_ccb->ccb_h.func_code),
4501 		done_ccb->ccb_h.status));
4502 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4503 		return;
4504 
4505 	/* Store the time the ccb was in the sim */
4506 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4507 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4508 	hash = (u_int)(done_ccb->ccb_h.path_id + done_ccb->ccb_h.target_id +
4509 	    done_ccb->ccb_h.target_lun) % cam_num_doneqs;
4510 	queue = &cam_doneqs[hash];
4511 	mtx_lock(&queue->cam_doneq_mtx);
4512 	run = (queue->cam_doneq_sleep && STAILQ_EMPTY(&queue->cam_doneq));
4513 	STAILQ_INSERT_TAIL(&queue->cam_doneq, &done_ccb->ccb_h, sim_links.stqe);
4514 	done_ccb->ccb_h.pinfo.index = CAM_DONEQ_INDEX;
4515 	mtx_unlock(&queue->cam_doneq_mtx);
4516 	if (run && !dumping)
4517 		wakeup(&queue->cam_doneq);
4518 }
4519 
4520 void
xpt_done_direct(union ccb * done_ccb)4521 xpt_done_direct(union ccb *done_ccb)
4522 {
4523 
4524 	CAM_DEBUG(done_ccb->ccb_h.path, CAM_DEBUG_TRACE,
4525 	    ("xpt_done_direct: status %#x\n", done_ccb->ccb_h.status));
4526 	if ((done_ccb->ccb_h.func_code & XPT_FC_QUEUED) == 0)
4527 		return;
4528 
4529 	/* Store the time the ccb was in the sim */
4530 	done_ccb->ccb_h.qos.periph_data = cam_iosched_delta_t(done_ccb->ccb_h.qos.periph_data);
4531 	done_ccb->ccb_h.status |= CAM_QOS_VALID;
4532 	xpt_done_process(&done_ccb->ccb_h);
4533 }
4534 
4535 union ccb *
xpt_alloc_ccb(void)4536 xpt_alloc_ccb(void)
4537 {
4538 	union ccb *new_ccb;
4539 
4540 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4541 	return (new_ccb);
4542 }
4543 
4544 union ccb *
xpt_alloc_ccb_nowait(void)4545 xpt_alloc_ccb_nowait(void)
4546 {
4547 	union ccb *new_ccb;
4548 
4549 	new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4550 	return (new_ccb);
4551 }
4552 
4553 void
xpt_free_ccb(union ccb * free_ccb)4554 xpt_free_ccb(union ccb *free_ccb)
4555 {
4556 	struct cam_periph *periph;
4557 
4558 	if (free_ccb->ccb_h.alloc_flags & CAM_CCB_FROM_UMA) {
4559 		/*
4560 		 * Looks like a CCB allocated from a periph UMA zone.
4561 		 */
4562 		periph = free_ccb->ccb_h.path->periph;
4563 		uma_zfree(periph->ccb_zone, free_ccb);
4564 	} else {
4565 		free(free_ccb, M_CAMCCB);
4566 	}
4567 }
4568 
4569 /* Private XPT functions */
4570 
4571 /*
4572  * Get a CAM control block for the caller. Charge the structure to the device
4573  * referenced by the path.  If we don't have sufficient resources to allocate
4574  * more ccbs, we return NULL.
4575  */
4576 static union ccb *
xpt_get_ccb_nowait(struct cam_periph * periph)4577 xpt_get_ccb_nowait(struct cam_periph *periph)
4578 {
4579 	union ccb *new_ccb;
4580 	int alloc_flags;
4581 
4582 	if (periph->ccb_zone != NULL) {
4583 		alloc_flags = CAM_CCB_FROM_UMA;
4584 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_NOWAIT);
4585 	} else {
4586 		alloc_flags = 0;
4587 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_NOWAIT);
4588 	}
4589 	if (new_ccb == NULL)
4590 		return (NULL);
4591 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4592 	periph->periph_allocated++;
4593 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4594 	return (new_ccb);
4595 }
4596 
4597 static union ccb *
xpt_get_ccb(struct cam_periph * periph)4598 xpt_get_ccb(struct cam_periph *periph)
4599 {
4600 	union ccb *new_ccb;
4601 	int alloc_flags;
4602 
4603 	cam_periph_unlock(periph);
4604 	if (periph->ccb_zone != NULL) {
4605 		alloc_flags = CAM_CCB_FROM_UMA;
4606 		new_ccb = uma_zalloc(periph->ccb_zone, M_ZERO|M_WAITOK);
4607 	} else {
4608 		alloc_flags = 0;
4609 		new_ccb = malloc(sizeof(*new_ccb), M_CAMCCB, M_ZERO|M_WAITOK);
4610 	}
4611 	new_ccb->ccb_h.alloc_flags = alloc_flags;
4612 	cam_periph_lock(periph);
4613 	periph->periph_allocated++;
4614 	cam_ccbq_take_opening(&periph->path->device->ccbq);
4615 	return (new_ccb);
4616 }
4617 
4618 union ccb *
cam_periph_getccb(struct cam_periph * periph,uint32_t priority)4619 cam_periph_getccb(struct cam_periph *periph, uint32_t priority)
4620 {
4621 	struct ccb_hdr *ccb_h;
4622 
4623 	CAM_DEBUG(periph->path, CAM_DEBUG_TRACE, ("cam_periph_getccb\n"));
4624 	cam_periph_assert(periph, MA_OWNED);
4625 	while ((ccb_h = SLIST_FIRST(&periph->ccb_list)) == NULL ||
4626 	    ccb_h->pinfo.priority != priority) {
4627 		if (priority < periph->immediate_priority) {
4628 			periph->immediate_priority = priority;
4629 			xpt_run_allocq(periph, 0);
4630 		} else
4631 			cam_periph_sleep(periph, &periph->ccb_list, PRIBIO,
4632 			    "cgticb", 0);
4633 	}
4634 	SLIST_REMOVE_HEAD(&periph->ccb_list, periph_links.sle);
4635 	return ((union ccb *)ccb_h);
4636 }
4637 
4638 static void
xpt_acquire_bus(struct cam_eb * bus)4639 xpt_acquire_bus(struct cam_eb *bus)
4640 {
4641 
4642 	xpt_lock_buses();
4643 	bus->refcount++;
4644 	xpt_unlock_buses();
4645 }
4646 
4647 static void
xpt_release_bus(struct cam_eb * bus)4648 xpt_release_bus(struct cam_eb *bus)
4649 {
4650 
4651 	xpt_lock_buses();
4652 	KASSERT(bus->refcount >= 1, ("bus->refcount >= 1"));
4653 	if (--bus->refcount > 0) {
