1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25 /*
26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
31 * All Rights Reserved
32 */
33
34 #include <sys/param.h>
35 #include <sys/types.h>
36 #include <sys/systm.h>
37 #include <sys/cmn_err.h>
38 #include <sys/vtrace.h>
39 #include <sys/session.h>
40 #include <sys/thread.h>
41 #include <sys/dnlc.h>
42 #include <sys/cred.h>
43 #include <sys/priv.h>
44 #include <sys/list.h>
45 #include <sys/sdt.h>
46 #include <sys/policy.h>
47
48 #include <rpc/types.h>
49 #include <rpc/xdr.h>
50
51 #include <nfs/nfs.h>
52
53 #include <nfs/nfs_clnt.h>
54
55 #include <nfs/nfs4.h>
56 #include <nfs/rnode4.h>
57 #include <nfs/nfs4_clnt.h>
58
59 /*
60 * client side statistics
61 */
62 static const struct clstat4 clstat4_tmpl = {
63 { "calls", KSTAT_DATA_UINT64 },
64 { "badcalls", KSTAT_DATA_UINT64 },
65 { "referrals", KSTAT_DATA_UINT64 },
66 { "referlinks", KSTAT_DATA_UINT64 },
67 { "clgets", KSTAT_DATA_UINT64 },
68 { "cltoomany", KSTAT_DATA_UINT64 },
69 #ifdef DEBUG
70 { "clalloc", KSTAT_DATA_UINT64 },
71 { "noresponse", KSTAT_DATA_UINT64 },
72 { "failover", KSTAT_DATA_UINT64 },
73 { "remap", KSTAT_DATA_UINT64 },
74 #endif
75 };
76
77 #ifdef DEBUG
78 struct clstat4_debug clstat4_debug = {
79 { "nrnode", KSTAT_DATA_UINT64 },
80 { "access", KSTAT_DATA_UINT64 },
81 { "dirent", KSTAT_DATA_UINT64 },
82 { "dirents", KSTAT_DATA_UINT64 },
83 { "reclaim", KSTAT_DATA_UINT64 },
84 { "clreclaim", KSTAT_DATA_UINT64 },
85 { "f_reclaim", KSTAT_DATA_UINT64 },
86 { "a_reclaim", KSTAT_DATA_UINT64 },
87 { "r_reclaim", KSTAT_DATA_UINT64 },
88 { "r_path", KSTAT_DATA_UINT64 },
89 };
90 #endif
91
92 /*
93 * We keep a global list of per-zone client data, so we can clean up all zones
94 * if we get low on memory.
95 */
96 static list_t nfs4_clnt_list;
97 static kmutex_t nfs4_clnt_list_lock;
98 zone_key_t nfs4clnt_zone_key;
99
100 static struct kmem_cache *chtab4_cache;
101
102 #ifdef DEBUG
103 static int nfs4_rfscall_debug;
104 static int nfs4_try_failover_any;
105 int nfs4_utf8_debug = 0;
106 #endif
107
108 /*
109 * NFSv4 readdir cache implementation
110 */
111 typedef struct rddir4_cache_impl {
112 rddir4_cache rc; /* readdir cache element */
113 kmutex_t lock; /* lock protects count */
114 uint_t count; /* reference count */
115 avl_node_t tree; /* AVL tree link */
116 } rddir4_cache_impl;
117
118 static int rddir4_cache_compar(const void *, const void *);
119 static void rddir4_cache_free(rddir4_cache_impl *);
120 static rddir4_cache *rddir4_cache_alloc(int);
121 static void rddir4_cache_hold(rddir4_cache *);
122 static int try_failover(enum clnt_stat);
123
124 static int nfs4_readdir_cache_hits = 0;
125 static int nfs4_readdir_cache_waits = 0;
126 static int nfs4_readdir_cache_misses = 0;
127
128 /*
129 * Shared nfs4 functions
130 */
131
132 /*
133 * Copy an nfs_fh4. The destination storage (to->nfs_fh4_val) must already
134 * be allocated.
135 */
136
137 void
nfs_fh4_copy(nfs_fh4 * from,nfs_fh4 * to)138 nfs_fh4_copy(nfs_fh4 *from, nfs_fh4 *to)
139 {
140 to->nfs_fh4_len = from->nfs_fh4_len;
141 bcopy(from->nfs_fh4_val, to->nfs_fh4_val, to->nfs_fh4_len);
142 }
143
144 /*
145 * nfs4cmpfh - compare 2 filehandles.
146 * Returns 0 if the two nfsv4 filehandles are the same, -1 if the first is
147 * "less" than the second, +1 if the first is "greater" than the second.
148 */
149
150 int
nfs4cmpfh(const nfs_fh4 * fh4p1,const nfs_fh4 * fh4p2)151 nfs4cmpfh(const nfs_fh4 *fh4p1, const nfs_fh4 *fh4p2)
152 {
153 const char *c1, *c2;
154
155 if (fh4p1->nfs_fh4_len < fh4p2->nfs_fh4_len)
156 return (-1);
157 if (fh4p1->nfs_fh4_len > fh4p2->nfs_fh4_len)
158 return (1);
159 for (c1 = fh4p1->nfs_fh4_val, c2 = fh4p2->nfs_fh4_val;
160 c1 < fh4p1->nfs_fh4_val + fh4p1->nfs_fh4_len;
161 c1++, c2++) {
162 if (*c1 < *c2)
163 return (-1);
164 if (*c1 > *c2)
165 return (1);
166 }
167
168 return (0);
169 }
170
171 /*
172 * Compare two v4 filehandles. Return zero if they're the same, non-zero
173 * if they're not. Like nfs4cmpfh(), but different filehandle
174 * representation, and doesn't provide information about greater than or
175 * less than.
176 */
177
178 int
nfs4cmpfhandle(nfs4_fhandle_t * fh1,nfs4_fhandle_t * fh2)179 nfs4cmpfhandle(nfs4_fhandle_t *fh1, nfs4_fhandle_t *fh2)
180 {
181 if (fh1->fh_len == fh2->fh_len)
182 return (bcmp(fh1->fh_buf, fh2->fh_buf, fh1->fh_len));
183
184 return (1);
185 }
186
187 int
stateid4_cmp(stateid4 * s1,stateid4 * s2)188 stateid4_cmp(stateid4 *s1, stateid4 *s2)
189 {
190 if (bcmp(s1, s2, sizeof (stateid4)) == 0)
191 return (1);
192 else
193 return (0);
194 }
195
196 nfsstat4
puterrno4(int error)197 puterrno4(int error)
198 {
199 switch (error) {
200 case 0:
201 return (NFS4_OK);
202 case EPERM:
203 return (NFS4ERR_PERM);
204 case ENOENT:
205 return (NFS4ERR_NOENT);
206 case EINTR:
207 return (NFS4ERR_IO);
208 case EIO:
209 return (NFS4ERR_IO);
210 case ENXIO:
211 return (NFS4ERR_NXIO);
212 case ENOMEM:
213 return (NFS4ERR_RESOURCE);
214 case EACCES:
215 return (NFS4ERR_ACCESS);
216 case EBUSY:
217 return (NFS4ERR_IO);
218 case EEXIST:
219 return (NFS4ERR_EXIST);
220 case EXDEV:
221 return (NFS4ERR_XDEV);
222 case ENODEV:
223 return (NFS4ERR_IO);
224 case ENOTDIR:
225 return (NFS4ERR_NOTDIR);
226 case EISDIR:
227 return (NFS4ERR_ISDIR);
228 case EINVAL:
229 return (NFS4ERR_INVAL);
230 case EMFILE:
231 return (NFS4ERR_RESOURCE);
232 case EFBIG:
233 return (NFS4ERR_FBIG);
234 case ENOSPC:
235 return (NFS4ERR_NOSPC);
236 case EROFS:
237 return (NFS4ERR_ROFS);
238 case EMLINK:
239 return (NFS4ERR_MLINK);
240 case EDEADLK:
241 return (NFS4ERR_DEADLOCK);
242 case ENOLCK:
243 return (NFS4ERR_DENIED);
244 case EREMOTE:
245 return (NFS4ERR_SERVERFAULT);
246 case ENOTSUP:
247 return (NFS4ERR_NOTSUPP);
248 case EDQUOT:
249 return (NFS4ERR_DQUOT);
250 case ENAMETOOLONG:
251 return (NFS4ERR_NAMETOOLONG);
252 case EOVERFLOW:
253 return (NFS4ERR_INVAL);
254 case ENOSYS:
255 return (NFS4ERR_NOTSUPP);
256 case ENOTEMPTY:
257 return (NFS4ERR_NOTEMPTY);
258 case EOPNOTSUPP:
259 return (NFS4ERR_NOTSUPP);
260 case ESTALE:
261 return (NFS4ERR_STALE);
262 case EAGAIN:
263 if (curthread->t_flag & T_WOULDBLOCK) {
264 curthread->t_flag &= ~T_WOULDBLOCK;
265 return (NFS4ERR_DELAY);
266 }
267 return (NFS4ERR_LOCKED);
268 default:
269 return ((enum nfsstat4)error);
270 }
271 }
272
273 int
geterrno4(enum nfsstat4 status)274 geterrno4(enum nfsstat4 status)
275 {
276 switch (status) {
277 case NFS4_OK:
278 return (0);
279 case NFS4ERR_PERM:
280 return (EPERM);
281 case NFS4ERR_NOENT:
282 return (ENOENT);
283 case NFS4ERR_IO:
284 return (EIO);
285 case NFS4ERR_NXIO:
286 return (ENXIO);
287 case NFS4ERR_ACCESS:
288 return (EACCES);
289 case NFS4ERR_EXIST:
290 return (EEXIST);
291 case NFS4ERR_XDEV:
292 return (EXDEV);
293 case NFS4ERR_NOTDIR:
294 return (ENOTDIR);
295 case NFS4ERR_ISDIR:
296 return (EISDIR);
297 case NFS4ERR_INVAL:
298 return (EINVAL);
299 case NFS4ERR_FBIG:
300 return (EFBIG);
301 case NFS4ERR_NOSPC:
302 return (ENOSPC);
303 case NFS4ERR_ROFS:
304 return (EROFS);
305 case NFS4ERR_MLINK:
306 return (EMLINK);
307 case NFS4ERR_NAMETOOLONG:
308 return (ENAMETOOLONG);
309 case NFS4ERR_NOTEMPTY:
310 return (ENOTEMPTY);
311 case NFS4ERR_DQUOT:
312 return (EDQUOT);
313 case NFS4ERR_STALE:
314 return (ESTALE);
315 case NFS4ERR_BADHANDLE:
316 return (ESTALE);
317 case NFS4ERR_BAD_COOKIE:
318 return (EINVAL);
319 case NFS4ERR_NOTSUPP:
320 return (EOPNOTSUPP);
321 case NFS4ERR_TOOSMALL:
322 return (EINVAL);
323 case NFS4ERR_SERVERFAULT:
324 return (EIO);
325 case NFS4ERR_BADTYPE:
326 return (EINVAL);
327 case NFS4ERR_DELAY:
328 return (ENXIO);
329 case NFS4ERR_SAME:
330 return (EPROTO);
331 case NFS4ERR_DENIED:
332 return (ENOLCK);
333 case NFS4ERR_EXPIRED:
334 return (EPROTO);
335 case NFS4ERR_LOCKED:
336 return (EACCES);
337 case NFS4ERR_GRACE:
338 return (EAGAIN);
339 case NFS4ERR_FHEXPIRED: /* if got here, failed to get a new fh */
340 return (ESTALE);
341 case NFS4ERR_SHARE_DENIED:
342 return (EACCES);
343 case NFS4ERR_WRONGSEC:
344 return (EPERM);
345 case NFS4ERR_CLID_INUSE:
346 return (EAGAIN);
347 case NFS4ERR_RESOURCE:
348 return (EAGAIN);
349 case NFS4ERR_MOVED:
350 return (EPROTO);
351 case NFS4ERR_NOFILEHANDLE:
352 return (EIO);
353 case NFS4ERR_MINOR_VERS_MISMATCH:
354 return (ENOTSUP);
355 case NFS4ERR_STALE_CLIENTID:
356 return (EIO);
357 case NFS4ERR_STALE_STATEID:
358 return (EIO);
359 case NFS4ERR_OLD_STATEID:
360 return (EIO);
361 case NFS4ERR_BAD_STATEID:
362 return (EIO);
363 case NFS4ERR_BAD_SEQID:
364 return (EIO);
365 case NFS4ERR_NOT_SAME:
366 return (EPROTO);
367 case NFS4ERR_LOCK_RANGE:
368 return (EPROTO);
369 case NFS4ERR_SYMLINK:
370 return (EPROTO);
371 case NFS4ERR_RESTOREFH:
372 return (EPROTO);
373 case NFS4ERR_LEASE_MOVED:
374 return (EPROTO);
375 case NFS4ERR_ATTRNOTSUPP:
376 return (ENOTSUP);
377 case NFS4ERR_NO_GRACE:
378 return (EPROTO);
379 case NFS4ERR_RECLAIM_BAD:
380 return (EPROTO);
381 case NFS4ERR_RECLAIM_CONFLICT:
382 return (EPROTO);
383 case NFS4ERR_BADXDR:
384 return (EINVAL);
385 case NFS4ERR_LOCKS_HELD:
386 return (EIO);
387 case NFS4ERR_OPENMODE:
388 return (EACCES);
389 case NFS4ERR_BADOWNER:
390 /*
391 * Client and server are in different DNS domains
392 * and the NFSMAPID_DOMAIN in /etc/default/nfs
393 * doesn't match. No good answer here. Return
394 * EACCESS, which translates to "permission denied".
395 */
396 return (EACCES);
397 case NFS4ERR_BADCHAR:
398 return (EINVAL);
399 case NFS4ERR_BADNAME:
400 return (EINVAL);
401 case NFS4ERR_BAD_RANGE:
402 return (EIO);
403 case NFS4ERR_LOCK_NOTSUPP:
404 return (ENOTSUP);
405 case NFS4ERR_OP_ILLEGAL:
406 return (EINVAL);
407 case NFS4ERR_DEADLOCK:
408 return (EDEADLK);
409 case NFS4ERR_FILE_OPEN:
410 return (EACCES);
411 case NFS4ERR_ADMIN_REVOKED:
412 return (EPROTO);
413 case NFS4ERR_CB_PATH_DOWN:
414 return (EPROTO);
415 default:
416 #ifdef DEBUG
417 zcmn_err(getzoneid(), CE_WARN, "geterrno4: got status %d",
418 status);
419 #endif
420 return ((int)status);
421 }
422 }
423
424 void
nfs4_log_badowner(mntinfo4_t * mi,nfs_opnum4 op)425 nfs4_log_badowner(mntinfo4_t *mi, nfs_opnum4 op)
426 {
427 nfs4_server_t *server;
428
429 /*
430 * Return if already printed/queued a msg
431 * for this mount point.
