1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
108 * protected from simultaneous callbacks from arc_clear_callback()
109 * and arc_do_user_evicts().
110 *
111 * Note that the majority of the performance stats are manipulated
112 * with atomic operations.
113 *
114 * The L2ARC uses the l2ad_mtx on each vdev for the following:
115 *
116 * - L2ARC buflist creation
117 * - L2ARC buflist eviction
118 * - L2ARC write completion, which walks L2ARC buflists
119 * - ARC header destruction, as it removes from L2ARC buflists
120 * - ARC header release, as it removes from L2ARC buflists
121 */
122
123 #include <sys/spa.h>
124 #include <sys/zio.h>
125 #include <sys/zio_compress.h>
126 #include <sys/zfs_context.h>
127 #include <sys/arc.h>
128 #include <sys/refcount.h>
129 #include <sys/vdev.h>
130 #include <sys/vdev_impl.h>
131 #include <sys/dsl_pool.h>
132 #include <sys/multilist.h>
133 #ifdef _KERNEL
134 #include <sys/vmsystm.h>
135 #include <vm/anon.h>
136 #include <sys/fs/swapnode.h>
137 #include <sys/dnlc.h>
138 #endif
139 #include <sys/callb.h>
140 #include <sys/kstat.h>
141 #include <zfs_fletcher.h>
142 #include <sys/byteorder.h>
143 #include <sys/spa_impl.h>
144 #include <sys/zfs_ioctl.h>
145
146 #ifndef _KERNEL
147 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
148 boolean_t arc_watch = B_FALSE;
149 int arc_procfd;
150 #endif
151
152 static kmutex_t arc_reclaim_lock;
153 static kcondvar_t arc_reclaim_thread_cv;
154 static boolean_t arc_reclaim_thread_exit;
155 static kcondvar_t arc_reclaim_waiters_cv;
156
157 static kmutex_t arc_user_evicts_lock;
158 static kcondvar_t arc_user_evicts_cv;
159 static boolean_t arc_user_evicts_thread_exit;
160
161 uint_t arc_reduce_dnlc_percent = 3;
162
163 /*
164 * The number of headers to evict in arc_evict_state_impl() before
165 * dropping the sublist lock and evicting from another sublist. A lower
166 * value means we're more likely to evict the "correct" header (i.e. the
167 * oldest header in the arc state), but comes with higher overhead
168 * (i.e. more invocations of arc_evict_state_impl()).
169 */
170 int zfs_arc_evict_batch_limit = 10;
171
172 /*
173 * The number of sublists used for each of the arc state lists. If this
174 * is not set to a suitable value by the user, it will be configured to
175 * the number of CPUs on the system in arc_init().
176 */
177 int zfs_arc_num_sublists_per_state = 0;
178
179 /* number of seconds before growing cache again */
180 static int arc_grow_retry = 60;
181
182 /* shift of arc_c for calculating overflow limit in arc_get_data_buf */
183 int zfs_arc_overflow_shift = 8;
184
185 /* shift of arc_c for calculating both min and max arc_p */
186 static int arc_p_min_shift = 4;
187
188 /* log2(fraction of arc to reclaim) */
189 static int arc_shrink_shift = 7;
190
191 /*
192 * log2(fraction of ARC which must be free to allow growing).
193 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
194 * when reading a new block into the ARC, we will evict an equal-sized block
195 * from the ARC.
196 *
197 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
198 * we will still not allow it to grow.
199 */
200 int arc_no_grow_shift = 5;
201
202
203 /*
204 * minimum lifespan of a prefetch block in clock ticks
205 * (initialized in arc_init())
206 */
207 static int arc_min_prefetch_lifespan;
208
209 /*
210 * If this percent of memory is free, don't throttle.
211 */
212 int arc_lotsfree_percent = 10;
213
214 static int arc_dead;
215
216 /*
217 * The arc has filled available memory and has now warmed up.
218 */
219 static boolean_t arc_warm;
220
221 /*
222 * These tunables are for performance analysis.