4654 		xpt_unlock_buses();
4655 		return;
4656 	}
4657 	TAILQ_REMOVE(&xsoftc.xpt_busses, bus, links);
4658 	xsoftc.bus_generation++;
4659 	xpt_unlock_buses();
4660 	KASSERT(TAILQ_EMPTY(&bus->et_entries),
4661 	    ("destroying bus, but target list is not empty"));
4662 	cam_sim_release(bus->sim);
4663 	mtx_destroy(&bus->eb_mtx);
4664 	free(bus, M_CAMXPT);
4665 }
4666 
4667 static struct cam_et *
xpt_alloc_target(struct cam_eb * bus,target_id_t target_id)4668 xpt_alloc_target(struct cam_eb *bus, target_id_t target_id)
4669 {
4670 	struct cam_et *cur_target, *target;
4671 
4672 	mtx_assert(&xsoftc.xpt_topo_lock, MA_OWNED);
4673 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4674 	target = (struct cam_et *)malloc(sizeof(*target), M_CAMXPT,
4675 					 M_NOWAIT|M_ZERO);
4676 	if (target == NULL)
4677 		return (NULL);
4678 
4679 	TAILQ_INIT(&target->ed_entries);
4680 	target->bus = bus;
4681 	target->target_id = target_id;
4682 	target->refcount = 1;
4683 	target->generation = 0;
4684 	target->luns = NULL;
4685 	mtx_init(&target->luns_mtx, "CAM LUNs lock", NULL, MTX_DEF);
4686 	timevalclear(&target->last_reset);
4687 	/*
4688 	 * Hold a reference to our parent bus so it
4689 	 * will not go away before we do.
4690 	 */
4691 	bus->refcount++;
4692 
4693 	/* Insertion sort into our bus's target list */
4694 	cur_target = TAILQ_FIRST(&bus->et_entries);
4695 	while (cur_target != NULL && cur_target->target_id < target_id)
4696 		cur_target = TAILQ_NEXT(cur_target, links);
4697 	if (cur_target != NULL) {
4698 		TAILQ_INSERT_BEFORE(cur_target, target, links);
4699 	} else {
4700 		TAILQ_INSERT_TAIL(&bus->et_entries, target, links);
4701 	}
4702 	bus->generation++;
4703 	return (target);
4704 }
4705 
4706 static void
xpt_acquire_target(struct cam_et * target)4707 xpt_acquire_target(struct cam_et *target)
4708 {
4709 	struct cam_eb *bus = target->bus;
4710 
4711 	mtx_lock(&bus->eb_mtx);
4712 	target->refcount++;
4713 	mtx_unlock(&bus->eb_mtx);
4714 }
4715 
4716 static void
xpt_release_target(struct cam_et * target)4717 xpt_release_target(struct cam_et *target)
4718 {
4719 	struct cam_eb *bus = target->bus;
4720 
4721 	mtx_lock(&bus->eb_mtx);
4722 	if (--target->refcount > 0) {
4723 		mtx_unlock(&bus->eb_mtx);
4724 		return;
4725 	}
4726 	TAILQ_REMOVE(&bus->et_entries, target, links);
4727 	bus->generation++;
4728 	mtx_unlock(&bus->eb_mtx);
4729 	KASSERT(TAILQ_EMPTY(&target->ed_entries),
4730 	    ("destroying target, but device list is not empty"));
4731 	xpt_release_bus(bus);
4732 	mtx_destroy(&target->luns_mtx);
4733 	if (target->luns)
4734 		free(target->luns, M_CAMXPT);
4735 	free(target, M_CAMXPT);
4736 }
4737 
4738 static struct cam_ed *
xpt_alloc_device_default(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4739 xpt_alloc_device_default(struct cam_eb *bus, struct cam_et *target,
4740 			 lun_id_t lun_id)
4741 {
4742 	struct cam_ed *device;
4743 
4744 	device = xpt_alloc_device(bus, target, lun_id);
4745 	if (device == NULL)
4746 		return (NULL);
4747 
4748 	device->mintags = 1;
4749 	device->maxtags = 1;
4750 	return (device);
4751 }
4752 
4753 static void
xpt_destroy_device(void * context,int pending)4754 xpt_destroy_device(void *context, int pending)
4755 {
4756 	struct cam_ed	*device = context;
4757 
4758 	mtx_lock(&device->device_mtx);
4759 	mtx_destroy(&device->device_mtx);
4760 	free(device, M_CAMDEV);
4761 }
4762 
4763 struct cam_ed *
xpt_alloc_device(struct cam_eb * bus,struct cam_et * target,lun_id_t lun_id)4764 xpt_alloc_device(struct cam_eb *bus, struct cam_et *target, lun_id_t lun_id)
4765 {
4766 	struct cam_ed	*cur_device, *device;
4767 	struct cam_devq	*devq;
4768 	cam_status status;
4769 
4770 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4771 	/* Make space for us in the device queue on our bus */
4772 	devq = bus->sim->devq;
4773 	mtx_lock(&devq->send_mtx);
4774 	status = cam_devq_resize(devq, devq->send_queue.array_size + 1);
4775 	mtx_unlock(&devq->send_mtx);
4776 	if (status != CAM_REQ_CMP)
4777 		return (NULL);
4778 
4779 	device = (struct cam_ed *)malloc(sizeof(*device),
4780 					 M_CAMDEV, M_NOWAIT|M_ZERO);
4781 	if (device == NULL)
4782 		return (NULL);
4783 
4784 	cam_init_pinfo(&device->devq_entry);
4785 	device->target = target;
4786 	device->lun_id = lun_id;
4787 	device->sim = bus->sim;
4788 	if (cam_ccbq_init(&device->ccbq,
4789 			  bus->sim->max_dev_openings) != 0) {
4790 		free(device, M_CAMDEV);
4791 		return (NULL);
4792 	}
4793 	SLIST_INIT(&device->asyncs);
4794 	SLIST_INIT(&device->periphs);
4795 	device->generation = 0;
4796 	device->flags = CAM_DEV_UNCONFIGURED;
4797 	device->tag_delay_count = 0;
4798 	device->tag_saved_openings = 0;
4799 	device->refcount = 1;
4800 	mtx_init(&device->device_mtx, "CAM device lock", NULL, MTX_DEF);
4801 	callout_init_mtx(&device->callout, &devq->send_mtx, 0);
4802 	TASK_INIT(&device->device_destroy_task, 0, xpt_destroy_device, device);
4803 	/*
4804 	 * Hold a reference to our parent bus so it
4805 	 * will not go away before we do.