432 */
433 if (mi->mi_flags & MI4_BADOWNER_DEBUG)
434 return;
435 /*
436 * Happens once per client <-> server pair.
437 */
438 if (nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
439 mi->mi_flags & MI4_INT))
440 return;
441
442 server = find_nfs4_server(mi);
443 if (server == NULL) {
444 nfs_rw_exit(&mi->mi_recovlock);
445 return;
446 }
447
448 if (!(server->s_flags & N4S_BADOWNER_DEBUG)) {
449 zcmn_err(mi->mi_zone->zone_id, CE_WARN,
450 "!NFSMAPID_DOMAIN does not match"
451 " the server: %s domain.\n"
452 "Please check configuration",
453 mi->mi_curr_serv->sv_hostname);
454 server->s_flags |= N4S_BADOWNER_DEBUG;
455 }
456 mutex_exit(&server->s_lock);
457 nfs4_server_rele(server);
458 nfs_rw_exit(&mi->mi_recovlock);
459
460 /*
461 * Happens once per mntinfo4_t.
462 * This error is deemed as one of the recovery facts "RF_BADOWNER",
463 * queue this in the mesg queue for this mount_info. This message
464 * is not printed, meaning its absent from id_to_dump_solo_fact()
465 * but its there for inspection if the queue is ever dumped/inspected.
466 */
467 mutex_enter(&mi->mi_lock);
468 if (!(mi->mi_flags & MI4_BADOWNER_DEBUG)) {
469 nfs4_queue_fact(RF_BADOWNER, mi, NFS4ERR_BADOWNER, 0, op,
470 FALSE, NULL, 0, NULL);
471 mi->mi_flags |= MI4_BADOWNER_DEBUG;
472 }
473 mutex_exit(&mi->mi_lock);
474 }
475
476 int
nfs4_time_ntov(nfstime4 * ntime,timestruc_t * vatime)477 nfs4_time_ntov(nfstime4 *ntime, timestruc_t *vatime)
478 {
479 int64_t sec;
480 int32_t nsec;
481
482 /*
483 * Here check that the nfsv4 time is valid for the system.
484 * nfsv4 time value is a signed 64-bit, and the system time
485 * may be either int64_t or int32_t (depends on the kernel),
486 * so if the kernel is 32-bit, the nfsv4 time value may not fit.
487 */
488 #ifndef _LP64
489 if (! NFS4_TIME_OK(ntime->seconds)) {
490 return (EOVERFLOW);
491 }
492 #endif
493
494 /* Invalid to specify 1 billion (or more) nsecs */
495 if (ntime->nseconds >= 1000000000)
496 return (EINVAL);
497
498 if (ntime->seconds < 0 && ntime->nseconds != 0) {
499 sec = ntime->seconds + 1;
500 nsec = -1000000000 + ntime->nseconds;
501 } else {
502 sec = ntime->seconds;
503 nsec = ntime->nseconds;
504 }
505
506 vatime->tv_sec = sec;
507 vatime->tv_nsec = nsec;
508
509 return (0);
510 }
511
512 int
nfs4_time_vton(timestruc_t * vatime,nfstime4 * ntime)513 nfs4_time_vton(timestruc_t *vatime, nfstime4 *ntime)
514 {
515 int64_t sec;
516 uint32_t nsec;
517
518 /*
519 * nfsv4 time value is a signed 64-bit, and the system time
520 * may be either int64_t or int32_t (depends on the kernel),
521 * so all system time values will fit.
522 */
523 if (vatime->tv_nsec >= 0) {
524 sec = vatime->tv_sec;
525 nsec = vatime->tv_nsec;
526 } else {
527 sec = vatime->tv_sec - 1;
528 nsec = 1000000000 + vatime->tv_nsec;
529 }
530 ntime->seconds = sec;
531 ntime->nseconds = nsec;
532
533 return (0);
534 }
535
536 /*
537 * Converts a utf8 string to a valid null terminated filename string.
538 *
539 * XXX - Not actually translating the UTF-8 string as per RFC 2279.
540 * For now, just validate that the UTF-8 string off the wire
541 * does not have characters that will freak out UFS, and leave
542 * it at that.
543 */
544 char *
utf8_to_fn(utf8string * u8s,uint_t * lenp,char * s)545 utf8_to_fn(utf8string *u8s, uint_t *lenp, char *s)
546 {
547 ASSERT(lenp != NULL);
548
549 if (u8s == NULL || u8s->utf8string_len <= 0 ||
550 u8s->utf8string_val == NULL)
551 return (NULL);
552
553 /*
554 * Check for obvious illegal filename chars
555 */
556 if (utf8_strchr(u8s, '/') != NULL) {
557 #ifdef DEBUG
558 if (nfs4_utf8_debug) {
559 char *path;
560 int len = u8s->utf8string_len;
561
562 path = kmem_alloc(len + 1, KM_SLEEP);
563 bcopy(u8s->utf8string_val, path, len);
564 path[len] = '\0';
565
566 zcmn_err(getzoneid(), CE_WARN,
567 "Invalid UTF-8 filename: %s", path);
568
569 kmem_free(path, len + 1);
570 }
571 #endif
572 return (NULL);
573 }
574
575 return (utf8_to_str(u8s, lenp, s));
576 }
577
578 /*
579 * Converts a utf8 string to a C string.
580 * kmem_allocs a new string if not supplied
581 */
582 char *
utf8_to_str(utf8string * str,uint_t * lenp,char * s)583 utf8_to_str(utf8string *str, uint_t *lenp, char *s)
584 {
585 char *sp;
586 char *u8p;
587 int len;
588 int i;
589
590 ASSERT(lenp != NULL);
591
592 if (str == NULL)
593 return (NULL);
594
595 u8p = str->utf8string_val;
596 len = str->utf8string_len;
597 if (len <= 0 || u8p == NULL) {
598 if (s)
599 *s = '\0';
600 return (NULL);
601 }
602
603 sp = s;
604 if (sp == NULL)
605 sp = kmem_alloc(len + 1, KM_SLEEP);
606
607 /*
608 * At least check for embedded nulls
609 */
610 for (i = 0; i < len; i++) {
611 sp[i] = u8p[i];
612 if (u8p[i] == '\0') {
613 #ifdef DEBUG
614 zcmn_err(getzoneid(), CE_WARN,
615 "Embedded NULL in UTF-8 string");
616 #endif
617 if (s == NULL)
618 kmem_free(sp, len + 1);
619 return (NULL);
620 }
621 }
622 sp[len] = '\0';
623 *lenp = len + 1;
624
625 return (sp);
626 }
627
628 /*
629 * str_to_utf8 - converts a null-terminated C string to a utf8 string
630 */
631 utf8string *
str_to_utf8(char * nm,utf8string * str)632 str_to_utf8(char *nm, utf8string *str)
633 {
634 int len;
635
636 if (str == NULL)
637 return (NULL);
638
639 if (nm == NULL || *nm == '\0') {
640 str->utf8string_len = 0;
641 str->utf8string_val = NULL;
642 }
643
644 len = strlen(nm);
645
646 str->utf8string_val = kmem_alloc(len, KM_SLEEP);
647 str->utf8string_len = len;
648 bcopy(nm, str->utf8string_val, len);
649
650 return (str);
651 }
652
653 utf8string *
utf8_copy(utf8string * src,utf8string * dest)654 utf8_copy(utf8string *src, utf8string *dest)
655 {
656 if (src == NULL)
657 return (NULL);
658 if (dest == NULL)
659 return (NULL);
660
661 if (src->utf8string_len > 0) {
662 dest->utf8string_val = kmem_alloc(src->utf8string_len,
663 KM_SLEEP);
664 bcopy(src->utf8string_val, dest->utf8string_val,
665 src->utf8string_len);
666 dest->utf8string_len = src->utf8string_len;
667 } else {
668 dest->utf8string_val = NULL;
669 dest->utf8string_len = 0;
670 }
671
672 return (dest);
673 }
674
675 int
utf8_compare(const utf8string * a,const utf8string * b)676 utf8_compare(const utf8string *a, const utf8string *b)
677 {
678 int mlen, cmp;
679 int alen, blen;
680 char *aval, *bval;
681
682 if ((a == NULL) && (b == NULL))
683 return (0);
684 else if (a == NULL)
685 return (-1);
686 else if (b == NULL)
687 return (1);
688
689 alen = a->utf8string_len;
690 blen = b->utf8string_len;
691 aval = a->utf8string_val;
692 bval = b->utf8string_val;
693
694 if (((alen == 0) || (aval == NULL)) &&
695 ((blen == 0) || (bval == NULL)))
696 return (0);
697 else if ((alen == 0) || (aval == NULL))
698 return (-1);
699 else if ((blen == 0) || (bval == NULL))
700 return (1);
701
702 mlen = MIN(alen, blen);
703 cmp = strncmp(aval, bval, mlen);
704
705 if ((cmp == 0) && (alen == blen))
706 return (0);
707 else if ((cmp == 0) && (alen < blen))
708 return (-1);
709 else if (cmp == 0)
710 return (1);
711 else if (cmp < 0)
712 return (-1);
713 return (1);
714 }
715
716 /*
717 * utf8_dir_verify - checks that the utf8 string is valid
718 */
719 nfsstat4
utf8_dir_verify(utf8string * str)720 utf8_dir_verify(utf8string *str)
721 {
722 char *nm;
723 int len;
724
725 if (str == NULL)
726 return (NFS4ERR_INVAL);
727
728 nm = str->utf8string_val;
729 len = str->utf8string_len;
730 if (nm == NULL || len == 0) {
731 return (NFS4ERR_INVAL);
732 }
733
734 if (len == 1 && nm[0] == '.')
735 return (NFS4ERR_BADNAME);
736 if (len == 2 && nm[0] == '.' && nm[1] == '.')
737 return (NFS4ERR_BADNAME);
738
739 if (utf8_strchr(str, '/') != NULL)
740 return (NFS4ERR_BADNAME);
741
742 if (utf8_strchr(str, '\0') != NULL)
743 return (NFS4ERR_BADNAME);
744
745 return (NFS4_OK);
746 }
747
748 /*
749 * from rpcsec module (common/rpcsec)
750 */
751 extern int sec_clnt_geth(CLIENT *, struct sec_data *, cred_t *, AUTH **);
752 extern void sec_clnt_freeh(AUTH *);
753 extern void sec_clnt_freeinfo(struct sec_data *);
754
755 /*
756 * authget() gets an auth handle based on the security
757 * information from the servinfo in mountinfo.
758 * The auth handle is stored in ch_client->cl_auth.
759 *
760 * First security flavor of choice is to use sv_secdata
761 * which is initiated by the client. If that fails, get
762 * secinfo from the server and then select one from the
763 * server secinfo list .
764 *
765 * For RPCSEC_GSS flavor, upon success, a secure context is
766 * established between client and server.
767 */
768 int
authget(servinfo4_t * svp,CLIENT * ch_client,cred_t * cr)769 authget(servinfo4_t *svp, CLIENT *ch_client, cred_t *cr)
770 {
771 int error, i;
772
773 /*
774 * SV4_TRYSECINFO indicates to try the secinfo list from
775 * sv_secinfo until a successful one is reached. Point
776 * sv_currsec to the selected security mechanism for
777 * later sessions.
778 */
779 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_WRITER, 0);
780 if ((svp->sv_flags & SV4_TRYSECINFO) && svp->sv_secinfo) {
781 for (i = svp->sv_secinfo->index; i < svp->sv_secinfo->count;
782 i++) {
783 if (!(error = sec_clnt_geth(ch_client,
784 &svp->sv_secinfo->sdata[i],
785 cr, &ch_client->cl_auth))) {
786
787 svp->sv_currsec = &svp->sv_secinfo->sdata[i];
788 svp->sv_secinfo->index = i;
789 /* done */
790 svp->sv_flags &= ~SV4_TRYSECINFO;
791 break;
792 }
793
794 /*
795 * Allow the caller retry with the security flavor
796 * pointed by svp->sv_secinfo->index when
797 * ETIMEDOUT/ECONNRESET occurs.
798 */
799 if (error == ETIMEDOUT || error == ECONNRESET) {
800 svp->sv_secinfo->index = i;
801 break;
802 }
803 }
804 } else {
805 /* sv_currsec points to one of the entries in sv_secinfo */
806 if (svp->sv_currsec) {
807 error = sec_clnt_geth(ch_client, svp->sv_currsec, cr,
808 &ch_client->cl_auth);
809 } else {
810 /* If it's null, use sv_secdata. */
811 error = sec_clnt_geth(ch_client, svp->sv_secdata, cr,
812 &ch_client->cl_auth);
813 }
814 }
815 nfs_rw_exit(&svp->sv_lock);
816
817 return (error);
818 }
819
820 /*
821 * Common handle get program for NFS, NFS ACL, and NFS AUTH client.
822 */
823 int
clget4(clinfo_t * ci,servinfo4_t * svp,cred_t * cr,CLIENT ** newcl,struct chtab ** chp,struct nfs4_clnt * nfscl)824 clget4(clinfo_t *ci, servinfo4_t *svp, cred_t *cr, CLIENT **newcl,
825 struct chtab **chp, struct nfs4_clnt *nfscl)
826 {
827 struct chhead *ch, *newch;
828 struct chhead **plistp;
829 struct chtab *cp;
830 int error;
831 k_sigset_t smask;
832
833 if (newcl == NULL || chp == NULL || ci == NULL)
834 return (EINVAL);
835
836 *newcl = NULL;
837 *chp = NULL;
838
839 /*
840 * Find an unused handle or create one
841 */
842 newch = NULL;
843 nfscl->nfscl_stat.clgets.value.ui64++;
844 top:
845 /*
846 * Find the correct entry in the cache to check for free
847 * client handles. The search is based on the RPC program
848 * number, program version number, dev_t for the transport
849 * device, and the protocol family.
850 */
851 mutex_enter(&nfscl->nfscl_chtable4_lock);
852 plistp = &nfscl->nfscl_chtable4;
853 for (ch = nfscl->nfscl_chtable4; ch != NULL; ch = ch->ch_next) {
854 if (ch->ch_prog == ci->cl_prog &&
855 ch->ch_vers == ci->cl_vers &&
856 ch->ch_dev == svp->sv_knconf->knc_rdev &&
857 (strcmp(ch->ch_protofmly,
858 svp->sv_knconf->knc_protofmly) == 0))
859 break;
860 plistp = &ch->ch_next;
861 }
862
863 /*
864 * If we didn't find a cache entry for this quadruple, then
865 * create one. If we don't have one already preallocated,
866 * then drop the cache lock, create one, and then start over.
867 * If we did have a preallocated entry, then just add it to
868 * the front of the list.