223 */
224 uint64_t zfs_arc_max;
225 uint64_t zfs_arc_min;
226 uint64_t zfs_arc_meta_limit = 0;
227 uint64_t zfs_arc_meta_min = 0;
228 int zfs_arc_grow_retry = 0;
229 int zfs_arc_shrink_shift = 0;
230 int zfs_arc_p_min_shift = 0;
231 int zfs_disable_dup_eviction = 0;
232 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
233
234 /*
235 * Note that buffers can be in one of 6 states:
236 * ARC_anon - anonymous (discussed below)
237 * ARC_mru - recently used, currently cached
238 * ARC_mru_ghost - recentely used, no longer in cache
239 * ARC_mfu - frequently used, currently cached
240 * ARC_mfu_ghost - frequently used, no longer in cache
241 * ARC_l2c_only - exists in L2ARC but not other states
242 * When there are no active references to the buffer, they are
243 * are linked onto a list in one of these arc states. These are
244 * the only buffers that can be evicted or deleted. Within each
245 * state there are multiple lists, one for meta-data and one for
246 * non-meta-data. Meta-data (indirect blocks, blocks of dnodes,
247 * etc.) is tracked separately so that it can be managed more
248 * explicitly: favored over data, limited explicitly.
249 *
250 * Anonymous buffers are buffers that are not associated with
251 * a DVA. These are buffers that hold dirty block copies
252 * before they are written to stable storage. By definition,
253 * they are "ref'd" and are considered part of arc_mru
254 * that cannot be freed. Generally, they will aquire a DVA
255 * as they are written and migrate onto the arc_mru list.
256 *
257 * The ARC_l2c_only state is for buffers that are in the second
258 * level ARC but no longer in any of the ARC_m* lists. The second
259 * level ARC itself may also contain buffers that are in any of
260 * the ARC_m* states - meaning that a buffer can exist in two
261 * places. The reason for the ARC_l2c_only state is to keep the
262 * buffer header in the hash table, so that reads that hit the
263 * second level ARC benefit from these fast lookups.
264 */
265
266 typedef struct arc_state {
267 /*
268 * list of evictable buffers
269 */
270 multilist_t arcs_list[ARC_BUFC_NUMTYPES];
271 /*
272 * total amount of evictable data in this state
273 */
274 uint64_t arcs_lsize[ARC_BUFC_NUMTYPES];
275 /*
276 * total amount of data in this state; this includes: evictable,
277 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
278 */
279 refcount_t arcs_size;
280 } arc_state_t;
281
282 /* The 6 states: */
283 static arc_state_t ARC_anon;
284 static arc_state_t ARC_mru;
285 static arc_state_t ARC_mru_ghost;
286 static arc_state_t ARC_mfu;
287 static arc_state_t ARC_mfu_ghost;
288 static arc_state_t ARC_l2c_only;
289
290 typedef struct arc_stats {
291 kstat_named_t arcstat_hits;
292 kstat_named_t arcstat_misses;
293 kstat_named_t arcstat_demand_hits_data;
294 kstat_named_t arcstat_demand_misses_data;
295 kstat_named_t arcstat_demand_hits_metadata;
296 kstat_named_t arcstat_demand_misses_metadata;
297 kstat_named_t arcstat_prefetch_hits_data;
298 kstat_named_t arcstat_prefetch_misses_data;
299 kstat_named_t arcstat_prefetch_hits_metadata;
300 kstat_named_t arcstat_prefetch_misses_metadata;
301 kstat_named_t arcstat_mru_hits;
302 kstat_named_t arcstat_mru_ghost_hits;
303 kstat_named_t arcstat_mfu_hits;
304 kstat_named_t arcstat_mfu_ghost_hits;
305 kstat_named_t arcstat_deleted;
306 /*
307 * Number of buffers that could not be evicted because the hash lock
308 * was held by another thread. The lock may not necessarily be held
309 * by something using the same buffer, since hash locks are shared
310 * by multiple buffers.
311 */
312 kstat_named_t arcstat_mutex_miss;
313 /*
314 * Number of buffers skipped because they have I/O in progress, are
315 * indrect prefetch buffers that have not lived long enough, or are
316 * not from the spa we're trying to evict from.
317 */
318 kstat_named_t arcstat_evict_skip;
319 /*
320 * Number of times arc_evict_state() was unable to evict enough
321 * buffers to reach it's target amount.