4806 	 */
4807 	target->refcount++;
4808 
4809 	cur_device = TAILQ_FIRST(&target->ed_entries);
4810 	while (cur_device != NULL && cur_device->lun_id < lun_id)
4811 		cur_device = TAILQ_NEXT(cur_device, links);
4812 	if (cur_device != NULL)
4813 		TAILQ_INSERT_BEFORE(cur_device, device, links);
4814 	else
4815 		TAILQ_INSERT_TAIL(&target->ed_entries, device, links);
4816 	target->generation++;
4817 	return (device);
4818 }
4819 
4820 void
xpt_acquire_device(struct cam_ed * device)4821 xpt_acquire_device(struct cam_ed *device)
4822 {
4823 	struct cam_eb *bus = device->target->bus;
4824 
4825 	mtx_lock(&bus->eb_mtx);
4826 	device->refcount++;
4827 	mtx_unlock(&bus->eb_mtx);
4828 }
4829 
4830 void
xpt_release_device(struct cam_ed * device)4831 xpt_release_device(struct cam_ed *device)
4832 {
4833 	struct cam_eb *bus = device->target->bus;
4834 	struct cam_devq *devq;
4835 
4836 	mtx_lock(&bus->eb_mtx);
4837 	if (--device->refcount > 0) {
4838 		mtx_unlock(&bus->eb_mtx);
4839 		return;
4840 	}
4841 
4842 	TAILQ_REMOVE(&device->target->ed_entries, device,links);
4843 	device->target->generation++;
4844 	mtx_unlock(&bus->eb_mtx);
4845 
4846 	/* Release our slot in the devq */
4847 	devq = bus->sim->devq;
4848 	mtx_lock(&devq->send_mtx);
4849 	cam_devq_resize(devq, devq->send_queue.array_size - 1);
4850 
4851 	KASSERT(SLIST_EMPTY(&device->periphs),
4852 	    ("destroying device, but periphs list is not empty"));
4853 	KASSERT(device->devq_entry.index == CAM_UNQUEUED_INDEX,
4854 	    ("destroying device while still queued for ccbs"));
4855 
4856 	/* The send_mtx must be held when accessing the callout */
4857 	if ((device->flags & CAM_DEV_REL_TIMEOUT_PENDING) != 0)
4858 		callout_stop(&device->callout);
4859 
4860 	mtx_unlock(&devq->send_mtx);
4861 
4862 	xpt_release_target(device->target);
4863 
4864 	cam_ccbq_fini(&device->ccbq);
4865 	/*
4866 	 * Free allocated memory.  free(9) does nothing if the
4867 	 * supplied pointer is NULL, so it is safe to call without
4868 	 * checking.
4869 	 */
4870 	free(device->supported_vpds, M_CAMXPT);
4871 	free(device->device_id, M_CAMXPT);
4872 	free(device->ext_inq, M_CAMXPT);
4873 	free(device->physpath, M_CAMXPT);
4874 	free(device->rcap_buf, M_CAMXPT);
4875 	free(device->serial_num, M_CAMXPT);
4876 	free(device->nvme_data, M_CAMXPT);
4877 	free(device->nvme_cdata, M_CAMXPT);
4878 	taskqueue_enqueue(xsoftc.xpt_taskq, &device->device_destroy_task);
4879 }
4880 
4881 uint32_t
xpt_dev_ccbq_resize(struct cam_path * path,int newopenings)4882 xpt_dev_ccbq_resize(struct cam_path *path, int newopenings)
4883 {
4884 	int	result;
4885 	struct	cam_ed *dev;
4886 
4887 	dev = path->device;
4888 	mtx_lock(&dev->sim->devq->send_mtx);
4889 	result = cam_ccbq_resize(&dev->ccbq, newopenings);
4890 	mtx_unlock(&dev->sim->devq->send_mtx);
4891 	if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
4892 	 || (dev->inq_flags & SID_CmdQue) != 0)
4893 		dev->tag_saved_openings = newopenings;
4894 	return (result);
4895 }
4896 
4897 static struct cam_eb *
xpt_find_bus(path_id_t path_id)4898 xpt_find_bus(path_id_t path_id)
4899 {
4900 	struct cam_eb *bus;
4901 
4902 	xpt_lock_buses();
4903 	for (bus = TAILQ_FIRST(&xsoftc.xpt_busses);
4904 	     bus != NULL;
4905 	     bus = TAILQ_NEXT(bus, links)) {
4906 		if (bus->path_id == path_id) {
4907 			bus->refcount++;
4908 			break;
4909 		}
4910 	}
4911 	xpt_unlock_buses();
4912 	return (bus);
4913 }
4914 
4915 static struct cam_et *
xpt_find_target(struct cam_eb * bus,target_id_t target_id)4916 xpt_find_target(struct cam_eb *bus, target_id_t	target_id)
4917 {
4918 	struct cam_et *target;
4919 
4920 	mtx_assert(&bus->eb_mtx, MA_OWNED);
4921 	for (target = TAILQ_FIRST(&bus->et_entries);
4922 	     target != NULL;
4923 	     target = TAILQ_NEXT(target, links)) {
4924 		if (target->target_id == target_id) {
4925 			target->refcount++;
4926 			break;
4927 		}
4928 	}
4929 	return (target);
4930 }
4931 
4932 static struct cam_ed *
xpt_find_device(struct cam_et * target,lun_id_t lun_id)4933 xpt_find_device(struct cam_et *target, lun_id_t lun_id)
4934 {
4935 	struct cam_ed *device;
4936 
4937 	mtx_assert(&target->bus->eb_mtx, MA_OWNED);
4938 	for (device = TAILQ_FIRST(&target->ed_entries);
4939 	     device != NULL;
4940 	     device = TAILQ_NEXT(device, links)) {
4941 		if (device->lun_id == lun_id) {
4942 			device->refcount++;
4943 			break;
4944 		}
4945 	}
4946 	return (device);
4947 }
4948 
4949 void
xpt_start_tags(struct cam_path * path)4950 xpt_start_tags(struct cam_path *path)
4951 {
4952 	struct ccb_relsim crs;
4953 	struct cam_ed *device;
4954 	struct cam_sim *sim;
4955 	int    newopenings;
