xref: /linux/drivers/misc/eeprom/at24.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * at24.c - handle most I2C EEPROMs
4  *
5  * Copyright (C) 2005-2007 David Brownell
6  * Copyright (C) 2008 Wolfram Sang, Pengutronix
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/bitops.h>
11 #include <linux/capability.h>
12 #include <linux/delay.h>
13 #include <linux/i2c.h>
14 #include <linux/init.h>
15 #include <linux/jiffies.h>
16 #include <linux/kernel.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/nvmem-provider.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/property.h>
25 #include <linux/regmap.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/slab.h>
28 
29 /* Address pointer is 16 bit. */
30 #define AT24_FLAG_ADDR16	BIT(7)
31 /* sysfs-entry will be read-only. */
32 #define AT24_FLAG_READONLY	BIT(6)
33 /* sysfs-entry will be world-readable. */
34 #define AT24_FLAG_IRUGO		BIT(5)
35 /* Take always 8 addresses (24c00). */
36 #define AT24_FLAG_TAKE8ADDR	BIT(4)
37 /* Factory-programmed serial number. */
38 #define AT24_FLAG_SERIAL	BIT(3)
39 /* Factory-programmed mac address. */
40 #define AT24_FLAG_MAC		BIT(2)
41 /* Does not auto-rollover reads to the next slave address. */
42 #define AT24_FLAG_NO_RDROL	BIT(1)
43 
44 /*
45  * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
46  * Differences between different vendor product lines (like Atmel AT24C or
47  * MicroChip 24LC, etc) won't much matter for typical read/write access.
48  * There are also I2C RAM chips, likewise interchangeable. One example
49  * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
50  *
51  * However, misconfiguration can lose data. "Set 16-bit memory address"
52  * to a part with 8-bit addressing will overwrite data. Writing with too
53  * big a page size also loses data. And it's not safe to assume that the
54  * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
55  * uses 0x51, for just one example.
56  *
57  * Accordingly, explicit board-specific configuration data should be used
58  * in almost all cases. (One partial exception is an SMBus used to access
59  * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
60  *
61  * So this driver uses "new style" I2C driver binding, expecting to be
62  * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
63  * similar kernel-resident tables; or, configuration data coming from
64  * a bootloader.
65  *
66  * Other than binding model, current differences from "eeprom" driver are
67  * that this one handles write access and isn't restricted to 24c02 devices.
68  * It also handles larger devices (32 kbit and up) with two-byte addresses,
69  * which won't work on pure SMBus systems.
70  */
71 
72 struct at24_data {
73 	/*
74 	 * Lock protects against activities from other Linux tasks,
75 	 * but not from changes by other I2C masters.
76 	 */
77 	struct mutex lock;
78 
79 	unsigned int write_max;
80 	unsigned int num_addresses;
81 	unsigned int offset_adj;
82 
83 	u32 byte_len;
84 	u16 page_size;
85 	u8 flags;
86 
87 	struct nvmem_device *nvmem;
88 	struct regulator *vcc_reg;
89 	void (*read_post)(unsigned int off, char *buf, size_t count);
90 
91 	/*
92 	 * Some chips tie up multiple I2C addresses; dummy devices reserve
93 	 * them for us.
94 	 */
95 	u8 bank_addr_shift;
96 	struct regmap *client_regmaps[] __counted_by(num_addresses);
97 };
98 
99 /*
100  * This parameter is to help this driver avoid blocking other drivers out
101  * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
102  * clock, one 256 byte read takes about 1/43 second which is excessive;
103  * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
104  * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
105  *
106  * This value is forced to be a power of two so that writes align on pages.
107  */
108 static unsigned int at24_io_limit = 128;
109 module_param_named(io_limit, at24_io_limit, uint, 0);
110 MODULE_PARM_DESC(at24_io_limit, "Maximum bytes per I/O (default 128)");
111 
112 /*
113  * Specs often allow 5 msec for a page write, sometimes 20 msec;
114  * it's important to recover from write timeouts.