869 */
870 if (ch == NULL) {
871 if (newch == NULL) {
872 mutex_exit(&nfscl->nfscl_chtable4_lock);
873 newch = kmem_alloc(sizeof (*newch), KM_SLEEP);
874 newch->ch_timesused = 0;
875 newch->ch_prog = ci->cl_prog;
876 newch->ch_vers = ci->cl_vers;
877 newch->ch_dev = svp->sv_knconf->knc_rdev;
878 newch->ch_protofmly = kmem_alloc(
879 strlen(svp->sv_knconf->knc_protofmly) + 1,
880 KM_SLEEP);
881 (void) strcpy(newch->ch_protofmly,
882 svp->sv_knconf->knc_protofmly);
883 newch->ch_list = NULL;
884 goto top;
885 }
886 ch = newch;
887 newch = NULL;
888 ch->ch_next = nfscl->nfscl_chtable4;
889 nfscl->nfscl_chtable4 = ch;
890 /*
891 * We found a cache entry, but if it isn't on the front of the
892 * list, then move it to the front of the list to try to take
893 * advantage of locality of operations.
894 */
895 } else if (ch != nfscl->nfscl_chtable4) {
896 *plistp = ch->ch_next;
897 ch->ch_next = nfscl->nfscl_chtable4;
898 nfscl->nfscl_chtable4 = ch;
899 }
900
901 /*
902 * If there was a free client handle cached, then remove it
903 * from the list, init it, and use it.
904 */
905 if (ch->ch_list != NULL) {
906 cp = ch->ch_list;
907 ch->ch_list = cp->ch_list;
908 mutex_exit(&nfscl->nfscl_chtable4_lock);
909 if (newch != NULL) {
910 kmem_free(newch->ch_protofmly,
911 strlen(newch->ch_protofmly) + 1);
912 kmem_free(newch, sizeof (*newch));
913 }
914 (void) clnt_tli_kinit(cp->ch_client, svp->sv_knconf,
915 &svp->sv_addr, ci->cl_readsize, ci->cl_retrans, cr);
916
917 /*
918 * Get an auth handle.
919 */
920 error = authget(svp, cp->ch_client, cr);
921 if (error || cp->ch_client->cl_auth == NULL) {
922 CLNT_DESTROY(cp->ch_client);
923 kmem_cache_free(chtab4_cache, cp);
924 return ((error != 0) ? error : EINTR);
925 }
926 ch->ch_timesused++;
927 *newcl = cp->ch_client;
928 *chp = cp;
929 return (0);
930 }
931
932 /*
933 * There weren't any free client handles which fit, so allocate
934 * a new one and use that.
935 */
936 #ifdef DEBUG
937 atomic_inc_64(&nfscl->nfscl_stat.clalloc.value.ui64);
938 #endif
939 mutex_exit(&nfscl->nfscl_chtable4_lock);
940
941 nfscl->nfscl_stat.cltoomany.value.ui64++;
942 if (newch != NULL) {
943 kmem_free(newch->ch_protofmly, strlen(newch->ch_protofmly) + 1);
944 kmem_free(newch, sizeof (*newch));
945 }
946
947 cp = kmem_cache_alloc(chtab4_cache, KM_SLEEP);
948 cp->ch_head = ch;
949
950 sigintr(&smask, (int)ci->cl_flags & MI4_INT);
951 error = clnt_tli_kcreate(svp->sv_knconf, &svp->sv_addr, ci->cl_prog,
952 ci->cl_vers, ci->cl_readsize, ci->cl_retrans, cr, &cp->ch_client);
953 sigunintr(&smask);
954
955 if (error != 0) {
956 kmem_cache_free(chtab4_cache, cp);
957 #ifdef DEBUG
958 atomic_dec_64(&nfscl->nfscl_stat.clalloc.value.ui64);
959 #endif
960 /*
961 * Warning is unnecessary if error is EINTR.
962 */
963 if (error != EINTR) {
964 nfs_cmn_err(error, CE_WARN,
965 "clget: couldn't create handle: %m\n");
966 }
967 return (error);
968 }
969 (void) CLNT_CONTROL(cp->ch_client, CLSET_PROGRESS, NULL);
970 auth_destroy(cp->ch_client->cl_auth);
971
972 /*
973 * Get an auth handle.
974 */
975 error = authget(svp, cp->ch_client, cr);
976 if (error || cp->ch_client->cl_auth == NULL) {
977 CLNT_DESTROY(cp->ch_client);
978 kmem_cache_free(chtab4_cache, cp);
979 #ifdef DEBUG
980 atomic_dec_64(&nfscl->nfscl_stat.clalloc.value.ui64);
981 #endif
982 return ((error != 0) ? error : EINTR);
983 }
984 ch->ch_timesused++;
985 *newcl = cp->ch_client;
986 ASSERT(cp->ch_client->cl_nosignal == FALSE);
987 *chp = cp;
988 return (0);
989 }
990
991 static int
nfs_clget4(mntinfo4_t * mi,servinfo4_t * svp,cred_t * cr,CLIENT ** newcl,struct chtab ** chp,struct nfs4_clnt * nfscl)992 nfs_clget4(mntinfo4_t *mi, servinfo4_t *svp, cred_t *cr, CLIENT **newcl,
993 struct chtab **chp, struct nfs4_clnt *nfscl)
994 {
995 clinfo_t ci;
996 bool_t is_recov;
997 int firstcall, error = 0;
998
999 /*
1000 * Set read buffer size to rsize
1001 * and add room for RPC headers.
1002 */
1003 ci.cl_readsize = mi->mi_tsize;
1004 if (ci.cl_readsize != 0)
1005 ci.cl_readsize += (RPC_MAXDATASIZE - NFS_MAXDATA);
1006
1007 /*
1008 * If soft mount and server is down just try once.
1009 * meaning: do not retransmit.
1010 */
1011 if (!(mi->mi_flags & MI4_HARD) && (mi->mi_flags & MI4_DOWN))
1012 ci.cl_retrans = 0;
1013 else
1014 ci.cl_retrans = mi->mi_retrans;
1015
1016 ci.cl_prog = mi->mi_prog;
1017 ci.cl_vers = mi->mi_vers;
1018 ci.cl_flags = mi->mi_flags;
1019
1020 /*
1021 * clget4 calls authget() to get an auth handle. For RPCSEC_GSS
1022 * security flavor, the client tries to establish a security context
1023 * by contacting the server. If the connection is timed out or reset,
1024 * e.g. server reboot, we will try again.
1025 */
1026 is_recov = (curthread == mi->mi_recovthread);
1027 firstcall = 1;
1028
1029 do {
1030 error = clget4(&ci, svp, cr, newcl, chp, nfscl);
1031
1032 if (error == 0)
1033 break;
1034
1035 /*
1036 * For forced unmount and zone shutdown, bail out but
1037 * let the recovery thread do one more transmission.
1038 */
1039 if ((FS_OR_ZONE_GONE4(mi->mi_vfsp)) &&
1040 (!is_recov || !firstcall)) {
1041 error = EIO;
1042 break;
1043 }
1044
1045 /* do not retry for soft mount */
1046 if (!(mi->mi_flags & MI4_HARD))
1047 break;
1048
1049 /* let the caller deal with the failover case */
1050 if (FAILOVER_MOUNT4(mi))
1051 break;
1052
1053 firstcall = 0;
1054
1055 } while (error == ETIMEDOUT || error == ECONNRESET);
1056
1057 return (error);
1058 }
1059
1060 void
clfree4(CLIENT * cl,struct chtab * cp,struct nfs4_clnt * nfscl)1061 clfree4(CLIENT *cl, struct chtab *cp, struct nfs4_clnt *nfscl)
1062 {
1063 if (cl->cl_auth != NULL) {
1064 sec_clnt_freeh(cl->cl_auth);
1065 cl->cl_auth = NULL;
1066 }
1067
1068 /*
1069 * Timestamp this cache entry so that we know when it was last
1070 * used.
1071 */
1072 cp->ch_freed = gethrestime_sec();
1073
1074 /*
1075 * Add the free client handle to the front of the list.
1076 * This way, the list will be sorted in youngest to oldest
1077 * order.
1078 */
1079 mutex_enter(&nfscl->nfscl_chtable4_lock);
1080 cp->ch_list = cp->ch_head->ch_list;
1081 cp->ch_head->ch_list = cp;
1082 mutex_exit(&nfscl->nfscl_chtable4_lock);
1083 }
1084
1085 #define CL_HOLDTIME 60 /* time to hold client handles */
1086
1087 static void
clreclaim4_zone(struct nfs4_clnt * nfscl,uint_t cl_holdtime)1088 clreclaim4_zone(struct nfs4_clnt *nfscl, uint_t cl_holdtime)
1089 {
1090 struct chhead *ch;
1091 struct chtab *cp; /* list of objects that can be reclaimed */
1092 struct chtab *cpe;
1093 struct chtab *cpl;
1094 struct chtab **cpp;
1095 #ifdef DEBUG
1096 int n = 0;
1097 clstat4_debug.clreclaim.value.ui64++;
1098 #endif
1099
1100 /*
1101 * Need to reclaim some memory, so step through the cache
1102 * looking through the lists for entries which can be freed.
1103 */
1104 cp = NULL;
1105
1106 mutex_enter(&nfscl->nfscl_chtable4_lock);
1107
1108 /*
1109 * Here we step through each non-NULL quadruple and start to
1110 * construct the reclaim list pointed to by cp. Note that
1111 * cp will contain all eligible chtab entries. When this traversal
1112 * completes, chtab entries from the last quadruple will be at the
1113 * front of cp and entries from previously inspected quadruples have
1114 * been appended to the rear of cp.
1115 */
1116 for (ch = nfscl->nfscl_chtable4; ch != NULL; ch = ch->ch_next) {
1117 if (ch->ch_list == NULL)
1118 continue;
1119 /*
1120 * Search each list for entries older then
1121 * cl_holdtime seconds. The lists are maintained
1122 * in youngest to oldest order so that when the
1123 * first entry is found which is old enough, then
1124 * all of the rest of the entries on the list will
1125 * be old enough as well.
1126 */
1127 cpl = ch->ch_list;
1128 cpp = &ch->ch_list;
1129 while (cpl != NULL &&
1130 cpl->ch_freed + cl_holdtime > gethrestime_sec()) {
1131 cpp = &cpl->ch_list;
1132 cpl = cpl->ch_list;
1133 }
1134 if (cpl != NULL) {
1135 *cpp = NULL;
1136 if (cp != NULL) {
1137 cpe = cpl;
1138 while (cpe->ch_list != NULL)
1139 cpe = cpe->ch_list;
1140 cpe->ch_list = cp;
1141 }
1142 cp = cpl;
1143 }
1144 }
1145
1146 mutex_exit(&nfscl->nfscl_chtable4_lock);
1147
1148 /*
1149 * If cp is empty, then there is nothing to reclaim here.
1150 */
1151 if (cp == NULL)
1152 return;
1153
1154 /*
1155 * Step through the list of entries to free, destroying each client
1156 * handle and kmem_free'ing the memory for each entry.
1157 */
1158 while (cp != NULL) {
1159 #ifdef DEBUG
1160 n++;
1161 #endif
1162 CLNT_DESTROY(cp->ch_client);
1163 cpl = cp->ch_list;
1164 kmem_cache_free(chtab4_cache, cp);
1165 cp = cpl;
1166 }
1167
1168 #ifdef DEBUG
1169 /*
1170 * Update clalloc so that nfsstat shows the current number
1171 * of allocated client handles.
1172 */
1173 atomic_add_64(&nfscl->nfscl_stat.clalloc.value.ui64, -n);
1174 #endif
1175 }
1176
1177 /* ARGSUSED */
1178 static void
clreclaim4(void * all)1179 clreclaim4(void *all)
1180 {
1181 struct nfs4_clnt *nfscl;
1182
1183 /*
1184 * The system is low on memory; go through and try to reclaim some from
1185 * every zone on the system.
1186 */
1187 mutex_enter(&nfs4_clnt_list_lock);
1188 nfscl = list_head(&nfs4_clnt_list);
1189 for (; nfscl != NULL; nfscl = list_next(&nfs4_clnt_list, nfscl))
1190 clreclaim4_zone(nfscl, CL_HOLDTIME);
1191 mutex_exit(&nfs4_clnt_list_lock);
1192 }
1193
1194 /*
1195 * Minimum time-out values indexed by call type
1196 * These units are in "eights" of a second to avoid multiplies
1197 */
1198 static unsigned int minimum_timeo[] = {
1199 6, 7, 10
1200 };
1201
1202 #define SHORTWAIT (NFS_COTS_TIMEO / 10)
1203
1204 /*
1205 * Back off for retransmission timeout, MAXTIMO is in hz of a sec
1206 */
1207 #define MAXTIMO (20*hz)
1208 #define backoff(tim) (((tim) < MAXTIMO) ? dobackoff(tim) : (tim))
1209 #define dobackoff(tim) ((((tim) << 1) > MAXTIMO) ? MAXTIMO : ((tim) << 1))
1210
1211 static int
nfs4_rfscall(mntinfo4_t * mi,rpcproc_t which,xdrproc_t xdrargs,caddr_t argsp,xdrproc_t xdrres,caddr_t resp,cred_t * icr,int * doqueue,enum clnt_stat * rpc_statusp,int flags,struct nfs4_clnt * nfscl)1212 nfs4_rfscall(mntinfo4_t *mi, rpcproc_t which, xdrproc_t xdrargs, caddr_t argsp,
1213 xdrproc_t xdrres, caddr_t resp, cred_t *icr, int *doqueue,
1214 enum clnt_stat *rpc_statusp, int flags, struct nfs4_clnt *nfscl)
1215 {
1216 CLIENT *client;
1217 struct chtab *ch;
1218 cred_t *cr = icr;
1219 struct rpc_err rpcerr, rpcerr_tmp;
1220 enum clnt_stat status;
1221 int error;
1222 struct timeval wait;
1223 int timeo; /* in units of hz */
1224 bool_t tryagain, is_recov;
1225 bool_t cred_cloned = FALSE;
1226 k_sigset_t smask;
1227 servinfo4_t *svp;
1228 #ifdef DEBUG
1229 char *bufp;
1230 #endif
1231 int firstcall;
1232
1233 rpcerr.re_status = RPC_SUCCESS;
1234
1235 /*
1236 * If we know that we are rebooting then let's
1237 * not bother with doing any over the wireness.
1238 */
1239 mutex_enter(&mi->mi_lock);
1240 if (mi->mi_flags & MI4_SHUTDOWN) {
1241 mutex_exit(&mi->mi_lock);
1242 return (EIO);
1243 }
1244 mutex_exit(&mi->mi_lock);
1245
1246 /* For TSOL, use a new cred which has net_mac_aware flag */
1247 if (!cred_cloned && is_system_labeled()) {
1248 cred_cloned = TRUE;
1249 cr = crdup(icr);
1250 (void) setpflags(NET_MAC_AWARE, 1, cr);
1251 }
1252
1253 /*
1254 * clget() calls clnt_tli_kinit() which clears the xid, so we
1255 * are guaranteed to reprocess the retry as a new request.