4956 
4957 	device = path->device;
4958 	sim = path->bus->sim;
4959 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4960 	xpt_freeze_devq(path, /*count*/1);
4961 	device->inq_flags |= SID_CmdQue;
4962 	if (device->tag_saved_openings != 0)
4963 		newopenings = device->tag_saved_openings;
4964 	else
4965 		newopenings = min(device->maxtags,
4966 				  sim->max_tagged_dev_openings);
4967 	xpt_dev_ccbq_resize(path, newopenings);
4968 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4969 	memset(&crs, 0, sizeof(crs));
4970 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4971 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4972 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4973 	crs.openings
4974 	    = crs.release_timeout
4975 	    = crs.qfrozen_cnt
4976 	    = 0;
4977 	xpt_action((union ccb *)&crs);
4978 }
4979 
4980 void
xpt_stop_tags(struct cam_path * path)4981 xpt_stop_tags(struct cam_path *path)
4982 {
4983 	struct ccb_relsim crs;
4984 	struct cam_ed *device;
4985 	struct cam_sim *sim;
4986 
4987 	device = path->device;
4988 	sim = path->bus->sim;
4989 	device->flags &= ~CAM_DEV_TAG_AFTER_COUNT;
4990 	device->tag_delay_count = 0;
4991 	xpt_freeze_devq(path, /*count*/1);
4992 	device->inq_flags &= ~SID_CmdQue;
4993 	xpt_dev_ccbq_resize(path, sim->max_dev_openings);
4994 	xpt_async(AC_GETDEV_CHANGED, path, NULL);
4995 	memset(&crs, 0, sizeof(crs));
4996 	xpt_setup_ccb(&crs.ccb_h, path, CAM_PRIORITY_NORMAL);
4997 	crs.ccb_h.func_code = XPT_REL_SIMQ;
4998 	crs.release_flags = RELSIM_RELEASE_AFTER_QEMPTY;
4999 	crs.openings
5000 	    = crs.release_timeout
5001 	    = crs.qfrozen_cnt
5002 	    = 0;
5003 	xpt_action((union ccb *)&crs);
5004 }
5005 
5006 /*
5007  * Assume all possible buses are detected by this time, so allow boot
5008  * as soon as they all are scanned.
5009  */
5010 static void
xpt_boot_delay(void * arg)5011 xpt_boot_delay(void *arg)
5012 {
5013 
5014 	xpt_release_boot();
5015 }
5016 
5017 /*
5018  * Now that all config hooks have completed, start boot_delay timer,
5019  * waiting for possibly still undetected buses (USB) to appear.
5020  */
5021 static void
xpt_ch_done(void * arg)5022 xpt_ch_done(void *arg)
5023 {
5024 
5025 	callout_init(&xsoftc.boot_callout, 1);
5026 	callout_reset_sbt(&xsoftc.boot_callout, SBT_1MS * xsoftc.boot_delay,
5027 	    SBT_1MS, xpt_boot_delay, NULL, 0);
5028 }
5029 SYSINIT(xpt_hw_delay, SI_SUB_INT_CONFIG_HOOKS, SI_ORDER_ANY, xpt_ch_done, NULL);
5030 
5031 /*
5032  * Now that interrupts are enabled, go find our devices
5033  */
5034 static void
xpt_config(void * arg)5035 xpt_config(void *arg)
5036 {
5037 	if (taskqueue_start_threads(&xsoftc.xpt_taskq, 1, PRIBIO, "CAM taskq"))
5038 		printf("xpt_config: failed to create taskqueue thread.\n");
5039 
5040 	/* Setup debugging path */
5041 	if (cam_dflags != CAM_DEBUG_NONE) {
5042 		if (xpt_create_path(&cam_dpath, NULL,
5043 				    CAM_DEBUG_BUS, CAM_DEBUG_TARGET,
5044 				    CAM_DEBUG_LUN) != CAM_REQ_CMP) {
5045 			printf(
5046 "xpt_config: xpt_create_path() failed for debug target %d:%d:%d, debugging disabled\n",
5047 			    CAM_DEBUG_BUS, CAM_DEBUG_TARGET, CAM_DEBUG_LUN);
5048 			cam_dflags = CAM_DEBUG_NONE;
5049 		}
5050 	} else
5051 		cam_dpath = NULL;
5052 
5053 	periphdriver_init(1);
5054 	xpt_hold_boot();
5055 
5056 	/* Fire up rescan thread. */
5057 	if (kproc_kthread_add(xpt_scanner_thread, NULL, &cam_proc, NULL, 0, 0,
5058 	    "cam", "scanner")) {
5059 		printf("xpt_config: failed to create rescan thread.\n");
5060 	}
5061 }
5062 
5063 void
xpt_hold_boot_locked(void)5064 xpt_hold_boot_locked(void)
5065 {
5066 
5067 	if (xsoftc.buses_to_config++ == 0)
5068 		root_mount_hold_token("CAM", &xsoftc.xpt_rootmount);
5069 }
5070 
5071 void
xpt_hold_boot(void)5072 xpt_hold_boot(void)
5073 {
5074 
5075 	xpt_lock_buses();
5076 	xpt_hold_boot_locked();
5077 	xpt_unlock_buses();
5078 }
5079 
5080 void
xpt_release_boot(void)5081 xpt_release_boot(void)
5082 {
5083 
5084 	xpt_lock_buses();
5085 	if (--xsoftc.buses_to_config == 0) {
5086 		if (xsoftc.buses_config_done == 0) {
5087 			xsoftc.buses_config_done = 1;
5088 			xsoftc.buses_to_config++;
5089 			TASK_INIT(&xsoftc.boot_task, 0, xpt_finishconfig_task,
5090 			    NULL);
5091 			taskqueue_enqueue(taskqueue_thread, &xsoftc.boot_task);
5092 		} else
5093 			root_mount_rel(&xsoftc.xpt_rootmount);
5094 	}
5095 	xpt_unlock_buses();
5096 }
5097 
5098 /*
5099  * If the given device only has one peripheral attached to it, and if that
5100  * peripheral is the passthrough driver, announce it.  This insures that the
5101  * user sees some sort of announcement for every peripheral in their system.