115  */
116 static unsigned int at24_write_timeout = 25;
117 module_param_named(write_timeout, at24_write_timeout, uint, 0);
118 MODULE_PARM_DESC(at24_write_timeout, "Time (in ms) to try writes (default 25)");
119 
120 struct at24_chip_data {
121 	u32 byte_len;
122 	u8 flags;
123 	u8 bank_addr_shift;
124 	void (*read_post)(unsigned int off, char *buf, size_t count);
125 };
126 
127 #define AT24_CHIP_DATA(_name, _len, _flags)				\
128 	static const struct at24_chip_data _name = {			\
129 		.byte_len = _len, .flags = _flags,			\
130 	}
131 
132 #define AT24_CHIP_DATA_CB(_name, _len, _flags, _read_post)		\
133 	static const struct at24_chip_data _name = {			\
134 		.byte_len = _len, .flags = _flags,			\
135 		.read_post = _read_post,				\
136 	}
137 
138 #define AT24_CHIP_DATA_BS(_name, _len, _flags, _bank_addr_shift)	\
139 	static const struct at24_chip_data _name = {			\
140 		.byte_len = _len, .flags = _flags,			\
141 		.bank_addr_shift = _bank_addr_shift			\
142 	}
143 
at24_read_post_vaio(unsigned int off,char * buf,size_t count)144 static void at24_read_post_vaio(unsigned int off, char *buf, size_t count)
145 {
146 	int i;
147 
148 	if (capable(CAP_SYS_ADMIN))
149 		return;
150 
151 	/*
152 	 * Hide VAIO private settings to regular users:
153 	 * - BIOS passwords: bytes 0x00 to 0x0f
154 	 * - UUID: bytes 0x10 to 0x1f
155 	 * - Serial number: 0xc0 to 0xdf
156 	 */
157 	for (i = 0; i < count; i++) {
158 		if ((off + i <= 0x1f) ||
159 		    (off + i >= 0xc0 && off + i <= 0xdf))
160 			buf[i] = 0;
161 	}
162 }
163 
164 /* needs 8 addresses as A0-A2 are ignored */
165 AT24_CHIP_DATA(at24_data_24c00, 128 / 8, AT24_FLAG_TAKE8ADDR);
166 /* old variants can't be handled with this generic entry! */
167 AT24_CHIP_DATA(at24_data_24c01, 1024 / 8, 0);
168 AT24_CHIP_DATA(at24_data_24cs01, 16,
169 	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
170 AT24_CHIP_DATA(at24_data_24c02, 2048 / 8, 0);
171 AT24_CHIP_DATA(at24_data_24cs02, 16,
172 	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
173 AT24_CHIP_DATA(at24_data_24mac402, 48 / 8,
174 	AT24_FLAG_MAC | AT24_FLAG_READONLY);
175 AT24_CHIP_DATA(at24_data_24mac602, 64 / 8,
176 	AT24_FLAG_MAC | AT24_FLAG_READONLY);
177 AT24_CHIP_DATA(at24_data_24aa025e48, 48 / 8,
178 	AT24_FLAG_READONLY);
179 AT24_CHIP_DATA(at24_data_24aa025e64, 64 / 8,
180 	AT24_FLAG_READONLY);
181 /* spd is a 24c02 in memory DIMMs */
182 AT24_CHIP_DATA(at24_data_spd, 2048 / 8,
183 	AT24_FLAG_READONLY | AT24_FLAG_IRUGO);
184 /* 24c02_vaio is a 24c02 on some Sony laptops */
185 AT24_CHIP_DATA_CB(at24_data_24c02_vaio, 2048 / 8,
186 	AT24_FLAG_READONLY | AT24_FLAG_IRUGO,
187 	at24_read_post_vaio);
188 AT24_CHIP_DATA(at24_data_24c04, 4096 / 8, 0);
189 AT24_CHIP_DATA(at24_data_24cs04, 16,
190 	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
191 /* 24rf08 quirk is handled at i2c-core */
192 AT24_CHIP_DATA(at24_data_24c08, 8192 / 8, 0);
193 AT24_CHIP_DATA(at24_data_24cs08, 16,
194 	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
195 AT24_CHIP_DATA(at24_data_24c16, 16384 / 8, 0);
196 AT24_CHIP_DATA(at24_data_24cs16, 16,
197 	AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
198 AT24_CHIP_DATA(at24_data_24c32, 32768 / 8, AT24_FLAG_ADDR16);
199 /* M24C32-D Additional Write lockable page (M24C32-D order codes) */
200 AT24_CHIP_DATA(at24_data_24c32d_wlp, 32, AT24_FLAG_ADDR16);
201 AT24_CHIP_DATA(at24_data_24cs32, 16,
202 	AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
203 AT24_CHIP_DATA(at24_data_24c64, 65536 / 8, AT24_FLAG_ADDR16);
204 /* M24C64-D Additional Write lockable page (M24C64-D order codes) */
205 AT24_CHIP_DATA(at24_data_24c64d_wlp, 32, AT24_FLAG_ADDR16);
