1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 /*
32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
33 * All Rights Reserved
34 */
35
36 /*
37 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
38 */
39
40 /*
41 * Copyright (c) 2014, STRATO AG. All rights reserved.
42 */
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46 #include <sys/systm.h>
47 #include <sys/cred.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/file.h>
53 #include <sys/filio.h>
54 #include <sys/uio.h>
55 #include <sys/buf.h>
56 #include <sys/mman.h>
57 #include <sys/pathname.h>
58 #include <sys/dirent.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/fcntl.h>
62 #include <sys/flock.h>
63 #include <sys/swap.h>
64 #include <sys/errno.h>
65 #include <sys/strsubr.h>
66 #include <sys/sysmacros.h>
67 #include <sys/kmem.h>
68 #include <sys/cmn_err.h>
69 #include <sys/pathconf.h>
70 #include <sys/utsname.h>
71 #include <sys/dnlc.h>
72 #include <sys/acl.h>
73 #include <sys/systeminfo.h>
74 #include <sys/policy.h>
75 #include <sys/sdt.h>
76 #include <sys/list.h>
77 #include <sys/stat.h>
78 #include <sys/zone.h>
79
80 #include <rpc/types.h>
81 #include <rpc/auth.h>
82 #include <rpc/clnt.h>
83
84 #include <nfs/nfs.h>
85 #include <nfs/nfs_clnt.h>
86 #include <nfs/nfs_acl.h>
87 #include <nfs/lm.h>
88 #include <nfs/nfs4.h>
89 #include <nfs/nfs4_kprot.h>
90 #include <nfs/rnode4.h>
91 #include <nfs/nfs4_clnt.h>
92
93 #include <vm/hat.h>
94 #include <vm/as.h>
95 #include <vm/page.h>
96 #include <vm/pvn.h>
97 #include <vm/seg.h>
98 #include <vm/seg_map.h>
99 #include <vm/seg_kpm.h>
100 #include <vm/seg_vn.h>
101
102 #include <fs/fs_subr.h>
103
104 #include <sys/ddi.h>
105 #include <sys/int_fmtio.h>
106 #include <sys/fs/autofs.h>
107
108 typedef struct {
109 nfs4_ga_res_t *di_garp;
110 cred_t *di_cred;
111 hrtime_t di_time_call;
112 } dirattr_info_t;
113
114 typedef enum nfs4_acl_op {
115 NFS4_ACL_GET,
116 NFS4_ACL_SET
117 } nfs4_acl_op_t;
118
119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
120 static int nfs4frlock_get_sysid(struct lm_sysid **, vnode_t *, flock64_t *);
121
122 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
123 char *, dirattr_info_t *);
124
125 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
126 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
127 nfs4_error_t *, int *);
128 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
129 cred_t *);
130 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
131 stable_how4 *);
132 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
133 cred_t *, bool_t, struct uio *);
134 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
135 vsecattr_t *);
136 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
137 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
138 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
139 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
140 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
141 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
142 int, vnode_t **, cred_t *);
143 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
144 cred_t *, int, int, enum createmode4, int);
145 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
146 caller_context_t *);
147 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
148 vnode_t *, char *, cred_t *, nfsstat4 *);
149 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
150 vnode_t *, char *, cred_t *, nfsstat4 *);
151 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
152 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
153 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
154 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
155 page_t *[], size_t, struct seg *, caddr_t,
156 enum seg_rw, cred_t *);
157 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
158 cred_t *);
159 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
160 int, cred_t *);
161 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
162 int, cred_t *);
163 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
164 static void nfs4_set_mod(vnode_t *);
165 static void nfs4_get_commit(vnode_t *);
166 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
167 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
168 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
169 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
170 cred_t *);
171 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
172 cred_t *);
173 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
174 hrtime_t, vnode_t *, cred_t *);
175 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
176 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
177 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
178 static int nfs4_block_and_wait(clock_t *);
179 static cred_t *state_to_cred(nfs4_open_stream_t *);
180 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
181 static pid_t lo_to_pid(lock_owner4 *);
182 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
183 cred_t *, nfs4_lock_owner_t *);
184 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
185 nfs4_lock_owner_t *);
186 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
187 static void nfs4_delmap_callback(struct as *, void *, uint_t);
188 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
189 static nfs4_delmapcall_t *nfs4_init_delmapcall();
190 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
191 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
192 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
193 uid_t, gid_t, int);
194
195 /*
196 * Routines that implement the setting of v4 args for the misc. ops
197 */
198 static void nfs4args_lock_free(nfs_argop4 *);
199 static void nfs4args_lockt_free(nfs_argop4 *);
200 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
201 int, rnode4_t *, cred_t *, bitmap4, int *,
202 nfs4_stateid_types_t *);
203 static void nfs4args_setattr_free(nfs_argop4 *);
204 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
205 bitmap4);
206 static void nfs4args_verify_free(nfs_argop4 *);
207 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
208 WRITE4args **, nfs4_stateid_types_t *);
209
210 /*
211 * These are the vnode ops functions that implement the vnode interface to
212 * the networked file system. See more comments below at nfs4_vnodeops.
213 */
214 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
215 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
216 caller_context_t *);
217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
218 caller_context_t *);
219 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
220 caller_context_t *);
221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
222 caller_context_t *);
223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
224 caller_context_t *);
225 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
226 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
227 caller_context_t *);
228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
230 int, vnode_t **, cred_t *, int, caller_context_t *,
231 vsecattr_t *);
232 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
233 int);
234 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
235 caller_context_t *, int);
236 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
237 caller_context_t *, int);
238 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
239 cred_t *, caller_context_t *, int, vsecattr_t *);
240 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
241 caller_context_t *, int);
242 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
243 cred_t *, caller_context_t *, int);
244 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
245 caller_context_t *, int);
246 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
247 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
248 page_t *[], size_t, struct seg *, caddr_t,
249 enum seg_rw, cred_t *, caller_context_t *);
250 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
251 caller_context_t *);
252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
253 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
254 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
256 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
257 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
258 struct flk_callback *, cred_t *, caller_context_t *);
259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
260 cred_t *, caller_context_t *);
261 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
263 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
264 cred_t *, caller_context_t *);
265 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
266 caller_context_t *);
267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
268 caller_context_t *);
269 /*
270 * These vnode ops are required to be called from outside this source file,
271 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
272 * as static.
273 */
274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
275 caller_context_t *);
276 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
277 int nfs4_lookup(vnode_t *, char *, vnode_t **,
278 struct pathname *, int, vnode_t *, cred_t *,
279 caller_context_t *, int *, pathname_t *);
280 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
281 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
282 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
283 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
284 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
285 caller_context_t *);
286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
287 caller_context_t *);
288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
289 caller_context_t *);
290
291 /*
292 * Used for nfs4_commit_vp() to indicate if we should
293 * wait on pending writes.
294 */
295 #define NFS4_WRITE_NOWAIT 0
296 #define NFS4_WRITE_WAIT 1
297
298 /*
299 * Error flags used to pass information about certain special errors
300 * which need to be handled specially.
301 */
302 #define NFS_EOF -98
303 #define NFS_VERF_MISMATCH -97
304
305 /*
306 * Flags used to differentiate between which operation drove the
307 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
308 */
309 #define NFS4_CLOSE_OP 0x1
310 #define NFS4_DELMAP_OP 0x2
311 #define NFS4_INACTIVE_OP 0x3
312
313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
314
315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
316 #define ALIGN64(x, ptr, sz) \
317 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
318 if (x) { \
319 x = sizeof (uint64_t) - (x); \
320 sz -= (x); \
321 ptr += (x); \
322 }
323
324 #ifdef DEBUG
325 int nfs4_client_attr_debug = 0;
326 int nfs4_client_state_debug = 0;
327 int nfs4_client_shadow_debug = 0;
328 int nfs4_client_lock_debug = 0;
329 int nfs4_seqid_sync = 0;
330 int nfs4_client_map_debug = 0;
331 static int nfs4_pageio_debug = 0;
332 int nfs4_client_inactive_debug = 0;
333 int nfs4_client_recov_debug = 0;
334 int nfs4_client_failover_debug = 0;
335 int nfs4_client_call_debug = 0;
336 int nfs4_client_lookup_debug = 0;
337 int nfs4_client_zone_debug = 0;
338 int nfs4_lost_rqst_debug = 0;
339 int nfs4_rdattrerr_debug = 0;
340 int nfs4_open_stream_debug = 0;
341
342 int nfs4read_error_inject;
343
344 static int nfs4_create_misses = 0;
345
346 static int nfs4_readdir_cache_shorts = 0;
347 static int nfs4_readdir_readahead = 0;
348
349 static int nfs4_bio_do_stop = 0;
350
351 static int nfs4_lostpage = 0; /* number of times we lost original page */
352
353 int nfs4_mmap_debug = 0;
354
355 static int nfs4_pathconf_cache_hits = 0;
356 static int nfs4_pathconf_cache_misses = 0;
357
358 int nfs4close_all_cnt;
359 int nfs4close_one_debug = 0;
360 int nfs4close_notw_debug = 0;
361
362 int denied_to_flk_debug = 0;
363 void *lockt_denied_debug;
364
365 #endif
366
367 /*
368 * In milliseconds. Should be less than half of the lease time or better,
369 * less than one second.
370 */
371 int nfs4_base_wait_time = 20;
372 int nfs4_max_base_wait_time = 1 * 1000; /* 1 sec */
373
374 /*
375 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
376 * or NFS4ERR_RESOURCE.
377 */
378 static int confirm_retry_sec = 30;
379
380 static int nfs4_lookup_neg_cache = 1;
381
382 /*
383 * number of pages to read ahead
384 * optimized for 100 base-T.
385 */
386 static int nfs4_nra = 4;
387
388 static int nfs4_do_symlink_cache = 1;
389
390 static int nfs4_pathconf_disable_cache = 0;
391
392 /*
393 * These are the vnode ops routines which implement the vnode interface to
394 * the networked file system. These routines just take their parameters,
395 * make them look networkish by putting the right info into interface structs,
396 * and then calling the appropriate remote routine(s) to do the work.
397 *
398 * Note on directory name lookup cacheing: If we detect a stale fhandle,
399 * we purge the directory cache relative to that vnode. This way, the
400 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
401 * more details on rnode locking.
402 */
403
404 struct vnodeops *nfs4_vnodeops;
405
406 const fs_operation_def_t nfs4_vnodeops_template[] = {
407 VOPNAME_OPEN, { .vop_open = nfs4_open },
408 VOPNAME_CLOSE, { .vop_close = nfs4_close },
409 VOPNAME_READ, { .vop_read = nfs4_read },
410 VOPNAME_WRITE, { .vop_write = nfs4_write },
411 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
412 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
413 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
414 VOPNAME_ACCESS, { .vop_access = nfs4_access },
415 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
416 VOPNAME_CREATE, { .vop_create = nfs4_create },
417 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
418 VOPNAME_LINK, { .vop_link = nfs4_link },
419 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
420 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
421 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
422 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
423 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
424 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
425 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
426 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
427 VOPNAME_FID, { .vop_fid = nfs4_fid },
428 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
429 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
430 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
431 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
432 VOPNAME_SPACE, { .vop_space = nfs4_space },
433 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
434 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
435 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
436 VOPNAME_MAP, { .vop_map = nfs4_map },
437 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
438 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
439 /* no separate nfs4_dump */
440 VOPNAME_DUMP, { .vop_dump = nfs_dump },
441 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
442 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
443 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
444 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
445 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
446 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
447 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
448 NULL, NULL
449 };
450
451 /*
452 * The following are subroutines and definitions to set args or get res
453 * for the different nfsv4 ops
454 */
455
456 void
nfs4args_lookup_free(nfs_argop4 * argop,int arglen)457 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
458 {
459 int i;
460
461 for (i = 0; i < arglen; i++) {
462 if (argop[i].argop == OP_LOOKUP) {
463 kmem_free(
464 argop[i].nfs_argop4_u.oplookup.
465 objname.utf8string_val,
466 argop[i].nfs_argop4_u.oplookup.
467 objname.utf8string_len);
468 }
469 }
470 }
471
472 static void
nfs4args_lock_free(nfs_argop4 * argop)473 nfs4args_lock_free(nfs_argop4 *argop)
474 {
475 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
476
477 if (locker->new_lock_owner == TRUE) {
478 open_to_lock_owner4 *open_owner;
479
480 open_owner = &locker->locker4_u.open_owner;
481 if (open_owner->lock_owner.owner_val != NULL) {
482 kmem_free(open_owner->lock_owner.owner_val,
483 open_owner->lock_owner.owner_len);
484 }
485 }
486 }
487
488 static void
nfs4args_lockt_free(nfs_argop4 * argop)489 nfs4args_lockt_free(nfs_argop4 *argop)
490 {
491 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
492
493 if (lowner->owner_val != NULL) {
494 kmem_free(lowner->owner_val, lowner->owner_len);
495 }
496 }
497
498 static void
nfs4args_setattr(nfs_argop4 * argop,vattr_t * vap,vsecattr_t * vsap,int flags,rnode4_t * rp,cred_t * cr,bitmap4 supp,int * error,nfs4_stateid_types_t * sid_types)499 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
501 nfs4_stateid_types_t *sid_types)
502 {
503 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
504 mntinfo4_t *mi;
505
506 argop->argop = OP_SETATTR;
507 /*
508 * The stateid is set to 0 if client is not modifying the size
509 * and otherwise to whatever nfs4_get_stateid() returns.
510 *
511 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
512 * state struct could be found for the process/file pair. We may
513 * want to change this in the future (by OPENing the file). See
514 * bug # 4474852.
515 */
516 if (vap->va_mask & AT_SIZE) {
517
518 ASSERT(rp != NULL);
519 mi = VTOMI4(RTOV4(rp));
520
521 argop->nfs_argop4_u.opsetattr.stateid =
522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
523 OP_SETATTR, sid_types, FALSE);
524 } else {
525 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
526 sizeof (stateid4));
527 }
528
529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
530 if (*error)
531 bzero(attr, sizeof (*attr));
532 }
533
534 static void
nfs4args_setattr_free(nfs_argop4 * argop)535 nfs4args_setattr_free(nfs_argop4 *argop)
536 {
537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
538 }
539
540 static int
nfs4args_verify(nfs_argop4 * argop,vattr_t * vap,enum nfs_opnum4 op,bitmap4 supp)541 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
542 bitmap4 supp)
543 {
544 fattr4 *attr;
545 int error = 0;
546
547 argop->argop = op;
548 switch (op) {
549 case OP_VERIFY:
550 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
551 break;
552 case OP_NVERIFY:
553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
554 break;
555 default:
556 return (EINVAL);
557 }
558 if (!error)
559 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
560 if (error)
561 bzero(attr, sizeof (*attr));
562 return (error);
563 }
564
565 static void
nfs4args_verify_free(nfs_argop4 * argop)566 nfs4args_verify_free(nfs_argop4 *argop)
567 {
568 switch (argop->argop) {
569 case OP_VERIFY:
570 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
571 break;
572 case OP_NVERIFY:
573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
574 break;
575 default:
576 break;
577 }
578 }
579
580 static void
nfs4args_write(nfs_argop4 * argop,stable_how4 stable,rnode4_t * rp,cred_t * cr,WRITE4args ** wargs_pp,nfs4_stateid_types_t * sid_tp)581 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
582 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
583 {
584 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
585 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
586
587 argop->argop = OP_WRITE;
588 wargs->stable = stable;
589 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
590 mi, OP_WRITE, sid_tp);
591 wargs->mblk = NULL;
592 *wargs_pp = wargs;
593 }
594
595 void
nfs4args_copen_free(OPEN4cargs * open_args)596 nfs4args_copen_free(OPEN4cargs *open_args)
597 {
598 if (open_args->owner.owner_val) {
599 kmem_free(open_args->owner.owner_val,
600 open_args->owner.owner_len);
601 }
602 if ((open_args->opentype == OPEN4_CREATE) &&
603 (open_args->mode != EXCLUSIVE4)) {
604 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
605 }
606 }
607
608 /*
609 * XXX: This is referenced in modstubs.s
610 */
611 struct vnodeops *
nfs4_getvnodeops(void)612 nfs4_getvnodeops(void)
613 {
614 return (nfs4_vnodeops);
615 }
616
617 /*
618 * The OPEN operation opens a regular file.
619 */
620 /*ARGSUSED3*/
621 static int
nfs4_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
623 {
624 vnode_t *dvp = NULL;
625 rnode4_t *rp, *drp;
626 int error;
627 int just_been_created;
628 char fn[MAXNAMELEN];
629
630 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
631 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
632 return (EIO);
633 rp = VTOR4(*vpp);
634
635 /*
636 * Check to see if opening something besides a regular file;
637 * if so skip the OTW call
638 */
639 if ((*vpp)->v_type != VREG) {
640 error = nfs4_open_non_reg_file(vpp, flag, cr);
641 return (error);
642 }
643
644 /*
645 * XXX - would like a check right here to know if the file is
646 * executable or not, so as to skip OTW
647 */
648
649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
650 return (error);
651
652 drp = VTOR4(dvp);
653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
654 return (EINTR);
655
656 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
657 nfs_rw_exit(&drp->r_rwlock);
658 return (error);
659 }
660
661 /*
662 * See if this file has just been CREATEd.
663 * If so, clear the flag and update the dnlc, which was previously
664 * skipped in nfs4_create.
665 * XXX need better serilization on this.
666 * XXX move this into the nf4open_otw call, after we have
667 * XXX acquired the open owner seqid sync.
668 */
669 mutex_enter(&rp->r_statev4_lock);
670 if (rp->created_v4) {
671 rp->created_v4 = 0;
672 mutex_exit(&rp->r_statev4_lock);
673
674 dnlc_update(dvp, fn, *vpp);
675 /* This is needed so we don't bump the open ref count */
676 just_been_created = 1;
677 } else {
678 mutex_exit(&rp->r_statev4_lock);
679 just_been_created = 0;
680 }
681
682 /*
683 * If caller specified O_TRUNC/FTRUNC, then be sure to set
684 * FWRITE (to drive successful setattr(size=0) after open)
685 */
686 if (flag & FTRUNC)
687 flag |= FWRITE;
688
689 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
690 just_been_created);
691
692 if (!error && !((*vpp)->v_flag & VROOT))
693 dnlc_update(dvp, fn, *vpp);
694
695 nfs_rw_exit(&drp->r_rwlock);
696
697 /* release the hold from vtodv */
698 VN_RELE(dvp);
699
700 /* exchange the shadow for the master vnode, if needed */
701
702 if (error == 0 && IS_SHADOW(*vpp, rp))
703 sv_exchange(vpp);
704
705 return (error);
706 }
707
708 /*
709 * See if there's a "lost open" request to be saved and recovered.
710 */
711 static void
nfs4open_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,cred_t * cr,vnode_t * vp,vnode_t * dvp,OPEN4cargs * open_args)712 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
713 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
714 vnode_t *dvp, OPEN4cargs *open_args)
715 {
716 vfs_t *vfsp;
717 char *srccfp;
718
719 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
720
721 if (error != ETIMEDOUT && error != EINTR &&
722 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
723 lost_rqstp->lr_op = 0;
724 return;
725 }
726
727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
728 "nfs4open_save_lost_rqst: error %d", error));
729
730 lost_rqstp->lr_op = OP_OPEN;
731
732 /*
733 * The vp (if it is not NULL) and dvp are held and rele'd via
734 * the recovery code. See nfs4_save_lost_rqst.
735 */
736 lost_rqstp->lr_vp = vp;
737 lost_rqstp->lr_dvp = dvp;
738 lost_rqstp->lr_oop = oop;
739 lost_rqstp->lr_osp = NULL;
740 lost_rqstp->lr_lop = NULL;
741 lost_rqstp->lr_cr = cr;
742 lost_rqstp->lr_flk = NULL;
743 lost_rqstp->lr_oacc = open_args->share_access;
744 lost_rqstp->lr_odeny = open_args->share_deny;
745 lost_rqstp->lr_oclaim = open_args->claim;
746 if (open_args->claim == CLAIM_DELEGATE_CUR) {
747 lost_rqstp->lr_ostateid =
748 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
749 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
750 } else {
751 srccfp = open_args->open_claim4_u.cfile;
752 }
753 lost_rqstp->lr_ofile.utf8string_len = 0;
754 lost_rqstp->lr_ofile.utf8string_val = NULL;
755 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
756 lost_rqstp->lr_putfirst = FALSE;
757 }
758
759 struct nfs4_excl_time {
760 uint32 seconds;
761 uint32 nseconds;
762 };
763
764 /*
765 * The OPEN operation creates and/or opens a regular file
766 *
767 * ARGSUSED
768 */
769 static int
nfs4open_otw(vnode_t * dvp,char * file_name,struct vattr * in_va,vnode_t ** vpp,cred_t * cr,int create_flag,int open_flag,enum createmode4 createmode,int file_just_been_created)770 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
772 enum createmode4 createmode, int file_just_been_created)
773 {
774 rnode4_t *rp;
775 rnode4_t *drp = VTOR4(dvp);
776 vnode_t *vp = NULL;
777 vnode_t *vpi = *vpp;
778 bool_t needrecov = FALSE;
779
780 int doqueue = 1;
781
782 COMPOUND4args_clnt args;
783 COMPOUND4res_clnt res;
784 nfs_argop4 *argop;
785 nfs_resop4 *resop;
786 int argoplist_size;
787 int idx_open, idx_fattr;
788
789 GETFH4res *gf_res = NULL;
790 OPEN4res *op_res = NULL;
791 nfs4_ga_res_t *garp;
792 fattr4 *attr = NULL;
793 struct nfs4_excl_time verf;
794 bool_t did_excl_setup = FALSE;
795 int created_osp;
796
797 OPEN4cargs *open_args;
798 nfs4_open_owner_t *oop = NULL;
799 nfs4_open_stream_t *osp = NULL;
800 seqid4 seqid = 0;
801 bool_t retry_open = FALSE;
802 nfs4_recov_state_t recov_state;
803 nfs4_lost_rqst_t lost_rqst;
804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
805 hrtime_t t;
806 int acc = 0;
807 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
808 cred_t *ncr = NULL;
809
810 nfs4_sharedfh_t *otw_sfh;
811 nfs4_sharedfh_t *orig_sfh;
812 int fh_differs = 0;
813 int numops, setgid_flag;
814 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
815
816 /*
817 * Make sure we properly deal with setting the right gid on
818 * a newly created file to reflect the parent's setgid bit
819 */
820 setgid_flag = 0;
821 if (create_flag && in_va) {
822
823 /*
824 * If there is grpid mount flag used or
825 * the parent's directory has the setgid bit set
826 * _and_ the client was able to get a valid mapping
827 * for the parent dir's owner_group, we want to
828 * append NVERIFY(owner_group == dva.va_gid) and
829 * SETATTR to the CREATE compound.
830 */
831 mutex_enter(&drp->r_statelock);
832 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
833 drp->r_attr.va_mode & VSGID) &&
834 drp->r_attr.va_gid != GID_NOBODY) {
835 in_va->va_mask |= AT_GID;
836 in_va->va_gid = drp->r_attr.va_gid;
837 setgid_flag = 1;
838 }
839 mutex_exit(&drp->r_statelock);
840 }
841
842 /*
843 * Normal/non-create compound:
844 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
845 *
846 * Open(create) compound no setgid:
847 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
848 * RESTOREFH + GETATTR
849 *
850 * Open(create) setgid:
851 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
852 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
853 * NVERIFY(grp) + SETATTR
854 */
855 if (setgid_flag) {
856 numops = 10;
857 idx_open = 1;
858 idx_fattr = 3;
859 } else if (create_flag) {
860 numops = 7;
861 idx_open = 2;
862 idx_fattr = 4;
863 } else {
864 numops = 4;
865 idx_open = 1;
866 idx_fattr = 3;
867 }
868
869 args.array_len = numops;
870 argoplist_size = numops * sizeof (nfs_argop4);
871 argop = kmem_alloc(argoplist_size, KM_SLEEP);
872
873 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
874 "open %s open flag 0x%x cred %p", file_name, open_flag,
875 (void *)cr));
876
877 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
878 if (create_flag) {
879 /*
880 * We are to create a file. Initialize the passed in vnode
881 * pointer.
882 */
883 vpi = NULL;
884 } else {
885 /*
886 * Check to see if the client owns a read delegation and is
887 * trying to open for write. If so, then return the delegation
888 * to avoid the server doing a cb_recall and returning DELAY.
889 * NB - we don't use the statev4_lock here because we'd have
890 * to drop the lock anyway and the result would be stale.
891 */
892 if ((open_flag & FWRITE) &&
893 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
894 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
895
896 /*
897 * If the file has a delegation, then do an access check up
898 * front. This avoids having to an access check later after
899 * we've already done start_op, which could deadlock.
900 */
901 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
902 if (open_flag & FREAD &&
903 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
904 acc |= VREAD;
905 if (open_flag & FWRITE &&
906 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
907 acc |= VWRITE;
908 }
909 }
910
911 drp = VTOR4(dvp);
912
913 recov_state.rs_flags = 0;
914 recov_state.rs_num_retry_despite_err = 0;
915 cred_otw = cr;
916
917 recov_retry:
918 fh_differs = 0;
919 nfs4_error_zinit(&e);
920
921 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
922 if (e.error) {
923 if (ncr != NULL)
924 crfree(ncr);
925 kmem_free(argop, argoplist_size);
926 return (e.error);
927 }
928
929 args.ctag = TAG_OPEN;
930 args.array_len = numops;
931 args.array = argop;
932
933 /* putfh directory fh */
934 argop[0].argop = OP_CPUTFH;
935 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
936
937 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
938 argop[idx_open].argop = OP_COPEN;
939 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
940 open_args->claim = CLAIM_NULL;
941
942 /* name of file */
943 open_args->open_claim4_u.cfile = file_name;
944 open_args->owner.owner_len = 0;
945 open_args->owner.owner_val = NULL;
946
947 if (create_flag) {
948 /* CREATE a file */
949 open_args->opentype = OPEN4_CREATE;
950 open_args->mode = createmode;
951 if (createmode == EXCLUSIVE4) {
952 if (did_excl_setup == FALSE) {
953 verf.seconds = zone_get_hostid(NULL);
954 if (verf.seconds != 0)
955 verf.nseconds = newnum();
956 else {
957 timestruc_t now;
958
959 gethrestime(&now);
960 verf.seconds = now.tv_sec;
961 verf.nseconds = now.tv_nsec;
962 }
963 /*
964 * Since the server will use this value for the
965 * mtime, make sure that it can't overflow. Zero
966 * out the MSB. The actual value does not matter
967 * here, only its uniqeness.
968 */
969 verf.seconds &= INT32_MAX;
970 did_excl_setup = TRUE;
971 }
972
973 /* Now copy over verifier to OPEN4args. */
974 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
975 } else {
976 int v_error;
977 bitmap4 supp_attrs;
978 servinfo4_t *svp;
979
980 attr = &open_args->createhow4_u.createattrs;
981
982 svp = drp->r_server;
983 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
984 supp_attrs = svp->sv_supp_attrs;
985 nfs_rw_exit(&svp->sv_lock);
986
987 /* GUARDED4 or UNCHECKED4 */
988 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
989 supp_attrs);
990 if (v_error) {
991 bzero(attr, sizeof (*attr));
992 nfs4args_copen_free(open_args);
993 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
994 &recov_state, FALSE);
995 if (ncr != NULL)
996 crfree(ncr);
997 kmem_free(argop, argoplist_size);
998 return (v_error);
999 }
1000 }
1001 } else {
1002 /* NO CREATE */
1003 open_args->opentype = OPEN4_NOCREATE;
1004 }
1005
1006 if (recov_state.rs_sp != NULL) {
1007 mutex_enter(&recov_state.rs_sp->s_lock);
1008 open_args->owner.clientid = recov_state.rs_sp->clientid;
1009 mutex_exit(&recov_state.rs_sp->s_lock);
1010 } else {
1011 /* XXX should we just fail here? */
1012 open_args->owner.clientid = 0;
1013 }
1014
1015 /*
1016 * This increments oop's ref count or creates a temporary 'just_created'
1017 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1018 * completes.
1019 */
1020 mutex_enter(&VTOMI4(dvp)->mi_lock);
1021
1022 /* See if a permanent or just created open owner exists */
1023 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1024 if (!oop) {
1025 /*
1026 * This open owner does not exist so create a temporary
1027 * just created one.
1028 */
1029 oop = create_open_owner(cr, VTOMI4(dvp));
1030 ASSERT(oop != NULL);
1031 }
1032 mutex_exit(&VTOMI4(dvp)->mi_lock);
1033
1034 /* this length never changes, do alloc before seqid sync */
1035 open_args->owner.owner_len = sizeof (oop->oo_name);
1036 open_args->owner.owner_val =
1037 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1038
1039 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1040 if (e.error == EAGAIN) {
1041 open_owner_rele(oop);
1042 nfs4args_copen_free(open_args);
1043 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1044 if (ncr != NULL) {
1045 crfree(ncr);
1046 ncr = NULL;
1047 }
1048 goto recov_retry;
1049 }
1050
1051 /* Check to see if we need to do the OTW call */
1052 if (!create_flag) {
1053 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1054 file_just_been_created, &e.error, acc, &recov_state)) {
1055
1056 /*
1057 * The OTW open is not necessary. Either
1058 * the open can succeed without it (eg.
1059 * delegation, error == 0) or the open
1060 * must fail due to an access failure
1061 * (error != 0). In either case, tidy
1062 * up and return.
1063 */
1064
1065 nfs4_end_open_seqid_sync(oop);
1066 open_owner_rele(oop);
1067 nfs4args_copen_free(open_args);
1068 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1069 if (ncr != NULL)
1070 crfree(ncr);
1071 kmem_free(argop, argoplist_size);
1072 return (e.error);
1073 }
1074 }
1075
1076 bcopy(&oop->oo_name, open_args->owner.owner_val,
1077 open_args->owner.owner_len);
1078
1079 seqid = nfs4_get_open_seqid(oop) + 1;
1080 open_args->seqid = seqid;
1081 open_args->share_access = 0;
1082 if (open_flag & FREAD)
1083 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1084 if (open_flag & FWRITE)
1085 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1086 open_args->share_deny = OPEN4_SHARE_DENY_NONE;
1087
1088
1089
1090 /*
1091 * getfh w/sanity check for idx_open/idx_fattr
1092 */
1093 ASSERT((idx_open + 1) == (idx_fattr - 1));
1094 argop[idx_open + 1].argop = OP_GETFH;
1095
1096 /* getattr */
1097 argop[idx_fattr].argop = OP_GETATTR;
1098 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1099 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1100
1101 if (setgid_flag) {
1102 vattr_t _v;
1103 servinfo4_t *svp;
1104 bitmap4 supp_attrs;
1105
1106 svp = drp->r_server;
1107 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1108 supp_attrs = svp->sv_supp_attrs;
1109 nfs_rw_exit(&svp->sv_lock);
1110
1111 /*
1112 * For setgid case, we need to:
1113 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1114 */
1115 argop[4].argop = OP_SAVEFH;
1116
1117 argop[5].argop = OP_CPUTFH;
1118 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
1119
1120 argop[6].argop = OP_GETATTR;
1121 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1122 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1123
1124 argop[7].argop = OP_RESTOREFH;
1125
1126 /*
1127 * nverify
1128 */
1129 _v.va_mask = AT_GID;
1130 _v.va_gid = in_va->va_gid;
1131 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1132 supp_attrs))) {
1133
1134 /*
1135 * setattr
1136 *
1137 * We _know_ we're not messing with AT_SIZE or
1138 * AT_XTIME, so no need for stateid or flags.
1139 * Also we specify NULL rp since we're only
1140 * interested in setting owner_group attributes.
1141 */
1142 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1143 supp_attrs, &e.error, 0);
1144 if (e.error)
1145 nfs4args_verify_free(&argop[8]);
1146 }
1147
1148 if (e.error) {
1149 /*
1150 * XXX - Revisit the last argument to nfs4_end_op()
1151 * once 5020486 is fixed.
1152 */
1153 nfs4_end_open_seqid_sync(oop);
1154 open_owner_rele(oop);
1155 nfs4args_copen_free(open_args);
1156 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1157 if (ncr != NULL)
1158 crfree(ncr);
1159 kmem_free(argop, argoplist_size);
1160 return (e.error);
1161 }
1162 } else if (create_flag) {
1163 argop[1].argop = OP_SAVEFH;
1164
1165 argop[5].argop = OP_RESTOREFH;
1166
1167 argop[6].argop = OP_GETATTR;
1168 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1169 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1170 }
1171
1172 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1173 "nfs4open_otw: %s call, nm %s, rp %s",
1174 needrecov ? "recov" : "first", file_name,
1175 rnode4info(VTOR4(dvp))));
1176
1177 t = gethrtime();
1178
1179 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
1180
1181 if (!e.error && nfs4_need_to_bump_seqid(&res))
1182 nfs4_set_open_seqid(seqid, oop, args.ctag);
1183
1184 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
1185
1186 if (e.error || needrecov) {
1187 bool_t abort = FALSE;
1188
1189 if (needrecov) {
1190 nfs4_bseqid_entry_t *bsep = NULL;
1191
1192 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1193 cred_otw, vpi, dvp, open_args);
1194
1195 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1196 bsep = nfs4_create_bseqid_entry(oop, NULL,
1197 vpi, 0, args.ctag, open_args->seqid);
1198 num_bseqid_retry--;
1199 }
1200
1201 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1202 NULL, lost_rqst.lr_op == OP_OPEN ?
1203 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
1204
1205 if (bsep)
1206 kmem_free(bsep, sizeof (*bsep));
1207 /* give up if we keep getting BAD_SEQID */
1208 if (num_bseqid_retry == 0)
1209 abort = TRUE;
1210 if (abort == TRUE && e.error == 0)
1211 e.error = geterrno4(res.status);
1212 }
1213 nfs4_end_open_seqid_sync(oop);
1214 open_owner_rele(oop);
1215 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1216 nfs4args_copen_free(open_args);
1217 if (setgid_flag) {
1218 nfs4args_verify_free(&argop[8]);
1219 nfs4args_setattr_free(&argop[9]);
1220 }
1221 if (!e.error)
1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1223 if (ncr != NULL) {
1224 crfree(ncr);
1225 ncr = NULL;
1226 }
1227 if (!needrecov || abort == TRUE || e.error == EINTR ||
1228 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1229 kmem_free(argop, argoplist_size);
1230 return (e.error);
1231 }
1232 goto recov_retry;
1233 }
1234
1235 /*
1236 * Will check and update lease after checking the rflag for
1237 * OPEN_CONFIRM in the successful OPEN call.
1238 */
1239 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
1240
1241 /*
1242 * XXX what if we're crossing mount points from server1:/drp
1243 * to server2:/drp/rp.
1244 */
1245
1246 /* Signal our end of use of the open seqid */
1247 nfs4_end_open_seqid_sync(oop);
1248
1249 /*
1250 * This will destroy the open owner if it was just created,
1251 * and no one else has put a reference on it.
1252 */
1253 open_owner_rele(oop);
1254 if (create_flag && (createmode != EXCLUSIVE4) &&
1255 res.status == NFS4ERR_BADOWNER)
1256 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1257
1258 e.error = geterrno4(res.status);
1259 nfs4args_copen_free(open_args);
1260 if (setgid_flag) {
1261 nfs4args_verify_free(&argop[8]);
1262 nfs4args_setattr_free(&argop[9]);
1263 }
1264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1265 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1266 /*
1267 * If the reply is NFS4ERR_ACCESS, it may be because
1268 * we are root (no root net access). If the real uid
1269 * is not root, then retry with the real uid instead.
1270 */
1271 if (ncr != NULL) {
1272 crfree(ncr);
1273 ncr = NULL;
1274 }
1275 if (res.status == NFS4ERR_ACCESS &&
1276 (ncr = crnetadjust(cred_otw)) != NULL) {
1277 cred_otw = ncr;
1278 goto recov_retry;
1279 }
1280 kmem_free(argop, argoplist_size);
1281 return (e.error);
1282 }
1283
1284 resop = &res.array[idx_open]; /* open res */
1285 op_res = &resop->nfs_resop4_u.opopen;
1286
1287 #ifdef DEBUG
1288 /*
1289 * verify attrset bitmap
1290 */
1291 if (create_flag &&
1292 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1293 /* make sure attrset returned is what we asked for */
1294 /* XXX Ignore this 'error' for now */
1295 if (attr->attrmask != op_res->attrset)
1296 /* EMPTY */;
1297 }
1298 #endif
1299
1300 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1301 mutex_enter(&VTOMI4(dvp)->mi_lock);
1302 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1303 mutex_exit(&VTOMI4(dvp)->mi_lock);
1304 }
1305
1306 resop = &res.array[idx_open + 1]; /* getfh res */
1307 gf_res = &resop->nfs_resop4_u.opgetfh;
1308
1309 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
1310
1311 /*
1312 * The open stateid has been updated on the server but not
1313 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1314 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1315 * WRITE call. That, however, will use the old stateid, so go ahead
1316 * and upate the open stateid now, before any call to makenfs4node.
1317 */
1318 if (vpi) {
1319 nfs4_open_stream_t *tmp_osp;
1320 rnode4_t *tmp_rp = VTOR4(vpi);
1321
1322 tmp_osp = find_open_stream(oop, tmp_rp);
1323 if (tmp_osp) {
1324 tmp_osp->open_stateid = op_res->stateid;
1325 mutex_exit(&tmp_osp->os_sync_lock);
1326 open_stream_rele(tmp_osp, tmp_rp);
1327 }
1328
1329 /*
1330 * We must determine if the file handle given by the otw open
1331 * is the same as the file handle which was passed in with
1332 * *vpp. This case can be reached if the file we are trying
1333 * to open has been removed and another file has been created
1334 * having the same file name. The passed in vnode is released
1335 * later.
1336 */
1337 orig_sfh = VTOR4(vpi)->r_fh;
1338 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1339 }
1340
1341 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
1342
1343 if (create_flag || fh_differs) {
1344 int rnode_err = 0;
1345
1346 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1347 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
1348
1349 if (e.error)
1350 PURGE_ATTRCACHE4(vp);
1351 /*
1352 * For the newly created vp case, make sure the rnode
1353 * isn't bad before using it.
1354 */
1355 mutex_enter(&(VTOR4(vp))->r_statelock);
1356 if (VTOR4(vp)->r_flags & R4RECOVERR)
1357 rnode_err = EIO;
1358 mutex_exit(&(VTOR4(vp))->r_statelock);
1359
1360 if (rnode_err) {
1361 nfs4_end_open_seqid_sync(oop);
1362 nfs4args_copen_free(open_args);
1363 if (setgid_flag) {
1364 nfs4args_verify_free(&argop[8]);
1365 nfs4args_setattr_free(&argop[9]);
1366 }
1367 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1368 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1369 needrecov);
1370 open_owner_rele(oop);
1371 VN_RELE(vp);
1372 if (ncr != NULL)
1373 crfree(ncr);
1374 sfh4_rele(&otw_sfh);
1375 kmem_free(argop, argoplist_size);
1376 return (EIO);
1377 }
1378 } else {
1379 vp = vpi;
1380 }
1381 sfh4_rele(&otw_sfh);
1382
1383 /*
1384 * It seems odd to get a full set of attrs and then not update
1385 * the object's attrcache in the non-create case. Create case uses
1386 * the attrs since makenfs4node checks to see if the attrs need to
1387 * be updated (and then updates them). The non-create case should
1388 * update attrs also.
1389 */
1390 if (! create_flag && ! fh_differs && !e.error) {
1391 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1392 }
1393
1394 nfs4_error_zinit(&e);
1395 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1396 /* This does not do recovery for vp explicitly. */
1397 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1398 &retry_open, oop, FALSE, &e, &num_bseqid_retry);
1399
1400 if (e.error || e.stat) {
1401 nfs4_end_open_seqid_sync(oop);
1402 nfs4args_copen_free(open_args);
1403 if (setgid_flag) {
1404 nfs4args_verify_free(&argop[8]);
1405 nfs4args_setattr_free(&argop[9]);
1406 }
1407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1408 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1409 needrecov);
1410 open_owner_rele(oop);
1411 if (create_flag || fh_differs) {
1412 /* rele the makenfs4node */
1413 VN_RELE(vp);
1414 }
1415 if (ncr != NULL) {
1416 crfree(ncr);
1417 ncr = NULL;
1418 }
1419 if (retry_open == TRUE) {
1420 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1421 "nfs4open_otw: retry the open since OPEN "
1422 "CONFIRM failed with error %d stat %d",
1423 e.error, e.stat));
1424 if (create_flag && createmode == GUARDED4) {
1425 NFS4_DEBUG(nfs4_client_recov_debug,
1426 (CE_NOTE, "nfs4open_otw: switch "
1427 "createmode from GUARDED4 to "
1428 "UNCHECKED4"));
1429 createmode = UNCHECKED4;
1430 }
1431 goto recov_retry;
1432 }
1433 if (!e.error) {
1434 if (create_flag && (createmode != EXCLUSIVE4) &&
1435 e.stat == NFS4ERR_BADOWNER)
1436 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1437
1438 e.error = geterrno4(e.stat);
1439 }
1440 kmem_free(argop, argoplist_size);
1441 return (e.error);
1442 }
1443 }
1444
1445 rp = VTOR4(vp);
1446
1447 mutex_enter(&rp->r_statev4_lock);
1448 if (create_flag)
1449 rp->created_v4 = 1;
1450 mutex_exit(&rp->r_statev4_lock);
1451
1452 mutex_enter(&oop->oo_lock);
1453 /* Doesn't matter if 'oo_just_created' already was set as this */
1454 oop->oo_just_created = NFS4_PERM_CREATED;
1455 if (oop->oo_cred_otw)
1456 crfree(oop->oo_cred_otw);
1457 oop->oo_cred_otw = cred_otw;
1458 crhold(oop->oo_cred_otw);
1459 mutex_exit(&oop->oo_lock);
1460
1461 /* returns with 'os_sync_lock' held */
1462 osp = find_or_create_open_stream(oop, rp, &created_osp);
1463 if (!osp) {
1464 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1465 "nfs4open_otw: failed to create an open stream"));
1466 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1467 "signal our end of use of the open seqid"));
1468
1469 nfs4_end_open_seqid_sync(oop);
1470 open_owner_rele(oop);
1471 nfs4args_copen_free(open_args);
1472 if (setgid_flag) {
1473 nfs4args_verify_free(&argop[8]);
1474 nfs4args_setattr_free(&argop[9]);
1475 }
1476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1477 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1478 if (create_flag || fh_differs)
1479 VN_RELE(vp);
1480 if (ncr != NULL)
1481 crfree(ncr);
1482
1483 kmem_free(argop, argoplist_size);
1484 return (EINVAL);
1485
1486 }
1487
1488 osp->open_stateid = op_res->stateid;
1489
1490 if (open_flag & FREAD)
1491 osp->os_share_acc_read++;
1492 if (open_flag & FWRITE)
1493 osp->os_share_acc_write++;
1494 osp->os_share_deny_none++;
1495
1496 /*
1497 * Need to reset this bitfield for the possible case where we were
1498 * going to OTW CLOSE the file, got a non-recoverable error, and before
1499 * we could retry the CLOSE, OPENed the file again.
1500 */
1501 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1502 osp->os_final_close = 0;
1503 osp->os_force_close = 0;
1504 #ifdef DEBUG
1505 if (osp->os_failed_reopen)
1506 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1507 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1508 (void *)osp, (void *)cr, rnode4info(rp)));
1509 #endif
1510 osp->os_failed_reopen = 0;
1511
1512 mutex_exit(&osp->os_sync_lock);
1513
1514 nfs4_end_open_seqid_sync(oop);
1515
1516 if (created_osp && recov_state.rs_sp != NULL) {
1517 mutex_enter(&recov_state.rs_sp->s_lock);
1518 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1519 mutex_exit(&recov_state.rs_sp->s_lock);
1520 }
1521
1522 /* get rid of our reference to find oop */
1523 open_owner_rele(oop);
1524
1525 open_stream_rele(osp, rp);
1526
1527 /* accept delegation, if any */
1528 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
1529
1530 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1531
1532 if (createmode == EXCLUSIVE4 &&
1533 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1534 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1535 " EXCLUSIVE4: sending a SETATTR"));
1536 /*
1537 * If doing an exclusive create, then generate
1538 * a SETATTR to set the initial attributes.
1539 * Try to set the mtime and the atime to the
1540 * server's current time. It is somewhat
1541 * expected that these fields will be used to
1542 * store the exclusive create cookie. If not,
1543 * server implementors will need to know that
1544 * a SETATTR will follow an exclusive create
1545 * and the cookie should be destroyed if
1546 * appropriate.
1547 *
1548 * The AT_GID and AT_SIZE bits are turned off
1549 * so that the SETATTR request will not attempt
1550 * to process these. The gid will be set
1551 * separately if appropriate. The size is turned
1552 * off because it is assumed that a new file will
1553 * be created empty and if the file wasn't empty,
1554 * then the exclusive create will have failed
1555 * because the file must have existed already.
1556 * Therefore, no truncate operation is needed.
1557 */
1558 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1559 in_va->va_mask |= (AT_MTIME | AT_ATIME);
1560
1561 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1562 if (e.error) {
1563 /*
1564 * Couldn't correct the attributes of
1565 * the newly created file and the
1566 * attributes are wrong. Remove the
1567 * file and return an error to the
1568 * application.
1569 */
1570 /* XXX will this take care of client state ? */
1571 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1572 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1573 " remove file", e.error));
1574 VN_RELE(vp);
1575 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1576 /*
1577 * Since we've reled the vnode and removed
1578 * the file we now need to return the error.
1579 * At this point we don't want to update the
1580 * dircaches, call nfs4_waitfor_purge_complete
1581 * or set vpp to vp so we need to skip these
1582 * as well.
1583 */
1584 goto skip_update_dircaches;
1585 }
1586 }
1587
1588 /*
1589 * If we created or found the correct vnode, due to create_flag or
1590 * fh_differs being set, then update directory cache attribute, readdir
1591 * and dnlc caches.
1592 */
1593 if (create_flag || fh_differs) {
1594 dirattr_info_t dinfo, *dinfop;
1595
1596 /*
1597 * Make sure getattr succeeded before using results.
1598 * note: op 7 is getattr(dir) for both flavors of
1599 * open(create).
1600 */
1601 if (create_flag && res.status == NFS4_OK) {
1602 dinfo.di_time_call = t;
1603 dinfo.di_cred = cr;
1604 dinfo.di_garp =
1605 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1606 dinfop = &dinfo;
1607 } else {
1608 dinfop = NULL;
1609 }
1610
1611 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1612 dinfop);
1613 }
1614
1615 /*
1616 * If the page cache for this file was flushed from actions
1617 * above, it was done asynchronously and if that is true,
1618 * there is a need to wait here for it to complete. This must
1619 * be done outside of start_fop/end_fop.
1620 */
1621 (void) nfs4_waitfor_purge_complete(vp);
1622
1623 /*
1624 * It is implicit that we are in the open case (create_flag == 0) since
1625 * fh_differs can only be set to a non-zero value in the open case.
1626 */
1627 if (fh_differs != 0 && vpi != NULL)
1628 VN_RELE(vpi);
1629
1630 /*
1631 * Be sure to set *vpp to the correct value before returning.
1632 */
1633 *vpp = vp;
1634
1635 skip_update_dircaches:
1636
1637 nfs4args_copen_free(open_args);
1638 if (setgid_flag) {
1639 nfs4args_verify_free(&argop[8]);
1640 nfs4args_setattr_free(&argop[9]);
1641 }
1642 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1643
1644 if (ncr)
1645 crfree(ncr);
1646 kmem_free(argop, argoplist_size);
1647 return (e.error);
1648 }
1649
1650 /*
1651 * Reopen an open instance. cf. nfs4open_otw().
1652 *
1653 * Errors are returned by the nfs4_error_t parameter.
1654 * - ep->error contains an errno value or zero.
1655 * - if it is zero, ep->stat is set to an NFS status code, if any.
1656 * If the file could not be reopened, but the caller should continue, the
1657 * file is marked dead and no error values are returned. If the caller
1658 * should stop recovering open files and start over, either the ep->error
1659 * value or ep->stat will indicate an error (either something that requires
1660 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1661 * filehandles) may be handled silently by this routine.
1662 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1663 * will be started, so the caller should not do it.
1664 *
1665 * Gotos:
1666 * - kill_file : reopen failed in such a fashion to constitute marking the
1667 * file dead and setting the open stream's 'os_failed_reopen' as 1. This
1668 * is for cases where recovery is not possible.
1669 * - failed_reopen : same as above, except that the file has already been
1670 * marked dead, so no need to do it again.
1671 * - bailout : reopen failed but we are able to recover and retry the reopen -
1672 * either within this function immediately or via the calling function.
1673 */
1674
1675 void
nfs4_reopen(vnode_t * vp,nfs4_open_stream_t * osp,nfs4_error_t * ep,open_claim_type4 claim,bool_t frc_use_claim_previous,bool_t is_recov)1676 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1677 open_claim_type4 claim, bool_t frc_use_claim_previous,
1678 bool_t is_recov)
1679 {
1680 COMPOUND4args_clnt args;
1681 COMPOUND4res_clnt res;
1682 nfs_argop4 argop[4];
1683 nfs_resop4 *resop;
1684 OPEN4res *op_res = NULL;
1685 OPEN4cargs *open_args;
1686 GETFH4res *gf_res;
1687 rnode4_t *rp = VTOR4(vp);
1688 int doqueue = 1;
1689 cred_t *cr = NULL, *cred_otw = NULL;
1690 nfs4_open_owner_t *oop = NULL;
1691 seqid4 seqid;
1692 nfs4_ga_res_t *garp;
1693 char fn[MAXNAMELEN];
1694 nfs4_recov_state_t recov = {NULL, 0};
1695 nfs4_lost_rqst_t lost_rqst;
1696 mntinfo4_t *mi = VTOMI4(vp);
1697 bool_t abort;
1698 char *failed_msg = "";
1699 int fh_different;
1700 hrtime_t t;
1701 nfs4_bseqid_entry_t *bsep = NULL;
1702
1703 ASSERT(nfs4_consistent_type(vp));
1704 ASSERT(nfs_zone() == mi->mi_zone);
1705
1706 nfs4_error_zinit(ep);
1707
1708 /* this is the cred used to find the open owner */
1709 cr = state_to_cred(osp);
1710 if (cr == NULL) {
1711 failed_msg = "Couldn't reopen: no cred";
1712 goto kill_file;
1713 }
1714 /* use this cred for OTW operations */
1715 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
1716
1717 top:
1718 nfs4_error_zinit(ep);
1719
1720 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1721 /* File system has been unmounted, quit */
1722 ep->error = EIO;
1723 failed_msg = "Couldn't reopen: file system has been unmounted";
1724 goto kill_file;
1725 }
1726
1727 oop = osp->os_open_owner;
1728
1729 ASSERT(oop != NULL);
1730 if (oop == NULL) { /* be defensive in non-DEBUG */
1731 failed_msg = "can't reopen: no open owner";
1732 goto kill_file;
1733 }
1734 open_owner_hold(oop);
1735
1736 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1737 if (ep->error) {
1738 open_owner_rele(oop);
1739 oop = NULL;
1740 goto bailout;
1741 }
1742
1743 /*
1744 * If the rnode has a delegation and the delegation has been
1745 * recovered and the server didn't request a recall and the caller
1746 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1747 * recovery) and the rnode hasn't been marked dead, then install
1748 * the delegation stateid in the open stream. Otherwise, proceed
1749 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1750 */
1751 mutex_enter(&rp->r_statev4_lock);
1752 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1753 !rp->r_deleg_return_pending &&
1754 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1755 !rp->r_deleg_needs_recall &&
1756 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1757 !(rp->r_flags & R4RECOVERR)) {
1758 mutex_enter(&osp->os_sync_lock);
1759 osp->os_delegation = 1;
1760 osp->open_stateid = rp->r_deleg_stateid;
1761 mutex_exit(&osp->os_sync_lock);
1762 mutex_exit(&rp->r_statev4_lock);
1763 goto bailout;
1764 }
1765 mutex_exit(&rp->r_statev4_lock);
1766
1767 /*
1768 * If the file failed recovery, just quit. This failure need not
1769 * affect other reopens, so don't return an error.
1770 */
1771 mutex_enter(&rp->r_statelock);
1772 if (rp->r_flags & R4RECOVERR) {
1773 mutex_exit(&rp->r_statelock);
1774 ep->error = 0;
1775 goto failed_reopen;
1776 }
1777 mutex_exit(&rp->r_statelock);
1778
1779 /*
1780 * argop is empty here
1781 *
1782 * PUTFH, OPEN, GETATTR
1783 */
1784 args.ctag = TAG_REOPEN;
1785 args.array_len = 4;
1786 args.array = argop;
1787
1788 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1789 "nfs4_reopen: file is type %d, id %s",
1790 vp->v_type, rnode4info(VTOR4(vp))));
1791
1792 argop[0].argop = OP_CPUTFH;
1793
1794 if (claim != CLAIM_PREVIOUS) {
1795 /*
1796 * if this is a file mount then
1797 * use the mntinfo parentfh
1798 */
1799 argop[0].nfs_argop4_u.opcputfh.sfh =
1800 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1801 VTOSV(vp)->sv_dfh;
1802 } else {
1803 /* putfh fh to reopen */
1804 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1805 }
1806
1807 argop[1].argop = OP_COPEN;
1808 open_args = &argop[1].nfs_argop4_u.opcopen;
1809 open_args->claim = claim;
1810
1811 if (claim == CLAIM_NULL) {
1812
1813 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1814 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1815 "failed for vp 0x%p for CLAIM_NULL with %m",
1816 (void *)vp);
1817 failed_msg = "Couldn't reopen: vtoname failed for "
1818 "CLAIM_NULL";
1819 /* nothing allocated yet */
1820 goto kill_file;
1821 }
1822
1823 open_args->open_claim4_u.cfile = fn;
1824 } else if (claim == CLAIM_PREVIOUS) {
1825
1826 /*
1827 * We have two cases to deal with here:
1828 * 1) We're being called to reopen files in order to satisfy
1829 * a lock operation request which requires us to explicitly
1830 * reopen files which were opened under a delegation. If
1831 * we're in recovery, we *must* use CLAIM_PREVIOUS. In
1832 * that case, frc_use_claim_previous is TRUE and we must
1833 * use the rnode's current delegation type (r_deleg_type).
1834 * 2) We're reopening files during some form of recovery.
1835 * In this case, frc_use_claim_previous is FALSE and we
1836 * use the delegation type appropriate for recovery
1837 * (r_deleg_needs_recovery).
1838 */
1839 mutex_enter(&rp->r_statev4_lock);
1840 open_args->open_claim4_u.delegate_type =
1841 frc_use_claim_previous ?
1842 rp->r_deleg_type :
1843 rp->r_deleg_needs_recovery;
1844 mutex_exit(&rp->r_statev4_lock);
1845
1846 } else if (claim == CLAIM_DELEGATE_CUR) {
1847
1848 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1849 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1850 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1851 "with %m", (void *)vp);
1852 failed_msg = "Couldn't reopen: vtoname failed for "
1853 "CLAIM_DELEGATE_CUR";
1854 /* nothing allocated yet */
1855 goto kill_file;
1856 }
1857
1858 mutex_enter(&rp->r_statev4_lock);
1859 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1860 rp->r_deleg_stateid;
1861 mutex_exit(&rp->r_statev4_lock);
1862
1863 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1864 }
1865 open_args->opentype = OPEN4_NOCREATE;
1866 open_args->owner.clientid = mi2clientid(mi);
1867 open_args->owner.owner_len = sizeof (oop->oo_name);
1868 open_args->owner.owner_val =
1869 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1870 bcopy(&oop->oo_name, open_args->owner.owner_val,
1871 open_args->owner.owner_len);
1872 open_args->share_access = 0;
1873 open_args->share_deny = 0;
1874
1875 mutex_enter(&osp->os_sync_lock);
1876 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1877 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1878 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1879 (void *)osp, (void *)rp, osp->os_share_acc_read,
1880 osp->os_share_acc_write, osp->os_open_ref_count,
1881 osp->os_mmap_read, osp->os_mmap_write, claim));
1882
1883 if (osp->os_share_acc_read || osp->os_mmap_read)
1884 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1885 if (osp->os_share_acc_write || osp->os_mmap_write)
1886 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1887 if (osp->os_share_deny_read)
1888 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1889 if (osp->os_share_deny_write)
1890 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1891 mutex_exit(&osp->os_sync_lock);
1892
1893 seqid = nfs4_get_open_seqid(oop) + 1;
1894 open_args->seqid = seqid;
1895
1896 /* Construct the getfh part of the compound */
1897 argop[2].argop = OP_GETFH;
1898
1899 /* Construct the getattr part of the compound */
1900 argop[3].argop = OP_GETATTR;
1901 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1902 argop[3].nfs_argop4_u.opgetattr.mi = mi;
1903
1904 t = gethrtime();
1905
1906 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
1907
1908 if (ep->error) {
1909 if (!is_recov && !frc_use_claim_previous &&
1910 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1911 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1912 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1913 cred_otw, vp, NULL, open_args);
1914 abort = nfs4_start_recovery(ep,
1915 VTOMI4(vp), vp, NULL, NULL,
1916 lost_rqst.lr_op == OP_OPEN ?
1917 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1918 nfs4args_copen_free(open_args);
1919 goto bailout;
1920 }
1921
1922 nfs4args_copen_free(open_args);
1923
1924 if (ep->error == EACCES && cred_otw != cr) {
1925 crfree(cred_otw);
1926 cred_otw = cr;
1927 crhold(cred_otw);
1928 nfs4_end_open_seqid_sync(oop);
1929 open_owner_rele(oop);
1930 oop = NULL;
1931 goto top;
1932 }
1933 if (ep->error == ETIMEDOUT)
1934 goto bailout;
1935 failed_msg = "Couldn't reopen: rpc error";
1936 goto kill_file;
1937 }
1938
1939 if (nfs4_need_to_bump_seqid(&res))
1940 nfs4_set_open_seqid(seqid, oop, args.ctag);
1941
1942 switch (res.status) {
1943 case NFS4_OK:
1944 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1945 mutex_enter(&rp->r_statelock);
1946 rp->r_delay_interval = 0;
1947 mutex_exit(&rp->r_statelock);
1948 }
1949 break;
1950 case NFS4ERR_BAD_SEQID:
1951 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1952 args.ctag, open_args->seqid);
1953
1954 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1955 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1956 NULL, OP_OPEN, bsep, NULL, NULL);
1957
1958 nfs4args_copen_free(open_args);
1959 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1960 nfs4_end_open_seqid_sync(oop);
1961 open_owner_rele(oop);
1962 oop = NULL;
1963 kmem_free(bsep, sizeof (*bsep));
1964
1965 goto kill_file;
1966 case NFS4ERR_NO_GRACE:
1967 nfs4args_copen_free(open_args);
1968 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1969 nfs4_end_open_seqid_sync(oop);
1970 open_owner_rele(oop);
1971 oop = NULL;
1972 if (claim == CLAIM_PREVIOUS) {
1973 /*
1974 * Retry as a plain open. We don't need to worry about
1975 * checking the changeinfo: it is acceptable for a
1976 * client to re-open a file and continue processing
1977 * (in the absence of locks).
1978 */
1979 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1980 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
1981 "will retry as CLAIM_NULL"));
1982 claim = CLAIM_NULL;
1983 nfs4_mi_kstat_inc_no_grace(mi);
1984 goto top;
1985 }
1986 failed_msg =
1987 "Couldn't reopen: tried reclaim outside grace period. ";
1988 goto kill_file;
1989 case NFS4ERR_GRACE:
1990 nfs4_set_grace_wait(mi);
1991 nfs4args_copen_free(open_args);
1992 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1993 nfs4_end_open_seqid_sync(oop);
1994 open_owner_rele(oop);
1995 oop = NULL;
1996 ep->error = nfs4_wait_for_grace(mi, &recov);
1997 if (ep->error != 0)
1998 goto bailout;
1999 goto top;
2000 case NFS4ERR_DELAY:
2001 nfs4_set_delay_wait(vp);
2002 nfs4args_copen_free(open_args);
2003 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2004 nfs4_end_open_seqid_sync(oop);
2005 open_owner_rele(oop);
2006 oop = NULL;
2007 ep->error = nfs4_wait_for_delay(vp, &recov);
2008 nfs4_mi_kstat_inc_delay(mi);
2009 if (ep->error != 0)
2010 goto bailout;
2011 goto top;
2012 case NFS4ERR_FHEXPIRED:
2013 /* recover filehandle and retry */
2014 abort = nfs4_start_recovery(ep,
2015 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
2016 nfs4args_copen_free(open_args);
2017 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2018 nfs4_end_open_seqid_sync(oop);
2019 open_owner_rele(oop);
2020 oop = NULL;
2021 if (abort == FALSE)
2022 goto top;
2023 failed_msg = "Couldn't reopen: recovery aborted";
2024 goto kill_file;
2025 case NFS4ERR_RESOURCE:
2026 case NFS4ERR_STALE_CLIENTID:
2027 case NFS4ERR_WRONGSEC:
2028 case NFS4ERR_EXPIRED:
2029 /*
2030 * Do not mark the file dead and let the calling
2031 * function initiate recovery.
2032 */
2033 nfs4args_copen_free(open_args);
2034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2035 nfs4_end_open_seqid_sync(oop);
2036 open_owner_rele(oop);
2037 oop = NULL;
2038 goto bailout;
2039 case NFS4ERR_ACCESS:
2040 if (cred_otw != cr) {
2041 crfree(cred_otw);
2042 cred_otw = cr;
2043 crhold(cred_otw);
2044 nfs4args_copen_free(open_args);
2045 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2046 nfs4_end_open_seqid_sync(oop);
2047 open_owner_rele(oop);
2048 oop = NULL;
2049 goto top;
2050 }
2051 /* fall through */
2052 default:
2053 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2054 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2055 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2056 rnode4info(VTOR4(vp))));
2057 failed_msg = "Couldn't reopen: NFSv4 error";
2058 nfs4args_copen_free(open_args);
2059 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2060 goto kill_file;
2061 }
2062
2063 resop = &res.array[1]; /* open res */
2064 op_res = &resop->nfs_resop4_u.opopen;
2065
2066 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
2067
2068 /*
2069 * Check if the path we reopened really is the same
2070 * file. We could end up in a situation where the file
2071 * was removed and a new file created with the same name.