5102  */
5103 static int
xptpassannouncefunc(struct cam_ed * device,void * arg)5104 xptpassannouncefunc(struct cam_ed *device, void *arg)
5105 {
5106 	struct cam_periph *periph;
5107 	int i;
5108 
5109 	for (periph = SLIST_FIRST(&device->periphs), i = 0; periph != NULL;
5110 	     periph = SLIST_NEXT(periph, periph_links), i++);
5111 
5112 	periph = SLIST_FIRST(&device->periphs);
5113 	if ((i == 1)
5114 	 && (strncmp(periph->periph_name, "pass", 4) == 0))
5115 		xpt_announce_periph(periph, NULL);
5116 
5117 	return(1);
5118 }
5119 
5120 static void
xpt_finishconfig_task(void * context,int pending)5121 xpt_finishconfig_task(void *context, int pending)
5122 {
5123 
5124 	periphdriver_init(2);
5125 	/*
5126 	 * Check for devices with no "standard" peripheral driver
5127 	 * attached.  For any devices like that, announce the
5128 	 * passthrough driver so the user will see something.
5129 	 */
5130 	if (!bootverbose)
5131 		xpt_for_all_devices(xptpassannouncefunc, NULL);
5132 
5133 	xpt_release_boot();
5134 }
5135 
5136 cam_status
xpt_register_async(int event,ac_callback_t * cbfunc,void * cbarg,struct cam_path * path)5137 xpt_register_async(int event, ac_callback_t *cbfunc, void *cbarg,
5138 		   struct cam_path *path)
5139 {
5140 	struct ccb_setasync csa;
5141 	cam_status status;
5142 	bool xptpath = false;
5143 
5144 	if (path == NULL) {
5145 		status = xpt_create_path(&path, /*periph*/NULL, CAM_XPT_PATH_ID,
5146 					 CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD);
5147 		if (status != CAM_REQ_CMP)
5148 			return (status);
5149 		xpt_path_lock(path);
5150 		xptpath = true;
5151 	}
5152 
5153 	memset(&csa, 0, sizeof(csa));
5154 	xpt_setup_ccb(&csa.ccb_h, path, CAM_PRIORITY_NORMAL);
5155 	csa.ccb_h.func_code = XPT_SASYNC_CB;
5156 	csa.event_enable = event;
5157 	csa.callback = cbfunc;
5158 	csa.callback_arg = cbarg;
5159 	xpt_action((union ccb *)&csa);
5160 	status = csa.ccb_h.status;
5161 
5162 	CAM_DEBUG(csa.ccb_h.path, CAM_DEBUG_TRACE,
5163 	    ("xpt_register_async: func %p\n", cbfunc));
5164 
5165 	if (xptpath) {
5166 		xpt_path_unlock(path);
5167 		xpt_free_path(path);
5168 	}
5169 
5170 	if ((status == CAM_REQ_CMP) &&
5171 	    (csa.event_enable & AC_FOUND_DEVICE)) {
5172 		/*
5173 		 * Get this peripheral up to date with all
5174 		 * the currently existing devices.
5175 		 */
5176 		xpt_for_all_devices(xptsetasyncfunc, &csa);
5177 	}
5178 	if ((status == CAM_REQ_CMP) &&
5179 	    (csa.event_enable & AC_PATH_REGISTERED)) {
5180 		/*
5181 		 * Get this peripheral up to date with all
5182 		 * the currently existing buses.
5183 		 */
5184 		xpt_for_all_busses(xptsetasyncbusfunc, &csa);
5185 	}
5186 
5187 	return (status);
5188 }
5189 
5190 static void
xptaction(struct cam_sim * sim,union ccb * work_ccb)5191 xptaction(struct cam_sim *sim, union ccb *work_ccb)
5192 {
5193 	CAM_DEBUG(work_ccb->ccb_h.path, CAM_DEBUG_TRACE, ("xptaction\n"));
5194 
5195 	switch (work_ccb->ccb_h.func_code) {
5196 	/* Common cases first */
5197 	case XPT_PATH_INQ:		/* Path routing inquiry */
5198 	{
5199 		struct ccb_pathinq *cpi;
5200 
5201 		cpi = &work_ccb->cpi;
5202 		cpi->version_num = 1; /* XXX??? */
5203 		cpi->hba_inquiry = 0;
5204 		cpi->target_sprt = 0;
5205 		cpi->hba_misc = 0;
5206 		cpi->hba_eng_cnt = 0;
5207 		cpi->max_target = 0;
5208 		cpi->max_lun = 0;
5209 		cpi->initiator_id = 0;
5210 		strlcpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
5211 		strlcpy(cpi->hba_vid, "", HBA_IDLEN);
5212 		strlcpy(cpi->dev_name, sim->sim_name, DEV_IDLEN);
5213 		cpi->unit_number = sim->unit_number;
5214 		cpi->bus_id = sim->bus_id;
5215 		cpi->base_transfer_speed = 0;
5216 		cpi->protocol = PROTO_UNSPECIFIED;
5217 		cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
5218 		cpi->transport = XPORT_UNSPECIFIED;
5219 		cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
5220 		cpi->ccb_h.status = CAM_REQ_CMP;
5221 		break;
5222 	}
5223 	default:
5224 		work_ccb->ccb_h.status = CAM_REQ_INVALID;
5225 		break;
5226 	}
5227 	xpt_done(work_ccb);
5228 }
5229 
5230 /*
5231  * The xpt as a "controller" has no interrupt sources, so polling
5232  * is a no-op.