206 AT24_CHIP_DATA(at24_data_24cs64, 16,
207 	AT24_FLAG_ADDR16 | AT24_FLAG_SERIAL | AT24_FLAG_READONLY);
208 AT24_CHIP_DATA(at24_data_24c128, 131072 / 8, AT24_FLAG_ADDR16);
209 AT24_CHIP_DATA(at24_data_24c256, 262144 / 8, AT24_FLAG_ADDR16);
210 AT24_CHIP_DATA(at24_data_24c512, 524288 / 8, AT24_FLAG_ADDR16);
211 AT24_CHIP_DATA(at24_data_24c1024, 1048576 / 8, AT24_FLAG_ADDR16);
212 AT24_CHIP_DATA_BS(at24_data_24c1025, 1048576 / 8, AT24_FLAG_ADDR16, 2);
213 AT24_CHIP_DATA(at24_data_24c2048, 2097152 / 8, AT24_FLAG_ADDR16);
214 /* identical to 24c08 ? */
215 AT24_CHIP_DATA(at24_data_INT3499, 8192 / 8, 0);
216 
217 static const struct i2c_device_id at24_ids[] = {
218 	{ "24c00",	(kernel_ulong_t)&at24_data_24c00 },
219 	{ "24c01",	(kernel_ulong_t)&at24_data_24c01 },
220 	{ "24cs01",	(kernel_ulong_t)&at24_data_24cs01 },
221 	{ "24c02",	(kernel_ulong_t)&at24_data_24c02 },
222 	{ "24cs02",	(kernel_ulong_t)&at24_data_24cs02 },
223 	{ "24mac402",	(kernel_ulong_t)&at24_data_24mac402 },
224 	{ "24mac602",	(kernel_ulong_t)&at24_data_24mac602 },
225 	{ "24aa025e48",	(kernel_ulong_t)&at24_data_24aa025e48 },
226 	{ "24aa025e64",	(kernel_ulong_t)&at24_data_24aa025e64 },
227 	{ "spd",	(kernel_ulong_t)&at24_data_spd },
228 	{ "24c02-vaio",	(kernel_ulong_t)&at24_data_24c02_vaio },
229 	{ "24c04",	(kernel_ulong_t)&at24_data_24c04 },
230 	{ "24cs04",	(kernel_ulong_t)&at24_data_24cs04 },
231 	{ "24c08",	(kernel_ulong_t)&at24_data_24c08 },
232 	{ "24cs08",	(kernel_ulong_t)&at24_data_24cs08 },
233 	{ "24c16",	(kernel_ulong_t)&at24_data_24c16 },
234 	{ "24cs16",	(kernel_ulong_t)&at24_data_24cs16 },
235 	{ "24c32",	(kernel_ulong_t)&at24_data_24c32 },
236 	{ "24c32d-wl",	(kernel_ulong_t)&at24_data_24c32d_wlp },
237 	{ "24cs32",	(kernel_ulong_t)&at24_data_24cs32 },
238 	{ "24c64",	(kernel_ulong_t)&at24_data_24c64 },
239 	{ "24c64-wl",	(kernel_ulong_t)&at24_data_24c64d_wlp },
240 	{ "24cs64",	(kernel_ulong_t)&at24_data_24cs64 },
241 	{ "24c128",	(kernel_ulong_t)&at24_data_24c128 },
242 	{ "24c256",	(kernel_ulong_t)&at24_data_24c256 },
243 	{ "24c512",	(kernel_ulong_t)&at24_data_24c512 },
244 	{ "24c1024",	(kernel_ulong_t)&at24_data_24c1024 },
245 	{ "24c1025",	(kernel_ulong_t)&at24_data_24c1025 },
246 	{ "24c2048",    (kernel_ulong_t)&at24_data_24c2048 },
247 	{ "at24",	0 },
248 	{ /* END OF LIST */ }
249 };
250 MODULE_DEVICE_TABLE(i2c, at24_ids);
251 
252 static const struct of_device_id __maybe_unused at24_of_match[] = {
253 	{ .compatible = "atmel,24c00",		.data = &at24_data_24c00 },
254 	{ .compatible = "atmel,24c01",		.data = &at24_data_24c01 },
255 	{ .compatible = "atmel,24cs01",		.data = &at24_data_24cs01 },
256 	{ .compatible = "atmel,24c02",		.data = &at24_data_24c02 },
257 	{ .compatible = "atmel,24cs02",		.data = &at24_data_24cs02 },
258 	{ .compatible = "atmel,24mac402",	.data = &at24_data_24mac402 },
259 	{ .compatible = "atmel,24mac602",	.data = &at24_data_24mac602 },
260 	{ .compatible = "atmel,spd",		.data = &at24_data_spd },
261 	{ .compatible = "atmel,24c04",		.data = &at24_data_24c04 },
262 	{ .compatible = "atmel,24cs04",		.data = &at24_data_24cs04 },
263 	{ .compatible = "atmel,24c08",		.data = &at24_data_24c08 },
264 	{ .compatible = "atmel,24cs08",		.data = &at24_data_24cs08 },
265 	{ .compatible = "atmel,24c16",		.data = &at24_data_24c16 },
266 	{ .compatible = "atmel,24cs16",		.data = &at24_data_24cs16 },
267 	{ .compatible = "atmel,24c32",		.data = &at24_data_24c32 },
268 	{ .compatible = "atmel,24c32d-wl",	.data = &at24_data_24c32d_wlp },
269 	{ .compatible = "atmel,24cs32",		.data = &at24_data_24cs32 },