2072 */
2073 resop = &res.array[2];
2074 gf_res = &resop->nfs_resop4_u.opgetfh;
2075 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2076 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2077 if (fh_different) {
2078 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2079 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2080 /* Oops, we don't have the same file */
2081 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2082 failed_msg = "Couldn't reopen: Persistent "
2083 "file handle changed";
2084 else
2085 failed_msg = "Couldn't reopen: Volatile "
2086 "(no expire on open) file handle changed";
2087
2088 nfs4args_copen_free(open_args);
2089 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2090 nfs_rw_exit(&mi->mi_fh_lock);
2091 goto kill_file;
2092
2093 } else {
2094 /*
2095 * We have volatile file handles that don't compare.
2096 * If the fids are the same then we assume that the
2097 * file handle expired but the rnode still refers to
2098 * the same file object.
2099 *
2100 * First check that we have fids or not.
2101 * If we don't we have a dumb server so we will
2102 * just assume every thing is ok for now.
2103 */
2104 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
2105 rp->r_attr.va_mask & AT_NODEID &&
2106 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2107 /*
2108 * We have fids, but they don't
2109 * compare. So kill the file.
2110 */
2111 failed_msg =
2112 "Couldn't reopen: file handle changed"
2113 " due to mismatched fids";
2114 nfs4args_copen_free(open_args);
2115 (void) xdr_free(xdr_COMPOUND4res_clnt,
2116 (caddr_t)&res);
2117 nfs_rw_exit(&mi->mi_fh_lock);
2118 goto kill_file;
2119 } else {
2120 /*
2121 * We have volatile file handles that refers
2122 * to the same file (at least they have the
2123 * same fid) or we don't have fids so we
2124 * can't tell. :(. We'll be a kind and accepting
2125 * client so we'll update the rnode's file
2126 * handle with the otw handle.
2127 *
2128 * We need to drop mi->mi_fh_lock since
2129 * sh4_update acquires it. Since there is
2130 * only one recovery thread there is no
2131 * race.
2132 */
2133 nfs_rw_exit(&mi->mi_fh_lock);
2134 sfh4_update(rp->r_fh, &gf_res->object);
2135 }
2136 }
2137 } else {
2138 nfs_rw_exit(&mi->mi_fh_lock);
2139 }
2140
2141 ASSERT(nfs4_consistent_type(vp));
2142
2143 /*
2144 * If the server wanted an OPEN_CONFIRM but that fails, just start
2145 * over. Presumably if there is a persistent error it will show up
2146 * when we resend the OPEN.
2147 */
2148 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2149 bool_t retry_open = FALSE;
2150
2151 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2152 cred_otw, is_recov, &retry_open,
2153 oop, FALSE, ep, NULL);
2154 if (ep->error || ep->stat) {
2155 nfs4args_copen_free(open_args);
2156 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2157 nfs4_end_open_seqid_sync(oop);
2158 open_owner_rele(oop);
2159 oop = NULL;
2160 goto top;
2161 }
2162 }
2163
2164 mutex_enter(&osp->os_sync_lock);
2165 osp->open_stateid = op_res->stateid;
2166 osp->os_delegation = 0;
2167 /*
2168 * Need to reset this bitfield for the possible case where we were
2169 * going to OTW CLOSE the file, got a non-recoverable error, and before
2170 * we could retry the CLOSE, OPENed the file again.
2171 */
2172 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2173 osp->os_final_close = 0;
2174 osp->os_force_close = 0;
2175 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2176 osp->os_dc_openacc = open_args->share_access;
2177 mutex_exit(&osp->os_sync_lock);
2178
2179 nfs4_end_open_seqid_sync(oop);
2180
2181 /* accept delegation, if any */
2182 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
2183
2184 nfs4args_copen_free(open_args);
2185
2186 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
2187
2188 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2189
2190 ASSERT(nfs4_consistent_type(vp));
2191
2192 open_owner_rele(oop);
2193 crfree(cr);
2194 crfree(cred_otw);
2195 return;
2196
2197 kill_file:
2198 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2199 failed_reopen:
2200 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2201 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2202 (void *)osp, (void *)cr, rnode4info(rp)));
2203 mutex_enter(&osp->os_sync_lock);
2204 osp->os_failed_reopen = 1;
2205 mutex_exit(&osp->os_sync_lock);
2206 bailout:
2207 if (oop != NULL) {
2208 nfs4_end_open_seqid_sync(oop);
2209 open_owner_rele(oop);
2210 }
2211 if (cr != NULL)
2212 crfree(cr);
2213 if (cred_otw != NULL)
2214 crfree(cred_otw);
2215 }
2216
2217 /* for . and .. OPENs */
2218 /* ARGSUSED */
2219 static int
nfs4_open_non_reg_file(vnode_t ** vpp,int flag,cred_t * cr)2220 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2221 {
2222 rnode4_t *rp;
2223 nfs4_ga_res_t gar;
2224
2225 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
2226
2227 /*
2228 * If close-to-open consistency checking is turned off or
2229 * if there is no cached data, we can avoid
2230 * the over the wire getattr. Otherwise, force a
2231 * call to the server to get fresh attributes and to
2232 * check caches. This is required for close-to-open
2233 * consistency.
2234 */
2235 rp = VTOR4(*vpp);
2236 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
2237 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2238 return (0);
2239
2240 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2241 }
2242
2243 /*
2244 * CLOSE a file
2245 */
2246 /* ARGSUSED */
2247 static int
nfs4_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)2248 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2249 caller_context_t *ct)
2250 {
2251 rnode4_t *rp;
2252 int error = 0;
2253 int r_error = 0;
2254 int n4error = 0;
2255 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2256
2257 /*
2258 * Remove client state for this (lockowner, file) pair.
2259 * Issue otw v4 call to have the server do the same.
2260 */
2261
2262 rp = VTOR4(vp);
2263
2264 /*
2265 * zone_enter(2) prevents processes from changing zones with NFS files
2266 * open; if we happen to get here from the wrong zone we can't do
2267 * anything over the wire.
2268 */
2269 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2270 /*
2271 * We could attempt to clean up locks, except we're sure
2272 * that the current process didn't acquire any locks on
2273 * the file: any attempt to lock a file belong to another zone
2274 * will fail, and one can't lock an NFS file and then change
2275 * zones, as that fails too.
2276 *
2277 * Returning an error here is the sane thing to do. A
2278 * subsequent call to VN_RELE() which translates to a
2279 * nfs4_inactive() will clean up state: if the zone of the
2280 * vnode's origin is still alive and kicking, the inactive
2281 * thread will handle the request (from the correct zone), and
2282 * everything (minus the OTW close call) should be OK. If the
2283 * zone is going away nfs4_async_inactive() will throw away
2284 * delegations, open streams and cached pages inline.
2285 */
2286 return (EIO);
2287 }
2288
2289 /*
2290 * If we are using local locking for this filesystem, then
2291 * release all of the SYSV style record locks. Otherwise,
2292 * we are doing network locking and we need to release all
2293 * of the network locks. All of the locks held by this
2294 * process on this file are released no matter what the
2295 * incoming reference count is.
2296 */
2297 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2298 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2299 cleanshares(vp, ttoproc(curthread)->p_pid);
2300 } else
2301 e.error = nfs4_lockrelease(vp, flag, offset, cr);
2302
2303 if (e.error) {
2304 struct lm_sysid *lmsid;
2305 lmsid = nfs4_find_sysid(VTOMI4(vp));
2306 if (lmsid == NULL) {
2307 DTRACE_PROBE2(unknown__sysid, int, e.error,
2308 vnode_t *, vp);
2309 } else {
2310 cleanlocks(vp, ttoproc(curthread)->p_pid,
2311 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2312
2313 lm_rel_sysid(lmsid);
2314 }
2315 return (e.error);
2316 }
2317
2318 if (count > 1)
2319 return (0);
2320
2321 /*
2322 * If the file has been `unlinked', then purge the
2323 * DNLC so that this vnode will get reycled quicker
2324 * and the .nfs* file on the server will get removed.
2325 */
2326 if (rp->r_unldvp != NULL)
2327 dnlc_purge_vp(vp);
2328
2329 /*
2330 * If the file was open for write and there are pages,
2331 * do a synchronous flush and commit of all of the
2332 * dirty and uncommitted pages.
2333 */
2334 ASSERT(!e.error);
2335 if ((flag & FWRITE) && nfs4_has_pages(vp))
2336 error = nfs4_putpage_commit(vp, 0, 0, cr);
2337
2338 mutex_enter(&rp->r_statelock);
2339 r_error = rp->r_error;
2340 rp->r_error = 0;
2341 mutex_exit(&rp->r_statelock);
2342
2343 /*
2344 * If this file type is one for which no explicit 'open' was
2345 * done, then bail now (ie. no need for protocol 'close'). If
2346 * there was an error w/the vm subsystem, return _that_ error,
2347 * otherwise, return any errors that may've been reported via
2348 * the rnode.
2349 */
2350 if (vp->v_type != VREG)
2351 return (error ? error : r_error);
2352
2353 /*
2354 * The sync putpage commit may have failed above, but since
2355 * we're working w/a regular file, we need to do the protocol
2356 * 'close' (nfs4close_one will figure out if an otw close is
2357 * needed or not). Report any errors _after_ doing the protocol
2358 * 'close'.
2359 */
2360 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2361 n4error = e.error ? e.error : geterrno4(e.stat);
2362
2363 /*
2364 * Error reporting prio (Hi -> Lo)
2365 *
2366 * i) nfs4_putpage_commit (error)
2367 * ii) rnode's (r_error)
2368 * iii) nfs4close_one (n4error)
2369 */
2370 return (error ? error : (r_error ? r_error : n4error));
2371 }
2372
2373 /*
2374 * Initialize *lost_rqstp.
2375 */
2376
2377 static void
nfs4close_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,cred_t * cr,vnode_t * vp)2378 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2379 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2380 vnode_t *vp)
2381 {
2382 if (error != ETIMEDOUT && error != EINTR &&
2383 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2384 lost_rqstp->lr_op = 0;
2385 return;
2386 }
2387
2388 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2389 "nfs4close_save_lost_rqst: error %d", error));
2390
2391 lost_rqstp->lr_op = OP_CLOSE;
2392 /*
2393 * The vp is held and rele'd via the recovery code.
2394 * See nfs4_save_lost_rqst.
2395 */
2396 lost_rqstp->lr_vp = vp;
2397 lost_rqstp->lr_dvp = NULL;
2398 lost_rqstp->lr_oop = oop;
2399 lost_rqstp->lr_osp = osp;
2400 ASSERT(osp != NULL);
2401 ASSERT(mutex_owned(&osp->os_sync_lock));
2402 osp->os_pending_close = 1;
2403 lost_rqstp->lr_lop = NULL;
2404 lost_rqstp->lr_cr = cr;
2405 lost_rqstp->lr_flk = NULL;
2406 lost_rqstp->lr_putfirst = FALSE;
2407 }
2408
2409 /*
2410 * Assumes you already have the open seqid sync grabbed as well as the
2411 * 'os_sync_lock'. Note: this will release the open seqid sync and
2412 * 'os_sync_lock' if client recovery starts. Calling functions have to
2413 * be prepared to handle this.
2414 *
2415 * 'recov' is returned as 1 if the CLOSE operation detected client recovery
2416 * was needed and was started, and that the calling function should retry
2417 * this function; otherwise it is returned as 0.
2418 *
2419 * Errors are returned via the nfs4_error_t parameter.
2420 */
2421 static void
nfs4close_otw(rnode4_t * rp,cred_t * cred_otw,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,int * recov,int * did_start_seqid_syncp,nfs4_close_type_t close_type,nfs4_error_t * ep,int * have_sync_lockp)2422 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2423 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2424 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2425 {
2426 COMPOUND4args_clnt args;
2427 COMPOUND4res_clnt res;
2428 CLOSE4args *close_args;
2429 nfs_resop4 *resop;
2430 nfs_argop4 argop[3];
2431 int doqueue = 1;
2432 mntinfo4_t *mi;
2433 seqid4 seqid;
2434 vnode_t *vp;
2435 bool_t needrecov = FALSE;
2436 nfs4_lost_rqst_t lost_rqst;
2437 hrtime_t t;
2438
2439 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
2440
2441 ASSERT(MUTEX_HELD(&osp->os_sync_lock));
2442
2443 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
2444
2445 /* Only set this to 1 if recovery is started */
2446 *recov = 0;
2447
2448 /* do the OTW call to close the file */
2449
2450 if (close_type == CLOSE_RESEND)
2451 args.ctag = TAG_CLOSE_LOST;
2452 else if (close_type == CLOSE_AFTER_RESEND)
2453 args.ctag = TAG_CLOSE_UNDO;
2454 else
2455 args.ctag = TAG_CLOSE;
2456
2457 args.array_len = 3;
2458 args.array = argop;
2459
2460 vp = RTOV4(rp);
2461
2462 mi = VTOMI4(vp);
2463
2464 /* putfh target fh */
2465 argop[0].argop = OP_CPUTFH;
2466 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
2467
2468 argop[1].argop = OP_GETATTR;
2469 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2470 argop[1].nfs_argop4_u.opgetattr.mi = mi;
2471
2472 argop[2].argop = OP_CLOSE;
2473 close_args = &argop[2].nfs_argop4_u.opclose;
2474
2475 seqid = nfs4_get_open_seqid(oop) + 1;
2476
2477 close_args->seqid = seqid;
2478 close_args->open_stateid = osp->open_stateid;
2479
2480 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2481 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2482 rnode4info(rp)));
2483
2484 t = gethrtime();
2485
2486 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
2487
2488 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2489 nfs4_set_open_seqid(seqid, oop, args.ctag);
2490 }
2491
2492 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2493 if (ep->error && !needrecov) {
2494 /*
2495 * if there was an error and no recovery is to be done
2496 * then then set up the file to flush its cache if
2497 * needed for the next caller.
2498 */
2499 mutex_enter(&rp->r_statelock);
2500 PURGE_ATTRCACHE4_LOCKED(rp);
2501 rp->r_flags &= ~R4WRITEMODIFIED;
2502 mutex_exit(&rp->r_statelock);
2503 return;
2504 }
2505
2506 if (needrecov) {
2507 bool_t abort;
2508 nfs4_bseqid_entry_t *bsep = NULL;
2509
2510 if (close_type != CLOSE_RESEND)
2511 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2512 osp, cred_otw, vp);
2513
2514 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2515 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2516 0, args.ctag, close_args->seqid);
2517
2518 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2519 "nfs4close_otw: initiating recovery. error %d "
2520 "res.status %d", ep->error, res.status));
2521
2522 /*
2523 * Drop the 'os_sync_lock' here so we don't hit
2524 * a potential recursive mutex_enter via an
2525 * 'open_stream_hold()'.
2526 */
2527 mutex_exit(&osp->os_sync_lock);
2528 *have_sync_lockp = 0;
2529 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2530 (close_type != CLOSE_RESEND &&
2531 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2532 OP_CLOSE, bsep, NULL, NULL);
2533
2534 /* drop open seq sync, and let the calling function regrab it */
2535 nfs4_end_open_seqid_sync(oop);
2536 *did_start_seqid_syncp = 0;
2537
2538 if (bsep)
2539 kmem_free(bsep, sizeof (*bsep));
2540 /*
2541 * For signals, the caller wants to quit, so don't say to
2542 * retry. For forced unmount, if it's a user thread, it
2543 * wants to quit. If it's a recovery thread, the retry
2544 * will happen higher-up on the call stack. Either way,
2545 * don't say to retry.
2546 */
2547 if (abort == FALSE && ep->error != EINTR &&
2548 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2549 close_type != CLOSE_RESEND &&
2550 close_type != CLOSE_AFTER_RESEND)
2551 *recov = 1;
2552 else
2553 *recov = 0;
2554
2555 if (!ep->error)
2556 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2557 return;
2558 }
2559
2560 if (res.status) {
2561 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2562 return;
2563 }
2564
2565 mutex_enter(&rp->r_statev4_lock);
2566 rp->created_v4 = 0;
2567 mutex_exit(&rp->r_statev4_lock);
2568
2569 resop = &res.array[2];
2570 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2571 osp->os_valid = 0;
2572
2573 /*
2574 * This removes the reference obtained at OPEN; ie, when the
2575 * open stream structure was created.
2576 *
2577 * We don't have to worry about calling 'open_stream_rele'
2578 * since we our currently holding a reference to the open
2579 * stream which means the count cannot go to 0 with this
2580 * decrement.
2581 */
2582 ASSERT(osp->os_ref_count >= 2);
2583 osp->os_ref_count--;
2584
2585 if (ep->error == 0) {
2586 mutex_exit(&osp->os_sync_lock);
2587 *have_sync_lockp = 0;
2588
2589 nfs4_attr_cache(vp,
2590 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2591 t, cred_otw, TRUE, NULL);
2592 }
2593
2594 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2595 " returning %d", ep->error));
2596
2597 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2598 }
2599
2600 /* ARGSUSED */
2601 static int
nfs4_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2602 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2603 caller_context_t *ct)
2604 {
2605 rnode4_t *rp;
2606 u_offset_t off;
2607 offset_t diff;
2608 uint_t on;
2609 uint_t n;
2610 caddr_t base;
2611 uint_t flags;
2612 int error;
2613 mntinfo4_t *mi;
2614
2615 rp = VTOR4(vp);
2616
2617 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2618
2619 if (IS_SHADOW(vp, rp))
2620 vp = RTOV4(rp);
2621
2622 if (vp->v_type != VREG)
2623 return (EISDIR);
2624
2625 mi = VTOMI4(vp);
2626
2627 if (nfs_zone() != mi->mi_zone)
2628 return (EIO);
2629
2630 if (uiop->uio_resid == 0)
2631 return (0);
2632
2633 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2634 return (EINVAL);
2635
2636 mutex_enter(&rp->r_statelock);
2637 if (rp->r_flags & R4RECOVERRP)
2638 error = (rp->r_error ? rp->r_error : EIO);
2639 else
2640 error = 0;
2641 mutex_exit(&rp->r_statelock);
2642 if (error)
2643 return (error);
2644
2645 /*
2646 * Bypass VM if caching has been disabled (e.g., locking) or if
2647 * using client-side direct I/O and the file is not mmap'd and
2648 * there are no cached pages.
2649 */
2650 if ((vp->v_flag & VNOCACHE) ||
2651 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2652 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2653 size_t resid = 0;
2654
2655 return (nfs4read(vp, NULL, uiop->uio_loffset,
2656 uiop->uio_resid, &resid, cr, FALSE, uiop));
2657 }
2658
2659 error = 0;
2660
2661 do {
2662 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2663 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2664 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2665
2666 if (error = nfs4_validate_caches(vp, cr))
2667 break;
2668
2669 mutex_enter(&rp->r_statelock);
2670 while (rp->r_flags & R4INCACHEPURGE) {
2671 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2672 mutex_exit(&rp->r_statelock);
2673 return (EINTR);
2674 }
2675 }
2676 diff = rp->r_size - uiop->uio_loffset;
2677 mutex_exit(&rp->r_statelock);
2678 if (diff <= 0)
2679 break;
2680 if (diff < n)
2681 n = (uint_t)diff;
2682
2683 if (vpm_enable) {
2684 /*
2685 * Copy data.
2686 */
2687 error = vpm_data_copy(vp, off + on, n, uiop,
2688 1, NULL, 0, S_READ);
2689 } else {
2690 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2691 S_READ);
2692
2693 error = uiomove(base + on, n, UIO_READ, uiop);
2694 }
2695
2696 if (!error) {
2697 /*
2698 * If read a whole block or read to eof,
2699 * won't need this buffer again soon.
2700 */
2701 mutex_enter(&rp->r_statelock);
2702 if (n + on == MAXBSIZE ||
2703 uiop->uio_loffset == rp->r_size)
2704 flags = SM_DONTNEED;
2705 else
2706 flags = 0;
2707 mutex_exit(&rp->r_statelock);
2708 if (vpm_enable) {
2709 error = vpm_sync_pages(vp, off, n, flags);
2710 } else {
2711 error = segmap_release(segkmap, base, flags);
2712 }
2713 } else {
2714 if (vpm_enable) {
2715 (void) vpm_sync_pages(vp, off, n, 0);
2716 } else {
2717 (void) segmap_release(segkmap, base, 0);
2718 }
2719 }
2720 } while (!error && uiop->uio_resid > 0);
2721
2722 return (error);
2723 }
2724
2725 /* ARGSUSED */
2726 static int
nfs4_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2727 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2728 caller_context_t *ct)
2729 {
2730 rlim64_t limit = uiop->uio_llimit;
2731 rnode4_t *rp;
2732 u_offset_t off;
2733 caddr_t base;
2734 uint_t flags;
2735 int remainder;
2736 size_t n;
2737 int on;
2738 int error;
2739 int resid;
2740 u_offset_t offset;
2741 mntinfo4_t *mi;
2742 uint_t bsize;
2743
2744 rp = VTOR4(vp);
2745
2746 if (IS_SHADOW(vp, rp))
2747 vp = RTOV4(rp);
2748
2749 if (vp->v_type != VREG)
2750 return (EISDIR);
2751
2752 mi = VTOMI4(vp);
2753
2754 if (nfs_zone() != mi->mi_zone)
2755 return (EIO);
2756
2757 if (uiop->uio_resid == 0)
2758 return (0);
2759
2760 mutex_enter(&rp->r_statelock);
2761 if (rp->r_flags & R4RECOVERRP)
2762 error = (rp->r_error ? rp->r_error : EIO);
2763 else
2764 error = 0;
2765 mutex_exit(&rp->r_statelock);
2766 if (error)
2767 return (error);
2768
2769 if (ioflag & FAPPEND) {
2770 struct vattr va;
2771
2772 /*
2773 * Must serialize if appending.
2774 */
2775 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2776 nfs_rw_exit(&rp->r_rwlock);
2777 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2778 INTR4(vp)))
2779 return (EINTR);
2780 }
2781
2782 va.va_mask = AT_SIZE;
2783 error = nfs4getattr(vp, &va, cr);
2784 if (error)
2785 return (error);
2786 uiop->uio_loffset = va.va_size;
2787 }
2788
2789 offset = uiop->uio_loffset + uiop->uio_resid;
2790
2791 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2792 return (EINVAL);
2793
2794 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2795 limit = MAXOFFSET_T;
2796
2797 /*
2798 * Check to make sure that the process will not exceed
2799 * its limit on file size. It is okay to write up to
2800 * the limit, but not beyond. Thus, the write which
2801 * reaches the limit will be short and the next write
2802 * will return an error.
2803 */
2804 remainder = 0;
2805 if (offset > uiop->uio_llimit) {
2806 remainder = offset - uiop->uio_llimit;
2807 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2808 if (uiop->uio_resid <= 0) {
2809 proc_t *p = ttoproc(curthread);
2810
2811 uiop->uio_resid += remainder;
2812 mutex_enter(&p->p_lock);
2813 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2814 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2815 mutex_exit(&p->p_lock);
2816 return (EFBIG);
2817 }
2818 }
2819
2820 /* update the change attribute, if we have a write delegation */
2821
2822 mutex_enter(&rp->r_statev4_lock);
2823 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2824 rp->r_deleg_change++;
2825
2826 mutex_exit(&rp->r_statev4_lock);
2827
2828 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, INTR4(vp)))
2829 return (EINTR);
2830
2831 /*
2832 * Bypass VM if caching has been disabled (e.g., locking) or if
2833 * using client-side direct I/O and the file is not mmap'd and
2834 * there are no cached pages.
2835 */
2836 if ((vp->v_flag & VNOCACHE) ||
2837 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2838 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2839 size_t bufsize;
2840 int count;
2841 u_offset_t org_offset;
2842 stable_how4 stab_comm;
2843 nfs4_fwrite:
2844 if (rp->r_flags & R4STALE) {
2845 resid = uiop->uio_resid;
2846 offset = uiop->uio_loffset;
2847 error = rp->r_error;
2848 /*
2849 * A close may have cleared r_error, if so,
2850 * propagate ESTALE error return properly
2851 */
2852 if (error == 0)
2853 error = ESTALE;
2854 goto bottom;
2855 }
2856
2857 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2858 base = kmem_alloc(bufsize, KM_SLEEP);
2859 do {
2860 if (ioflag & FDSYNC)
2861 stab_comm = DATA_SYNC4;
2862 else
2863 stab_comm = FILE_SYNC4;
2864 resid = uiop->uio_resid;
2865 offset = uiop->uio_loffset;
2866 count = MIN(uiop->uio_resid, bufsize);
2867 org_offset = uiop->uio_loffset;
2868 error = uiomove(base, count, UIO_WRITE, uiop);
2869 if (!error) {
2870 error = nfs4write(vp, base, org_offset,
2871 count, cr, &stab_comm);
2872 if (!error) {
2873 mutex_enter(&rp->r_statelock);
2874 if (rp->r_size < uiop->uio_loffset)
2875 rp->r_size = uiop->uio_loffset;
2876 mutex_exit(&rp->r_statelock);
2877 }
2878 }
2879 } while (!error && uiop->uio_resid > 0);
2880 kmem_free(base, bufsize);
2881 goto bottom;
2882 }
2883
2884 bsize = vp->v_vfsp->vfs_bsize;
2885
2886 do {
2887 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2888 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2889 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2890
2891 resid = uiop->uio_resid;
2892 offset = uiop->uio_loffset;
2893
2894 if (rp->r_flags & R4STALE) {
2895 error = rp->r_error;
2896 /*
2897 * A close may have cleared r_error, if so,
2898 * propagate ESTALE error return properly
2899 */
2900 if (error == 0)
2901 error = ESTALE;
2902 break;
2903 }
2904
2905 /*
2906 * Don't create dirty pages faster than they
2907 * can be cleaned so that the system doesn't
2908 * get imbalanced. If the async queue is
2909 * maxed out, then wait for it to drain before
2910 * creating more dirty pages. Also, wait for
2911 * any threads doing pagewalks in the vop_getattr
2912 * entry points so that they don't block for
2913 * long periods.
2914 */
2915 mutex_enter(&rp->r_statelock);
2916 while ((mi->mi_max_threads != 0 &&
2917 rp->r_awcount > 2 * mi->mi_max_threads) ||
2918 rp->r_gcount > 0) {
2919 if (INTR4(vp)) {
2920 klwp_t *lwp = ttolwp(curthread);
2921
2922 if (lwp != NULL)
2923 lwp->lwp_nostop++;
2924 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2925 mutex_exit(&rp->r_statelock);
2926 if (lwp != NULL)
2927 lwp->lwp_nostop--;
2928 error = EINTR;
2929 goto bottom;
2930 }
2931 if (lwp != NULL)
2932 lwp->lwp_nostop--;
2933 } else
2934 cv_wait(&rp->r_cv, &rp->r_statelock);
2935 }
2936 mutex_exit(&rp->r_statelock);
2937
2938 /*
2939 * Touch the page and fault it in if it is not in core
2940 * before segmap_getmapflt or vpm_data_copy can lock it.
2941 * This is to avoid the deadlock if the buffer is mapped
2942 * to the same file through mmap which we want to write.
2943 */
2944 uio_prefaultpages((long)n, uiop);
2945
2946 if (vpm_enable) {
2947 /*
2948 * It will use kpm mappings, so no need to
2949 * pass an address.
2950 */
2951 error = writerp4(rp, NULL, n, uiop, 0);
2952 } else {
2953 if (segmap_kpm) {
2954 int pon = uiop->uio_loffset & PAGEOFFSET;
2955 size_t pn = MIN(PAGESIZE - pon,
2956 uiop->uio_resid);
2957 int pagecreate;
2958
2959 mutex_enter(&rp->r_statelock);
2960 pagecreate = (pon == 0) && (pn == PAGESIZE ||
2961 uiop->uio_loffset + pn >= rp->r_size);
2962 mutex_exit(&rp->r_statelock);
2963
2964 base = segmap_getmapflt(segkmap, vp, off + on,
2965 pn, !pagecreate, S_WRITE);
2966
2967 error = writerp4(rp, base + pon, n, uiop,
2968 pagecreate);
2969
2970 } else {
2971 base = segmap_getmapflt(segkmap, vp, off + on,
2972 n, 0, S_READ);
2973 error = writerp4(rp, base + on, n, uiop, 0);
2974 }
2975 }
2976
2977 if (!error) {
2978 if (mi->mi_flags & MI4_NOAC)
2979 flags = SM_WRITE;
2980 else if ((uiop->uio_loffset % bsize) == 0 ||
2981 IS_SWAPVP(vp)) {
2982 /*
2983 * Have written a whole block.
2984 * Start an asynchronous write
2985 * and mark the buffer to
2986 * indicate that it won't be
2987 * needed again soon.
2988 */
2989 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
2990 } else
2991 flags = 0;
2992 if ((ioflag & (FSYNC|FDSYNC)) ||
2993 (rp->r_flags & R4OUTOFSPACE)) {
2994 flags &= ~SM_ASYNC;
2995 flags |= SM_WRITE;
2996 }
2997 if (vpm_enable) {
2998 error = vpm_sync_pages(vp, off, n, flags);
2999 } else {
3000 error = segmap_release(segkmap, base, flags);
3001 }
3002 } else {
3003 if (vpm_enable) {
3004 (void) vpm_sync_pages(vp, off, n, 0);
3005 } else {
3006 (void) segmap_release(segkmap, base, 0);
3007 }
3008 /*
3009 * In the event that we got an access error while
3010 * faulting in a page for a write-only file just
3011 * force a write.
3012 */
3013 if (error == EACCES)
3014 goto nfs4_fwrite;
3015 }
3016 } while (!error && uiop->uio_resid > 0);
3017
3018 bottom:
3019 if (error) {
3020 uiop->uio_resid = resid + remainder;
3021 uiop->uio_loffset = offset;
3022 } else {
3023 uiop->uio_resid += remainder;
3024
3025 mutex_enter(&rp->r_statev4_lock);
3026 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3027 gethrestime(&rp->r_attr.va_mtime);
3028 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3029 }
3030 mutex_exit(&rp->r_statev4_lock);
3031 }
3032
3033 nfs_rw_exit(&rp->r_lkserlock);
3034
3035 return (error);
3036 }
3037
3038 /*
3039 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3040 */
3041 static int
nfs4_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)3042 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3043 int flags, cred_t *cr)
3044 {
3045 struct buf *bp;
3046 int error;
3047 page_t *savepp;
3048 uchar_t fsdata;
3049 stable_how4 stab_comm;
3050
3051 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3052 bp = pageio_setup(pp, len, vp, flags);
3053 ASSERT(bp != NULL);
3054
3055 /*
3056 * pageio_setup should have set b_addr to 0. This
3057 * is correct since we want to do I/O on a page
3058 * boundary. bp_mapin will use this addr to calculate
3059 * an offset, and then set b_addr to the kernel virtual
3060 * address it allocated for us.
3061 */
3062 ASSERT(bp->b_un.b_addr == 0);
3063
3064 bp->b_edev = 0;
3065 bp->b_dev = 0;
3066 bp->b_lblkno = lbtodb(off);
3067 bp->b_file = vp;
3068 bp->b_offset = (offset_t)off;
3069 bp_mapin(bp);
3070
3071 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3072 freemem > desfree)
3073 stab_comm = UNSTABLE4;
3074 else
3075 stab_comm = FILE_SYNC4;
3076
3077 error = nfs4_bio(bp, &stab_comm, cr, FALSE);
3078
3079 bp_mapout(bp);
3080 pageio_done(bp);
3081
3082 if (stab_comm == UNSTABLE4)
3083 fsdata = C_DELAYCOMMIT;
3084 else
3085 fsdata = C_NOCOMMIT;
3086
3087 savepp = pp;
3088 do {
3089 pp->p_fsdata = fsdata;
3090 } while ((pp = pp->p_next) != savepp);
3091
3092 return (error);
3093 }
3094
3095 /*
3096 */
3097 static int
nfs4rdwr_check_osid(vnode_t * vp,nfs4_error_t * ep,cred_t * cr)3098 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3099 {
3100 nfs4_open_owner_t *oop;
3101 nfs4_open_stream_t *osp;
3102 rnode4_t *rp = VTOR4(vp);
3103 mntinfo4_t *mi = VTOMI4(vp);
3104 int reopen_needed;
3105
3106 ASSERT(nfs_zone() == mi->mi_zone);
3107
3108
3109 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3110 if (!oop)
3111 return (EIO);
3112
3113 /* returns with 'os_sync_lock' held */
3114 osp = find_open_stream(oop, rp);
3115 if (!osp) {
3116 open_owner_rele(oop);
3117 return (EIO);
3118 }
3119
3120 if (osp->os_failed_reopen) {
3121 mutex_exit(&osp->os_sync_lock);
3122 open_stream_rele(osp, rp);
3123 open_owner_rele(oop);
3124 return (EIO);
3125 }
3126
3127 /*
3128 * Determine whether a reopen is needed. If this
3129 * is a delegation open stream, then the os_delegation bit
3130 * should be set.
3131 */
3132
3133 reopen_needed = osp->os_delegation;
3134
3135 mutex_exit(&osp->os_sync_lock);
3136 open_owner_rele(oop);
3137
3138 if (reopen_needed) {
3139 nfs4_error_zinit(ep);
3140 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3141 mutex_enter(&osp->os_sync_lock);
3142 if (ep->error || ep->stat || osp->os_failed_reopen) {
3143 mutex_exit(&osp->os_sync_lock);
3144 open_stream_rele(osp, rp);
3145 return (EIO);
3146 }
3147 mutex_exit(&osp->os_sync_lock);
3148 }
3149 open_stream_rele(osp, rp);
3150
3151 return (0);
3152 }
3153
3154 /*
3155 * Write to file. Writes to remote server in largest size
3156 * chunks that the server can handle. Write is synchronous.
3157 */
3158 static int
nfs4write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how4 * stab_comm)3159 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3160 stable_how4 *stab_comm)
3161 {
3162 mntinfo4_t *mi;
3163 COMPOUND4args_clnt args;
3164 COMPOUND4res_clnt res;
3165 WRITE4args *wargs;
3166 WRITE4res *wres;
3167 nfs_argop4 argop[2];
3168 nfs_resop4 *resop;
3169 int tsize;
3170 stable_how4 stable;
3171 rnode4_t *rp;
3172 int doqueue = 1;
3173 bool_t needrecov;
3174 nfs4_recov_state_t recov_state;
3175 nfs4_stateid_types_t sid_types;
3176 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3177 int recov;
3178
3179 rp = VTOR4(vp);
3180 mi = VTOMI4(vp);
3181
3182 ASSERT(nfs_zone() == mi->mi_zone);
3183
3184 stable = *stab_comm;
3185 *stab_comm = FILE_SYNC4;
3186
3187 needrecov = FALSE;
3188 recov_state.rs_flags = 0;
3189 recov_state.rs_num_retry_despite_err = 0;
3190 nfs4_init_stateid_types(&sid_types);
3191
3192 /* Is curthread the recovery thread? */
3193 mutex_enter(&mi->mi_lock);
3194 recov = (mi->mi_recovthread == curthread);
3195 mutex_exit(&mi->mi_lock);
3196
3197 recov_retry:
3198 args.ctag = TAG_WRITE;
3199 args.array_len = 2;
3200 args.array = argop;
3201
3202 if (!recov) {
3203 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3204 &recov_state, NULL);
3205 if (e.error)
3206 return (e.error);
3207 }
3208
3209 /* 0. putfh target fh */
3210 argop[0].argop = OP_CPUTFH;
3211 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3212
3213 /* 1. write */
3214 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
3215
3216 do {
3217
3218 wargs->offset = (offset4)offset;
3219 wargs->data_val = base;
3220
3221 if (mi->mi_io_kstats) {
3222 mutex_enter(&mi->mi_lock);
3223 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3224 mutex_exit(&mi->mi_lock);
3225 }
3226
3227 if ((vp->v_flag & VNOCACHE) ||
3228 (rp->r_flags & R4DIRECTIO) ||
3229 (mi->mi_flags & MI4_DIRECTIO))
3230 tsize = MIN(mi->mi_stsize, count);
3231 else
3232 tsize = MIN(mi->mi_curwrite, count);
3233 wargs->data_len = (uint_t)tsize;
3234 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3235
3236 if (mi->mi_io_kstats) {
3237 mutex_enter(&mi->mi_lock);
3238 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3239 mutex_exit(&mi->mi_lock);
3240 }
3241
3242 if (!recov) {
3243 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3244 if (e.error && !needrecov) {
3245 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3246 &recov_state, needrecov);
3247 return (e.error);
3248 }
3249 } else {
3250 if (e.error)
3251 return (e.error);
3252 }
3253
3254 /*
3255 * Do handling of OLD_STATEID outside
3256 * of the normal recovery framework.
3257 *
3258 * If write receives a BAD stateid error while using a
3259 * delegation stateid, retry using the open stateid (if it
3260 * exists). If it doesn't have an open stateid, reopen the
3261 * file first, then retry.
3262 */
3263 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3264 sid_types.cur_sid_type != SPEC_SID) {
3265 nfs4_save_stateid(&wargs->stateid, &sid_types);
3266 if (!recov)
3267 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3268 &recov_state, needrecov);
3269 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3270 goto recov_retry;
3271 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3272 sid_types.cur_sid_type == DEL_SID) {
3273 nfs4_save_stateid(&wargs->stateid, &sid_types);
3274 mutex_enter(&rp->r_statev4_lock);
3275 rp->r_deleg_return_pending = TRUE;
3276 mutex_exit(&rp->r_statev4_lock);
3277 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3278 if (!recov)
3279 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3280 &recov_state, needrecov);
3281 (void) xdr_free(xdr_COMPOUND4res_clnt,
3282 (caddr_t)&res);
3283 return (EIO);
3284 }
3285 if (!recov)
3286 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3287 &recov_state, needrecov);
3288 /* hold needed for nfs4delegreturn_thread */
3289 VN_HOLD(vp);
3290 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3291 NFS4_DR_DISCARD), FALSE);
3292 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3293 goto recov_retry;
3294 }
3295
3296 if (needrecov) {
3297 bool_t abort;
3298
3299 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3300 "nfs4write: client got error %d, res.status %d"
3301 ", so start recovery", e.error, res.status));
3302
3303 abort = nfs4_start_recovery(&e,
3304 VTOMI4(vp), vp, NULL, &wargs->stateid,
3305 NULL, OP_WRITE, NULL, NULL, NULL);
3306 if (!e.error) {
3307 e.error = geterrno4(res.status);
3308 (void) xdr_free(xdr_COMPOUND4res_clnt,
3309 (caddr_t)&res);
3310 }
3311 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3312 &recov_state, needrecov);
3313 if (abort == FALSE)
3314 goto recov_retry;
3315 return (e.error);
3316 }
3317
3318 if (res.status) {
3319 e.error = geterrno4(res.status);
3320 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3321 if (!recov)
3322 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3323 &recov_state, needrecov);
3324 return (e.error);
3325 }
3326
3327 resop = &res.array[1]; /* write res */
3328 wres = &resop->nfs_resop4_u.opwrite;
3329
3330 if ((int)wres->count > tsize) {
3331 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3332
3333 zcmn_err(getzoneid(), CE_WARN,
3334 "nfs4write: server wrote %u, requested was %u",
3335 (int)wres->count, tsize);
3336 if (!recov)
3337 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3338 &recov_state, needrecov);
3339 return (EIO);
3340 }
3341 if (wres->committed == UNSTABLE4) {
3342 *stab_comm = UNSTABLE4;
3343 if (wargs->stable == DATA_SYNC4 ||
3344 wargs->stable == FILE_SYNC4) {
3345 (void) xdr_free(xdr_COMPOUND4res_clnt,
3346 (caddr_t)&res);
3347 zcmn_err(getzoneid(), CE_WARN,
3348 "nfs4write: server %s did not commit "
3349 "to stable storage",
3350 rp->r_server->sv_hostname);
3351 if (!recov)
3352 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3353 OH_WRITE, &recov_state, needrecov);
3354 return (EIO);
3355 }
3356 }
3357
3358 tsize = (int)wres->count;
3359 count -= tsize;
3360 base += tsize;
3361 offset += tsize;
3362 if (mi->mi_io_kstats) {
3363 mutex_enter(&mi->mi_lock);
3364 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3365 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3366 tsize;
3367 mutex_exit(&mi->mi_lock);
3368 }
3369 lwp_stat_update(LWP_STAT_OUBLK, 1);
3370 mutex_enter(&rp->r_statelock);
3371 if (rp->r_flags & R4HAVEVERF) {
3372 if (rp->r_writeverf != wres->writeverf) {
3373 nfs4_set_mod(vp);
3374 rp->r_writeverf = wres->writeverf;
3375 }
3376 } else {
3377 rp->r_writeverf = wres->writeverf;
3378 rp->r_flags |= R4HAVEVERF;
3379 }
3380 PURGE_ATTRCACHE4_LOCKED(rp);
3381 rp->r_flags |= R4WRITEMODIFIED;
3382 gethrestime(&rp->r_attr.va_mtime);
3383 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3384 mutex_exit(&rp->r_statelock);
3385 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3386 } while (count);
3387
3388 if (!recov)
3389 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3390 needrecov);
3391
3392 return (e.error);
3393 }
3394
3395 /*
3396 * Read from a file. Reads data in largest chunks our interface can handle.
3397 */
3398 static int
nfs4read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr,bool_t async,struct uio * uiop)3399 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3400 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3401 {
3402 mntinfo4_t *mi;
3403 COMPOUND4args_clnt args;
3404 COMPOUND4res_clnt res;
3405 READ4args *rargs;
3406 nfs_argop4 argop[2];
3407 int tsize;
3408 int doqueue;
3409 rnode4_t *rp;
3410 int data_len;
3411 bool_t is_eof;
3412 bool_t needrecov = FALSE;
3413 nfs4_recov_state_t recov_state;
3414 nfs4_stateid_types_t sid_types;
3415 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3416
3417 rp = VTOR4(vp);
3418 mi = VTOMI4(vp);
3419 doqueue = 1;
3420
3421 ASSERT(nfs_zone() == mi->mi_zone);
3422
3423 args.ctag = async ? TAG_READAHEAD : TAG_READ;
3424
3425 args.array_len = 2;
3426 args.array = argop;
3427
3428 nfs4_init_stateid_types(&sid_types);
3429
3430 recov_state.rs_flags = 0;
3431 recov_state.rs_num_retry_despite_err = 0;
3432
3433 recov_retry:
3434 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3435 &recov_state, NULL);
3436 if (e.error)
3437 return (e.error);
3438
3439 /* putfh target fh */
3440 argop[0].argop = OP_CPUTFH;
3441 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3442
3443 /* read */
3444 argop[1].argop = OP_READ;
3445 rargs = &argop[1].nfs_argop4_u.opread;
3446 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3447 OP_READ, &sid_types, async);
3448
3449 do {
3450 if (mi->mi_io_kstats) {
3451 mutex_enter(&mi->mi_lock);
3452 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3453 mutex_exit(&mi->mi_lock);
3454 }
3455
3456 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3457 "nfs4read: %s call, rp %s",
3458 needrecov ? "recov" : "first",
3459 rnode4info(rp)));
3460
3461 if ((vp->v_flag & VNOCACHE) ||
3462 (rp->r_flags & R4DIRECTIO) ||
3463 (mi->mi_flags & MI4_DIRECTIO))
3464 tsize = MIN(mi->mi_tsize, count);
3465 else
3466 tsize = MIN(mi->mi_curread, count);
3467
3468 rargs->offset = (offset4)offset;
3469 rargs->count = (count4)tsize;
3470 rargs->res_data_val_alt = NULL;
3471 rargs->res_mblk = NULL;
3472 rargs->res_uiop = NULL;
3473 rargs->res_maxsize = 0;
3474 rargs->wlist = NULL;
3475
3476 if (uiop)
3477 rargs->res_uiop = uiop;
3478 else
3479 rargs->res_data_val_alt = base;
3480 rargs->res_maxsize = tsize;
3481
3482 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3483 #ifdef DEBUG
3484 if (nfs4read_error_inject) {
3485 res.status = nfs4read_error_inject;
3486 nfs4read_error_inject = 0;
3487 }
3488 #endif
3489
3490 if (mi->mi_io_kstats) {
3491 mutex_enter(&mi->mi_lock);
3492 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3493 mutex_exit(&mi->mi_lock);
3494 }
3495
3496 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3497 if (e.error != 0 && !needrecov) {
3498 nfs4_end_fop(mi, vp, NULL, OH_READ,
3499 &recov_state, needrecov);
3500 return (e.error);
3501 }
3502
3503 /*
3504 * Do proper retry for OLD and BAD stateid errors outside
3505 * of the normal recovery framework. There are two differences
3506 * between async and sync reads. The first is that we allow
3507 * retry on BAD_STATEID for async reads, but not sync reads.
3508 * The second is that we mark the file dead for a failed
3509 * attempt with a special stateid for sync reads, but just
3510 * return EIO for async reads.
3511 *
3512 * If a sync read receives a BAD stateid error while using a
3513 * delegation stateid, retry using the open stateid (if it
3514 * exists). If it doesn't have an open stateid, reopen the
3515 * file first, then retry.
3516 */
3517 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3518 res.status == NFS4ERR_BAD_STATEID) && async) {
3519 nfs4_end_fop(mi, vp, NULL, OH_READ,
3520 &recov_state, needrecov);
3521 if (sid_types.cur_sid_type == SPEC_SID) {
3522 (void) xdr_free(xdr_COMPOUND4res_clnt,
3523 (caddr_t)&res);
3524 return (EIO);
3525 }
3526 nfs4_save_stateid(&rargs->stateid, &sid_types);
3527 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3528 goto recov_retry;
3529 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3530 !async && sid_types.cur_sid_type != SPEC_SID) {
3531 nfs4_save_stateid(&rargs->stateid, &sid_types);
3532 nfs4_end_fop(mi, vp, NULL, OH_READ,
3533 &recov_state, needrecov);
3534 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3535 goto recov_retry;
3536 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3537 sid_types.cur_sid_type == DEL_SID) {
3538 nfs4_save_stateid(&rargs->stateid, &sid_types);
3539 mutex_enter(&rp->r_statev4_lock);
3540 rp->r_deleg_return_pending = TRUE;
3541 mutex_exit(&rp->r_statev4_lock);
3542 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3543 nfs4_end_fop(mi, vp, NULL, OH_READ,
3544 &recov_state, needrecov);
3545 (void) xdr_free(xdr_COMPOUND4res_clnt,
3546 (caddr_t)&res);
3547 return (EIO);
3548 }
3549 nfs4_end_fop(mi, vp, NULL, OH_READ,
3550 &recov_state, needrecov);
3551 /* hold needed for nfs4delegreturn_thread */
3552 VN_HOLD(vp);
3553 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3554 NFS4_DR_DISCARD), FALSE);
3555 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3556 goto recov_retry;
3557 }
3558 if (needrecov) {
3559 bool_t abort;
3560
3561 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3562 "nfs4read: initiating recovery\n"));
3563 abort = nfs4_start_recovery(&e,
3564 mi, vp, NULL, &rargs->stateid,
3565 NULL, OP_READ, NULL, NULL, NULL);
3566 nfs4_end_fop(mi, vp, NULL, OH_READ,
3567 &recov_state, needrecov);
3568 /*
3569 * Do not retry if we got OLD_STATEID using a special
3570 * stateid. This avoids looping with a broken server.
3571 */
3572 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3573 sid_types.cur_sid_type == SPEC_SID)
3574 abort = TRUE;
3575
3576 if (abort == FALSE) {
3577 /*
3578 * Need to retry all possible stateids in
3579 * case the recovery error wasn't stateid
3580 * related or the stateids have become
3581 * stale (server reboot).
3582 */
3583 nfs4_init_stateid_types(&sid_types);
3584 (void) xdr_free(xdr_COMPOUND4res_clnt,
3585 (caddr_t)&res);
3586 goto recov_retry;
3587 }
3588
3589 if (!e.error) {
3590 e.error = geterrno4(res.status);
3591 (void) xdr_free(xdr_COMPOUND4res_clnt,
3592 (caddr_t)&res);
3593 }
3594 return (e.error);
3595 }
3596
3597 if (res.status) {
3598 e.error = geterrno4(res.status);
3599 nfs4_end_fop(mi, vp, NULL, OH_READ,
3600 &recov_state, needrecov);
3601 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3602 return (e.error);
3603 }
3604
3605 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3606 count -= data_len;
3607 if (base)
3608 base += data_len;
3609 offset += data_len;
3610 if (mi->mi_io_kstats) {
3611 mutex_enter(&mi->mi_lock);
3612 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3613 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3614 mutex_exit(&mi->mi_lock);
3615 }
3616 lwp_stat_update(LWP_STAT_INBLK, 1);
3617 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3618 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3619
3620 } while (count && !is_eof);
3621
3622 *residp = count;
3623
3624 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
3625
3626 return (e.error);
3627 }
3628
3629 /* ARGSUSED */
3630 static int
nfs4_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)3631 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3632 caller_context_t *ct)
3633 {
3634 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3635 return (EIO);
3636 switch (cmd) {
3637 case _FIODIRECTIO:
3638 return (nfs4_directio(vp, (int)arg, cr));
3639 default:
3640 return (ENOTTY);
3641 }
3642 }
3643
3644 /* ARGSUSED */
3645 int
nfs4_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3646 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3647 caller_context_t *ct)
3648 {
3649 int error;
3650 rnode4_t *rp = VTOR4(vp);
3651
3652 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3653 return (EIO);
3654 /*
3655 * If it has been specified that the return value will
3656 * just be used as a hint, and we are only being asked
3657 * for size, fsid or rdevid, then return the client's
3658 * notion of these values without checking to make sure
3659 * that the attribute cache is up to date.
3660 * The whole point is to avoid an over the wire GETATTR
3661 * call.
3662 */
3663 if (flags & ATTR_HINT) {
3664 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3665 mutex_enter(&rp->r_statelock);
3666 if (vap->va_mask & AT_SIZE)
3667 vap->va_size = rp->r_size;
3668 if (vap->va_mask & AT_FSID)
3669 vap->va_fsid = rp->r_attr.va_fsid;
3670 if (vap->va_mask & AT_RDEV)
3671 vap->va_rdev = rp->r_attr.va_rdev;
3672 mutex_exit(&rp->r_statelock);
3673 return (0);
3674 }
3675 }
3676
3677 /*
3678 * Only need to flush pages if asking for the mtime
3679 * and if there any dirty pages or any outstanding
3680 * asynchronous (write) requests for this file.
3681 */
3682 if (vap->va_mask & AT_MTIME) {
3683 rp = VTOR4(vp);
3684 if (nfs4_has_pages(vp)) {
3685 mutex_enter(&rp->r_statev4_lock);
3686 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3687 mutex_exit(&rp->r_statev4_lock);
3688 if (rp->r_flags & R4DIRTY ||
3689 rp->r_awcount > 0) {
3690 mutex_enter(&rp->r_statelock);
3691 rp->r_gcount++;
3692 mutex_exit(&rp->r_statelock);
3693 error =
3694 nfs4_putpage(vp, (u_offset_t)0,
3695 0, 0, cr, NULL);
3696 mutex_enter(&rp->r_statelock);
3697 if (error && (error == ENOSPC ||
3698 error == EDQUOT)) {
3699 if (!rp->r_error)
3700 rp->r_error = error;
3701 }
3702 if (--rp->r_gcount == 0)
3703 cv_broadcast(&rp->r_cv);
3704 mutex_exit(&rp->r_statelock);
3705 }
3706 } else {
3707 mutex_exit(&rp->r_statev4_lock);
3708 }
3709 }
3710 }
3711 return (nfs4getattr(vp, vap, cr));
3712 }
3713
3714 int
nfs4_compare_modes(mode_t from_server,mode_t on_client)3715 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3716 {
3717 /*
3718 * If these are the only two bits cleared
3719 * on the server then return 0 (OK) else
3720 * return 1 (BAD).
3721 */
3722 on_client &= ~(S_ISUID|S_ISGID);
3723 if (on_client == from_server)
3724 return (0);
3725 else
3726 return (1);
3727 }
3728
3729 /*ARGSUSED4*/
3730 static int
nfs4_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3731 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3732 caller_context_t *ct)
3733 {
3734 int error;
3735
3736 if (vap->va_mask & AT_NOSET)
3737 return (EINVAL);
3738
3739 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3740 return (EIO);
3741
3742 /*
3743 * Don't call secpolicy_vnode_setattr, the client cannot
3744 * use its cached attributes to make security decisions
3745 * as the server may be faking mode bits or mapping uid/gid.
3746 * Always just let the server to the checking.
3747 * If we provide the ability to remove basic priviledges
3748 * to setattr (e.g. basic without chmod) then we will
3749 * need to add a check here before calling the server.
3750 */
3751 error = nfs4setattr(vp, vap, flags, cr, NULL);
3752
3753 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
3754 vnevent_truncate(vp, ct);
3755
3756 return (error);
3757 }
3758
3759 /*
3760 * To replace the "guarded" version 3 setattr, we use two types of compound
3761 * setattr requests:
3762 * 1. The "normal" setattr, used when the size of the file isn't being
3763 * changed - { Putfh <fh>; Setattr; Getattr }/
3764 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3765 * with only ctime as the argument. If the server ctime differs from
3766 * what is cached on the client, the verify will fail, but we would
3767 * already have the ctime from the preceding getattr, so just set it
3768 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3769 * Setattr; Getattr }.
3770 *
3771 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3772 * this setattr and NULL if they are not.
3773 */
3774 static int
nfs4setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,vsecattr_t * vsap)3775 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3776 vsecattr_t *vsap)
3777 {
3778 COMPOUND4args_clnt args;
3779 COMPOUND4res_clnt res, *resp = NULL;
3780 nfs4_ga_res_t *garp = NULL;
3781 int numops = 3; /* { Putfh; Setattr; Getattr } */
3782 nfs_argop4 argop[5];
3783 int verify_argop = -1;
3784 int setattr_argop = 1;
3785 nfs_resop4 *resop;
3786 vattr_t va;
3787 rnode4_t *rp;
3788 int doqueue = 1;
3789 uint_t mask = vap->va_mask;
3790 mode_t omode;
3791 vsecattr_t *vsp;
3792 timestruc_t ctime;
3793 bool_t needrecov = FALSE;
3794 nfs4_recov_state_t recov_state;
3795 nfs4_stateid_types_t sid_types;
3796 stateid4 stateid;
3797 hrtime_t t;
3798 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3799 servinfo4_t *svp;
3800 bitmap4 supp_attrs;
3801
3802 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3803 rp = VTOR4(vp);
3804 nfs4_init_stateid_types(&sid_types);
3805
3806 /*
3807 * Only need to flush pages if there are any pages and
3808 * if the file is marked as dirty in some fashion. The
3809 * file must be flushed so that we can accurately
3810 * determine the size of the file and the cached data
3811 * after the SETATTR returns. A file is considered to
3812 * be dirty if it is either marked with R4DIRTY, has
3813 * outstanding i/o's active, or is mmap'd. In this
3814 * last case, we can't tell whether there are dirty
3815 * pages, so we flush just to be sure.
3816 */
3817 if (nfs4_has_pages(vp) &&
3818 ((rp->r_flags & R4DIRTY) ||
3819 rp->r_count > 0 ||
3820 rp->r_mapcnt > 0)) {
3821 ASSERT(vp->v_type != VCHR);
3822 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3823 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3824 mutex_enter(&rp->r_statelock);
3825 if (!rp->r_error)
3826 rp->r_error = e.error;
3827 mutex_exit(&rp->r_statelock);
3828 }
3829 }
3830
3831 if (mask & AT_SIZE) {
3832 /*
3833 * Verification setattr compound for non-deleg AT_SIZE:
3834 * { Putfh; Getattr; Verify; Setattr; Getattr }
3835 * Set ctime local here (outside the do_again label)
3836 * so that subsequent retries (after failed VERIFY)
3837 * will use ctime from GETATTR results (from failed
3838 * verify compound) as VERIFY arg.
3839 * If file has delegation, then VERIFY(time_metadata)
3840 * is of little added value, so don't bother.
3841 */
3842 mutex_enter(&rp->r_statev4_lock);
3843 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3844 rp->r_deleg_return_pending) {
3845 numops = 5;
3846 ctime = rp->r_attr.va_ctime;
3847 }
3848 mutex_exit(&rp->r_statev4_lock);
3849 }
3850
3851 recov_state.rs_flags = 0;
3852 recov_state.rs_num_retry_despite_err = 0;
3853
3854 args.ctag = TAG_SETATTR;
3855 do_again:
3856 recov_retry:
3857 setattr_argop = numops - 2;
3858
3859 args.array = argop;
3860 args.array_len = numops;
3861
3862 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3863 if (e.error)
3864 return (e.error);
3865
3866
3867 /* putfh target fh */
3868 argop[0].argop = OP_CPUTFH;
3869 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3870
3871 if (numops == 5) {
3872 /*
3873 * We only care about the ctime, but need to get mtime
3874 * and size for proper cache update.
3875 */
3876 /* getattr */
3877 argop[1].argop = OP_GETATTR;
3878 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3879 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3880
3881 /* verify - set later in loop */
3882 verify_argop = 2;
3883 }
3884
3885 /* setattr */
3886 svp = rp->r_server;
3887 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3888 supp_attrs = svp->sv_supp_attrs;
3889 nfs_rw_exit(&svp->sv_lock);
3890
3891 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
3892 supp_attrs, &e.error, &sid_types);
3893 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3894 if (e.error) {
3895 /* req time field(s) overflow - return immediately */
3896 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3897 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3898 opsetattr.obj_attributes);
3899 return (e.error);
3900 }
3901 omode = rp->r_attr.va_mode;
3902
3903 /* getattr */
3904 argop[numops-1].argop = OP_GETATTR;
3905 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3906 /*
3907 * If we are setting the ACL (indicated only by vsap != NULL), request
3908 * the ACL in this getattr. The ACL returned from this getattr will be
3909 * used in updating the ACL cache.
3910 */
3911 if (vsap != NULL)
3912 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3913 FATTR4_ACL_MASK;
3914 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3915
3916 /*
3917 * setattr iterates if the object size is set and the cached ctime
3918 * does not match the file ctime. In that case, verify the ctime first.
3919 */
3920
3921 do {
3922 if (verify_argop != -1) {
3923 /*
3924 * Verify that the ctime match before doing setattr.
3925 */
3926 va.va_mask = AT_CTIME;
3927 va.va_ctime = ctime;
3928 svp = rp->r_server;
3929 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3930 supp_attrs = svp->sv_supp_attrs;
3931 nfs_rw_exit(&svp->sv_lock);
3932 e.error = nfs4args_verify(&argop[verify_argop], &va,
3933 OP_VERIFY, supp_attrs);
3934 if (e.error) {
3935 /* req time field(s) overflow - return */
3936 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3937 needrecov);
3938 break;
3939 }
3940 }
3941
3942 doqueue = 1;
3943
3944 t = gethrtime();
3945
3946 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
3947
3948 /*
3949 * Purge the access cache and ACL cache if changing either the
3950 * owner of the file, the group owner, or the mode. These may
3951 * change the access permissions of the file, so purge old
3952 * information and start over again.
3953 */
3954 if (mask & (AT_UID | AT_GID | AT_MODE)) {
3955 (void) nfs4_access_purge_rp(rp);
3956 if (rp->r_secattr != NULL) {
3957 mutex_enter(&rp->r_statelock);
3958 vsp = rp->r_secattr;
3959 rp->r_secattr = NULL;
3960 mutex_exit(&rp->r_statelock);
3961 if (vsp != NULL)
3962 nfs4_acl_free_cache(vsp);
3963 }
3964 }
3965
3966 /*
3967 * If res.array_len == numops, then everything succeeded,
3968 * except for possibly the final getattr. If only the
3969 * last getattr failed, give up, and don't try recovery.
3970 */
3971 if (res.array_len == numops) {
3972 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3973 needrecov);
3974 if (! e.error)
3975 resp = &res;
3976 break;
3977 }
3978
3979 /*
3980 * if either rpc call failed or completely succeeded - done
3981 */
3982 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
3983 if (e.error) {
3984 PURGE_ATTRCACHE4(vp);
3985 if (!needrecov) {
3986 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3987 needrecov);
3988 break;
3989 }
3990 }
3991
3992 /*
3993 * Do proper retry for OLD_STATEID outside of the normal
3994 * recovery framework.
3995 */
3996 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3997 sid_types.cur_sid_type != SPEC_SID &&
3998 sid_types.cur_sid_type != NO_SID) {
3999 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4000 needrecov);
4001 nfs4_save_stateid(&stateid, &sid_types);
4002 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4003 opsetattr.obj_attributes);
4004 if (verify_argop != -1) {
4005 nfs4args_verify_free(&argop[verify_argop]);
4006 verify_argop = -1;
4007 }
4008 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4009 goto recov_retry;
4010 }
4011
4012 if (needrecov) {
4013 bool_t abort;
4014
4015 abort = nfs4_start_recovery(&e,
4016 VTOMI4(vp), vp, NULL, NULL, NULL,
4017 OP_SETATTR, NULL, NULL, NULL);
4018 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4019 needrecov);
4020 /*
4021 * Do not retry if we failed with OLD_STATEID using
4022 * a special stateid. This is done to avoid looping
4023 * with a broken server.