5233  */
5234 static void
xptpoll(struct cam_sim * sim)5235 xptpoll(struct cam_sim *sim)
5236 {
5237 }
5238 
5239 void
xpt_lock_buses(void)5240 xpt_lock_buses(void)
5241 {
5242 	mtx_lock(&xsoftc.xpt_topo_lock);
5243 }
5244 
5245 void
xpt_unlock_buses(void)5246 xpt_unlock_buses(void)
5247 {
5248 	mtx_unlock(&xsoftc.xpt_topo_lock);
5249 }
5250 
5251 struct mtx *
xpt_path_mtx(struct cam_path * path)5252 xpt_path_mtx(struct cam_path *path)
5253 {
5254 
5255 	return (&path->device->device_mtx);
5256 }
5257 
5258 static void
xpt_done_process(struct ccb_hdr * ccb_h)5259 xpt_done_process(struct ccb_hdr *ccb_h)
5260 {
5261 	struct cam_sim *sim = NULL;
5262 	struct cam_devq *devq = NULL;
5263 	struct mtx *mtx = NULL;
5264 
5265 #if defined(BUF_TRACKING) || defined(FULL_BUF_TRACKING)
5266 	struct ccb_scsiio *csio;
5267 
5268 	if (ccb_h->func_code == XPT_SCSI_IO) {
5269 		csio = &((union ccb *)ccb_h)->csio;
5270 		if (csio->bio != NULL)
5271 			biotrack(csio->bio, __func__);
5272 	}
5273 #endif
5274 
5275 	if (ccb_h->flags & CAM_HIGH_POWER) {
5276 		struct highpowerlist	*hphead;
5277 		struct cam_ed		*device;
5278 
5279 		mtx_lock(&xsoftc.xpt_highpower_lock);
5280 		hphead = &xsoftc.highpowerq;
5281 
5282 		device = STAILQ_FIRST(hphead);
5283 
5284 		/*
5285 		 * Increment the count since this command is done.
5286 		 */
5287 		xsoftc.num_highpower++;
5288 
5289 		/*
5290 		 * Any high powered commands queued up?
5291 		 */
5292 		if (device != NULL) {
5293 			STAILQ_REMOVE_HEAD(hphead, highpowerq_entry);
5294 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5295 
5296 			mtx_lock(&device->sim->devq->send_mtx);
5297 			xpt_release_devq_device(device,
5298 					 /*count*/1, /*runqueue*/TRUE);
5299 			mtx_unlock(&device->sim->devq->send_mtx);
5300 		} else
5301 			mtx_unlock(&xsoftc.xpt_highpower_lock);
5302 	}
5303 
5304 	/*
5305 	 * Insulate against a race where the periph is destroyed but CCBs are
5306 	 * still not all processed. This shouldn't happen, but allows us better
5307 	 * bug diagnostic when it does.
5308 	 */
5309 	if (ccb_h->path->bus)
5310 		sim = ccb_h->path->bus->sim;
5311 
5312 	if (ccb_h->status & CAM_RELEASE_SIMQ) {
5313 		KASSERT(sim, ("sim missing for CAM_RELEASE_SIMQ request"));
5314 		xpt_release_simq(sim, /*run_queue*/FALSE);
5315 		ccb_h->status &= ~CAM_RELEASE_SIMQ;
5316 	}
5317 
5318 	if ((ccb_h->flags & CAM_DEV_QFRZDIS)
5319 	 && (ccb_h->status & CAM_DEV_QFRZN)) {
5320 		xpt_release_devq(ccb_h->path, /*count*/1, /*run_queue*/TRUE);
5321 		ccb_h->status &= ~CAM_DEV_QFRZN;
5322 	}
5323 
5324 	if ((ccb_h->func_code & XPT_FC_USER_CCB) == 0) {
5325 		struct cam_ed *dev = ccb_h->path->device;
5326 
5327 		if (sim)
5328 			devq = sim->devq;
5329 		KASSERT(devq, ("Periph disappeared with CCB %p %s request pending.",
5330 			ccb_h, xpt_action_name(ccb_h->func_code)));
5331 
5332 		mtx_lock(&devq->send_mtx);
5333 		devq->send_active--;
5334 		devq->send_openings++;
5335 		cam_ccbq_ccb_done(&dev->ccbq, (union ccb *)ccb_h);
5336 
5337 		if (((dev->flags & CAM_DEV_REL_ON_QUEUE_EMPTY) != 0
5338 		  && (dev->ccbq.dev_active == 0))) {
5339 			dev->flags &= ~CAM_DEV_REL_ON_QUEUE_EMPTY;
5340 			xpt_release_devq_device(dev, /*count*/1,
5341 					 /*run_queue*/FALSE);
5342 		}
5343 
5344 		if (((dev->flags & CAM_DEV_REL_ON_COMPLETE) != 0
5345 		  && (ccb_h->status&CAM_STATUS_MASK) != CAM_REQUEUE_REQ)) {
5346 			dev->flags &= ~CAM_DEV_REL_ON_COMPLETE;
5347 			xpt_release_devq_device(dev, /*count*/1,
5348 					 /*run_queue*/FALSE);
5349 		}
5350 
5351 		if (!device_is_queued(dev))
5352 			(void)xpt_schedule_devq(devq, dev);
5353 		xpt_run_devq(devq);
5354 		mtx_unlock(&devq->send_mtx);
5355 
5356 		if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0) {
5357 			mtx = xpt_path_mtx(ccb_h->path);
5358 			mtx_lock(mtx);
5359 
5360 			if ((dev->flags & CAM_DEV_TAG_AFTER_COUNT) != 0
5361 			 && (--dev->tag_delay_count == 0))
5362 				xpt_start_tags(ccb_h->path);
5363 		}
5364 	}
5365 
5366 	if ((ccb_h->flags & CAM_UNLOCKED) == 0) {
5367 		if (mtx == NULL) {
5368 			mtx = xpt_path_mtx(ccb_h->path);
5369 			mtx_lock(mtx);
5370 		}
5371 	} else {
5372 		if (mtx != NULL) {
5373 			mtx_unlock(mtx);
5374 			mtx = NULL;
5375 		}
5376 	}
5377 
5378 	/* Call the peripheral driver's callback */
5379 	ccb_h->pinfo.index = CAM_UNQUEUED_INDEX;
5380 	(*ccb_h->cbfcnp)(ccb_h->path->periph, (union ccb *)ccb_h);
5381 	if (mtx != NULL)
5382 		mtx_unlock(mtx);
5383 }
5384 
5385 /*
5386  * Parameterize instead and use xpt_done_td?