270 	{ .compatible = "atmel,24c64",		.data = &at24_data_24c64 },
271 	{ .compatible = "atmel,24c64d-wl",	.data = &at24_data_24c64d_wlp },
272 	{ .compatible = "atmel,24cs64",		.data = &at24_data_24cs64 },
273 	{ .compatible = "atmel,24c128",		.data = &at24_data_24c128 },
274 	{ .compatible = "atmel,24c256",		.data = &at24_data_24c256 },
275 	{ .compatible = "atmel,24c512",		.data = &at24_data_24c512 },
276 	{ .compatible = "atmel,24c1024",	.data = &at24_data_24c1024 },
277 	{ .compatible = "atmel,24c1025",	.data = &at24_data_24c1025 },
278 	{ .compatible = "atmel,24c2048",	.data = &at24_data_24c2048 },
279 	{ .compatible = "microchip,24aa025e48",	.data = &at24_data_24aa025e48 },
280 	{ .compatible = "microchip,24aa025e64",	.data = &at24_data_24aa025e64 },
281 	{ /* END OF LIST */ },
282 };
283 MODULE_DEVICE_TABLE(of, at24_of_match);
284 
285 static const struct acpi_device_id __maybe_unused at24_acpi_ids[] = {
286 	{ "INT3499",	(kernel_ulong_t)&at24_data_INT3499 },
287 	{ "TPF0001",	(kernel_ulong_t)&at24_data_24c1024 },
288 	{ /* END OF LIST */ }
289 };
290 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
291 
292 /*
293  * This routine supports chips which consume multiple I2C addresses. It
294  * computes the addressing information to be used for a given r/w request.
295  * Assumes that sanity checks for offset happened at sysfs-layer.
296  *
297  * Slave address and byte offset derive from the offset. Always
298  * set the byte address; on a multi-master board, another master
299  * may have changed the chip's "current" address pointer.
300  */
at24_translate_offset(struct at24_data * at24,unsigned int * offset)301 static struct regmap *at24_translate_offset(struct at24_data *at24,
302 					    unsigned int *offset)
303 {
304 	unsigned int i;
305 
306 	if (at24->flags & AT24_FLAG_ADDR16) {
307 		i = *offset >> 16;
308 		*offset &= 0xffff;
309 	} else {
310 		i = *offset >> 8;
311 		*offset &= 0xff;
312 	}
313 
314 	return at24->client_regmaps[i];
315 }
316 
at24_base_client_dev(struct at24_data * at24)317 static struct device *at24_base_client_dev(struct at24_data *at24)
318 {
319 	return regmap_get_device(at24->client_regmaps[0]);
320 }
321 
at24_adjust_read_count(struct at24_data * at24,unsigned int offset,size_t count)322 static size_t at24_adjust_read_count(struct at24_data *at24,
323 				      unsigned int offset, size_t count)
324 {
325 	unsigned int bits;
326 	size_t remainder;
327 
328 	/*
329 	 * In case of multi-address chips that don't rollover reads to
330 	 * the next slave address: truncate the count to the slave boundary,
331 	 * so that the read never straddles slaves.
332 	 */
333 	if (at24->flags & AT24_FLAG_NO_RDROL) {
334 		bits = (at24->flags & AT24_FLAG_ADDR16) ? 16 : 8;
335 		remainder = BIT(bits) - offset;
336 		if (count > remainder)
337 			count = remainder;
338 	}
339 
340 	if (count > at24_io_limit)
341 		count = at24_io_limit;
342 
343 	return count;
344 }
345 
at24_regmap_read(struct at24_data * at24,char * buf,unsigned int offset,size_t count)346 static ssize_t at24_regmap_read(struct at24_data *at24, char *buf,
347 				unsigned int offset, size_t count)
348 {
349 	unsigned long timeout, read_time;
350 	struct regmap *regmap;
351 	int ret;
352 
353 	regmap = at24_translate_offset(at24, &offset);
354 	count = at24_adjust_read_count(at24, offset, count);
355 
356 	/* adjust offset for mac and serial read ops */
357 	offset += at24->offset_adj;
358 
359 	timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
360 	do {
361 		/*
362 		 * The timestamp shall be taken before the actual operation
363 		 * to avoid a premature timeout in case of high CPU load.