1256 */
1257 svp = mi->mi_curr_serv;
1258 rpcerr.re_errno = nfs_clget4(mi, svp, cr, &client, &ch, nfscl);
1259 if (rpcerr.re_errno != 0)
1260 return (rpcerr.re_errno);
1261
1262 timeo = (mi->mi_timeo * hz) / 10;
1263
1264 /*
1265 * If hard mounted fs, retry call forever unless hard error
1266 * occurs.
1267 *
1268 * For forced unmount, let the recovery thread through but return
1269 * an error for all others. This is so that user processes can
1270 * exit quickly. The recovery thread bails out after one
1271 * transmission so that it can tell if it needs to continue.
1272 *
1273 * For zone shutdown, behave as above to encourage quick
1274 * process exit, but also fail quickly when servers have
1275 * timed out before and reduce the timeouts.
1276 */
1277 is_recov = (curthread == mi->mi_recovthread);
1278 firstcall = 1;
1279 do {
1280 tryagain = FALSE;
1281
1282 NFS4_DEBUG(nfs4_rfscall_debug, (CE_NOTE,
1283 "nfs4_rfscall: vfs_flag=0x%x, %s",
1284 mi->mi_vfsp->vfs_flag,
1285 is_recov ? "recov thread" : "not recov thread"));
1286
1287 /*
1288 * It's possible while we're retrying the admin
1289 * decided to reboot.
1290 */
1291 mutex_enter(&mi->mi_lock);
1292 if (mi->mi_flags & MI4_SHUTDOWN) {
1293 mutex_exit(&mi->mi_lock);
1294 clfree4(client, ch, nfscl);
1295 if (cred_cloned)
1296 crfree(cr);
1297 return (EIO);
1298 }
1299 mutex_exit(&mi->mi_lock);
1300
1301 if ((mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) &&
1302 (!is_recov || !firstcall)) {
1303 clfree4(client, ch, nfscl);
1304 if (cred_cloned)
1305 crfree(cr);
1306 return (EIO);
1307 }
1308
1309 if (zone_status_get(curproc->p_zone) >= ZONE_IS_SHUTTING_DOWN) {
1310 mutex_enter(&mi->mi_lock);
1311 if ((mi->mi_flags & MI4_TIMEDOUT) ||
1312 !is_recov || !firstcall) {
1313 mutex_exit(&mi->mi_lock);
1314 clfree4(client, ch, nfscl);
1315 if (cred_cloned)
1316 crfree(cr);
1317 return (EIO);
1318 }
1319 mutex_exit(&mi->mi_lock);
1320 timeo = (MIN(mi->mi_timeo, SHORTWAIT) * hz) / 10;
1321 }
1322
1323 firstcall = 0;
1324 TICK_TO_TIMEVAL(timeo, &wait);
1325
1326 /*
1327 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
1328 * and SIGTERM. (Preserving the existing masks).
1329 * Mask out SIGINT if mount option nointr is specified.
1330 */
1331 sigintr(&smask, (int)mi->mi_flags & MI4_INT);
1332 if (!(mi->mi_flags & MI4_INT))
1333 client->cl_nosignal = TRUE;
1334
1335 /*
1336 * If there is a current signal, then don't bother
1337 * even trying to send out the request because we
1338 * won't be able to block waiting for the response.
1339 * Simply assume RPC_INTR and get on with it.
1340 */
1341 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING))
1342 status = RPC_INTR;
1343 else {
1344 status = CLNT_CALL(client, which, xdrargs, argsp,
1345 xdrres, resp, wait);
1346 }
1347
1348 if (!(mi->mi_flags & MI4_INT))
1349 client->cl_nosignal = FALSE;
1350 /*
1351 * restore original signal mask
1352 */
1353 sigunintr(&smask);
1354
1355 switch (status) {
1356 case RPC_SUCCESS:
1357 break;
1358
1359 case RPC_INTR:
1360 /*
1361 * There is no way to recover from this error,
1362 * even if mount option nointr is specified.
1363 * SIGKILL, for example, cannot be blocked.
1364 */
1365 rpcerr.re_status = RPC_INTR;
1366 rpcerr.re_errno = EINTR;
1367 break;
1368
1369 case RPC_UDERROR:
1370 /*
1371 * If the NFS server is local (vold) and
1372 * it goes away then we get RPC_UDERROR.
1373 * This is a retryable error, so we would
1374 * loop, so check to see if the specific
1375 * error was ECONNRESET, indicating that
1376 * target did not exist at all. If so,
1377 * return with RPC_PROGUNAVAIL and
1378 * ECONNRESET to indicate why.
1379 */
1380 CLNT_GETERR(client, &rpcerr);
1381 if (rpcerr.re_errno == ECONNRESET) {
1382 rpcerr.re_status = RPC_PROGUNAVAIL;
1383 rpcerr.re_errno = ECONNRESET;
1384 break;
1385 }
1386 /*FALLTHROUGH*/
1387
1388 default: /* probably RPC_TIMEDOUT */
1389
1390 if (IS_UNRECOVERABLE_RPC(status))
1391 break;
1392
1393 /*
1394 * increment server not responding count
1395 */
1396 mutex_enter(&mi->mi_lock);
1397 mi->mi_noresponse++;
1398 mutex_exit(&mi->mi_lock);
1399 #ifdef DEBUG
1400 nfscl->nfscl_stat.noresponse.value.ui64++;
1401 #endif
1402 /*
1403 * On zone shutdown, mark server dead and move on.
1404 */
1405 if (zone_status_get(curproc->p_zone) >=
1406 ZONE_IS_SHUTTING_DOWN) {
1407 mutex_enter(&mi->mi_lock);
1408 mi->mi_flags |= MI4_TIMEDOUT;
1409 mutex_exit(&mi->mi_lock);
1410 clfree4(client, ch, nfscl);
1411 if (cred_cloned)
1412 crfree(cr);
1413 return (EIO);
1414 }
1415
1416 /*
1417 * NFS client failover support:
1418 * return and let the caller take care of
1419 * failover. We only return for failover mounts
1420 * because otherwise we want the "not responding"
1421 * message, the timer updates, etc.
1422 */
1423 if (mi->mi_vers == 4 && FAILOVER_MOUNT4(mi) &&
1424 (error = try_failover(status)) != 0) {
1425 clfree4(client, ch, nfscl);
1426 if (cred_cloned)
1427 crfree(cr);
1428 *rpc_statusp = status;
1429 return (error);
1430 }
1431
1432 if (flags & RFSCALL_SOFT)
1433 break;
1434
1435 tryagain = TRUE;
1436
1437 /*
1438 * The call is in progress (over COTS).
1439 * Try the CLNT_CALL again, but don't
1440 * print a noisy error message.
1441 */
1442 if (status == RPC_INPROGRESS)
1443 break;
1444
1445 timeo = backoff(timeo);
1446 CLNT_GETERR(client, &rpcerr_tmp);
1447
1448 mutex_enter(&mi->mi_lock);
1449 if (!(mi->mi_flags & MI4_PRINTED)) {
1450 mi->mi_flags |= MI4_PRINTED;
1451 mutex_exit(&mi->mi_lock);
1452 if ((status == RPC_CANTSEND) &&
1453 (rpcerr_tmp.re_errno == ENOBUFS))
1454 nfs4_queue_fact(RF_SENDQ_FULL, mi, 0,
1455 0, 0, FALSE, NULL, 0, NULL);
1456 else
1457 nfs4_queue_fact(RF_SRV_NOT_RESPOND, mi,
1458 0, 0, 0, FALSE, NULL, 0, NULL);
1459 } else
1460 mutex_exit(&mi->mi_lock);
1461
1462 if (*doqueue && nfs_has_ctty()) {
1463 *doqueue = 0;
1464 if (!(mi->mi_flags & MI4_NOPRINT)) {
1465 if ((status == RPC_CANTSEND) &&
1466 (rpcerr_tmp.re_errno == ENOBUFS))
1467 nfs4_queue_fact(RF_SENDQ_FULL,
1468 mi, 0, 0, 0, FALSE, NULL,
1469 0, NULL);
1470 else
1471 nfs4_queue_fact(
1472 RF_SRV_NOT_RESPOND, mi, 0,
1473 0, 0, FALSE, NULL, 0, NULL);
1474 }
1475 }
1476 }
1477 } while (tryagain);
1478
1479 DTRACE_PROBE2(nfs4__rfscall_debug, enum clnt_stat, status,
1480 int, rpcerr.re_errno);
1481
1482 if (status != RPC_SUCCESS) {
1483 zoneid_t zoneid = mi->mi_zone->zone_id;
1484
1485 /*
1486 * Let soft mounts use the timed out message.
1487 */
1488 if (status == RPC_INPROGRESS)
1489 status = RPC_TIMEDOUT;
1490 nfscl->nfscl_stat.badcalls.value.ui64++;
1491 if (status != RPC_INTR) {
1492 mutex_enter(&mi->mi_lock);
1493 mi->mi_flags |= MI4_DOWN;
1494 mutex_exit(&mi->mi_lock);
1495 CLNT_GETERR(client, &rpcerr);
1496 #ifdef DEBUG
1497 bufp = clnt_sperror(client, svp->sv_hostname);
1498 zprintf(zoneid, "NFS%d %s failed for %s\n",
1499 mi->mi_vers, mi->mi_rfsnames[which], bufp);
1500 if (nfs_has_ctty()) {
1501 if (!(mi->mi_flags & MI4_NOPRINT)) {
1502 uprintf("NFS%d %s failed for %s\n",
1503 mi->mi_vers, mi->mi_rfsnames[which],
1504 bufp);
1505 }
1506 }
1507 kmem_free(bufp, MAXPATHLEN);
1508 #else
1509 zprintf(zoneid,
1510 "NFS %s failed for server %s: error %d (%s)\n",
1511 mi->mi_rfsnames[which], svp->sv_hostname,
1512 status, clnt_sperrno(status));
1513 if (nfs_has_ctty()) {
1514 if (!(mi->mi_flags & MI4_NOPRINT)) {
1515 uprintf(
1516 "NFS %s failed for server %s: error %d (%s)\n",
1517 mi->mi_rfsnames[which],
1518 svp->sv_hostname, status,
1519 clnt_sperrno(status));
1520 }
1521 }
1522 #endif
1523 /*
1524 * when CLNT_CALL() fails with RPC_AUTHERROR,
1525 * re_errno is set appropriately depending on
1526 * the authentication error
1527 */
1528 if (status == RPC_VERSMISMATCH ||
1529 status == RPC_PROGVERSMISMATCH)
1530 rpcerr.re_errno = EIO;
1531 }
1532 } else {
1533 /*
1534 * Test the value of mi_down and mi_printed without
1535 * holding the mi_lock mutex. If they are both zero,
1536 * then it is okay to skip the down and printed
1537 * processing. This saves on a mutex_enter and
1538 * mutex_exit pair for a normal, successful RPC.
1539 * This was just complete overhead.
1540 */
1541 if (mi->mi_flags & (MI4_DOWN | MI4_PRINTED)) {
1542 mutex_enter(&mi->mi_lock);
1543 mi->mi_flags &= ~MI4_DOWN;
1544 if (mi->mi_flags & MI4_PRINTED) {
1545 mi->mi_flags &= ~MI4_PRINTED;
1546 mutex_exit(&mi->mi_lock);
1547 if (!(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1548 nfs4_queue_fact(RF_SRV_OK, mi, 0, 0,
1549 0, FALSE, NULL, 0, NULL);
1550 } else
1551 mutex_exit(&mi->mi_lock);
1552 }
1553
1554 if (*doqueue == 0) {
1555 if (!(mi->mi_flags & MI4_NOPRINT) &&
1556 !(mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED))
1557 nfs4_queue_fact(RF_SRV_OK, mi, 0, 0, 0,
1558 FALSE, NULL, 0, NULL);
1559
1560 *doqueue = 1;
1561 }
1562 }
1563
1564 clfree4(client, ch, nfscl);
1565 if (cred_cloned)
1566 crfree(cr);
1567
1568 ASSERT(rpcerr.re_status == RPC_SUCCESS || rpcerr.re_errno != 0);
1569
1570 TRACE_1(TR_FAC_NFS, TR_RFSCALL_END, "nfs4_rfscall_end:errno %d",
1571 rpcerr.re_errno);
1572
1573 *rpc_statusp = status;
1574 return (rpcerr.re_errno);
1575 }
1576
1577 /*
1578 * rfs4call - general wrapper for RPC calls initiated by the client
1579 */
1580 void
rfs4call(mntinfo4_t * mi,COMPOUND4args_clnt * argsp,COMPOUND4res_clnt * resp,cred_t * cr,int * doqueue,int flags,nfs4_error_t * ep)1581 rfs4call(mntinfo4_t *mi, COMPOUND4args_clnt *argsp, COMPOUND4res_clnt *resp,
1582 cred_t *cr, int *doqueue, int flags, nfs4_error_t *ep)
1583 {
1584 int i, error;
1585 enum clnt_stat rpc_status = NFS4_OK;
1586 int num_resops;
1587 struct nfs4_clnt *nfscl;
1588
1589 ASSERT(nfs_zone() == mi->mi_zone);
1590 nfscl = zone_getspecific(nfs4clnt_zone_key, nfs_zone());
1591 ASSERT(nfscl != NULL);
1592
1593 nfscl->nfscl_stat.calls.value.ui64++;
1594 mi->mi_reqs[NFSPROC4_COMPOUND].value.ui64++;
1595
1596 /* Set up the results struct for XDR usage */
1597 resp->argsp = argsp;
1598 resp->array = NULL;
1599 resp->status = 0;
1600 resp->decode_len = 0;
1601
1602 error = nfs4_rfscall(mi, NFSPROC4_COMPOUND,
1603 xdr_COMPOUND4args_clnt, (caddr_t)argsp,
1604 xdr_COMPOUND4res_clnt, (caddr_t)resp, cr,
1605 doqueue, &rpc_status, flags, nfscl);
1606
1607 /* Return now if it was an RPC error */
1608 if (error) {
1609 ep->error = error;
1610 ep->stat = resp->status;
1611 ep->rpc_status = rpc_status;
1612 return;
1613 }
1614
1615 /* else we'll count the processed operations */
1616 num_resops = resp->decode_len;
1617 for (i = 0; i < num_resops; i++) {
1618 /*
1619 * Count the individual operations
1620 * processed by the server.
1621 */
1622 if (resp->array[i].resop >= NFSPROC4_NULL &&
1623 resp->array[i].resop <= OP_WRITE)
1624 mi->mi_reqs[resp->array[i].resop].value.ui64++;
1625 }
1626
1627 ep->error = 0;
1628 ep->stat = resp->status;
1629 ep->rpc_status = rpc_status;
1630 }
1631
1632 /*
1633 * nfs4rename_update - updates stored state after a rename. Currently this
1634 * is the path of the object and anything under it, and the filehandle of
1635 * the renamed object.