5387  */
5388 static void
xpt_async_td(void * arg)5389 xpt_async_td(void *arg)
5390 {
5391 	struct cam_doneq *queue = arg;
5392 	struct ccb_hdr *ccb_h;
5393 	STAILQ_HEAD(, ccb_hdr)	doneq;
5394 
5395 	STAILQ_INIT(&doneq);
5396 	mtx_lock(&queue->cam_doneq_mtx);
5397 	while (1) {
5398 		while (STAILQ_EMPTY(&queue->cam_doneq))
5399 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5400 			    PRIBIO, "-", 0);
5401 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5402 		mtx_unlock(&queue->cam_doneq_mtx);
5403 
5404 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5405 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5406 			xpt_done_process(ccb_h);
5407 		}
5408 
5409 		mtx_lock(&queue->cam_doneq_mtx);
5410 	}
5411 }
5412 
5413 void
xpt_done_td(void * arg)5414 xpt_done_td(void *arg)
5415 {
5416 	struct cam_doneq *queue = arg;
5417 	struct ccb_hdr *ccb_h;
5418 	STAILQ_HEAD(, ccb_hdr)	doneq;
5419 
5420 	STAILQ_INIT(&doneq);
5421 	mtx_lock(&queue->cam_doneq_mtx);
5422 	while (1) {
5423 		while (STAILQ_EMPTY(&queue->cam_doneq)) {
5424 			queue->cam_doneq_sleep = 1;
5425 			msleep(&queue->cam_doneq, &queue->cam_doneq_mtx,
5426 			    PRIBIO, "-", 0);
5427 			queue->cam_doneq_sleep = 0;
5428 		}
5429 		STAILQ_CONCAT(&doneq, &queue->cam_doneq);
5430 		mtx_unlock(&queue->cam_doneq_mtx);
5431 
5432 		THREAD_NO_SLEEPING();
5433 		while ((ccb_h = STAILQ_FIRST(&doneq)) != NULL) {
5434 			STAILQ_REMOVE_HEAD(&doneq, sim_links.stqe);
5435 			xpt_done_process(ccb_h);
5436 		}
5437 		THREAD_SLEEPING_OK();
5438 
5439 		mtx_lock(&queue->cam_doneq_mtx);
5440 	}
5441 }
5442 
5443 static void
camisr_runqueue(void)5444 camisr_runqueue(void)
5445 {
5446 	struct	ccb_hdr *ccb_h;
5447 	struct cam_doneq *queue;
5448 	int i;
5449 
5450 	/* Process global queues. */
5451 	for (i = 0; i < cam_num_doneqs; i++) {
5452 		queue = &cam_doneqs[i];
5453 		mtx_lock(&queue->cam_doneq_mtx);
5454 		while ((ccb_h = STAILQ_FIRST(&queue->cam_doneq)) != NULL) {
5455 			STAILQ_REMOVE_HEAD(&queue->cam_doneq, sim_links.stqe);
5456 			mtx_unlock(&queue->cam_doneq_mtx);
5457 			xpt_done_process(ccb_h);
5458 			mtx_lock(&queue->cam_doneq_mtx);
5459 		}
5460 		mtx_unlock(&queue->cam_doneq_mtx);
5461 	}
5462 }
5463 
5464 /**
5465  * @brief Return the device_t associated with the path
5466  *
5467  * When a SIM is created, it registers a bus with a NEWBUS device_t. This is
5468  * stored in the internal cam_eb bus structure. There is no guarnatee any given
5469  * path will have a @c device_t associated with it (it's legal to call @c
5470  * xpt_bus_register with a @c NULL @c device_t.
5471  *
5472  * @param path		Path to return the device_t for.