4024 */
4025 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4026 (sid_types.cur_sid_type == SPEC_SID ||
4027 sid_types.cur_sid_type == NO_SID))
4028 abort = TRUE;
4029 if (!e.error) {
4030 if (res.status == NFS4ERR_BADOWNER)
4031 nfs4_log_badowner(VTOMI4(vp),
4032 OP_SETATTR);
4033
4034 e.error = geterrno4(res.status);
4035 (void) xdr_free(xdr_COMPOUND4res_clnt,
4036 (caddr_t)&res);
4037 }
4038 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4039 opsetattr.obj_attributes);
4040 if (verify_argop != -1) {
4041 nfs4args_verify_free(&argop[verify_argop]);
4042 verify_argop = -1;
4043 }
4044 if (abort == FALSE) {
4045 /*
4046 * Need to retry all possible stateids in
4047 * case the recovery error wasn't stateid
4048 * related or the stateids have become
4049 * stale (server reboot).
4050 */
4051 nfs4_init_stateid_types(&sid_types);
4052 goto recov_retry;
4053 }
4054 return (e.error);
4055 }
4056
4057 /*
4058 * Need to call nfs4_end_op before nfs4getattr to
4059 * avoid potential nfs4_start_op deadlock. See RFE
4060 * 4777612. Calls to nfs4_invalidate_pages() and
4061 * nfs4_purge_stale_fh() might also generate over the
4062 * wire calls which my cause nfs4_start_op() deadlock.
4063 */
4064 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4065
4066 /*
4067 * Check to update lease.
4068 */
4069 resp = &res;
4070 if (res.status == NFS4_OK) {
4071 break;
4072 }
4073
4074 /*
4075 * Check if verify failed to see if try again
4076 */
4077 if ((verify_argop == -1) || (res.array_len != 3)) {
4078 /*
4079 * can't continue...
4080 */
4081 if (res.status == NFS4ERR_BADOWNER)
4082 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
4083
4084 e.error = geterrno4(res.status);
4085 } else {
4086 /*
4087 * When the verify request fails, the client ctime is
4088 * not in sync with the server. This is the same as
4089 * the version 3 "not synchronized" error, and we
4090 * handle it in a similar manner (XXX do we need to???).
4091 * Use the ctime returned in the first getattr for
4092 * the input to the next verify.
4093 * If we couldn't get the attributes, then we give up
4094 * because we can't complete the operation as required.
4095 */
4096 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4097 }
4098 if (e.error) {
4099 PURGE_ATTRCACHE4(vp);
4100 nfs4_purge_stale_fh(e.error, vp, cr);
4101 } else {
4102 /*
4103 * retry with a new verify value
4104 */
4105 ctime = garp->n4g_va.va_ctime;
4106 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4107 resp = NULL;
4108 }
4109 if (!e.error) {
4110 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4111 opsetattr.obj_attributes);
4112 if (verify_argop != -1) {
4113 nfs4args_verify_free(&argop[verify_argop]);
4114 verify_argop = -1;
4115 }
4116 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4117 goto do_again;
4118 }
4119 } while (!e.error);
4120
4121 if (e.error) {
4122 /*
4123 * If we are here, rfs4call has an irrecoverable error - return
4124 */
4125 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4126 opsetattr.obj_attributes);
4127 if (verify_argop != -1) {
4128 nfs4args_verify_free(&argop[verify_argop]);
4129 verify_argop = -1;
4130 }
4131 if (resp)
4132 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4133 return (e.error);
4134 }
4135
4136
4137
4138 /*
4139 * If changing the size of the file, invalidate
4140 * any local cached data which is no longer part
4141 * of the file. We also possibly invalidate the
4142 * last page in the file. We could use
4143 * pvn_vpzero(), but this would mark the page as
4144 * modified and require it to be written back to
4145 * the server for no particularly good reason.
4146 * This way, if we access it, then we bring it
4147 * back in. A read should be cheaper than a
4148 * write.
4149 */
4150 if (mask & AT_SIZE) {
4151 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4152 }
4153
4154 /* either no error or one of the postop getattr failed */
4155
4156 /*
4157 * XXX Perform a simplified version of wcc checking. Instead of
4158 * have another getattr to get pre-op, just purge cache if
4159 * any of the ops prior to and including the getattr failed.
4160 * If the getattr succeeded then update the attrcache accordingly.
4161 */
4162
4163 garp = NULL;
4164 if (res.status == NFS4_OK) {
4165 /*
4166 * Last getattr
4167 */
4168 resop = &res.array[numops - 1];
4169 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4170 }
4171 /*
4172 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4173 * rather than filling it. See the function itself for details.
4174 */
4175 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4176 if (garp != NULL) {
4177 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4178 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4179 vs_ace4_destroy(&garp->n4g_vsa);
4180 } else {
4181 if (vsap != NULL) {
4182 /*
4183 * The ACL was supposed to be set and to be
4184 * returned in the last getattr of this
4185 * compound, but for some reason the getattr
4186 * result doesn't contain the ACL. In this
4187 * case, purge the ACL cache.
4188 */
4189 if (rp->r_secattr != NULL) {
4190 mutex_enter(&rp->r_statelock);
4191 vsp = rp->r_secattr;
4192 rp->r_secattr = NULL;
4193 mutex_exit(&rp->r_statelock);
4194 if (vsp != NULL)
4195 nfs4_acl_free_cache(vsp);
4196 }
4197 }
4198 }
4199 }
4200
4201 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4202 /*
4203 * Set the size, rather than relying on getting it updated
4204 * via a GETATTR. With delegations the client tries to
4205 * suppress GETATTR calls.
4206 */
4207 mutex_enter(&rp->r_statelock);
4208 rp->r_size = vap->va_size;
4209 mutex_exit(&rp->r_statelock);
4210 }
4211
4212 /*
4213 * Can free up request args and res
4214 */
4215 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4216 opsetattr.obj_attributes);
4217 if (verify_argop != -1) {
4218 nfs4args_verify_free(&argop[verify_argop]);
4219 verify_argop = -1;
4220 }
4221 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4222
4223 /*
4224 * Some servers will change the mode to clear the setuid
4225 * and setgid bits when changing the uid or gid. The
4226 * client needs to compensate appropriately.
4227 */
4228 if (mask & (AT_UID | AT_GID)) {
4229 int terror, do_setattr;
4230
4231 do_setattr = 0;
4232 va.va_mask = AT_MODE;
4233 terror = nfs4getattr(vp, &va, cr);
4234 if (!terror &&
4235 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4236 (!(mask & AT_MODE) && va.va_mode != omode))) {
4237 va.va_mask = AT_MODE;
4238 if (mask & AT_MODE) {
4239 /*
4240 * We asked the mode to be changed and what
4241 * we just got from the server in getattr is
4242 * not what we wanted it to be, so set it now.
4243 */
4244 va.va_mode = vap->va_mode;
4245 do_setattr = 1;
4246 } else {
4247 /*
4248 * We did not ask the mode to be changed,
4249 * Check to see that the server just cleared
4250 * I_SUID and I_GUID from it. If not then
4251 * set mode to omode with UID/GID cleared.
4252 */
4253 if (nfs4_compare_modes(va.va_mode, omode)) {
4254 omode &= ~(S_ISUID|S_ISGID);
4255 va.va_mode = omode;
4256 do_setattr = 1;
4257 }
4258 }
4259
4260 if (do_setattr)
4261 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4262 }
4263 }
4264
4265 return (e.error);
4266 }
4267
4268 /* ARGSUSED */
4269 static int
nfs4_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)4270 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4271 {
4272 COMPOUND4args_clnt args;
4273 COMPOUND4res_clnt res;
4274 int doqueue;
4275 uint32_t acc, resacc, argacc;
4276 rnode4_t *rp;
4277 cred_t *cred, *ncr, *ncrfree = NULL;
4278 nfs4_access_type_t cacc;
4279 int num_ops;
4280 nfs_argop4 argop[3];
4281 nfs_resop4 *resop;
4282 bool_t needrecov = FALSE, do_getattr;
4283 nfs4_recov_state_t recov_state;
4284 int rpc_error;
4285 hrtime_t t;
4286 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4287 mntinfo4_t *mi = VTOMI4(vp);
4288
4289 if (nfs_zone() != mi->mi_zone)
4290 return (EIO);
4291
4292 acc = 0;
4293 if (mode & VREAD)
4294 acc |= ACCESS4_READ;
4295 if (mode & VWRITE) {
4296 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4297 return (EROFS);
4298 if (vp->v_type == VDIR)
4299 acc |= ACCESS4_DELETE;
4300 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4301 }
4302 if (mode & VEXEC) {
4303 if (vp->v_type == VDIR)
4304 acc |= ACCESS4_LOOKUP;
4305 else
4306 acc |= ACCESS4_EXECUTE;
4307 }
4308
4309 if (VTOR4(vp)->r_acache != NULL) {
4310 e.error = nfs4_validate_caches(vp, cr);
4311 if (e.error)
4312 return (e.error);
4313 }
4314
4315 rp = VTOR4(vp);
4316 if (vp->v_type == VDIR)
4317 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4318 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4319 else
4320 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4321 ACCESS4_EXECUTE;
4322 recov_state.rs_flags = 0;
4323 recov_state.rs_num_retry_despite_err = 0;
4324
4325 cred = cr;
4326 /*
4327 * ncr and ncrfree both initially
4328 * point to the memory area returned
4329 * by crnetadjust();
4330 * ncrfree not NULL when exiting means
4331 * that we need to release it
4332 */
4333 ncr = crnetadjust(cred);
4334 ncrfree = ncr;
4335
4336 tryagain:
4337 cacc = nfs4_access_check(rp, acc, cred);
4338 if (cacc == NFS4_ACCESS_ALLOWED) {
4339 if (ncrfree != NULL)
4340 crfree(ncrfree);
4341 return (0);
4342 }
4343 if (cacc == NFS4_ACCESS_DENIED) {
4344 /*
4345 * If the cred can be adjusted, try again
4346 * with the new cred.
4347 */
4348 if (ncr != NULL) {
4349 cred = ncr;
4350 ncr = NULL;
4351 goto tryagain;
4352 }
4353 if (ncrfree != NULL)
4354 crfree(ncrfree);
4355 return (EACCES);
4356 }
4357
4358 recov_retry:
4359 /*
4360 * Don't take with r_statev4_lock here. r_deleg_type could
4361 * change as soon as lock is released. Since it is an int,
4362 * there is no atomicity issue.
4363 */
4364 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4365 num_ops = do_getattr ? 3 : 2;
4366
4367 args.ctag = TAG_ACCESS;
4368
4369 args.array_len = num_ops;
4370 args.array = argop;
4371
4372 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4373 &recov_state, NULL)) {
4374 if (ncrfree != NULL)
4375 crfree(ncrfree);
4376 return (e.error);
4377 }
4378
4379 /* putfh target fh */
4380 argop[0].argop = OP_CPUTFH;
4381 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4382
4383 /* access */
4384 argop[1].argop = OP_ACCESS;
4385 argop[1].nfs_argop4_u.opaccess.access = argacc;
4386
4387 /* getattr */
4388 if (do_getattr) {
4389 argop[2].argop = OP_GETATTR;
4390 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4391 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4392 }
4393
4394 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4395 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4396 rnode4info(VTOR4(vp))));
4397
4398 doqueue = 1;
4399 t = gethrtime();
4400 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4401 rpc_error = e.error;
4402
4403 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4404 if (needrecov) {
4405 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4406 "nfs4_access: initiating recovery\n"));
4407
4408 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4409 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4410 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4411 &recov_state, needrecov);
4412 if (!e.error)
4413 (void) xdr_free(xdr_COMPOUND4res_clnt,
4414 (caddr_t)&res);
4415 goto recov_retry;
4416 }
4417 }
4418 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
4419
4420 if (e.error)
4421 goto out;
4422
4423 if (res.status) {
4424 e.error = geterrno4(res.status);
4425 /*
4426 * This might generate over the wire calls throught
4427 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4428 * here to avoid a deadlock.
4429 */
4430 nfs4_purge_stale_fh(e.error, vp, cr);
4431 goto out;
4432 }
4433 resop = &res.array[1]; /* access res */
4434
4435 resacc = resop->nfs_resop4_u.opaccess.access;
4436
4437 if (do_getattr) {
4438 resop++; /* getattr res */
4439 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4440 t, cr, FALSE, NULL);
4441 }
4442
4443 if (!e.error) {
4444 nfs4_access_cache(rp, argacc, resacc, cred);
4445 /*
4446 * we just cached results with cred; if cred is the
4447 * adjusted credentials from crnetadjust, we do not want
4448 * to release them before exiting: hence setting ncrfree
4449 * to NULL
4450 */
4451 if (cred != cr)
4452 ncrfree = NULL;
4453 /* XXX check the supported bits too? */
4454 if ((acc & resacc) != acc) {
4455 /*
4456 * The following code implements the semantic
4457 * that a setuid root program has *at least* the
4458 * permissions of the user that is running the
4459 * program. See rfs3call() for more portions
4460 * of the implementation of this functionality.
4461 */
4462 /* XXX-LP */
4463 if (ncr != NULL) {
4464 (void) xdr_free(xdr_COMPOUND4res_clnt,
4465 (caddr_t)&res);
4466 cred = ncr;
4467 ncr = NULL;
4468 goto tryagain;
4469 }
4470 e.error = EACCES;
4471 }
4472 }
4473
4474 out:
4475 if (!rpc_error)
4476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4477
4478 if (ncrfree != NULL)
4479 crfree(ncrfree);
4480
4481 return (e.error);
4482 }
4483
4484 /* ARGSUSED */
4485 static int
nfs4_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)4486 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4487 {
4488 COMPOUND4args_clnt args;
4489 COMPOUND4res_clnt res;
4490 int doqueue;
4491 rnode4_t *rp;
4492 nfs_argop4 argop[3];
4493 nfs_resop4 *resop;
4494 READLINK4res *lr_res;
4495 nfs4_ga_res_t *garp;
4496 uint_t len;
4497 char *linkdata;
4498 bool_t needrecov = FALSE;
4499 nfs4_recov_state_t recov_state;
4500 hrtime_t t;
4501 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4502
4503 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4504 return (EIO);
4505 /*
4506 * Can't readlink anything other than a symbolic link.
4507 */
4508 if (vp->v_type != VLNK)
4509 return (EINVAL);
4510
4511 rp = VTOR4(vp);
4512 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4513 e.error = nfs4_validate_caches(vp, cr);
4514 if (e.error)
4515 return (e.error);
4516 mutex_enter(&rp->r_statelock);
4517 if (rp->r_symlink.contents != NULL) {
4518 e.error = uiomove(rp->r_symlink.contents,
4519 rp->r_symlink.len, UIO_READ, uiop);
4520 mutex_exit(&rp->r_statelock);
4521 return (e.error);
4522 }
4523 mutex_exit(&rp->r_statelock);
4524 }
4525 recov_state.rs_flags = 0;
4526 recov_state.rs_num_retry_despite_err = 0;
4527
4528 recov_retry:
4529 args.array_len = 3;
4530 args.array = argop;
4531 args.ctag = TAG_READLINK;
4532
4533 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4534 if (e.error) {
4535 return (e.error);
4536 }
4537
4538 /* 0. putfh symlink fh */
4539 argop[0].argop = OP_CPUTFH;
4540 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4541
4542 /* 1. readlink */
4543 argop[1].argop = OP_READLINK;
4544
4545 /* 2. getattr */
4546 argop[2].argop = OP_GETATTR;
4547 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4548 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
4549
4550 doqueue = 1;
4551
4552 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4553 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4554 rnode4info(VTOR4(vp))));
4555
4556 t = gethrtime();
4557
4558 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
4559
4560 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4561 if (needrecov) {
4562 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4563 "nfs4_readlink: initiating recovery\n"));
4564
4565 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4566 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4567 if (!e.error)
4568 (void) xdr_free(xdr_COMPOUND4res_clnt,
4569 (caddr_t)&res);
4570
4571 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4572 needrecov);
4573 goto recov_retry;
4574 }
4575 }
4576
4577 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4578
4579 if (e.error)
4580 return (e.error);
4581
4582 /*
4583 * There is an path in the code below which calls
4584 * nfs4_purge_stale_fh(), which may generate otw calls through
4585 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4586 * here to avoid nfs4_start_op() deadlock.
4587 */
4588
4589 if (res.status && (res.array_len < args.array_len)) {
4590 /*
4591 * either Putfh or Link failed
4592 */
4593 e.error = geterrno4(res.status);
4594 nfs4_purge_stale_fh(e.error, vp, cr);
4595 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4596 return (e.error);
4597 }
4598
4599 resop = &res.array[1]; /* readlink res */
4600 lr_res = &resop->nfs_resop4_u.opreadlink;
4601
4602 /*
4603 * treat symlink names as data
4604 */
4605 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
4606 if (linkdata != NULL) {
4607 int uio_len = len - 1;
4608 /* len includes null byte, which we won't uiomove */
4609 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4610 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4611 mutex_enter(&rp->r_statelock);
4612 if (rp->r_symlink.contents == NULL) {
4613 rp->r_symlink.contents = linkdata;
4614 rp->r_symlink.len = uio_len;
4615 rp->r_symlink.size = len;
4616 mutex_exit(&rp->r_statelock);
4617 } else {
4618 mutex_exit(&rp->r_statelock);
4619 kmem_free(linkdata, len);
4620 }
4621 } else {
4622 kmem_free(linkdata, len);
4623 }
4624 }
4625 if (res.status == NFS4_OK) {
4626 resop++; /* getattr res */
4627 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4628 }
4629 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4630
4631 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4632
4633 /*
4634 * The over the wire error for attempting to readlink something
4635 * other than a symbolic link is ENXIO. However, we need to
4636 * return EINVAL instead of ENXIO, so we map it here.
4637 */
4638 return (e.error == ENXIO ? EINVAL : e.error);
4639 }
4640
4641 /*
4642 * Flush local dirty pages to stable storage on the server.
4643 *
4644 * If FNODSYNC is specified, then there is nothing to do because
4645 * metadata changes are not cached on the client before being
4646 * sent to the server.
4647 */
4648 /* ARGSUSED */
4649 static int
nfs4_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)4650 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4651 {
4652 int error;
4653
4654 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4655 return (0);
4656 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4657 return (EIO);
4658 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4659 if (!error)
4660 error = VTOR4(vp)->r_error;
4661 return (error);
4662 }
4663
4664 /*
4665 * Weirdness: if the file was removed or the target of a rename
4666 * operation while it was open, it got renamed instead. Here we
4667 * remove the renamed file.
4668 */
4669 /* ARGSUSED */
4670 void
nfs4_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4671 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4672 {
4673 rnode4_t *rp;
4674
4675 ASSERT(vp != DNLC_NO_VNODE);
4676
4677 rp = VTOR4(vp);
4678
4679 if (IS_SHADOW(vp, rp)) {
4680 sv_inactive(vp);
4681 return;
4682 }
4683
4684 /*
4685 * If this is coming from the wrong zone, we let someone in the right
4686 * zone take care of it asynchronously. We can get here due to
4687 * VN_RELE() being called from pageout() or fsflush(). This call may
4688 * potentially turn into an expensive no-op if, for instance, v_count
4689 * gets incremented in the meantime, but it's still correct.
4690 */
4691 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4692 nfs4_async_inactive(vp, cr);
4693 return;
4694 }
4695
4696 /*
4697 * Some of the cleanup steps might require over-the-wire
4698 * operations. Since VOP_INACTIVE can get called as a result of
4699 * other over-the-wire operations (e.g., an attribute cache update
4700 * can lead to a DNLC purge), doing those steps now would lead to a
4701 * nested call to the recovery framework, which can deadlock. So
4702 * do any over-the-wire cleanups asynchronously, in a separate
4703 * thread.
4704 */
4705
4706 mutex_enter(&rp->r_os_lock);
4707 mutex_enter(&rp->r_statelock);
4708 mutex_enter(&rp->r_statev4_lock);
4709
4710 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4711 mutex_exit(&rp->r_statev4_lock);
4712 mutex_exit(&rp->r_statelock);
4713 mutex_exit(&rp->r_os_lock);
4714 nfs4_async_inactive(vp, cr);
4715 return;
4716 }
4717
4718 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4719 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4720 mutex_exit(&rp->r_statev4_lock);
4721 mutex_exit(&rp->r_statelock);
4722 mutex_exit(&rp->r_os_lock);
4723 nfs4_async_inactive(vp, cr);
4724 return;
4725 }
4726
4727 if (rp->r_unldvp != NULL) {
4728 mutex_exit(&rp->r_statev4_lock);
4729 mutex_exit(&rp->r_statelock);
4730 mutex_exit(&rp->r_os_lock);
4731 nfs4_async_inactive(vp, cr);
4732 return;
4733 }
4734 mutex_exit(&rp->r_statev4_lock);
4735 mutex_exit(&rp->r_statelock);
4736 mutex_exit(&rp->r_os_lock);
4737
4738 rp4_addfree(rp, cr);
4739 }
4740
4741 /*
4742 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4743 * various bits of state. The caller must not refer to vp after this call.
4744 */
4745
4746 void
nfs4_inactive_otw(vnode_t * vp,cred_t * cr)4747 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4748 {
4749 rnode4_t *rp = VTOR4(vp);
4750 nfs4_recov_state_t recov_state;
4751 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4752 vnode_t *unldvp;
4753 char *unlname;
4754 cred_t *unlcred;
4755 COMPOUND4args_clnt args;
4756 COMPOUND4res_clnt res, *resp;
4757 nfs_argop4 argop[2];
4758 int doqueue;
4759 #ifdef DEBUG
4760 char *name;
4761 #endif
4762
4763 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4764 ASSERT(!IS_SHADOW(vp, rp));
4765
4766 #ifdef DEBUG
4767 name = fn_name(VTOSV(vp)->sv_name);
4768 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4769 "release vnode %s", name));
4770 kmem_free(name, MAXNAMELEN);
4771 #endif
4772
4773 if (vp->v_type == VREG) {
4774 bool_t recov_failed = FALSE;
4775
4776 e.error = nfs4close_all(vp, cr);
4777 if (e.error) {
4778 /* Check to see if recovery failed */
4779 mutex_enter(&(VTOMI4(vp)->mi_lock));
4780 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4781 recov_failed = TRUE;
4782 mutex_exit(&(VTOMI4(vp)->mi_lock));
4783 if (!recov_failed) {
4784 mutex_enter(&rp->r_statelock);
4785 if (rp->r_flags & R4RECOVERR)
4786 recov_failed = TRUE;
4787 mutex_exit(&rp->r_statelock);
4788 }
4789 if (recov_failed) {
4790 NFS4_DEBUG(nfs4_client_recov_debug,
4791 (CE_NOTE, "nfs4_inactive_otw: "
4792 "close failed (recovery failure)"));
4793 }
4794 }
4795 }
4796
4797 redo:
4798 if (rp->r_unldvp == NULL) {
4799 rp4_addfree(rp, cr);
4800 return;
4801 }
4802
4803 /*
4804 * Save the vnode pointer for the directory where the
4805 * unlinked-open file got renamed, then set it to NULL
4806 * to prevent another thread from getting here before
4807 * we're done with the remove. While we have the
4808 * statelock, make local copies of the pertinent rnode
4809 * fields. If we weren't to do this in an atomic way, the
4810 * the unl* fields could become inconsistent with respect
4811 * to each other due to a race condition between this
4812 * code and nfs_remove(). See bug report 1034328.
4813 */
4814 mutex_enter(&rp->r_statelock);
4815 if (rp->r_unldvp == NULL) {
4816 mutex_exit(&rp->r_statelock);
4817 rp4_addfree(rp, cr);
4818 return;
4819 }
4820
4821 unldvp = rp->r_unldvp;
4822 rp->r_unldvp = NULL;
4823 unlname = rp->r_unlname;
4824 rp->r_unlname = NULL;
4825 unlcred = rp->r_unlcred;
4826 rp->r_unlcred = NULL;
4827 mutex_exit(&rp->r_statelock);
4828
4829 /*
4830 * If there are any dirty pages left, then flush
4831 * them. This is unfortunate because they just
4832 * may get thrown away during the remove operation,
4833 * but we have to do this for correctness.
4834 */
4835 if (nfs4_has_pages(vp) &&
4836 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4837 ASSERT(vp->v_type != VCHR);
4838 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4839 if (e.error) {
4840 mutex_enter(&rp->r_statelock);
4841 if (!rp->r_error)
4842 rp->r_error = e.error;
4843 mutex_exit(&rp->r_statelock);
4844 }
4845 }
4846
4847 recov_state.rs_flags = 0;
4848 recov_state.rs_num_retry_despite_err = 0;
4849 recov_retry_remove:
4850 /*
4851 * Do the remove operation on the renamed file
4852 */
4853 args.ctag = TAG_INACTIVE;
4854
4855 /*
4856 * Remove ops: putfh dir; remove
4857 */
4858 args.array_len = 2;
4859 args.array = argop;
4860
4861 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4862 if (e.error) {
4863 kmem_free(unlname, MAXNAMELEN);
4864 crfree(unlcred);
4865 VN_RELE(unldvp);
4866 /*
4867 * Try again; this time around r_unldvp will be NULL, so we'll
4868 * just call rp4_addfree() and return.
4869 */
4870 goto redo;
4871 }
4872
4873 /* putfh directory */
4874 argop[0].argop = OP_CPUTFH;
4875 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
4876
4877 /* remove */
4878 argop[1].argop = OP_CREMOVE;
4879 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
4880
4881 doqueue = 1;
4882 resp = &res;
4883
4884 #if 0 /* notyet */
4885 /*
4886 * Can't do this yet. We may be being called from
4887 * dnlc_purge_XXX while that routine is holding a
4888 * mutex lock to the nc_rele list. The calls to
4889 * nfs3_cache_wcc_data may result in calls to
4890 * dnlc_purge_XXX. This will result in a deadlock.
4891 */
4892 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4893 if (e.error) {
4894 PURGE_ATTRCACHE4(unldvp);
4895 resp = NULL;
4896 } else if (res.status) {
4897 e.error = geterrno4(res.status);
4898 PURGE_ATTRCACHE4(unldvp);
4899 /*
4900 * This code is inactive right now
4901 * but if made active there should
4902 * be a nfs4_end_op() call before
4903 * nfs4_purge_stale_fh to avoid start_op()
4904 * deadlock. See BugId: 4948726
4905 */
4906 nfs4_purge_stale_fh(error, unldvp, cr);
4907 } else {
4908 nfs_resop4 *resop;
4909 REMOVE4res *rm_res;
4910
4911 resop = &res.array[1];
4912 rm_res = &resop->nfs_resop4_u.opremove;
4913 /*
4914 * Update directory cache attribute,
4915 * readdir and dnlc caches.
4916 */
4917 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4918 }
4919 #else
4920 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4921
4922 PURGE_ATTRCACHE4(unldvp);
4923 #endif
4924
4925 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4926 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4927 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4928 if (!e.error)
4929 (void) xdr_free(xdr_COMPOUND4res_clnt,
4930 (caddr_t)&res);
4931 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4932 &recov_state, TRUE);
4933 goto recov_retry_remove;
4934 }
4935 }
4936 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
4937
4938 /*
4939 * Release stuff held for the remove
4940 */
4941 VN_RELE(unldvp);
4942 if (!e.error && resp)
4943 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4944
4945 kmem_free(unlname, MAXNAMELEN);
4946 crfree(unlcred);
4947 goto redo;
4948 }
4949
4950 /*
4951 * Remote file system operations having to do with directory manipulation.
4952 */
4953 /* ARGSUSED3 */
4954 int
nfs4_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)4955 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
4956 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
4957 int *direntflags, pathname_t *realpnp)
4958 {
4959 int error;
4960 vnode_t *vp, *avp = NULL;
4961 rnode4_t *drp;
4962
4963 *vpp = NULL;
4964 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
4965 return (EPERM);
4966 /*
4967 * if LOOKUP_XATTR, must replace dvp (object) with
4968 * object's attrdir before continuing with lookup
4969 */
4970 if (flags & LOOKUP_XATTR) {
4971 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
4972 if (error)
4973 return (error);
4974
4975 dvp = avp;
4976
4977 /*
4978 * If lookup is for "", just return dvp now. The attrdir
4979 * has already been activated (from nfs4lookup_xattr), and
4980 * the caller will RELE the original dvp -- not
4981 * the attrdir. So, set vpp and return.
4982 * Currently, when the LOOKUP_XATTR flag is
4983 * passed to VOP_LOOKUP, the name is always empty, and
4984 * shortcircuiting here avoids 3 unneeded lock/unlock
4985 * pairs.
4986 *
4987 * If a non-empty name was provided, then it is the
4988 * attribute name, and it will be looked up below.
4989 */
4990 if (*nm == '\0') {
4991 *vpp = dvp;
4992 return (0);
4993 }
4994
4995 /*
4996 * The vfs layer never sends a name when asking for the
4997 * attrdir, so we should never get here (unless of course
4998 * name is passed at some time in future -- at which time
4999 * we'll blow up here).
5000 */
5001 ASSERT(0);
5002 }
5003
5004 drp = VTOR4(dvp);
5005 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5006 return (EINTR);
5007
5008 error = nfs4lookup(dvp, nm, vpp, cr, 0);
5009 nfs_rw_exit(&drp->r_rwlock);
5010
5011 /*
5012 * If vnode is a device, create special vnode.
5013 */
5014 if (!error && ISVDEV((*vpp)->v_type)) {
5015 vp = *vpp;
5016 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5017 VN_RELE(vp);
5018 }
5019
5020 return (error);
5021 }
5022
5023 /* ARGSUSED */
5024 static int
nfs4lookup_xattr(vnode_t * dvp,char * nm,vnode_t ** vpp,int flags,cred_t * cr)5025 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
5026 {
5027 int error;
5028 rnode4_t *drp;
5029 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5030 mntinfo4_t *mi;
5031
5032 mi = VTOMI4(dvp);
5033 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5034 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5035 return (EINVAL);
5036
5037 drp = VTOR4(dvp);
5038 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5039 return (EINTR);
5040
5041 mutex_enter(&drp->r_statelock);
5042 /*
5043 * If the server doesn't support xattrs just return EINVAL
5044 */
5045 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5046 mutex_exit(&drp->r_statelock);
5047 nfs_rw_exit(&drp->r_rwlock);
5048 return (EINVAL);
5049 }
5050
5051 /*
5052 * If there is a cached xattr directory entry,
5053 * use it as long as the attributes are valid. If the
5054 * attributes are not valid, take the simple approach and
5055 * free the cached value and re-fetch a new value.
5056 *
5057 * We don't negative entry cache for now, if we did we
5058 * would need to check if the file has changed on every
5059 * lookup. But xattrs don't exist very often and failing
5060 * an openattr is not much more expensive than and NVERIFY or GETATTR
5061 * so do an openattr over the wire for now.
5062 */
5063 if (drp->r_xattr_dir != NULL) {
5064 if (ATTRCACHE4_VALID(dvp)) {
5065 VN_HOLD(drp->r_xattr_dir);
5066 *vpp = drp->r_xattr_dir;
5067 mutex_exit(&drp->r_statelock);
5068 nfs_rw_exit(&drp->r_rwlock);
5069 return (0);
5070 }
5071 VN_RELE(drp->r_xattr_dir);
5072 drp->r_xattr_dir = NULL;
5073 }
5074 mutex_exit(&drp->r_statelock);
5075
5076 error = nfs4openattr(dvp, vpp, cflag, cr);
5077
5078 nfs_rw_exit(&drp->r_rwlock);
5079
5080 return (error);
5081 }
5082
5083 static int
nfs4lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int skipdnlc)5084 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5085 {
5086 int error;
5087 rnode4_t *drp;
5088
5089 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5090
5091 /*
5092 * If lookup is for "", just return dvp. Don't need
5093 * to send it over the wire, look it up in the dnlc,
5094 * or perform any access checks.
5095 */
5096 if (*nm == '\0') {
5097 VN_HOLD(dvp);
5098 *vpp = dvp;
5099 return (0);
5100 }
5101
5102 /*
5103 * Can't do lookups in non-directories.
5104 */
5105 if (dvp->v_type != VDIR)
5106 return (ENOTDIR);
5107
5108 /*
5109 * If lookup is for ".", just return dvp. Don't need
5110 * to send it over the wire or look it up in the dnlc,
5111 * just need to check access.
5112 */
5113 if (nm[0] == '.' && nm[1] == '\0') {
5114 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5115 if (error)
5116 return (error);
5117 VN_HOLD(dvp);
5118 *vpp = dvp;
5119 return (0);
5120 }
5121
5122 drp = VTOR4(dvp);
5123 if (!(drp->r_flags & R4LOOKUP)) {
5124 mutex_enter(&drp->r_statelock);
5125 drp->r_flags |= R4LOOKUP;
5126 mutex_exit(&drp->r_statelock);
5127 }
5128
5129 *vpp = NULL;
5130 /*
5131 * Lookup this name in the DNLC. If there is no entry
5132 * lookup over the wire.
5133 */
5134 if (!skipdnlc)
5135 *vpp = dnlc_lookup(dvp, nm);
5136 if (*vpp == NULL) {
5137 /*
5138 * We need to go over the wire to lookup the name.
5139 */
5140 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5141 }
5142
5143 /*
5144 * We hit on the dnlc
5145 */
5146 if (*vpp != DNLC_NO_VNODE ||
5147 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5148 /*
5149 * But our attrs may not be valid.
5150 */
5151 if (ATTRCACHE4_VALID(dvp)) {
5152 error = nfs4_waitfor_purge_complete(dvp);
5153 if (error) {
5154 VN_RELE(*vpp);
5155 *vpp = NULL;
5156 return (error);
5157 }
5158
5159 /*
5160 * If after the purge completes, check to make sure
5161 * our attrs are still valid.
5162 */
5163 if (ATTRCACHE4_VALID(dvp)) {
5164 /*
5165 * If we waited for a purge we may have
5166 * lost our vnode so look it up again.
5167 */
5168 VN_RELE(*vpp);
5169 *vpp = dnlc_lookup(dvp, nm);
5170 if (*vpp == NULL)
5171 return (nfs4lookupnew_otw(dvp,
5172 nm, vpp, cr));
5173
5174 /*
5175 * The access cache should almost always hit
5176 */
5177 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5178
5179 if (error) {
5180 VN_RELE(*vpp);
5181 *vpp = NULL;
5182 return (error);
5183 }
5184 if (*vpp == DNLC_NO_VNODE) {
5185 VN_RELE(*vpp);
5186 *vpp = NULL;
5187 return (ENOENT);
5188 }
5189 return (0);
5190 }
5191 }
5192 }
5193
5194 ASSERT(*vpp != NULL);
5195
5196 /*
5197 * We may have gotten here we have one of the following cases:
5198 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5199 * need to validate them.
5200 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5201 * must validate.
5202 *
5203 * Go to the server and check if the directory has changed, if
5204 * it hasn't we are done and can use the dnlc entry.
5205 */
5206 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5207 }
5208
5209 /*
5210 * Go to the server and check if the directory has changed, if
5211 * it hasn't we are done and can use the dnlc entry. If it
5212 * has changed we get a new copy of its attributes and check
5213 * the access for VEXEC, then relookup the filename and
5214 * get its filehandle and attributes.
5215 *
5216 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5217 * if the NVERIFY failed we must
5218 * purge the caches
5219 * cache new attributes (will set r_time_attr_inval)
5220 * cache new access
5221 * recheck VEXEC access
5222 * add name to dnlc, possibly negative
5223 * if LOOKUP succeeded
5224 * cache new attributes
5225 * else
5226 * set a new r_time_attr_inval for dvp
5227 * check to make sure we have access
5228 *
5229 * The vpp returned is the vnode passed in if the directory is valid,
5230 * a new vnode if successful lookup, or NULL on error.
5231 */
5232 static int
nfs4lookupvalidate_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5233 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5234 {
5235 COMPOUND4args_clnt args;
5236 COMPOUND4res_clnt res;
5237 fattr4 *ver_fattr;
5238 fattr4_change dchange;
5239 int32_t *ptr;
5240 int argoplist_size = 7 * sizeof (nfs_argop4);
5241 nfs_argop4 *argop;
5242 int doqueue;
5243 mntinfo4_t *mi;
5244 nfs4_recov_state_t recov_state;
5245 hrtime_t t;
5246 int isdotdot;
5247 vnode_t *nvp;
5248 nfs_fh4 *fhp;
5249 nfs4_sharedfh_t *sfhp;
5250 nfs4_access_type_t cacc;
5251 rnode4_t *nrp;
5252 rnode4_t *drp = VTOR4(dvp);
5253 nfs4_ga_res_t *garp = NULL;
5254 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5255
5256 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5257 ASSERT(nm != NULL);
5258 ASSERT(nm[0] != '\0');
5259 ASSERT(dvp->v_type == VDIR);
5260 ASSERT(nm[0] != '.' || nm[1] != '\0');
5261 ASSERT(*vpp != NULL);
5262
5263 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5264 isdotdot = 1;
5265 args.ctag = TAG_LOOKUP_VPARENT;
5266 } else {
5267 /*
5268 * If dvp were a stub, it should have triggered and caused
5269 * a mount for us to get this far.
5270 */
5271 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5272
5273 isdotdot = 0;
5274 args.ctag = TAG_LOOKUP_VALID;
5275 }
5276
5277 mi = VTOMI4(dvp);
5278 recov_state.rs_flags = 0;
5279 recov_state.rs_num_retry_despite_err = 0;
5280
5281 nvp = NULL;
5282
5283 /* Save the original mount point security information */
5284 (void) save_mnt_secinfo(mi->mi_curr_serv);
5285
5286 recov_retry:
5287 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5288 &recov_state, NULL);
5289 if (e.error) {
5290 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5291 VN_RELE(*vpp);
5292 *vpp = NULL;
5293 return (e.error);
5294 }
5295
5296 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5297
5298 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5299 args.array_len = 7;
5300 args.array = argop;
5301
5302 /* 0. putfh file */
5303 argop[0].argop = OP_CPUTFH;
5304 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5305
5306 /* 1. nverify the change info */
5307 argop[1].argop = OP_NVERIFY;
5308 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5309 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5310 ver_fattr->attrlist4 = (char *)&dchange;
5311 ptr = (int32_t *)&dchange;
5312 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5313 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5314
5315 /* 2. getattr directory */
5316 argop[2].argop = OP_GETATTR;
5317 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5318 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5319
5320 /* 3. access directory */
5321 argop[3].argop = OP_ACCESS;
5322 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5323 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5324
5325 /* 4. lookup name */
5326 if (isdotdot) {
5327 argop[4].argop = OP_LOOKUPP;
5328 } else {
5329 argop[4].argop = OP_CLOOKUP;
5330 argop[4].nfs_argop4_u.opclookup.cname = nm;
5331 }
5332
5333 /* 5. resulting file handle */
5334 argop[5].argop = OP_GETFH;
5335
5336 /* 6. resulting file attributes */
5337 argop[6].argop = OP_GETATTR;
5338 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5339 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5340
5341 doqueue = 1;
5342 t = gethrtime();
5343
5344 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5345
5346 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5347 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5348 if (e.error != 0 && *vpp != NULL)
5349 VN_RELE(*vpp);
5350 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5351 &recov_state, FALSE);
5352 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5353 kmem_free(argop, argoplist_size);
5354 return (e.error);
5355 }
5356
5357 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5358 /*
5359 * For WRONGSEC of a non-dotdot case, send secinfo directly
5360 * from this thread, do not go thru the recovery thread since
5361 * we need the nm information.
5362 *
5363 * Not doing dotdot case because there is no specification
5364 * for (PUTFH, SECINFO "..") yet.
5365 */
5366 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5367 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5368 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5369 &recov_state, FALSE);
5370 else
5371 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5372 &recov_state, TRUE);
5373 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5374 kmem_free(argop, argoplist_size);
5375 if (!e.error)
5376 goto recov_retry;
5377 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5378 VN_RELE(*vpp);
5379 *vpp = NULL;
5380 return (e.error);
5381 }
5382
5383 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5384 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5385 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5386 &recov_state, TRUE);
5387
5388 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5389 kmem_free(argop, argoplist_size);
5390 goto recov_retry;
5391 }
5392 }
5393
5394 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5395
5396 if (e.error || res.array_len == 0) {
5397 /*
5398 * If e.error isn't set, then reply has no ops (or we couldn't
5399 * be here). The only legal way to reply without an op array
5400 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5401 * be in the reply for all other status values.
5402 *
5403 * For valid replies without an ops array, return ENOTSUP
5404 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5405 * return EIO -- don't trust status.
5406 */
5407 if (e.error == 0)
5408 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5409 ENOTSUP : EIO;
5410 VN_RELE(*vpp);
5411 *vpp = NULL;
5412 kmem_free(argop, argoplist_size);
5413 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5414 return (e.error);
5415 }
5416
5417 if (res.status != NFS4ERR_SAME) {
5418 e.error = geterrno4(res.status);
5419
5420 /*
5421 * The NVERIFY "failed" so the directory has changed
5422 * First make sure PUTFH succeeded and NVERIFY "failed"
5423 * cleanly.
5424 */
5425 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5426 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5427 nfs4_purge_stale_fh(e.error, dvp, cr);
5428 VN_RELE(*vpp);
5429 *vpp = NULL;
5430 goto exit;
5431 }
5432
5433 /*
5434 * We know the NVERIFY "failed" so we must:
5435 * purge the caches (access and indirectly dnlc if needed)
5436 */
5437 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5438
5439 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5440 nfs4_purge_stale_fh(e.error, dvp, cr);
5441 VN_RELE(*vpp);
5442 *vpp = NULL;
5443 goto exit;
5444 }
5445
5446 /*
5447 * Install new cached attributes for the directory
5448 */
5449 nfs4_attr_cache(dvp,
5450 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5451 t, cr, FALSE, NULL);
5452
5453 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5454 nfs4_purge_stale_fh(e.error, dvp, cr);
5455 VN_RELE(*vpp);
5456 *vpp = NULL;
5457 e.error = geterrno4(res.status);
5458 goto exit;
5459 }
5460
5461 /*
5462 * Now we know the directory is valid,
5463 * cache new directory access
5464 */
5465 nfs4_access_cache(drp,
5466 args.array[3].nfs_argop4_u.opaccess.access,
5467 res.array[3].nfs_resop4_u.opaccess.access, cr);
5468
5469 /*
5470 * recheck VEXEC access
5471 */
5472 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5473 if (cacc != NFS4_ACCESS_ALLOWED) {
5474 /*
5475 * Directory permissions might have been revoked
5476 */
5477 if (cacc == NFS4_ACCESS_DENIED) {
5478 e.error = EACCES;
5479 VN_RELE(*vpp);
5480 *vpp = NULL;
5481 goto exit;
5482 }
5483
5484 /*
5485 * Somehow we must not have asked for enough
5486 * so try a singleton ACCESS, should never happen.
5487 */
5488 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5489 if (e.error) {
5490 VN_RELE(*vpp);
5491 *vpp = NULL;
5492 goto exit;
5493 }
5494 }
5495
5496 e.error = geterrno4(res.status);
5497 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5498 /*
5499 * The lookup failed, probably no entry
5500 */
5501 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5502 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5503 } else {
5504 /*
5505 * Might be some other error, so remove
5506 * the dnlc entry to make sure we start all
5507 * over again, next time.
5508 */
5509 dnlc_remove(dvp, nm);
5510 }
5511 VN_RELE(*vpp);
5512 *vpp = NULL;
5513 goto exit;
5514 }
5515
5516 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5517 /*
5518 * The file exists but we can't get its fh for
5519 * some unknown reason. Remove it from the dnlc
5520 * and error out to be safe.
5521 */
5522 dnlc_remove(dvp, nm);
5523 VN_RELE(*vpp);
5524 *vpp = NULL;
5525 goto exit;
5526 }
5527 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5528 if (fhp->nfs_fh4_len == 0) {
5529 /*
5530 * The file exists but a bogus fh
5531 * some unknown reason. Remove it from the dnlc
5532 * and error out to be safe.
5533 */
5534 e.error = ENOENT;
5535 dnlc_remove(dvp, nm);
5536 VN_RELE(*vpp);
5537 *vpp = NULL;
5538 goto exit;
5539 }
5540 sfhp = sfh4_get(fhp, mi);
5541
5542 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5543 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
5544
5545 /*
5546 * Make the new rnode
5547 */
5548 if (isdotdot) {
5549 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5550 if (e.error) {
5551 sfh4_rele(&sfhp);
5552 VN_RELE(*vpp);
5553 *vpp = NULL;
5554 goto exit;
5555 }
5556 /*
5557 * XXX if nfs4_make_dotdot uses an existing rnode
5558 * XXX it doesn't update the attributes.
5559 * XXX for now just save them again to save an OTW
5560 */
5561 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5562 } else {
5563 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5564 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5565 /*
5566 * If v_type == VNON, then garp was NULL because
5567 * the last op in the compound failed and makenfs4node
5568 * could not find the vnode for sfhp. It created
5569 * a new vnode, so we have nothing to purge here.
5570 */
5571 if (nvp->v_type == VNON) {
5572 vattr_t vattr;
5573
5574 vattr.va_mask = AT_TYPE;
5575 /*
5576 * N.B. We've already called nfs4_end_fop above.
5577 */
5578 e.error = nfs4getattr(nvp, &vattr, cr);
5579 if (e.error) {
5580 sfh4_rele(&sfhp);
5581 VN_RELE(*vpp);
5582 *vpp = NULL;
5583 VN_RELE(nvp);
5584 goto exit;
5585 }
5586 nvp->v_type = vattr.va_type;
5587 }
5588 }
5589 sfh4_rele(&sfhp);
5590
5591 nrp = VTOR4(nvp);
5592 mutex_enter(&nrp->r_statev4_lock);
5593 if (!nrp->created_v4) {
5594 mutex_exit(&nrp->r_statev4_lock);
5595 dnlc_update(dvp, nm, nvp);
5596 } else
5597 mutex_exit(&nrp->r_statev4_lock);
5598
5599 VN_RELE(*vpp);
5600 *vpp = nvp;
5601 } else {
5602 hrtime_t now;
5603 hrtime_t delta = 0;
5604
5605 e.error = 0;
5606
5607 /*
5608 * Because the NVERIFY "succeeded" we know that the
5609 * directory attributes are still valid
5610 * so update r_time_attr_inval
5611 */
5612 now = gethrtime();
5613 mutex_enter(&drp->r_statelock);
5614 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5615 delta = now - drp->r_time_attr_saved;
5616 if (delta < mi->mi_acdirmin)
5617 delta = mi->mi_acdirmin;
5618 else if (delta > mi->mi_acdirmax)
5619 delta = mi->mi_acdirmax;
5620 }
5621 drp->r_time_attr_inval = now + delta;
5622 mutex_exit(&drp->r_statelock);
5623 dnlc_update(dvp, nm, *vpp);
5624
5625 /*
5626 * Even though we have a valid directory attr cache
5627 * and dnlc entry, we may not have access.
5628 * This should almost always hit the cache.
5629 */
5630 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5631 if (e.error) {
5632 VN_RELE(*vpp);
5633 *vpp = NULL;
5634 }
5635
5636 if (*vpp == DNLC_NO_VNODE) {
5637 VN_RELE(*vpp);
5638 *vpp = NULL;
5639 e.error = ENOENT;
5640 }
5641 }
5642
5643 exit:
5644 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5645 kmem_free(argop, argoplist_size);
5646 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5647 return (e.error);
5648 }
5649
5650 /*
5651 * We need to go over the wire to lookup the name, but
5652 * while we are there verify the directory has not
5653 * changed but if it has, get new attributes and check access
5654 *
5655 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5656 * NVERIFY GETATTR ACCESS
5657 *
5658 * With the results:
5659 * if the NVERIFY failed we must purge the caches, add new attributes,
5660 * and cache new access.
5661 * set a new r_time_attr_inval
5662 * add name to dnlc, possibly negative
5663 * if LOOKUP succeeded
5664 * cache new attributes
5665 */
5666 static int
nfs4lookupnew_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5667 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5668 {
5669 COMPOUND4args_clnt args;
5670 COMPOUND4res_clnt res;
5671 fattr4 *ver_fattr;
5672 fattr4_change dchange;
5673 int32_t *ptr;
5674 nfs4_ga_res_t *garp = NULL;
5675 int argoplist_size = 9 * sizeof (nfs_argop4);
5676 nfs_argop4 *argop;
5677 int doqueue;
5678 mntinfo4_t *mi;
5679 nfs4_recov_state_t recov_state;
5680 hrtime_t t;
5681 int isdotdot;
5682 vnode_t *nvp;
5683 nfs_fh4 *fhp;
5684 nfs4_sharedfh_t *sfhp;
5685 nfs4_access_type_t cacc;
5686 rnode4_t *nrp;
5687 rnode4_t *drp = VTOR4(dvp);
5688 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5689
5690 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5691 ASSERT(nm != NULL);
5692 ASSERT(nm[0] != '\0');
5693 ASSERT(dvp->v_type == VDIR);
5694 ASSERT(nm[0] != '.' || nm[1] != '\0');
5695 ASSERT(*vpp == NULL);
5696
5697 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5698 isdotdot = 1;
5699 args.ctag = TAG_LOOKUP_PARENT;
5700 } else {
5701 /*
5702 * If dvp were a stub, it should have triggered and caused
5703 * a mount for us to get this far.
5704 */
5705 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5706
5707 isdotdot = 0;
5708 args.ctag = TAG_LOOKUP;
5709 }
5710
5711 mi = VTOMI4(dvp);
5712 recov_state.rs_flags = 0;
5713 recov_state.rs_num_retry_despite_err = 0;
5714
5715 nvp = NULL;
5716
5717 /* Save the original mount point security information */
5718 (void) save_mnt_secinfo(mi->mi_curr_serv);
5719
5720 recov_retry:
5721 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5722 &recov_state, NULL);
5723 if (e.error) {
5724 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5725 return (e.error);
5726 }
5727
5728 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5729
5730 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5731 args.array_len = 9;
5732 args.array = argop;
5733
5734 /* 0. putfh file */
5735 argop[0].argop = OP_CPUTFH;
5736 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5737
5738 /* 1. savefh for the nverify */
5739 argop[1].argop = OP_SAVEFH;
5740
5741 /* 2. lookup name */
5742 if (isdotdot) {
5743 argop[2].argop = OP_LOOKUPP;
5744 } else {
5745 argop[2].argop = OP_CLOOKUP;
5746 argop[2].nfs_argop4_u.opclookup.cname = nm;
5747 }
5748
5749 /* 3. resulting file handle */
5750 argop[3].argop = OP_GETFH;
5751
5752 /* 4. resulting file attributes */
5753 argop[4].argop = OP_GETATTR;
5754 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5755 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5756
5757 /* 5. restorefh back the directory for the nverify */
5758 argop[5].argop = OP_RESTOREFH;
5759
5760 /* 6. nverify the change info */
5761 argop[6].argop = OP_NVERIFY;
5762 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5763 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5764 ver_fattr->attrlist4 = (char *)&dchange;
5765 ptr = (int32_t *)&dchange;
5766 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5767 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5768
5769 /* 7. getattr directory */
5770 argop[7].argop = OP_GETATTR;
5771 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5772 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5773
5774 /* 8. access directory */
5775 argop[8].argop = OP_ACCESS;
5776 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5777 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5778
5779 doqueue = 1;
5780 t = gethrtime();
5781
5782 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5783
5784 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5785 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5786 if (e.error != 0 && *vpp != NULL)
5787 VN_RELE(*vpp);
5788 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5789 &recov_state, FALSE);
5790 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5791 kmem_free(argop, argoplist_size);
5792 return (e.error);
5793 }
5794
5795 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5796 /*
5797 * For WRONGSEC of a non-dotdot case, send secinfo directly
5798 * from this thread, do not go thru the recovery thread since
5799 * we need the nm information.
5800 *
5801 * Not doing dotdot case because there is no specification
5802 * for (PUTFH, SECINFO "..") yet.
5803 */
5804 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5805 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5806 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5807 &recov_state, FALSE);
5808 else
5809 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5810 &recov_state, TRUE);
5811 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5812 kmem_free(argop, argoplist_size);
5813 if (!e.error)
5814 goto recov_retry;
5815 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5816 return (e.error);
5817 }
5818
5819 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5820 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5821 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5822 &recov_state, TRUE);
5823
5824 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5825 kmem_free(argop, argoplist_size);
5826 goto recov_retry;
5827 }
5828 }
5829
5830 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5831
5832 if (e.error || res.array_len == 0) {
5833 /*
5834 * If e.error isn't set, then reply has no ops (or we couldn't
5835 * be here). The only legal way to reply without an op array
5836 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5837 * be in the reply for all other status values.
5838 *
5839 * For valid replies without an ops array, return ENOTSUP
5840 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5841 * return EIO -- don't trust status.
5842 */
5843 if (e.error == 0)
5844 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5845 ENOTSUP : EIO;
5846
5847 kmem_free(argop, argoplist_size);
5848 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5849 return (e.error);
5850 }
5851
5852 e.error = geterrno4(res.status);
5853
5854 /*
5855 * The PUTFH and SAVEFH may have failed.
5856 */
5857 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5858 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5859 nfs4_purge_stale_fh(e.error, dvp, cr);
5860 goto exit;
5861 }
5862
5863 /*
5864 * Check if the file exists, if it does delay entering
5865 * into the dnlc until after we update the directory
5866 * attributes so we don't cause it to get purged immediately.
5867 */
5868 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5869 /*
5870 * The lookup failed, probably no entry
5871 */
5872 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5873 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5874 goto exit;
5875 }
5876
5877 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5878 /*
5879 * The file exists but we can't get its fh for
5880 * some unknown reason. Error out to be safe.
5881 */
5882 goto exit;
5883 }
5884
5885 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5886 if (fhp->nfs_fh4_len == 0) {
5887 /*
5888 * The file exists but a bogus fh
5889 * some unknown reason. Error out to be safe.
5890 */
5891 e.error = EIO;
5892 goto exit;
5893 }
5894 sfhp = sfh4_get(fhp, mi);
5895
5896 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5897 sfh4_rele(&sfhp);
5898 goto exit;
5899 }
5900 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
5901
5902 /*
5903 * The RESTOREFH may have failed
5904 */
5905 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5906 sfh4_rele(&sfhp);
5907 e.error = EIO;
5908 goto exit;
5909 }
5910
5911 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5912 /*
5913 * First make sure the NVERIFY failed as we expected,
5914 * if it didn't then be conservative and error out
5915 * as we can't trust the directory.
5916 */
5917 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5918 sfh4_rele(&sfhp);
5919 e.error = EIO;
5920 goto exit;
5921 }
5922
5923 /*
5924 * We know the NVERIFY "failed" so the directory has changed,
5925 * so we must:
5926 * purge the caches (access and indirectly dnlc if needed)
5927 */
5928 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5929
5930 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5931 sfh4_rele(&sfhp);
5932 goto exit;
5933 }
5934 nfs4_attr_cache(dvp,
5935 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5936 t, cr, FALSE, NULL);
5937
5938 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5939 nfs4_purge_stale_fh(e.error, dvp, cr);
5940 sfh4_rele(&sfhp);
5941 e.error = geterrno4(res.status);
5942 goto exit;
5943 }
5944
5945 /*
5946 * Now we know the directory is valid,
5947 * cache new directory access
5948 */
5949 nfs4_access_cache(drp,
5950 args.array[8].nfs_argop4_u.opaccess.access,
5951 res.array[8].nfs_resop4_u.opaccess.access, cr);
5952
5953 /*
5954 * recheck VEXEC access
5955 */
5956 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5957 if (cacc != NFS4_ACCESS_ALLOWED) {
5958 /*
5959 * Directory permissions might have been revoked
5960 */
5961 if (cacc == NFS4_ACCESS_DENIED) {
5962 sfh4_rele(&sfhp);
5963 e.error = EACCES;
5964 goto exit;
5965 }
5966
5967 /*
5968 * Somehow we must not have asked for enough
5969 * so try a singleton ACCESS should never happen
5970 */
5971 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5972 if (e.error) {
5973 sfh4_rele(&sfhp);
5974 goto exit;
5975 }
5976 }
5977
5978 e.error = geterrno4(res.status);
5979 } else {
5980 hrtime_t now;
5981 hrtime_t delta = 0;
5982
5983 e.error = 0;
5984
5985 /*
5986 * Because the NVERIFY "succeeded" we know that the
5987 * directory attributes are still valid
5988 * so update r_time_attr_inval
5989 */
5990 now = gethrtime();
5991 mutex_enter(&drp->r_statelock);
5992 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5993 delta = now - drp->r_time_attr_saved;
5994 if (delta < mi->mi_acdirmin)
5995 delta = mi->mi_acdirmin;
5996 else if (delta > mi->mi_acdirmax)
5997 delta = mi->mi_acdirmax;
5998 }
5999 drp->r_time_attr_inval = now + delta;
6000 mutex_exit(&drp->r_statelock);
6001
6002 /*
6003 * Even though we have a valid directory attr cache,
6004 * we may not have access.
6005 * This should almost always hit the cache.
6006 */
6007 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
6008 if (e.error) {
6009 sfh4_rele(&sfhp);
6010 goto exit;
6011 }
6012 }
6013
6014 /*
6015 * Now we have successfully completed the lookup, if the
6016 * directory has changed we now have the valid attributes.
6017 * We also know we have directory access.
6018 * Create the new rnode and insert it in the dnlc.
6019 */
6020 if (isdotdot) {
6021 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
6022 if (e.error) {
6023 sfh4_rele(&sfhp);
6024 goto exit;
6025 }
6026 /*
6027 * XXX if nfs4_make_dotdot uses an existing rnode
6028 * XXX it doesn't update the attributes.
6029 * XXX for now just save them again to save an OTW
6030 */
6031 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6032 } else {
6033 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6034 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6035 }
6036 sfh4_rele(&sfhp);
6037
6038 nrp = VTOR4(nvp);
6039 mutex_enter(&nrp->r_statev4_lock);
6040 if (!nrp->created_v4) {
6041 mutex_exit(&nrp->r_statev4_lock);
6042 dnlc_update(dvp, nm, nvp);
6043 } else
6044 mutex_exit(&nrp->r_statev4_lock);
6045
6046 *vpp = nvp;
6047
6048 exit:
6049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6050 kmem_free(argop, argoplist_size);
6051 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6052 return (e.error);
6053 }
6054
6055 #ifdef DEBUG
6056 void
nfs4lookup_dump_compound(char * where,nfs_argop4 * argbase,int argcnt)6057 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6058 {
6059 uint_t i, len;
6060 zoneid_t zoneid = getzoneid();
6061 char *s;
6062
6063 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6064 for (i = 0; i < argcnt; i++) {
6065 nfs_argop4 *op = &argbase[i];
6066 switch (op->argop) {
6067 case OP_CPUTFH:
6068 case OP_PUTFH:
6069 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
6070 break;
6071 case OP_PUTROOTFH:
6072 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6073 break;
6074 case OP_CLOOKUP:
6075 s = op->nfs_argop4_u.opclookup.cname;
6076 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6077 break;
6078 case OP_LOOKUP:
6079 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6080 &len, NULL);
6081 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6082 kmem_free(s, len);
6083 break;
6084 case OP_LOOKUPP:
6085 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6086 break;
6087 case OP_GETFH:
6088 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6089 break;
6090 case OP_GETATTR:
6091 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6092 break;
6093 case OP_OPENATTR:
6094 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6095 break;
6096 default:
6097 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6098 op->argop);
6099 break;
6100 }
6101 }
6102 }
6103 #endif
6104
6105 /*
6106 * nfs4lookup_setup - constructs a multi-lookup compound request.
6107 *
6108 * Given the path "nm1/nm2/.../nmn", the following compound requests
6109 * may be created:
6110 *
6111 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6112 * is faster, for now.
6113 *
6114 * l4_getattrs indicates the type of compound requested.
6115 *
6116 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6117 *
6118 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6119 *
6120 * total number of ops is n + 1.
6121 *
6122 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6123 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6124 * before the last component, and only get attributes
6125 * for the last component. Note that the second-to-last
6126 * pathname component is XATTR_RPATH, which does NOT go
6127 * over-the-wire as a lookup.
6128 *
6129 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6130 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6131 *
6132 * and total number of ops is n + 5.
6133 *
6134 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6135 * attribute directory: create lookups plus an OPENATTR
6136 * replacing the last lookup. Note that the last pathname
6137 * component is XATTR_RPATH, which does NOT go over-the-wire
6138 * as a lookup.
6139 *
6140 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6141 * Openattr; Getfh; Getattr }
6142 *
6143 * and total number of ops is n + 5.
6144 *
6145 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6146 * nodes too.
6147 *
6148 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6149 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6150 *
6151 * and total number of ops is 3*n + 1.
6152 *
6153 * All cases: returns the index in the arg array of the final LOOKUP op, or
6154 * -1 if no LOOKUPs were used.
6155 */
6156 int
nfs4lookup_setup(char * nm,lookup4_param_t * lookupargp,int needgetfh)6157 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6158 {
6159 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6160 nfs_argop4 *argbase, *argop;
6161 int arglen, argcnt;
6162 int n = 1; /* number of components */
6163 int nga = 1; /* number of Getattr's in request */
6164 char c = '\0', *s, *p;
6165 int lookup_idx = -1;
6166 int argoplist_size;
6167
6168 /* set lookuparg response result to 0 */
6169 lookupargp->resp->status = NFS4_OK;
6170
6171 /* skip leading "/" or "." e.g. ".//./" if there is */
6172 for (; ; nm++) {
6173 if (*nm != '/' && *nm != '.')
6174 break;
6175
6176 /* ".." is counted as 1 component */
6177 if (*nm == '.' && *(nm + 1) != '/')
6178 break;
6179 }
6180
6181 /*
6182 * Find n = number of components - nm must be null terminated
6183 * Skip "." components.