322 */
323 kstat_named_t arcstat_evict_not_enough;
324 kstat_named_t arcstat_evict_l2_cached;
325 kstat_named_t arcstat_evict_l2_eligible;
326 kstat_named_t arcstat_evict_l2_ineligible;
327 kstat_named_t arcstat_evict_l2_skip;
328 kstat_named_t arcstat_hash_elements;
329 kstat_named_t arcstat_hash_elements_max;
330 kstat_named_t arcstat_hash_collisions;
331 kstat_named_t arcstat_hash_chains;
332 kstat_named_t arcstat_hash_chain_max;
333 kstat_named_t arcstat_p;
334 kstat_named_t arcstat_c;
335 kstat_named_t arcstat_c_min;
336 kstat_named_t arcstat_c_max;
337 kstat_named_t arcstat_size;
338 /*
339 * Number of bytes consumed by internal ARC structures necessary
340 * for tracking purposes; these structures are not actually
341 * backed by ARC buffers. This includes arc_buf_hdr_t structures
342 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
343 * caches), and arc_buf_t structures (allocated via arc_buf_t
344 * cache).
345 */
346 kstat_named_t arcstat_hdr_size;
347 /*
348 * Number of bytes consumed by ARC buffers of type equal to
349 * ARC_BUFC_DATA. This is generally consumed by buffers backing
350 * on disk user data (e.g. plain file contents).
351 */
352 kstat_named_t arcstat_data_size;
353 /*
354 * Number of bytes consumed by ARC buffers of type equal to
355 * ARC_BUFC_METADATA. This is generally consumed by buffers
356 * backing on disk data that is used for internal ZFS
357 * structures (e.g. ZAP, dnode, indirect blocks, etc).
358 */
359 kstat_named_t arcstat_metadata_size;
360 /*
361 * Number of bytes consumed by various buffers and structures
362 * not actually backed with ARC buffers. This includes bonus
363 * buffers (allocated directly via zio_buf_* functions),
364 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
365 * cache), and dnode_t structures (allocated via dnode_t cache).
366 */
367 kstat_named_t arcstat_other_size;
368 /*
369 * Total number of bytes consumed by ARC buffers residing in the
370 * arc_anon state. This includes *all* buffers in the arc_anon
371 * state; e.g. data, metadata, evictable, and unevictable buffers
372 * are all included in this value.
373 */
374 kstat_named_t arcstat_anon_size;
375 /*
376 * Number of bytes consumed by ARC buffers that meet the
377 * following criteria: backing buffers of type ARC_BUFC_DATA,
378 * residing in the arc_anon state, and are eligible for eviction
379 * (e.g. have no outstanding holds on the buffer).
380 */
381 kstat_named_t arcstat_anon_evictable_data;
382 /*
383 * Number of bytes consumed by ARC buffers that meet the
384 * following criteria: backing buffers of type ARC_BUFC_METADATA,
385 * residing in the arc_anon state, and are eligible for eviction
386 * (e.g. have no outstanding holds on the buffer).
387 */
388 kstat_named_t arcstat_anon_evictable_metadata;
389 /*
390 * Total number of bytes consumed by ARC buffers residing in the
391 * arc_mru state. This includes *all* buffers in the arc_mru
392 * state; e.g. data, metadata, evictable, and unevictable buffers
393 * are all included in this value.
394 */
395 kstat_named_t arcstat_mru_size;
396 /*
397 * Number of bytes consumed by ARC buffers that meet the
398 * following criteria: backing buffers of type ARC_BUFC_DATA,
399 * residing in the arc_mru state, and are eligible for eviction
400 * (e.g. have no outstanding holds on the buffer).
401 */
402 kstat_named_t arcstat_mru_evictable_data;
403 /*
404 * Number of bytes consumed by ARC buffers that meet the
405 * following criteria: backing buffers of type ARC_BUFC_METADATA,
406 * residing in the arc_mru state, and are eligible for eviction
407 * (e.g. have no outstanding holds on the buffer).
408 */
409 kstat_named_t arcstat_mru_evictable_metadata;
410 /*
411 * Total number of bytes that *would have been* consumed by ARC
412 * buffers in the arc_mru_ghost state. The key thing to note
413 * here, is the fact that this size doesn't actually indicate
414 * RAM consumption. The ghost lists only consist of headers and
415 * don't actually have ARC buffers linked off of these headers.