5473  */
5474 device_t
xpt_path_sim_device(const struct cam_path * path)5475 xpt_path_sim_device(const struct cam_path *path)
5476 {
5477 	return (path->bus->parent_dev);
5478 }
5479 
5480 struct kv
5481 {
5482 	uint32_t v;
5483 	const char *name;
5484 };
5485 
5486 static struct kv map[] = {
5487 	{ XPT_NOOP, "XPT_NOOP" },
5488 	{ XPT_SCSI_IO, "XPT_SCSI_IO" },
5489 	{ XPT_GDEV_TYPE, "XPT_GDEV_TYPE" },
5490 	{ XPT_GDEVLIST, "XPT_GDEVLIST" },
5491 	{ XPT_PATH_INQ, "XPT_PATH_INQ" },
5492 	{ XPT_REL_SIMQ, "XPT_REL_SIMQ" },
5493 	{ XPT_SASYNC_CB, "XPT_SASYNC_CB" },
5494 	{ XPT_SDEV_TYPE, "XPT_SDEV_TYPE" },
5495 	{ XPT_SCAN_BUS, "XPT_SCAN_BUS" },
5496 	{ XPT_DEV_MATCH, "XPT_DEV_MATCH" },
5497 	{ XPT_DEBUG, "XPT_DEBUG" },
5498 	{ XPT_PATH_STATS, "XPT_PATH_STATS" },
5499 	{ XPT_GDEV_STATS, "XPT_GDEV_STATS" },
5500 	{ XPT_DEV_ADVINFO, "XPT_DEV_ADVINFO" },
5501 	{ XPT_ASYNC, "XPT_ASYNC" },
5502 	{ XPT_ABORT, "XPT_ABORT" },
5503 	{ XPT_RESET_BUS, "XPT_RESET_BUS" },
5504 	{ XPT_RESET_DEV, "XPT_RESET_DEV" },
5505 	{ XPT_TERM_IO, "XPT_TERM_IO" },
5506 	{ XPT_SCAN_LUN, "XPT_SCAN_LUN" },
5507 	{ XPT_GET_TRAN_SETTINGS, "XPT_GET_TRAN_SETTINGS" },
5508 	{ XPT_SET_TRAN_SETTINGS, "XPT_SET_TRAN_SETTINGS" },
5509 	{ XPT_CALC_GEOMETRY, "XPT_CALC_GEOMETRY" },
5510 	{ XPT_ATA_IO, "XPT_ATA_IO" },
5511 	{ XPT_GET_SIM_KNOB, "XPT_GET_SIM_KNOB" },
5512 	{ XPT_SET_SIM_KNOB, "XPT_SET_SIM_KNOB" },
5513 	{ XPT_NVME_IO, "XPT_NVME_IO" },
5514 	{ XPT_MMC_IO, "XPT_MMC_IO" },
5515 	{ XPT_SMP_IO, "XPT_SMP_IO" },
5516 	{ XPT_SCAN_TGT, "XPT_SCAN_TGT" },
5517 	{ XPT_NVME_ADMIN, "XPT_NVME_ADMIN" },
5518 	{ XPT_ENG_INQ, "XPT_ENG_INQ" },
5519 	{ XPT_ENG_EXEC, "XPT_ENG_EXEC" },
5520 	{ XPT_EN_LUN, "XPT_EN_LUN" },
5521 	{ XPT_TARGET_IO, "XPT_TARGET_IO" },
5522 	{ XPT_ACCEPT_TARGET_IO, "XPT_ACCEPT_TARGET_IO" },
5523 	{ XPT_CONT_TARGET_IO, "XPT_CONT_TARGET_IO" },
5524 	{ XPT_IMMED_NOTIFY, "XPT_IMMED_NOTIFY" },
5525 	{ XPT_NOTIFY_ACK, "XPT_NOTIFY_ACK" },
5526 	{ XPT_IMMEDIATE_NOTIFY, "XPT_IMMEDIATE_NOTIFY" },
5527 	{ XPT_NOTIFY_ACKNOWLEDGE, "XPT_NOTIFY_ACKNOWLEDGE" },
5528 	{ 0, 0 }
5529 };
5530 
5531 const char *
xpt_action_name(uint32_t action)5532 xpt_action_name(uint32_t action)
5533 {
5534 	static char buffer[32];	/* Only for unknown messages -- racy */
5535 	struct kv *walker = map;
5536 
5537 	while (walker->name != NULL) {
5538 		if (walker->v == action)
5539 			return (walker->name);
5540 		walker++;
5541 	}
5542 
5543 	snprintf(buffer, sizeof(buffer), "%#x", action);
5544 	return (buffer);
5545 }
5546 
5547 void
xpt_cam_path_debug(struct cam_path * path,const char * fmt,...)5548 xpt_cam_path_debug(struct cam_path *path, const char *fmt, ...)
5549 {
5550 	struct sbuf sbuf;
5551 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5552 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5553 	va_list ap;
5554 
5555 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5556 	xpt_path_sbuf(path, sb);
5557 	va_start(ap, fmt);
5558 	sbuf_vprintf(sb, fmt, ap);
5559 	va_end(ap);
5560 	sbuf_finish(sb);
5561 	sbuf_delete(sb);
5562 	if (cam_debug_delay != 0)
5563 		DELAY(cam_debug_delay);
5564 }
5565 
5566 void
xpt_cam_dev_debug(struct cam_ed * dev,const char * fmt,...)5567 xpt_cam_dev_debug(struct cam_ed *dev, const char *fmt, ...)
5568 {
5569 	struct sbuf sbuf;
5570 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5571 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5572 	va_list ap;
5573 
5574 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5575 	xpt_device_sbuf(dev, sb);
5576 	va_start(ap, fmt);
5577 	sbuf_vprintf(sb, fmt, ap);
5578 	va_end(ap);
5579 	sbuf_finish(sb);
5580 	sbuf_delete(sb);
5581 	if (cam_debug_delay != 0)
5582 		DELAY(cam_debug_delay);
5583 }
5584 
5585 void
xpt_cam_debug(const char * fmt,...)5586 xpt_cam_debug(const char *fmt, ...)
5587 {
5588 	struct sbuf sbuf;
5589 	char buf[XPT_PRINT_LEN]; /* balance to not eat too much stack */
5590 	struct sbuf *sb = sbuf_new(&sbuf, buf, sizeof(buf), SBUF_FIXEDLEN | SBUF_INCLUDENUL);
5591 	va_list ap;
5592 
5593 	sbuf_set_drain(sb, sbuf_printf_drain, NULL);
5594 	sbuf_cat(sb, "cam_debug: ");
5595 	va_start(ap, fmt);
5596 	sbuf_vprintf(sb, fmt, ap);
5597 	va_end(ap);
5598 	sbuf_finish(sb);
5599 	sbuf_delete(sb);
5600 	if (cam_debug_delay != 0)
5601 		DELAY(cam_debug_delay);
5602 }
5603