6184 */
6185 if (*nm != '\0')
6186 for (n = 1, s = nm; *s != '\0'; s++) {
6187 if ((*s == '/') && (*(s + 1) != '/') &&
6188 (*(s + 1) != '\0') &&
6189 !(*(s + 1) == '.' && (*(s + 2) == '/' ||
6190 *(s + 2) == '\0')))
6191 n++;
6192 }
6193 else
6194 n = 0;
6195
6196 /*
6197 * nga is number of components that need Getfh+Getattr
6198 */
6199 switch (l4_getattrs) {
6200 case LKP4_NO_ATTRIBUTES:
6201 nga = 0;
6202 break;
6203 case LKP4_ALL_ATTRIBUTES:
6204 nga = n;
6205 /*
6206 * Always have at least 1 getfh, getattr pair
6207 */
6208 if (nga == 0)
6209 nga++;
6210 break;
6211 case LKP4_LAST_ATTRDIR:
6212 case LKP4_LAST_NAMED_ATTR:
6213 nga = n+1;
6214 break;
6215 }
6216
6217 /*
6218 * If change to use the filehandle attr instead of getfh
6219 * the following line can be deleted.
6220 */
6221 nga *= 2;
6222
6223 /*
6224 * calculate number of ops in request as
6225 * header + trailer + lookups + getattrs
6226 */
6227 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
6228
6229 argoplist_size = arglen * sizeof (nfs_argop4);
6230 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6231 lookupargp->argsp->array = argop;
6232
6233 argcnt = lookupargp->header_len;
6234 argop += argcnt;
6235
6236 /*
6237 * loop and create a lookup op and possibly getattr/getfh for
6238 * each component. Skip "." components.
6239 */
6240 for (s = nm; *s != '\0'; s = p) {
6241 /*
6242 * Set up a pathname struct for each component if needed
6243 */
6244 while (*s == '/')
6245 s++;
6246 if (*s == '\0')
6247 break;
6248
6249 for (p = s; (*p != '/') && (*p != '\0'); p++)
6250 ;
6251 c = *p;
6252 *p = '\0';
6253
6254 if (s[0] == '.' && s[1] == '\0') {
6255 *p = c;
6256 continue;
6257 }
6258 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6259 strcmp(s, XATTR_RPATH) == 0) {
6260 /* getfh XXX may not be needed in future */
6261 argop->argop = OP_GETFH;
6262 argop++;
6263 argcnt++;
6264
6265 /* getattr */
6266 argop->argop = OP_GETATTR;
6267 argop->nfs_argop4_u.opgetattr.attr_request =
6268 lookupargp->ga_bits;
6269 argop->nfs_argop4_u.opgetattr.mi =
6270 lookupargp->mi;
6271 argop++;
6272 argcnt++;
6273
6274 /* openattr */
6275 argop->argop = OP_OPENATTR;
6276 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6277 strcmp(s, XATTR_RPATH) == 0) {
6278 /* openattr */
6279 argop->argop = OP_OPENATTR;
6280 argop++;
6281 argcnt++;
6282
6283 /* getfh XXX may not be needed in future */
6284 argop->argop = OP_GETFH;
6285 argop++;
6286 argcnt++;
6287
6288 /* getattr */
6289 argop->argop = OP_GETATTR;
6290 argop->nfs_argop4_u.opgetattr.attr_request =
6291 lookupargp->ga_bits;
6292 argop->nfs_argop4_u.opgetattr.mi =
6293 lookupargp->mi;
6294 argop++;
6295 argcnt++;
6296 *p = c;
6297 continue;
6298 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
6299 /* lookupp */
6300 argop->argop = OP_LOOKUPP;
6301 } else {
6302 /* lookup */
6303 argop->argop = OP_LOOKUP;
6304 (void) str_to_utf8(s,
6305 &argop->nfs_argop4_u.oplookup.objname);
6306 }
6307 lookup_idx = argcnt;
6308 argop++;
6309 argcnt++;
6310
6311 *p = c;
6312
6313 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6314 /* getfh XXX may not be needed in future */
6315 argop->argop = OP_GETFH;
6316 argop++;
6317 argcnt++;
6318
6319 /* getattr */
6320 argop->argop = OP_GETATTR;
6321 argop->nfs_argop4_u.opgetattr.attr_request =
6322 lookupargp->ga_bits;
6323 argop->nfs_argop4_u.opgetattr.mi =
6324 lookupargp->mi;
6325 argop++;
6326 argcnt++;
6327 }
6328 }
6329
6330 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6331 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6332 if (needgetfh) {
6333 /* stick in a post-lookup getfh */
6334 argop->argop = OP_GETFH;
6335 argcnt++;
6336 argop++;
6337 }
6338 /* post-lookup getattr */
6339 argop->argop = OP_GETATTR;
6340 argop->nfs_argop4_u.opgetattr.attr_request =
6341 lookupargp->ga_bits;
6342 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6343 argcnt++;
6344 }
6345 argcnt += lookupargp->trailer_len; /* actual op count */
6346 lookupargp->argsp->array_len = argcnt;
6347 lookupargp->arglen = arglen;
6348
6349 #ifdef DEBUG
6350 if (nfs4_client_lookup_debug)
6351 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6352 #endif
6353
6354 return (lookup_idx);
6355 }
6356
6357 static int
nfs4openattr(vnode_t * dvp,vnode_t ** avp,int cflag,cred_t * cr)6358 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6359 {
6360 COMPOUND4args_clnt args;
6361 COMPOUND4res_clnt res;
6362 GETFH4res *gf_res = NULL;
6363 nfs_argop4 argop[4];
6364 nfs_resop4 *resop = NULL;
6365 nfs4_sharedfh_t *sfhp;
6366 hrtime_t t;
6367 nfs4_error_t e;
6368
6369 rnode4_t *drp;
6370 int doqueue = 1;
6371 vnode_t *vp;
6372 int needrecov = 0;
6373 nfs4_recov_state_t recov_state;
6374
6375 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
6376
6377 *avp = NULL;
6378 recov_state.rs_flags = 0;
6379 recov_state.rs_num_retry_despite_err = 0;
6380
6381 recov_retry:
6382 /* COMPOUND: putfh, openattr, getfh, getattr */
6383 args.array_len = 4;
6384 args.array = argop;
6385 args.ctag = TAG_OPENATTR;
6386
6387 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6388 if (e.error)
6389 return (e.error);
6390
6391 drp = VTOR4(dvp);
6392
6393 /* putfh */
6394 argop[0].argop = OP_CPUTFH;
6395 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6396
6397 /* openattr */
6398 argop[1].argop = OP_OPENATTR;
6399 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
6400
6401 /* getfh */
6402 argop[2].argop = OP_GETFH;
6403
6404 /* getattr */
6405 argop[3].argop = OP_GETATTR;
6406 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6407 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
6408
6409 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6410 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6411 rnode4info(drp)));
6412
6413 t = gethrtime();
6414
6415 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
6416
6417 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6418 if (needrecov) {
6419 bool_t abort;
6420
6421 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6422 "nfs4openattr: initiating recovery\n"));
6423
6424 abort = nfs4_start_recovery(&e,
6425 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6426 OP_OPENATTR, NULL, NULL, NULL);
6427 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6428 if (!e.error) {
6429 e.error = geterrno4(res.status);
6430 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6431 }
6432 if (abort == FALSE)
6433 goto recov_retry;
6434 return (e.error);
6435 }
6436
6437 if (e.error) {
6438 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6439 return (e.error);
6440 }
6441
6442 if (res.status) {
6443 /*
6444 * If OTW errro is NOTSUPP, then it should be
6445 * translated to EINVAL. All Solaris file system
6446 * implementations return EINVAL to the syscall layer
6447 * when the attrdir cannot be created due to an
6448 * implementation restriction or noxattr mount option.
6449 */
6450 if (res.status == NFS4ERR_NOTSUPP) {
6451 mutex_enter(&drp->r_statelock);
6452 if (drp->r_xattr_dir)
6453 VN_RELE(drp->r_xattr_dir);
6454 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6455 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6456 mutex_exit(&drp->r_statelock);
6457
6458 e.error = EINVAL;
6459 } else {
6460 e.error = geterrno4(res.status);
6461 }
6462
6463 if (e.error) {
6464 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6465 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
6466 needrecov);
6467 return (e.error);
6468 }
6469 }
6470
6471 resop = &res.array[0]; /* putfh res */
6472 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
6473
6474 resop = &res.array[1]; /* openattr res */
6475 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
6476
6477 resop = &res.array[2]; /* getfh res */
6478 gf_res = &resop->nfs_resop4_u.opgetfh;
6479 if (gf_res->object.nfs_fh4_len == 0) {
6480 *avp = NULL;
6481 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6482 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6483 return (ENOENT);
6484 }
6485
6486 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6487 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6488 dvp->v_vfsp, t, cr, dvp,
6489 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6490 sfh4_rele(&sfhp);
6491
6492 if (e.error)
6493 PURGE_ATTRCACHE4(vp);
6494
6495 mutex_enter(&vp->v_lock);
6496 vp->v_flag |= V_XATTRDIR;
6497 mutex_exit(&vp->v_lock);
6498
6499 *avp = vp;
6500
6501 mutex_enter(&drp->r_statelock);
6502 if (drp->r_xattr_dir)
6503 VN_RELE(drp->r_xattr_dir);
6504 VN_HOLD(vp);
6505 drp->r_xattr_dir = vp;
6506
6507 /*
6508 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6509 * NULL. xattrs could be created at any time, and we have no
6510 * way to update pc4_xattr_exists in the base object if/when
6511 * it happens.
6512 */
6513 drp->r_pathconf.pc4_xattr_valid = 0;
6514
6515 mutex_exit(&drp->r_statelock);
6516
6517 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6518
6519 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6520
6521 return (0);
6522 }
6523
6524 /* ARGSUSED */
6525 static int
nfs4_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int flags,caller_context_t * ct,vsecattr_t * vsecp)6526 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6527 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6528 vsecattr_t *vsecp)
6529 {
6530 int error;
6531 vnode_t *vp = NULL;
6532 rnode4_t *rp;
6533 struct vattr vattr;
6534 rnode4_t *drp;
6535 vnode_t *tempvp;
6536 enum createmode4 createmode;
6537 bool_t must_trunc = FALSE;
6538 int truncating = 0;
6539
6540 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6541 return (EPERM);
6542 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6543 return (EINVAL);
6544 }
6545
6546 /* . and .. have special meaning in the protocol, reject them. */
6547
6548 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
6549 return (EISDIR);
6550
6551 drp = VTOR4(dvp);
6552
6553 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6554 return (EINTR);
6555
6556 top:
6557 /*
6558 * We make a copy of the attributes because the caller does not
6559 * expect us to change what va points to.
6560 */
6561 vattr = *va;
6562
6563 /*
6564 * If the pathname is "", then dvp is the root vnode of
6565 * a remote file mounted over a local directory.
6566 * All that needs to be done is access
6567 * checking and truncation. Note that we avoid doing
6568 * open w/ create because the parent directory might
6569 * be in pseudo-fs and the open would fail.
6570 */
6571 if (*nm == '\0') {
6572 error = 0;
6573 VN_HOLD(dvp);
6574 vp = dvp;
6575 must_trunc = TRUE;
6576 } else {
6577 /*
6578 * We need to go over the wire, just to be sure whether the
6579 * file exists or not. Using the DNLC can be dangerous in
6580 * this case when making a decision regarding existence.
6581 */
6582 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6583 }
6584
6585 if (exclusive)
6586 createmode = EXCLUSIVE4;
6587 else
6588 createmode = GUARDED4;
6589
6590 /*
6591 * error would be set if the file does not exist on the
6592 * server, so lets go create it.
6593 */
6594 if (error) {
6595 goto create_otw;
6596 }
6597
6598 /*
6599 * File does exist on the server
6600 */
6601 if (exclusive == EXCL)
6602 error = EEXIST;
6603 else if (vp->v_type == VDIR && (mode & VWRITE))
6604 error = EISDIR;
6605 else {
6606 /*
6607 * If vnode is a device, create special vnode.
6608 */
6609 if (ISVDEV(vp->v_type)) {
6610 tempvp = vp;
6611 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6612 VN_RELE(tempvp);
6613 }
6614 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6615 if ((vattr.va_mask & AT_SIZE) &&
6616 vp->v_type == VREG) {
6617 rp = VTOR4(vp);
6618 /*
6619 * Check here for large file handled
6620 * by LF-unaware process (as
6621 * ufs_create() does)
6622 */
6623 if (!(flags & FOFFMAX)) {
6624 mutex_enter(&rp->r_statelock);
6625 if (rp->r_size > MAXOFF32_T)
6626 error = EOVERFLOW;
6627 mutex_exit(&rp->r_statelock);
6628 }
6629
6630 /* if error is set then we need to return */
6631 if (error) {
6632 nfs_rw_exit(&drp->r_rwlock);
6633 VN_RELE(vp);
6634 return (error);
6635 }
6636
6637 if (must_trunc) {
6638 vattr.va_mask = AT_SIZE;
6639 error = nfs4setattr(vp, &vattr, 0, cr,
6640 NULL);
6641 } else {
6642 /*
6643 * we know we have a regular file that already
6644 * exists and we may end up truncating the file
6645 * as a result of the open_otw, so flush out
6646 * any dirty pages for this file first.
6647 */
6648 if (nfs4_has_pages(vp) &&
6649 ((rp->r_flags & R4DIRTY) ||
6650 rp->r_count > 0 ||
6651 rp->r_mapcnt > 0)) {
6652 error = nfs4_putpage(vp,
6653 (offset_t)0, 0, 0, cr, ct);
6654 if (error && (error == ENOSPC ||
6655 error == EDQUOT)) {
6656 mutex_enter(
6657 &rp->r_statelock);
6658 if (!rp->r_error)
6659 rp->r_error =
6660 error;
6661 mutex_exit(
6662 &rp->r_statelock);
6663 }
6664 }
6665 vattr.va_mask = (AT_SIZE |
6666 AT_TYPE | AT_MODE);
6667 vattr.va_type = VREG;
6668 createmode = UNCHECKED4;
6669 truncating = 1;
6670 goto create_otw;
6671 }
6672 }
6673 }
6674 }
6675 nfs_rw_exit(&drp->r_rwlock);
6676 if (error) {
6677 VN_RELE(vp);
6678 } else {
6679 vnode_t *tvp;
6680 rnode4_t *trp;
6681 tvp = vp;
6682 if (vp->v_type == VREG) {
6683 trp = VTOR4(vp);
6684 if (IS_SHADOW(vp, trp))
6685 tvp = RTOV4(trp);
6686 }
6687
6688 if (must_trunc) {
6689 /*
6690 * existing file got truncated, notify.
6691 */
6692 vnevent_create(tvp, ct);
6693 }
6694
6695 *vpp = vp;
6696 }
6697 return (error);
6698
6699 create_otw:
6700 dnlc_remove(dvp, nm);
6701
6702 ASSERT(vattr.va_mask & AT_TYPE);
6703
6704 /*
6705 * If not a regular file let nfs4mknod() handle it.
6706 */
6707 if (vattr.va_type != VREG) {
6708 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6709 nfs_rw_exit(&drp->r_rwlock);
6710 return (error);
6711 }
6712
6713 /*
6714 * It _is_ a regular file.
6715 */
6716 ASSERT(vattr.va_mask & AT_MODE);
6717 if (MANDMODE(vattr.va_mode)) {
6718 nfs_rw_exit(&drp->r_rwlock);
6719 return (EACCES);
6720 }
6721
6722 /*
6723 * If this happens to be a mknod of a regular file, then flags will
6724 * have neither FREAD or FWRITE. However, we must set at least one
6725 * for the call to nfs4open_otw. If it's open(O_CREAT) driving
6726 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6727 * set (based on openmode specified by app).
6728 */
6729 if ((flags & (FREAD|FWRITE)) == 0)
6730 flags |= (FREAD|FWRITE);
6731
6732 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
6733
6734 if (vp != NULL) {
6735 /* if create was successful, throw away the file's pages */
6736 if (!error && (vattr.va_mask & AT_SIZE))
6737 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6738 cr);
6739 /* release the lookup hold */
6740 VN_RELE(vp);
6741 vp = NULL;
6742 }
6743
6744 /*
6745 * validate that we opened a regular file. This handles a misbehaving
6746 * server that returns an incorrect FH.
6747 */
6748 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6749 error = EISDIR;
6750 VN_RELE(*vpp);
6751 }
6752
6753 /*
6754 * If this is not an exclusive create, then the CREATE
6755 * request will be made with the GUARDED mode set. This
6756 * means that the server will return EEXIST if the file
6757 * exists. The file could exist because of a retransmitted
6758 * request. In this case, we recover by starting over and
6759 * checking to see whether the file exists. This second
6760 * time through it should and a CREATE request will not be
6761 * sent.
6762 *
6763 * This handles the problem of a dangling CREATE request
6764 * which contains attributes which indicate that the file
6765 * should be truncated. This retransmitted request could
6766 * possibly truncate valid data in the file if not caught
6767 * by the duplicate request mechanism on the server or if
6768 * not caught by other means. The scenario is:
6769 *
6770 * Client transmits CREATE request with size = 0
6771 * Client times out, retransmits request.
6772 * Response to the first request arrives from the server
6773 * and the client proceeds on.
6774 * Client writes data to the file.
6775 * The server now processes retransmitted CREATE request
6776 * and truncates file.
6777 *
6778 * The use of the GUARDED CREATE request prevents this from
6779 * happening because the retransmitted CREATE would fail
6780 * with EEXIST and would not truncate the file.
6781 */
6782 if (error == EEXIST && exclusive == NONEXCL) {
6783 #ifdef DEBUG
6784 nfs4_create_misses++;
6785 #endif
6786 goto top;
6787 }
6788 nfs_rw_exit(&drp->r_rwlock);
6789 if (truncating && !error && *vpp) {
6790 vnode_t *tvp;
6791 rnode4_t *trp;
6792 /*
6793 * existing file got truncated, notify.
6794 */
6795 tvp = *vpp;
6796 trp = VTOR4(tvp);
6797 if (IS_SHADOW(tvp, trp))
6798 tvp = RTOV4(trp);
6799 vnevent_create(tvp, ct);
6800 }
6801 return (error);
6802 }
6803
6804 /*
6805 * Create compound (for mkdir, mknod, symlink):
6806 * { Putfh <dfh>; Create; Getfh; Getattr }
6807 * It's okay if setattr failed to set gid - this is not considered
6808 * an error, but purge attrs in that case.
6809 */
6810 static int
call_nfs4_create_req(vnode_t * dvp,char * nm,void * data,struct vattr * va,vnode_t ** vpp,cred_t * cr,nfs_ftype4 type)6811 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6812 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6813 {
6814 int need_end_op = FALSE;
6815 COMPOUND4args_clnt args;
6816 COMPOUND4res_clnt res, *resp = NULL;
6817 nfs_argop4 *argop;
6818 nfs_resop4 *resop;
6819 int doqueue;
6820 mntinfo4_t *mi;
6821 rnode4_t *drp = VTOR4(dvp);
6822 change_info4 *cinfo;
6823 GETFH4res *gf_res;
6824 struct vattr vattr;
6825 vnode_t *vp;
6826 fattr4 *crattr;
6827 bool_t needrecov = FALSE;
6828 nfs4_recov_state_t recov_state;
6829 nfs4_sharedfh_t *sfhp = NULL;
6830 hrtime_t t;
6831 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6832 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6833 dirattr_info_t dinfo, *dinfop;
6834 servinfo4_t *svp;
6835 bitmap4 supp_attrs;
6836
6837 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6838 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
6839
6840 mi = VTOMI4(dvp);
6841
6842 /*
6843 * Make sure we properly deal with setting the right gid
6844 * on a new directory to reflect the parent's setgid bit
6845 */
6846 setgid_flag = 0;
6847 if (type == NF4DIR) {
6848 struct vattr dva;
6849
6850 va->va_mode &= ~VSGID;
6851 dva.va_mask = AT_MODE | AT_GID;
6852 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6853
6854 /*
6855 * If the parent's directory has the setgid bit set
6856 * _and_ the client was able to get a valid mapping
6857 * for the parent dir's owner_group, we want to
6858 * append NVERIFY(owner_group == dva.va_gid) and
6859 * SETTATTR to the CREATE compound.
6860 */
6861 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
6862 setgid_flag = 1;
6863 va->va_mode |= VSGID;
6864 if (dva.va_gid != GID_NOBODY) {
6865 va->va_mask |= AT_GID;
6866 va->va_gid = dva.va_gid;
6867 }
6868 }
6869 }
6870 }
6871
6872 /*
6873 * Create ops:
6874 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6875 * 5:restorefh(dir) 6:getattr(dir)
6876 *
6877 * if (setgid)
6878 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6879 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6880 * 8:nverify 9:setattr
6881 */
6882 if (setgid_flag) {
6883 numops = 10;
6884 idx_create = 1;
6885 idx_fattr = 3;
6886 } else {
6887 numops = 7;
6888 idx_create = 2;
6889 idx_fattr = 4;
6890 }
6891
6892 ASSERT(nfs_zone() == mi->mi_zone);
6893 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6894 return (EINTR);
6895 }
6896 recov_state.rs_flags = 0;
6897 recov_state.rs_num_retry_despite_err = 0;
6898
6899 argoplist_size = numops * sizeof (nfs_argop4);
6900 argop = kmem_alloc(argoplist_size, KM_SLEEP);
6901
6902 recov_retry:
6903 if (type == NF4LNK)
6904 args.ctag = TAG_SYMLINK;
6905 else if (type == NF4DIR)
6906 args.ctag = TAG_MKDIR;
6907 else
6908 args.ctag = TAG_MKNOD;
6909
6910 args.array_len = numops;
6911 args.array = argop;
6912
6913 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6914 nfs_rw_exit(&drp->r_rwlock);
6915 kmem_free(argop, argoplist_size);
6916 return (e.error);
6917 }
6918 need_end_op = TRUE;
6919
6920
6921 /* 0: putfh directory */
6922 argop[0].argop = OP_CPUTFH;
6923 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6924
6925 /* 1/2: Create object */
6926 argop[idx_create].argop = OP_CCREATE;
6927 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
6928 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6929 if (type == NF4LNK) {
6930 /*
6931 * symlink, treat name as data
6932 */
6933 ASSERT(data != NULL);
6934 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6935 (char *)data;
6936 }
6937 if (type == NF4BLK || type == NF4CHR) {
6938 ASSERT(data != NULL);
6939 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6940 *((specdata4 *)data);
6941 }
6942
6943 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6944
6945 svp = drp->r_server;
6946 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6947 supp_attrs = svp->sv_supp_attrs;
6948 nfs_rw_exit(&svp->sv_lock);
6949
6950 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6951 nfs_rw_exit(&drp->r_rwlock);
6952 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
6953 e.error = EINVAL;
6954 kmem_free(argop, argoplist_size);
6955 return (e.error);
6956 }
6957
6958 /* 2/3: getfh fh of created object */
6959 ASSERT(idx_create + 1 == idx_fattr - 1);
6960 argop[idx_create + 1].argop = OP_GETFH;
6961
6962 /* 3/4: getattr of new object */
6963 argop[idx_fattr].argop = OP_GETATTR;
6964 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6965 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
6966
6967 if (setgid_flag) {
6968 vattr_t _v;
6969
6970 argop[4].argop = OP_SAVEFH;
6971
6972 argop[5].argop = OP_CPUTFH;
6973 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6974
6975 argop[6].argop = OP_GETATTR;
6976 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6977 argop[6].nfs_argop4_u.opgetattr.mi = mi;
6978
6979 argop[7].argop = OP_RESTOREFH;
6980
6981 /*
6982 * nverify
6983 *
6984 * XXX - Revisit the last argument to nfs4_end_op()
6985 * once 5020486 is fixed.
6986 */
6987 _v.va_mask = AT_GID;
6988 _v.va_gid = va->va_gid;
6989 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
6990 supp_attrs)) {
6991 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
6992 nfs_rw_exit(&drp->r_rwlock);
6993 nfs4_fattr4_free(crattr);
6994 kmem_free(argop, argoplist_size);
6995 return (e.error);
6996 }
6997
6998 /*
6999 * setattr
7000 *
7001 * We _know_ we're not messing with AT_SIZE or AT_XTIME,
7002 * so no need for stateid or flags. Also we specify NULL
7003 * rp since we're only interested in setting owner_group
7004 * attributes.
7005 */
7006 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
7007 &e.error, 0);
7008
7009 if (e.error) {
7010 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
7011 nfs_rw_exit(&drp->r_rwlock);
7012 nfs4_fattr4_free(crattr);
7013 nfs4args_verify_free(&argop[8]);
7014 kmem_free(argop, argoplist_size);
7015 return (e.error);
7016 }
7017 } else {
7018 argop[1].argop = OP_SAVEFH;
7019
7020 argop[5].argop = OP_RESTOREFH;
7021
7022 argop[6].argop = OP_GETATTR;
7023 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7024 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7025 }
7026
7027 dnlc_remove(dvp, nm);
7028
7029 doqueue = 1;
7030 t = gethrtime();
7031 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7032
7033 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7034 if (e.error) {
7035 PURGE_ATTRCACHE4(dvp);
7036 if (!needrecov)
7037 goto out;
7038 }
7039
7040 if (needrecov) {
7041 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7042 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7043 nfs4_end_op(mi, dvp, NULL, &recov_state,
7044 needrecov);
7045 need_end_op = FALSE;
7046 nfs4_fattr4_free(crattr);
7047 if (setgid_flag) {
7048 nfs4args_verify_free(&argop[8]);
7049 nfs4args_setattr_free(&argop[9]);
7050 }
7051 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7052 goto recov_retry;
7053 }
7054 }
7055
7056 resp = &res;
7057
7058 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
7059
7060 if (res.status == NFS4ERR_BADOWNER)
7061 nfs4_log_badowner(mi, OP_CREATE);
7062
7063 e.error = geterrno4(res.status);
7064
7065 /*
7066 * This check is left over from when create was implemented
7067 * using a setattr op (instead of createattrs). If the
7068 * putfh/create/getfh failed, the error was returned. If
7069 * setattr/getattr failed, we keep going.
7070 *
7071 * It might be better to get rid of the GETFH also, and just
7072 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7073 * Then if any of the operations failed, we could return the
7074 * error now, and remove much of the error code below.
7075 */
7076 if (res.array_len <= idx_fattr) {
7077 /*
7078 * Either Putfh, Create or Getfh failed.
7079 */
7080 PURGE_ATTRCACHE4(dvp);
7081 /*
7082 * nfs4_purge_stale_fh() may generate otw calls through
7083 * nfs4_invalidate_pages. Hence the need to call
7084 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7085 */
7086 nfs4_end_op(mi, dvp, NULL, &recov_state,
7087 needrecov);
7088 need_end_op = FALSE;
7089 nfs4_purge_stale_fh(e.error, dvp, cr);
7090 goto out;
7091 }
7092 }
7093
7094 resop = &res.array[idx_create]; /* create res */
7095 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
7096
7097 resop = &res.array[idx_create + 1]; /* getfh res */
7098 gf_res = &resop->nfs_resop4_u.opgetfh;
7099
7100 sfhp = sfh4_get(&gf_res->object, mi);
7101 if (e.error) {
7102 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7103 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7104 if (vp->v_type == VNON) {
7105 vattr.va_mask = AT_TYPE;
7106 /*
7107 * Need to call nfs4_end_op before nfs4getattr to avoid
7108 * potential nfs4_start_op deadlock. See RFE 4777612.
7109 */
7110 nfs4_end_op(mi, dvp, NULL, &recov_state,
7111 needrecov);
7112 need_end_op = FALSE;
7113 e.error = nfs4getattr(vp, &vattr, cr);
7114 if (e.error) {
7115 VN_RELE(vp);
7116 *vpp = NULL;
7117 goto out;
7118 }
7119 vp->v_type = vattr.va_type;
7120 }
7121 e.error = 0;
7122 } else {
7123 *vpp = vp = makenfs4node(sfhp,
7124 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7125 dvp->v_vfsp, t, cr,
7126 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7127 }
7128
7129 /*
7130 * If compound succeeded, then update dir attrs
7131 */
7132 if (res.status == NFS4_OK) {
7133 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7134 dinfo.di_cred = cr;
7135 dinfo.di_time_call = t;
7136 dinfop = &dinfo;
7137 } else
7138 dinfop = NULL;
7139
7140 /* Update directory cache attribute, readdir and dnlc caches */
7141 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
7142
7143 out:
7144 if (sfhp != NULL)
7145 sfh4_rele(&sfhp);
7146 nfs_rw_exit(&drp->r_rwlock);
7147 nfs4_fattr4_free(crattr);
7148 if (setgid_flag) {
7149 nfs4args_verify_free(&argop[8]);
7150 nfs4args_setattr_free(&argop[9]);
7151 }
7152 if (resp)
7153 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7154 if (need_end_op)
7155 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7156
7157 kmem_free(argop, argoplist_size);
7158 return (e.error);
7159 }
7160
7161 /* ARGSUSED */
7162 static int
nfs4mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)7163 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7164 int mode, vnode_t **vpp, cred_t *cr)
7165 {
7166 int error;
7167 vnode_t *vp;
7168 nfs_ftype4 type;
7169 specdata4 spec, *specp = NULL;
7170
7171 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
7172
7173 switch (va->va_type) {
7174 case VCHR:
7175 case VBLK:
7176 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7177 spec.specdata1 = getmajor(va->va_rdev);
7178 spec.specdata2 = getminor(va->va_rdev);
7179 specp = &spec;
7180 break;
7181
7182 case VFIFO:
7183 type = NF4FIFO;
7184 break;
7185 case VSOCK:
7186 type = NF4SOCK;
7187 break;
7188
7189 default:
7190 return (EINVAL);
7191 }
7192
7193 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7194 if (error) {
7195 return (error);
7196 }
7197
7198 /*
7199 * This might not be needed any more; special case to deal
7200 * with problematic v2/v3 servers. Since create was unable
7201 * to set group correctly, not sure what hope setattr has.
7202 */
7203 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7204 va->va_mask = AT_GID;
7205 (void) nfs4setattr(vp, va, 0, cr, NULL);
7206 }
7207
7208 /*
7209 * If vnode is a device create special vnode
7210 */
7211 if (ISVDEV(vp->v_type)) {
7212 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7213 VN_RELE(vp);
7214 } else {
7215 *vpp = vp;
7216 }
7217 return (error);
7218 }
7219
7220 /*
7221 * Remove requires that the current fh be the target directory.
7222 * After the operation, the current fh is unchanged.
7223 * The compound op structure is:
7224 * PUTFH(targetdir), REMOVE
7225 *
7226 * Weirdness: if the vnode to be removed is open
7227 * we rename it instead of removing it and nfs_inactive
7228 * will remove the new name.
7229 */
7230 /* ARGSUSED */
7231 static int
nfs4_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)7232 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7233 {
7234 COMPOUND4args_clnt args;
7235 COMPOUND4res_clnt res, *resp = NULL;
7236 REMOVE4res *rm_res;
7237 nfs_argop4 argop[3];
7238 nfs_resop4 *resop;
7239 vnode_t *vp;
7240 char *tmpname;
7241 int doqueue;
7242 mntinfo4_t *mi;
7243 rnode4_t *rp;
7244 rnode4_t *drp;
7245 int needrecov = 0;
7246 nfs4_recov_state_t recov_state;
7247 int isopen;
7248 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7249 dirattr_info_t dinfo;
7250
7251 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7252 return (EPERM);
7253 drp = VTOR4(dvp);
7254 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7255 return (EINTR);
7256
7257 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
7258 if (e.error) {
7259 nfs_rw_exit(&drp->r_rwlock);
7260 return (e.error);
7261 }
7262
7263 if (vp->v_type == VDIR) {
7264 VN_RELE(vp);
7265 nfs_rw_exit(&drp->r_rwlock);
7266 return (EISDIR);
7267 }
7268
7269 /*
7270 * First just remove the entry from the name cache, as it
7271 * is most likely the only entry for this vp.
7272 */
7273 dnlc_remove(dvp, nm);
7274
7275 rp = VTOR4(vp);
7276
7277 /*
7278 * For regular file types, check to see if the file is open by looking
7279 * at the open streams.
7280 * For all other types, check the reference count on the vnode. Since
7281 * they are not opened OTW they never have an open stream.
7282 *
7283 * If the file is open, rename it to .nfsXXXX.
7284 */
7285 if (vp->v_type != VREG) {
7286 /*
7287 * If the file has a v_count > 1 then there may be more than one
7288 * entry in the name cache due multiple links or an open file,
7289 * but we don't have the real reference count so flush all
7290 * possible entries.
7291 */
7292 if (vp->v_count > 1)
7293 dnlc_purge_vp(vp);
7294
7295 /*
7296 * Now we have the real reference count.
7297 */
7298 isopen = vp->v_count > 1;
7299 } else {
7300 mutex_enter(&rp->r_os_lock);
7301 isopen = list_head(&rp->r_open_streams) != NULL;
7302 mutex_exit(&rp->r_os_lock);
7303 }
7304
7305 mutex_enter(&rp->r_statelock);
7306 if (isopen &&
7307 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7308 mutex_exit(&rp->r_statelock);
7309 tmpname = newname();
7310 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7311 if (e.error)
7312 kmem_free(tmpname, MAXNAMELEN);
7313 else {
7314 mutex_enter(&rp->r_statelock);
7315 if (rp->r_unldvp == NULL) {
7316 VN_HOLD(dvp);
7317 rp->r_unldvp = dvp;
7318 if (rp->r_unlcred != NULL)
7319 crfree(rp->r_unlcred);
7320 crhold(cr);
7321 rp->r_unlcred = cr;
7322 rp->r_unlname = tmpname;
7323 } else {
7324 kmem_free(rp->r_unlname, MAXNAMELEN);
7325 rp->r_unlname = tmpname;
7326 }
7327 mutex_exit(&rp->r_statelock);
7328 }
7329 VN_RELE(vp);
7330 nfs_rw_exit(&drp->r_rwlock);
7331 return (e.error);
7332 }
7333 /*
7334 * Actually remove the file/dir
7335 */
7336 mutex_exit(&rp->r_statelock);
7337
7338 /*
7339 * We need to flush any dirty pages which happen to
7340 * be hanging around before removing the file.
7341 * This shouldn't happen very often since in NFSv4
7342 * we should be close to open consistent.
7343 */
7344 if (nfs4_has_pages(vp) &&
7345 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7346 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7347 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7348 mutex_enter(&rp->r_statelock);
7349 if (!rp->r_error)
7350 rp->r_error = e.error;
7351 mutex_exit(&rp->r_statelock);
7352 }
7353 }
7354
7355 mi = VTOMI4(dvp);
7356
7357 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7358 recov_state.rs_flags = 0;
7359 recov_state.rs_num_retry_despite_err = 0;
7360
7361 recov_retry:
7362 /*
7363 * Remove ops: putfh dir; remove
7364 */
7365 args.ctag = TAG_REMOVE;
7366 args.array_len = 3;
7367 args.array = argop;
7368
7369 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7370 if (e.error) {
7371 nfs_rw_exit(&drp->r_rwlock);
7372 VN_RELE(vp);
7373 return (e.error);
7374 }
7375
7376 /* putfh directory */
7377 argop[0].argop = OP_CPUTFH;
7378 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7379
7380 /* remove */
7381 argop[1].argop = OP_CREMOVE;
7382 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
7383
7384 /* getattr dir */
7385 argop[2].argop = OP_GETATTR;
7386 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7387 argop[2].nfs_argop4_u.opgetattr.mi = mi;
7388
7389 doqueue = 1;
7390 dinfo.di_time_call = gethrtime();
7391 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7392
7393 PURGE_ATTRCACHE4(vp);
7394
7395 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7396 if (e.error)
7397 PURGE_ATTRCACHE4(dvp);
7398
7399 if (needrecov) {
7400 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7401 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7402 if (!e.error)
7403 (void) xdr_free(xdr_COMPOUND4res_clnt,
7404 (caddr_t)&res);
7405 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7406 needrecov);
7407 goto recov_retry;
7408 }
7409 }
7410
7411 /*
7412 * Matching nfs4_end_op() for start_op() above.
7413 * There is a path in the code below which calls
7414 * nfs4_purge_stale_fh(), which may generate otw calls through
7415 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7416 * here to avoid nfs4_start_op() deadlock.
7417 */
7418 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
7419
7420 if (!e.error) {
7421 resp = &res;
7422
7423 if (res.status) {
7424 e.error = geterrno4(res.status);
7425 PURGE_ATTRCACHE4(dvp);
7426 nfs4_purge_stale_fh(e.error, dvp, cr);
7427 } else {
7428 resop = &res.array[1]; /* remove res */
7429 rm_res = &resop->nfs_resop4_u.opremove;
7430
7431 dinfo.di_garp =
7432 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7433 dinfo.di_cred = cr;
7434
7435 /* Update directory attr, readdir and dnlc caches */
7436 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7437 &dinfo);
7438 }
7439 }
7440 nfs_rw_exit(&drp->r_rwlock);
7441 if (resp)
7442 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7443
7444 if (e.error == 0) {
7445 vnode_t *tvp;
7446 rnode4_t *trp;
7447 trp = VTOR4(vp);
7448 tvp = vp;
7449 if (IS_SHADOW(vp, trp))
7450 tvp = RTOV4(trp);
7451 vnevent_remove(tvp, dvp, nm, ct);
7452 }
7453 VN_RELE(vp);
7454 return (e.error);
7455 }
7456
7457 /*
7458 * Link requires that the current fh be the target directory and the
7459 * saved fh be the source fh. After the operation, the current fh is unchanged.
7460 * Thus the compound op structure is:
7461 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7462 * GETATTR(file)
7463 */
7464 /* ARGSUSED */
7465 static int
nfs4_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)7466 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7467 caller_context_t *ct, int flags)
7468 {
7469 COMPOUND4args_clnt args;
7470 COMPOUND4res_clnt res, *resp = NULL;
7471 LINK4res *ln_res;
7472 int argoplist_size = 7 * sizeof (nfs_argop4);
7473 nfs_argop4 *argop;
7474 nfs_resop4 *resop;
7475 vnode_t *realvp, *nvp;
7476 int doqueue;
7477 mntinfo4_t *mi;
7478 rnode4_t *tdrp;
7479 bool_t needrecov = FALSE;
7480 nfs4_recov_state_t recov_state;
7481 hrtime_t t;
7482 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7483 dirattr_info_t dinfo;
7484
7485 ASSERT(*tnm != '\0');
7486 ASSERT(tdvp->v_type == VDIR);
7487 ASSERT(nfs4_consistent_type(tdvp));
7488 ASSERT(nfs4_consistent_type(svp));
7489
7490 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7491 return (EPERM);
7492 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7493 svp = realvp;
7494 ASSERT(nfs4_consistent_type(svp));
7495 }
7496
7497 tdrp = VTOR4(tdvp);
7498 mi = VTOMI4(svp);
7499
7500 if (!(mi->mi_flags & MI4_LINK)) {
7501 return (EOPNOTSUPP);
7502 }
7503 recov_state.rs_flags = 0;
7504 recov_state.rs_num_retry_despite_err = 0;
7505
7506 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7507 return (EINTR);
7508
7509 recov_retry:
7510 argop = kmem_alloc(argoplist_size, KM_SLEEP);
7511
7512 args.ctag = TAG_LINK;
7513
7514 /*
7515 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7516 * restorefh; getattr(fl)
7517 */
7518 args.array_len = 7;
7519 args.array = argop;
7520
7521 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
7522 if (e.error) {
7523 kmem_free(argop, argoplist_size);
7524 nfs_rw_exit(&tdrp->r_rwlock);
7525 return (e.error);
7526 }
7527
7528 /* 0. putfh file */
7529 argop[0].argop = OP_CPUTFH;
7530 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
7531
7532 /* 1. save current fh to free up the space for the dir */
7533 argop[1].argop = OP_SAVEFH;
7534
7535 /* 2. putfh targetdir */
7536 argop[2].argop = OP_CPUTFH;
7537 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
7538
7539 /* 3. link: current_fh is targetdir, saved_fh is source */
7540 argop[3].argop = OP_CLINK;
7541 argop[3].nfs_argop4_u.opclink.cnewname = tnm;
7542
7543 /* 4. Get attributes of dir */
7544 argop[4].argop = OP_GETATTR;
7545 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7546 argop[4].nfs_argop4_u.opgetattr.mi = mi;
7547
7548 /* 5. If link was successful, restore current vp to file */
7549 argop[5].argop = OP_RESTOREFH;
7550
7551 /* 6. Get attributes of linked object */
7552 argop[6].argop = OP_GETATTR;
7553 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7554 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7555
7556 dnlc_remove(tdvp, tnm);
7557
7558 doqueue = 1;
7559 t = gethrtime();
7560
7561 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
7562
7563 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7564 if (e.error != 0 && !needrecov) {
7565 PURGE_ATTRCACHE4(tdvp);
7566 PURGE_ATTRCACHE4(svp);
7567 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7568 goto out;
7569 }
7570
7571 if (needrecov) {
7572 bool_t abort;
7573
7574 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7575 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7576 if (abort == FALSE) {
7577 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7578 needrecov);
7579 kmem_free(argop, argoplist_size);
7580 if (!e.error)
7581 (void) xdr_free(xdr_COMPOUND4res_clnt,
7582 (caddr_t)&res);
7583 goto recov_retry;
7584 } else {
7585 if (e.error != 0) {
7586 PURGE_ATTRCACHE4(tdvp);
7587 PURGE_ATTRCACHE4(svp);
7588 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7589 &recov_state, needrecov);
7590 goto out;
7591 }
7592 /* fall through for res.status case */
7593 }
7594 }
7595
7596 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7597
7598 resp = &res;
7599 if (res.status) {
7600 /* If link succeeded, then don't return error */
7601 e.error = geterrno4(res.status);
7602 if (res.array_len <= 4) {
7603 /*
7604 * Either Putfh, Savefh, Putfh dir, or Link failed
7605 */
7606 PURGE_ATTRCACHE4(svp);
7607 PURGE_ATTRCACHE4(tdvp);
7608 if (e.error == EOPNOTSUPP) {
7609 mutex_enter(&mi->mi_lock);
7610 mi->mi_flags &= ~MI4_LINK;
7611 mutex_exit(&mi->mi_lock);
7612 }
7613 /* Remap EISDIR to EPERM for non-root user for SVVS */
7614 /* XXX-LP */
7615 if (e.error == EISDIR && crgetuid(cr) != 0)
7616 e.error = EPERM;
7617 goto out;
7618 }
7619 }
7620
7621 /* either no error or one of the postop getattr failed */
7622
7623 /*
7624 * XXX - if LINK succeeded, but no attrs were returned for link
7625 * file, purge its cache.
7626 *
7627 * XXX Perform a simplified version of wcc checking. Instead of
7628 * have another getattr to get pre-op, just purge cache if
7629 * any of the ops prior to and including the getattr failed.
7630 * If the getattr succeeded then update the attrcache accordingly.
7631 */
7632
7633 /*
7634 * update cache with link file postattrs.
7635 * Note: at this point resop points to link res.
7636 */
7637 resop = &res.array[3]; /* link res */
7638 ln_res = &resop->nfs_resop4_u.oplink;
7639 if (res.status == NFS4_OK)
7640 e.error = nfs4_update_attrcache(res.status,
7641 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7642 t, svp, cr);
7643
7644 /*
7645 * Call makenfs4node to create the new shadow vp for tnm.
7646 * We pass NULL attrs because we just cached attrs for
7647 * the src object. All we're trying to accomplish is to
7648 * to create the new shadow vnode.
7649 */
7650 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7651 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
7652
7653 /* Update target cache attribute, readdir and dnlc caches */
7654 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7655 dinfo.di_time_call = t;
7656 dinfo.di_cred = cr;
7657
7658 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7659 ASSERT(nfs4_consistent_type(tdvp));
7660 ASSERT(nfs4_consistent_type(svp));
7661 ASSERT(nfs4_consistent_type(nvp));
7662 VN_RELE(nvp);
7663
7664 if (!e.error) {
7665 vnode_t *tvp;
7666 rnode4_t *trp;
7667 /*
7668 * Notify the source file of this link operation.
7669 */
7670 trp = VTOR4(svp);
7671 tvp = svp;
7672 if (IS_SHADOW(svp, trp))
7673 tvp = RTOV4(trp);
7674 vnevent_link(tvp, ct);
7675 }
7676 out:
7677 kmem_free(argop, argoplist_size);
7678 if (resp)
7679 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7680
7681 nfs_rw_exit(&tdrp->r_rwlock);
7682
7683 return (e.error);
7684 }
7685
7686 /* ARGSUSED */
7687 static int
nfs4_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)7688 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7689 caller_context_t *ct, int flags)
7690 {
7691 vnode_t *realvp;
7692
7693 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7694 return (EPERM);
7695 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7696 ndvp = realvp;
7697
7698 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7699 }
7700
7701 /*
7702 * nfs4rename does the real work of renaming in NFS Version 4.
7703 *
7704 * A file handle is considered volatile for renaming purposes if either
7705 * of the volatile bits are turned on. However, the compound may differ
7706 * based on the likelihood of the filehandle to change during rename.
7707 */
7708 static int
nfs4rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)7709 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7710 caller_context_t *ct)
7711 {
7712 int error;
7713 mntinfo4_t *mi;
7714 vnode_t *nvp = NULL;
7715 vnode_t *ovp = NULL;
7716 char *tmpname = NULL;
7717 rnode4_t *rp;
7718 rnode4_t *odrp;
7719 rnode4_t *ndrp;
7720 int did_link = 0;
7721 int do_link = 1;
7722 nfsstat4 stat = NFS4_OK;
7723
7724 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7725 ASSERT(nfs4_consistent_type(odvp));
7726 ASSERT(nfs4_consistent_type(ndvp));
7727
7728 if (onm[0] == '.' && (onm[1] == '\0' ||
7729 (onm[1] == '.' && onm[2] == '\0')))
7730 return (EINVAL);
7731
7732 if (nnm[0] == '.' && (nnm[1] == '\0' ||
7733 (nnm[1] == '.' && nnm[2] == '\0')))
7734 return (EINVAL);
7735
7736 odrp = VTOR4(odvp);
7737 ndrp = VTOR4(ndvp);
7738 if ((intptr_t)odrp < (intptr_t)ndrp) {
7739 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7740 return (EINTR);
7741 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7742 nfs_rw_exit(&odrp->r_rwlock);
7743 return (EINTR);
7744 }
7745 } else {
7746 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7747 return (EINTR);
7748 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7749 nfs_rw_exit(&ndrp->r_rwlock);
7750 return (EINTR);
7751 }
7752 }
7753
7754 /*
7755 * Lookup the target file. If it exists, it needs to be
7756 * checked to see whether it is a mount point and whether
7757 * it is active (open).
7758 */
7759 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7760 if (!error) {
7761 int isactive;
7762
7763 ASSERT(nfs4_consistent_type(nvp));
7764 /*
7765 * If this file has been mounted on, then just
7766 * return busy because renaming to it would remove
7767 * the mounted file system from the name space.
7768 */
7769 if (vn_ismntpt(nvp)) {
7770 VN_RELE(nvp);
7771 nfs_rw_exit(&odrp->r_rwlock);
7772 nfs_rw_exit(&ndrp->r_rwlock);
7773 return (EBUSY);
7774 }
7775
7776 /*
7777 * First just remove the entry from the name cache, as it
7778 * is most likely the only entry for this vp.
7779 */
7780 dnlc_remove(ndvp, nnm);
7781
7782 rp = VTOR4(nvp);
7783
7784 if (nvp->v_type != VREG) {
7785 /*
7786 * Purge the name cache of all references to this vnode
7787 * so that we can check the reference count to infer
7788 * whether it is active or not.
7789 */
7790 if (nvp->v_count > 1)
7791 dnlc_purge_vp(nvp);
7792
7793 isactive = nvp->v_count > 1;
7794 } else {
7795 mutex_enter(&rp->r_os_lock);
7796 isactive = list_head(&rp->r_open_streams) != NULL;
7797 mutex_exit(&rp->r_os_lock);
7798 }
7799
7800 /*
7801 * If the vnode is active and is not a directory,
7802 * arrange to rename it to a
7803 * temporary file so that it will continue to be
7804 * accessible. This implements the "unlink-open-file"
7805 * semantics for the target of a rename operation.
7806 * Before doing this though, make sure that the
7807 * source and target files are not already the same.
7808 */
7809 if (isactive && nvp->v_type != VDIR) {
7810 /*
7811 * Lookup the source name.
7812 */
7813 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7814
7815 /*
7816 * The source name *should* already exist.
7817 */
7818 if (error) {
7819 VN_RELE(nvp);
7820 nfs_rw_exit(&odrp->r_rwlock);
7821 nfs_rw_exit(&ndrp->r_rwlock);
7822 return (error);
7823 }
7824
7825 ASSERT(nfs4_consistent_type(ovp));
7826
7827 /*
7828 * Compare the two vnodes. If they are the same,
7829 * just release all held vnodes and return success.
7830 */
7831 if (VN_CMP(ovp, nvp)) {
7832 VN_RELE(ovp);
7833 VN_RELE(nvp);
7834 nfs_rw_exit(&odrp->r_rwlock);
7835 nfs_rw_exit(&ndrp->r_rwlock);
7836 return (0);
7837 }
7838
7839 /*
7840 * Can't mix and match directories and non-
7841 * directories in rename operations. We already
7842 * know that the target is not a directory. If
7843 * the source is a directory, return an error.
7844 */
7845 if (ovp->v_type == VDIR) {
7846 VN_RELE(ovp);
7847 VN_RELE(nvp);
7848 nfs_rw_exit(&odrp->r_rwlock);
7849 nfs_rw_exit(&ndrp->r_rwlock);
7850 return (ENOTDIR);
7851 }
7852 link_call:
7853 /*
7854 * The target file exists, is not the same as
7855 * the source file, and is active. We first
7856 * try to Link it to a temporary filename to
7857 * avoid having the server removing the file
7858 * completely (which could cause data loss to
7859 * the user's POV in the event the Rename fails
7860 * -- see bug 1165874).
7861 */
7862 /*
7863 * The do_link and did_link booleans are
7864 * introduced in the event we get NFS4ERR_FILE_OPEN
7865 * returned for the Rename. Some servers can
7866 * not Rename over an Open file, so they return
7867 * this error. The client needs to Remove the
7868 * newly created Link and do two Renames, just
7869 * as if the server didn't support LINK.
7870 */
7871 tmpname = newname();
7872 error = 0;
7873
7874 if (do_link) {
7875 error = nfs4_link(ndvp, nvp, tmpname, cr,
7876 NULL, 0);
7877 }
7878 if (error == EOPNOTSUPP || !do_link) {
7879 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7880 cr, NULL, 0);
7881 did_link = 0;
7882 } else {
7883 did_link = 1;
7884 }
7885 if (error) {
7886 kmem_free(tmpname, MAXNAMELEN);
7887 VN_RELE(ovp);
7888 VN_RELE(nvp);
7889 nfs_rw_exit(&odrp->r_rwlock);
7890 nfs_rw_exit(&ndrp->r_rwlock);
7891 return (error);
7892 }
7893
7894 mutex_enter(&rp->r_statelock);
7895 if (rp->r_unldvp == NULL) {
7896 VN_HOLD(ndvp);
7897 rp->r_unldvp = ndvp;
7898 if (rp->r_unlcred != NULL)
7899 crfree(rp->r_unlcred);
7900 crhold(cr);
7901 rp->r_unlcred = cr;
7902 rp->r_unlname = tmpname;
7903 } else {
7904 if (rp->r_unlname)
7905 kmem_free(rp->r_unlname, MAXNAMELEN);
7906 rp->r_unlname = tmpname;
7907 }
7908 mutex_exit(&rp->r_statelock);
7909 }
7910
7911 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7912
7913 ASSERT(nfs4_consistent_type(nvp));
7914 }
7915
7916 if (ovp == NULL) {
7917 /*
7918 * When renaming directories to be a subdirectory of a
7919 * different parent, the dnlc entry for ".." will no
7920 * longer be valid, so it must be removed.
7921 *
7922 * We do a lookup here to determine whether we are renaming
7923 * a directory and we need to check if we are renaming
7924 * an unlinked file. This might have already been done
7925 * in previous code, so we check ovp == NULL to avoid
7926 * doing it twice.
7927 */
7928 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7929 /*
7930 * The source name *should* already exist.
7931 */
7932 if (error) {
7933 nfs_rw_exit(&odrp->r_rwlock);
7934 nfs_rw_exit(&ndrp->r_rwlock);
7935 if (nvp) {
7936 VN_RELE(nvp);
7937 }
7938 return (error);
7939 }
7940 ASSERT(ovp != NULL);
7941 ASSERT(nfs4_consistent_type(ovp));
7942 }
7943
7944 /*
7945 * Is the object being renamed a dir, and if so, is
7946 * it being renamed to a child of itself? The underlying
7947 * fs should ultimately return EINVAL for this case;
7948 * however, buggy beta non-Solaris NFSv4 servers at
7949 * interop testing events have allowed this behavior,
7950 * and it caused our client to panic due to a recursive
7951 * mutex_enter in fn_move.
7952 *
7953 * The tedious locking in fn_move could be changed to
7954 * deal with this case, and the client could avoid the
7955 * panic; however, the client would just confuse itself
7956 * later and misbehave. A better way to handle the broken
7957 * server is to detect this condition and return EINVAL
7958 * without ever sending the the bogus rename to the server.
7959 * We know the rename is invalid -- just fail it now.
7960 */
7961 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
7962 VN_RELE(ovp);
7963 nfs_rw_exit(&odrp->r_rwlock);
7964 nfs_rw_exit(&ndrp->r_rwlock);
7965 if (nvp) {
7966 VN_RELE(nvp);
7967 }
7968 return (EINVAL);
7969 }
7970
7971 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7972
7973 /*
7974 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
7975 * possible for the filehandle to change due to the rename.
7976 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
7977 * the fh will not change because of the rename, but we still need
7978 * to update its rnode entry with the new name for
7979 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
7980 * has no effect on these for now, but for future improvements,
7981 * we might want to use it too to simplify handling of files
7982 * that are open with that flag on. (XXX)
7983 */
7984 mi = VTOMI4(odvp);
7985 if (NFS4_VOLATILE_FH(mi))
7986 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
7987 &stat);
7988 else
7989 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
7990 &stat);
7991
7992 ASSERT(nfs4_consistent_type(odvp));
7993 ASSERT(nfs4_consistent_type(ndvp));
7994 ASSERT(nfs4_consistent_type(ovp));
7995
7996 if (stat == NFS4ERR_FILE_OPEN && did_link) {
7997 do_link = 0;
7998 /*
7999 * Before the 'link_call' code, we did a nfs4_lookup
8000 * that puts a VN_HOLD on nvp. After the nfs4_link
8001 * call we call VN_RELE to match that hold. We need
8002 * to place an additional VN_HOLD here since we will
8003 * be hitting that VN_RELE again.
8004 */
8005 VN_HOLD(nvp);
8006
8007 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
8008
8009 /* Undo the unlinked file naming stuff we just did */
8010 mutex_enter(&rp->r_statelock);
8011 if (rp->r_unldvp) {
8012 VN_RELE(ndvp);
8013 rp->r_unldvp = NULL;
8014 if (rp->r_unlcred != NULL)
8015 crfree(rp->r_unlcred);
8016 rp->r_unlcred = NULL;
8017 /* rp->r_unlanme points to tmpname */
8018 if (rp->r_unlname)
8019 kmem_free(rp->r_unlname, MAXNAMELEN);
8020 rp->r_unlname = NULL;
8021 }
8022 mutex_exit(&rp->r_statelock);
8023
8024 if (nvp) {
8025 VN_RELE(nvp);
8026 }
8027 goto link_call;
8028 }
8029
8030 if (error) {
8031 VN_RELE(ovp);
8032 nfs_rw_exit(&odrp->r_rwlock);
8033 nfs_rw_exit(&ndrp->r_rwlock);
8034 if (nvp) {
8035 VN_RELE(nvp);
8036 }
8037 return (error);
8038 }
8039
8040 /*
8041 * when renaming directories to be a subdirectory of a
8042 * different parent, the dnlc entry for ".." will no
8043 * longer be valid, so it must be removed
8044 */
8045 rp = VTOR4(ovp);
8046 if (ndvp != odvp) {
8047 if (ovp->v_type == VDIR) {
8048 dnlc_remove(ovp, "..");
8049 if (rp->r_dir != NULL)
8050 nfs4_purge_rddir_cache(ovp);
8051 }
8052 }
8053
8054 /*
8055 * If we are renaming the unlinked file, update the
8056 * r_unldvp and r_unlname as needed.
8057 */
8058 mutex_enter(&rp->r_statelock);
8059 if (rp->r_unldvp != NULL) {
8060 if (strcmp(rp->r_unlname, onm) == 0) {
8061 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8062 rp->r_unlname[MAXNAMELEN - 1] = '\0';
8063 if (ndvp != rp->r_unldvp) {
8064 VN_RELE(rp->r_unldvp);
8065 rp->r_unldvp = ndvp;
8066 VN_HOLD(ndvp);
8067 }
8068 }
8069 }
8070 mutex_exit(&rp->r_statelock);
8071
8072 /*
8073 * Notify the rename vnevents to source vnode, and to the target
8074 * vnode if it already existed.
8075 */
8076 if (error == 0) {
8077 vnode_t *tvp;
8078 rnode4_t *trp;
8079 /*
8080 * Notify the vnode. Each links is represented by
8081 * a different vnode, in nfsv4.
8082 */
8083 if (nvp) {
8084 trp = VTOR4(nvp);
8085 tvp = nvp;
8086 if (IS_SHADOW(nvp, trp))
8087 tvp = RTOV4(trp);
8088 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8089 }
8090
8091 /*
8092 * if the source and destination directory are not the
8093 * same notify the destination directory.
8094 */
8095 if (VTOR4(odvp) != VTOR4(ndvp)) {
8096 trp = VTOR4(ndvp);
8097 tvp = ndvp;
8098 if (IS_SHADOW(ndvp, trp))
8099 tvp = RTOV4(trp);
8100 vnevent_rename_dest_dir(tvp, ct);
8101 }
8102
8103 trp = VTOR4(ovp);
8104 tvp = ovp;
8105 if (IS_SHADOW(ovp, trp))
8106 tvp = RTOV4(trp);
8107 vnevent_rename_src(tvp, odvp, onm, ct);
8108 }
8109
8110 if (nvp) {
8111 VN_RELE(nvp);
8112 }
8113 VN_RELE(ovp);
8114
8115 nfs_rw_exit(&odrp->r_rwlock);
8116 nfs_rw_exit(&ndrp->r_rwlock);
8117
8118 return (error);
8119 }
8120
8121 /*
8122 * When the parent directory has changed, sv_dfh must be updated
8123 */
8124 static void
update_parentdir_sfh(vnode_t * vp,vnode_t * ndvp)8125 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8126 {
8127 svnode_t *sv = VTOSV(vp);
8128 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8129 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
8130
8131 sfh4_hold(new_dfh);
8132 sv->sv_dfh = new_dfh;
8133 sfh4_rele(&old_dfh);
8134 }
8135
8136 /*
8137 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8138 * when it is known that the filehandle is persistent through rename.
8139 *
8140 * Rename requires that the current fh be the target directory and the
8141 * saved fh be the source directory. After the operation, the current fh
8142 * is unchanged.
8143 * The compound op structure for persistent fh rename is:
8144 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8145 * Rather than bother with the directory postop args, we'll simply
8146 * update that a change occurred in the cache, so no post-op getattrs.
8147 */
8148 static int
nfs4rename_persistent_fh(vnode_t * odvp,char * onm,vnode_t * renvp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8149 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8150 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8151 {
8152 COMPOUND4args_clnt args;
8153 COMPOUND4res_clnt res, *resp = NULL;
8154 nfs_argop4 *argop;
8155 nfs_resop4 *resop;
8156 int doqueue, argoplist_size;
8157 mntinfo4_t *mi;
8158 rnode4_t *odrp = VTOR4(odvp);
8159 rnode4_t *ndrp = VTOR4(ndvp);
8160 RENAME4res *rn_res;
8161 bool_t needrecov;
8162 nfs4_recov_state_t recov_state;
8163 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8164 dirattr_info_t dinfo, *dinfop;
8165
8166 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8167
8168 recov_state.rs_flags = 0;
8169 recov_state.rs_num_retry_despite_err = 0;
8170
8171 /*
8172 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8173 *
8174 * If source/target are different dirs, then append putfh(src); getattr
8175 */
8176 args.array_len = (odvp == ndvp) ? 5 : 7;
8177 argoplist_size = args.array_len * sizeof (nfs_argop4);
8178 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
8179
8180 recov_retry:
8181 *statp = NFS4_OK;
8182
8183 /* No need to Lookup the file, persistent fh */
8184 args.ctag = TAG_RENAME;
8185
8186 mi = VTOMI4(odvp);
8187 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8188 if (e.error) {
8189 kmem_free(argop, argoplist_size);
8190 return (e.error);
8191 }
8192
8193 /* 0: putfh source directory */
8194 argop[0].argop = OP_CPUTFH;
8195 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8196
8197 /* 1: Save source fh to free up current for target */
8198 argop[1].argop = OP_SAVEFH;
8199
8200 /* 2: putfh targetdir */
8201 argop[2].argop = OP_CPUTFH;
8202 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8203
8204 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8205 argop[3].argop = OP_CRENAME;
8206 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8207 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
8208
8209 /* 4: getattr (targetdir) */
8210 argop[4].argop = OP_GETATTR;
8211 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8212 argop[4].nfs_argop4_u.opgetattr.mi = mi;
8213
8214 if (ndvp != odvp) {
8215
8216 /* 5: putfh (sourcedir) */
8217 argop[5].argop = OP_CPUTFH;
8218 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8219
8220 /* 6: getattr (sourcedir) */
8221 argop[6].argop = OP_GETATTR;
8222 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8223 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8224 }
8225
8226 dnlc_remove(odvp, onm);
8227 dnlc_remove(ndvp, nnm);
8228
8229 doqueue = 1;
8230 dinfo.di_time_call = gethrtime();
8231 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8232
8233 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8234 if (e.error) {
8235 PURGE_ATTRCACHE4(odvp);
8236 PURGE_ATTRCACHE4(ndvp);
8237 } else {
8238 *statp = res.status;
8239 }
8240
8241 if (needrecov) {
8242 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8243 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8244 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8245 if (!e.error)
8246 (void) xdr_free(xdr_COMPOUND4res_clnt,
8247 (caddr_t)&res);
8248 goto recov_retry;
8249 }
8250 }
8251
8252 if (!e.error) {
8253 resp = &res;
8254 /*
8255 * as long as OP_RENAME
8256 */
8257 if (res.status != NFS4_OK && res.array_len <= 4) {
8258 e.error = geterrno4(res.status);
8259 PURGE_ATTRCACHE4(odvp);
8260 PURGE_ATTRCACHE4(ndvp);
8261 /*
8262 * System V defines rename to return EEXIST, not
8263 * ENOTEMPTY if the target directory is not empty.