364 		 */
365 		read_time = jiffies;
366 
367 		ret = regmap_bulk_read(regmap, offset, buf, count);
368 		dev_dbg(regmap_get_device(regmap), "read %zu@%d --> %d (%ld)\n",
369 			count, offset, ret, jiffies);
370 		if (!ret)
371 			return count;
372 
373 		usleep_range(1000, 1500);
374 	} while (time_before(read_time, timeout));
375 
376 	return -ETIMEDOUT;
377 }
378 
379 /*
380  * Note that if the hardware write-protect pin is pulled high, the whole
381  * chip is normally write protected. But there are plenty of product
382  * variants here, including OTP fuses and partial chip protect.
383  *
384  * We only use page mode writes; the alternative is sloooow. These routines
385  * write at most one page.
386  */
387 
at24_adjust_write_count(struct at24_data * at24,unsigned int offset,size_t count)388 static size_t at24_adjust_write_count(struct at24_data *at24,
389 				      unsigned int offset, size_t count)
390 {
391 	unsigned int next_page;
392 
393 	/* write_max is at most a page */
394 	if (count > at24->write_max)
395 		count = at24->write_max;
396 
397 	/* Never roll over backwards, to the start of this page */
398 	next_page = roundup(offset + 1, at24->page_size);
399 	if (offset + count > next_page)
400 		count = next_page - offset;
401 
402 	return count;
403 }
404 
at24_regmap_write(struct at24_data * at24,const char * buf,unsigned int offset,size_t count)405 static ssize_t at24_regmap_write(struct at24_data *at24, const char *buf,
406 				 unsigned int offset, size_t count)
407 {
408 	unsigned long timeout, write_time;
409 	struct regmap *regmap;
410 	int ret;
411 
412 	regmap = at24_translate_offset(at24, &offset);
413 	count = at24_adjust_write_count(at24, offset, count);
414 	timeout = jiffies + msecs_to_jiffies(at24_write_timeout);
415 
416 	do {
417 		/*
418 		 * The timestamp shall be taken before the actual operation
419 		 * to avoid a premature timeout in case of high CPU load.
420 		 */
421 		write_time = jiffies;
422 
423 		ret = regmap_bulk_write(regmap, offset, buf, count);
424 		dev_dbg(regmap_get_device(regmap), "write %zu@%d --> %d (%ld)\n",
425 			count, offset, ret, jiffies);
426 		if (!ret)
427 			return count;
428 
429 		usleep_range(1000, 1500);
430 	} while (time_before(write_time, timeout));
431 
432 	return -ETIMEDOUT;
433 }
434 
at24_read(void * priv,unsigned int off,void * val,size_t count)435 static int at24_read(void *priv, unsigned int off, void *val, size_t count)
436 {
437 	struct at24_data *at24;
438 	struct device *dev;
439 	char *buf = val;
440 	int i, ret;
441 
442 	at24 = priv;
443 	dev = at24_base_client_dev(at24);
444 
445 	if (unlikely(!count))
446 		return count;
447 
448 	if (off + count > at24->byte_len)
449 		return -EINVAL;
450 
451 	ret = pm_runtime_resume_and_get(dev);
452 	if (ret)
453 		return ret;
454 	/*
455 	 * Read data from chip, protecting against concurrent updates
456 	 * from this host, but not from other I2C masters.
457 	 */
458 	mutex_lock(&at24->lock);
459 
460 	for (i = 0; count; i += ret, count -= ret) {
461 		ret = at24_regmap_read(at24, buf + i, off + i, count);
462 		if (ret < 0) {
463 			mutex_unlock(&at24->lock);
464 			pm_runtime_put(dev);
465 			return ret;
466 		}
467 	}
468 
469 	mutex_unlock(&at24->lock);
470 
471 	pm_runtime_put(dev);
472 
473 	if (unlikely(at24->read_post))
474 		at24->read_post(off, buf, i);
475 
476 	return 0;
477 }
478 
at24_write(void * priv,unsigned int off,void * val,size_t count)479 static int at24_write(void *priv, unsigned int off, void *val, size_t count)
480 {
481 	struct at24_data *at24;
482 	struct device *dev;
483 	char *buf = val;
484 	int ret;
485 
486 	at24 = priv;
487 	dev = at24_base_client_dev(at24);
488 
489 	if (unlikely(!count))
490 		return -EINVAL;
491 
492 	if (off + count > at24->byte_len)
493 		return -EINVAL;
494 
495 	ret = pm_runtime_resume_and_get(dev);
496 	if (ret)
497 		return ret;
498 	/*
499 	 * Write data to chip, protecting against concurrent updates
500 	 * from this host, but not from other I2C masters.