1636 */
1637 void
nfs4rename_update(vnode_t * renvp,vnode_t * ndvp,nfs_fh4 * nfh4p,char * nnm)1638 nfs4rename_update(vnode_t *renvp, vnode_t *ndvp, nfs_fh4 *nfh4p, char *nnm)
1639 {
1640 sfh4_update(VTOR4(renvp)->r_fh, nfh4p);
1641 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name, nnm);
1642 }
1643
1644 /*
1645 * Routine to look up the filehandle for the given path and rootvp.
1646 *
1647 * Return values:
1648 * - success: returns zero and *statp is set to NFS4_OK, and *fhp is
1649 * updated.
1650 * - error: return value (errno value) and/or *statp is set appropriately.
1651 */
1652 #define RML_ORDINARY 1
1653 #define RML_NAMED_ATTR 2
1654 #define RML_ATTRDIR 3
1655
1656 static void
remap_lookup(nfs4_fname_t * fname,vnode_t * rootvp,int filetype,cred_t * cr,nfs_fh4 * fhp,nfs4_ga_res_t * garp,nfs_fh4 * pfhp,nfs4_ga_res_t * pgarp,nfs4_error_t * ep)1657 remap_lookup(nfs4_fname_t *fname, vnode_t *rootvp,
1658 int filetype, cred_t *cr,
1659 nfs_fh4 *fhp, nfs4_ga_res_t *garp, /* fh, attrs for object */
1660 nfs_fh4 *pfhp, nfs4_ga_res_t *pgarp, /* fh, attrs for parent */
1661 nfs4_error_t *ep)
1662 {
1663 COMPOUND4args_clnt args;
1664 COMPOUND4res_clnt res;
1665 nfs_argop4 *argop;
1666 nfs_resop4 *resop;
1667 int num_argops;
1668 lookup4_param_t lookuparg;
1669 nfs_fh4 *tmpfhp;
1670 int doqueue = 1;
1671 char *path;
1672 mntinfo4_t *mi;
1673
1674 ASSERT(fname != NULL);
1675 ASSERT(rootvp->v_type == VDIR);
1676
1677 mi = VTOMI4(rootvp);
1678 path = fn_path(fname);
1679 switch (filetype) {
1680 case RML_NAMED_ATTR:
1681 lookuparg.l4_getattrs = LKP4_LAST_NAMED_ATTR;
1682 args.ctag = TAG_REMAP_LOOKUP_NA;
1683 break;
1684 case RML_ATTRDIR:
1685 lookuparg.l4_getattrs = LKP4_LAST_ATTRDIR;
1686 args.ctag = TAG_REMAP_LOOKUP_AD;
1687 break;
1688 case RML_ORDINARY:
1689 lookuparg.l4_getattrs = LKP4_ALL_ATTRIBUTES;
1690 args.ctag = TAG_REMAP_LOOKUP;
1691 break;
1692 default:
1693 ep->error = EINVAL;
1694 return;
1695 }
1696 lookuparg.argsp = &args;
1697 lookuparg.resp = &res;
1698 lookuparg.header_len = 1; /* Putfh */
1699 lookuparg.trailer_len = 0;
1700 lookuparg.ga_bits = NFS4_VATTR_MASK;
1701 lookuparg.mi = VTOMI4(rootvp);
1702
1703 (void) nfs4lookup_setup(path, &lookuparg, 1);
1704
1705 /* 0: putfh directory */
1706 argop = args.array;
1707 argop[0].argop = OP_CPUTFH;
1708 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(rootvp)->r_fh;
1709
1710 num_argops = args.array_len;
1711
1712 rfs4call(mi, &args, &res, cr, &doqueue, RFSCALL_SOFT, ep);
1713
1714 if (ep->error || res.status != NFS4_OK)
1715 goto exit;
1716
1717 /* get the object filehandle */
1718 resop = &res.array[res.array_len - 2];
1719 if (resop->resop != OP_GETFH) {
1720 nfs4_queue_event(RE_FAIL_REMAP_OP, mi, NULL,
1721 0, NULL, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
1722 ep->stat = NFS4ERR_SERVERFAULT;
1723 goto exit;
1724 }
1725 tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1726 if (tmpfhp->nfs_fh4_len > NFS4_FHSIZE) {
1727 nfs4_queue_event(RE_FAIL_REMAP_LEN, mi, NULL,
1728 tmpfhp->nfs_fh4_len, NULL, NULL, 0, NULL, 0, TAG_NONE,
1729 TAG_NONE, 0, 0);
1730 ep->stat = NFS4ERR_SERVERFAULT;
1731 goto exit;
1732 }
1733 fhp->nfs_fh4_val = kmem_alloc(tmpfhp->nfs_fh4_len, KM_SLEEP);
1734 nfs_fh4_copy(tmpfhp, fhp);
1735
1736 /* get the object attributes */
1737 resop = &res.array[res.array_len - 1];
1738 if (garp && resop->resop == OP_GETATTR)
1739 *garp = resop->nfs_resop4_u.opgetattr.ga_res;
1740
1741 /* See if there are enough fields in the response for parent info */
1742 if ((int)res.array_len - 5 <= 0)
1743 goto exit;
1744
1745 /* get the parent filehandle */
1746 resop = &res.array[res.array_len - 5];
1747 if (resop->resop != OP_GETFH) {
1748 nfs4_queue_event(RE_FAIL_REMAP_OP, mi, NULL,
1749 0, NULL, NULL, 0, NULL, 0, TAG_NONE, TAG_NONE, 0, 0);
1750 ep->stat = NFS4ERR_SERVERFAULT;
1751 goto exit;
1752 }
1753 tmpfhp = &resop->nfs_resop4_u.opgetfh.object;
1754 if (tmpfhp->nfs_fh4_len > NFS4_FHSIZE) {
1755 nfs4_queue_event(RE_FAIL_REMAP_LEN, mi, NULL,
1756 tmpfhp->nfs_fh4_len, NULL, NULL, 0, NULL, 0, TAG_NONE,
1757 TAG_NONE, 0, 0);
1758 ep->stat = NFS4ERR_SERVERFAULT;
1759 goto exit;
1760 }
1761 pfhp->nfs_fh4_val = kmem_alloc(tmpfhp->nfs_fh4_len, KM_SLEEP);
1762 nfs_fh4_copy(tmpfhp, pfhp);
1763
1764 /* get the parent attributes */
1765 resop = &res.array[res.array_len - 4];
1766 if (pgarp && resop->resop == OP_GETATTR)
1767 *pgarp = resop->nfs_resop4_u.opgetattr.ga_res;
1768
1769 exit:
1770 /*
1771 * It is too hard to remember where all the OP_LOOKUPs are
1772 */
1773 nfs4args_lookup_free(argop, num_argops);
1774 kmem_free(argop, lookuparg.arglen * sizeof (nfs_argop4));
1775
1776 if (!ep->error)
1777 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1778 kmem_free(path, strlen(path)+1);
1779 }
1780
1781 /*
1782 * NFS client failover / volatile filehandle support
1783 *
1784 * Recover the filehandle for the given rnode.
1785 *
1786 * Errors are returned via the nfs4_error_t parameter.
1787 */
1788
1789 void
nfs4_remap_file(mntinfo4_t * mi,vnode_t * vp,int flags,nfs4_error_t * ep)1790 nfs4_remap_file(mntinfo4_t *mi, vnode_t *vp, int flags, nfs4_error_t *ep)
1791 {
1792 int is_stub;
1793 rnode4_t *rp = VTOR4(vp);
1794 vnode_t *rootvp = NULL;
1795 vnode_t *dvp = NULL;
1796 cred_t *cr, *cred_otw;
1797 nfs4_ga_res_t gar, pgar;
1798 nfs_fh4 newfh = {0, NULL}, newpfh = {0, NULL};
1799 int filetype = RML_ORDINARY;
1800 nfs4_recov_state_t recov = {NULL, 0, 0};
1801 int badfhcount = 0;
1802 nfs4_open_stream_t *osp = NULL;
1803 bool_t first_time = TRUE; /* first time getting OTW cred */
1804 bool_t last_time = FALSE; /* last time getting OTW cred */
1805
1806 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1807 "nfs4_remap_file: remapping %s", rnode4info(rp)));
1808 ASSERT(nfs4_consistent_type(vp));
1809
1810 if (vp->v_flag & VROOT) {
1811 nfs4_remap_root(mi, ep, flags);
1812 return;
1813 }
1814
1815 /*
1816 * Given the root fh, use the path stored in
1817 * the rnode to find the fh for the new server.
1818 */
1819 ep->error = VFS_ROOT(mi->mi_vfsp, &rootvp);
1820 if (ep->error != 0)
1821 return;
1822
1823 cr = curthread->t_cred;
1824 ASSERT(cr != NULL);
1825 get_remap_cred:
1826 /*
1827 * Releases the osp, if it is provided.
1828 * Puts a hold on the cred_otw and the new osp (if found).
1829 */
1830 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
1831 &first_time, &last_time);
1832 ASSERT(cred_otw != NULL);
1833
1834 if (rp->r_flags & R4ISXATTR) {
1835 filetype = RML_NAMED_ATTR;
1836 (void) vtodv(vp, &dvp, cred_otw, FALSE);
1837 }
1838
1839 if (vp->v_flag & V_XATTRDIR) {
1840 filetype = RML_ATTRDIR;
1841 }
1842
1843 if (filetype == RML_ORDINARY && rootvp->v_type == VREG) {
1844 /* file mount, doesn't need a remap */
1845 goto done;
1846 }
1847
1848 again:
1849 remap_lookup(rp->r_svnode.sv_name, rootvp, filetype, cred_otw,
1850 &newfh, &gar, &newpfh, &pgar, ep);
1851
1852 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1853 "nfs4_remap_file: remap_lookup returned %d/%d",
1854 ep->error, ep->stat));
1855
1856 if (last_time == FALSE && ep->error == EACCES) {
1857 crfree(cred_otw);
1858 if (dvp != NULL)
1859 VN_RELE(dvp);
1860 goto get_remap_cred;
1861 }
1862 if (ep->error != 0)
1863 goto done;
1864
1865 switch (ep->stat) {
1866 case NFS4_OK:
1867 badfhcount = 0;
1868 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1869 mutex_enter(&rp->r_statelock);
1870 rp->r_delay_interval = 0;
1871 mutex_exit(&rp->r_statelock);
1872 uprintf("NFS File Available..\n");
1873 }
1874 break;
1875 case NFS4ERR_FHEXPIRED:
1876 case NFS4ERR_BADHANDLE:
1877 case NFS4ERR_STALE:
1878 /*
1879 * If we ran into filehandle problems, we should try to
1880 * remap the root vnode first and hope life gets better.
1881 * But we need to avoid loops.
1882 */
1883 if (badfhcount++ > 0)
1884 goto done;
1885 if (newfh.nfs_fh4_len != 0) {
1886 kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
1887 newfh.nfs_fh4_len = 0;
1888 }
1889 if (newpfh.nfs_fh4_len != 0) {
1890 kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
1891 newpfh.nfs_fh4_len = 0;
1892 }
1893 /* relative path - remap rootvp then retry */
1894 VN_RELE(rootvp);
1895 rootvp = NULL;
1896 nfs4_remap_root(mi, ep, flags);
1897 if (ep->error != 0 || ep->stat != NFS4_OK)
1898 goto done;
1899 ep->error = VFS_ROOT(mi->mi_vfsp, &rootvp);
1900 if (ep->error != 0)
1901 goto done;
1902 goto again;
1903 case NFS4ERR_DELAY:
1904 badfhcount = 0;
1905 nfs4_set_delay_wait(vp);
1906 ep->error = nfs4_wait_for_delay(vp, &recov);
1907 if (ep->error != 0)
1908 goto done;
1909 goto again;
1910 case NFS4ERR_ACCESS:
1911 /* get new cred, try again */
1912 if (last_time == TRUE)
1913 goto done;
1914 if (dvp != NULL)
1915 VN_RELE(dvp);
1916 crfree(cred_otw);
1917 goto get_remap_cred;
1918 default:
1919 goto done;
1920 }
1921
1922 /*
1923 * Check on the new and old rnodes before updating;
1924 * if the vnode type or size changes, issue a warning
1925 * and mark the file dead.
1926 */
1927 mutex_enter(&rp->r_statelock);
1928 if (flags & NFS4_REMAP_CKATTRS) {
1929 if (vp->v_type != gar.n4g_va.va_type ||
1930 (vp->v_type != VDIR &&
1931 rp->r_size != gar.n4g_va.va_size)) {
1932 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1933 "nfs4_remap_file: size %d vs. %d, type %d vs. %d",
1934 (int)rp->r_size, (int)gar.n4g_va.va_size,
1935 vp->v_type, gar.n4g_va.va_type));
1936 mutex_exit(&rp->r_statelock);
1937 nfs4_queue_event(RE_FILE_DIFF, mi,
1938 rp->r_server->sv_hostname, 0, vp, NULL, 0, NULL, 0,
1939 TAG_NONE, TAG_NONE, 0, 0);
1940 nfs4_fail_recov(vp, NULL, 0, NFS4_OK);
1941 goto done;
1942 }
1943 }
1944 ASSERT(gar.n4g_va.va_type != VNON);
1945 rp->r_server = mi->mi_curr_serv;
1946
1947 /*
1948 * Turn this object into a "stub" object if we
1949 * crossed an underlying server fs boundary.
1950 *
1951 * This stub will be for a mirror-mount.
1952 * A referral would look like a boundary crossing
1953 * as well, but would not be the same type of object,
1954 * so we would expect to mark the object dead.
1955 *
1956 * See comment in r4_do_attrcache() for more details.
1957 */
1958 is_stub = 0;
1959 if (gar.n4g_fsid_valid) {
1960 (void) nfs_rw_enter_sig(&rp->r_server->sv_lock, RW_READER, 0);
1961 rp->r_srv_fsid = gar.n4g_fsid;
1962 if (!FATTR4_FSID_EQ(&gar.n4g_fsid, &rp->r_server->sv_fsid))
1963 is_stub = 1;
1964 nfs_rw_exit(&rp->r_server->sv_lock);
1965 #ifdef DEBUG
1966 } else {
1967 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1968 "remap_file: fsid attr not provided by server. rp=%p",
1969 (void *)rp));
1970 #endif
1971 }
1972 if (is_stub)
1973 r4_stub_mirrormount(rp);
1974 else
1975 r4_stub_none(rp);
1976 mutex_exit(&rp->r_statelock);
1977 nfs4_attrcache_noinval(vp, &gar, gethrtime()); /* force update */
1978 sfh4_update(rp->r_fh, &newfh);
1979 ASSERT(nfs4_consistent_type(vp));
1980
1981 /*
1982 * If we got parent info, use it to update the parent
1983 */
1984 if (newpfh.nfs_fh4_len != 0) {
1985 if (rp->r_svnode.sv_dfh != NULL)
1986 sfh4_update(rp->r_svnode.sv_dfh, &newpfh);
1987 if (dvp != NULL) {
1988 /* force update of attrs */
1989 nfs4_attrcache_noinval(dvp, &pgar, gethrtime());
1990 }
1991 }
1992 done:
1993 if (newfh.nfs_fh4_len != 0)
1994 kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
1995 if (newpfh.nfs_fh4_len != 0)
1996 kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
1997 if (cred_otw != NULL)
1998 crfree(cred_otw);
1999 if (rootvp != NULL)
2000 VN_RELE(rootvp);
2001 if (dvp != NULL)
2002 VN_RELE(dvp);
2003 if (osp != NULL)
2004 open_stream_rele(osp, rp);
2005 }
2006
2007 /*
2008 * Client-side failover support: remap the filehandle for vp if it appears
2009 * necessary. errors are returned via the nfs4_error_t parameter; though,
2010 * if there is a problem, we will just try again later.