416 * Thus, *if* the headers had associated ARC buffers, these
417 * buffers *would have* consumed this number of bytes.
418 */
419 kstat_named_t arcstat_mru_ghost_size;
420 /*
421 * Number of bytes that *would have been* consumed by ARC
422 * buffers that are eligible for eviction, of type
423 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
424 */
425 kstat_named_t arcstat_mru_ghost_evictable_data;
426 /*
427 * Number of bytes that *would have been* consumed by ARC
428 * buffers that are eligible for eviction, of type
429 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
430 */
431 kstat_named_t arcstat_mru_ghost_evictable_metadata;
432 /*
433 * Total number of bytes consumed by ARC buffers residing in the
434 * arc_mfu state. This includes *all* buffers in the arc_mfu
435 * state; e.g. data, metadata, evictable, and unevictable buffers
436 * are all included in this value.
437 */
438 kstat_named_t arcstat_mfu_size;
439 /*
440 * Number of bytes consumed by ARC buffers that are eligible for
441 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
442 * state.
443 */
444 kstat_named_t arcstat_mfu_evictable_data;
445 /*
446 * Number of bytes consumed by ARC buffers that are eligible for
447 * eviction, of type ARC_BUFC_METADATA, and reside in the
448 * arc_mfu state.
449 */
450 kstat_named_t arcstat_mfu_evictable_metadata;
451 /*
452 * Total number of bytes that *would have been* consumed by ARC
453 * buffers in the arc_mfu_ghost state. See the comment above
454 * arcstat_mru_ghost_size for more details.
455 */
456 kstat_named_t arcstat_mfu_ghost_size;
457 /*
458 * Number of bytes that *would have been* consumed by ARC
459 * buffers that are eligible for eviction, of type
460 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
461 */
462 kstat_named_t arcstat_mfu_ghost_evictable_data;
463 /*
464 * Number of bytes that *would have been* consumed by ARC
465 * buffers that are eligible for eviction, of type
466 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
467 */
468 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
469 kstat_named_t arcstat_l2_hits;
470 kstat_named_t arcstat_l2_misses;
471 kstat_named_t arcstat_l2_feeds;
472 kstat_named_t arcstat_l2_rw_clash;
473 kstat_named_t arcstat_l2_read_bytes;
474 kstat_named_t arcstat_l2_write_bytes;
475 kstat_named_t arcstat_l2_writes_sent;
476 kstat_named_t arcstat_l2_writes_done;
477 kstat_named_t arcstat_l2_writes_error;
478 kstat_named_t arcstat_l2_writes_lock_retry;
479 kstat_named_t arcstat_l2_evict_lock_retry;
480 kstat_named_t arcstat_l2_evict_reading;
481 kstat_named_t arcstat_l2_evict_l1cached;
482 kstat_named_t arcstat_l2_free_on_write;
483 kstat_named_t arcstat_l2_cdata_free_on_write;
484 kstat_named_t arcstat_l2_abort_lowmem;
485 kstat_named_t arcstat_l2_cksum_bad;
486 kstat_named_t arcstat_l2_io_error;
487 kstat_named_t arcstat_l2_size;
488 kstat_named_t arcstat_l2_asize;
489 kstat_named_t arcstat_l2_hdr_size;
490 kstat_named_t arcstat_l2_compress_successes;
491 kstat_named_t arcstat_l2_compress_zeros;
492 kstat_named_t arcstat_l2_compress_failures;
493 kstat_named_t arcstat_l2_log_blk_writes;
494 kstat_named_t arcstat_l2_log_blk_avg_size;
495 kstat_named_t arcstat_l2_data_to_meta_ratio;
496 kstat_named_t arcstat_l2_rebuild_successes;
497 kstat_named_t arcstat_l2_rebuild_abort_unsupported;
498 kstat_named_t arcstat_l2_rebuild_abort_io_errors;
499 kstat_named_t arcstat_l2_rebuild_abort_cksum_errors;
500 kstat_named_t arcstat_l2_rebuild_abort_loop_errors;
501 kstat_named_t arcstat_l2_rebuild_abort_lowmem;
502 kstat_named_t arcstat_l2_rebuild_size;
503 kstat_named_t arcstat_l2_rebuild_bufs;
504 kstat_named_t arcstat_l2_rebuild_bufs_precached;
505 kstat_named_t arcstat_l2_rebuild_psize;
506 kstat_named_t arcstat_l2_rebuild_log_blks;
507 kstat_named_t arcstat_memory_throttle_count;