501 	 */
502 	mutex_lock(&at24->lock);
503 
504 	while (count) {
505 		ret = at24_regmap_write(at24, buf, off, count);
506 		if (ret < 0) {
507 			mutex_unlock(&at24->lock);
508 			pm_runtime_put(dev);
509 			return ret;
510 		}
511 		buf += ret;
512 		off += ret;
513 		count -= ret;
514 	}
515 
516 	mutex_unlock(&at24->lock);
517 
518 	pm_runtime_put(dev);
519 
520 	return 0;
521 }
522 
at24_make_dummy_client(struct at24_data * at24,unsigned int index,struct i2c_client * base_client,struct regmap_config * regmap_config)523 static int at24_make_dummy_client(struct at24_data *at24, unsigned int index,
524 				  struct i2c_client *base_client,
525 				  struct regmap_config *regmap_config)
526 {
527 	struct i2c_client *dummy_client;
528 	struct regmap *regmap;
529 
530 	dummy_client = devm_i2c_new_dummy_device(&base_client->dev,
531 						 base_client->adapter,
532 						 base_client->addr +
533 						 (index << at24->bank_addr_shift));
534 	if (IS_ERR(dummy_client))
535 		return PTR_ERR(dummy_client);
536 
537 	regmap = devm_regmap_init_i2c(dummy_client, regmap_config);
538 	if (IS_ERR(regmap))
539 		return PTR_ERR(regmap);
540 
541 	at24->client_regmaps[index] = regmap;
542 
543 	return 0;
544 }
545 
at24_get_offset_adj(u8 flags,unsigned int byte_len)546 static unsigned int at24_get_offset_adj(u8 flags, unsigned int byte_len)
547 {
548 	if (flags & AT24_FLAG_MAC) {
549 		/* EUI-48 starts from 0x9a, EUI-64 from 0x98 */
550 		return 0xa0 - byte_len;
551 	} else if (flags & AT24_FLAG_SERIAL && flags & AT24_FLAG_ADDR16) {
552 		/*
553 		 * For 16 bit address pointers, the word address must contain
554 		 * a '10' sequence in bits 11 and 10 regardless of the
555 		 * intended position of the address pointer.
556 		 */
557 		return 0x0800;
558 	} else if (flags & AT24_FLAG_SERIAL) {
559 		/*
560 		 * Otherwise the word address must begin with a '10' sequence,
561 		 * regardless of the intended address.
562 		 */
563 		return 0x0080;
564 	} else {
565 		return 0;
566 	}
567 }
568 
at24_probe_temp_sensor(struct i2c_client * client)569 static void at24_probe_temp_sensor(struct i2c_client *client)
570 {
571 	struct at24_data *at24 = i2c_get_clientdata(client);
572 	struct i2c_board_info info = { .type = "jc42" };
573 	int ret;
574 	u8 val;
575 
576 	/*
577 	 * Byte 2 has value 11 for DDR3, earlier versions don't
578 	 * support the thermal sensor present flag
579 	 */
580 	ret = at24_read(at24, 2, &val, 1);
581 	if (ret || val != 11)
582 		return;
583 
584 	/* Byte 32, bit 7 is set if temp sensor is present */
585 	ret = at24_read(at24, 32, &val, 1);
586 	if (ret || !(val & BIT(7)))
587 		return;
588 
589 	info.addr = 0x18 | (client->addr & 7);
590 
591 	i2c_new_client_device(client->adapter, &info);
592 }
593 
at24_probe(struct i2c_client * client)594 static int at24_probe(struct i2c_client *client)
595 {
596 	struct regmap_config regmap_config = { };
597 	struct nvmem_config nvmem_config = { };
598 	u32 byte_len, page_size, flags, addrw;
599 	const struct at24_chip_data *cdata;
600 	struct device *dev = &client->dev;
601 	bool i2c_fn_i2c, i2c_fn_block;
602 	unsigned int i, num_addresses;
603 	struct at24_data *at24;
604 	bool full_power;
605 	struct regmap *regmap;
606 	bool writable;
607 	u8 test_byte;
608 	int err;
609 
610 	i2c_fn_i2c = i2c_check_functionality(client->adapter, I2C_FUNC_I2C);
611 	i2c_fn_block = i2c_check_functionality(client->adapter,
612 					       I2C_FUNC_SMBUS_WRITE_I2C_BLOCK);
613 
614 	cdata = i2c_get_match_data(client);
615 	if (!cdata)
616 		return -ENODEV;
617 
618 	err = device_property_read_u32(dev, "pagesize", &page_size);
619 	if (err)
620 		/*
621 		 * This is slow, but we can't know all eeproms, so we better
622 		 * play safe. Specifying custom eeprom-types via device tree
623 		 * or properties is recommended anyhow.