8264 * Over the wire, the error is NFSERR_ENOTEMPTY
8265 * which geterrno4 maps to ENOTEMPTY.
8266 */
8267 if (e.error == ENOTEMPTY)
8268 e.error = EEXIST;
8269 } else {
8270
8271 resop = &res.array[3]; /* rename res */
8272 rn_res = &resop->nfs_resop4_u.oprename;
8273
8274 if (res.status == NFS4_OK) {
8275 /*
8276 * Update target attribute, readdir and dnlc
8277 * caches.
8278 */
8279 dinfo.di_garp =
8280 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8281 dinfo.di_cred = cr;
8282 dinfop = &dinfo;
8283 } else
8284 dinfop = NULL;
8285
8286 nfs4_update_dircaches(&rn_res->target_cinfo,
8287 ndvp, NULL, NULL, dinfop);
8288
8289 /*
8290 * Update source attribute, readdir and dnlc caches
8291 *
8292 */
8293 if (ndvp != odvp) {
8294 update_parentdir_sfh(renvp, ndvp);
8295
8296 if (dinfop)
8297 dinfo.di_garp =
8298 &(res.array[6].nfs_resop4_u.
8299 opgetattr.ga_res);
8300
8301 nfs4_update_dircaches(&rn_res->source_cinfo,
8302 odvp, NULL, NULL, dinfop);
8303 }
8304
8305 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8306 nnm);
8307 }
8308 }
8309
8310 if (resp)
8311 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8312 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8313 kmem_free(argop, argoplist_size);
8314
8315 return (e.error);
8316 }
8317
8318 /*
8319 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8320 * it is possible for the filehandle to change due to the rename.
8321 *
8322 * The compound req in this case includes a post-rename lookup and getattr
8323 * to ensure that we have the correct fh and attributes for the object.
8324 *
8325 * Rename requires that the current fh be the target directory and the
8326 * saved fh be the source directory. After the operation, the current fh
8327 * is unchanged.
8328 *
8329 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8330 * update the filehandle for the renamed object. We also get the old
8331 * filehandle for historical reasons; this should be taken out sometime.
8332 * This results in a rather cumbersome compound...
8333 *
8334 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8335 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8336 *
8337 */
8338 static int
nfs4rename_volatile_fh(vnode_t * odvp,char * onm,vnode_t * ovp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8339 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8340 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8341 {
8342 COMPOUND4args_clnt args;
8343 COMPOUND4res_clnt res, *resp = NULL;
8344 int argoplist_size;
8345 nfs_argop4 *argop;
8346 nfs_resop4 *resop;
8347 int doqueue;
8348 mntinfo4_t *mi;
8349 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8350 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8351 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8352 RENAME4res *rn_res;
8353 GETFH4res *ngf_res;
8354 bool_t needrecov;
8355 nfs4_recov_state_t recov_state;
8356 hrtime_t t;
8357 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8358 dirattr_info_t dinfo, *dinfop = &dinfo;
8359
8360 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8361
8362 recov_state.rs_flags = 0;
8363 recov_state.rs_num_retry_despite_err = 0;
8364
8365 recov_retry:
8366 *statp = NFS4_OK;
8367
8368 /*
8369 * There is a window between the RPC and updating the path and
8370 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8371 * code, so that it doesn't try to use the old path during that
8372 * window.
8373 */
8374 mutex_enter(&orp->r_statelock);
8375 while (orp->r_flags & R4RECEXPFH) {
8376 klwp_t *lwp = ttolwp(curthread);
8377
8378 if (lwp != NULL)
8379 lwp->lwp_nostop++;
8380 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8381 mutex_exit(&orp->r_statelock);
8382 if (lwp != NULL)
8383 lwp->lwp_nostop--;
8384 return (EINTR);
8385 }
8386 if (lwp != NULL)
8387 lwp->lwp_nostop--;
8388 }
8389 orp->r_flags |= R4RECEXPFH;
8390 mutex_exit(&orp->r_statelock);
8391
8392 mi = VTOMI4(odvp);
8393
8394 args.ctag = TAG_RENAME_VFH;
8395 args.array_len = (odvp == ndvp) ? 10 : 12;
8396 argoplist_size = args.array_len * sizeof (nfs_argop4);
8397 argop = kmem_alloc(argoplist_size, KM_SLEEP);
8398
8399 /*
8400 * Rename ops:
8401 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8402 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8403 * LOOKUP(trgt), GETFH(new), GETATTR,
8404 *
8405 * if (odvp != ndvp)
8406 * add putfh(sourcedir), getattr(sourcedir) }
8407 */
8408 args.array = argop;
8409
8410 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8411 &recov_state, NULL);
8412 if (e.error) {
8413 kmem_free(argop, argoplist_size);
8414 mutex_enter(&orp->r_statelock);
8415 orp->r_flags &= ~R4RECEXPFH;
8416 cv_broadcast(&orp->r_cv);
8417 mutex_exit(&orp->r_statelock);
8418 return (e.error);
8419 }
8420
8421 /* 0: putfh source directory */
8422 argop[0].argop = OP_CPUTFH;
8423 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8424
8425 /* 1: Save source fh to free up current for target */
8426 argop[1].argop = OP_SAVEFH;
8427
8428 /* 2: Lookup pre-rename fh of renamed object */
8429 argop[2].argop = OP_CLOOKUP;
8430 argop[2].nfs_argop4_u.opclookup.cname = onm;
8431
8432 /* 3: getfh fh of renamed object (before rename) */
8433 argop[3].argop = OP_GETFH;
8434
8435 /* 4: putfh targetdir */
8436 argop[4].argop = OP_CPUTFH;
8437 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8438
8439 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8440 argop[5].argop = OP_CRENAME;
8441 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8442 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
8443
8444 /* 6: getattr of target dir (post op attrs) */
8445 argop[6].argop = OP_GETATTR;
8446 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8447 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8448
8449 /* 7: Lookup post-rename fh of renamed object */
8450 argop[7].argop = OP_CLOOKUP;
8451 argop[7].nfs_argop4_u.opclookup.cname = nnm;
8452
8453 /* 8: getfh fh of renamed object (after rename) */
8454 argop[8].argop = OP_GETFH;
8455
8456 /* 9: getattr of renamed object */
8457 argop[9].argop = OP_GETATTR;
8458 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8459 argop[9].nfs_argop4_u.opgetattr.mi = mi;
8460
8461 /*
8462 * If source/target dirs are different, then get new post-op
8463 * attrs for source dir also.
8464 */
8465 if (ndvp != odvp) {
8466 /* 10: putfh (sourcedir) */
8467 argop[10].argop = OP_CPUTFH;
8468 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8469
8470 /* 11: getattr (sourcedir) */
8471 argop[11].argop = OP_GETATTR;
8472 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8473 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8474 }
8475
8476 dnlc_remove(odvp, onm);
8477 dnlc_remove(ndvp, nnm);
8478
8479 doqueue = 1;
8480 t = gethrtime();
8481 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8482
8483 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8484 if (e.error) {
8485 PURGE_ATTRCACHE4(odvp);
8486 PURGE_ATTRCACHE4(ndvp);
8487 if (!needrecov) {
8488 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8489 &recov_state, needrecov);
8490 goto out;
8491 }
8492 } else {
8493 *statp = res.status;
8494 }
8495
8496 if (needrecov) {
8497 bool_t abort;
8498
8499 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8500 OP_RENAME, NULL, NULL, NULL);
8501 if (abort == FALSE) {
8502 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8503 &recov_state, needrecov);
8504 kmem_free(argop, argoplist_size);
8505 if (!e.error)
8506 (void) xdr_free(xdr_COMPOUND4res_clnt,
8507 (caddr_t)&res);
8508 mutex_enter(&orp->r_statelock);
8509 orp->r_flags &= ~R4RECEXPFH;
8510 cv_broadcast(&orp->r_cv);
8511 mutex_exit(&orp->r_statelock);
8512 goto recov_retry;
8513 } else {
8514 if (e.error != 0) {
8515 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8516 &recov_state, needrecov);
8517 goto out;
8518 }
8519 /* fall through for res.status case */
8520 }
8521 }
8522
8523 resp = &res;
8524 /*
8525 * If OP_RENAME (or any prev op) failed, then return an error.
8526 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8527 */
8528 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8529 /*
8530 * Error in an op other than last Getattr
8531 */
8532 e.error = geterrno4(res.status);
8533 PURGE_ATTRCACHE4(odvp);
8534 PURGE_ATTRCACHE4(ndvp);
8535 /*
8536 * System V defines rename to return EEXIST, not
8537 * ENOTEMPTY if the target directory is not empty.
8538 * Over the wire, the error is NFSERR_ENOTEMPTY
8539 * which geterrno4 maps to ENOTEMPTY.
8540 */
8541 if (e.error == ENOTEMPTY)
8542 e.error = EEXIST;
8543 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8544 needrecov);
8545 goto out;
8546 }
8547
8548 /* rename results */
8549 rn_res = &res.array[5].nfs_resop4_u.oprename;
8550
8551 if (res.status == NFS4_OK) {
8552 /* Update target attribute, readdir and dnlc caches */
8553 dinfo.di_garp =
8554 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8555 dinfo.di_cred = cr;
8556 dinfo.di_time_call = t;
8557 } else
8558 dinfop = NULL;
8559
8560 /* Update source cache attribute, readdir and dnlc caches */
8561 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
8562
8563 /* Update source cache attribute, readdir and dnlc caches */
8564 if (ndvp != odvp) {
8565 update_parentdir_sfh(ovp, ndvp);
8566
8567 /*
8568 * If dinfop is non-NULL, then compound succeded, so
8569 * set di_garp to attrs for source dir. dinfop is only
8570 * set to NULL when compound fails.
8571 */
8572 if (dinfop)
8573 dinfo.di_garp =
8574 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8575 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8576 dinfop);
8577 }
8578
8579 /*
8580 * Update the rnode with the new component name and args,
8581 * and if the file handle changed, also update it with the new fh.
8582 * This is only necessary if the target object has an rnode
8583 * entry and there is no need to create one for it.
8584 */
8585 resop = &res.array[8]; /* getfh new res */
8586 ngf_res = &resop->nfs_resop4_u.opgetfh;
8587
8588 /*
8589 * Update the path and filehandle for the renamed object.
8590 */
8591 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
8592
8593 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
8594
8595 if (res.status == NFS4_OK) {
8596 resop++; /* getattr res */
8597 e.error = nfs4_update_attrcache(res.status,
8598 &resop->nfs_resop4_u.opgetattr.ga_res,
8599 t, ovp, cr);
8600 }
8601
8602 out:
8603 kmem_free(argop, argoplist_size);
8604 if (resp)
8605 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8606 mutex_enter(&orp->r_statelock);
8607 orp->r_flags &= ~R4RECEXPFH;
8608 cv_broadcast(&orp->r_cv);
8609 mutex_exit(&orp->r_statelock);
8610
8611 return (e.error);
8612 }
8613
8614 /* ARGSUSED */
8615 static int
nfs4_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)8616 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8617 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8618 {
8619 int error;
8620 vnode_t *vp;
8621
8622 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8623 return (EPERM);
8624 /*
8625 * As ".." has special meaning and rather than send a mkdir
8626 * over the wire to just let the server freak out, we just
8627 * short circuit it here and return EEXIST
8628 */
8629 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8630 return (EEXIST);
8631
8632 /*
8633 * Decision to get the right gid and setgid bit of the
8634 * new directory is now made in call_nfs4_create_req.
8635 */
8636 va->va_mask |= AT_MODE;
8637 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8638 if (error)
8639 return (error);
8640
8641 *vpp = vp;
8642 return (0);
8643 }
8644
8645
8646 /*
8647 * rmdir is using the same remove v4 op as does remove.
8648 * Remove requires that the current fh be the target directory.
8649 * After the operation, the current fh is unchanged.
8650 * The compound op structure is:
8651 * PUTFH(targetdir), REMOVE
8652 */
8653 /*ARGSUSED4*/
8654 static int
nfs4_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)8655 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8656 caller_context_t *ct, int flags)
8657 {
8658 int need_end_op = FALSE;
8659 COMPOUND4args_clnt args;
8660 COMPOUND4res_clnt res, *resp = NULL;
8661 REMOVE4res *rm_res;
8662 nfs_argop4 argop[3];
8663 nfs_resop4 *resop;
8664 vnode_t *vp;
8665 int doqueue;
8666 mntinfo4_t *mi;
8667 rnode4_t *drp;
8668 bool_t needrecov = FALSE;
8669 nfs4_recov_state_t recov_state;
8670 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8671 dirattr_info_t dinfo, *dinfop;
8672
8673 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8674 return (EPERM);
8675 /*
8676 * As ".." has special meaning and rather than send a rmdir
8677 * over the wire to just let the server freak out, we just
8678 * short circuit it here and return EEXIST
8679 */
8680 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8681 return (EEXIST);
8682
8683 drp = VTOR4(dvp);
8684 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8685 return (EINTR);
8686
8687 /*
8688 * Attempt to prevent a rmdir(".") from succeeding.
8689 */
8690 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8691 if (e.error) {
8692 nfs_rw_exit(&drp->r_rwlock);
8693 return (e.error);
8694 }
8695 if (vp == cdir) {
8696 VN_RELE(vp);
8697 nfs_rw_exit(&drp->r_rwlock);
8698 return (EINVAL);
8699 }
8700
8701 /*
8702 * Since nfsv4 remove op works on both files and directories,
8703 * check that the removed object is indeed a directory.
8704 */
8705 if (vp->v_type != VDIR) {
8706 VN_RELE(vp);
8707 nfs_rw_exit(&drp->r_rwlock);
8708 return (ENOTDIR);
8709 }
8710
8711 /*
8712 * First just remove the entry from the name cache, as it
8713 * is most likely an entry for this vp.
8714 */
8715 dnlc_remove(dvp, nm);
8716
8717 /*
8718 * If there vnode reference count is greater than one, then
8719 * there may be additional references in the DNLC which will
8720 * need to be purged. First, trying removing the entry for
8721 * the parent directory and see if that removes the additional
8722 * reference(s). If that doesn't do it, then use dnlc_purge_vp
8723 * to completely remove any references to the directory which
8724 * might still exist in the DNLC.
8725 */
8726 if (vp->v_count > 1) {
8727 dnlc_remove(vp, "..");
8728 if (vp->v_count > 1)
8729 dnlc_purge_vp(vp);
8730 }
8731
8732 mi = VTOMI4(dvp);
8733 recov_state.rs_flags = 0;
8734 recov_state.rs_num_retry_despite_err = 0;
8735
8736 recov_retry:
8737 args.ctag = TAG_RMDIR;
8738
8739 /*
8740 * Rmdir ops: putfh dir; remove
8741 */
8742 args.array_len = 3;
8743 args.array = argop;
8744
8745 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8746 if (e.error) {
8747 nfs_rw_exit(&drp->r_rwlock);
8748 return (e.error);
8749 }
8750 need_end_op = TRUE;
8751
8752 /* putfh directory */
8753 argop[0].argop = OP_CPUTFH;
8754 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
8755
8756 /* remove */
8757 argop[1].argop = OP_CREMOVE;
8758 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
8759
8760 /* getattr (postop attrs for dir that contained removed dir) */
8761 argop[2].argop = OP_GETATTR;
8762 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8763 argop[2].nfs_argop4_u.opgetattr.mi = mi;
8764
8765 dinfo.di_time_call = gethrtime();
8766 doqueue = 1;
8767 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8768
8769 PURGE_ATTRCACHE4(vp);
8770
8771 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8772 if (e.error) {
8773 PURGE_ATTRCACHE4(dvp);
8774 }
8775
8776 if (needrecov) {
8777 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8778 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8779 if (!e.error)
8780 (void) xdr_free(xdr_COMPOUND4res_clnt,
8781 (caddr_t)&res);
8782
8783 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8784 needrecov);
8785 need_end_op = FALSE;
8786 goto recov_retry;
8787 }
8788 }
8789
8790 if (!e.error) {
8791 resp = &res;
8792
8793 /*
8794 * Only return error if first 2 ops (OP_REMOVE or earlier)
8795 * failed.
8796 */
8797 if (res.status != NFS4_OK && res.array_len <= 2) {
8798 e.error = geterrno4(res.status);
8799 PURGE_ATTRCACHE4(dvp);
8800 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8801 &recov_state, needrecov);
8802 need_end_op = FALSE;
8803 nfs4_purge_stale_fh(e.error, dvp, cr);
8804 /*
8805 * System V defines rmdir to return EEXIST, not
8806 * ENOTEMPTY if the directory is not empty. Over
8807 * the wire, the error is NFSERR_ENOTEMPTY which
8808 * geterrno4 maps to ENOTEMPTY.
8809 */
8810 if (e.error == ENOTEMPTY)
8811 e.error = EEXIST;
8812 } else {
8813 resop = &res.array[1]; /* remove res */
8814 rm_res = &resop->nfs_resop4_u.opremove;
8815
8816 if (res.status == NFS4_OK) {
8817 resop = &res.array[2]; /* dir attrs */
8818 dinfo.di_garp =
8819 &resop->nfs_resop4_u.opgetattr.ga_res;
8820 dinfo.di_cred = cr;
8821 dinfop = &dinfo;
8822 } else
8823 dinfop = NULL;
8824
8825 /* Update dir attribute, readdir and dnlc caches */
8826 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8827 dinfop);
8828
8829 /* destroy rddir cache for dir that was removed */
8830 if (VTOR4(vp)->r_dir != NULL)
8831 nfs4_purge_rddir_cache(vp);
8832 }
8833 }
8834
8835 if (need_end_op)
8836 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
8837
8838 nfs_rw_exit(&drp->r_rwlock);
8839
8840 if (resp)
8841 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8842
8843 if (e.error == 0) {
8844 vnode_t *tvp;
8845 rnode4_t *trp;
8846 trp = VTOR4(vp);
8847 tvp = vp;
8848 if (IS_SHADOW(vp, trp))
8849 tvp = RTOV4(trp);
8850 vnevent_rmdir(tvp, dvp, nm, ct);
8851 }
8852
8853 VN_RELE(vp);
8854
8855 return (e.error);
8856 }
8857
8858 /* ARGSUSED */
8859 static int
nfs4_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)8860 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8861 caller_context_t *ct, int flags)
8862 {
8863 int error;
8864 vnode_t *vp;
8865 rnode4_t *rp;
8866 char *contents;
8867 mntinfo4_t *mi = VTOMI4(dvp);
8868
8869 if (nfs_zone() != mi->mi_zone)
8870 return (EPERM);
8871 if (!(mi->mi_flags & MI4_SYMLINK))
8872 return (EOPNOTSUPP);
8873
8874 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8875 if (error)
8876 return (error);
8877
8878 ASSERT(nfs4_consistent_type(vp));
8879 rp = VTOR4(vp);
8880 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
8881
8882 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8883
8884 if (contents != NULL) {
8885 mutex_enter(&rp->r_statelock);
8886 if (rp->r_symlink.contents == NULL) {
8887 rp->r_symlink.len = strlen(tnm);
8888 bcopy(tnm, contents, rp->r_symlink.len);
8889 rp->r_symlink.contents = contents;
8890 rp->r_symlink.size = MAXPATHLEN;
8891 mutex_exit(&rp->r_statelock);
8892 } else {
8893 mutex_exit(&rp->r_statelock);
8894 kmem_free((void *)contents, MAXPATHLEN);
8895 }
8896 }
8897 }
8898 VN_RELE(vp);
8899
8900 return (error);
8901 }
8902
8903
8904 /*
8905 * Read directory entries.
8906 * There are some weird things to look out for here. The uio_loffset
8907 * field is either 0 or it is the offset returned from a previous
8908 * readdir. It is an opaque value used by the server to find the
8909 * correct directory block to read. The count field is the number
8910 * of blocks to read on the server. This is advisory only, the server
8911 * may return only one block's worth of entries. Entries may be compressed
8912 * on the server.
8913 */
8914 /* ARGSUSED */
8915 static int
nfs4_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)8916 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8917 caller_context_t *ct, int flags)
8918 {
8919 int error;
8920 uint_t count;
8921 rnode4_t *rp;
8922 rddir4_cache *rdc;
8923 rddir4_cache *rrdc;
8924
8925 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8926 return (EIO);
8927 rp = VTOR4(vp);
8928
8929 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
8930
8931 /*
8932 * Make sure that the directory cache is valid.
8933 */
8934 if (rp->r_dir != NULL) {
8935 if (nfs_disable_rddir_cache != 0) {
8936 /*
8937 * Setting nfs_disable_rddir_cache in /etc/system
8938 * allows interoperability with servers that do not
8939 * properly update the attributes of directories.
8940 * Any cached information gets purged before an
8941 * access is made to it.
8942 */
8943 nfs4_purge_rddir_cache(vp);
8944 }
8945
8946 error = nfs4_validate_caches(vp, cr);
8947 if (error)
8948 return (error);
8949 }
8950
8951 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
8952
8953 /*
8954 * Short circuit last readdir which always returns 0 bytes.
8955 * This can be done after the directory has been read through
8956 * completely at least once. This will set r_direof which
8957 * can be used to find the value of the last cookie.
8958 */
8959 mutex_enter(&rp->r_statelock);
8960 if (rp->r_direof != NULL &&
8961 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
8962 mutex_exit(&rp->r_statelock);
8963 #ifdef DEBUG
8964 nfs4_readdir_cache_shorts++;
8965 #endif
8966 if (eofp)
8967 *eofp = 1;
8968 return (0);
8969 }
8970
8971 /*
8972 * Look for a cache entry. Cache entries are identified
8973 * by the NFS cookie value and the byte count requested.
8974 */
8975 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
8976
8977 /*
8978 * If rdc is NULL then the lookup resulted in an unrecoverable error.
8979 */
8980 if (rdc == NULL) {
8981 mutex_exit(&rp->r_statelock);
8982 return (EINTR);
8983 }
8984
8985 /*
8986 * Check to see if we need to fill this entry in.
8987 */
8988 if (rdc->flags & RDDIRREQ) {
8989 rdc->flags &= ~RDDIRREQ;
8990 rdc->flags |= RDDIR;
8991 mutex_exit(&rp->r_statelock);
8992
8993 /*
8994 * Do the readdir.
8995 */
8996 nfs4readdir(vp, rdc, cr);
8997
8998 /*
8999 * Reacquire the lock, so that we can continue
9000 */
9001 mutex_enter(&rp->r_statelock);
9002 /*
9003 * The entry is now complete
9004 */
9005 rdc->flags &= ~RDDIR;
9006 }
9007
9008 ASSERT(!(rdc->flags & RDDIR));
9009
9010 /*
9011 * If an error occurred while attempting
9012 * to fill the cache entry, mark the entry invalid and
9013 * just return the error.
9014 */
9015 if (rdc->error) {
9016 error = rdc->error;
9017 rdc->flags |= RDDIRREQ;
9018 rddir4_cache_rele(rp, rdc);
9019 mutex_exit(&rp->r_statelock);
9020 return (error);
9021 }
9022
9023 /*
9024 * The cache entry is complete and good,
9025 * copyout the dirent structs to the calling
9026 * thread.
9027 */
9028 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
9029
9030 /*
9031 * If no error occurred during the copyout,
9032 * update the offset in the uio struct to
9033 * contain the value of the next NFS 4 cookie
9034 * and set the eof value appropriately.
9035 */
9036 if (!error) {
9037 uiop->uio_loffset = rdc->nfs4_ncookie;
9038 if (eofp)
9039 *eofp = rdc->eof;
9040 }
9041
9042 /*
9043 * Decide whether to do readahead. Don't if we
9044 * have already read to the end of directory.
9045 */
9046 if (rdc->eof) {
9047 /*
9048 * Make the entry the direof only if it is cached
9049 */
9050 if (rdc->flags & RDDIRCACHED)
9051 rp->r_direof = rdc;
9052 rddir4_cache_rele(rp, rdc);
9053 mutex_exit(&rp->r_statelock);
9054 return (error);
9055 }
9056
9057 /* Determine if a readdir readahead should be done */
9058 if (!(rp->r_flags & R4LOOKUP)) {
9059 rddir4_cache_rele(rp, rdc);
9060 mutex_exit(&rp->r_statelock);
9061 return (error);
9062 }
9063
9064 /*
9065 * Now look for a readahead entry.
9066 *
9067 * Check to see whether we found an entry for the readahead.
9068 * If so, we don't need to do anything further, so free the new
9069 * entry if one was allocated. Otherwise, allocate a new entry, add
9070 * it to the cache, and then initiate an asynchronous readdir
9071 * operation to fill it.
9072 */
9073 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
9074
9075 /*
9076 * A readdir cache entry could not be obtained for the readahead. In
9077 * this case we skip the readahead and return.
9078 */
9079 if (rrdc == NULL) {
9080 rddir4_cache_rele(rp, rdc);
9081 mutex_exit(&rp->r_statelock);
9082 return (error);
9083 }
9084
9085 /*
9086 * Check to see if we need to fill this entry in.
9087 */
9088 if (rrdc->flags & RDDIRREQ) {
9089 rrdc->flags &= ~RDDIRREQ;
9090 rrdc->flags |= RDDIR;
9091 rddir4_cache_rele(rp, rdc);
9092 mutex_exit(&rp->r_statelock);
9093 #ifdef DEBUG
9094 nfs4_readdir_readahead++;
9095 #endif
9096 /*
9097 * Do the readdir.
9098 */
9099 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9100 return (error);
9101 }
9102
9103 rddir4_cache_rele(rp, rrdc);
9104 rddir4_cache_rele(rp, rdc);
9105 mutex_exit(&rp->r_statelock);
9106 return (error);
9107 }
9108
9109 static int
do_nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9110 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9111 {
9112 int error;
9113 rnode4_t *rp;
9114
9115 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
9116
9117 rp = VTOR4(vp);
9118
9119 /*
9120 * Obtain the readdir results for the caller.
9121 */
9122 nfs4readdir(vp, rdc, cr);
9123
9124 mutex_enter(&rp->r_statelock);
9125 /*
9126 * The entry is now complete
9127 */
9128 rdc->flags &= ~RDDIR;
9129
9130 error = rdc->error;
9131 if (error)
9132 rdc->flags |= RDDIRREQ;
9133 rddir4_cache_rele(rp, rdc);
9134 mutex_exit(&rp->r_statelock);
9135
9136 return (error);
9137 }
9138
9139 /*
9140 * Read directory entries.
9141 * There are some weird things to look out for here. The uio_loffset
9142 * field is either 0 or it is the offset returned from a previous
9143 * readdir. It is an opaque value used by the server to find the
9144 * correct directory block to read. The count field is the number
9145 * of blocks to read on the server. This is advisory only, the server
9146 * may return only one block's worth of entries. Entries may be compressed
9147 * on the server.
9148 *
9149 * Generates the following compound request:
9150 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9151 * must include a Lookupp as well. In this case, send:
9152 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9153 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9154 *
9155 * Get complete attributes and filehandles for entries if this is the
9156 * first read of the directory. Otherwise, just get fileid's.
9157 */
9158 static void
nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9159 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9160 {
9161 COMPOUND4args_clnt args;
9162 COMPOUND4res_clnt res;
9163 READDIR4args *rargs;
9164 READDIR4res_clnt *rd_res;
9165 bitmap4 rd_bitsval;
9166 nfs_argop4 argop[5];
9167 nfs_resop4 *resop;
9168 rnode4_t *rp = VTOR4(vp);
9169 mntinfo4_t *mi = VTOMI4(vp);
9170 int doqueue;
9171 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
9172 vnode_t *dvp;
9173 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9174 int num_ops, res_opcnt;
9175 bool_t needrecov = FALSE;
9176 nfs4_recov_state_t recov_state;
9177 hrtime_t t;
9178 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
9179
9180 ASSERT(nfs_zone() == mi->mi_zone);
9181 ASSERT(rdc->flags & RDDIR);
9182 ASSERT(rdc->entries == NULL);
9183
9184 /*
9185 * If rp were a stub, it should have triggered and caused
9186 * a mount for us to get this far.
9187 */
9188 ASSERT(!RP_ISSTUB(rp));
9189
9190 num_ops = 2;
9191 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9192 /*
9193 * Since nfsv4 readdir may not return entries for "." and "..",
9194 * the client must recreate them:
9195 * To find the correct nodeid, do the following:
9196 * For current node, get nodeid from dnlc.
9197 * - if current node is rootvp, set pnodeid to nodeid.
9198 * - else if parent is in the dnlc, get its nodeid from there.
9199 * - else add LOOKUPP+GETATTR to compound.
9200 */
9201 nodeid = rp->r_attr.va_nodeid;
9202 if (vp->v_flag & VROOT) {
9203 pnodeid = nodeid; /* root of mount point */
9204 } else {
9205 dvp = dnlc_lookup(vp, "..");
9206 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9207 /* parent in dnlc cache - no need for otw */
9208 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9209 } else {
9210 /*
9211 * parent not in dnlc cache,
9212 * do lookupp to get its id
9213 */
9214 num_ops = 5;
9215 pnodeid = 0; /* set later by getattr parent */
9216 }
9217 if (dvp)
9218 VN_RELE(dvp);
9219 }
9220 }
9221 recov_state.rs_flags = 0;
9222 recov_state.rs_num_retry_despite_err = 0;
9223
9224 /* Save the original mount point security flavor */
9225 (void) save_mnt_secinfo(mi->mi_curr_serv);
9226
9227 recov_retry:
9228 args.ctag = TAG_READDIR;
9229
9230 args.array = argop;
9231 args.array_len = num_ops;
9232
9233 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9234 &recov_state, NULL)) {
9235 /*
9236 * If readdir a node that is a stub for a crossed mount point,
9237 * keep the original secinfo flavor for the current file
9238 * system, not the crossed one.
9239 */
9240 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9241 rdc->error = e.error;
9242 return;
9243 }
9244
9245 /*
9246 * Determine which attrs to request for dirents. This code
9247 * must be protected by nfs4_start/end_fop because of r_server
9248 * (which will change during failover recovery).
9249 *
9250 */
9251 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9252 /*
9253 * Get all vattr attrs plus filehandle and rdattr_error
9254 */
9255 rd_bitsval = NFS4_VATTR_MASK |
9256 FATTR4_RDATTR_ERROR_MASK |
9257 FATTR4_FILEHANDLE_MASK;
9258
9259 if (rp->r_flags & R4READDIRWATTR) {
9260 mutex_enter(&rp->r_statelock);
9261 rp->r_flags &= ~R4READDIRWATTR;
9262 mutex_exit(&rp->r_statelock);
9263 }
9264 } else {
9265 servinfo4_t *svp = rp->r_server;
9266
9267 /*
9268 * Already read directory. Use readdir with
9269 * no attrs (except for mounted_on_fileid) for updates.
9270 */
9271 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
9272
9273 /*
9274 * request mounted on fileid if supported, else request
9275 * fileid. maybe we should verify that fileid is supported
9276 * and request something else if not.
9277 */
9278 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9279 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9280 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9281 nfs_rw_exit(&svp->sv_lock);
9282 }
9283
9284 /* putfh directory fh */
9285 argop[0].argop = OP_CPUTFH;
9286 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
9287
9288 argop[1].argop = OP_READDIR;
9289 rargs = &argop[1].nfs_argop4_u.opreaddir;
9290 /*
9291 * 1 and 2 are reserved for client "." and ".." entry offset.
9292 * cookie 0 should be used over-the-wire to start reading at
9293 * the beginning of the directory excluding "." and "..".
9294 */
9295 if (rdc->nfs4_cookie == 0 ||
9296 rdc->nfs4_cookie == 1 ||
9297 rdc->nfs4_cookie == 2) {
9298 rargs->cookie = (nfs_cookie4)0;
9299 rargs->cookieverf = 0;
9300 } else {
9301 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9302 mutex_enter(&rp->r_statelock);
9303 rargs->cookieverf = rp->r_cookieverf4;
9304 mutex_exit(&rp->r_statelock);
9305 }
9306 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9307 rargs->maxcount = mi->mi_tsize;
9308 rargs->attr_request = rd_bitsval;
9309 rargs->rdc = rdc;
9310 rargs->dvp = vp;
9311 rargs->mi = mi;
9312 rargs->cr = cr;
9313
9314
9315 /*
9316 * If count < than the minimum required, we return no entries
9317 * and fail with EINVAL
9318 */
9319 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9320 rdc->error = EINVAL;
9321 goto out;
9322 }
9323
9324 if (args.array_len == 5) {
9325 /*
9326 * Add lookupp and getattr for parent nodeid.
9327 */
9328 argop[2].argop = OP_LOOKUPP;
9329
9330 argop[3].argop = OP_GETFH;
9331
9332 /* getattr parent */
9333 argop[4].argop = OP_GETATTR;
9334 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9335 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9336 }
9337
9338 doqueue = 1;
9339
9340 if (mi->mi_io_kstats) {
9341 mutex_enter(&mi->mi_lock);
9342 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9343 mutex_exit(&mi->mi_lock);
9344 }
9345
9346 /* capture the time of this call */
9347 rargs->t = t = gethrtime();
9348
9349 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
9350
9351 if (mi->mi_io_kstats) {
9352 mutex_enter(&mi->mi_lock);
9353 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9354 mutex_exit(&mi->mi_lock);
9355 }
9356
9357 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
9358
9359 /*
9360 * If RPC error occurred and it isn't an error that
9361 * triggers recovery, then go ahead and fail now.
9362 */
9363 if (e.error != 0 && !needrecov) {
9364 rdc->error = e.error;
9365 goto out;
9366 }
9367
9368 if (needrecov) {
9369 bool_t abort;
9370
9371 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9372 "nfs4readdir: initiating recovery.\n"));
9373
9374 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9375 NULL, OP_READDIR, NULL, NULL, NULL);
9376 if (abort == FALSE) {
9377 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9378 &recov_state, needrecov);
9379 if (!e.error)
9380 (void) xdr_free(xdr_COMPOUND4res_clnt,
9381 (caddr_t)&res);
9382 if (rdc->entries != NULL) {
9383 kmem_free(rdc->entries, rdc->entlen);
9384 rdc->entries = NULL;
9385 }
9386 goto recov_retry;
9387 }
9388
9389 if (e.error != 0) {
9390 rdc->error = e.error;
9391 goto out;
9392 }
9393
9394 /* fall through for res.status case */
9395 }
9396
9397 res_opcnt = res.array_len;
9398
9399 /*
9400 * If compound failed first 2 ops (PUTFH+READDIR), then return
9401 * failure here. Subsequent ops are for filling out dot-dot
9402 * dirent, and if they fail, we still want to give the caller
9403 * the dirents returned by (the successful) READDIR op, so we need
9404 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9405 *
9406 * One example where PUTFH+READDIR ops would succeed but
9407 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9408 * but lacks x. In this case, a POSIX server's VOP_READDIR
9409 * would succeed; however, VOP_LOOKUP(..) would fail since no
9410 * x perm. We need to come up with a non-vendor-specific way
9411 * for a POSIX server to return d_ino from dotdot's dirent if
9412 * client only requests mounted_on_fileid, and just say the
9413 * LOOKUPP succeeded and fill out the GETATTR. However, if
9414 * client requested any mandatory attrs, server would be required
9415 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
9416 * for dotdot.
9417 */
9418
9419 if (res.status) {
9420 if (res_opcnt <= 2) {
9421 e.error = geterrno4(res.status);
9422 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9423 &recov_state, needrecov);
9424 nfs4_purge_stale_fh(e.error, vp, cr);
9425 rdc->error = e.error;
9426 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9427 if (rdc->entries != NULL) {
9428 kmem_free(rdc->entries, rdc->entlen);
9429 rdc->entries = NULL;
9430 }
9431 /*
9432 * If readdir a node that is a stub for a
9433 * crossed mount point, keep the original
9434 * secinfo flavor for the current file system,
9435 * not the crossed one.
9436 */
9437 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9438 return;
9439 }
9440 }
9441
9442 resop = &res.array[1]; /* readdir res */
9443 rd_res = &resop->nfs_resop4_u.opreaddirclnt;
9444
9445 mutex_enter(&rp->r_statelock);
9446 rp->r_cookieverf4 = rd_res->cookieverf;
9447 mutex_exit(&rp->r_statelock);
9448
9449 /*
9450 * For "." and ".." entries
9451 * e.g.
9452 * seek(cookie=0) -> "." entry with d_off = 1
9453 * seek(cookie=1) -> ".." entry with d_off = 2
9454 */
9455 if (cookie == (nfs_cookie4) 0) {
9456 if (rd_res->dotp)
9457 rd_res->dotp->d_ino = nodeid;
9458 if (rd_res->dotdotp)
9459 rd_res->dotdotp->d_ino = pnodeid;
9460 }
9461 if (cookie == (nfs_cookie4) 1) {
9462 if (rd_res->dotdotp)
9463 rd_res->dotdotp->d_ino = pnodeid;
9464 }
9465
9466
9467 /* LOOKUPP+GETATTR attemped */
9468 if (args.array_len == 5 && rd_res->dotdotp) {
9469 if (res.status == NFS4_OK && res_opcnt == 5) {
9470 nfs_fh4 *fhp;
9471 nfs4_sharedfh_t *sfhp;
9472 vnode_t *pvp;
9473 nfs4_ga_res_t *garp;
9474
9475 resop++; /* lookupp */
9476 resop++; /* getfh */
9477 fhp = &resop->nfs_resop4_u.opgetfh.object;
9478
9479 resop++; /* getattr of parent */
9480
9481 /*
9482 * First, take care of finishing the
9483 * readdir results.
9484 */
9485 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9486 /*
9487 * The d_ino of .. must be the inode number
9488 * of the mounted filesystem.
9489 */
9490 if (garp->n4g_va.va_mask & AT_NODEID)
9491 rd_res->dotdotp->d_ino =
9492 garp->n4g_va.va_nodeid;
9493
9494
9495 /*
9496 * Next, create the ".." dnlc entry
9497 */
9498 sfhp = sfh4_get(fhp, mi);
9499 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9500 dnlc_update(vp, "..", pvp);
9501 VN_RELE(pvp);
9502 }
9503 sfh4_rele(&sfhp);
9504 }
9505 }
9506
9507 if (mi->mi_io_kstats) {
9508 mutex_enter(&mi->mi_lock);
9509 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9510 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9511 mutex_exit(&mi->mi_lock);
9512 }
9513
9514 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9515
9516 out:
9517 /*
9518 * If readdir a node that is a stub for a crossed mount point,
9519 * keep the original secinfo flavor for the current file system,
9520 * not the crossed one.
9521 */
9522 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9523
9524 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9525 }
9526
9527
9528 static int
nfs4_bio(struct buf * bp,stable_how4 * stab_comm,cred_t * cr,bool_t readahead)9529 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9530 {
9531 rnode4_t *rp = VTOR4(bp->b_vp);
9532 int count;
9533 int error;
9534 cred_t *cred_otw = NULL;
9535 offset_t offset;
9536 nfs4_open_stream_t *osp = NULL;
9537 bool_t first_time = TRUE; /* first time getting otw cred */
9538 bool_t last_time = FALSE; /* last time getting otw cred */
9539
9540 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
9541
9542 DTRACE_IO1(start, struct buf *, bp);
9543 offset = ldbtob(bp->b_lblkno);
9544
9545 if (bp->b_flags & B_READ) {
9546 read_again:
9547 /*
9548 * Releases the osp, if it is provided.
9549 * Puts a hold on the cred_otw and the new osp (if found).
9550 */
9551 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9552 &first_time, &last_time);
9553 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9554 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9555 readahead, NULL);
9556 crfree(cred_otw);
9557 if (!error) {
9558 if (bp->b_resid) {
9559 /*
9560 * Didn't get it all because we hit EOF,
9561 * zero all the memory beyond the EOF.
9562 */
9563 /* bzero(rdaddr + */
9564 bzero(bp->b_un.b_addr +
9565 bp->b_bcount - bp->b_resid, bp->b_resid);
9566 }
9567 mutex_enter(&rp->r_statelock);
9568 if (bp->b_resid == bp->b_bcount &&
9569 offset >= rp->r_size) {
9570 /*
9571 * We didn't read anything at all as we are
9572 * past EOF. Return an error indicator back
9573 * but don't destroy the pages (yet).
9574 */
9575 error = NFS_EOF;
9576 }
9577 mutex_exit(&rp->r_statelock);
9578 } else if (error == EACCES && last_time == FALSE) {
9579 goto read_again;
9580 }
9581 } else {
9582 if (!(rp->r_flags & R4STALE)) {
9583 write_again:
9584 /*
9585 * Releases the osp, if it is provided.
9586 * Puts a hold on the cred_otw and the new
9587 * osp (if found).
9588 */
9589 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9590 &first_time, &last_time);
9591 mutex_enter(&rp->r_statelock);
9592 count = MIN(bp->b_bcount, rp->r_size - offset);
9593 mutex_exit(&rp->r_statelock);
9594 if (count < 0)
9595 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9596 #ifdef DEBUG
9597 if (count == 0) {
9598 zoneid_t zoneid = getzoneid();
9599
9600 zcmn_err(zoneid, CE_WARN,
9601 "nfs4_bio: zero length write at %lld",
9602 offset);
9603 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9604 "b_bcount=%ld, file size=%lld",
9605 rp->r_flags, (long)bp->b_bcount,
9606 rp->r_size);
9607 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9608 if (nfs4_bio_do_stop)
9609 debug_enter("nfs4_bio");
9610 }
9611 #endif
9612 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9613 count, cred_otw, stab_comm);
9614 if (error == EACCES && last_time == FALSE) {
9615 crfree(cred_otw);
9616 goto write_again;
9617 }
9618 bp->b_error = error;
9619 if (error && error != EINTR &&
9620 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9621 /*
9622 * Don't print EDQUOT errors on the console.
9623 * Don't print asynchronous EACCES errors.
9624 * Don't print EFBIG errors.
9625 * Print all other write errors.
9626 */
9627 if (error != EDQUOT && error != EFBIG &&
9628 (error != EACCES ||
9629 !(bp->b_flags & B_ASYNC)))
9630 nfs4_write_error(bp->b_vp,
9631 error, cred_otw);
9632 /*
9633 * Update r_error and r_flags as appropriate.
9634 * If the error was ESTALE, then mark the
9635 * rnode as not being writeable and save
9636 * the error status. Otherwise, save any
9637 * errors which occur from asynchronous
9638 * page invalidations. Any errors occurring
9639 * from other operations should be saved
9640 * by the caller.
9641 */
9642 mutex_enter(&rp->r_statelock);
9643 if (error == ESTALE) {
9644 rp->r_flags |= R4STALE;
9645 if (!rp->r_error)
9646 rp->r_error = error;
9647 } else if (!rp->r_error &&
9648 (bp->b_flags &
9649 (B_INVAL|B_FORCE|B_ASYNC)) ==
9650 (B_INVAL|B_FORCE|B_ASYNC)) {
9651 rp->r_error = error;
9652 }
9653 mutex_exit(&rp->r_statelock);
9654 }
9655 crfree(cred_otw);
9656 } else {
9657 error = rp->r_error;
9658 /*
9659 * A close may have cleared r_error, if so,
9660 * propagate ESTALE error return properly
9661 */
9662 if (error == 0)
9663 error = ESTALE;
9664 }
9665 }
9666
9667 if (error != 0 && error != NFS_EOF)
9668 bp->b_flags |= B_ERROR;
9669
9670 if (osp)
9671 open_stream_rele(osp, rp);
9672
9673 DTRACE_IO1(done, struct buf *, bp);
9674
9675 return (error);
9676 }
9677
9678 /* ARGSUSED */
9679 int
nfs4_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)9680 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9681 {
9682 return (EREMOTE);
9683 }
9684
9685 /* ARGSUSED2 */
9686 int
nfs4_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9687 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9688 {
9689 rnode4_t *rp = VTOR4(vp);
9690
9691 if (!write_lock) {
9692 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9693 return (V_WRITELOCK_FALSE);
9694 }
9695
9696 if ((rp->r_flags & R4DIRECTIO) ||
9697 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9698 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9699 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
9700 return (V_WRITELOCK_FALSE);
9701 nfs_rw_exit(&rp->r_rwlock);
9702 }
9703
9704 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9705 return (V_WRITELOCK_TRUE);
9706 }
9707
9708 /* ARGSUSED */
9709 void
nfs4_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9710 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9711 {
9712 rnode4_t *rp = VTOR4(vp);
9713
9714 nfs_rw_exit(&rp->r_rwlock);
9715 }
9716
9717 /* ARGSUSED */
9718 static int
nfs4_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)9719 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9720 {
9721 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9722 return (EIO);
9723
9724 /*
9725 * Because we stuff the readdir cookie into the offset field
9726 * someone may attempt to do an lseek with the cookie which
9727 * we want to succeed.
9728 */
9729 if (vp->v_type == VDIR)
9730 return (0);
9731 if (*noffp < 0)
9732 return (EINVAL);
9733 return (0);
9734 }
9735
9736
9737 /*
9738 * Return all the pages from [off..off+len) in file
9739 */
9740 /* ARGSUSED */
9741 static int
nfs4_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)9742 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9743 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9744 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9745 {
9746 rnode4_t *rp;
9747 int error;
9748 mntinfo4_t *mi;
9749
9750 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9751 return (EIO);
9752 rp = VTOR4(vp);
9753 if (IS_SHADOW(vp, rp))
9754 vp = RTOV4(rp);
9755
9756 if (vp->v_flag & VNOMAP)
9757 return (ENOSYS);
9758
9759 if (protp != NULL)
9760 *protp = PROT_ALL;
9761
9762 /*
9763 * Now validate that the caches are up to date.
9764 */
9765 if (error = nfs4_validate_caches(vp, cr))
9766 return (error);
9767
9768 mi = VTOMI4(vp);
9769 retry:
9770 mutex_enter(&rp->r_statelock);
9771
9772 /*
9773 * Don't create dirty pages faster than they
9774 * can be cleaned so that the system doesn't
9775 * get imbalanced. If the async queue is
9776 * maxed out, then wait for it to drain before
9777 * creating more dirty pages. Also, wait for
9778 * any threads doing pagewalks in the vop_getattr
9779 * entry points so that they don't block for
9780 * long periods.
9781 */
9782 if (rw == S_CREATE) {
9783 while ((mi->mi_max_threads != 0 &&
9784 rp->r_awcount > 2 * mi->mi_max_threads) ||
9785 rp->r_gcount > 0)
9786 cv_wait(&rp->r_cv, &rp->r_statelock);
9787 }
9788
9789 /*
9790 * If we are getting called as a side effect of an nfs_write()
9791 * operation the local file size might not be extended yet.
9792 * In this case we want to be able to return pages of zeroes.
9793 */
9794 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9795 NFS4_DEBUG(nfs4_pageio_debug,
9796 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9797 "len=%llu, size=%llu, attrsize =%llu", off,
9798 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9799 mutex_exit(&rp->r_statelock);
9800 return (EFAULT); /* beyond EOF */
9801 }
9802
9803 mutex_exit(&rp->r_statelock);
9804
9805 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9806 pl, plsz, seg, addr, rw, cr);
9807 NFS4_DEBUG(nfs4_pageio_debug && error,
9808 (CE_NOTE, "getpages error %d; off=%lld, len=%lld",
9809 error, off, (u_longlong_t)len));
9810
9811 switch (error) {
9812 case NFS_EOF:
9813 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9814 goto retry;
9815 case ESTALE:
9816 nfs4_purge_stale_fh(error, vp, cr);
9817 }
9818
9819 return (error);
9820 }
9821
9822 /*
9823 * Called from pvn_getpages to get a particular page.
9824 */
9825 /* ARGSUSED */
9826 static int
nfs4_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)9827 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9828 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9829 enum seg_rw rw, cred_t *cr)
9830 {
9831 rnode4_t *rp;
9832 uint_t bsize;
9833 struct buf *bp;
9834 page_t *pp;
9835 u_offset_t lbn;
9836 u_offset_t io_off;
9837 u_offset_t blkoff;
9838 u_offset_t rablkoff;
9839 size_t io_len;
9840 uint_t blksize;
9841 int error;
9842 int readahead;
9843 int readahead_issued = 0;
9844 int ra_window; /* readahead window */
9845 page_t *pagefound;
9846 page_t *savepp;
9847
9848 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9849 return (EIO);
9850
9851 rp = VTOR4(vp);
9852 ASSERT(!IS_SHADOW(vp, rp));
9853 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
9854
9855 reread:
9856 bp = NULL;
9857 pp = NULL;
9858 pagefound = NULL;
9859
9860 if (pl != NULL)
9861 pl[0] = NULL;
9862
9863 error = 0;
9864 lbn = off / bsize;
9865 blkoff = lbn * bsize;
9866
9867 /*
9868 * Queueing up the readahead before doing the synchronous read
9869 * results in a significant increase in read throughput because
9870 * of the increased parallelism between the async threads and
9871 * the process context.
9872 */
9873 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9874 rw != S_CREATE &&
9875 !(vp->v_flag & VNOCACHE)) {
9876 mutex_enter(&rp->r_statelock);
9877
9878 /*
9879 * Calculate the number of readaheads to do.
9880 * a) No readaheads at offset = 0.
9881 * b) Do maximum(nfs4_nra) readaheads when the readahead
9882 * window is closed.
9883 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9884 * upon how far the readahead window is open or close.
9885 * d) No readaheads if rp->r_nextr is not within the scope
9886 * of the readahead window (random i/o).
9887 */
9888
9889 if (off == 0)
9890 readahead = 0;
9891 else if (blkoff == rp->r_nextr)
9892 readahead = nfs4_nra;
9893 else if (rp->r_nextr > blkoff &&
9894 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9895 <= (nfs4_nra - 1)))
9896 readahead = nfs4_nra - ra_window;
9897 else
9898 readahead = 0;
9899
9900 rablkoff = rp->r_nextr;
9901 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9902 mutex_exit(&rp->r_statelock);
9903 if (nfs4_async_readahead(vp, rablkoff + bsize,
9904 addr + (rablkoff + bsize - off),
9905 seg, cr, nfs4_readahead) < 0) {
9906 mutex_enter(&rp->r_statelock);
9907 break;
9908 }
9909 readahead--;
9910 rablkoff += bsize;
9911 /*
9912 * Indicate that we did a readahead so
9913 * readahead offset is not updated
9914 * by the synchronous read below.
9915 */
9916 readahead_issued = 1;
9917 mutex_enter(&rp->r_statelock);
9918 /*
9919 * set readahead offset to
9920 * offset of last async readahead
9921 * request.
9922 */
9923 rp->r_nextr = rablkoff;
9924 }
9925 mutex_exit(&rp->r_statelock);
9926 }
9927
9928 again:
9929 if ((pagefound = page_exists(vp, off)) == NULL) {
9930 if (pl == NULL) {
9931 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9932 nfs4_readahead);
9933 } else if (rw == S_CREATE) {
9934 /*
9935 * Block for this page is not allocated, or the offset
9936 * is beyond the current allocation size, or we're
9937 * allocating a swap slot and the page was not found,
9938 * so allocate it and return a zero page.
9939 */
9940 if ((pp = page_create_va(vp, off,
9941 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9942 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9943 io_len = PAGESIZE;
9944 mutex_enter(&rp->r_statelock);
9945 rp->r_nextr = off + PAGESIZE;
9946 mutex_exit(&rp->r_statelock);
9947 } else {
9948 /*
9949 * Need to go to server to get a block
9950 */
9951 mutex_enter(&rp->r_statelock);
9952 if (blkoff < rp->r_size &&
9953 blkoff + bsize > rp->r_size) {
9954 /*
9955 * If less than a block left in
9956 * file read less than a block.
9957 */
9958 if (rp->r_size <= off) {
9959 /*
9960 * Trying to access beyond EOF,
9961 * set up to get at least one page.
9962 */
9963 blksize = off + PAGESIZE - blkoff;
9964 } else
9965 blksize = rp->r_size - blkoff;
9966 } else if ((off == 0) ||
9967 (off != rp->r_nextr && !readahead_issued)) {
9968 blksize = PAGESIZE;
9969 blkoff = off; /* block = page here */
9970 } else
9971 blksize = bsize;
9972 mutex_exit(&rp->r_statelock);
9973
9974 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
9975 &io_len, blkoff, blksize, 0);
9976
9977 /*
9978 * Some other thread has entered the page,
9979 * so just use it.
9980 */
9981 if (pp == NULL)
9982 goto again;
9983
9984 /*
9985 * Now round the request size up to page boundaries.
9986 * This ensures that the entire page will be
9987 * initialized to zeroes if EOF is encountered.
9988 */
9989 io_len = ptob(btopr(io_len));
9990
9991 bp = pageio_setup(pp, io_len, vp, B_READ);
9992 ASSERT(bp != NULL);
9993
9994 /*
9995 * pageio_setup should have set b_addr to 0. This
9996 * is correct since we want to do I/O on a page
9997 * boundary. bp_mapin will use this addr to calculate
9998 * an offset, and then set b_addr to the kernel virtual
9999 * address it allocated for us.
10000 */
10001 ASSERT(bp->b_un.b_addr == 0);
10002
10003 bp->b_edev = 0;
10004 bp->b_dev = 0;
10005 bp->b_lblkno = lbtodb(io_off);
10006 bp->b_file = vp;
10007 bp->b_offset = (offset_t)off;
10008 bp_mapin(bp);
10009
10010 /*
10011 * If doing a write beyond what we believe is EOF,
10012 * don't bother trying to read the pages from the
10013 * server, we'll just zero the pages here. We
10014 * don't check that the rw flag is S_WRITE here
10015 * because some implementations may attempt a
10016 * read access to the buffer before copying data.
10017 */
10018 mutex_enter(&rp->r_statelock);
10019 if (io_off >= rp->r_size && seg == segkmap) {
10020 mutex_exit(&rp->r_statelock);
10021 bzero(bp->b_un.b_addr, io_len);
10022 } else {
10023 mutex_exit(&rp->r_statelock);
10024 error = nfs4_bio(bp, NULL, cr, FALSE);
10025 }
10026
10027 /*
10028 * Unmap the buffer before freeing it.
10029 */
10030 bp_mapout(bp);
10031 pageio_done(bp);
10032
10033 savepp = pp;
10034 do {
10035 pp->p_fsdata = C_NOCOMMIT;
10036 } while ((pp = pp->p_next) != savepp);
10037
10038 if (error == NFS_EOF) {
10039 /*
10040 * If doing a write system call just return
10041 * zeroed pages, else user tried to get pages
10042 * beyond EOF, return error. We don't check
10043 * that the rw flag is S_WRITE here because
10044 * some implementations may attempt a read
10045 * access to the buffer before copying data.
10046 */
10047 if (seg == segkmap)
10048 error = 0;
10049 else
10050 error = EFAULT;
10051 }
10052
10053 if (!readahead_issued && !error) {
10054 mutex_enter(&rp->r_statelock);
10055 rp->r_nextr = io_off + io_len;
10056 mutex_exit(&rp->r_statelock);
10057 }
10058 }
10059 }
10060
10061 out:
10062 if (pl == NULL)
10063 return (error);
10064
10065 if (error) {
10066 if (pp != NULL)
10067 pvn_read_done(pp, B_ERROR);
10068 return (error);
10069 }
10070
10071 if (pagefound) {
10072 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
10073
10074 /*
10075 * Page exists in the cache, acquire the appropriate lock.
10076 * If this fails, start all over again.
10077 */
10078 if ((pp = page_lookup(vp, off, se)) == NULL) {
10079 #ifdef DEBUG
10080 nfs4_lostpage++;
10081 #endif
10082 goto reread;
10083 }
10084 pl[0] = pp;
10085 pl[1] = NULL;
10086 return (0);
10087 }
10088
10089 if (pp != NULL)
10090 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
10091
10092 return (error);
10093 }
10094
10095 static void
nfs4_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)10096 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10097 cred_t *cr)
10098 {
10099 int error;
10100 page_t *pp;
10101 u_offset_t io_off;
10102 size_t io_len;
10103 struct buf *bp;
10104 uint_t bsize, blksize;
10105 rnode4_t *rp = VTOR4(vp);
10106 page_t *savepp;
10107
10108 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10109
10110 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10111
10112 mutex_enter(&rp->r_statelock);
10113 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10114 /*
10115 * If less than a block left in file read less
10116 * than a block.
10117 */
10118 blksize = rp->r_size - blkoff;
10119 } else
10120 blksize = bsize;
10121 mutex_exit(&rp->r_statelock);
10122
10123 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10124 &io_off, &io_len, blkoff, blksize, 1);
10125 /*
10126 * The isra flag passed to the kluster function is 1, we may have
10127 * gotten a return value of NULL for a variety of reasons (# of free
10128 * pages < minfree, someone entered the page on the vnode etc). In all
10129 * cases, we want to punt on the readahead.
10130 */
10131 if (pp == NULL)
10132 return;
10133
10134 /*
10135 * Now round the request size up to page boundaries.
10136 * This ensures that the entire page will be
10137 * initialized to zeroes if EOF is encountered.
10138 */
10139 io_len = ptob(btopr(io_len));
10140
10141 bp = pageio_setup(pp, io_len, vp, B_READ);
10142 ASSERT(bp != NULL);
10143
10144 /*
10145 * pageio_setup should have set b_addr to 0. This is correct since
10146 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10147 * to calculate an offset, and then set b_addr to the kernel virtual
10148 * address it allocated for us.
10149 */
10150 ASSERT(bp->b_un.b_addr == 0);
10151
10152 bp->b_edev = 0;
10153 bp->b_dev = 0;
10154 bp->b_lblkno = lbtodb(io_off);
10155 bp->b_file = vp;
10156 bp->b_offset = (offset_t)blkoff;
10157 bp_mapin(bp);
10158
10159 /*
10160 * If doing a write beyond what we believe is EOF, don't bother trying
10161 * to read the pages from the server, we'll just zero the pages here.
10162 * We don't check that the rw flag is S_WRITE here because some
10163 * implementations may attempt a read access to the buffer before
10164 * copying data.
10165 */
10166 mutex_enter(&rp->r_statelock);
10167 if (io_off >= rp->r_size && seg == segkmap) {
10168 mutex_exit(&rp->r_statelock);
10169 bzero(bp->b_un.b_addr, io_len);
10170 error = 0;
10171 } else {
10172 mutex_exit(&rp->r_statelock);
10173 error = nfs4_bio(bp, NULL, cr, TRUE);
10174 if (error == NFS_EOF)
10175 error = 0;
10176 }
10177
10178 /*
10179 * Unmap the buffer before freeing it.
10180 */
10181 bp_mapout(bp);
10182 pageio_done(bp);
10183
10184 savepp = pp;
10185 do {
10186 pp->p_fsdata = C_NOCOMMIT;
10187 } while ((pp = pp->p_next) != savepp);
10188
10189 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
10190
10191 /*
10192 * In case of error set readahead offset
10193 * to the lowest offset.
10194 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10195 */
10196 if (error && rp->r_nextr > io_off) {
10197 mutex_enter(&rp->r_statelock);
10198 if (rp->r_nextr > io_off)
10199 rp->r_nextr = io_off;
10200 mutex_exit(&rp->r_statelock);
10201 }
10202 }
10203
10204 /*
10205 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10206 * If len == 0, do from off to EOF.
10207 *
10208 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10209 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10210 * (from pageout).
10211 */
10212 /* ARGSUSED */
10213 static int
nfs4_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)10214 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10215 caller_context_t *ct)
10216 {
10217 int error;
10218 rnode4_t *rp;
10219
10220 ASSERT(cr != NULL);
10221
10222 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10223 return (EIO);
10224
10225 rp = VTOR4(vp);
10226 if (IS_SHADOW(vp, rp))
10227 vp = RTOV4(rp);
10228
10229 /*
10230 * XXX - Why should this check be made here?
10231 */
10232 if (vp->v_flag & VNOMAP)
10233 return (ENOSYS);
10234
10235 if (len == 0 && !(flags & B_INVAL) &&
10236 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10237 return (0);
10238
10239 mutex_enter(&rp->r_statelock);
10240 rp->r_count++;
10241 mutex_exit(&rp->r_statelock);
10242 error = nfs4_putpages(vp, off, len, flags, cr);
10243 mutex_enter(&rp->r_statelock);
10244 rp->r_count--;
10245 cv_broadcast(&rp->r_cv);
10246 mutex_exit(&rp->r_statelock);
10247
10248 return (error);
10249 }
10250
10251 /*
10252 * Write out a single page, possibly klustering adjacent dirty pages.
10253 */
10254 int
nfs4_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)10255 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10256 int flags, cred_t *cr)
10257 {
10258 u_offset_t io_off;
10259 u_offset_t lbn_off;
10260 u_offset_t lbn;
10261 size_t io_len;
10262 uint_t bsize;
10263 int error;
10264 rnode4_t *rp;
10265
10266 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10267 ASSERT(pp != NULL);
10268 ASSERT(cr != NULL);
10269 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
10270
10271 rp = VTOR4(vp);
10272 ASSERT(rp->r_count > 0);
10273 ASSERT(!IS_SHADOW(vp, rp));
10274
10275 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10276 lbn = pp->p_offset / bsize;
10277 lbn_off = lbn * bsize;
10278
10279 /*
10280 * Find a kluster that fits in one block, or in
10281 * one page if pages are bigger than blocks. If
10282 * there is less file space allocated than a whole
10283 * page, we'll shorten the i/o request below.