508 kstat_named_t arcstat_duplicate_buffers;
509 kstat_named_t arcstat_duplicate_buffers_size;
510 kstat_named_t arcstat_duplicate_reads;
511 kstat_named_t arcstat_meta_used;
512 kstat_named_t arcstat_meta_limit;
513 kstat_named_t arcstat_meta_max;
514 kstat_named_t arcstat_meta_min;
515 } arc_stats_t;
516
517 static arc_stats_t arc_stats = {
518 { "hits", KSTAT_DATA_UINT64 },
519 { "misses", KSTAT_DATA_UINT64 },
520 { "demand_data_hits", KSTAT_DATA_UINT64 },
521 { "demand_data_misses", KSTAT_DATA_UINT64 },
522 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
523 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
524 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
525 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
526 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
527 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
528 { "mru_hits", KSTAT_DATA_UINT64 },
529 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
530 { "mfu_hits", KSTAT_DATA_UINT64 },
531 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
532 { "deleted", KSTAT_DATA_UINT64 },
533 { "mutex_miss", KSTAT_DATA_UINT64 },
534 { "evict_skip", KSTAT_DATA_UINT64 },
535 { "evict_not_enough", KSTAT_DATA_UINT64 },
536 { "evict_l2_cached", KSTAT_DATA_UINT64 },
537 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
538 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
539 { "evict_l2_skip", KSTAT_DATA_UINT64 },
540 { "hash_elements", KSTAT_DATA_UINT64 },
541 { "hash_elements_max", KSTAT_DATA_UINT64 },
542 { "hash_collisions", KSTAT_DATA_UINT64 },
543 { "hash_chains", KSTAT_DATA_UINT64 },
544 { "hash_chain_max", KSTAT_DATA_UINT64 },
545 { "p", KSTAT_DATA_UINT64 },
546 { "c", KSTAT_DATA_UINT64 },
547 { "c_min", KSTAT_DATA_UINT64 },
548 { "c_max", KSTAT_DATA_UINT64 },
549 { "size", KSTAT_DATA_UINT64 },
550 { "hdr_size", KSTAT_DATA_UINT64 },
551 { "data_size", KSTAT_DATA_UINT64 },
552 { "metadata_size", KSTAT_DATA_UINT64 },
553 { "other_size", KSTAT_DATA_UINT64 },
554 { "anon_size", KSTAT_DATA_UINT64 },
555 { "anon_evictable_data", KSTAT_DATA_UINT64 },
556 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
557 { "mru_size", KSTAT_DATA_UINT64 },
558 { "mru_evictable_data", KSTAT_DATA_UINT64 },
559 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
560 { "mru_ghost_size", KSTAT_DATA_UINT64 },
561 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
562 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
563 { "mfu_size", KSTAT_DATA_UINT64 },
564 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
565 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
566 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
567 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
568 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
569 { "l2_hits", KSTAT_DATA_UINT64 },
570 { "l2_misses", KSTAT_DATA_UINT64 },
571 { "l2_feeds", KSTAT_DATA_UINT64 },
572 { "l2_rw_clash", KSTAT_DATA_UINT64 },
573 { "l2_read_bytes", KSTAT_DATA_UINT64 },
574 { "l2_write_bytes", KSTAT_DATA_UINT64 },
575 { "l2_writes_sent", KSTAT_DATA_UINT64 },
576 { "l2_writes_done", KSTAT_DATA_UINT64 },
577 { "l2_writes_error", KSTAT_DATA_UINT64 },
578 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
579 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
580 { "l2_evict_reading", KSTAT_DATA_UINT64 },
581 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
582 { "l2_free_on_write", KSTAT_DATA_UINT64 },
583 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
584 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
585 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
586 { "l2_io_error", KSTAT_DATA_UINT64 },
587 { "l2_size", KSTAT_DATA_UINT64 },
588 { "l2_asize", KSTAT_DATA_UINT64 },
589 { "l2_hdr_size", KSTAT_DATA_UINT64 },
590 { "l2_compress_successes", KSTAT_DATA_UINT64 },
591 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