624 		 */
625 		page_size = 1;
626 
627 	flags = cdata->flags;
628 	if (device_property_present(dev, "read-only"))
629 		flags |= AT24_FLAG_READONLY;
630 	if (device_property_present(dev, "no-read-rollover"))
631 		flags |= AT24_FLAG_NO_RDROL;
632 
633 	err = device_property_read_u32(dev, "address-width", &addrw);
634 	if (!err) {
635 		switch (addrw) {
636 		case 8:
637 			if (flags & AT24_FLAG_ADDR16)
638 				dev_warn(dev,
639 					 "Override address width to be 8, while default is 16\n");
640 			flags &= ~AT24_FLAG_ADDR16;
641 			break;
642 		case 16:
643 			flags |= AT24_FLAG_ADDR16;
644 			break;
645 		default:
646 			dev_warn(dev, "Bad \"address-width\" property: %u\n",
647 				 addrw);
648 		}
649 	}
650 
651 	err = device_property_read_u32(dev, "size", &byte_len);
652 	if (err)
653 		byte_len = cdata->byte_len;
654 
655 	if (!i2c_fn_i2c && !i2c_fn_block)
656 		page_size = 1;
657 
658 	if (!page_size) {
659 		dev_err(dev, "page_size must not be 0!\n");
660 		return -EINVAL;
661 	}
662 
663 	if (!is_power_of_2(page_size))
664 		dev_warn(dev, "page_size looks suspicious (no power of 2)!\n");
665 
666 	err = device_property_read_u32(dev, "num-addresses", &num_addresses);
667 	if (err) {
668 		if (flags & AT24_FLAG_TAKE8ADDR)
669 			num_addresses = 8;
670 		else
671 			num_addresses =	DIV_ROUND_UP(byte_len,
672 				(flags & AT24_FLAG_ADDR16) ? 65536 : 256);
673 	}
674 
675 	if ((flags & AT24_FLAG_SERIAL) && (flags & AT24_FLAG_MAC)) {
676 		dev_err(dev,
677 			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
678 		return -EINVAL;
679 	}
680 
681 	regmap_config.val_bits = 8;
682 	regmap_config.reg_bits = (flags & AT24_FLAG_ADDR16) ? 16 : 8;
683 	regmap_config.disable_locking = true;
684 
685 	regmap = devm_regmap_init_i2c(client, &regmap_config);
686 	if (IS_ERR(regmap))
687 		return PTR_ERR(regmap);
688 
689 	at24 = devm_kzalloc(dev, struct_size(at24, client_regmaps, num_addresses),
690 			    GFP_KERNEL);
691 	if (!at24)
692 		return -ENOMEM;
693 
694 	mutex_init(&at24->lock);
695 	at24->byte_len = byte_len;
696 	at24->page_size = page_size;
697 	at24->flags = flags;
698 	at24->read_post = cdata->read_post;
699 	at24->bank_addr_shift = cdata->bank_addr_shift;
700 	at24->num_addresses = num_addresses;
701 	at24->offset_adj = at24_get_offset_adj(flags, byte_len);
702 	at24->client_regmaps[0] = regmap;
703 
704 	at24->vcc_reg = devm_regulator_get(dev, "vcc");
705 	if (IS_ERR(at24->vcc_reg))
706 		return PTR_ERR(at24->vcc_reg);
707 
708 	writable = !(flags & AT24_FLAG_READONLY);
709 	if (writable) {
710 		at24->write_max = min_t(unsigned int,
711 					page_size, at24_io_limit);
712 		if (!i2c_fn_i2c && at24->write_max > I2C_SMBUS_BLOCK_MAX)
713 			at24->write_max = I2C_SMBUS_BLOCK_MAX;
714 	}
715 
716 	/* use dummy devices for multiple-address chips */
717 	for (i = 1; i < num_addresses; i++) {
718 		err = at24_make_dummy_client(at24, i, client, &regmap_config);
719 		if (err)
720 			return err;
721 	}
722 
723 	/*
724 	 * We initialize nvmem_config.id to NVMEM_DEVID_AUTO even if the
725 	 * label property is set as some platform can have multiple eeproms
726 	 * with same label and we can not register each of those with same
727 	 * label. Failing to register those eeproms trigger cascade failure
728 	 * on such platform.