2011 */
2012
2013 void
nfs4_check_remap(mntinfo4_t * mi,vnode_t * vp,int flags,nfs4_error_t * ep)2014 nfs4_check_remap(mntinfo4_t *mi, vnode_t *vp, int flags, nfs4_error_t *ep)
2015 {
2016 if (vp == NULL)
2017 return;
2018
2019 if (!(vp->v_vfsp->vfs_flag & VFS_RDONLY))
2020 return;
2021
2022 if (VTOR4(vp)->r_server == mi->mi_curr_serv)
2023 return;
2024
2025 nfs4_remap_file(mi, vp, flags, ep);
2026 }
2027
2028 /*
2029 * nfs4_make_dotdot() - find or create a parent vnode of a non-root node.
2030 *
2031 * Our caller has a filehandle for ".." relative to a particular
2032 * directory object. We want to find or create a parent vnode
2033 * with that filehandle and return it. We can of course create
2034 * a vnode from this filehandle, but we need to also make sure
2035 * that if ".." is a regular file (i.e. dvp is a V_XATTRDIR)
2036 * that we have a parent FH for future reopens as well. If
2037 * we have a remap failure, we won't be able to reopen this
2038 * file, but we won't treat that as fatal because a reopen
2039 * is at least unlikely. Someday nfs4_reopen() should look
2040 * for a missing parent FH and try a remap to recover from it.
2041 *
2042 * need_start_op argument indicates whether this function should
2043 * do a start_op before calling remap_lookup(). This should
2044 * be FALSE, if you are the recovery thread or in an op; otherwise,
2045 * set it to TRUE.
2046 */
2047 int
nfs4_make_dotdot(nfs4_sharedfh_t * fhp,hrtime_t t,vnode_t * dvp,cred_t * cr,vnode_t ** vpp,int need_start_op)2048 nfs4_make_dotdot(nfs4_sharedfh_t *fhp, hrtime_t t, vnode_t *dvp,
2049 cred_t *cr, vnode_t **vpp, int need_start_op)
2050 {
2051 mntinfo4_t *mi = VTOMI4(dvp);
2052 nfs4_fname_t *np = NULL, *pnp = NULL;
2053 vnode_t *vp = NULL, *rootvp = NULL;
2054 rnode4_t *rp;
2055 nfs_fh4 newfh = {0, NULL}, newpfh = {0, NULL};
2056 nfs4_ga_res_t gar, pgar;
2057 vattr_t va, pva;
2058 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2059 nfs4_sharedfh_t *sfh = NULL, *psfh = NULL;
2060 nfs4_recov_state_t recov_state;
2061
2062 #ifdef DEBUG
2063 /*
2064 * ensure need_start_op is correct
2065 */
2066 {
2067 int no_need_start_op = (tsd_get(nfs4_tsd_key) ||
2068 (curthread == mi->mi_recovthread));
2069 /* C needs a ^^ operator! */
2070 ASSERT(((need_start_op) && (!no_need_start_op)) ||
2071 ((! need_start_op) && (no_need_start_op)));
2072 }
2073 #endif
2074 ASSERT(VTOMI4(dvp)->mi_zone == nfs_zone());
2075
2076 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE,
2077 "nfs4_make_dotdot: called with fhp %p, dvp %s", (void *)fhp,
2078 rnode4info(VTOR4(dvp))));
2079
2080 /*
2081 * rootvp might be needed eventually. Holding it now will
2082 * ensure that r4find_unlocked() will find it, if ".." is the root.
2083 */
2084 e.error = VFS_ROOT(mi->mi_vfsp, &rootvp);
2085 if (e.error != 0)
2086 goto out;
2087 rp = r4find_unlocked(fhp, mi->mi_vfsp);
2088 if (rp != NULL) {
2089 *vpp = RTOV4(rp);
2090 VN_RELE(rootvp);
2091 return (0);
2092 }
2093
2094 /*
2095 * Since we don't have the rnode, we have to go over the wire.
2096 * remap_lookup() can get all of the filehandles and attributes
2097 * we need in one operation.
2098 */
2099 np = fn_parent(VTOSV(dvp)->sv_name);
2100 /* if a parent was not found return an error */
2101 if (np == NULL) {
2102 e.error = ENOENT;
2103 goto out;
2104 }
2105
2106 recov_state.rs_flags = 0;
2107 recov_state.rs_num_retry_despite_err = 0;
2108 recov_retry:
2109 if (need_start_op) {
2110 e.error = nfs4_start_fop(mi, rootvp, NULL, OH_LOOKUP,
2111 &recov_state, NULL);
2112 if (e.error != 0) {
2113 goto out;
2114 }
2115 }
2116
2117 pgar.n4g_va.va_type = VNON;
2118 gar.n4g_va.va_type = VNON;
2119
2120 remap_lookup(np, rootvp, RML_ORDINARY, cr,
2121 &newfh, &gar, &newpfh, &pgar, &e);
2122 if (nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp)) {
2123 if (need_start_op) {
2124 bool_t abort;
2125
2126 abort = nfs4_start_recovery(&e, mi,
2127 rootvp, NULL, NULL, NULL, OP_LOOKUP, NULL, NULL,
2128 NULL);
2129 if (abort) {
2130 nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2131 &recov_state, FALSE);
2132 if (e.error == 0)
2133 e.error = EIO;
2134 goto out;
2135 }
2136 nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2137 &recov_state, TRUE);
2138 goto recov_retry;
2139 }
2140 if (e.error == 0)
2141 e.error = EIO;
2142 goto out;
2143 }
2144
2145 va = gar.n4g_va;
2146 pva = pgar.n4g_va;
2147
2148 if ((e.error != 0) ||
2149 (va.va_type != VDIR)) {
2150 if (need_start_op)
2151 nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2152 &recov_state, FALSE);
2153 if (e.error == 0)
2154 e.error = EIO;
2155 goto out;
2156 }
2157
2158 if (e.stat != NFS4_OK) {
2159 if (need_start_op)
2160 nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2161 &recov_state, FALSE);
2162 e.error = EIO;
2163 goto out;
2164 }
2165
2166 /*
2167 * It is possible for remap_lookup() to return with no error,
2168 * but without providing the parent filehandle and attrs.
2169 */
2170 if (pva.va_type != VDIR) {
2171 /*
2172 * Call remap_lookup() again, this time with the
2173 * newpfh and pgar args in the first position.
2174 */
2175 pnp = fn_parent(np);
2176 if (pnp != NULL) {
2177 remap_lookup(pnp, rootvp, RML_ORDINARY, cr,
2178 &newpfh, &pgar, NULL, NULL, &e);
2179 /*
2180 * This remap_lookup call modifies pgar. The following
2181 * line prevents trouble when checking the va_type of
2182 * pva later in this code.
2183 */
2184 pva = pgar.n4g_va;
2185
2186 if (nfs4_needs_recovery(&e, FALSE,
2187 mi->mi_vfsp)) {
2188 if (need_start_op) {
2189 bool_t abort;
2190
2191 abort = nfs4_start_recovery(&e, mi,
2192 rootvp, NULL, NULL, NULL,
2193 OP_LOOKUP, NULL, NULL, NULL);
2194 if (abort) {
2195 nfs4_end_fop(mi, rootvp, NULL,
2196 OH_LOOKUP, &recov_state,
2197 FALSE);
2198 if (e.error == 0)
2199 e.error = EIO;
2200 goto out;
2201 }
2202 nfs4_end_fop(mi, rootvp, NULL,
2203 OH_LOOKUP, &recov_state, TRUE);
2204 goto recov_retry;
2205 }
2206 if (e.error == 0)
2207 e.error = EIO;
2208 goto out;
2209 }
2210
2211 if (e.stat != NFS4_OK) {
2212 if (need_start_op)
2213 nfs4_end_fop(mi, rootvp, NULL,
2214 OH_LOOKUP, &recov_state, FALSE);
2215 e.error = EIO;
2216 goto out;
2217 }
2218 }
2219 if ((pnp == NULL) ||
2220 (e.error != 0) ||
2221 (pva.va_type == VNON)) {
2222 if (need_start_op)
2223 nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP,
2224 &recov_state, FALSE);
2225 if (e.error == 0)
2226 e.error = EIO;
2227 goto out;
2228 }
2229 }
2230 ASSERT(newpfh.nfs_fh4_len != 0);
2231 if (need_start_op)
2232 nfs4_end_fop(mi, rootvp, NULL, OH_LOOKUP, &recov_state, FALSE);
2233 psfh = sfh4_get(&newpfh, mi);
2234
2235 sfh = sfh4_get(&newfh, mi);
2236 vp = makenfs4node_by_fh(sfh, psfh, &np, &gar, mi, cr, t);
2237
2238 out:
2239 if (np != NULL)
2240 fn_rele(&np);
2241 if (pnp != NULL)
2242 fn_rele(&pnp);
2243 if (newfh.nfs_fh4_len != 0)
2244 kmem_free(newfh.nfs_fh4_val, newfh.nfs_fh4_len);
2245 if (newpfh.nfs_fh4_len != 0)
2246 kmem_free(newpfh.nfs_fh4_val, newpfh.nfs_fh4_len);
2247 if (sfh != NULL)
2248 sfh4_rele(&sfh);
2249 if (psfh != NULL)
2250 sfh4_rele(&psfh);
2251 if (rootvp != NULL)
2252 VN_RELE(rootvp);
2253 *vpp = vp;
2254 return (e.error);
2255 }
2256
2257 #ifdef DEBUG
2258 size_t r_path_memuse = 0;
2259 #endif
2260
2261 /*
2262 * NFS client failover support
2263 *
2264 * sv4_free() frees the malloc'd portion of a "servinfo_t".
2265 */
2266 void
sv4_free(servinfo4_t * svp)2267 sv4_free(servinfo4_t *svp)
2268 {
2269 servinfo4_t *next;
2270 struct knetconfig *knconf;
2271
2272 while (svp != NULL) {
2273 next = svp->sv_next;
2274 if (svp->sv_dhsec)
2275 sec_clnt_freeinfo(svp->sv_dhsec);
2276 if (svp->sv_secdata)
2277 sec_clnt_freeinfo(svp->sv_secdata);
2278 if (svp->sv_save_secinfo &&
2279 svp->sv_save_secinfo != svp->sv_secinfo)
2280 secinfo_free(svp->sv_save_secinfo);
2281 if (svp->sv_secinfo)
2282 secinfo_free(svp->sv_secinfo);
2283 if (svp->sv_hostname && svp->sv_hostnamelen > 0)
2284 kmem_free(svp->sv_hostname, svp->sv_hostnamelen);
2285 knconf = svp->sv_knconf;
2286 if (knconf != NULL) {
2287 if (knconf->knc_protofmly != NULL)
2288 kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
2289 if (knconf->knc_proto != NULL)
2290 kmem_free(knconf->knc_proto, KNC_STRSIZE);
2291 kmem_free(knconf, sizeof (*knconf));
2292 }
2293 knconf = svp->sv_origknconf;
2294 if (knconf != NULL) {
2295 if (knconf->knc_protofmly != NULL)
2296 kmem_free(knconf->knc_protofmly, KNC_STRSIZE);
2297 if (knconf->knc_proto != NULL)
2298 kmem_free(knconf->knc_proto, KNC_STRSIZE);
2299 kmem_free(knconf, sizeof (*knconf));
2300 }
2301 if (svp->sv_addr.buf != NULL && svp->sv_addr.maxlen != 0)
2302 kmem_free(svp->sv_addr.buf, svp->sv_addr.maxlen);
2303 if (svp->sv_path != NULL) {
2304 kmem_free(svp->sv_path, svp->sv_pathlen);
2305 }
2306 nfs_rw_destroy(&svp->sv_lock);
2307 kmem_free(svp, sizeof (*svp));
2308 svp = next;
2309 }
2310 }
2311
2312 void
nfs4_printfhandle(nfs4_fhandle_t * fhp)2313 nfs4_printfhandle(nfs4_fhandle_t *fhp)
2314 {
2315 int *ip;
2316 char *buf;
2317 size_t bufsize;
2318 char *cp;
2319
2320 /*
2321 * 13 == "(file handle:"
2322 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2323 * 1 == ' '
2324 * 8 == maximum strlen of "%x"
2325 * 3 == ")\n\0"
2326 */
2327 bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2328 buf = kmem_alloc(bufsize, KM_NOSLEEP);
2329 if (buf == NULL)
2330 return;
2331
2332 cp = buf;
2333 (void) strcpy(cp, "(file handle:");
2334 while (*cp != '\0')
2335 cp++;
2336 for (ip = (int *)fhp->fh_buf;
2337 ip < (int *)&fhp->fh_buf[fhp->fh_len];
2338 ip++) {
2339 (void) sprintf(cp, " %x", *ip);
2340 while (*cp != '\0')
2341 cp++;
2342 }
2343 (void) strcpy(cp, ")\n");
2344
2345 zcmn_err(getzoneid(), CE_CONT, "%s", buf);
2346
2347 kmem_free(buf, bufsize);
2348 }
2349
2350 /*
2351 * The NFSv4 readdir cache subsystem.
2352 *
2353 * We provide a set of interfaces to allow the rest of the system to utilize
2354 * a caching mechanism while encapsulating the details of the actual
2355 * implementation. This should allow for better maintainability and
2356 * extensibility by consolidating the implementation details in one location.
2357 */
2358
2359 /*
2360 * Comparator used by AVL routines.
2361 */
2362 static int
rddir4_cache_compar(const void * x,const void * y)2363 rddir4_cache_compar(const void *x, const void *y)
2364 {
2365 rddir4_cache_impl *ai = (rddir4_cache_impl *)x;
2366 rddir4_cache_impl *bi = (rddir4_cache_impl *)y;
2367 rddir4_cache *a = &ai->rc;
2368 rddir4_cache *b = &bi->rc;
2369
2370 if (a->nfs4_cookie == b->nfs4_cookie) {
2371 if (a->buflen == b->buflen)
2372 return (0);
2373 if (a->buflen < b->buflen)
2374 return (-1);
2375 return (1);
2376 }
2377
2378 if (a->nfs4_cookie < b->nfs4_cookie)
2379 return (-1);
2380
2381 return (1);
2382 }
2383
2384 /*
2385 * Allocate an opaque handle for the readdir cache.