10284 */
10285 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
10286 roundup(bsize, PAGESIZE), flags);
10287
10288 /*
10289 * pvn_write_kluster shouldn't have returned a page with offset
10290 * behind the original page we were given. Verify that.
10291 */
10292 ASSERT((pp->p_offset / bsize) >= lbn);
10293
10294 /*
10295 * Now pp will have the list of kept dirty pages marked for
10296 * write back. It will also handle invalidation and freeing
10297 * of pages that are not dirty. Check for page length rounding
10298 * problems.
10299 */
10300 if (io_off + io_len > lbn_off + bsize) {
10301 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10302 io_len = lbn_off + bsize - io_off;
10303 }
10304 /*
10305 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10306 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10307 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10308 * progress and the r_size has not been made consistent with the
10309 * new size of the file. When the uiomove() completes the r_size is
10310 * updated and the R4MODINPROGRESS flag is cleared.
10311 *
10312 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10313 * consistent value of r_size. Without this handshaking, it is
10314 * possible that nfs4_bio() picks up the old value of r_size
10315 * before the uiomove() in writerp4() completes. This will result
10316 * in the write through nfs4_bio() being dropped.
10317 *
10318 * More precisely, there is a window between the time the uiomove()
10319 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10320 * operation intervenes in this window, the page will be picked up,
10321 * because it is dirty (it will be unlocked, unless it was
10322 * pagecreate'd). When the page is picked up as dirty, the dirty
10323 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10324 * checked. This will still be the old size. Therefore the page will
10325 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10326 * the page will be found to be clean and the write will be dropped.
10327 */
10328 if (rp->r_flags & R4MODINPROGRESS) {
10329 mutex_enter(&rp->r_statelock);
10330 if ((rp->r_flags & R4MODINPROGRESS) &&
10331 rp->r_modaddr + MAXBSIZE > io_off &&
10332 rp->r_modaddr < io_off + io_len) {
10333 page_t *plist;
10334 /*
10335 * A write is in progress for this region of the file.
10336 * If we did not detect R4MODINPROGRESS here then this
10337 * path through nfs_putapage() would eventually go to
10338 * nfs4_bio() and may not write out all of the data
10339 * in the pages. We end up losing data. So we decide
10340 * to set the modified bit on each page in the page
10341 * list and mark the rnode with R4DIRTY. This write
10342 * will be restarted at some later time.
10343 */
10344 plist = pp;
10345 while (plist != NULL) {
10346 pp = plist;
10347 page_sub(&plist, pp);
10348 hat_setmod(pp);
10349 page_io_unlock(pp);
10350 page_unlock(pp);
10351 }
10352 rp->r_flags |= R4DIRTY;
10353 mutex_exit(&rp->r_statelock);
10354 if (offp)
10355 *offp = io_off;
10356 if (lenp)
10357 *lenp = io_len;
10358 return (0);
10359 }
10360 mutex_exit(&rp->r_statelock);
10361 }
10362
10363 if (flags & B_ASYNC) {
10364 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10365 nfs4_sync_putapage);
10366 } else
10367 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
10368
10369 if (offp)
10370 *offp = io_off;
10371 if (lenp)
10372 *lenp = io_len;
10373 return (error);
10374 }
10375
10376 static int
nfs4_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)10377 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10378 int flags, cred_t *cr)
10379 {
10380 int error;
10381 rnode4_t *rp;
10382
10383 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10384
10385 flags |= B_WRITE;
10386
10387 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
10388
10389 rp = VTOR4(vp);
10390
10391 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10392 error == EACCES) &&
10393 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10394 if (!(rp->r_flags & R4OUTOFSPACE)) {
10395 mutex_enter(&rp->r_statelock);
10396 rp->r_flags |= R4OUTOFSPACE;
10397 mutex_exit(&rp->r_statelock);
10398 }
10399 flags |= B_ERROR;
10400 pvn_write_done(pp, flags);
10401 /*
10402 * If this was not an async thread, then try again to
10403 * write out the pages, but this time, also destroy
10404 * them whether or not the write is successful. This
10405 * will prevent memory from filling up with these
10406 * pages and destroying them is the only alternative
10407 * if they can't be written out.
10408 *
10409 * Don't do this if this is an async thread because
10410 * when the pages are unlocked in pvn_write_done,
10411 * some other thread could have come along, locked
10412 * them, and queued for an async thread. It would be
10413 * possible for all of the async threads to be tied
10414 * up waiting to lock the pages again and they would
10415 * all already be locked and waiting for an async
10416 * thread to handle them. Deadlock.
10417 */
10418 if (!(flags & B_ASYNC)) {
10419 error = nfs4_putpage(vp, io_off, io_len,
10420 B_INVAL | B_FORCE, cr, NULL);
10421 }
10422 } else {
10423 if (error)
10424 flags |= B_ERROR;
10425 else if (rp->r_flags & R4OUTOFSPACE) {
10426 mutex_enter(&rp->r_statelock);
10427 rp->r_flags &= ~R4OUTOFSPACE;
10428 mutex_exit(&rp->r_statelock);
10429 }
10430 pvn_write_done(pp, flags);
10431 if (freemem < desfree)
10432 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10433 NFS4_WRITE_NOWAIT);
10434 }
10435
10436 return (error);
10437 }
10438
10439 #ifdef DEBUG
10440 int nfs4_force_open_before_mmap = 0;
10441 #endif
10442
10443 /* ARGSUSED */
10444 static int
nfs4_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10445 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10446 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10447 caller_context_t *ct)
10448 {
10449 struct segvn_crargs vn_a;
10450 int error = 0;
10451 rnode4_t *rp = VTOR4(vp);
10452 mntinfo4_t *mi = VTOMI4(vp);
10453
10454 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10455 return (EIO);
10456
10457 if (vp->v_flag & VNOMAP)
10458 return (ENOSYS);
10459
10460 if (off < 0 || (off + len) < 0)
10461 return (ENXIO);
10462
10463 if (vp->v_type != VREG)
10464 return (ENODEV);
10465
10466 /*
10467 * If the file is delegated to the client don't do anything.
10468 * If the file is not delegated, then validate the data cache.
10469 */
10470 mutex_enter(&rp->r_statev4_lock);
10471 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10472 mutex_exit(&rp->r_statev4_lock);
10473 error = nfs4_validate_caches(vp, cr);
10474 if (error)
10475 return (error);
10476 } else {
10477 mutex_exit(&rp->r_statev4_lock);
10478 }
10479
10480 /*
10481 * Check to see if the vnode is currently marked as not cachable.
10482 * This means portions of the file are locked (through VOP_FRLOCK).
10483 * In this case the map request must be refused. We use
10484 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10485 *
10486 * Atomically increment r_inmap after acquiring r_rwlock. The
10487 * idea here is to acquire r_rwlock to block read/write and
10488 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10489 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10490 * and we can prevent the deadlock that would have occurred
10491 * when nfs4_addmap() would have acquired it out of order.
10492 *
10493 * Since we are not protecting r_inmap by any lock, we do not
10494 * hold any lock when we decrement it. We atomically decrement
10495 * r_inmap after we release r_lkserlock.
10496 */
10497
10498 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10499 return (EINTR);
10500 atomic_inc_uint(&rp->r_inmap);
10501 nfs_rw_exit(&rp->r_rwlock);
10502
10503 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10504 atomic_dec_uint(&rp->r_inmap);
10505 return (EINTR);
10506 }
10507
10508
10509 if (vp->v_flag & VNOCACHE) {
10510 error = EAGAIN;
10511 goto done;
10512 }
10513
10514 /*
10515 * Don't allow concurrent locks and mapping if mandatory locking is
10516 * enabled.
10517 */
10518 if (flk_has_remote_locks(vp)) {
10519 struct vattr va;
10520 va.va_mask = AT_MODE;
10521 error = nfs4getattr(vp, &va, cr);
10522 if (error != 0)
10523 goto done;
10524 if (MANDLOCK(vp, va.va_mode)) {
10525 error = EAGAIN;
10526 goto done;
10527 }
10528 }
10529
10530 /*
10531 * It is possible that the rnode has a lost lock request that we
10532 * are still trying to recover, and that the request conflicts with
10533 * this map request.
10534 *
10535 * An alternative approach would be for nfs4_safemap() to consider
10536 * queued lock requests when deciding whether to set or clear
10537 * VNOCACHE. This would require the frlock code path to call
10538 * nfs4_safemap() after enqueing a lost request.
10539 */
10540 if (nfs4_map_lost_lock_conflict(vp)) {
10541 error = EAGAIN;
10542 goto done;
10543 }
10544
10545 as_rangelock(as);
10546 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10547 if (error != 0) {
10548 as_rangeunlock(as);
10549 goto done;
10550 }
10551
10552 if (vp->v_type == VREG) {
10553 /*
10554 * We need to retrieve the open stream
10555 */
10556 nfs4_open_stream_t *osp = NULL;
10557 nfs4_open_owner_t *oop = NULL;
10558
10559 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10560 if (oop != NULL) {
10561 /* returns with 'os_sync_lock' held */
10562 osp = find_open_stream(oop, rp);
10563 open_owner_rele(oop);
10564 }
10565 if (osp == NULL) {
10566 #ifdef DEBUG
10567 if (nfs4_force_open_before_mmap) {
10568 error = EIO;
10569 goto done;
10570 }
10571 #endif
10572 /* returns with 'os_sync_lock' held */
10573 error = open_and_get_osp(vp, cr, &osp);
10574 if (osp == NULL) {
10575 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10576 "nfs4_map: we tried to OPEN the file "
10577 "but again no osp, so fail with EIO"));
10578 goto done;
10579 }
10580 }
10581
10582 if (osp->os_failed_reopen) {
10583 mutex_exit(&osp->os_sync_lock);
10584 open_stream_rele(osp, rp);
10585 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10586 "nfs4_map: os_failed_reopen set on "
10587 "osp %p, cr %p, rp %s", (void *)osp,
10588 (void *)cr, rnode4info(rp)));
10589 error = EIO;
10590 goto done;
10591 }
10592 mutex_exit(&osp->os_sync_lock);
10593 open_stream_rele(osp, rp);
10594 }
10595
10596 vn_a.vp = vp;
10597 vn_a.offset = off;
10598 vn_a.type = (flags & MAP_TYPE);
10599 vn_a.prot = (uchar_t)prot;
10600 vn_a.maxprot = (uchar_t)maxprot;
10601 vn_a.flags = (flags & ~MAP_TYPE);
10602 vn_a.cred = cr;
10603 vn_a.amp = NULL;
10604 vn_a.szc = 0;
10605 vn_a.lgrp_mem_policy_flags = 0;
10606
10607 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10608 as_rangeunlock(as);
10609
10610 done:
10611 nfs_rw_exit(&rp->r_lkserlock);
10612 atomic_dec_uint(&rp->r_inmap);
10613 return (error);
10614 }
10615
10616 /*
10617 * We're most likely dealing with a kernel module that likes to READ
10618 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10619 * officially OPEN the file to create the necessary client state
10620 * for bookkeeping of os_mmap_read/write counts.
10621 *
10622 * Since VOP_MAP only passes in a pointer to the vnode rather than
10623 * a double pointer, we can't handle the case where nfs4open_otw()
10624 * returns a different vnode than the one passed into VOP_MAP (since
10625 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10626 * we return NULL and let nfs4_map() fail. Note: the only case where
10627 * this should happen is if the file got removed and replaced with the
10628 * same name on the server (in addition to the fact that we're trying
10629 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10630 */
10631 static int
open_and_get_osp(vnode_t * map_vp,cred_t * cr,nfs4_open_stream_t ** ospp)10632 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10633 {
10634 rnode4_t *rp, *drp;
10635 vnode_t *dvp, *open_vp;
10636 char file_name[MAXNAMELEN];
10637 int just_created;
10638 nfs4_open_stream_t *osp;
10639 nfs4_open_owner_t *oop;
10640 int error;
10641
10642 *ospp = NULL;
10643 open_vp = map_vp;
10644
10645 rp = VTOR4(open_vp);
10646 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10647 return (error);
10648 drp = VTOR4(dvp);
10649
10650 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10651 VN_RELE(dvp);
10652 return (EINTR);
10653 }
10654
10655 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10656 nfs_rw_exit(&drp->r_rwlock);
10657 VN_RELE(dvp);
10658 return (error);
10659 }
10660
10661 mutex_enter(&rp->r_statev4_lock);
10662 if (rp->created_v4) {
10663 rp->created_v4 = 0;
10664 mutex_exit(&rp->r_statev4_lock);
10665
10666 dnlc_update(dvp, file_name, open_vp);
10667 /* This is needed so we don't bump the open ref count */
10668 just_created = 1;
10669 } else {
10670 mutex_exit(&rp->r_statev4_lock);
10671 just_created = 0;
10672 }
10673
10674 VN_HOLD(map_vp);
10675
10676 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10677 just_created);
10678 if (error) {
10679 nfs_rw_exit(&drp->r_rwlock);
10680 VN_RELE(dvp);
10681 VN_RELE(map_vp);
10682 return (error);
10683 }
10684
10685 nfs_rw_exit(&drp->r_rwlock);
10686 VN_RELE(dvp);
10687
10688 /*
10689 * If nfs4open_otw() returned a different vnode then "undo"
10690 * the open and return failure to the caller.
10691 */
10692 if (!VN_CMP(open_vp, map_vp)) {
10693 nfs4_error_t e;
10694
10695 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10696 "open returned a different vnode"));
10697 /*
10698 * If there's an error, ignore it,
10699 * and let VOP_INACTIVE handle it.
10700 */
10701 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10702 CLOSE_NORM, 0, 0, 0);
10703 VN_RELE(map_vp);
10704 return (EIO);
10705 }
10706
10707 VN_RELE(map_vp);
10708
10709 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10710 if (!oop) {
10711 nfs4_error_t e;
10712
10713 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10714 "no open owner"));
10715 /*
10716 * If there's an error, ignore it,
10717 * and let VOP_INACTIVE handle it.
10718 */
10719 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10720 CLOSE_NORM, 0, 0, 0);
10721 return (EIO);
10722 }
10723 osp = find_open_stream(oop, rp);
10724 open_owner_rele(oop);
10725 *ospp = osp;
10726 return (0);
10727 }
10728
10729 /*
10730 * Please be aware that when this function is called, the address space write
10731 * a_lock is held. Do not put over the wire calls in this function.
10732 */
10733 /* ARGSUSED */
10734 static int
nfs4_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10735 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10736 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10737 caller_context_t *ct)
10738 {
10739 rnode4_t *rp;
10740 int error = 0;
10741 mntinfo4_t *mi;
10742
10743 mi = VTOMI4(vp);
10744 rp = VTOR4(vp);
10745
10746 if (nfs_zone() != mi->mi_zone)
10747 return (EIO);
10748 if (vp->v_flag & VNOMAP)
10749 return (ENOSYS);
10750
10751 /*
10752 * Don't need to update the open stream first, since this
10753 * mmap can't add any additional share access that isn't
10754 * already contained in the open stream (for the case where we
10755 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
10756 * take into account os_mmap_read[write] counts).
10757 */
10758 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
10759
10760 if (vp->v_type == VREG) {
10761 /*
10762 * We need to retrieve the open stream and update the counts.
10763 * If there is no open stream here, something is wrong.
10764 */
10765 nfs4_open_stream_t *osp = NULL;
10766 nfs4_open_owner_t *oop = NULL;
10767
10768 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10769 if (oop != NULL) {
10770 /* returns with 'os_sync_lock' held */
10771 osp = find_open_stream(oop, rp);
10772 open_owner_rele(oop);
10773 }
10774 if (osp == NULL) {
10775 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10776 "nfs4_addmap: we should have an osp"
10777 "but we don't, so fail with EIO"));
10778 error = EIO;
10779 goto out;
10780 }
10781
10782 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10783 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
10784
10785 /*
10786 * Update the map count in the open stream.
10787 * This is necessary in the case where we
10788 * open/mmap/close/, then the server reboots, and we
10789 * attempt to reopen. If the mmap doesn't add share
10790 * access then we send an invalid reopen with
10791 * access = NONE.
10792 *
10793 * We need to specifically check each PROT_* so a mmap
10794 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10795 * read and write access. A simple comparison of prot
10796 * to ~PROT_WRITE to determine read access is insufficient
10797 * since prot can be |= with PROT_USER, etc.
10798 */
10799
10800 /*
10801 * Unless we're MAP_SHARED, no sense in adding os_mmap_write
10802 */
10803 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10804 osp->os_mmap_write += btopr(len);
10805 if (maxprot & PROT_READ)
10806 osp->os_mmap_read += btopr(len);
10807 if (maxprot & PROT_EXEC)
10808 osp->os_mmap_read += btopr(len);
10809 /*
10810 * Ensure that os_mmap_read gets incremented, even if
10811 * maxprot were to look like PROT_NONE.
10812 */
10813 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
10814 !(maxprot & PROT_EXEC))
10815 osp->os_mmap_read += btopr(len);
10816 osp->os_mapcnt += btopr(len);
10817 mutex_exit(&osp->os_sync_lock);
10818 open_stream_rele(osp, rp);
10819 }
10820
10821 out:
10822 /*
10823 * If we got an error, then undo our
10824 * incrementing of 'r_mapcnt'.
10825 */
10826
10827 if (error) {
10828 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10829 ASSERT(rp->r_mapcnt >= 0);
10830 }
10831 return (error);
10832 }
10833
10834 /* ARGSUSED */
10835 static int
nfs4_cmp(vnode_t * vp1,vnode_t * vp2,caller_context_t * ct)10836 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10837 {
10838
10839 return (VTOR4(vp1) == VTOR4(vp2));
10840 }
10841
10842 /*
10843 * Data structure for nfs4_lkserlock_callback() function.
10844 */
10845 struct nfs4_lkserlock_callback_data {
10846 vnode_t *vp;
10847 int rc;
10848 };
10849
10850 /*
10851 * Callback function for reclock().
10852 */
10853 static callb_cpr_t *
nfs4_lkserlock_callback(flk_cb_when_t when,void * infop)10854 nfs4_lkserlock_callback(flk_cb_when_t when, void *infop)
10855 {
10856 struct nfs4_lkserlock_callback_data *dp =
10857 (struct nfs4_lkserlock_callback_data *)infop;
10858 rnode4_t *rp = VTOR4(dp->vp);
10859
10860 if (when == FLK_BEFORE_SLEEP)
10861 nfs_rw_exit(&rp->r_lkserlock);
10862 else
10863 dp->rc = nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER,
10864 INTR4(dp->vp));
10865
10866 return (NULL);
10867 }
10868
10869 /* ARGSUSED */
10870 static int
nfs4_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)10871 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10872 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10873 caller_context_t *ct)
10874 {
10875 int rc = 0;
10876 rnode4_t *rp;
10877 int intr = INTR4(vp);
10878 nfs4_error_t e;
10879 int frcmd;
10880 struct lm_sysid *ls = NULL;
10881
10882 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10883 return (EIO);
10884
10885 /* check for valid cmd parameter and set frcmd appropriately */
10886 switch (cmd) {
10887 case F_GETLK:
10888 frcmd = 0;
10889 break;
10890 case F_SETLK:
10891 frcmd = SETFLCK;
10892 break;
10893 case F_SETLKW:
10894 frcmd = SETFLCK | SLPFLCK;
10895 break;
10896 default:
10897 return (EINVAL);
10898 }
10899
10900 /*
10901 * If lock is relative to EOF, we need the newest length of the file.
10902 * Therefore invalidate the ATTR_CACHE.
10903 */
10904 if (bfp->l_whence == 2) /* SEEK_END */
10905 PURGE_ATTRCACHE4(vp);
10906
10907 /*
10908 * If the filesystem is mounted using local locking, pass the
10909 * request off to the local locking code.
10910 */
10911 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10912 if (cmd == F_SETLK || cmd == F_SETLKW) {
10913 /*
10914 * For complete safety, we should be holding
10915 * r_lkserlock. However, we can't call
10916 * nfs4_safelock and then fs_frlock while
10917 * holding r_lkserlock, so just invoke
10918 * nfs4_safelock and expect that this will
10919 * catch enough of the cases.
10920 */
10921 if (!nfs4_safelock(vp, bfp, cr))
10922 return (EAGAIN);
10923 }
10924 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10925 }
10926
10927 /*
10928 * Convert the offset. We need to do this to make sure our view of the
10929 * locking range is always the same through the rest of this function.
10930 * This is especially needed for bfp->l_whence == SEEK_END, because the
10931 * length of the file could change anytime and thus the locking range
10932 * would be a moving target for us.
10933 *
10934 * For the bfp->l_whence == SEEK_CUR case this is just a convenient
10935 * conversion to make the life easier for nfs4frlock().
10936 */
10937 rc = convoff(vp, bfp, 0, offset);
10938 if (rc != 0)
10939 return (rc);
10940
10941 if (bfp->l_type == F_UNLCK) {
10942 u_offset_t start, end;
10943
10944 /*
10945 * Shortcut for trivial case.
10946 */
10947 if (cmd == F_GETLK)
10948 return (rc);
10949
10950 /*
10951 * For every lock or unlock request we need to do two steps:
10952 * (un)register the local lock, and (un)register the lock at
10953 * the NFSv4 server. It is essential to make sure the lock
10954 * status registered at the server and registered locally is
10955 * same and never goes out of sync. This means that if one
10956 * step fails, the other one needs to be either skipped, or
10957 * reverted.
10958 *
10959 * For lock requests the situation is easy since a lock
10960 * registration can be reverted without any risk of data
10961 * corruption.
10962 *
10963 * The unlock requests cannot be reverted because once a lock
10964 * is unregistered the race window is open and some other
10965 * process could grab a conflicting lock. This means that once
10966 * the first step (the first lock unregistration) succeeded,
10967 * the second step cannot fail. The second step for the unlock
10968 * request is the local lock unregistration by the reclock()
10969 * call.
10970 *
10971 * The only way how the reclock() call for an unlock request
10972 * could fail is the invalid unlock range so we check it here,
10973 * before the lock is unregistered at NFSv4 server. This
10974 * duplicates the check done in the reclock() function.
10975 */
10976 rc = flk_convert_lock_data(vp, bfp, &start, &end, offset);
10977 if (rc != 0)
10978 return (rc);
10979 rc = flk_check_lock_data(start, end, MAXEND);
10980 if (rc != 0)
10981 return (rc);
10982
10983 intr = 0;
10984 }
10985
10986 /*
10987 * For F_SETLK and F_SETLKW we need to set sysid.
10988 */
10989 if (cmd == F_SETLK || cmd == F_SETLKW) {
10990 rc = nfs4frlock_get_sysid(&ls, vp, bfp);
10991 if (rc != 0)
10992 return (rc);
10993
10994 /*
10995 * Client locks are registerred locally by oring the sysid with
10996 * LM_SYSID_CLIENT. The server registers locks locally using
10997 * just the sysid. We need to distinguish between the two to
10998 * avoid collision in a case one machine is used as both client
10999 * and server.
11000 */
11001 bfp->l_sysid |= LM_SYSID_CLIENT;
11002 }
11003
11004 bfp->l_pid = curproc->p_pid;
11005
11006 rp = VTOR4(vp);
11007
11008 /*
11009 * Check whether the given lock request can proceed, given the
11010 * current file mappings.
11011 */
11012 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) {
11013 if (ls != NULL)
11014 lm_rel_sysid(ls);
11015 return (EINTR);
11016 }
11017 if (cmd == F_SETLK || cmd == F_SETLKW) {
11018 if (!nfs4_safelock(vp, bfp, cr)) {
11019 rc = EAGAIN;
11020 goto done;
11021 }
11022 }
11023
11024 /*
11025 * For query we will try to find a conflicting local lock first by
11026 * calling reclock().
11027 *
11028 * In a case this is a lock request we need to register it locally
11029 * first before we consult the NFSv4 server.
11030 */
11031 if (cmd == F_GETLK || bfp->l_type != F_UNLCK) {
11032 /*
11033 * If we might sleep in reclock() we need to register a
11034 * callback to release the r_lkserlock during the sleep.
11035 */
11036 if ((frcmd & SLPFLCK) == 0) {
11037 rc = reclock(vp, bfp, frcmd, flag, 0, flk_cbp);
11038 } else {
11039 flk_callback_t callback;
11040 struct nfs4_lkserlock_callback_data callback_data =
11041 {vp, 0};
11042
11043 flk_add_callback(&callback, nfs4_lkserlock_callback,
11044 &callback_data, flk_cbp);
11045 rc = reclock(vp, bfp, frcmd, flag, 0, &callback);
11046 flk_del_callback(&callback);
11047
11048 if (callback_data.rc != 0) {
11049 /*
11050 * The nfs_rw_enter_sig() call in
11051 * nfs4_lkserlock_callback() failed.
11052 */
11053
11054 if (rc == 0) {
11055 /*
11056 * The reclock() call above succeeded
11057 * so we need to revert it.
11058 */
11059 bfp->l_type = F_UNLCK;
11060 rc = reclock(vp, bfp, frcmd, flag, 0,
11061 flk_cbp);
11062 /* The unlock cannot fail */
11063 ASSERT(rc == 0);
11064
11065 /*
11066 * We are here because we failed to
11067 * acquire r_lkserlock in
11068 * nfs4_lkserlock_callback() due to a
11069 * signal. Return the appropriate
11070 * error.
11071 */
11072 rc = EINTR;
11073 }
11074
11075 ASSERT(ls != NULL);
11076 lm_rel_sysid(ls);
11077
11078 return (rc);
11079 }
11080
11081 /*
11082 * We possibly released r_lkserlock in reclock() so
11083 * make sure it is still safe to lock the file.
11084 */
11085 if (!nfs4_safelock(vp, bfp, cr)) {
11086 rc = EAGAIN;
11087 goto revert;
11088 }
11089
11090 }
11091
11092 /*
11093 * If the reclock() call failed we are done and we will return
11094 * an error to the caller. Similarly, if we found a
11095 * conflicting lock registered locally we are done too. We do
11096 * not need to consult the server.
11097 */
11098 if ((rc != 0) || (cmd == F_GETLK && bfp->l_type != F_UNLCK))
11099 goto done;
11100 }
11101
11102 /*
11103 * Flush the cache after waiting for async I/O to finish. For new
11104 * locks, this is so that the process gets the latest bits from the
11105 * server. For unlocks, this is so that other clients see the
11106 * latest bits once the file has been unlocked. If currently dirty
11107 * pages can't be flushed, then don't allow a lock to be set. But
11108 * allow unlocks to succeed, to avoid having orphan locks on the
11109 * server.
11110 */
11111 if (cmd != F_GETLK) {
11112 mutex_enter(&rp->r_statelock);
11113 while (rp->r_count > 0) {
11114 if (intr) {
11115 klwp_t *lwp = ttolwp(curthread);
11116
11117 if (lwp != NULL)
11118 lwp->lwp_nostop++;
11119 if (cv_wait_sig(&rp->r_cv,
11120 &rp->r_statelock) == 0) {
11121 if (lwp != NULL)
11122 lwp->lwp_nostop--;
11123 rc = EINTR;
11124 break;
11125 }
11126 if (lwp != NULL)
11127 lwp->lwp_nostop--;
11128 } else
11129 cv_wait(&rp->r_cv, &rp->r_statelock);
11130 }
11131 mutex_exit(&rp->r_statelock);
11132 if (rc != 0) {
11133 ASSERT(bfp->l_type != F_UNLCK);
11134
11135 goto revert;
11136 }
11137
11138 rc = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
11139 if (rc != 0) {
11140 if (rc == ENOSPC || rc == EDQUOT) {
11141 mutex_enter(&rp->r_statelock);
11142 if (!rp->r_error)
11143 rp->r_error = rc;
11144 mutex_exit(&rp->r_statelock);
11145 }
11146
11147 /*
11148 * If this was a lock request, make sure it is
11149 * reverted.
11150 */
11151 if (bfp->l_type != F_UNLCK) {
11152 rc = ENOLCK;
11153 goto revert;
11154 }
11155 }
11156 }
11157
11158 /*
11159 * Call the lock manager to do the real work of contacting
11160 * the server and obtaining the lock.
11161 */
11162 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, cr, &e, NULL, NULL);
11163 rc = e.error;
11164
11165 if (rc == 0)
11166 nfs4_lockcompletion(vp, cmd);
11167
11168 revert:
11169 /*
11170 * If this is either successful unlock request or a lock request that
11171 * failed we should unregister/revert the local lock now.
11172 */
11173 if ((rc == 0 && cmd != F_GETLK && bfp->l_type == F_UNLCK) ||
11174 (rc != 0 && cmd != F_GETLK && bfp->l_type != F_UNLCK)) {
11175 int r;
11176
11177 bfp->l_type = F_UNLCK;
11178 r = reclock(vp, bfp, frcmd, flag, 0, flk_cbp);
11179 /* The unlock cannot fail */
11180 ASSERT(r == 0);
11181 }
11182
11183 done:
11184 nfs_rw_exit(&rp->r_lkserlock);
11185 if (ls != NULL)
11186 lm_rel_sysid(ls);
11187
11188 return (rc);
11189 }
11190
11191 /*
11192 * Free storage space associated with the specified vnode. The portion
11193 * to be freed is specified by bfp->l_start and bfp->l_len (already
11194 * normalized to a "whence" of 0).
11195 *
11196 * This is an experimental facility whose continued existence is not
11197 * guaranteed. Currently, we only support the special case
11198 * of l_len == 0, meaning free to end of file.
11199 */
11200 /* ARGSUSED */
11201 static int
nfs4_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)11202 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
11203 offset_t offset, cred_t *cr, caller_context_t *ct)
11204 {
11205 int error;
11206
11207 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11208 return (EIO);
11209 ASSERT(vp->v_type == VREG);
11210 if (cmd != F_FREESP)
11211 return (EINVAL);
11212
11213 error = convoff(vp, bfp, 0, offset);
11214 if (!error) {
11215 ASSERT(bfp->l_start >= 0);
11216 if (bfp->l_len == 0) {
11217 struct vattr va;
11218
11219 va.va_mask = AT_SIZE;
11220 va.va_size = bfp->l_start;
11221 error = nfs4setattr(vp, &va, 0, cr, NULL);
11222
11223 if (error == 0 && bfp->l_start == 0)
11224 vnevent_truncate(vp, ct);
11225 } else
11226 error = EINVAL;
11227 }
11228
11229 return (error);
11230 }
11231
11232 /* ARGSUSED */
11233 int
nfs4_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)11234 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11235 {
11236 rnode4_t *rp;
11237 rp = VTOR4(vp);
11238
11239 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11240 vp = RTOV4(rp);
11241 }
11242 *vpp = vp;
11243 return (0);
11244 }
11245
11246 /*
11247 * Setup and add an address space callback to do the work of the delmap call.
11248 * The callback will (and must be) deleted in the actual callback function.
11249 *
11250 * This is done in order to take care of the problem that we have with holding
11251 * the address space's a_lock for a long period of time (e.g. if the NFS server
11252 * is down). Callbacks will be executed in the address space code while the
11253 * a_lock is not held. Holding the address space's a_lock causes things such
11254 * as ps and fork to hang because they are trying to acquire this lock as well.
11255 */
11256 /* ARGSUSED */
11257 static int
nfs4_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)11258 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11259 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11260 caller_context_t *ct)
11261 {
11262 int caller_found;
11263 int error;
11264 rnode4_t *rp;
11265 nfs4_delmap_args_t *dmapp;
11266 nfs4_delmapcall_t *delmap_call;
11267
11268 if (vp->v_flag & VNOMAP)
11269 return (ENOSYS);
11270
11271 /*
11272 * A process may not change zones if it has NFS pages mmap'ed
11273 * in, so we can't legitimately get here from the wrong zone.
11274 */
11275 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11276
11277 rp = VTOR4(vp);
11278
11279 /*
11280 * The way that the address space of this process deletes its mapping
11281 * of this file is via the following call chains:
11282 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11283 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11284 *
11285 * With the use of address space callbacks we are allowed to drop the
11286 * address space lock, a_lock, while executing the NFS operations that
11287 * need to go over the wire. Returning EAGAIN to the caller of this
11288 * function is what drives the execution of the callback that we add
11289 * below. The callback will be executed by the address space code
11290 * after dropping the a_lock. When the callback is finished, since
11291 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11292 * is called again on the same segment to finish the rest of the work
11293 * that needs to happen during unmapping.
11294 *
11295 * This action of calling back into the segment driver causes
11296 * nfs4_delmap() to get called again, but since the callback was
11297 * already executed at this point, it already did the work and there
11298 * is nothing left for us to do.
11299 *
11300 * To Summarize:
11301 * - The first time nfs4_delmap is called by the current thread is when
11302 * we add the caller associated with this delmap to the delmap caller
11303 * list, add the callback, and return EAGAIN.
11304 * - The second time in this call chain when nfs4_delmap is called we
11305 * will find this caller in the delmap caller list and realize there
11306 * is no more work to do thus removing this caller from the list and
11307 * returning the error that was set in the callback execution.
11308 */
11309 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11310 if (caller_found) {
11311 /*
11312 * 'error' is from the actual delmap operations. To avoid
11313 * hangs, we need to handle the return of EAGAIN differently
11314 * since this is what drives the callback execution.
11315 * In this case, we don't want to return EAGAIN and do the
11316 * callback execution because there are none to execute.
11317 */
11318 if (error == EAGAIN)
11319 return (0);
11320 else
11321 return (error);
11322 }
11323
11324 /* current caller was not in the list */
11325 delmap_call = nfs4_init_delmapcall();
11326
11327 mutex_enter(&rp->r_statelock);
11328 list_insert_tail(&rp->r_indelmap, delmap_call);
11329 mutex_exit(&rp->r_statelock);
11330
11331 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
11332
11333 dmapp->vp = vp;
11334 dmapp->off = off;
11335 dmapp->addr = addr;
11336 dmapp->len = len;
11337 dmapp->prot = prot;
11338 dmapp->maxprot = maxprot;
11339 dmapp->flags = flags;
11340 dmapp->cr = cr;
11341 dmapp->caller = delmap_call;
11342
11343 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11344 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
11345
11346 return (error ? error : EAGAIN);
11347 }
11348
11349 static nfs4_delmapcall_t *
nfs4_init_delmapcall()11350 nfs4_init_delmapcall()
11351 {
11352 nfs4_delmapcall_t *delmap_call;
11353
11354 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11355 delmap_call->call_id = curthread;
11356 delmap_call->error = 0;
11357
11358 return (delmap_call);
11359 }
11360
11361 static void
nfs4_free_delmapcall(nfs4_delmapcall_t * delmap_call)11362 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11363 {
11364 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11365 }
11366
11367 /*
11368 * Searches for the current delmap caller (based on curthread) in the list of
11369 * callers. If it is found, we remove it and free the delmap caller.
11370 * Returns:
11371 * 0 if the caller wasn't found
11372 * 1 if the caller was found, removed and freed. *errp will be set
11373 * to what the result of the delmap was.
11374 */
11375 static int
nfs4_find_and_delete_delmapcall(rnode4_t * rp,int * errp)11376 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11377 {
11378 nfs4_delmapcall_t *delmap_call;
11379
11380 /*
11381 * If the list doesn't exist yet, we create it and return
11382 * that the caller wasn't found. No list = no callers.
11383 */
11384 mutex_enter(&rp->r_statelock);
11385 if (!(rp->r_flags & R4DELMAPLIST)) {
11386 /* The list does not exist */
11387 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11388 offsetof(nfs4_delmapcall_t, call_node));
11389 rp->r_flags |= R4DELMAPLIST;
11390 mutex_exit(&rp->r_statelock);
11391 return (0);
11392 } else {
11393 /* The list exists so search it */
11394 for (delmap_call = list_head(&rp->r_indelmap);
11395 delmap_call != NULL;
11396 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11397 if (delmap_call->call_id == curthread) {
11398 /* current caller is in the list */
11399 *errp = delmap_call->error;
11400 list_remove(&rp->r_indelmap, delmap_call);
11401 mutex_exit(&rp->r_statelock);
11402 nfs4_free_delmapcall(delmap_call);
11403 return (1);
11404 }
11405 }
11406 }
11407 mutex_exit(&rp->r_statelock);
11408 return (0);
11409 }
11410
11411 /*
11412 * Remove some pages from an mmap'd vnode. Just update the
11413 * count of pages. If doing close-to-open, then flush and
11414 * commit all of the pages associated with this file.
11415 * Otherwise, start an asynchronous page flush to write out
11416 * any dirty pages. This will also associate a credential
11417 * with the rnode which can be used to write the pages.
11418 */
11419 /* ARGSUSED */
11420 static void
nfs4_delmap_callback(struct as * as,void * arg,uint_t event)11421 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11422 {
11423 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11424 rnode4_t *rp;
11425 mntinfo4_t *mi;
11426 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
11427
11428 rp = VTOR4(dmapp->vp);
11429 mi = VTOMI4(dmapp->vp);
11430
11431 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11432 ASSERT(rp->r_mapcnt >= 0);
11433
11434 /*
11435 * Initiate a page flush and potential commit if there are
11436 * pages, the file system was not mounted readonly, the segment
11437 * was mapped shared, and the pages themselves were writeable.
11438 */
11439 if (nfs4_has_pages(dmapp->vp) &&
11440 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11441 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11442 mutex_enter(&rp->r_statelock);
11443 rp->r_flags |= R4DIRTY;
11444 mutex_exit(&rp->r_statelock);
11445 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11446 dmapp->len, dmapp->cr);
11447 if (!e.error) {
11448 mutex_enter(&rp->r_statelock);
11449 e.error = rp->r_error;
11450 rp->r_error = 0;
11451 mutex_exit(&rp->r_statelock);
11452 }
11453 } else
11454 e.error = 0;
11455
11456 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11457 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11458 B_INVAL, dmapp->cr, NULL);
11459
11460 if (e.error) {
11461 e.stat = puterrno4(e.error);
11462 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11463 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11464 dmapp->caller->error = e.error;
11465 }
11466
11467 /* Check to see if we need to close the file */
11468
11469 if (dmapp->vp->v_type == VREG) {
11470 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11471 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
11472
11473 if (e.error != 0 || e.stat != NFS4_OK) {
11474 /*
11475 * Since it is possible that e.error == 0 and
11476 * e.stat != NFS4_OK (and vice versa),
11477 * we do the proper checking in order to get both
11478 * e.error and e.stat reporting the correct info.
11479 */
11480 if (e.stat == NFS4_OK)
11481 e.stat = puterrno4(e.error);
11482 if (e.error == 0)
11483 e.error = geterrno4(e.stat);
11484
11485 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11486 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11487 dmapp->caller->error = e.error;
11488 }
11489 }
11490
11491 (void) as_delete_callback(as, arg);
11492 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11493 }
11494
11495
11496 static uint_t
fattr4_maxfilesize_to_bits(uint64_t ll)11497 fattr4_maxfilesize_to_bits(uint64_t ll)
11498 {
11499 uint_t l = 1;
11500
11501 if (ll == 0) {
11502 return (0);
11503 }
11504
11505 if (ll & 0xffffffff00000000) {
11506 l += 32; ll >>= 32;
11507 }
11508 if (ll & 0xffff0000) {
11509 l += 16; ll >>= 16;
11510 }
11511 if (ll & 0xff00) {
11512 l += 8; ll >>= 8;
11513 }
11514 if (ll & 0xf0) {
11515 l += 4; ll >>= 4;
11516 }
11517 if (ll & 0xc) {
11518 l += 2; ll >>= 2;
11519 }
11520 if (ll & 0x2) {
11521 l += 1;
11522 }
11523 return (l);
11524 }
11525
11526 static int
nfs4_have_xattrs(vnode_t * vp,ulong_t * valp,cred_t * cr)11527 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11528 {
11529 vnode_t *avp = NULL;
11530 int error;
11531
11532 if ((error = nfs4lookup_xattr(vp, "", &avp,
11533 LOOKUP_XATTR, cr)) == 0)
11534 error = do_xattr_exists_check(avp, valp, cr);
11535 if (avp)
11536 VN_RELE(avp);
11537
11538 return (error);
11539 }
11540
11541 /* ARGSUSED */
11542 int
nfs4_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)11543 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11544 caller_context_t *ct)
11545 {
11546 int error;
11547 hrtime_t t;
11548 rnode4_t *rp;
11549 nfs4_ga_res_t gar;
11550 nfs4_ga_ext_res_t ger;
11551
11552 gar.n4g_ext_res = &ger;
11553
11554 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11555 return (EIO);
11556 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11557 *valp = MAXPATHLEN;
11558 return (0);
11559 }
11560 if (cmd == _PC_ACL_ENABLED) {
11561 *valp = _ACL_ACE_ENABLED;
11562 return (0);
11563 }
11564
11565 rp = VTOR4(vp);
11566 if (cmd == _PC_XATTR_EXISTS) {
11567 /*
11568 * The existence of the xattr directory is not sufficient
11569 * for determining whether generic user attributes exists.
11570 * The attribute directory could only be a transient directory
11571 * used for Solaris sysattr support. Do a small readdir
11572 * to verify if the only entries are sysattrs or not.
11573 *
11574 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11575 * is NULL. Once the xadir vp exists, we can create xattrs,
11576 * and we don't have any way to update the "base" object's
11577 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11578 * could help out.
11579 */
11580 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11581 rp->r_xattr_dir == NULL) {
11582 return (nfs4_have_xattrs(vp, valp, cr));
11583 }
11584 } else { /* OLD CODE */
11585 if (ATTRCACHE4_VALID(vp)) {
11586 mutex_enter(&rp->r_statelock);
11587 if (rp->r_pathconf.pc4_cache_valid) {
11588 error = 0;
11589 switch (cmd) {
11590 case _PC_FILESIZEBITS:
11591 *valp =
11592 rp->r_pathconf.pc4_filesizebits;
11593 break;
11594 case _PC_LINK_MAX:
11595 *valp =
11596 rp->r_pathconf.pc4_link_max;
11597 break;
11598 case _PC_NAME_MAX:
11599 *valp =
11600 rp->r_pathconf.pc4_name_max;
11601 break;
11602 case _PC_CHOWN_RESTRICTED:
11603 *valp =
11604 rp->r_pathconf.pc4_chown_restricted;
11605 break;
11606 case _PC_NO_TRUNC:
11607 *valp =
11608 rp->r_pathconf.pc4_no_trunc;
11609 break;
11610 default:
11611 error = EINVAL;
11612 break;
11613 }
11614 mutex_exit(&rp->r_statelock);
11615 #ifdef DEBUG
11616 nfs4_pathconf_cache_hits++;
11617 #endif
11618 return (error);
11619 }
11620 mutex_exit(&rp->r_statelock);
11621 }
11622 }
11623 #ifdef DEBUG
11624 nfs4_pathconf_cache_misses++;
11625 #endif
11626
11627 t = gethrtime();
11628
11629 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
11630
11631 if (error) {
11632 mutex_enter(&rp->r_statelock);
11633 rp->r_pathconf.pc4_cache_valid = FALSE;
11634 rp->r_pathconf.pc4_xattr_valid = FALSE;
11635 mutex_exit(&rp->r_statelock);
11636 return (error);
11637 }
11638
11639 /* interpret the max filesize */
11640 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11641 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
11642
11643 /* Store the attributes we just received */
11644 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
11645
11646 switch (cmd) {
11647 case _PC_FILESIZEBITS:
11648 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11649 break;
11650 case _PC_LINK_MAX:
11651 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11652 break;
11653 case _PC_NAME_MAX:
11654 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11655 break;
11656 case _PC_CHOWN_RESTRICTED:
11657 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11658 break;
11659 case _PC_NO_TRUNC:
11660 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11661 break;
11662 case _PC_XATTR_EXISTS:
11663 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11664 if (error = nfs4_have_xattrs(vp, valp, cr))
11665 return (error);
11666 }
11667 break;
11668 default:
11669 return (EINVAL);
11670 }
11671
11672 return (0);
11673 }
11674
11675 /*
11676 * Called by async thread to do synchronous pageio. Do the i/o, wait
11677 * for it to complete, and cleanup the page list when done.
11678 */
11679 static int
nfs4_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)11680 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11681 int flags, cred_t *cr)
11682 {
11683 int error;
11684
11685 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11686
11687 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11688 if (flags & B_READ)
11689 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11690 else
11691 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11692 return (error);
11693 }
11694
11695 /* ARGSUSED */
11696 static int
nfs4_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)11697 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11698 int flags, cred_t *cr, caller_context_t *ct)
11699 {
11700 int error;
11701 rnode4_t *rp;
11702
11703 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11704 return (EIO);
11705
11706 if (pp == NULL)
11707 return (EINVAL);
11708
11709 rp = VTOR4(vp);
11710 mutex_enter(&rp->r_statelock);
11711 rp->r_count++;
11712 mutex_exit(&rp->r_statelock);
11713
11714 if (flags & B_ASYNC) {
11715 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11716 nfs4_sync_pageio);
11717 } else
11718 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11719 mutex_enter(&rp->r_statelock);
11720 rp->r_count--;
11721 cv_broadcast(&rp->r_cv);
11722 mutex_exit(&rp->r_statelock);
11723 return (error);
11724 }
11725
11726 /* ARGSUSED */
11727 static void
nfs4_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)11728 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11729 caller_context_t *ct)
11730 {
11731 int error;
11732 rnode4_t *rp;
11733 page_t *plist;
11734 page_t *pptr;
11735 offset3 offset;
11736 count3 len;
11737 k_sigset_t smask;
11738
11739 /*
11740 * We should get called with fl equal to either B_FREE or
11741 * B_INVAL. Any other value is illegal.
11742 *
11743 * The page that we are either supposed to free or destroy
11744 * should be exclusive locked and its io lock should not
11745 * be held.
11746 */
11747 ASSERT(fl == B_FREE || fl == B_INVAL);
11748 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
11749
11750 rp = VTOR4(vp);
11751
11752 /*
11753 * If the page doesn't need to be committed or we shouldn't
11754 * even bother attempting to commit it, then just make sure
11755 * that the p_fsdata byte is clear and then either free or
11756 * destroy the page as appropriate.
11757 */
11758 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11759 pp->p_fsdata = C_NOCOMMIT;
11760 if (fl == B_FREE)
11761 page_free(pp, dn);
11762 else
11763 page_destroy(pp, dn);
11764 return;
11765 }
11766
11767 /*
11768 * If there is a page invalidation operation going on, then
11769 * if this is one of the pages being destroyed, then just
11770 * clear the p_fsdata byte and then either free or destroy
11771 * the page as appropriate.
11772 */
11773 mutex_enter(&rp->r_statelock);
11774 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11775 mutex_exit(&rp->r_statelock);
11776 pp->p_fsdata = C_NOCOMMIT;
11777 if (fl == B_FREE)
11778 page_free(pp, dn);
11779 else
11780 page_destroy(pp, dn);
11781 return;
11782 }
11783
11784 /*
11785 * If we are freeing this page and someone else is already
11786 * waiting to do a commit, then just unlock the page and
11787 * return. That other thread will take care of commiting
11788 * this page. The page can be freed sometime after the
11789 * commit has finished. Otherwise, if the page is marked
11790 * as delay commit, then we may be getting called from
11791 * pvn_write_done, one page at a time. This could result
11792 * in one commit per page, so we end up doing lots of small
11793 * commits instead of fewer larger commits. This is bad,
11794 * we want do as few commits as possible.
11795 */
11796 if (fl == B_FREE) {
11797 if (rp->r_flags & R4COMMITWAIT) {
11798 page_unlock(pp);
11799 mutex_exit(&rp->r_statelock);
11800 return;
11801 }
11802 if (pp->p_fsdata == C_DELAYCOMMIT) {
11803 pp->p_fsdata = C_COMMIT;
11804 page_unlock(pp);
11805 mutex_exit(&rp->r_statelock);
11806 return;
11807 }
11808 }
11809
11810 /*
11811 * Check to see if there is a signal which would prevent an
11812 * attempt to commit the pages from being successful. If so,
11813 * then don't bother with all of the work to gather pages and
11814 * generate the unsuccessful RPC. Just return from here and
11815 * let the page be committed at some later time.
11816 */
11817 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11818 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11819 sigunintr(&smask);
11820 page_unlock(pp);
11821 mutex_exit(&rp->r_statelock);
11822 return;
11823 }
11824 sigunintr(&smask);
11825
11826 /*
11827 * We are starting to need to commit pages, so let's try
11828 * to commit as many as possible at once to reduce the
11829 * overhead.
11830 *
11831 * Set the `commit inprogress' state bit. We must
11832 * first wait until any current one finishes. Then
11833 * we initialize the c_pages list with this page.
11834 */
11835 while (rp->r_flags & R4COMMIT) {
11836 rp->r_flags |= R4COMMITWAIT;
11837 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11838 rp->r_flags &= ~R4COMMITWAIT;
11839 }
11840 rp->r_flags |= R4COMMIT;
11841 mutex_exit(&rp->r_statelock);
11842 ASSERT(rp->r_commit.c_pages == NULL);
11843 rp->r_commit.c_pages = pp;
11844 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11845 rp->r_commit.c_commlen = PAGESIZE;
11846
11847 /*
11848 * Gather together all other pages which can be committed.
11849 * They will all be chained off r_commit.c_pages.
11850 */
11851 nfs4_get_commit(vp);
11852
11853 /*
11854 * Clear the `commit inprogress' status and disconnect
11855 * the list of pages to be committed from the rnode.
11856 * At this same time, we also save the starting offset
11857 * and length of data to be committed on the server.
11858 */
11859 plist = rp->r_commit.c_pages;
11860 rp->r_commit.c_pages = NULL;
11861 offset = rp->r_commit.c_commbase;
11862 len = rp->r_commit.c_commlen;
11863 mutex_enter(&rp->r_statelock);
11864 rp->r_flags &= ~R4COMMIT;
11865 cv_broadcast(&rp->r_commit.c_cv);
11866 mutex_exit(&rp->r_statelock);
11867
11868 if (curproc == proc_pageout || curproc == proc_fsflush ||
11869 nfs_zone() != VTOMI4(vp)->mi_zone) {
11870 nfs4_async_commit(vp, plist, offset, len,
11871 cr, do_nfs4_async_commit);
11872 return;
11873 }
11874
11875 /*
11876 * Actually generate the COMMIT op over the wire operation.
11877 */
11878 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
11879
11880 /*
11881 * If we got an error during the commit, just unlock all
11882 * of the pages. The pages will get retransmitted to the
11883 * server during a putpage operation.
11884 */
11885 if (error) {
11886 while (plist != NULL) {
11887 pptr = plist;
11888 page_sub(&plist, pptr);
11889 page_unlock(pptr);
11890 }
11891 return;
11892 }
11893
11894 /*
11895 * We've tried as hard as we can to commit the data to stable
11896 * storage on the server. We just unlock the rest of the pages
11897 * and clear the commit required state. They will be put
11898 * onto the tail of the cachelist if they are nolonger
11899 * mapped.
11900 */
11901 while (plist != pp) {
11902 pptr = plist;
11903 page_sub(&plist, pptr);
11904 pptr->p_fsdata = C_NOCOMMIT;
11905 page_unlock(pptr);
11906 }
11907
11908 /*
11909 * It is possible that nfs4_commit didn't return error but
11910 * some other thread has modified the page we are going
11911 * to free/destroy.
11912 * In this case we need to rewrite the page. Do an explicit check
11913 * before attempting to free/destroy the page. If modified, needs to
11914 * be rewritten so unlock the page and return.
11915 */
11916 if (hat_ismod(pp)) {
11917 pp->p_fsdata = C_NOCOMMIT;
11918 page_unlock(pp);
11919 return;
11920 }
11921
11922 /*
11923 * Now, as appropriate, either free or destroy the page
11924 * that we were called with.
11925 */
11926 pp->p_fsdata = C_NOCOMMIT;
11927 if (fl == B_FREE)
11928 page_free(pp, dn);
11929 else
11930 page_destroy(pp, dn);
11931 }
11932
11933 /*
11934 * Commit requires that the current fh be the file written to.
11935 * The compound op structure is:
11936 * PUTFH(file), COMMIT
11937 */
11938 static int
nfs4_commit(vnode_t * vp,offset4 offset,count4 count,cred_t * cr)11939 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11940 {
11941 COMPOUND4args_clnt args;
11942 COMPOUND4res_clnt res;
11943 COMMIT4res *cm_res;
11944 nfs_argop4 argop[2];
11945 nfs_resop4 *resop;
11946 int doqueue;
11947 mntinfo4_t *mi;
11948 rnode4_t *rp;
11949 cred_t *cred_otw = NULL;
11950 bool_t needrecov = FALSE;
11951 nfs4_recov_state_t recov_state;
11952 nfs4_open_stream_t *osp = NULL;
11953 bool_t first_time = TRUE; /* first time getting OTW cred */
11954 bool_t last_time = FALSE; /* last time getting OTW cred */
11955 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11956
11957 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11958
11959 rp = VTOR4(vp);
11960
11961 mi = VTOMI4(vp);
11962 recov_state.rs_flags = 0;
11963 recov_state.rs_num_retry_despite_err = 0;
11964 get_commit_cred:
11965 /*
11966 * Releases the osp, if a valid open stream is provided.
11967 * Puts a hold on the cred_otw and the new osp (if found).
11968 */
11969 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
11970 &first_time, &last_time);
11971 args.ctag = TAG_COMMIT;
11972 recov_retry:
11973 /*
11974 * Commit ops: putfh file; commit
11975 */
11976 args.array_len = 2;
11977 args.array = argop;
11978
11979 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
11980 &recov_state, NULL);
11981 if (e.error) {
11982 crfree(cred_otw);
11983 if (osp != NULL)
11984 open_stream_rele(osp, rp);
11985 return (e.error);
11986 }
11987
11988 /* putfh directory */
11989 argop[0].argop = OP_CPUTFH;
11990 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
11991
11992 /* commit */
11993 argop[1].argop = OP_COMMIT;
11994 argop[1].nfs_argop4_u.opcommit.offset = offset;
11995 argop[1].nfs_argop4_u.opcommit.count = count;
11996
11997 doqueue = 1;
11998 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
11999
12000 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
12001 if (!needrecov && e.error) {
12002 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
12003 needrecov);
12004 crfree(cred_otw);
12005 if (e.error == EACCES && last_time == FALSE)
12006 goto get_commit_cred;
12007 if (osp != NULL)
12008 open_stream_rele(osp, rp);
12009 return (e.error);
12010 }
12011
12012 if (needrecov) {
12013 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
12014 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
12015 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12016 &recov_state, needrecov);
12017 if (!e.error)
12018 (void) xdr_free(xdr_COMPOUND4res_clnt,
12019 (caddr_t)&res);
12020 goto recov_retry;
12021 }
12022 if (e.error) {
12023 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12024 &recov_state, needrecov);
12025 crfree(cred_otw);
12026 if (osp != NULL)
12027 open_stream_rele(osp, rp);
12028 return (e.error);
12029 }
12030 /* fall through for res.status case */
12031 }
12032
12033 if (res.status) {
12034 e.error = geterrno4(res.status);
12035 if (e.error == EACCES && last_time == FALSE) {
12036 crfree(cred_otw);
12037 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12038 &recov_state, needrecov);
12039 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12040 goto get_commit_cred;
12041 }
12042 /*
12043 * Can't do a nfs4_purge_stale_fh here because this
12044 * can cause a deadlock. nfs4_commit can
12045 * be called from nfs4_dispose which can be called
12046 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
12047 * can call back to pvn_vplist_dirty.
12048 */
12049 if (e.error == ESTALE) {
12050 mutex_enter(&rp->r_statelock);
12051 rp->r_flags |= R4STALE;
12052 if (!rp->r_error)
12053 rp->r_error = e.error;
12054 mutex_exit(&rp->r_statelock);
12055 PURGE_ATTRCACHE4(vp);
12056 } else {
12057 mutex_enter(&rp->r_statelock);
12058 if (!rp->r_error)
12059 rp->r_error = e.error;
12060 mutex_exit(&rp->r_statelock);
12061 }
12062 } else {
12063 ASSERT(rp->r_flags & R4HAVEVERF);
12064 resop = &res.array[1]; /* commit res */
12065 cm_res = &resop->nfs_resop4_u.opcommit;
12066 mutex_enter(&rp->r_statelock);
12067 if (cm_res->writeverf == rp->r_writeverf) {
12068 mutex_exit(&rp->r_statelock);
12069 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12070 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12071 &recov_state, needrecov);
12072 crfree(cred_otw);
12073 if (osp != NULL)
12074 open_stream_rele(osp, rp);
12075 return (0);
12076 }
12077 nfs4_set_mod(vp);
12078 rp->r_writeverf = cm_res->writeverf;
12079 mutex_exit(&rp->r_statelock);
12080 e.error = NFS_VERF_MISMATCH;
12081 }
12082
12083 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12084 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
12085 crfree(cred_otw);
12086 if (osp != NULL)
12087 open_stream_rele(osp, rp);
12088
12089 return (e.error);
12090 }
12091
12092 static void
nfs4_set_mod(vnode_t * vp)12093 nfs4_set_mod(vnode_t *vp)
12094 {
12095 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12096
12097 /* make sure we're looking at the master vnode, not a shadow */
12098 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
12099 }
12100
12101 /*
12102 * This function is used to gather a page list of the pages which
12103 * can be committed on the server.
12104 *
12105 * The calling thread must have set R4COMMIT. This bit is used to
12106 * serialize access to the commit structure in the rnode. As long
12107 * as the thread has set R4COMMIT, then it can manipulate the commit
12108 * structure without requiring any other locks.
12109 *
12110 * When this function is called from nfs4_dispose() the page passed
12111 * into nfs4_dispose() will be SE_EXCL locked, and so this function
12112 * will skip it. This is not a problem since we initially add the
12113 * page to the r_commit page list.
12114 *
12115 */
12116 static void
nfs4_get_commit(vnode_t * vp)12117 nfs4_get_commit(vnode_t *vp)
12118 {
12119 rnode4_t *rp;
12120 page_t *pp;
12121 kmutex_t *vphm;
12122
12123 rp = VTOR4(vp);
12124
12125 ASSERT(rp->r_flags & R4COMMIT);
12126
12127 /* make sure we're looking at the master vnode, not a shadow */
12128
12129 if (IS_SHADOW(vp, rp))
12130 vp = RTOV4(rp);
12131
12132 vphm = page_vnode_mutex(vp);
12133 mutex_enter(vphm);
12134
12135 /*
12136 * If there are no pages associated with this vnode, then
12137 * just return.
12138 */
12139 if ((pp = vp->v_pages) == NULL) {
12140 mutex_exit(vphm);
12141 return;
12142 }
12143
12144 /*
12145 * Step through all of the pages associated with this vnode
12146 * looking for pages which need to be committed.
12147 */
12148 do {
12149 /* Skip marker pages. */
12150 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
12151 continue;
12152
12153 /*
12154 * First short-cut everything (without the page_lock)
12155 * and see if this page does not need to be committed
12156 * or is modified if so then we'll just skip it.
12157 */
12158 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
12159 continue;
12160
12161 /*
12162 * Attempt to lock the page. If we can't, then
12163 * someone else is messing with it or we have been
12164 * called from nfs4_dispose and this is the page that
12165 * nfs4_dispose was called with.. anyway just skip it.
12166 */
12167 if (!page_trylock(pp, SE_EXCL))
12168 continue;
12169
12170 /*
12171 * Lets check again now that we have the page lock.
12172 */
12173 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12174 page_unlock(pp);
12175 continue;
12176 }
12177
12178 /* this had better not be a free page */
12179 ASSERT(PP_ISFREE(pp) == 0);
12180
12181 /*
12182 * The page needs to be committed and we locked it.
12183 * Update the base and length parameters and add it
12184 * to r_pages.
12185 */
12186 if (rp->r_commit.c_pages == NULL) {
12187 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12188 rp->r_commit.c_commlen = PAGESIZE;
12189 } else if (pp->p_offset < rp->r_commit.c_commbase) {
12190 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
12191 (offset3)pp->p_offset + rp->r_commit.c_commlen;
12192 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12193 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
12194 <= pp->p_offset) {
12195 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12196 rp->r_commit.c_commbase + PAGESIZE;
12197 }
12198 page_add(&rp->r_commit.c_pages, pp);
12199 } while ((pp = pp->p_vpnext) != vp->v_pages);
12200
12201 mutex_exit(vphm);
12202 }
12203
12204 /*
12205 * This routine is used to gather together a page list of the pages
12206 * which are to be committed on the server. This routine must not
12207 * be called if the calling thread holds any locked pages.
12208 *
12209 * The calling thread must have set R4COMMIT. This bit is used to
12210 * serialize access to the commit structure in the rnode. As long
12211 * as the thread has set R4COMMIT, then it can manipulate the commit
12212 * structure without requiring any other locks.
12213 */
12214 static void
nfs4_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)12215 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
12216 {
12217
12218 rnode4_t *rp;
12219 page_t *pp;
12220 u_offset_t end;
12221 u_offset_t off;
12222 ASSERT(len != 0);
12223 rp = VTOR4(vp);
12224 ASSERT(rp->r_flags & R4COMMIT);
12225
12226 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12227
12228 /* make sure we're looking at the master vnode, not a shadow */
12229
12230 if (IS_SHADOW(vp, rp))
12231 vp = RTOV4(rp);
12232
12233 /*
12234 * If there are no pages associated with this vnode, then
12235 * just return.
12236 */
12237 if ((pp = vp->v_pages) == NULL)
12238 return;
12239 /*
12240 * Calculate the ending offset.
12241 */
12242 end = soff + len;
12243 for (off = soff; off < end; off += PAGESIZE) {
12244 /*
12245 * Lookup each page by vp, offset.
12246 */
12247 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12248 continue;
12249 /*
12250 * If this page does not need to be committed or is
12251 * modified, then just skip it.