729 	 */
730 	nvmem_config.id = NVMEM_DEVID_AUTO;
731 
732 	if (device_property_present(dev, "label")) {
733 		err = device_property_read_string(dev, "label",
734 						  &nvmem_config.name);
735 		if (err)
736 			return err;
737 	} else {
738 		nvmem_config.name = dev_name(dev);
739 	}
740 
741 	nvmem_config.type = NVMEM_TYPE_EEPROM;
742 	nvmem_config.dev = dev;
743 	nvmem_config.read_only = !writable;
744 	nvmem_config.root_only = !(flags & AT24_FLAG_IRUGO);
745 	nvmem_config.owner = THIS_MODULE;
746 	nvmem_config.compat = true;
747 	nvmem_config.base_dev = dev;
748 	nvmem_config.reg_read = at24_read;
749 	nvmem_config.reg_write = at24_write;
750 	nvmem_config.priv = at24;
751 	nvmem_config.stride = 1;
752 	nvmem_config.word_size = 1;
753 	nvmem_config.size = byte_len;
754 
755 	i2c_set_clientdata(client, at24);
756 
757 	full_power = acpi_dev_state_d0(&client->dev);
758 	if (full_power) {
759 		err = regulator_enable(at24->vcc_reg);
760 		if (err) {
761 			dev_err(dev, "Failed to enable vcc regulator\n");
762 			return err;
763 		}
764 
765 		pm_runtime_set_active(dev);
766 	}
767 	pm_runtime_enable(dev);
768 
769 	/*
770 	 * Perform a one-byte test read to verify that the chip is functional,
771 	 * unless powering on the device is to be avoided during probe (i.e.
772 	 * it's powered off right now).
773 	 */
774 	if (full_power) {
775 		err = at24_read(at24, 0, &test_byte, 1);
776 		if (err) {
777 			pm_runtime_disable(dev);
778 			if (!pm_runtime_status_suspended(dev))
779 				regulator_disable(at24->vcc_reg);
780 			return -ENODEV;
781 		}
782 	}
783 
784 	at24->nvmem = devm_nvmem_register(dev, &nvmem_config);
785 	if (IS_ERR(at24->nvmem)) {
786 		pm_runtime_disable(dev);
787 		if (!pm_runtime_status_suspended(dev))
788 			regulator_disable(at24->vcc_reg);
789 		return dev_err_probe(dev, PTR_ERR(at24->nvmem),
790 				     "failed to register nvmem\n");
791 	}
792 
793 	/* If this a SPD EEPROM, probe for DDR3 thermal sensor */
794 	if (cdata == &at24_data_spd)
795 		at24_probe_temp_sensor(client);
796 
797 	pm_runtime_idle(dev);
798 
799 	if (writable)
800 		dev_info(dev, "%u byte %s EEPROM, writable, %u bytes/write\n",
801 			 byte_len, client->name, at24->write_max);
802 	else
803 		dev_info(dev, "%u byte %s EEPROM, read-only\n",
804 			 byte_len, client->name);
805 
806 	return 0;
807 }
808 
at24_remove(struct i2c_client * client)809 static void at24_remove(struct i2c_client *client)
810 {
811 	struct at24_data *at24 = i2c_get_clientdata(client);
812 
813 	pm_runtime_disable(&client->dev);
814 	if (acpi_dev_state_d0(&client->dev)) {
815 		if (!pm_runtime_status_suspended(&client->dev))
816 			regulator_disable(at24->vcc_reg);
817 		pm_runtime_set_suspended(&client->dev);
818 	}
819 }
820 
at24_suspend(struct device * dev)821 static int __maybe_unused at24_suspend(struct device *dev)
822 {
823 	struct i2c_client *client = to_i2c_client(dev);
824 	struct at24_data *at24 = i2c_get_clientdata(client);
825 
826 	return regulator_disable(at24->vcc_reg);
827 }
828 
at24_resume(struct device * dev)829 static int __maybe_unused at24_resume(struct device *dev)
830 {
831 	struct i2c_client *client = to_i2c_client(dev);
832 	struct at24_data *at24 = i2c_get_clientdata(client);
833 
834 	return regulator_enable(at24->vcc_reg);
835 }
836 
837 static const struct dev_pm_ops at24_pm_ops = {
838 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
839 				pm_runtime_force_resume)
840 	SET_RUNTIME_PM_OPS(at24_suspend, at24_resume, NULL)
841 };
842 
843 static struct i2c_driver at24_driver = {
844 	.driver = {
845 		.name = "at24",
846 		.pm = &at24_pm_ops,
847 		.of_match_table = of_match_ptr(at24_of_match),
848 		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
849 	},
850 	.probe = at24_probe,
851 	.remove = at24_remove,
852 	.id_table = at24_ids,
853 	.flags = I2C_DRV_ACPI_WAIVE_D0_PROBE,
854 };
855 
at24_init(void)856 static int __init at24_init(void)
857 {
858 	if (!at24_io_limit) {
859 		pr_err("at24: at24_io_limit must not be 0!\n");
860 		return -EINVAL;
861 	}
862 
863 	at24_io_limit = rounddown_pow_of_two(at24_io_limit);
864 	return i2c_add_driver(&at24_driver);
865 }
866 module_init(at24_init);
867 
at24_exit(void)868 static void __exit at24_exit(void)
869 {
870 	i2c_del_driver(&at24_driver);
871 }
872 module_exit(at24_exit);
873 
874 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
875 MODULE_AUTHOR("David Brownell and Wolfram Sang");
876 MODULE_LICENSE("GPL");
877