2386 */
2387 void
rddir4_cache_create(rnode4_t * rp)2388 rddir4_cache_create(rnode4_t *rp)
2389 {
2390 ASSERT(rp->r_dir == NULL);
2391
2392 rp->r_dir = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2393
2394 avl_create(rp->r_dir, rddir4_cache_compar, sizeof (rddir4_cache_impl),
2395 offsetof(rddir4_cache_impl, tree));
2396 }
2397
2398 /*
2399 * Purge the cache of all cached readdir responses.
2400 */
2401 void
rddir4_cache_purge(rnode4_t * rp)2402 rddir4_cache_purge(rnode4_t *rp)
2403 {
2404 rddir4_cache_impl *rdip;
2405 rddir4_cache_impl *nrdip;
2406
2407 ASSERT(MUTEX_HELD(&rp->r_statelock));
2408
2409 if (rp->r_dir == NULL)
2410 return;
2411
2412 rdip = avl_first(rp->r_dir);
2413
2414 while (rdip != NULL) {
2415 nrdip = AVL_NEXT(rp->r_dir, rdip);
2416 avl_remove(rp->r_dir, rdip);
2417 rdip->rc.flags &= ~RDDIRCACHED;
2418 rddir4_cache_rele(rp, &rdip->rc);
2419 rdip = nrdip;
2420 }
2421 ASSERT(avl_numnodes(rp->r_dir) == 0);
2422 }
2423
2424 /*
2425 * Destroy the readdir cache.
2426 */
2427 void
rddir4_cache_destroy(rnode4_t * rp)2428 rddir4_cache_destroy(rnode4_t *rp)
2429 {
2430 ASSERT(MUTEX_HELD(&rp->r_statelock));
2431 if (rp->r_dir == NULL)
2432 return;
2433
2434 rddir4_cache_purge(rp);
2435 avl_destroy(rp->r_dir);
2436 kmem_free(rp->r_dir, sizeof (avl_tree_t));
2437 rp->r_dir = NULL;
2438 }
2439
2440 /*
2441 * Locate a readdir response from the readdir cache.
2442 *
2443 * Return values:
2444 *
2445 * NULL - If there is an unrecoverable situation like the operation may have
2446 * been interrupted.
2447 *
2448 * rddir4_cache * - A pointer to a rddir4_cache is returned to the caller.
2449 * The flags are set approprately, such that the caller knows
2450 * what state the entry is in.
2451 */
2452 rddir4_cache *
rddir4_cache_lookup(rnode4_t * rp,offset_t cookie,int count)2453 rddir4_cache_lookup(rnode4_t *rp, offset_t cookie, int count)
2454 {
2455 rddir4_cache_impl *rdip = NULL;
2456 rddir4_cache_impl srdip;
2457 rddir4_cache *srdc;
2458 rddir4_cache *rdc = NULL;
2459 rddir4_cache *nrdc = NULL;
2460 avl_index_t where;
2461
2462 top:
2463 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2464 ASSERT(MUTEX_HELD(&rp->r_statelock));
2465 /*
2466 * Check to see if the readdir cache has been disabled. If so, then
2467 * simply allocate an rddir4_cache entry and return it, since caching
2468 * operations do not apply.
2469 */
2470 if (rp->r_dir == NULL) {
2471 if (nrdc == NULL) {
2472 /*
2473 * Drop the lock because we are doing a sleeping
2474 * allocation.
2475 */
2476 mutex_exit(&rp->r_statelock);
2477 rdc = rddir4_cache_alloc(KM_SLEEP);
2478 rdc->nfs4_cookie = cookie;
2479 rdc->buflen = count;
2480 mutex_enter(&rp->r_statelock);
2481 return (rdc);
2482 }
2483 return (nrdc);
2484 }
2485
2486 srdc = &srdip.rc;
2487 srdc->nfs4_cookie = cookie;
2488 srdc->buflen = count;
2489
2490 rdip = avl_find(rp->r_dir, &srdip, &where);
2491
2492 /*
2493 * If we didn't find an entry then create one and insert it
2494 * into the cache.
2495 */
2496 if (rdip == NULL) {
2497 /*
2498 * Check for the case where we have made a second pass through
2499 * the cache due to a lockless allocation. If we find that no
2500 * thread has already inserted this entry, do the insert now
2501 * and return.
2502 */
2503 if (nrdc != NULL) {
2504 avl_insert(rp->r_dir, nrdc->data, where);
2505 nrdc->flags |= RDDIRCACHED;
2506 rddir4_cache_hold(nrdc);
2507 return (nrdc);
2508 }
2509
2510 #ifdef DEBUG
2511 nfs4_readdir_cache_misses++;
2512 #endif
2513 /*
2514 * First, try to allocate an entry without sleeping. If that
2515 * fails then drop the lock and do a sleeping allocation.
2516 */
2517 nrdc = rddir4_cache_alloc(KM_NOSLEEP);
2518 if (nrdc != NULL) {
2519 nrdc->nfs4_cookie = cookie;
2520 nrdc->buflen = count;
2521 avl_insert(rp->r_dir, nrdc->data, where);
2522 nrdc->flags |= RDDIRCACHED;
2523 rddir4_cache_hold(nrdc);
2524 return (nrdc);
2525 }
2526
2527 /*
2528 * Drop the lock and do a sleeping allocation. We incur
2529 * additional overhead by having to search the cache again,
2530 * but this case should be rare.
2531 */
2532 mutex_exit(&rp->r_statelock);
2533 nrdc = rddir4_cache_alloc(KM_SLEEP);
2534 nrdc->nfs4_cookie = cookie;
2535 nrdc->buflen = count;
2536 mutex_enter(&rp->r_statelock);
2537 /*
2538 * We need to take another pass through the cache
2539 * since we dropped our lock to perform the alloc.
2540 * Another thread may have come by and inserted the
2541 * entry we are interested in.
2542 */
2543 goto top;
2544 }
2545
2546 /*
2547 * Check to see if we need to free our entry. This can happen if
2548 * another thread came along beat us to the insert. We can
2549 * safely call rddir4_cache_free directly because no other thread
2550 * would have a reference to this entry.
2551 */
2552 if (nrdc != NULL)
2553 rddir4_cache_free((rddir4_cache_impl *)nrdc->data);
2554
2555 #ifdef DEBUG
2556 nfs4_readdir_cache_hits++;
2557 #endif
2558 /*
2559 * Found something. Make sure it's ready to return.
2560 */
2561 rdc = &rdip->rc;
2562 rddir4_cache_hold(rdc);
2563 /*
2564 * If the cache entry is in the process of being filled in, wait
2565 * until this completes. The RDDIRWAIT bit is set to indicate that
2566 * someone is waiting and when the thread currently filling the entry
2567 * is done, it should do a cv_broadcast to wakeup all of the threads
2568 * waiting for it to finish. If the thread wakes up to find that
2569 * someone new is now trying to complete the the entry, go back
2570 * to sleep.
2571 */
2572 while (rdc->flags & RDDIR) {
2573 /*
2574 * The entry is not complete.
2575 */
2576 nfs_rw_exit(&rp->r_rwlock);
2577 rdc->flags |= RDDIRWAIT;
2578 #ifdef DEBUG
2579 nfs4_readdir_cache_waits++;
2580 #endif
2581 while (rdc->flags & RDDIRWAIT) {
2582 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
2583 /*
2584 * We got interrupted, probably the user
2585 * typed ^C or an alarm fired. We free the
2586 * new entry if we allocated one.
2587 */
2588 rddir4_cache_rele(rp, rdc);
2589 mutex_exit(&rp->r_statelock);
2590 (void) nfs_rw_enter_sig(&rp->r_rwlock,
2591 RW_READER, FALSE);
2592 mutex_enter(&rp->r_statelock);
2593 return (NULL);
2594 }
2595 }
2596 mutex_exit(&rp->r_statelock);
2597 (void) nfs_rw_enter_sig(&rp->r_rwlock,
2598 RW_READER, FALSE);
2599 mutex_enter(&rp->r_statelock);
2600 }
2601
2602 /*
2603 * The entry we were waiting on may have been purged from
2604 * the cache and should no longer be used, release it and
2605 * start over.
2606 */
2607 if (!(rdc->flags & RDDIRCACHED)) {
2608 rddir4_cache_rele(rp, rdc);
2609 goto top;
2610 }
2611
2612 /*
2613 * The entry is completed. Return it.
2614 */
2615 return (rdc);
2616 }
2617
2618 /*
2619 * Allocate a cache element and return it. Can return NULL if memory is
2620 * low.
2621 */
2622 static rddir4_cache *
rddir4_cache_alloc(int flags)2623 rddir4_cache_alloc(int flags)
2624 {
2625 rddir4_cache_impl *rdip = NULL;
2626 rddir4_cache *rc = NULL;
2627
2628 rdip = kmem_alloc(sizeof (rddir4_cache_impl), flags);
2629
2630 if (rdip != NULL) {
2631 rc = &rdip->rc;
2632 rc->data = (void *)rdip;
2633 rc->nfs4_cookie = 0;
2634 rc->nfs4_ncookie = 0;
2635 rc->entries = NULL;
2636 rc->eof = 0;
2637 rc->entlen = 0;
2638 rc->buflen = 0;
2639 rc->actlen = 0;
2640 /*
2641 * A readdir is required so set the flag.
2642 */
2643 rc->flags = RDDIRREQ;
2644 cv_init(&rc->cv, NULL, CV_DEFAULT, NULL);
2645 rc->error = 0;
2646 mutex_init(&rdip->lock, NULL, MUTEX_DEFAULT, NULL);
2647 rdip->count = 1;
2648 #ifdef DEBUG
2649 atomic_inc_64(&clstat4_debug.dirent.value.ui64);
2650 #endif
2651 }
2652 return (rc);
2653 }
2654
2655 /*
2656 * Increment the reference count to this cache element.
2657 */
2658 static void
rddir4_cache_hold(rddir4_cache * rc)2659 rddir4_cache_hold(rddir4_cache *rc)
2660 {
2661 rddir4_cache_impl *rdip = (rddir4_cache_impl *)rc->data;
2662
2663 mutex_enter(&rdip->lock);
2664 rdip->count++;
2665 mutex_exit(&rdip->lock);
2666 }
2667
2668 /*
2669 * Release a reference to this cache element. If the count is zero then
2670 * free the element.
2671 */
2672 void
rddir4_cache_rele(rnode4_t * rp,rddir4_cache * rdc)2673 rddir4_cache_rele(rnode4_t *rp, rddir4_cache *rdc)
2674 {
2675 rddir4_cache_impl *rdip = (rddir4_cache_impl *)rdc->data;
2676
2677 ASSERT(MUTEX_HELD(&rp->r_statelock));
2678
2679 /*
2680 * Check to see if we have any waiters. If so, we can wake them
2681 * so that they can proceed.
2682 */
2683 if (rdc->flags & RDDIRWAIT) {
2684 rdc->flags &= ~RDDIRWAIT;
2685 cv_broadcast(&rdc->cv);
2686 }
2687
2688 mutex_enter(&rdip->lock);
2689 ASSERT(rdip->count > 0);
2690 if (--rdip->count == 0) {
2691 mutex_exit(&rdip->lock);
2692 rddir4_cache_free(rdip);
2693 } else
2694 mutex_exit(&rdip->lock);
2695 }
2696
2697 /*
2698 * Free a cache element.
2699 */
2700 static void
rddir4_cache_free(rddir4_cache_impl * rdip)2701 rddir4_cache_free(rddir4_cache_impl *rdip)
2702 {
2703 rddir4_cache *rc = &rdip->rc;
2704
2705 #ifdef DEBUG
2706 atomic_dec_64(&clstat4_debug.dirent.value.ui64);
2707 #endif
2708 if (rc->entries != NULL)
2709 kmem_free(rc->entries, rc->buflen);
2710 cv_destroy(&rc->cv);
2711 mutex_destroy(&rdip->lock);
2712 kmem_free(rdip, sizeof (*rdip));
2713 }
2714
2715 /*
2716 * Snapshot callback for nfs:0:nfs4_client as registered with the kstat
2717 * framework.
2718 */
2719 static int
cl4_snapshot(kstat_t * ksp,void * buf,int rw)2720 cl4_snapshot(kstat_t *ksp, void *buf, int rw)
2721 {
2722 ksp->ks_snaptime = gethrtime();
2723 if (rw == KSTAT_WRITE) {
2724 bcopy(buf, ksp->ks_private, sizeof (clstat4_tmpl));
2725 #ifdef DEBUG
2726 /*
2727 * Currently only the global zone can write to kstats, but we
2728 * add the check just for paranoia.
2729 */
2730 if (INGLOBALZONE(curproc))
2731 bcopy((char *)buf + sizeof (clstat4_tmpl),
2732 &clstat4_debug, sizeof (clstat4_debug));
2733 #endif
2734 } else {
2735 bcopy(ksp->ks_private, buf, sizeof (clstat4_tmpl));
2736 #ifdef DEBUG
2737 /*
2738 * If we're displaying the "global" debug kstat values, we
2739 * display them as-is to all zones since in fact they apply to
2740 * the system as a whole.