12252 */
12253 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12254 page_unlock(pp);
12255 continue;
12256 }
12257
12258 ASSERT(PP_ISFREE(pp) == 0);
12259 /*
12260 * The page needs to be committed and we locked it.
12261 * Update the base and length parameters and add it
12262 * to r_pages.
12263 */
12264 if (rp->r_commit.c_pages == NULL) {
12265 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12266 rp->r_commit.c_commlen = PAGESIZE;
12267 } else {
12268 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12269 rp->r_commit.c_commbase + PAGESIZE;
12270 }
12271 page_add(&rp->r_commit.c_pages, pp);
12272 }
12273 }
12274
12275 /*
12276 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12277 * Flushes and commits data to the server.
12278 */
12279 static int
nfs4_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)12280 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12281 {
12282 int error;
12283 verifier4 write_verf;
12284 rnode4_t *rp = VTOR4(vp);
12285
12286 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12287
12288 /*
12289 * Flush the data portion of the file and then commit any
12290 * portions which need to be committed. This may need to
12291 * be done twice if the server has changed state since
12292 * data was last written. The data will need to be
12293 * rewritten to the server and then a new commit done.
12294 *
12295 * In fact, this may need to be done several times if the
12296 * server is having problems and crashing while we are
12297 * attempting to do this.
12298 */
12299
12300 top:
12301 /*
12302 * Do a flush based on the poff and plen arguments. This
12303 * will synchronously write out any modified pages in the
12304 * range specified by (poff, plen). This starts all of the
12305 * i/o operations which will be waited for in the next
12306 * call to nfs4_putpage
12307 */
12308
12309 mutex_enter(&rp->r_statelock);
12310 write_verf = rp->r_writeverf;
12311 mutex_exit(&rp->r_statelock);
12312
12313 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12314 if (error == EAGAIN)
12315 error = 0;
12316
12317 /*
12318 * Do a flush based on the poff and plen arguments. This
12319 * will synchronously write out any modified pages in the
12320 * range specified by (poff, plen) and wait until all of
12321 * the asynchronous i/o's in that range are done as well.
12322 */
12323 if (!error)
12324 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
12325
12326 if (error)
12327 return (error);
12328
12329 mutex_enter(&rp->r_statelock);
12330 if (rp->r_writeverf != write_verf) {
12331 mutex_exit(&rp->r_statelock);
12332 goto top;
12333 }
12334 mutex_exit(&rp->r_statelock);
12335
12336 /*
12337 * Now commit any pages which might need to be committed.
12338 * If the error, NFS_VERF_MISMATCH, is returned, then
12339 * start over with the flush operation.
12340 */
12341 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
12342
12343 if (error == NFS_VERF_MISMATCH)
12344 goto top;
12345
12346 return (error);
12347 }
12348
12349 /*
12350 * nfs4_commit_vp() will wait for other pending commits and
12351 * will either commit the whole file or a range, plen dictates
12352 * if we commit whole file. a value of zero indicates the whole
12353 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12354 */
12355 static int
nfs4_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr,int wait_on_writes)12356 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12357 cred_t *cr, int wait_on_writes)
12358 {
12359 rnode4_t *rp;
12360 page_t *plist;
12361 offset3 offset;
12362 count3 len;
12363
12364 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12365
12366 rp = VTOR4(vp);
12367
12368 /*
12369 * before we gather commitable pages make
12370 * sure there are no outstanding async writes
12371 */
12372 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12373 mutex_enter(&rp->r_statelock);
12374 while (rp->r_count > 0) {
12375 cv_wait(&rp->r_cv, &rp->r_statelock);
12376 }
12377 mutex_exit(&rp->r_statelock);
12378 }
12379
12380 /*
12381 * Set the `commit inprogress' state bit. We must
12382 * first wait until any current one finishes.
12383 */
12384 mutex_enter(&rp->r_statelock);
12385 while (rp->r_flags & R4COMMIT) {
12386 rp->r_flags |= R4COMMITWAIT;
12387 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12388 rp->r_flags &= ~R4COMMITWAIT;
12389 }
12390 rp->r_flags |= R4COMMIT;
12391 mutex_exit(&rp->r_statelock);
12392
12393 /*
12394 * Gather all of the pages which need to be
12395 * committed.
12396 */
12397 if (plen == 0)
12398 nfs4_get_commit(vp);
12399 else
12400 nfs4_get_commit_range(vp, poff, plen);
12401
12402 /*
12403 * Clear the `commit inprogress' bit and disconnect the
12404 * page list which was gathered by nfs4_get_commit.
12405 */
12406 plist = rp->r_commit.c_pages;
12407 rp->r_commit.c_pages = NULL;
12408 offset = rp->r_commit.c_commbase;
12409 len = rp->r_commit.c_commlen;
12410 mutex_enter(&rp->r_statelock);
12411 rp->r_flags &= ~R4COMMIT;
12412 cv_broadcast(&rp->r_commit.c_cv);
12413 mutex_exit(&rp->r_statelock);
12414
12415 /*
12416 * If any pages need to be committed, commit them and
12417 * then unlock them so that they can be freed some
12418 * time later.
12419 */
12420 if (plist == NULL)
12421 return (0);
12422
12423 /*
12424 * No error occurred during the flush portion
12425 * of this operation, so now attempt to commit
12426 * the data to stable storage on the server.
12427 *
12428 * This will unlock all of the pages on the list.
12429 */
12430 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12431 }
12432
12433 static int
nfs4_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12434 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12435 cred_t *cr)
12436 {
12437 int error;
12438 page_t *pp;
12439
12440 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12441
12442 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
12443
12444 /*
12445 * If we got an error, then just unlock all of the pages
12446 * on the list.
12447 */
12448 if (error) {
12449 while (plist != NULL) {
12450 pp = plist;
12451 page_sub(&plist, pp);
12452 page_unlock(pp);
12453 }
12454 return (error);
12455 }
12456 /*
12457 * We've tried as hard as we can to commit the data to stable
12458 * storage on the server. We just unlock the pages and clear
12459 * the commit required state. They will get freed later.
12460 */
12461 while (plist != NULL) {
12462 pp = plist;
12463 page_sub(&plist, pp);
12464 pp->p_fsdata = C_NOCOMMIT;
12465 page_unlock(pp);
12466 }
12467
12468 return (error);
12469 }
12470
12471 static void
do_nfs4_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12472 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12473 cred_t *cr)
12474 {
12475
12476 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12477 }
12478
12479 /*ARGSUSED*/
12480 static int
nfs4_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12481 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12482 caller_context_t *ct)
12483 {
12484 int error = 0;
12485 mntinfo4_t *mi;
12486 vattr_t va;
12487 vsecattr_t nfsace4_vsap;
12488
12489 mi = VTOMI4(vp);
12490 if (nfs_zone() != mi->mi_zone)
12491 return (EIO);
12492 if (mi->mi_flags & MI4_ACL) {
12493 /* if we have a delegation, return it */
12494 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12495 (void) nfs4delegreturn(VTOR4(vp),
12496 NFS4_DR_REOPEN|NFS4_DR_PUSH);
12497
12498 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12499 NFS4_ACL_SET);
12500 if (error) /* EINVAL */
12501 return (error);
12502
12503 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12504 /*
12505 * These are aclent_t type entries.
12506 */
12507 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12508 vp->v_type == VDIR, FALSE);
12509 if (error)
12510 return (error);
12511 } else {
12512 /*
12513 * These are ace_t type entries.
12514 */
12515 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12516 FALSE);
12517 if (error)
12518 return (error);
12519 }
12520 bzero(&va, sizeof (va));
12521 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12522 vs_ace4_destroy(&nfsace4_vsap);
12523 return (error);
12524 }
12525 return (ENOSYS);
12526 }
12527
12528 /* ARGSUSED */
12529 int
nfs4_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12530 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12531 caller_context_t *ct)
12532 {
12533 int error;
12534 mntinfo4_t *mi;
12535 nfs4_ga_res_t gar;
12536 rnode4_t *rp = VTOR4(vp);
12537
12538 mi = VTOMI4(vp);
12539 if (nfs_zone() != mi->mi_zone)
12540 return (EIO);
12541
12542 bzero(&gar, sizeof (gar));
12543 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
12544
12545 /*
12546 * vsecattr->vsa_mask holds the original acl request mask.
12547 * This is needed when determining what to return.
12548 * (See: nfs4_create_getsecattr_return())
12549 */
12550 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12551 if (error) /* EINVAL */
12552 return (error);
12553
12554 /*
12555 * If this is a referral stub, don't try to go OTW for an ACL
12556 */
12557 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12558 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
12559
12560 if (mi->mi_flags & MI4_ACL) {
12561 /*
12562 * Check if the data is cached and the cache is valid. If it
12563 * is we don't go over the wire.
12564 */
12565 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12566 mutex_enter(&rp->r_statelock);
12567 if (rp->r_secattr != NULL) {
12568 error = nfs4_create_getsecattr_return(
12569 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12570 rp->r_attr.va_gid,
12571 vp->v_type == VDIR);
12572 if (!error) { /* error == 0 - Success! */
12573 mutex_exit(&rp->r_statelock);
12574 return (error);
12575 }
12576 }
12577 mutex_exit(&rp->r_statelock);
12578 }
12579
12580 /*
12581 * The getattr otw call will always get both the acl, in
12582 * the form of a list of nfsace4's, and the number of acl
12583 * entries; independent of the value of gar.n4g_va.va_mask.
12584 */
12585 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12586 if (error) {
12587 vs_ace4_destroy(&gar.n4g_vsa);
12588 if (error == ENOTSUP || error == EOPNOTSUPP)
12589 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12590 return (error);
12591 }
12592
12593 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12594 /*
12595 * No error was returned, but according to the response
12596 * bitmap, neither was an acl.
12597 */
12598 vs_ace4_destroy(&gar.n4g_vsa);
12599 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12600 return (error);
12601 }
12602
12603 /*
12604 * Update the cache with the ACL.
12605 */
12606 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
12607
12608 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12609 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12610 vp->v_type == VDIR);
12611 vs_ace4_destroy(&gar.n4g_vsa);
12612 if ((error) && (vsecattr->vsa_mask &
12613 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12614 (error != EACCES)) {
12615 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12616 }
12617 return (error);
12618 }
12619 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12620 return (error);
12621 }
12622
12623 /*
12624 * The function returns:
12625 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12626 * - EINVAL if the passed in "acl_mask" is an invalid request.
12627 *
12628 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12629 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12630 *
12631 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12632 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12633 * - We have a count field set without the corresponding acl field set. (e.g. -
12634 * VSA_ACECNT is set, but VSA_ACE is not)
12635 */
12636 static int
nfs4_is_acl_mask_valid(uint_t acl_mask,nfs4_acl_op_t op)12637 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12638 {
12639 /* Shortcut the masks that are always valid. */
12640 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12641 return (0);
12642 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12643 return (0);
12644
12645 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12646 /*
12647 * We can't have any VSA_ACL type stuff in the mask now.
12648 */
12649 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12650 VSA_DFACLCNT))
12651 return (EINVAL);
12652
12653 if (op == NFS4_ACL_SET) {
12654 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12655 return (EINVAL);
12656 }
12657 }
12658
12659 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12660 /*
12661 * We can't have any VSA_ACE type stuff in the mask now.
12662 */
12663 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12664 return (EINVAL);
12665
12666 if (op == NFS4_ACL_SET) {
12667 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12668 return (EINVAL);
12669
12670 if ((acl_mask & VSA_DFACLCNT) &&
12671 !(acl_mask & VSA_DFACL))
12672 return (EINVAL);
12673 }
12674 }
12675 return (0);
12676 }
12677
12678 /*
12679 * The theory behind creating the correct getsecattr return is simply this:
12680 * "Don't return anything that the caller is not expecting to have to free."
12681 */
12682 static int
nfs4_create_getsecattr_return(vsecattr_t * filled_vsap,vsecattr_t * vsap,uid_t uid,gid_t gid,int isdir)12683 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12684 uid_t uid, gid_t gid, int isdir)
12685 {
12686 int error = 0;
12687 /* Save the mask since the translators modify it. */
12688 uint_t orig_mask = vsap->vsa_mask;
12689
12690 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12691 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12692
12693 if (error)
12694 return (error);
12695
12696 /*
12697 * If the caller only asked for the ace count (VSA_ACECNT)
12698 * don't give them the full acl (VSA_ACE), free it.
12699 */
12700 if (!orig_mask & VSA_ACE) {
12701 if (vsap->vsa_aclentp != NULL) {
12702 kmem_free(vsap->vsa_aclentp,
12703 vsap->vsa_aclcnt * sizeof (ace_t));
12704 vsap->vsa_aclentp = NULL;
12705 }
12706 }
12707 vsap->vsa_mask = orig_mask;
12708
12709 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12710 VSA_DFACLCNT)) {
12711 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12712 isdir, FALSE);
12713
12714 if (error)
12715 return (error);
12716
12717 /*
12718 * If the caller only asked for the acl count (VSA_ACLCNT)
12719 * and/or the default acl count (VSA_DFACLCNT) don't give them
12720 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12721 */
12722 if (!orig_mask & VSA_ACL) {
12723 if (vsap->vsa_aclentp != NULL) {
12724 kmem_free(vsap->vsa_aclentp,
12725 vsap->vsa_aclcnt * sizeof (aclent_t));
12726 vsap->vsa_aclentp = NULL;
12727 }
12728 }
12729
12730 if (!orig_mask & VSA_DFACL) {
12731 if (vsap->vsa_dfaclentp != NULL) {
12732 kmem_free(vsap->vsa_dfaclentp,
12733 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12734 vsap->vsa_dfaclentp = NULL;
12735 }
12736 }
12737 vsap->vsa_mask = orig_mask;
12738 }
12739 return (0);
12740 }
12741
12742 /* ARGSUSED */
12743 int
nfs4_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)12744 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12745 caller_context_t *ct)
12746 {
12747 int error;
12748
12749 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12750 return (EIO);
12751 /*
12752 * check for valid cmd parameter
12753 */
12754 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12755 return (EINVAL);
12756
12757 /*
12758 * Check access permissions
12759 */
12760 if ((cmd & F_SHARE) &&
12761 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12762 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12763 return (EBADF);
12764
12765 /*
12766 * If the filesystem is mounted using local locking, pass the
12767 * request off to the local share code.
12768 */
12769 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12770 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
12771
12772 switch (cmd) {
12773 case F_SHARE:
12774 case F_UNSHARE:
12775 /*
12776 * This will be properly implemented later,
12777 * see RFE: 4823948 .
12778 */
12779 error = EAGAIN;
12780 break;
12781
12782 case F_HASREMOTELOCKS:
12783 /*
12784 * NFS client can't store remote locks itself
12785 */
12786 shr->s_access = 0;
12787 error = 0;
12788 break;
12789
12790 default:
12791 error = EINVAL;
12792 break;
12793 }
12794
12795 return (error);
12796 }
12797
12798 /*
12799 * Common code called by directory ops to update the attrcache
12800 */
12801 static int
nfs4_update_attrcache(nfsstat4 status,nfs4_ga_res_t * garp,hrtime_t t,vnode_t * vp,cred_t * cr)12802 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12803 hrtime_t t, vnode_t *vp, cred_t *cr)
12804 {
12805 int error = 0;
12806
12807 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12808
12809 if (status != NFS4_OK) {
12810 /* getattr not done or failed */
12811 PURGE_ATTRCACHE4(vp);
12812 return (error);
12813 }
12814
12815 if (garp) {
12816 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12817 } else {
12818 PURGE_ATTRCACHE4(vp);
12819 }
12820 return (error);
12821 }
12822
12823 /*
12824 * Update directory caches for directory modification ops (link, rename, etc.)
12825 * When dinfo is NULL, manage dircaches in the old way.
12826 */
12827 static void
nfs4_update_dircaches(change_info4 * cinfo,vnode_t * dvp,vnode_t * vp,char * nm,dirattr_info_t * dinfo)12828 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12829 dirattr_info_t *dinfo)
12830 {
12831 rnode4_t *drp = VTOR4(dvp);
12832
12833 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
12834
12835 /* Purge rddir cache for dir since it changed */
12836 if (drp->r_dir != NULL)
12837 nfs4_purge_rddir_cache(dvp);
12838
12839 /*
12840 * If caller provided dinfo, then use it to manage dir caches.
12841 */
12842 if (dinfo != NULL) {
12843 if (vp != NULL) {
12844 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12845 if (!VTOR4(vp)->created_v4) {
12846 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12847 dnlc_update(dvp, nm, vp);
12848 } else {
12849 /*
12850 * XXX don't update if the created_v4 flag is
12851 * set
12852 */
12853 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12854 NFS4_DEBUG(nfs4_client_state_debug,
12855 (CE_NOTE, "nfs4_update_dircaches: "
12856 "don't update dnlc: created_v4 flag"));
12857 }
12858 }
12859
12860 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12861 dinfo->di_cred, FALSE, cinfo);
12862
12863 return;
12864 }
12865
12866 /*
12867 * Caller didn't provide dinfo, then check change_info4 to update DNLC.
12868 * Since caller modified dir but didn't receive post-dirmod-op dir
12869 * attrs, the dir's attrs must be purged.
12870 *
12871 * XXX this check and dnlc update/purge should really be atomic,
12872 * XXX but can't use rnode statelock because it'll deadlock in
12873 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12874 * XXX does occur.
12875 *
12876 * XXX We also may want to check that atomic is true in the
12877 * XXX change_info struct. If it is not, the change_info may
12878 * XXX reflect changes by more than one clients which means that
12879 * XXX our cache may not be valid.
12880 */
12881 PURGE_ATTRCACHE4(dvp);
12882 if (drp->r_change == cinfo->before) {
12883 /* no changes took place in the directory prior to our link */
12884 if (vp != NULL) {
12885 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12886 if (!VTOR4(vp)->created_v4) {
12887 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12888 dnlc_update(dvp, nm, vp);
12889 } else {
12890 /*
12891 * XXX dont' update if the created_v4 flag
12892 * is set
12893 */
12894 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12895 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12896 "nfs4_update_dircaches: don't"
12897 " update dnlc: created_v4 flag"));
12898 }
12899 }
12900 } else {
12901 /* Another client modified directory - purge its dnlc cache */
12902 dnlc_purge_vp(dvp);
12903 }
12904 }
12905
12906 /*
12907 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12908 * file.
12909 *
12910 * The 'reopening_file' boolean should be set to TRUE if we are reopening this
12911 * file (ie: client recovery) and otherwise set to FALSE.
12912 *
12913 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
12914 * initiated) calling functions.
12915 *
12916 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
12917 * of resending a 'lost' open request.
12918 *
12919 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken
12920 * server that hands out BAD_SEQID on open confirm.
12921 *
12922 * Errors are returned via the nfs4_error_t parameter.
12923 */
12924 void
nfs4open_confirm(vnode_t * vp,seqid4 * seqid,stateid4 * stateid,cred_t * cr,bool_t reopening_file,bool_t * retry_open,nfs4_open_owner_t * oop,bool_t resend,nfs4_error_t * ep,int * num_bseqid_retryp)12925 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12926 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12927 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12928 {
12929 COMPOUND4args_clnt args;
12930 COMPOUND4res_clnt res;
12931 nfs_argop4 argop[2];
12932 nfs_resop4 *resop;
12933 int doqueue = 1;
12934 mntinfo4_t *mi;
12935 OPEN_CONFIRM4args *open_confirm_args;
12936 int needrecov;
12937
12938 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12939 #if DEBUG
12940 mutex_enter(&oop->oo_lock);
12941 ASSERT(oop->oo_seqid_inuse);
12942 mutex_exit(&oop->oo_lock);
12943 #endif
12944
12945 recov_retry_confirm:
12946 nfs4_error_zinit(ep);
12947 *retry_open = FALSE;
12948
12949 if (resend)
12950 args.ctag = TAG_OPEN_CONFIRM_LOST;
12951 else
12952 args.ctag = TAG_OPEN_CONFIRM;
12953
12954 args.array_len = 2;
12955 args.array = argop;
12956
12957 /* putfh target fh */
12958 argop[0].argop = OP_CPUTFH;
12959 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
12960
12961 argop[1].argop = OP_OPEN_CONFIRM;
12962 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
12963
12964 (*seqid) += 1;
12965 open_confirm_args->seqid = *seqid;
12966 open_confirm_args->open_stateid = *stateid;
12967
12968 mi = VTOMI4(vp);
12969
12970 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
12971
12972 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
12973 nfs4_set_open_seqid((*seqid), oop, args.ctag);
12974 }
12975
12976 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
12977 if (!needrecov && ep->error)
12978 return;
12979
12980 if (needrecov) {
12981 bool_t abort = FALSE;
12982
12983 if (reopening_file == FALSE) {
12984 nfs4_bseqid_entry_t *bsep = NULL;
12985
12986 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
12987 bsep = nfs4_create_bseqid_entry(oop, NULL,
12988 vp, 0, args.ctag,
12989 open_confirm_args->seqid);
12990
12991 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
12992 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
12993 if (bsep) {
12994 kmem_free(bsep, sizeof (*bsep));
12995 if (num_bseqid_retryp &&
12996 --(*num_bseqid_retryp) == 0)
12997 abort = TRUE;
12998 }
12999 }
13000 if ((ep->error == ETIMEDOUT ||
13001 res.status == NFS4ERR_RESOURCE) &&
13002 abort == FALSE && resend == FALSE) {
13003 if (!ep->error)
13004 (void) xdr_free(xdr_COMPOUND4res_clnt,
13005 (caddr_t)&res);
13006
13007 delay(SEC_TO_TICK(confirm_retry_sec));
13008 goto recov_retry_confirm;
13009 }
13010 /* State may have changed so retry the entire OPEN op */
13011 if (abort == FALSE)
13012 *retry_open = TRUE;
13013 else
13014 *retry_open = FALSE;
13015 if (!ep->error)
13016 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13017 return;
13018 }
13019
13020 if (res.status) {
13021 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13022 return;
13023 }
13024
13025 resop = &res.array[1]; /* open confirm res */
13026 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
13027 stateid, sizeof (*stateid));
13028
13029 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13030 }
13031
13032 /*
13033 * Return the credentials associated with a client state object. The
13034 * caller is responsible for freeing the credentials.
13035 */
13036
13037 static cred_t *
state_to_cred(nfs4_open_stream_t * osp)13038 state_to_cred(nfs4_open_stream_t *osp)
13039 {
13040 cred_t *cr;
13041
13042 /*
13043 * It's ok to not lock the open stream and open owner to get
13044 * the oo_cred since this is only written once (upon creation)
13045 * and will not change.
13046 */
13047 cr = osp->os_open_owner->oo_cred;
13048 crhold(cr);
13049
13050 return (cr);
13051 }
13052
13053 /*
13054 * nfs4_find_sysid
13055 *
13056 * Find the sysid for the knetconfig associated with the given mi.
13057 */
13058 static struct lm_sysid *
nfs4_find_sysid(mntinfo4_t * mi)13059 nfs4_find_sysid(mntinfo4_t *mi)
13060 {
13061 ASSERT(nfs_zone() == mi->mi_zone);
13062
13063 /*
13064 * Switch from RDMA knconf to original mount knconf
13065 */
13066 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
13067 mi->mi_curr_serv->sv_hostname, NULL));
13068 }
13069
13070 #ifdef DEBUG
13071 /*
13072 * Return a string version of the call type for easy reading.
13073 */
13074 static char *
nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)13075 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
13076 {
13077 switch (ctype) {
13078 case NFS4_LCK_CTYPE_NORM:
13079 return ("NORMAL");
13080 case NFS4_LCK_CTYPE_RECLAIM:
13081 return ("RECLAIM");
13082 case NFS4_LCK_CTYPE_RESEND:
13083 return ("RESEND");
13084 case NFS4_LCK_CTYPE_REINSTATE:
13085 return ("REINSTATE");
13086 default:
13087 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
13088 "type %d", ctype);
13089 return ("");
13090 }
13091 }
13092 #endif
13093
13094 /*
13095 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
13096 * Unlock requests don't have an over-the-wire locktype, so we just return
13097 * something non-threatening.
13098 */
13099
13100 static nfs_lock_type4
flk_to_locktype(int cmd,int l_type)13101 flk_to_locktype(int cmd, int l_type)
13102 {
13103 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
13104
13105 switch (l_type) {
13106 case F_UNLCK:
13107 return (READ_LT);
13108 case F_RDLCK:
13109 if (cmd == F_SETLK)
13110 return (READ_LT);
13111 else
13112 return (READW_LT);
13113 case F_WRLCK:
13114 if (cmd == F_SETLK)
13115 return (WRITE_LT);
13116 else
13117 return (WRITEW_LT);
13118 }
13119 panic("flk_to_locktype");
13120 /*NOTREACHED*/
13121 }
13122
13123 /*
13124 * Set the flock64's lm_sysid for nfs4frlock.
13125 */
13126 static int
nfs4frlock_get_sysid(struct lm_sysid ** lspp,vnode_t * vp,flock64_t * flk)13127 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
13128 {
13129 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13130
13131 /* Find the lm_sysid */
13132 *lspp = nfs4_find_sysid(VTOMI4(vp));
13133
13134 if (*lspp == NULL) {
13135 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13136 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
13137 return (ENOLCK);
13138 }
13139
13140 flk->l_sysid = lm_sysidt(*lspp);
13141
13142 return (0);
13143 }
13144
13145 /*
13146 * Do the remaining preliminary setup for nfs4frlock.
13147 */
13148 static void
nfs4frlock_pre_setup(clock_t * tick_delayp,nfs4_recov_state_t * recov_statep,vnode_t * vp,cred_t * search_cr,cred_t ** cred_otw)13149 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
13150 vnode_t *vp, cred_t *search_cr, cred_t **cred_otw)
13151 {
13152 /*
13153 * set tick_delay to the base delay time.
13154 * (nfs4_base_wait_time is in msecs)
13155 */
13156
13157 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000);
13158
13159 recov_statep->rs_flags = 0;
13160 recov_statep->rs_num_retry_despite_err = 0;
13161 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
13162 }
13163
13164 /*
13165 * Initialize and allocate the data structures necessary for
13166 * the nfs4frlock call.
13167 * Allocates argsp's op array, frees up the saved_rqstpp if there is one.
13168 */
13169 static void
nfs4frlock_call_init(COMPOUND4args_clnt * argsp,COMPOUND4args_clnt ** argspp,nfs_argop4 ** argopp,nfs4_op_hint_t * op_hintp,flock64_t * flk,int cmd,bool_t * retry,bool_t * did_start_fop,COMPOUND4res_clnt ** respp,bool_t * skip_get_err,nfs4_lost_rqst_t * lost_rqstp)13170 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
13171 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
13172 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
13173 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
13174 {
13175 int argoplist_size;
13176 int num_ops = 2;
13177
13178 *retry = FALSE;
13179 *did_start_fop = FALSE;
13180 *skip_get_err = FALSE;
13181 lost_rqstp->lr_op = 0;
13182 argoplist_size = num_ops * sizeof (nfs_argop4);
13183 /* fill array with zero */
13184 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
13185
13186 *argspp = argsp;
13187 *respp = NULL;
13188
13189 argsp->array_len = num_ops;
13190 argsp->array = *argopp;
13191
13192 /* initialize in case of error; will get real value down below */
13193 argsp->ctag = TAG_NONE;
13194
13195 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
13196 *op_hintp = OH_LOCKU;
13197 else
13198 *op_hintp = OH_OTHER;
13199 }
13200
13201 /*
13202 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
13203 * the proper nfs4_server_t for this instance of nfs4frlock.
13204 * Returns 0 (success) or an errno value.
13205 */
13206 static int
nfs4frlock_start_call(nfs4_lock_call_type_t ctype,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,bool_t * did_start_fop,bool_t * startrecovp)13207 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
13208 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
13209 bool_t *did_start_fop, bool_t *startrecovp)
13210 {
13211 int error = 0;
13212 rnode4_t *rp;
13213
13214 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13215
13216 if (ctype == NFS4_LCK_CTYPE_NORM) {
13217 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
13218 recov_statep, startrecovp);
13219 if (error)
13220 return (error);
13221 *did_start_fop = TRUE;
13222 } else {
13223 *did_start_fop = FALSE;
13224 *startrecovp = FALSE;
13225 }
13226
13227 if (!error) {
13228 rp = VTOR4(vp);
13229
13230 /* If the file failed recovery, just quit. */
13231 mutex_enter(&rp->r_statelock);
13232 if (rp->r_flags & R4RECOVERR) {
13233 error = EIO;
13234 }
13235 mutex_exit(&rp->r_statelock);
13236 }
13237
13238 return (error);
13239 }
13240
13241 /*
13242 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
13243 * resend nfs4frlock call is initiated by the recovery framework.
13244 * Acquires the lop and oop seqid synchronization.
13245 */
13246 static void
nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t * resend_rqstp,COMPOUND4args_clnt * argsp,nfs_argop4 * argop,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,LOCK4args ** lock_argsp,LOCKU4args ** locku_argsp)13247 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
13248 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
13249 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13250 LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
13251 {
13252 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
13253 int error;
13254
13255 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
13256 (CE_NOTE,
13257 "nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
13258 ASSERT(resend_rqstp != NULL);
13259 ASSERT(resend_rqstp->lr_op == OP_LOCK ||
13260 resend_rqstp->lr_op == OP_LOCKU);
13261
13262 *oopp = resend_rqstp->lr_oop;
13263 if (resend_rqstp->lr_oop) {
13264 open_owner_hold(resend_rqstp->lr_oop);
13265 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
13266 ASSERT(error == 0); /* recov thread always succeeds */
13267 }
13268
13269 /* Must resend this lost lock/locku request. */
13270 ASSERT(resend_rqstp->lr_lop != NULL);
13271 *lopp = resend_rqstp->lr_lop;
13272 lock_owner_hold(resend_rqstp->lr_lop);
13273 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
13274 ASSERT(error == 0); /* recov thread always succeeds */
13275
13276 *ospp = resend_rqstp->lr_osp;
13277 if (*ospp)
13278 open_stream_hold(resend_rqstp->lr_osp);
13279
13280 if (resend_rqstp->lr_op == OP_LOCK) {
13281 LOCK4args *lock_args;
13282
13283 argop->argop = OP_LOCK;
13284 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
13285 lock_args->locktype = resend_rqstp->lr_locktype;
13286 lock_args->reclaim =
13287 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
13288 lock_args->offset = resend_rqstp->lr_flk->l_start;
13289 lock_args->length = resend_rqstp->lr_flk->l_len;
13290 if (lock_args->length == 0)
13291 lock_args->length = ~lock_args->length;
13292 nfs4_setup_lock_args(*lopp, *oopp, *ospp,
13293 mi2clientid(mi), &lock_args->locker);
13294
13295 switch (resend_rqstp->lr_ctype) {
13296 case NFS4_LCK_CTYPE_RESEND:
13297 argsp->ctag = TAG_LOCK_RESEND;
13298 break;
13299 case NFS4_LCK_CTYPE_REINSTATE:
13300 argsp->ctag = TAG_LOCK_REINSTATE;
13301 break;
13302 case NFS4_LCK_CTYPE_RECLAIM:
13303 argsp->ctag = TAG_LOCK_RECLAIM;
13304 break;
13305 default:
13306 argsp->ctag = TAG_LOCK_UNKNOWN;
13307 break;
13308 }
13309 } else {
13310 LOCKU4args *locku_args;
13311 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
13312
13313 argop->argop = OP_LOCKU;
13314 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
13315 locku_args->locktype = READ_LT;
13316 locku_args->seqid = lop->lock_seqid + 1;
13317 mutex_enter(&lop->lo_lock);
13318 locku_args->lock_stateid = lop->lock_stateid;
13319 mutex_exit(&lop->lo_lock);
13320 locku_args->offset = resend_rqstp->lr_flk->l_start;
13321 locku_args->length = resend_rqstp->lr_flk->l_len;
13322 if (locku_args->length == 0)
13323 locku_args->length = ~locku_args->length;
13324
13325 switch (resend_rqstp->lr_ctype) {
13326 case NFS4_LCK_CTYPE_RESEND:
13327 argsp->ctag = TAG_LOCKU_RESEND;
13328 break;
13329 case NFS4_LCK_CTYPE_REINSTATE:
13330 argsp->ctag = TAG_LOCKU_REINSTATE;
13331 break;
13332 default:
13333 argsp->ctag = TAG_LOCK_UNKNOWN;
13334 break;
13335 }
13336 }
13337 }
13338
13339 /*
13340 * Setup the LOCKT4 arguments.
13341 */
13342 static void
nfs4frlock_setup_lockt_args(nfs_argop4 * argop,LOCKT4args ** lockt_argsp,COMPOUND4args_clnt * argsp,flock64_t * flk,rnode4_t * rp)13343 nfs4frlock_setup_lockt_args(nfs_argop4 *argop, LOCKT4args **lockt_argsp,
13344 COMPOUND4args_clnt *argsp, flock64_t *flk, rnode4_t *rp)
13345 {
13346 LOCKT4args *lockt_args;
13347
13348 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
13349 argop->argop = OP_LOCKT;
13350 argsp->ctag = TAG_LOCKT;
13351 lockt_args = &argop->nfs_argop4_u.oplockt;
13352
13353 /*
13354 * The locktype will be READ_LT unless it's
13355 * a write lock. We do this because the Solaris
13356 * system call allows the combination of
13357 * F_UNLCK and F_GETLK* and so in that case the
13358 * unlock is mapped to a read.
13359 */
13360 if (flk->l_type == F_WRLCK)
13361 lockt_args->locktype = WRITE_LT;
13362 else
13363 lockt_args->locktype = READ_LT;
13364
13365 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
13366 /* set the lock owner4 args */
13367 nfs4_setlockowner_args(&lockt_args->owner, rp, flk->l_pid);
13368 lockt_args->offset = flk->l_start;
13369 lockt_args->length = flk->l_len;
13370 if (flk->l_len == 0)
13371 lockt_args->length = ~lockt_args->length;
13372
13373 *lockt_argsp = lockt_args;
13374 }
13375
13376 /*
13377 * If the client is holding a delegation, and the open stream to be used
13378 * with this lock request is a delegation open stream, then re-open the stream.
13379 * Sets the nfs4_error_t to all zeros unless the open stream has already
13380 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
13381 * means the caller should retry (like a recovery retry).
13382 */
13383 static void
nfs4frlock_check_deleg(vnode_t * vp,nfs4_error_t * ep,cred_t * cr,int lt)13384 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
13385 {
13386 open_delegation_type4 dt;
13387 bool_t reopen_needed, force;
13388 nfs4_open_stream_t *osp;
13389 open_claim_type4 oclaim;
13390 rnode4_t *rp = VTOR4(vp);
13391 mntinfo4_t *mi = VTOMI4(vp);
13392
13393 ASSERT(nfs_zone() == mi->mi_zone);
13394
13395 nfs4_error_zinit(ep);
13396
13397 mutex_enter(&rp->r_statev4_lock);
13398 dt = rp->r_deleg_type;
13399 mutex_exit(&rp->r_statev4_lock);
13400
13401 if (dt != OPEN_DELEGATE_NONE) {
13402 nfs4_open_owner_t *oop;
13403
13404 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
13405 if (!oop) {
13406 ep->stat = NFS4ERR_IO;
13407 return;
13408 }
13409 /* returns with 'os_sync_lock' held */
13410 osp = find_open_stream(oop, rp);
13411 if (!osp) {
13412 open_owner_rele(oop);
13413 ep->stat = NFS4ERR_IO;
13414 return;
13415 }
13416
13417 if (osp->os_failed_reopen) {
13418 NFS4_DEBUG((nfs4_open_stream_debug ||
13419 nfs4_client_lock_debug), (CE_NOTE,
13420 "nfs4frlock_check_deleg: os_failed_reopen set "
13421 "for osp %p, cr %p, rp %s", (void *)osp,
13422 (void *)cr, rnode4info(rp)));
13423 mutex_exit(&osp->os_sync_lock);
13424 open_stream_rele(osp, rp);
13425 open_owner_rele(oop);
13426 ep->stat = NFS4ERR_IO;
13427 return;
13428 }
13429
13430 /*
13431 * Determine whether a reopen is needed. If this
13432 * is a delegation open stream, then send the open
13433 * to the server to give visibility to the open owner.
13434 * Even if it isn't a delegation open stream, we need
13435 * to check if the previous open CLAIM_DELEGATE_CUR
13436 * was sufficient.
13437 */
13438
13439 reopen_needed = osp->os_delegation ||
13440 ((lt == F_RDLCK &&
13441 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
13442 (lt == F_WRLCK &&
13443 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
13444
13445 mutex_exit(&osp->os_sync_lock);
13446 open_owner_rele(oop);
13447
13448 if (reopen_needed) {
13449 /*
13450 * Always use CLAIM_PREVIOUS after server reboot.
13451 * The server will reject CLAIM_DELEGATE_CUR if
13452 * it is used during the grace period.
13453 */
13454 mutex_enter(&mi->mi_lock);
13455 if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
13456 oclaim = CLAIM_PREVIOUS;
13457 force = TRUE;
13458 } else {
13459 oclaim = CLAIM_DELEGATE_CUR;
13460 force = FALSE;
13461 }
13462 mutex_exit(&mi->mi_lock);
13463
13464 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
13465 if (ep->error == EAGAIN) {
13466 nfs4_error_zinit(ep);
13467 ep->stat = NFS4ERR_DELAY;
13468 }
13469 }
13470 open_stream_rele(osp, rp);
13471 osp = NULL;
13472 }
13473 }
13474
13475 /*
13476 * Setup the LOCKU4 arguments.
13477 * Returns errors via the nfs4_error_t.
13478 * NFS4_OK no problems. *go_otwp is TRUE if call should go
13479 * over-the-wire. The caller must release the
13480 * reference on *lopp.
13481 * NFS4ERR_DELAY caller should retry (like recovery retry)
13482 * (other) unrecoverable error.
13483 */
13484 static void
nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype,nfs_argop4 * argop,LOCKU4args ** locku_argsp,flock64_t * flk,nfs4_lock_owner_t ** lopp,nfs4_error_t * ep,COMPOUND4args_clnt * argsp,vnode_t * vp,cred_t * cr,bool_t * skip_get_err,bool_t * go_otwp)13485 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13486 LOCKU4args **locku_argsp, flock64_t *flk,
13487 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
13488 vnode_t *vp, cred_t *cr, bool_t *skip_get_err, bool_t *go_otwp)
13489 {
13490 nfs4_lock_owner_t *lop = NULL;
13491 LOCKU4args *locku_args;
13492 pid_t pid = flk->l_pid;
13493 bool_t is_spec = FALSE;
13494 rnode4_t *rp = VTOR4(vp);
13495
13496 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13497 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13498
13499 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
13500 if (ep->error || ep->stat)
13501 return;
13502
13503 argop->argop = OP_LOCKU;
13504 if (ctype == NFS4_LCK_CTYPE_REINSTATE)
13505 argsp->ctag = TAG_LOCKU_REINSTATE;
13506 else
13507 argsp->ctag = TAG_LOCKU;
13508 locku_args = &argop->nfs_argop4_u.oplocku;
13509 *locku_argsp = locku_args;
13510
13511 /*
13512 * XXX what should locku_args->locktype be?
13513 * setting to ALWAYS be READ_LT so at least
13514 * it is a valid locktype.
13515 */
13516
13517 locku_args->locktype = READ_LT;
13518
13519 /*
13520 * Get the lock owner stateid. If no lock owner
13521 * exists, return success.
13522 */
13523 lop = find_lock_owner(rp, pid, LOWN_ANY);
13524 *lopp = lop;
13525 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
13526 is_spec = TRUE;
13527 if (!lop || is_spec) {
13528 /*
13529 * No lock owner so no locks to unlock.
13530 * Return success.
13531 *
13532 * If the lockowner is using a special stateid,
13533 * then the original lock request (that created
13534 * this lockowner) was never successful, so we
13535 * have no lock to undo OTW.
13536 */
13537 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13538 "nfs4frlock_setup_locku_args: LOCKU: no lock owner "
13539 "(%ld) so return success", (long)pid));
13540
13541 /*
13542 * Release our hold and NULL out so final_cleanup
13543 * doesn't try to end a lock seqid sync we
13544 * never started.
13545 */
13546 if (is_spec) {
13547 lock_owner_rele(lop);
13548 *lopp = NULL;
13549 }
13550 *skip_get_err = TRUE;
13551 *go_otwp = FALSE;
13552 return;
13553 }
13554
13555 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
13556 if (ep->error == EAGAIN) {
13557 lock_owner_rele(lop);
13558 *lopp = NULL;
13559 return;
13560 }
13561
13562 mutex_enter(&lop->lo_lock);
13563 locku_args->lock_stateid = lop->lock_stateid;
13564 mutex_exit(&lop->lo_lock);
13565 locku_args->seqid = lop->lock_seqid + 1;
13566
13567 /* leave the ref count on lop, rele after RPC call */
13568
13569 locku_args->offset = flk->l_start;
13570 locku_args->length = flk->l_len;
13571 if (flk->l_len == 0)
13572 locku_args->length = ~locku_args->length;
13573
13574 *go_otwp = TRUE;
13575 }
13576
13577 /*
13578 * Setup the LOCK4 arguments.
13579 *
13580 * Returns errors via the nfs4_error_t.
13581 * NFS4_OK no problems
13582 * NFS4ERR_DELAY caller should retry (like recovery retry)
13583 * (other) unrecoverable error
13584 */
13585 static void
nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype,LOCK4args ** lock_argsp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,nfs_argop4 * argop,COMPOUND4args_clnt * argsp,flock64_t * flk,int cmd,vnode_t * vp,cred_t * cr,nfs4_error_t * ep)13586 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
13587 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13588 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
13589 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
13590 {
13591 LOCK4args *lock_args;
13592 nfs4_open_owner_t *oop = NULL;
13593 nfs4_open_stream_t *osp = NULL;
13594 nfs4_lock_owner_t *lop = NULL;
13595 pid_t pid = flk->l_pid;
13596 rnode4_t *rp = VTOR4(vp);
13597
13598 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13599
13600 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
13601 if (ep->error || ep->stat != NFS4_OK)
13602 return;
13603
13604 argop->argop = OP_LOCK;
13605 if (ctype == NFS4_LCK_CTYPE_NORM)
13606 argsp->ctag = TAG_LOCK;
13607 else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
13608 argsp->ctag = TAG_RELOCK;
13609 else
13610 argsp->ctag = TAG_LOCK_REINSTATE;
13611 lock_args = &argop->nfs_argop4_u.oplock;
13612 lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
13613 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
13614 /*
13615 * Get the lock owner. If no lock owner exists,
13616 * create a 'temporary' one and grab the open seqid
13617 * synchronization (which puts a hold on the open
13618 * owner and open stream).
13619 * This also grabs the lock seqid synchronization.
13620 */
13621 ep->stat =
13622 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
13623
13624 if (ep->stat != NFS4_OK)
13625 goto out;
13626
13627 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
13628 &lock_args->locker);
13629
13630 lock_args->offset = flk->l_start;
13631 lock_args->length = flk->l_len;
13632 if (flk->l_len == 0)
13633 lock_args->length = ~lock_args->length;
13634 *lock_argsp = lock_args;
13635 out:
13636 *oopp = oop;
13637 *ospp = osp;
13638 *lopp = lop;
13639 }
13640
13641 /*
13642 * After we get the reply from the server, record the proper information
13643 * for possible resend lock requests.
13644 *
13645 * Allocates memory for the saved_rqstp if we have a lost lock to save.
13646 */
13647 static void
nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype,int error,nfs_lock_type4 locktype,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,flock64_t * flk,nfs4_lost_rqst_t * lost_rqstp,cred_t * cr,vnode_t * vp)13648 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
13649 nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
13650 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
13651 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
13652 {
13653 bool_t unlock = (flk->l_type == F_UNLCK);
13654
13655 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13656 ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
13657 ctype == NFS4_LCK_CTYPE_REINSTATE);
13658
13659 if (error != 0 && !unlock) {
13660 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13661 nfs4_client_lock_debug), (CE_NOTE,
13662 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
13663 " for lop %p", (void *)lop));
13664 ASSERT(lop != NULL);
13665 mutex_enter(&lop->lo_lock);
13666 lop->lo_pending_rqsts = 1;
13667 mutex_exit(&lop->lo_lock);
13668 }
13669
13670 lost_rqstp->lr_putfirst = FALSE;
13671 lost_rqstp->lr_op = 0;
13672
13673 /*
13674 * For lock/locku requests, we treat EINTR as ETIMEDOUT for
13675 * recovery purposes so that the lock request that was sent
13676 * can be saved and re-issued later. Ditto for EIO from a forced
13677 * unmount. This is done to have the client's local locking state
13678 * match the v4 server's state; that is, the request was
13679 * potentially received and accepted by the server but the client
13680 * thinks it was not.
13681 */
13682 if (error == ETIMEDOUT || error == EINTR ||
13683 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
13684 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13685 nfs4_client_lock_debug), (CE_NOTE,
13686 "nfs4frlock_save_lost_rqst: got a lost %s lock for "
13687 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
13688 (void *)lop, (void *)oop, (void *)osp));
13689 if (unlock)
13690 lost_rqstp->lr_op = OP_LOCKU;
13691 else {
13692 lost_rqstp->lr_op = OP_LOCK;
13693 lost_rqstp->lr_locktype = locktype;
13694 }
13695 /*
13696 * Objects are held and rele'd via the recovery code.
13697 * See nfs4_save_lost_rqst.
13698 */
13699 lost_rqstp->lr_vp = vp;
13700 lost_rqstp->lr_dvp = NULL;
13701 lost_rqstp->lr_oop = oop;
13702 lost_rqstp->lr_osp = osp;
13703 lost_rqstp->lr_lop = lop;
13704 lost_rqstp->lr_cr = cr;
13705 switch (ctype) {
13706 case NFS4_LCK_CTYPE_NORM:
13707 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
13708 break;
13709 case NFS4_LCK_CTYPE_REINSTATE:
13710 lost_rqstp->lr_putfirst = TRUE;
13711 lost_rqstp->lr_ctype = ctype;
13712 break;
13713 default:
13714 break;
13715 }
13716 lost_rqstp->lr_flk = flk;
13717 }
13718 }
13719
13720 /*
13721 * Update lop's seqid. Also update the seqid stored in a resend request,
13722 * if any. (Some recovery errors increment the seqid, and we may have to
13723 * send the resend request again.)
13724 */
13725
13726 static void
nfs4frlock_bump_seqid(LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t * oop,nfs4_lock_owner_t * lop,nfs4_tag_type_t tag_type)13727 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
13728 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
13729 {
13730 if (lock_args) {
13731 if (lock_args->locker.new_lock_owner == TRUE)
13732 nfs4_get_and_set_next_open_seqid(oop, tag_type);
13733 else {
13734 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13735 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
13736 }
13737 } else if (locku_args) {
13738 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13739 nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
13740 }
13741 }
13742
13743 /*
13744 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13745 * COMPOUND4 args/res for calls that need to retry.
13746 * Switches the *cred_otwp to base_cr.
13747 */
13748 static void
nfs4frlock_check_access(vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,bool_t * did_start_fop,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,int error,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,cred_t * base_cr,cred_t ** cred_otwp)13749 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
13750 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
13751 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
13752 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
13753 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
13754 {
13755 nfs4_open_owner_t *oop = *oopp;
13756 nfs4_open_stream_t *osp = *ospp;
13757 nfs4_lock_owner_t *lop = *lopp;
13758 nfs_argop4 *argop = (*argspp)->array;
13759
13760 if (*did_start_fop) {
13761 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13762 needrecov);
13763 *did_start_fop = FALSE;
13764 }
13765 ASSERT((*argspp)->array_len == 2);
13766 if (argop[1].argop == OP_LOCK)
13767 nfs4args_lock_free(&argop[1]);
13768 else if (argop[1].argop == OP_LOCKT)
13769 nfs4args_lockt_free(&argop[1]);
13770 kmem_free(argop, 2 * sizeof (nfs_argop4));
13771 if (!error)
13772 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13773 *argspp = NULL;
13774 *respp = NULL;
13775
13776 if (lop) {
13777 nfs4_end_lock_seqid_sync(lop);
13778 lock_owner_rele(lop);
13779 *lopp = NULL;
13780 }
13781
13782 /* need to free up the reference on osp for lock args */
13783 if (osp != NULL) {
13784 open_stream_rele(osp, VTOR4(vp));
13785 *ospp = NULL;
13786 }
13787
13788 /* need to free up the reference on oop for lock args */
13789 if (oop != NULL) {
13790 nfs4_end_open_seqid_sync(oop);
13791 open_owner_rele(oop);
13792 *oopp = NULL;
13793 }
13794
13795 crfree(*cred_otwp);
13796 *cred_otwp = base_cr;
13797 crhold(*cred_otwp);
13798 }
13799
13800 /*
13801 * Function to process the client's recovery for nfs4frlock.
13802 * Returns TRUE if we should retry the lock request; FALSE otherwise.
13803 *
13804 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13805 * COMPOUND4 args/res for calls that need to retry.
13806 *
13807 * Note: the rp's r_lkserlock is *not* dropped during this path.
13808 */
13809 static bool_t
nfs4frlock_recovery(int needrecov,nfs4_error_t * ep,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,rnode4_t * rp,vnode_t * vp,nfs4_recov_state_t * recov_statep,nfs4_op_hint_t op_hint,bool_t * did_start_fop,nfs4_lost_rqst_t * lost_rqstp,flock64_t * flk)13810 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
13811 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13812 LOCK4args *lock_args, LOCKU4args *locku_args,
13813 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13814 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
13815 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
13816 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
13817 {
13818 nfs4_open_owner_t *oop = *oopp;
13819 nfs4_open_stream_t *osp = *ospp;
13820 nfs4_lock_owner_t *lop = *lopp;
13821
13822 bool_t abort, retry;
13823
13824 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13825 ASSERT((*argspp) != NULL);
13826 ASSERT((*respp) != NULL);
13827 if (lock_args || locku_args)
13828 ASSERT(lop != NULL);
13829
13830 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
13831 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
13832
13833 retry = TRUE;
13834 abort = FALSE;
13835 if (needrecov) {
13836 nfs4_bseqid_entry_t *bsep = NULL;
13837 nfs_opnum4 op;
13838
13839 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
13840
13841 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
13842 seqid4 seqid;
13843
13844 if (lock_args) {
13845 if (lock_args->locker.new_lock_owner == TRUE)
13846 seqid = lock_args->locker.locker4_u.
13847 open_owner.open_seqid;
13848 else
13849 seqid = lock_args->locker.locker4_u.
13850 lock_owner.lock_seqid;
13851 } else if (locku_args) {
13852 seqid = locku_args->seqid;
13853 } else {
13854 seqid = 0;
13855 }
13856
13857 bsep = nfs4_create_bseqid_entry(oop, lop, vp,
13858 flk->l_pid, (*argspp)->ctag, seqid);
13859 }
13860
13861 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
13862 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
13863 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
13864 NULL, op, bsep, NULL, NULL);
13865
13866 if (bsep)
13867 kmem_free(bsep, sizeof (*bsep));
13868 }
13869
13870 /*
13871 * Return that we do not want to retry the request for 3 cases:
13872 * 1. If we received EINTR or are bailing out because of a forced
13873 * unmount, we came into this code path just for the sake of
13874 * initiating recovery, we now need to return the error.
13875 * 2. If we have aborted recovery.
13876 * 3. We received NFS4ERR_BAD_SEQID.
13877 */
13878 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
13879 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
13880 retry = FALSE;
13881
13882 if (*did_start_fop == TRUE) {
13883 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13884 needrecov);
13885 *did_start_fop = FALSE;
13886 }
13887
13888 if (retry == TRUE) {
13889 nfs_argop4 *argop;
13890
13891 argop = (*argspp)->array;
13892 ASSERT((*argspp)->array_len == 2);
13893
13894 if (argop[1].argop == OP_LOCK)
13895 nfs4args_lock_free(&argop[1]);
13896 else if (argop[1].argop == OP_LOCKT)
13897 nfs4args_lockt_free(&argop[1]);
13898 kmem_free(argop, 2 * sizeof (nfs_argop4));
13899 if (!ep->error)
13900 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13901 *respp = NULL;
13902 *argspp = NULL;
13903 }
13904
13905 if (lop != NULL) {
13906 nfs4_end_lock_seqid_sync(lop);
13907 lock_owner_rele(lop);
13908 }
13909
13910 *lopp = NULL;
13911
13912 /* need to free up the reference on osp for lock args */
13913 if (osp != NULL) {
13914 open_stream_rele(osp, rp);
13915 *ospp = NULL;
13916 }
13917
13918 /* need to free up the reference on oop for lock args */
13919 if (oop != NULL) {
13920 nfs4_end_open_seqid_sync(oop);
13921 open_owner_rele(oop);
13922 *oopp = NULL;
13923 }
13924
13925 return (retry);
13926 }
13927
13928 /*
13929 * Handle the DENIED reply from the server for nfs4frlock.
13930 * Returns TRUE if we should retry the request; FALSE otherwise.
13931 *
13932 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13933 * COMPOUND4 args/res for calls that need to retry. Can also
13934 * drop and regrab the r_lkserlock.
13935 */
13936 static bool_t
nfs4frlock_results_denied(nfs4_lock_call_type_t ctype,LOCK4args * lock_args,LOCKT4args * lockt_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,int cmd,vnode_t * vp,flock64_t * flk,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,clock_t * tick_delayp,int * errorp,nfs_resop4 * resop,cred_t * cr,bool_t * did_start_fop,bool_t * skip_get_err)13937 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
13938 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
13939 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
13940 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
13941 nfs4_recov_state_t *recov_statep, int needrecov,
13942 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13943 clock_t *tick_delayp, int *errorp,
13944 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
13945 bool_t *skip_get_err)
13946 {
13947 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13948
13949 if (lock_args) {
13950 nfs4_open_owner_t *oop = *oopp;
13951 nfs4_open_stream_t *osp = *ospp;
13952 nfs4_lock_owner_t *lop = *lopp;
13953 int intr;
13954
13955 /*
13956 * Blocking lock needs to sleep and retry from the request.
13957 *
13958 * Do not block and wait for 'resend' or 'reinstate'
13959 * lock requests, just return the error.
13960 *
13961 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
13962 */
13963 if (cmd == F_SETLKW) {
13964 rnode4_t *rp = VTOR4(vp);
13965 nfs_argop4 *argop = (*argspp)->array;
13966
13967 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13968
13969 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
13970 recov_statep, needrecov);
13971 *did_start_fop = FALSE;
13972 ASSERT((*argspp)->array_len == 2);
13973 if (argop[1].argop == OP_LOCK)
13974 nfs4args_lock_free(&argop[1]);
13975 else if (argop[1].argop == OP_LOCKT)
13976 nfs4args_lockt_free(&argop[1]);
13977 kmem_free(argop, 2 * sizeof (nfs_argop4));
13978 if (*respp)
13979 (void) xdr_free(xdr_COMPOUND4res_clnt,
13980 (caddr_t)*respp);
13981 *argspp = NULL;
13982 *respp = NULL;
13983 nfs4_end_lock_seqid_sync(lop);
13984 lock_owner_rele(lop);
13985 *lopp = NULL;
13986 if (osp != NULL) {
13987 open_stream_rele(osp, rp);
13988 *ospp = NULL;
13989 }
13990 if (oop != NULL) {
13991 nfs4_end_open_seqid_sync(oop);
13992 open_owner_rele(oop);
13993 *oopp = NULL;
13994 }
13995
13996 nfs_rw_exit(&rp->r_lkserlock);
13997
13998 intr = nfs4_block_and_wait(tick_delayp);
13999
14000 (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER,
14001 FALSE);
14002
14003 if (intr) {
14004 *errorp = EINTR;
14005 return (FALSE);
14006 }
14007
14008 /*
14009 * Make sure we are still safe to lock with
14010 * regards to mmapping.
14011 */
14012 if (!nfs4_safelock(vp, flk, cr)) {
14013 *errorp = EAGAIN;
14014 return (FALSE);
14015 }
14016
14017 return (TRUE);
14018 }
14019 if (ctype == NFS4_LCK_CTYPE_NORM)
14020 *errorp = EAGAIN;
14021 *skip_get_err = TRUE;
14022 flk->l_whence = 0;
14023 return (FALSE);
14024 } else if (lockt_args) {
14025 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14026 "nfs4frlock_results_denied: OP_LOCKT DENIED"));
14027
14028 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
14029 flk, lockt_args);
14030
14031 /* according to NLM code */
14032 *errorp = 0;
14033 *skip_get_err = TRUE;
14034 return (FALSE);
14035 }
14036 return (FALSE);
14037 }
14038
14039 /*
14040 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
14041 */
14042 static void
nfs4frlock_results_default(COMPOUND4res_clnt * resp,int * errorp)14043 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
14044 {
14045 switch (resp->status) {
14046 case NFS4ERR_ACCESS:
14047 case NFS4ERR_ADMIN_REVOKED:
14048 case NFS4ERR_BADHANDLE:
14049 case NFS4ERR_BAD_RANGE:
14050 case NFS4ERR_BAD_SEQID:
14051 case NFS4ERR_BAD_STATEID:
14052 case NFS4ERR_BADXDR:
14053 case NFS4ERR_DEADLOCK:
14054 case NFS4ERR_DELAY:
14055 case NFS4ERR_EXPIRED:
14056 case NFS4ERR_FHEXPIRED:
14057 case NFS4ERR_GRACE:
14058 case NFS4ERR_INVAL:
14059 case NFS4ERR_ISDIR:
14060 case NFS4ERR_LEASE_MOVED:
14061 case NFS4ERR_LOCK_NOTSUPP:
14062 case NFS4ERR_LOCK_RANGE:
14063 case NFS4ERR_MOVED:
14064 case NFS4ERR_NOFILEHANDLE:
14065 case NFS4ERR_NO_GRACE:
14066 case NFS4ERR_OLD_STATEID:
14067 case NFS4ERR_OPENMODE:
14068 case NFS4ERR_RECLAIM_BAD:
14069 case NFS4ERR_RECLAIM_CONFLICT:
14070 case NFS4ERR_RESOURCE:
14071 case NFS4ERR_SERVERFAULT:
14072 case NFS4ERR_STALE:
14073 case NFS4ERR_STALE_CLIENTID:
14074 case NFS4ERR_STALE_STATEID:
14075 return;
14076 default:
14077 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14078 "nfs4frlock_results_default: got unrecognizable "
14079 "res.status %d", resp->status));
14080 *errorp = NFS4ERR_INVAL;
14081 }
14082 }
14083
14084 /*
14085 * The lock request was successful, so update the client's state.
14086 */
14087 static void
nfs4frlock_update_state(LOCK4args * lock_args,LOCKU4args * locku_args,LOCKT4args * lockt_args,nfs_resop4 * resop,nfs4_lock_owner_t * lop,vnode_t * vp,flock64_t * flk,cred_t * cr,nfs4_lost_rqst_t * resend_rqstp)14088 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
14089 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
14090 vnode_t *vp, flock64_t *flk, cred_t *cr,
14091 nfs4_lost_rqst_t *resend_rqstp)
14092 {
14093 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14094
14095 if (lock_args) {
14096 LOCK4res *lock_res;
14097
14098 lock_res = &resop->nfs_resop4_u.oplock;
14099 /* update the stateid with server's response */
14100
14101 if (lock_args->locker.new_lock_owner == TRUE) {
14102 mutex_enter(&lop->lo_lock);
14103 lop->lo_just_created = NFS4_PERM_CREATED;
14104 mutex_exit(&lop->lo_lock);
14105 }
14106
14107 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
14108
14109 /*
14110 * If the lock was the result of a resending a lost
14111 * request, we've synched up the stateid and seqid
14112 * with the server, but now the server might be out of sync
14113 * with what the application thinks it has for locks.
14114 * Clean that up here. It's unclear whether we should do
14115 * this even if the filesystem has been forcibly unmounted.
14116 * For most servers, it's probably wasted effort, but
14117 * RFC3530 lets servers require that unlocks exactly match
14118 * the locks that are held.
14119 */
14120 if (resend_rqstp != NULL &&
14121 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
14122 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
14123 } else {
14124 flk->l_whence = 0;
14125 }
14126 } else if (locku_args) {
14127 LOCKU4res *locku_res;
14128
14129 locku_res = &resop->nfs_resop4_u.oplocku;
14130
14131 /* Update the stateid with the server's response */
14132 nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
14133 } else if (lockt_args) {
14134 /* Switch the lock type to express success, see fcntl */
14135 flk->l_type = F_UNLCK;
14136 flk->l_whence = 0;
14137 }
14138 }
14139
14140 /*
14141 * Do final cleanup before exiting nfs4frlock.
14142 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14143 * COMPOUND4 args/res for calls that haven't already.
14144 */
14145 static void
nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype,COMPOUND4args_clnt * argsp,COMPOUND4res_clnt * resp,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,int * errorp,LOCK4args * lock_args,LOCKU4args * locku_args,bool_t did_start_fop,bool_t skip_get_err,cred_t * cred_otw,cred_t * cred)14146 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
14147 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
14148 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
14149 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop,
14150 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
14151 bool_t did_start_fop, bool_t skip_get_err,
14152 cred_t *cred_otw, cred_t *cred)
14153 {
14154 mntinfo4_t *mi = VTOMI4(vp);
14155 rnode4_t *rp = VTOR4(vp);
14156 int error = *errorp;
14157 nfs_argop4 *argop;
14158 int do_flush_pages = 0;
14159
14160 ASSERT(nfs_zone() == mi->mi_zone);
14161 /*
14162 * The client recovery code wants the raw status information,
14163 * so don't map the NFS status code to an errno value for
14164 * non-normal call types.
14165 */
14166 if (ctype == NFS4_LCK_CTYPE_NORM) {
14167 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
14168 *errorp = geterrno4(resp->status);
14169 if (did_start_fop == TRUE)
14170 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
14171 needrecov);
14172
14173 /*
14174 * We've established a new lock on the server, so invalidate
14175 * the pages associated with the vnode to get the most up to
14176 * date pages from the server after acquiring the lock. We
14177 * want to be sure that the read operation gets the newest data.