592 { "l2_compress_failures", KSTAT_DATA_UINT64 },
593 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
594 { "l2_log_blk_avg_size", KSTAT_DATA_UINT64 },
595 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
596 { "l2_rebuild_successes", KSTAT_DATA_UINT64 },
597 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
598 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
599 { "l2_rebuild_cksum_errors", KSTAT_DATA_UINT64 },
600 { "l2_rebuild_loop_errors", KSTAT_DATA_UINT64 },
601 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
602 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
603 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
604 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
605 { "l2_rebuild_psize", KSTAT_DATA_UINT64 },
606 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
607 { "memory_throttle_count", KSTAT_DATA_UINT64 },
608 { "duplicate_buffers", KSTAT_DATA_UINT64 },
609 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
610 { "duplicate_reads", KSTAT_DATA_UINT64 },
611 { "arc_meta_used", KSTAT_DATA_UINT64 },
612 { "arc_meta_limit", KSTAT_DATA_UINT64 },
613 { "arc_meta_max", KSTAT_DATA_UINT64 },
614 { "arc_meta_min", KSTAT_DATA_UINT64 }
615 };
616
617 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
618
619 #define ARCSTAT_INCR(stat, val) \
620 atomic_add_64(&arc_stats.stat.value.ui64, (val))
621
622 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
623 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
624
625 #define ARCSTAT_MAX(stat, val) { \
626 uint64_t m; \
627 while ((val) > (m = arc_stats.stat.value.ui64) && \
628 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
629 continue; \
630 }
631
632 #define ARCSTAT_MAXSTAT(stat) \
633 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
634
635 /*
636 * We define a macro to allow ARC hits/misses to be easily broken down by
637 * two separate conditions, giving a total of four different subtypes for
638 * each of hits and misses (so eight statistics total).
639 */
640 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
641 if (cond1) { \
642 if (cond2) { \
643 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
644 } else { \
645 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
646 } \
647 } else { \
648 if (cond2) { \
649 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
650 } else { \
651 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
652 } \
653 }
654
655 /*
656 * This macro allows us to use kstats as floating averages. Each time we
657 * update this kstat, we first factor it and the update value by
658 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
659 * average. This macro assumes that integer loads and stores are atomic, but
660 * is not safe for multiple writers updating the kstat in parallel (only the
661 * last writer's update will remain).
662 */
663 #define ARCSTAT_F_AVG_FACTOR 3
664 #define ARCSTAT_F_AVG(stat, value) \
665 do { \
666 uint64_t x = ARCSTAT(stat); \
667 x = x - x / ARCSTAT_F_AVG_FACTOR + \
668 (value) / ARCSTAT_F_AVG_FACTOR; \
669 ARCSTAT(stat) = x; \
670 _NOTE(CONSTCOND) \
671 } while (0)
672
673 kstat_t *arc_ksp;
674 static arc_state_t *arc_anon;
675 static arc_state_t *arc_mru;
676 static arc_state_t *arc_mru_ghost;
677 static arc_state_t *arc_mfu;
678 static arc_state_t *arc_mfu_ghost;
679 static arc_state_t *arc_l2c_only;
680
681 /*
682 * There are several ARC variables that are critical to export as kstats --
683 * but we don't want to have to grovel around in the kstat whenever we wish to
684 * manipulate them. For these variables, we therefore define them to be in
685 * terms of the statistic variable. This assures that we are not introducing
686 * the possibility of inconsistency by having shadow copies of the variables,
687 * while still allowing the code to be readable.