2741 */
2742 bcopy(&clstat4_debug, (char *)buf + sizeof (clstat4_tmpl),
2743 sizeof (clstat4_debug));
2744 #endif
2745 }
2746 return (0);
2747 }
2748
2749
2750
2751 /*
2752 * Zone support
2753 */
2754 static void *
clinit4_zone(zoneid_t zoneid)2755 clinit4_zone(zoneid_t zoneid)
2756 {
2757 kstat_t *nfs4_client_kstat;
2758 struct nfs4_clnt *nfscl;
2759 uint_t ndata;
2760
2761 nfscl = kmem_alloc(sizeof (*nfscl), KM_SLEEP);
2762 mutex_init(&nfscl->nfscl_chtable4_lock, NULL, MUTEX_DEFAULT, NULL);
2763 nfscl->nfscl_chtable4 = NULL;
2764 nfscl->nfscl_zoneid = zoneid;
2765
2766 bcopy(&clstat4_tmpl, &nfscl->nfscl_stat, sizeof (clstat4_tmpl));
2767 ndata = sizeof (clstat4_tmpl) / sizeof (kstat_named_t);
2768 #ifdef DEBUG
2769 ndata += sizeof (clstat4_debug) / sizeof (kstat_named_t);
2770 #endif
2771 if ((nfs4_client_kstat = kstat_create_zone("nfs", 0, "nfs4_client",
2772 "misc", KSTAT_TYPE_NAMED, ndata,
2773 KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_WRITABLE, zoneid)) != NULL) {
2774 nfs4_client_kstat->ks_private = &nfscl->nfscl_stat;
2775 nfs4_client_kstat->ks_snapshot = cl4_snapshot;
2776 kstat_install(nfs4_client_kstat);
2777 }
2778 mutex_enter(&nfs4_clnt_list_lock);
2779 list_insert_head(&nfs4_clnt_list, nfscl);
2780 mutex_exit(&nfs4_clnt_list_lock);
2781
2782 return (nfscl);
2783 }
2784
2785 /*ARGSUSED*/
2786 static void
clfini4_zone(zoneid_t zoneid,void * arg)2787 clfini4_zone(zoneid_t zoneid, void *arg)
2788 {
2789 struct nfs4_clnt *nfscl = arg;
2790 chhead_t *chp, *next;
2791
2792 if (nfscl == NULL)
2793 return;
2794 mutex_enter(&nfs4_clnt_list_lock);
2795 list_remove(&nfs4_clnt_list, nfscl);
2796 mutex_exit(&nfs4_clnt_list_lock);
2797 clreclaim4_zone(nfscl, 0);
2798 for (chp = nfscl->nfscl_chtable4; chp != NULL; chp = next) {
2799 ASSERT(chp->ch_list == NULL);
2800 kmem_free(chp->ch_protofmly, strlen(chp->ch_protofmly) + 1);
2801 next = chp->ch_next;
2802 kmem_free(chp, sizeof (*chp));
2803 }
2804 kstat_delete_byname_zone("nfs", 0, "nfs4_client", zoneid);
2805 mutex_destroy(&nfscl->nfscl_chtable4_lock);
2806 kmem_free(nfscl, sizeof (*nfscl));
2807 }
2808
2809 /*
2810 * Called by endpnt_destructor to make sure the client handles are
2811 * cleaned up before the RPC endpoints. This becomes a no-op if
2812 * clfini_zone (above) is called first. This function is needed
2813 * (rather than relying on clfini_zone to clean up) because the ZSD
2814 * callbacks have no ordering mechanism, so we have no way to ensure
2815 * that clfini_zone is called before endpnt_destructor.
2816 */
2817 void
clcleanup4_zone(zoneid_t zoneid)2818 clcleanup4_zone(zoneid_t zoneid)
2819 {
2820 struct nfs4_clnt *nfscl;
2821
2822 mutex_enter(&nfs4_clnt_list_lock);
2823 nfscl = list_head(&nfs4_clnt_list);
2824 for (; nfscl != NULL; nfscl = list_next(&nfs4_clnt_list, nfscl)) {
2825 if (nfscl->nfscl_zoneid == zoneid) {
2826 clreclaim4_zone(nfscl, 0);
2827 break;
2828 }
2829 }
2830 mutex_exit(&nfs4_clnt_list_lock);
2831 }
2832
2833 int
nfs4_subr_init(void)2834 nfs4_subr_init(void)
2835 {
2836 /*
2837 * Allocate and initialize the client handle cache
2838 */
2839 chtab4_cache = kmem_cache_create("client_handle4_cache",
2840 sizeof (struct chtab), 0, NULL, NULL, clreclaim4, NULL,
2841 NULL, 0);
2842
2843 /*
2844 * Initialize the list of per-zone client handles (and associated data).
2845 * This needs to be done before we call zone_key_create().
2846 */
2847 list_create(&nfs4_clnt_list, sizeof (struct nfs4_clnt),
2848 offsetof(struct nfs4_clnt, nfscl_node));
2849
2850 /*
2851 * Initialize the zone_key for per-zone client handle lists.
2852 */
2853 zone_key_create(&nfs4clnt_zone_key, clinit4_zone, NULL, clfini4_zone);
2854
2855 if (nfs4err_delay_time == 0)
2856 nfs4err_delay_time = NFS4ERR_DELAY_TIME;
2857
2858 return (0);
2859 }
2860
2861 int
nfs4_subr_fini(void)2862 nfs4_subr_fini(void)
2863 {
2864 /*
2865 * Deallocate the client handle cache
2866 */
2867 kmem_cache_destroy(chtab4_cache);
2868
2869 /*
2870 * Destroy the zone_key
2871 */
2872 (void) zone_key_delete(nfs4clnt_zone_key);
2873
2874 return (0);
2875 }
2876 /*
2877 * Set or Clear direct I/O flag
2878 * VOP_RWLOCK() is held for write access to prevent a race condition
2879 * which would occur if a process is in the middle of a write when
2880 * directio flag gets set. It is possible that all pages may not get flushed.
2881 *
2882 * This is a copy of nfs_directio, changes here may need to be made
2883 * there and vice versa.
2884 */
2885
2886 int
nfs4_directio(vnode_t * vp,int cmd,cred_t * cr)2887 nfs4_directio(vnode_t *vp, int cmd, cred_t *cr)
2888 {
2889 int error = 0;
2890 rnode4_t *rp;
2891
2892 rp = VTOR4(vp);
2893
2894 if (cmd == DIRECTIO_ON) {
2895
2896 if (rp->r_flags & R4DIRECTIO)
2897 return (0);
2898
2899 /*
2900 * Flush the page cache.
2901 */
2902
2903 (void) VOP_RWLOCK(vp, V_WRITELOCK_TRUE, NULL);
2904
2905 if (rp->r_flags & R4DIRECTIO) {
2906 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2907 return (0);
2908 }
2909
2910 if (nfs4_has_pages(vp) &&
2911 ((rp->r_flags & R4DIRTY) || rp->r_awcount > 0)) {
2912 error = VOP_PUTPAGE(vp, (offset_t)0, (uint_t)0,
2913 B_INVAL, cr, NULL);
2914 if (error) {
2915 if (error == ENOSPC || error == EDQUOT) {
2916 mutex_enter(&rp->r_statelock);
2917 if (!rp->r_error)
2918 rp->r_error = error;
2919 mutex_exit(&rp->r_statelock);
2920 }
2921 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2922 return (error);
2923 }
2924 }
2925
2926 mutex_enter(&rp->r_statelock);
2927 rp->r_flags |= R4DIRECTIO;
2928 mutex_exit(&rp->r_statelock);
2929 VOP_RWUNLOCK(vp, V_WRITELOCK_TRUE, NULL);
2930 return (0);
2931 }
2932
2933 if (cmd == DIRECTIO_OFF) {
2934 mutex_enter(&rp->r_statelock);
2935 rp->r_flags &= ~R4DIRECTIO; /* disable direct mode */
2936 mutex_exit(&rp->r_statelock);
2937 return (0);
2938 }
2939
2940 return (EINVAL);
2941 }
2942
2943 /*
2944 * Return TRUE if the file has any pages. Always go back to
2945 * the master vnode to check v_pages since none of the shadows
2946 * can have pages.
2947 */
2948
2949 bool_t
nfs4_has_pages(vnode_t * vp)2950 nfs4_has_pages(vnode_t *vp)
2951 {
2952 rnode4_t *rp;
2953
2954 rp = VTOR4(vp);
2955 if (IS_SHADOW(vp, rp))
2956 vp = RTOV4(rp); /* RTOV4 always gives the master */
2957
2958 return (vn_has_cached_data(vp));
2959 }
2960
2961 /*
2962 * This table is used to determine whether the client should attempt
2963 * failover based on the clnt_stat value returned by CLNT_CALL. The
2964 * clnt_stat is used as an index into the table. If
2965 * the error value that corresponds to the clnt_stat value in the
2966 * table is non-zero, then that is the error to be returned AND
2967 * that signals that failover should be attempted.
2968 *
2969 * Special note: If the RPC_ values change, then direct indexing of the
2970 * table is no longer valid, but having the RPC_ values in the table
2971 * allow the functions to detect the change and issue a warning.
2972 * In this case, the code will always attempt failover as a defensive
2973 * measure.
2974 */
2975
2976 static struct try_failover_tab {
2977 enum clnt_stat cstat;
2978 int error;
2979 } try_failover_table [] = {
2980
2981 RPC_SUCCESS, 0,
2982 RPC_CANTENCODEARGS, 0,
2983 RPC_CANTDECODERES, 0,
2984 RPC_CANTSEND, ECOMM,
2985 RPC_CANTRECV, ECOMM,
2986 RPC_TIMEDOUT, ETIMEDOUT,
2987 RPC_VERSMISMATCH, 0,
2988 RPC_AUTHERROR, 0,
2989 RPC_PROGUNAVAIL, 0,
2990 RPC_PROGVERSMISMATCH, 0,
2991 RPC_PROCUNAVAIL, 0,
2992 RPC_CANTDECODEARGS, 0,
2993 RPC_SYSTEMERROR, ENOSR,
2994 RPC_UNKNOWNHOST, EHOSTUNREACH,
2995 RPC_RPCBFAILURE, ENETUNREACH,
2996 RPC_PROGNOTREGISTERED, ECONNREFUSED,
2997 RPC_FAILED, ETIMEDOUT,
2998 RPC_UNKNOWNPROTO, EHOSTUNREACH,
2999 RPC_INTR, 0,
3000 RPC_UNKNOWNADDR, EHOSTUNREACH,
3001 RPC_TLIERROR, 0,
3002 RPC_NOBROADCAST, EHOSTUNREACH,
3003 RPC_N2AXLATEFAILURE, ECONNREFUSED,
3004 RPC_UDERROR, 0,
3005 RPC_INPROGRESS, 0,
3006 RPC_STALERACHANDLE, EINVAL,
3007 RPC_CANTCONNECT, ECONNREFUSED,
3008 RPC_XPRTFAILED, ECONNABORTED,
3009 RPC_CANTCREATESTREAM, ECONNREFUSED,
3010 RPC_CANTSTORE, ENOBUFS
3011 };
3012
3013 /*
3014 * nfs4_try_failover - determine whether the client should
3015 * attempt failover based on the values stored in the nfs4_error_t.
3016 */
3017 int
nfs4_try_failover(nfs4_error_t * ep)3018 nfs4_try_failover(nfs4_error_t *ep)
3019 {
3020 if (ep->error == ETIMEDOUT || ep->stat == NFS4ERR_RESOURCE)
3021 return (TRUE);
3022
3023 if (ep->error && ep->rpc_status != RPC_SUCCESS)
3024 return (try_failover(ep->rpc_status) != 0 ? TRUE : FALSE);
3025
3026 return (FALSE);
3027 }
3028
3029 /*
3030 * try_failover - internal version of nfs4_try_failover, called
3031 * only by rfscall and aclcall. Determine if failover is warranted
3032 * based on the clnt_stat and return the error number if it is.
3033 */
3034 static int
try_failover(enum clnt_stat rpc_status)3035 try_failover(enum clnt_stat rpc_status)
3036 {
3037 int err = 0;
3038
3039 if (rpc_status == RPC_SUCCESS)
3040 return (0);
3041
3042 #ifdef DEBUG
3043 if (rpc_status != 0 && nfs4_try_failover_any) {
3044 err = ETIMEDOUT;
3045 goto done;
3046 }
3047 #endif
3048 /*
3049 * The rpc status is used as an index into the table.
3050 * If the rpc status is outside of the range of the
3051 * table or if the rpc error numbers have been changed
3052 * since the table was constructed, then print a warning
3053 * (DEBUG only) and try failover anyway. Otherwise, just
3054 * grab the resulting error number out of the table.
3055 */
3056 if (rpc_status < RPC_SUCCESS || rpc_status >=
3057 sizeof (try_failover_table)/sizeof (try_failover_table[0]) ||
3058 try_failover_table[rpc_status].cstat != rpc_status) {
3059
3060 err = ETIMEDOUT;
3061 #ifdef DEBUG
3062 cmn_err(CE_NOTE, "try_failover: unexpected rpc error %d",
3063 rpc_status);
3064 #endif
3065 } else
3066 err = try_failover_table[rpc_status].error;
3067
3068 done:
3069 if (rpc_status)
3070 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
3071 "nfs4_try_failover: %strying failover on error %d",
3072 err ? "" : "NOT ", rpc_status));
3073
3074 return (err);
3075 }
3076
3077 void
nfs4_error_zinit(nfs4_error_t * ep)3078 nfs4_error_zinit(nfs4_error_t *ep)
3079 {
3080 ep->error = 0;
3081 ep->stat = NFS4_OK;
3082 ep->rpc_status = RPC_SUCCESS;
3083 }
3084
3085 void
nfs4_error_init(nfs4_error_t * ep,int error)3086 nfs4_error_init(nfs4_error_t *ep, int error)
3087 {
3088 ep->error = error;
3089 ep->stat = NFS4_OK;
3090 ep->rpc_status = RPC_SUCCESS;
3091 }
3092
3093
3094 #ifdef DEBUG
3095
3096 /*
3097 * Return a 16-bit hash for filehandle, stateid, clientid, owner.
3098 * use the same algorithm as for NFS v3.
3099 *
3100 */
3101 int
hash16(void * p,int len)3102 hash16(void *p, int len)
3103 {
3104 int i, rem;
3105 uint_t *wp;
3106 uint_t key = 0;
3107
3108 /* protect against non word aligned */
3109 if ((rem = len & 3) != 0)
3110 len &= ~3;
3111
3112 for (i = 0, wp = (uint_t *)p; i < len; i += 4, wp++) {
3113 key ^= (*wp >> 16) ^ *wp;
3114 }
3115
3116 /* hash left-over bytes */
3117 for (i = 0; i < rem; i++)
3118 key ^= *((uchar_t *)p + i);
3119
3120 return (key & 0xffff);
3121 }
3122
3123 /*
3124 * rnode4info - return filehandle and path information for an rnode.
3125 * XXX MT issues: uses a single static buffer, no locking of path.
3126 */
3127 char *
rnode4info(rnode4_t * rp)3128 rnode4info(rnode4_t *rp)
3129 {
3130 static char buf[80];
3131 nfs4_fhandle_t fhandle;
3132 char *path;
3133 char *type;
3134
3135 if (rp == NULL)
3136 return ("null");
3137 if (rp->r_flags & R4ISXATTR)
3138 type = "attr";
3139 else if (RTOV4(rp)->v_flag & V_XATTRDIR)
3140 type = "attrdir";
3141 else if (RTOV4(rp)->v_flag & VROOT)
3142 type = "root";
3143 else if (RTOV4(rp)->v_type == VDIR)
3144 type = "dir";
3145 else if (RTOV4(rp)->v_type == VREG)
3146 type = "file";
3147 else
3148 type = "other";
3149 sfh4_copyval(rp->r_fh, &fhandle);
3150 path = fn_path(rp->r_svnode.sv_name);
3151 (void) snprintf(buf, 80, "$%p[%s], type=%s, flags=%04X, FH=%04X\n",
3152 (void *)rp, path, type, rp->r_flags,
3153 hash16((void *)&fhandle.fh_buf, fhandle.fh_len));
3154 kmem_free(path, strlen(path)+1);
3155 return (buf);
3156 }
3157 #endif
3158