14178 *
14179 * We flush the pages below after calling nfs4_end_fop above.
14180 *
14181 * The flush of the page cache must be done after
14182 * nfs4_end_open_seqid_sync() to avoid a 4-way hang.
14183 */
14184 if (!error && resp && resp->status == NFS4_OK)
14185 do_flush_pages = 1;
14186 }
14187 if (argsp) {
14188 ASSERT(argsp->array_len == 2);
14189 argop = argsp->array;
14190 if (argop[1].argop == OP_LOCK)
14191 nfs4args_lock_free(&argop[1]);
14192 else if (argop[1].argop == OP_LOCKT)
14193 nfs4args_lockt_free(&argop[1]);
14194 kmem_free(argop, 2 * sizeof (nfs_argop4));
14195 if (resp)
14196 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
14197 }
14198
14199 /* free the reference on the lock owner */
14200 if (lop != NULL) {
14201 nfs4_end_lock_seqid_sync(lop);
14202 lock_owner_rele(lop);
14203 }
14204
14205 /* need to free up the reference on osp for lock args */
14206 if (osp != NULL)
14207 open_stream_rele(osp, rp);
14208
14209 /* need to free up the reference on oop for lock args */
14210 if (oop != NULL) {
14211 nfs4_end_open_seqid_sync(oop);
14212 open_owner_rele(oop);
14213 }
14214
14215 if (do_flush_pages)
14216 nfs4_flush_pages(vp, cred);
14217
14218 /*
14219 * Record debug information in the event we get EINVAL.
14220 */
14221 mutex_enter(&mi->mi_lock);
14222 if (*errorp == EINVAL && (lock_args || locku_args) &&
14223 (!(mi->mi_flags & MI4_POSIX_LOCK))) {
14224 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
14225 zcmn_err(getzoneid(), CE_NOTE,
14226 "%s operation failed with "
14227 "EINVAL probably since the server, %s,"
14228 " doesn't support POSIX style locking",
14229 lock_args ? "LOCK" : "LOCKU",
14230 mi->mi_curr_serv->sv_hostname);
14231 mi->mi_flags |= MI4_LOCK_DEBUG;
14232 }
14233 }
14234 mutex_exit(&mi->mi_lock);
14235
14236 if (cred_otw)
14237 crfree(cred_otw);
14238 }
14239
14240 /*
14241 * This calls the server.
14242 *
14243 * Blocking lock requests will continually retry to acquire the lock
14244 * forever.
14245 *
14246 * The ctype is defined as follows:
14247 * NFS4_LCK_CTYPE_NORM: normal lock request.
14248 *
14249 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
14250 * recovery.
14251 *
14252 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
14253 * that we will use the information passed in via resend_rqstp to setup the
14254 * lock/locku request. This resend is the exact same request as the 'lost
14255 * lock', and is initiated by the recovery framework. A successful resend
14256 * request can initiate one or more reinstate requests.
14257 *
14258 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
14259 * does not trigger additional reinstate requests. This lock call type is
14260 * set for setting the v4 server's locking state back to match what the
14261 * client's local locking state is in the event of a received 'lost lock'.
14262 *
14263 * Errors are returned via the nfs4_error_t parameter.
14264 */
14265 void
nfs4frlock(nfs4_lock_call_type_t ctype,vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_error_t * ep,nfs4_lost_rqst_t * resend_rqstp,int * did_reclaimp)14266 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
14267 cred_t *cr, nfs4_error_t *ep, nfs4_lost_rqst_t *resend_rqstp,
14268 int *did_reclaimp)
14269 {
14270 COMPOUND4args_clnt args, *argsp = NULL;
14271 COMPOUND4res_clnt res, *resp = NULL;
14272 nfs_argop4 *argop;
14273 nfs_resop4 *resop;
14274 rnode4_t *rp;
14275 int doqueue = 1;
14276 clock_t tick_delay; /* delay in clock ticks */
14277 LOCK4args *lock_args = NULL;
14278 LOCKU4args *locku_args = NULL;
14279 LOCKT4args *lockt_args = NULL;
14280 nfs4_open_owner_t *oop = NULL;
14281 nfs4_open_stream_t *osp = NULL;
14282 nfs4_lock_owner_t *lop = NULL;
14283 bool_t needrecov = FALSE;
14284 nfs4_recov_state_t recov_state;
14285 nfs4_op_hint_t op_hint;
14286 nfs4_lost_rqst_t lost_rqst;
14287 bool_t retry = FALSE;
14288 bool_t did_start_fop = FALSE;
14289 bool_t skip_get_err = FALSE;
14290 cred_t *cred_otw = NULL;
14291 bool_t recovonly; /* just queue request */
14292 int frc_no_reclaim = 0;
14293 #ifdef DEBUG
14294 char *name;
14295 #endif
14296
14297 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14298
14299 #ifdef DEBUG
14300 name = fn_name(VTOSV(vp)->sv_name);
14301 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
14302 "%s: cmd %d, type %d, start %"PRIx64", "
14303 "length %"PRIu64", pid %d, sysid %d, call type %s, "
14304 "resend request %s", name, cmd, flk->l_type, flk->l_start,
14305 flk->l_len, flk->l_pid, flk->l_sysid,
14306 nfs4frlock_get_call_type(ctype),
14307 resend_rqstp ? "TRUE" : "FALSE"));
14308 kmem_free(name, MAXNAMELEN);
14309 #endif
14310
14311 nfs4_error_zinit(ep);
14312
14313 nfs4frlock_pre_setup(&tick_delay, &recov_state, vp, cr, &cred_otw);
14314
14315 rp = VTOR4(vp);
14316
14317 recov_retry:
14318 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
14319 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
14320
14321 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
14322 &did_start_fop, &recovonly);
14323
14324 if (ep->error)
14325 goto out;
14326
14327 if (recovonly) {
14328 /*
14329 * Leave the request for the recovery system to deal with.
14330 */
14331 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14332 ASSERT(cmd != F_GETLK);
14333 ASSERT(flk->l_type == F_UNLCK);
14334
14335 nfs4_error_init(ep, EINTR);
14336 needrecov = TRUE;
14337 lop = find_lock_owner(rp, flk->l_pid, LOWN_ANY);
14338 if (lop != NULL) {
14339 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
14340 NULL, NULL, lop, flk, &lost_rqst, cr, vp);
14341 (void) nfs4_start_recovery(ep,
14342 VTOMI4(vp), vp, NULL, NULL,
14343 (lost_rqst.lr_op == OP_LOCK ||
14344 lost_rqst.lr_op == OP_LOCKU) ?
14345 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
14346 lock_owner_rele(lop);
14347 lop = NULL;
14348 }
14349 goto out;
14350 }
14351
14352 /* putfh directory fh */
14353 argop[0].argop = OP_CPUTFH;
14354 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
14355
14356 /*
14357 * Set up the over-the-wire arguments and get references to the
14358 * open owner, etc.
14359 */
14360
14361 if (ctype == NFS4_LCK_CTYPE_RESEND ||
14362 ctype == NFS4_LCK_CTYPE_REINSTATE) {
14363 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
14364 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
14365 } else {
14366 bool_t go_otw = TRUE;
14367
14368 ASSERT(resend_rqstp == NULL);
14369
14370 switch (cmd) {
14371 case F_GETLK:
14372 case F_O_GETLK:
14373 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14374 nfs4frlock_setup_lockt_args(&argop[1], &lockt_args,
14375 argsp, flk, rp);
14376 break;
14377 case F_SETLKW:
14378 case F_SETLK:
14379 if (flk->l_type == F_UNLCK)
14380 nfs4frlock_setup_locku_args(ctype,
14381 &argop[1], &locku_args, flk,
14382 &lop, ep, argsp, vp, cr,
14383 &skip_get_err, &go_otw);
14384 else
14385 nfs4frlock_setup_lock_args(ctype,
14386 &lock_args, &oop, &osp, &lop, &argop[1],
14387 argsp, flk, cmd, vp, cr, ep);
14388
14389 if (ep->error)
14390 goto out;
14391
14392 switch (ep->stat) {
14393 case NFS4_OK:
14394 break;
14395 case NFS4ERR_DELAY:
14396 /* recov thread never gets this error */
14397 ASSERT(resend_rqstp == NULL);
14398 ASSERT(did_start_fop);
14399
14400 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14401 &recov_state, TRUE);
14402 did_start_fop = FALSE;
14403 if (argop[1].argop == OP_LOCK)
14404 nfs4args_lock_free(&argop[1]);
14405 else if (argop[1].argop == OP_LOCKT)
14406 nfs4args_lockt_free(&argop[1]);
14407 kmem_free(argop, 2 * sizeof (nfs_argop4));
14408 argsp = NULL;
14409 goto recov_retry;
14410 default:
14411 ep->error = EIO;
14412 goto out;
14413 }
14414 break;
14415 default:
14416 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14417 "nfs4_frlock: invalid cmd %d", cmd));
14418 ep->error = EINVAL;
14419 goto out;
14420 }
14421
14422 if (!go_otw)
14423 goto out;
14424 }
14425
14426 /*
14427 * Send the server the lock request. Continually loop with a delay
14428 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
14429 */
14430 resp = &res;
14431
14432 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
14433 (CE_NOTE,
14434 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
14435 rnode4info(rp)));
14436
14437 if (lock_args && frc_no_reclaim) {
14438 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14439 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14440 "nfs4frlock: frc_no_reclaim: clearing reclaim"));
14441 lock_args->reclaim = FALSE;
14442 if (did_reclaimp)
14443 *did_reclaimp = 0;
14444 }
14445
14446 /*
14447 * Do the OTW call.
14448 */
14449 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
14450
14451 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14452 "nfs4frlock: error %d, status %d", ep->error, resp->status));
14453
14454 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
14455 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14456 "nfs4frlock: needrecov %d", needrecov));
14457
14458 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
14459 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
14460 args.ctag);
14461
14462 /*
14463 * Check if one of these mutually exclusive error cases has
14464 * happened:
14465 * need to swap credentials due to access error
14466 * recovery is needed
14467 * different error (only known case is missing Kerberos ticket)
14468 */
14469
14470 if ((ep->error == EACCES ||
14471 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
14472 cred_otw != cr) {
14473 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
14474 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
14475 cr, &cred_otw);
14476 goto recov_retry;
14477 }
14478
14479 if (needrecov) {
14480 /*
14481 * LOCKT requests don't need to recover from lost
14482 * requests since they don't create/modify state.
14483 */
14484 if ((ep->error == EINTR ||
14485 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
14486 lockt_args)
14487 goto out;
14488 /*
14489 * Do not attempt recovery for requests initiated by
14490 * the recovery framework. Let the framework redrive them.
14491 */
14492 if (ctype != NFS4_LCK_CTYPE_NORM)
14493 goto out;
14494 else {
14495 ASSERT(resend_rqstp == NULL);
14496 }
14497
14498 nfs4frlock_save_lost_rqst(ctype, ep->error,
14499 flk_to_locktype(cmd, flk->l_type),
14500 oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
14501
14502 retry = nfs4frlock_recovery(needrecov, ep, &argsp,
14503 &resp, lock_args, locku_args, &oop, &osp, &lop,
14504 rp, vp, &recov_state, op_hint, &did_start_fop,
14505 cmd != F_GETLK ? &lost_rqst : NULL, flk);
14506
14507 if (retry) {
14508 ASSERT(oop == NULL);
14509 ASSERT(osp == NULL);
14510 ASSERT(lop == NULL);
14511 goto recov_retry;
14512 }
14513 goto out;
14514 }
14515
14516 /*
14517 * Bail out if have reached this point with ep->error set. Can
14518 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
14519 * This happens if Kerberos ticket has expired or has been
14520 * destroyed.
14521 */
14522 if (ep->error != 0)
14523 goto out;
14524
14525 /*
14526 * Process the reply.
14527 */
14528 switch (resp->status) {
14529 case NFS4_OK:
14530 resop = &resp->array[1];
14531 /*
14532 * Have a successful lock operation, now update state.
14533 */
14534 nfs4frlock_update_state(lock_args, locku_args, lockt_args,
14535 resop, lop, vp, flk, cr, resend_rqstp);
14536 break;
14537
14538 case NFS4ERR_DENIED:
14539 resop = &resp->array[1];
14540 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
14541 &oop, &osp, &lop, cmd, vp, flk, op_hint,
14542 &recov_state, needrecov, &argsp, &resp,
14543 &tick_delay, &ep->error, resop, cr,
14544 &did_start_fop, &skip_get_err);
14545
14546 if (retry) {
14547 ASSERT(oop == NULL);
14548 ASSERT(osp == NULL);
14549 ASSERT(lop == NULL);
14550 goto recov_retry;
14551 }
14552 break;
14553 /*
14554 * If the server won't let us reclaim, fall-back to trying to lock
14555 * the file from scratch. Code elsewhere will check the changeinfo
14556 * to ensure the file hasn't been changed.
14557 */
14558 case NFS4ERR_NO_GRACE:
14559 if (lock_args && lock_args->reclaim == TRUE) {
14560 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14561 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14562 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
14563 frc_no_reclaim = 1;
14564 /* clean up before retrying */
14565 needrecov = 0;
14566 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
14567 lock_args, locku_args, &oop, &osp, &lop, rp, vp,
14568 &recov_state, op_hint, &did_start_fop, NULL, flk);
14569 goto recov_retry;
14570 }
14571 /* FALLTHROUGH */
14572
14573 default:
14574 nfs4frlock_results_default(resp, &ep->error);
14575 break;
14576 }
14577 out:
14578 /*
14579 * Process and cleanup from error. Make interrupted unlock
14580 * requests look successful, since they will be handled by the
14581 * client recovery code.
14582 */
14583 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
14584 needrecov, oop, osp, lop, &ep->error,
14585 lock_args, locku_args, did_start_fop,
14586 skip_get_err, cred_otw, cr);
14587
14588 if (ep->error == EINTR && flk->l_type == F_UNLCK &&
14589 (cmd == F_SETLK || cmd == F_SETLKW))
14590 ep->error = 0;
14591 }
14592
14593 /*
14594 * nfs4_safelock:
14595 *
14596 * Return non-zero if the given lock request can be handled without
14597 * violating the constraints on concurrent mapping and locking.
14598 */
14599
14600 static int
nfs4_safelock(vnode_t * vp,const struct flock64 * bfp,cred_t * cr)14601 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
14602 {
14603 rnode4_t *rp = VTOR4(vp);
14604 struct vattr va;
14605 int error;
14606
14607 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14608 ASSERT(rp->r_mapcnt >= 0);
14609 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
14610 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
14611 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
14612 bfp->l_start, bfp->l_len, rp->r_mapcnt));
14613
14614 if (rp->r_mapcnt == 0)
14615 return (1); /* always safe if not mapped */
14616
14617 /*
14618 * If the file is already mapped and there are locks, then they
14619 * should be all safe locks. So adding or removing a lock is safe
14620 * as long as the new request is safe (i.e., whole-file, meaning
14621 * length and starting offset are both zero).
14622 */
14623
14624 if (bfp->l_start != 0 || bfp->l_len != 0) {
14625 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14626 "cannot lock a memory mapped file unless locking the "
14627 "entire file: start %"PRIx64", len %"PRIx64,
14628 bfp->l_start, bfp->l_len));
14629 return (0);
14630 }
14631
14632 /* mandatory locking and mapping don't mix */
14633 va.va_mask = AT_MODE;
14634 error = VOP_GETATTR(vp, &va, 0, cr, NULL);
14635 if (error != 0) {
14636 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14637 "getattr error %d", error));
14638 return (0); /* treat errors conservatively */
14639 }
14640 if (MANDLOCK(vp, va.va_mode)) {
14641 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14642 "cannot mandatory lock and mmap a file"));
14643 return (0);
14644 }
14645
14646 return (1);
14647 }
14648
14649 /*
14650 * nfs4_lockrelease:
14651 *
14652 * Release any locks on the given vnode that are held by the current
14653 * process. Also removes the lock owner (if one exists) from the rnode's
14654 * list.
14655 */
14656 static int
nfs4_lockrelease(vnode_t * vp,int flag,offset_t offset,cred_t * cr)14657 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
14658 {
14659 flock64_t ld;
14660 int ret, error;
14661 rnode4_t *rp;
14662 nfs4_lock_owner_t *lop;
14663 nfs4_recov_state_t recov_state;
14664 mntinfo4_t *mi;
14665 bool_t possible_orphan = FALSE;
14666 bool_t recovonly;
14667
14668 ASSERT((uintptr_t)vp > KERNELBASE);
14669 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14670
14671 rp = VTOR4(vp);
14672 mi = VTOMI4(vp);
14673
14674 /*
14675 * If we have not locked anything then we can
14676 * just return since we have no work to do.
14677 */
14678 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
14679 return (0);
14680 }
14681
14682 /*
14683 * We need to comprehend that another thread may
14684 * kick off recovery and the lock_owner we have stashed
14685 * in lop might be invalid so we should NOT cache it
14686 * locally!
14687 */
14688 recov_state.rs_flags = 0;
14689 recov_state.rs_num_retry_despite_err = 0;
14690 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14691 &recovonly);
14692 if (error) {
14693 mutex_enter(&rp->r_statelock);
14694 rp->r_flags |= R4LODANGLERS;
14695 mutex_exit(&rp->r_statelock);
14696 return (error);
14697 }
14698
14699 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14700
14701 /*
14702 * Check if the lock owner might have a lock (request was sent but
14703 * no response was received). Also check if there are any remote
14704 * locks on the file. (In theory we shouldn't have to make this
14705 * second check if there's no lock owner, but for now we'll be
14706 * conservative and do it anyway.) If either condition is true,
14707 * send an unlock for the entire file to the server.
14708 *
14709 * Note that no explicit synchronization is needed here. At worst,
14710 * flk_has_remote_locks() will return a false positive, in which case
14711 * the unlock call wastes time but doesn't harm correctness.
14712 */
14713
14714 if (lop) {
14715 mutex_enter(&lop->lo_lock);
14716 possible_orphan = lop->lo_pending_rqsts;
14717 mutex_exit(&lop->lo_lock);
14718 lock_owner_rele(lop);
14719 }
14720
14721 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14722
14723 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14724 "nfs4_lockrelease: possible orphan %d, remote locks %d, for "
14725 "lop %p.", possible_orphan, flk_has_remote_locks(vp),
14726 (void *)lop));
14727
14728 if (possible_orphan || flk_has_remote_locks(vp)) {
14729 ld.l_type = F_UNLCK; /* set to unlock entire file */
14730 ld.l_whence = 0; /* unlock from start of file */
14731 ld.l_start = 0;
14732 ld.l_len = 0; /* do entire file */
14733
14734 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
14735 cr, NULL);
14736
14737 if (ret != 0) {
14738 /*
14739 * If VOP_FRLOCK fails, make sure we unregister
14740 * local locks before we continue.
14741 */
14742 struct lm_sysid *lmsid = nfs4_find_sysid(VTOMI4(vp));
14743
14744 if (lmsid != NULL) {
14745 cleanlocks(vp, curproc->p_pid,
14746 lm_sysidt(lmsid) | LM_SYSID_CLIENT);
14747 lm_rel_sysid(lmsid);
14748 }
14749
14750 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14751 "nfs4_lockrelease: lock release error on vp"
14752 " %p: error %d.\n", (void *)vp, ret));
14753 }
14754 }
14755
14756 recov_state.rs_flags = 0;
14757 recov_state.rs_num_retry_despite_err = 0;
14758 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14759 &recovonly);
14760 if (error) {
14761 mutex_enter(&rp->r_statelock);
14762 rp->r_flags |= R4LODANGLERS;
14763 mutex_exit(&rp->r_statelock);
14764 return (error);
14765 }
14766
14767 /*
14768 * So, here we're going to need to retrieve the lock-owner
14769 * again (in case recovery has done a switch-a-roo) and
14770 * remove it because we can.
14771 */
14772 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14773
14774 if (lop) {
14775 nfs4_rnode_remove_lock_owner(rp, lop);
14776 lock_owner_rele(lop);
14777 }
14778
14779 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14780 return (0);
14781 }
14782
14783 /*
14784 * Wait for 'tick_delay' clock ticks.
14785 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14786 *
14787 * The client should retry to acquire the lock faster than the lease period.
14788 * We use roughly half of the lease time to use a similar calculation as it is
14789 * used in nfs4_renew_lease_thread().
14790 *
14791 * XXX For future improvements, should implement a waiting queue scheme.
14792 */
14793 static int
nfs4_block_and_wait(clock_t * tick_delay)14794 nfs4_block_and_wait(clock_t *tick_delay)
14795 {
14796 /* wait tick_delay clock ticks or siginteruptus */
14797 if (delay_sig(*tick_delay)) {
14798 return (EINTR);
14799 }
14800
14801 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14802 "reissue the lock request: blocked for %ld clock ticks: %ld "
14803 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
14804
14805 *tick_delay = MIN(drv_usectohz(nfs4_max_base_wait_time * 1000),
14806 *tick_delay * 1.5);
14807 return (0);
14808 }
14809
14810 void
nfs4_vnops_init(void)14811 nfs4_vnops_init(void)
14812 {
14813 }
14814
14815 void
nfs4_vnops_fini(void)14816 nfs4_vnops_fini(void)
14817 {
14818 }
14819
14820 /*
14821 * Return a reference to the directory (parent) vnode for a given vnode,
14822 * using the saved pathname information and the directory file handle. The
14823 * caller is responsible for disposing of the reference.
14824 * Returns zero or an errno value.
14825 *
14826 * Caller should set need_start_op to FALSE if it is the recovery
14827 * thread, or if a start_fop has already been done. Otherwise, TRUE.
14828 */
14829 int
vtodv(vnode_t * vp,vnode_t ** dvpp,cred_t * cr,bool_t need_start_op)14830 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
14831 {
14832 svnode_t *svnp;
14833 vnode_t *dvp = NULL;
14834 servinfo4_t *svp;
14835 nfs4_fname_t *mfname;
14836 int error;
14837
14838 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14839
14840 if (vp->v_flag & VROOT) {
14841 nfs4_sharedfh_t *sfh;
14842 nfs_fh4 fh;
14843 mntinfo4_t *mi;
14844
14845 ASSERT(vp->v_type == VREG);
14846
14847 mi = VTOMI4(vp);
14848 svp = mi->mi_curr_serv;
14849 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14850 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
14851 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
14852 sfh = sfh4_get(&fh, VTOMI4(vp));
14853 nfs_rw_exit(&svp->sv_lock);
14854 mfname = mi->mi_fname;
14855 fn_hold(mfname);
14856 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
14857 sfh4_rele(&sfh);
14858
14859 if (dvp->v_type == VNON)
14860 dvp->v_type = VDIR;
14861 *dvpp = dvp;
14862 return (0);
14863 }
14864
14865 svnp = VTOSV(vp);
14866
14867 if (svnp == NULL) {
14868 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14869 "shadow node is NULL"));
14870 return (EINVAL);
14871 }
14872
14873 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
14874 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14875 "shadow node name or dfh val == NULL"));
14876 return (EINVAL);
14877 }
14878
14879 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
14880 (int)need_start_op);
14881 if (error != 0) {
14882 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14883 "nfs4_make_dotdot returned %d", error));
14884 return (error);
14885 }
14886 if (!dvp) {
14887 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14888 "nfs4_make_dotdot returned a NULL dvp"));
14889 return (EIO);
14890 }
14891 if (dvp->v_type == VNON)
14892 dvp->v_type = VDIR;
14893 ASSERT(dvp->v_type == VDIR);
14894 if (VTOR4(vp)->r_flags & R4ISXATTR) {
14895 mutex_enter(&dvp->v_lock);
14896 dvp->v_flag |= V_XATTRDIR;
14897 mutex_exit(&dvp->v_lock);
14898 }
14899 *dvpp = dvp;
14900 return (0);
14901 }
14902
14903 /*
14904 * Copy the (final) component name of vp to fnamep. maxlen is the maximum
14905 * length that fnamep can accept, including the trailing null.
14906 * Returns 0 if okay, returns an errno value if there was a problem.
14907 */
14908
14909 int
vtoname(vnode_t * vp,char * fnamep,ssize_t maxlen)14910 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
14911 {
14912 char *fn;
14913 int err = 0;
14914 servinfo4_t *svp;
14915 svnode_t *shvp;
14916
14917 /*
14918 * If the file being opened has VROOT set, then this is
14919 * a "file" mount. sv_name will not be interesting, so
14920 * go back to the servinfo4 to get the original mount
14921 * path and strip off all but the final edge. Otherwise
14922 * just return the name from the shadow vnode.
14923 */
14924
14925 if (vp->v_flag & VROOT) {
14926
14927 svp = VTOMI4(vp)->mi_curr_serv;
14928 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14929
14930 fn = strrchr(svp->sv_path, '/');
14931 if (fn == NULL)
14932 err = EINVAL;
14933 else
14934 fn++;
14935 } else {
14936 shvp = VTOSV(vp);
14937 fn = fn_name(shvp->sv_name);
14938 }
14939
14940 if (err == 0)
14941 if (strlen(fn) < maxlen)
14942 (void) strcpy(fnamep, fn);
14943 else
14944 err = ENAMETOOLONG;
14945
14946 if (vp->v_flag & VROOT)
14947 nfs_rw_exit(&svp->sv_lock);
14948 else
14949 kmem_free(fn, MAXNAMELEN);
14950
14951 return (err);
14952 }
14953
14954 /*
14955 * Bookkeeping for a close that doesn't need to go over the wire.
14956 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
14957 * it is left at 1.
14958 */
14959 void
nfs4close_notw(vnode_t * vp,nfs4_open_stream_t * osp,int * have_lockp)14960 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
14961 {
14962 rnode4_t *rp;
14963 mntinfo4_t *mi;
14964
14965 mi = VTOMI4(vp);
14966 rp = VTOR4(vp);
14967
14968 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
14969 "rp=%p osp=%p", (void *)rp, (void *)osp));
14970 ASSERT(nfs_zone() == mi->mi_zone);
14971 ASSERT(mutex_owned(&osp->os_sync_lock));
14972 ASSERT(*have_lockp);
14973
14974 if (!osp->os_valid ||
14975 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
14976 return;
14977 }
14978
14979 /*
14980 * This removes the reference obtained at OPEN; ie,
14981 * when the open stream structure was created.
14982 *
14983 * We don't have to worry about calling 'open_stream_rele'
14984 * since we our currently holding a reference to this
14985 * open stream which means the count can not go to 0 with
14986 * this decrement.
14987 */
14988 ASSERT(osp->os_ref_count >= 2);
14989 osp->os_ref_count--;
14990 osp->os_valid = 0;
14991 mutex_exit(&osp->os_sync_lock);
14992 *have_lockp = 0;
14993
14994 nfs4_dec_state_ref_count(mi);
14995 }
14996
14997 /*
14998 * Close all remaining open streams on the rnode. These open streams
14999 * could be here because:
15000 * - The close attempted at either close or delmap failed
15001 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
15002 * - Someone did mknod on a regular file but never opened it
15003 */
15004 int
nfs4close_all(vnode_t * vp,cred_t * cr)15005 nfs4close_all(vnode_t *vp, cred_t *cr)
15006 {
15007 nfs4_open_stream_t *osp;
15008 int error;
15009 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
15010 rnode4_t *rp;
15011
15012 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15013
15014 error = 0;
15015 rp = VTOR4(vp);
15016
15017 /*
15018 * At this point, all we know is that the last time
15019 * someone called vn_rele, the count was 1. Since then,
15020 * the vnode could have been re-activated. We want to
15021 * loop through the open streams and close each one, but
15022 * we have to be careful since once we release the rnode
15023 * hash bucket lock, someone else is free to come in and
15024 * re-activate the rnode and add new open streams. The
15025 * strategy is take the rnode hash bucket lock, verify that
15026 * the count is still 1, grab the open stream off the
15027 * head of the list and mark it invalid, then release the
15028 * rnode hash bucket lock and proceed with that open stream.
15029 * This is ok because nfs4close_one() will acquire the proper
15030 * open/create to close/destroy synchronization for open
15031 * streams, and will ensure that if someone has reopened
15032 * the open stream after we've dropped the hash bucket lock
15033 * then we'll just simply return without destroying the
15034 * open stream.
15035 * Repeat until the list is empty.
15036 */
15037
15038 for (;;) {
15039
15040 /* make sure vnode hasn't been reactivated */
15041 rw_enter(&rp->r_hashq->r_lock, RW_READER);
15042 mutex_enter(&vp->v_lock);
15043 if (vp->v_count > 1) {
15044 mutex_exit(&vp->v_lock);
15045 rw_exit(&rp->r_hashq->r_lock);
15046 break;
15047 }
15048 /*
15049 * Grabbing r_os_lock before releasing v_lock prevents
15050 * a window where the rnode/open stream could get
15051 * reactivated (and os_force_close set to 0) before we
15052 * had a chance to set os_force_close to 1.
15053 */
15054 mutex_enter(&rp->r_os_lock);
15055 mutex_exit(&vp->v_lock);
15056
15057 osp = list_head(&rp->r_open_streams);
15058 if (!osp) {
15059 /* nothing left to CLOSE OTW, so return */
15060 mutex_exit(&rp->r_os_lock);
15061 rw_exit(&rp->r_hashq->r_lock);
15062 break;
15063 }
15064
15065 mutex_enter(&rp->r_statev4_lock);
15066 /* the file can't still be mem mapped */
15067 ASSERT(rp->r_mapcnt == 0);
15068 if (rp->created_v4)
15069 rp->created_v4 = 0;
15070 mutex_exit(&rp->r_statev4_lock);
15071
15072 /*
15073 * Grab a ref on this open stream; nfs4close_one
15074 * will mark it as invalid
15075 */
15076 mutex_enter(&osp->os_sync_lock);
15077 osp->os_ref_count++;
15078 osp->os_force_close = 1;
15079 mutex_exit(&osp->os_sync_lock);
15080 mutex_exit(&rp->r_os_lock);
15081 rw_exit(&rp->r_hashq->r_lock);
15082
15083 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
15084
15085 /* Update error if it isn't already non-zero */
15086 if (error == 0) {
15087 if (e.error)
15088 error = e.error;
15089 else if (e.stat)
15090 error = geterrno4(e.stat);
15091 }
15092
15093 #ifdef DEBUG
15094 nfs4close_all_cnt++;
15095 #endif
15096 /* Release the ref on osp acquired above. */
15097 open_stream_rele(osp, rp);
15098
15099 /* Proceed to the next open stream, if any */
15100 }
15101 return (error);
15102 }
15103
15104 /*
15105 * nfs4close_one - close one open stream for a file if needed.
15106 *
15107 * "close_type" indicates which close path this is:
15108 * CLOSE_NORM: close initiated via VOP_CLOSE.
15109 * CLOSE_DELMAP: close initiated via VOP_DELMAP.
15110 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
15111 * the close and release of client state for this open stream
15112 * (unless someone else has the open stream open).
15113 * CLOSE_RESEND: indicates the request is a replay of an earlier request
15114 * (e.g., due to abort because of a signal).
15115 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
15116 *
15117 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
15118 * recovery. Instead, the caller is expected to deal with retries.
15119 *
15120 * The caller can either pass in the osp ('provided_osp') or not.
15121 *
15122 * 'access_bits' represents the access we are closing/downgrading.
15123 *
15124 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
15125 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and
15126 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
15127 *
15128 * Errors are returned via the nfs4_error_t.
15129 */
15130 void
nfs4close_one(vnode_t * vp,nfs4_open_stream_t * provided_osp,cred_t * cr,int access_bits,nfs4_lost_rqst_t * lrp,nfs4_error_t * ep,nfs4_close_type_t close_type,size_t len,uint_t maxprot,uint_t mmap_flags)15131 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
15132 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
15133 nfs4_close_type_t close_type, size_t len, uint_t maxprot,
15134 uint_t mmap_flags)
15135 {
15136 nfs4_open_owner_t *oop;
15137 nfs4_open_stream_t *osp = NULL;
15138 int retry = 0;
15139 int num_retries = NFS4_NUM_RECOV_RETRIES;
15140 rnode4_t *rp;
15141 mntinfo4_t *mi;
15142 nfs4_recov_state_t recov_state;
15143 cred_t *cred_otw = NULL;
15144 bool_t recovonly = FALSE;
15145 int isrecov;
15146 int force_close;
15147 int close_failed = 0;
15148 int did_dec_count = 0;
15149 int did_start_op = 0;
15150 int did_force_recovlock = 0;
15151 int did_start_seqid_sync = 0;
15152 int have_sync_lock = 0;
15153
15154 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15155
15156 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
15157 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
15158 (void *)vp, (void *)provided_osp, (void *)lrp, close_type,
15159 len, maxprot, mmap_flags, access_bits));
15160
15161 nfs4_error_zinit(ep);
15162 rp = VTOR4(vp);
15163 mi = VTOMI4(vp);
15164 isrecov = (close_type == CLOSE_RESEND ||
15165 close_type == CLOSE_AFTER_RESEND);
15166
15167 /*
15168 * First get the open owner.
15169 */
15170 if (!provided_osp) {
15171 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
15172 } else {
15173 oop = provided_osp->os_open_owner;
15174 ASSERT(oop != NULL);
15175 open_owner_hold(oop);
15176 }
15177
15178 if (!oop) {
15179 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15180 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
15181 "close type %d", (void *)rp, (void *)mi, (void *)cr,
15182 (void *)provided_osp, close_type));
15183 ep->error = EIO;
15184 goto out;
15185 }
15186
15187 cred_otw = nfs4_get_otw_cred(cr, mi, oop);
15188 recov_retry:
15189 osp = NULL;
15190 close_failed = 0;
15191 force_close = (close_type == CLOSE_FORCE);
15192 retry = 0;
15193 did_start_op = 0;
15194 did_force_recovlock = 0;
15195 did_start_seqid_sync = 0;
15196 have_sync_lock = 0;
15197 recovonly = FALSE;
15198 recov_state.rs_flags = 0;
15199 recov_state.rs_num_retry_despite_err = 0;
15200
15201 /*
15202 * Second synchronize with recovery.
15203 */
15204 if (!isrecov) {
15205 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
15206 &recov_state, &recovonly);
15207 if (!ep->error) {
15208 did_start_op = 1;
15209 } else {
15210 close_failed = 1;
15211 /*
15212 * If we couldn't get start_fop, but have to
15213 * cleanup state, then at least acquire the
15214 * mi_recovlock so we can synchronize with
15215 * recovery.
15216 */
15217 if (close_type == CLOSE_FORCE) {
15218 (void) nfs_rw_enter_sig(&mi->mi_recovlock,
15219 RW_READER, FALSE);
15220 did_force_recovlock = 1;
15221 } else
15222 goto out;
15223 }
15224 }
15225
15226 /*
15227 * We cannot attempt to get the open seqid sync if nfs4_start_fop
15228 * set 'recovonly' to TRUE since most likely this is due to
15229 * reovery being active (MI4_RECOV_ACTIV). If recovery is active,
15230 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
15231 * to retry, causing us to loop until recovery finishes. Plus we
15232 * don't need protection over the open seqid since we're not going
15233 * OTW, hence don't need to use the seqid.
15234 */
15235 if (recovonly == FALSE) {
15236 /* need to grab the open owner sync before 'os_sync_lock' */
15237 ep->error = nfs4_start_open_seqid_sync(oop, mi);
15238 if (ep->error == EAGAIN) {
15239 ASSERT(!isrecov);
15240 if (did_start_op)
15241 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15242 &recov_state, TRUE);
15243 if (did_force_recovlock)
15244 nfs_rw_exit(&mi->mi_recovlock);
15245 goto recov_retry;
15246 }
15247 did_start_seqid_sync = 1;
15248 }
15249
15250 /*
15251 * Third get an open stream and acquire 'os_sync_lock' to
15252 * sychronize the opening/creating of an open stream with the
15253 * closing/destroying of an open stream.
15254 */
15255 if (!provided_osp) {
15256 /* returns with 'os_sync_lock' held */
15257 osp = find_open_stream(oop, rp);
15258 if (!osp) {
15259 ep->error = EIO;
15260 goto out;
15261 }
15262 } else {
15263 osp = provided_osp;
15264 open_stream_hold(osp);
15265 mutex_enter(&osp->os_sync_lock);
15266 }
15267 have_sync_lock = 1;
15268
15269 ASSERT(oop == osp->os_open_owner);
15270
15271 /*
15272 * Fourth, do any special pre-OTW CLOSE processing
15273 * based on the specific close type.
15274 */
15275 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
15276 !did_dec_count) {
15277 ASSERT(osp->os_open_ref_count > 0);
15278 osp->os_open_ref_count--;
15279 did_dec_count = 1;
15280 if (osp->os_open_ref_count == 0)
15281 osp->os_final_close = 1;
15282 }
15283
15284 if (close_type == CLOSE_FORCE) {
15285 /* see if somebody reopened the open stream. */
15286 if (!osp->os_force_close) {
15287 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15288 "nfs4close_one: skip CLOSE_FORCE as osp %p "
15289 "was reopened, vp %p", (void *)osp, (void *)vp));
15290 ep->error = 0;
15291 ep->stat = NFS4_OK;
15292 goto out;
15293 }
15294
15295 if (!osp->os_final_close && !did_dec_count) {
15296 osp->os_open_ref_count--;
15297 did_dec_count = 1;
15298 }
15299
15300 /*
15301 * We can't depend on os_open_ref_count being 0 due to the
15302 * way executables are opened (VN_RELE to match a VOP_OPEN).
15303 */
15304 #ifdef NOTYET
15305 ASSERT(osp->os_open_ref_count == 0);
15306 #endif
15307 if (osp->os_open_ref_count != 0) {
15308 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15309 "nfs4close_one: should panic here on an "
15310 "ASSERT(osp->os_open_ref_count == 0). Ignoring "
15311 "since this is probably the exec problem."));
15312
15313 osp->os_open_ref_count = 0;
15314 }
15315
15316 /*
15317 * There is the possibility that nfs4close_one()
15318 * for close_type == CLOSE_DELMAP couldn't find the
15319 * open stream, thus couldn't decrement its os_mapcnt;
15320 * therefore we can't use this ASSERT yet.
15321 */
15322 #ifdef NOTYET
15323 ASSERT(osp->os_mapcnt == 0);
15324 #endif
15325 osp->os_mapcnt = 0;
15326 }
15327
15328 if (close_type == CLOSE_DELMAP && !did_dec_count) {
15329 ASSERT(osp->os_mapcnt >= btopr(len));
15330
15331 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
15332 osp->os_mmap_write -= btopr(len);
15333 if (maxprot & PROT_READ)
15334 osp->os_mmap_read -= btopr(len);
15335 if (maxprot & PROT_EXEC)
15336 osp->os_mmap_read -= btopr(len);
15337 /* mirror the PROT_NONE check in nfs4_addmap() */
15338 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
15339 !(maxprot & PROT_EXEC))
15340 osp->os_mmap_read -= btopr(len);
15341 osp->os_mapcnt -= btopr(len);
15342 did_dec_count = 1;
15343 }
15344
15345 if (recovonly) {
15346 nfs4_lost_rqst_t lost_rqst;
15347
15348 /* request should not already be in recovery queue */
15349 ASSERT(lrp == NULL);
15350 nfs4_error_init(ep, EINTR);
15351 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
15352 osp, cred_otw, vp);
15353 mutex_exit(&osp->os_sync_lock);
15354 have_sync_lock = 0;
15355 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15356 lost_rqst.lr_op == OP_CLOSE ?
15357 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
15358 close_failed = 1;
15359 force_close = 0;
15360 goto close_cleanup;
15361 }
15362
15363 /*
15364 * If a previous OTW call got NFS4ERR_BAD_SEQID, then
15365 * we stopped operating on the open owner's <old oo_name, old seqid>
15366 * space, which means we stopped operating on the open stream
15367 * too. So don't go OTW (as the seqid is likely bad, and the
15368 * stateid could be stale, potentially triggering a false
15369 * setclientid), and just clean up the client's internal state.
15370 */
15371 if (osp->os_orig_oo_name != oop->oo_name) {
15372 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
15373 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
15374 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
15375 "oo_name %" PRIx64")",
15376 (void *)osp, (void *)oop, osp->os_orig_oo_name,
15377 oop->oo_name));
15378 close_failed = 1;
15379 }
15380
15381 /* If the file failed recovery, just quit. */
15382 mutex_enter(&rp->r_statelock);
15383 if (rp->r_flags & R4RECOVERR) {
15384 close_failed = 1;
15385 }
15386 mutex_exit(&rp->r_statelock);
15387
15388 /*
15389 * If the force close path failed to obtain start_fop
15390 * then skip the OTW close and just remove the state.
15391 */
15392 if (close_failed)
15393 goto close_cleanup;
15394
15395 /*
15396 * Fifth, check to see if there are still mapped pages or other
15397 * opens using this open stream. If there are then we can't
15398 * close yet but we can see if an OPEN_DOWNGRADE is necessary.
15399 */
15400 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15401 nfs4_lost_rqst_t new_lost_rqst;
15402 bool_t needrecov = FALSE;
15403 cred_t *odg_cred_otw = NULL;
15404 seqid4 open_dg_seqid = 0;
15405
15406 if (osp->os_delegation) {
15407 /*
15408 * If this open stream was never OPENed OTW then we
15409 * surely can't DOWNGRADE it (especially since the
15410 * osp->open_stateid is really a delegation stateid
15411 * when os_delegation is 1).
15412 */
15413 if (access_bits & FREAD)
15414 osp->os_share_acc_read--;
15415 if (access_bits & FWRITE)
15416 osp->os_share_acc_write--;
15417 osp->os_share_deny_none--;
15418 nfs4_error_zinit(ep);
15419 goto out;
15420 }
15421 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
15422 lrp, ep, &odg_cred_otw, &open_dg_seqid);
15423 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
15424 if (needrecov && !isrecov) {
15425 bool_t abort;
15426 nfs4_bseqid_entry_t *bsep = NULL;
15427
15428 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
15429 bsep = nfs4_create_bseqid_entry(oop, NULL,
15430 vp, 0,
15431 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
15432 open_dg_seqid);
15433
15434 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
15435 oop, osp, odg_cred_otw, vp, access_bits, 0);
15436 mutex_exit(&osp->os_sync_lock);
15437 have_sync_lock = 0;
15438 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15439 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
15440 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
15441 bsep, NULL, NULL);
15442 if (odg_cred_otw)
15443 crfree(odg_cred_otw);
15444 if (bsep)
15445 kmem_free(bsep, sizeof (*bsep));
15446
15447 if (abort == TRUE)
15448 goto out;
15449
15450 if (did_start_seqid_sync) {
15451 nfs4_end_open_seqid_sync(oop);
15452 did_start_seqid_sync = 0;
15453 }
15454 open_stream_rele(osp, rp);
15455
15456 if (did_start_op)
15457 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15458 &recov_state, FALSE);
15459 if (did_force_recovlock)
15460 nfs_rw_exit(&mi->mi_recovlock);
15461
15462 goto recov_retry;
15463 } else {
15464 if (odg_cred_otw)
15465 crfree(odg_cred_otw);
15466 }
15467 goto out;
15468 }
15469
15470 /*
15471 * If this open stream was created as the results of an open
15472 * while holding a delegation, then just release it; no need
15473 * to do an OTW close. Otherwise do a "normal" OTW close.
15474 */
15475 if (osp->os_delegation) {
15476 nfs4close_notw(vp, osp, &have_sync_lock);
15477 nfs4_error_zinit(ep);
15478 goto out;
15479 }
15480
15481 /*
15482 * If this stream is not valid, we're done.
15483 */
15484 if (!osp->os_valid) {
15485 nfs4_error_zinit(ep);
15486 goto out;
15487 }
15488
15489 /*
15490 * Last open or mmap ref has vanished, need to do an OTW close.
15491 * First check to see if a close is still necessary.
15492 */
15493 if (osp->os_failed_reopen) {
15494 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15495 "don't close OTW osp %p since reopen failed.",
15496 (void *)osp));
15497 /*
15498 * Reopen of the open stream failed, hence the
15499 * stateid of the open stream is invalid/stale, and
15500 * sending this OTW would incorrectly cause another
15501 * round of recovery. In this case, we need to set
15502 * the 'os_valid' bit to 0 so another thread doesn't
15503 * come in and re-open this open stream before
15504 * this "closing" thread cleans up state (decrementing
15505 * the nfs4_server_t's state_ref_count and decrementing
15506 * the os_ref_count).
15507 */
15508 osp->os_valid = 0;
15509 /*
15510 * This removes the reference obtained at OPEN; ie,
15511 * when the open stream structure was created.
15512 *
15513 * We don't have to worry about calling 'open_stream_rele'
15514 * since we our currently holding a reference to this
15515 * open stream which means the count can not go to 0 with
15516 * this decrement.
15517 */
15518 ASSERT(osp->os_ref_count >= 2);
15519 osp->os_ref_count--;
15520 nfs4_error_zinit(ep);
15521 close_failed = 0;
15522 goto close_cleanup;
15523 }
15524
15525 ASSERT(osp->os_ref_count > 1);
15526
15527 /*
15528 * Sixth, try the CLOSE OTW.
15529 */
15530 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
15531 close_type, ep, &have_sync_lock);
15532
15533 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
15534 /*
15535 * Let the recovery thread be responsible for
15536 * removing the state for CLOSE.
15537 */
15538 close_failed = 1;
15539 force_close = 0;
15540 retry = 0;
15541 }
15542
15543 /* See if we need to retry with a different cred */
15544 if ((ep->error == EACCES ||
15545 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
15546 cred_otw != cr) {
15547 crfree(cred_otw);
15548 cred_otw = cr;
15549 crhold(cred_otw);
15550 retry = 1;
15551 }
15552
15553 if (ep->error || ep->stat)
15554 close_failed = 1;
15555
15556 if (retry && !isrecov && num_retries-- > 0) {
15557 if (have_sync_lock) {
15558 mutex_exit(&osp->os_sync_lock);
15559 have_sync_lock = 0;
15560 }
15561 if (did_start_seqid_sync) {
15562 nfs4_end_open_seqid_sync(oop);
15563 did_start_seqid_sync = 0;
15564 }
15565 open_stream_rele(osp, rp);
15566
15567 if (did_start_op)
15568 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15569 &recov_state, FALSE);
15570 if (did_force_recovlock)
15571 nfs_rw_exit(&mi->mi_recovlock);
15572 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15573 "nfs4close_one: need to retry the close "
15574 "operation"));
15575 goto recov_retry;
15576 }
15577 close_cleanup:
15578 /*
15579 * Seventh and lastly, process our results.
15580 */
15581 if (close_failed && force_close) {
15582 /*
15583 * It's ok to drop and regrab the 'os_sync_lock' since
15584 * nfs4close_notw() will recheck to make sure the
15585 * "close"/removal of state should happen.
15586 */
15587 if (!have_sync_lock) {
15588 mutex_enter(&osp->os_sync_lock);
15589 have_sync_lock = 1;
15590 }
15591 /*
15592 * This is last call, remove the ref on the open
15593 * stream created by open and clean everything up.
15594 */
15595 osp->os_pending_close = 0;
15596 nfs4close_notw(vp, osp, &have_sync_lock);
15597 nfs4_error_zinit(ep);
15598 }
15599
15600 if (!close_failed) {
15601 if (have_sync_lock) {
15602 osp->os_pending_close = 0;
15603 mutex_exit(&osp->os_sync_lock);
15604 have_sync_lock = 0;
15605 } else {
15606 mutex_enter(&osp->os_sync_lock);
15607 osp->os_pending_close = 0;
15608 mutex_exit(&osp->os_sync_lock);
15609 }
15610 if (did_start_op && recov_state.rs_sp != NULL) {
15611 mutex_enter(&recov_state.rs_sp->s_lock);
15612 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
15613 mutex_exit(&recov_state.rs_sp->s_lock);
15614 } else {
15615 nfs4_dec_state_ref_count(mi);
15616 }
15617 nfs4_error_zinit(ep);
15618 }
15619
15620 out:
15621 if (have_sync_lock)
15622 mutex_exit(&osp->os_sync_lock);
15623 if (did_start_op)
15624 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
15625 recovonly ? TRUE : FALSE);
15626 if (did_force_recovlock)
15627 nfs_rw_exit(&mi->mi_recovlock);
15628 if (cred_otw)
15629 crfree(cred_otw);
15630 if (osp)
15631 open_stream_rele(osp, rp);
15632 if (oop) {
15633 if (did_start_seqid_sync)
15634 nfs4_end_open_seqid_sync(oop);
15635 open_owner_rele(oop);
15636 }
15637 }
15638
15639 /*
15640 * Convert information returned by the server in the LOCK4denied
15641 * structure to the form required by fcntl.
15642 */
15643 static void
denied_to_flk(LOCK4denied * lockt_denied,flock64_t * flk,LOCKT4args * lockt_args)15644 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
15645 {
15646 nfs4_lo_name_t *lo;
15647
15648 #ifdef DEBUG
15649 if (denied_to_flk_debug) {
15650 lockt_denied_debug = lockt_denied;
15651 debug_enter("lockt_denied");
15652 }
15653 #endif
15654
15655 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
15656 flk->l_whence = 0; /* aka SEEK_SET */
15657 flk->l_start = lockt_denied->offset;
15658 flk->l_len = lockt_denied->length;
15659
15660 /*
15661 * If the blocking clientid matches our client id, then we can
15662 * interpret the lockowner (since we built it). If not, then
15663 * fabricate a sysid and pid. Note that the l_sysid field
15664 * in *flk already has the local sysid.
15665 */
15666
15667 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
15668
15669 if (lockt_denied->owner.owner_len == sizeof (*lo)) {
15670 lo = (nfs4_lo_name_t *)
15671 lockt_denied->owner.owner_val;
15672
15673 flk->l_pid = lo->ln_pid;
15674 } else {
15675 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15676 "denied_to_flk: bad lock owner length\n"));
15677
15678 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15679 }
15680 } else {
15681 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15682 "denied_to_flk: foreign clientid\n"));
15683
15684 /*
15685 * Construct a new sysid which should be different from
15686 * sysids of other systems.
15687 */
15688
15689 flk->l_sysid++;
15690 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15691 }
15692 }
15693
15694 static pid_t
lo_to_pid(lock_owner4 * lop)15695 lo_to_pid(lock_owner4 *lop)
15696 {
15697 pid_t pid = 0;
15698 uchar_t *cp;
15699 int i;
15700
15701 cp = (uchar_t *)&lop->clientid;
15702
15703 for (i = 0; i < sizeof (lop->clientid); i++)
15704 pid += (pid_t)*cp++;
15705
15706 cp = (uchar_t *)lop->owner_val;
15707
15708 for (i = 0; i < lop->owner_len; i++)
15709 pid += (pid_t)*cp++;
15710
15711 return (pid);
15712 }
15713
15714 /*
15715 * Given a lock pointer, returns the length of that lock.
15716 * "end" is the last locked offset the "l_len" covers from
15717 * the start of the lock.
15718 */
15719 static off64_t
lock_to_end(flock64_t * lock)15720 lock_to_end(flock64_t *lock)
15721 {
15722 off64_t lock_end;
15723
15724 if (lock->l_len == 0)
15725 lock_end = (off64_t)MAXEND;
15726 else
15727 lock_end = lock->l_start + lock->l_len - 1;
15728
15729 return (lock_end);
15730 }
15731
15732 /*
15733 * Given the end of a lock, it will return you the length "l_len" for that lock.
15734 */
15735 static off64_t
end_to_len(off64_t start,off64_t end)15736 end_to_len(off64_t start, off64_t end)
15737 {
15738 off64_t lock_len;
15739
15740 ASSERT(end >= start);
15741 if (end == MAXEND)
15742 lock_len = 0;
15743 else
15744 lock_len = end - start + 1;
15745
15746 return (lock_len);
15747 }
15748
15749 /*
15750 * On given end for a lock it determines if it is the last locked offset
15751 * or not, if so keeps it as is, else adds one to return the length for
15752 * valid start.
15753 */
15754 static off64_t
start_check(off64_t x)15755 start_check(off64_t x)
15756 {
15757 if (x == MAXEND)
15758 return (x);
15759 else
15760 return (x + 1);
15761 }
15762
15763 /*
15764 * See if these two locks overlap, and if so return 1;
15765 * otherwise, return 0.
15766 */
15767 static int
locks_intersect(flock64_t * llfp,flock64_t * curfp)15768 locks_intersect(flock64_t *llfp, flock64_t *curfp)
15769 {
15770 off64_t llfp_end, curfp_end;
15771
15772 llfp_end = lock_to_end(llfp);
15773 curfp_end = lock_to_end(curfp);
15774
15775 if (((llfp_end >= curfp->l_start) &&
15776 (llfp->l_start <= curfp->l_start)) ||
15777 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
15778 return (1);
15779 return (0);
15780 }
15781
15782 /*
15783 * Determine what the intersecting lock region is, and add that to the
15784 * 'nl_llpp' locklist in increasing order (by l_start).
15785 */
15786 static void
nfs4_add_lock_range(flock64_t * lost_flp,flock64_t * local_flp,locklist_t ** nl_llpp,vnode_t * vp)15787 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
15788 locklist_t **nl_llpp, vnode_t *vp)
15789 {
15790 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
15791 off64_t lost_flp_end, local_flp_end, len, start;
15792
15793 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
15794
15795 if (!locks_intersect(lost_flp, local_flp))
15796 return;
15797
15798 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15799 "locks intersect"));
15800
15801 lost_flp_end = lock_to_end(lost_flp);
15802 local_flp_end = lock_to_end(local_flp);
15803
15804 /* Find the starting point of the intersecting region */
15805 if (local_flp->l_start > lost_flp->l_start)
15806 start = local_flp->l_start;
15807 else
15808 start = lost_flp->l_start;
15809
15810 /* Find the lenght of the intersecting region */
15811 if (lost_flp_end < local_flp_end)
15812 len = end_to_len(start, lost_flp_end);
15813 else
15814 len = end_to_len(start, local_flp_end);
15815
15816 /*
15817 * Prepare the flock structure for the intersection found and insert
15818 * it into the new list in increasing l_start order. This list contains
15819 * intersections of locks registered by the client with the local host
15820 * and the lost lock.
15821 * The lock type of this lock is the same as that of the local_flp.
15822 */
15823 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
15824 intersect_llp->ll_flock.l_start = start;
15825 intersect_llp->ll_flock.l_len = len;
15826 intersect_llp->ll_flock.l_type = local_flp->l_type;
15827 intersect_llp->ll_flock.l_pid = local_flp->l_pid;
15828 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
15829 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
15830 intersect_llp->ll_vp = vp;
15831
15832 tmp_fllp = *nl_llpp;
15833 cur_fllp = NULL;
15834 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
15835 intersect_llp->ll_flock.l_start) {
15836 cur_fllp = tmp_fllp;
15837 tmp_fllp = tmp_fllp->ll_next;
15838 }
15839 if (cur_fllp == NULL) {
15840 /* first on the list */
15841 intersect_llp->ll_next = *nl_llpp;
15842 *nl_llpp = intersect_llp;
15843 } else {
15844 intersect_llp->ll_next = cur_fllp->ll_next;
15845 cur_fllp->ll_next = intersect_llp;
15846 }
15847
15848 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15849 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
15850 intersect_llp->ll_flock.l_start,
15851 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
15852 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
15853 }
15854
15855 /*
15856 * Our local locking current state is potentially different than
15857 * what the NFSv4 server thinks we have due to a lost lock that was
15858 * resent and then received. We need to reset our "NFSv4" locking
15859 * state to match the current local locking state for this pid since
15860 * that is what the user/application sees as what the world is.
15861 *
15862 * We cannot afford to drop the open/lock seqid sync since then we can
15863 * get confused about what the current local locking state "is" versus
15864 * "was".
15865 *
15866 * If we are unable to fix up the locks, we send SIGLOST to the affected
15867 * process. This is not done if the filesystem has been forcibly
15868 * unmounted, in case the process has already exited and a new process
15869 * exists with the same pid.
15870 */
15871 static void
nfs4_reinstitute_local_lock_state(vnode_t * vp,flock64_t * lost_flp,cred_t * cr,nfs4_lock_owner_t * lop)15872 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
15873 nfs4_lock_owner_t *lop)
15874 {
15875 locklist_t *locks, *llp, *ri_llp, *tmp_llp;
15876 mntinfo4_t *mi = VTOMI4(vp);
15877 const int cmd = F_SETLK;
15878 off64_t cur_start, llp_ll_flock_end, lost_flp_end;
15879 flock64_t ul_fl;
15880
15881 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15882 "nfs4_reinstitute_local_lock_state"));
15883
15884 /*
15885 * Find active locks for this vp from the local locking code.
15886 * Scan through this list and find out the locks that intersect with
15887 * the lost lock. Once we find the lock that intersects, add the
15888 * intersection area as a new lock to a new list "ri_llp". The lock
15889 * type of the intersection region lock added to ri_llp is the same
15890 * as that found in the active lock list, "list". The intersecting
15891 * region locks are added to ri_llp in increasing l_start order.
15892 */
15893 ASSERT(nfs_zone() == mi->mi_zone);
15894
15895 locks = flk_active_locks_for_vp(vp);
15896 ri_llp = NULL;
15897
15898 for (llp = locks; llp != NULL; llp = llp->ll_next) {
15899 ASSERT(llp->ll_vp == vp);
15900 /*
15901 * Pick locks that belong to this pid/lockowner
15902 */
15903 if (llp->ll_flock.l_pid != lost_flp->l_pid)
15904 continue;
15905
15906 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
15907 }
15908
15909 /*
15910 * Now we have the list of intersections with the lost lock. These are
15911 * the locks that were/are active before the server replied to the
15912 * last/lost lock. Issue these locks to the server here. Playing these
15913 * locks to the server will re-establish aur current local locking state
15914 * with the v4 server.
15915 * If we get an error, send SIGLOST to the application for that lock.
15916 */
15917
15918 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15919 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15920 "nfs4_reinstitute_local_lock_state: need to issue "
15921 "flock: [%"PRIx64" - %"PRIx64"] : %s",
15922 llp->ll_flock.l_start,
15923 llp->ll_flock.l_start + llp->ll_flock.l_len,
15924 llp->ll_flock.l_type == F_RDLCK ? "READ" :
15925 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
15926 /*
15927 * No need to relock what we already have
15928 */
15929 if (llp->ll_flock.l_type == lost_flp->l_type)
15930 continue;
15931
15932 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
15933 }
15934
15935 /*
15936 * Now keeping the start of the lost lock as our reference parse the
15937 * newly created ri_llp locklist to find the ranges that we have locked
15938 * with the v4 server but not in the current local locking. We need
15939 * to unlock these ranges.
15940 * These ranges can also be reffered to as those ranges, where the lost
15941 * lock does not overlap with the locks in the ri_llp but are locked
15942 * since the server replied to the lost lock.
15943 */
15944 cur_start = lost_flp->l_start;
15945 lost_flp_end = lock_to_end(lost_flp);
15946
15947 ul_fl.l_type = F_UNLCK;
15948 ul_fl.l_whence = 0; /* aka SEEK_SET */
15949 ul_fl.l_sysid = lost_flp->l_sysid;
15950 ul_fl.l_pid = lost_flp->l_pid;
15951
15952 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15953 llp_ll_flock_end = lock_to_end(&llp->ll_flock);
15954
15955 if (llp->ll_flock.l_start <= cur_start) {
15956 cur_start = start_check(llp_ll_flock_end);
15957 continue;
15958 }
15959 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15960 "nfs4_reinstitute_local_lock_state: "
15961 "UNLOCK [%"PRIx64" - %"PRIx64"]",
15962 cur_start, llp->ll_flock.l_start));
15963
15964 ul_fl.l_start = cur_start;
15965 ul_fl.l_len = end_to_len(cur_start,
15966 (llp->ll_flock.l_start - 1));
15967
15968 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15969 cur_start = start_check(llp_ll_flock_end);
15970 }
15971
15972 /*
15973 * In the case where the lost lock ends after all intersecting locks,
15974 * unlock the last part of the lost lock range.
15975 */
15976 if (cur_start != start_check(lost_flp_end)) {
15977 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15978 "nfs4_reinstitute_local_lock_state: UNLOCK end of the "
15979 "lost lock region [%"PRIx64" - %"PRIx64"]",
15980 cur_start, lost_flp->l_start + lost_flp->l_len));
15981
15982 ul_fl.l_start = cur_start;
15983 /*
15984 * Is it an to-EOF lock? if so unlock till the end
15985 */
15986 if (lost_flp->l_len == 0)
15987 ul_fl.l_len = 0;
15988 else
15989 ul_fl.l_len = start_check(lost_flp_end) - cur_start;
15990
15991 push_reinstate(vp, cmd, &ul_fl, cr, lop);
15992 }
15993
15994 if (locks != NULL)
15995 flk_free_locklist(locks);
15996
15997 /* Free up our newly created locklist */
15998 for (llp = ri_llp; llp != NULL; ) {
15999 tmp_llp = llp->ll_next;
16000 kmem_free(llp, sizeof (locklist_t));
16001 llp = tmp_llp;
16002 }
16003
16004 /*
16005 * Now return back to the original calling nfs4frlock()
16006 * and let us naturally drop our seqid syncs.
16007 */
16008 }
16009
16010 /*
16011 * Create a lost state record for the given lock reinstantiation request
16012 * and push it onto the lost state queue.
16013 */
16014 static void
push_reinstate(vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_lock_owner_t * lop)16015 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
16016 nfs4_lock_owner_t *lop)
16017 {
16018 nfs4_lost_rqst_t req;
16019 nfs_lock_type4 locktype;
16020 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
16021
16022 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
16023
16024 locktype = flk_to_locktype(cmd, flk->l_type);
16025 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
16026 NULL, NULL, lop, flk, &req, cr, vp);
16027 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
16028 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
16029 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
16030 NULL, NULL, NULL);
16031 }
16032