688 */
689 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
690 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
691 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
692 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
693 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
694 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
695 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
696 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
697 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
698
699 #define L2ARC_IS_VALID_COMPRESS(_c_) \
700 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
701
702 static int arc_no_grow; /* Don't try to grow cache size */
703 static uint64_t arc_tempreserve;
704 static uint64_t arc_loaned_bytes;
705
706 typedef struct arc_callback arc_callback_t;
707
708 struct arc_callback {
709 void *acb_private;
710 arc_done_func_t *acb_done;
711 arc_buf_t *acb_buf;
712 zio_t *acb_zio_dummy;
713 arc_callback_t *acb_next;
714 };
715
716 typedef struct arc_write_callback arc_write_callback_t;
717
718 struct arc_write_callback {
719 void *awcb_private;
720 arc_done_func_t *awcb_ready;
721 arc_done_func_t *awcb_physdone;
722 arc_done_func_t *awcb_done;
723 arc_buf_t *awcb_buf;
724 };
725
726 /*
727 * ARC buffers are separated into multiple structs as a memory saving measure:
728 * - Common fields struct, always defined, and embedded within it:
729 * - L2-only fields, always allocated but undefined when not in L2ARC
730 * - L1-only fields, only allocated when in L1ARC
731 *
732 * Buffer in L1 Buffer only in L2
733 * +------------------------+ +------------------------+
734 * | arc_buf_hdr_t | | arc_buf_hdr_t |
735 * | | | |
736 * | | | |
737 * | | | |
738 * +------------------------+ +------------------------+
739 * | l2arc_buf_hdr_t | | l2arc_buf_hdr_t |
740 * | (undefined if L1-only) | | |
741 * +------------------------+ +------------------------+
742 * | l1arc_buf_hdr_t |
743 * | |
744 * | |
745 * | |
746 * | |
747 * +------------------------+
748 *
749 * Because it's possible for the L2ARC to become extremely large, we can wind
750 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
751 * is minimized by only allocating the fields necessary for an L1-cached buffer
752 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
753 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
754 * words in pointers. arc_hdr_realloc() is used to switch a header between
755 * these two allocation states.
756 */
757 typedef struct l1arc_buf_hdr {
758 kmutex_t b_freeze_lock;
759 #ifdef ZFS_DEBUG
760 /*
761 * used for debugging wtih kmem_flags - by allocating and freeing
762 * b_thawed when the buffer is thawed, we get a record of the stack
763 * trace that thawed it.
764 */
765 void *b_thawed;
766 #endif
767
768 arc_buf_t *b_buf;
769 uint32_t b_datacnt;
770 /* for waiting on writes to complete */
771 kcondvar_t b_cv;
772
773 /* protected by arc state mutex */
774 arc_state_t *b_state;
775 multilist_node_t b_arc_node;
776
777 /* updated atomically */
778 clock_t b_arc_access;
779
780 /* self protecting */
781 refcount_t b_refcnt;
782
783 arc_callback_t *b_acb;
784 /* temporary buffer holder for in-flight compressed data */
785 void *b_tmp_cdata;
786 } l1arc_buf_hdr_t;
787
788 typedef struct l2arc_dev l2arc_dev_t;
789
790 typedef struct l2arc_buf_hdr {
791 /* protected by arc_buf_hdr mutex */
792 l2arc_dev_t *b_dev; /* L2ARC device */
793 uint64_t b_daddr; /* disk address, offset byte */
794 /* real alloc'd buffer size depending on b_compress applied */
795 int32_t b_asize;
796 uint8_t b_compress;
797
798 list_node_t b_l2node;
799 } l2arc_buf_hdr_t;
800
801 struct arc_buf_hdr {
802 /* protected by hash lock */
803 dva_t b_dva;
804 uint64_t b_birth;
805 /*
806 * Even though this checksum is only set/verified when a buffer is in
807 * the L1 cache, it needs to be in the set of common fields because it
808 * must be preserved from the time before a buffer is written out to
809 * L2ARC until after it is read back in.
810 */
811 zio_cksum_t *b_freeze_cksum;
812
813 arc_buf_hdr_t *b_hash_next;
814 arc_flags_t b_flags;
815
816 /* immutable */
817 int32_t b_size;
818 uint64_t b_spa;
819
820 /* L2ARC fields. Undefined when not in L2ARC. */
821 l2arc_buf_hdr_t b_l2hdr;
822 /* L1ARC fields. Undefined when in l2arc_only state */
823 l1arc_buf_hdr_t b_l1hdr;
824 };
825
826 static arc_buf_t *arc_eviction_list;
827 static arc_buf_hdr_t arc_eviction_hdr;
828
829 #define GHOST_STATE(state) \
830 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
831 (state) == arc_l2c_only)
832
833 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
834 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
835 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
836 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
837 #define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
838 #define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
839
840 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
841 #define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
842 #define HDR_L2_READING(hdr) \
843 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
844 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
845 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
846 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
847 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
848
849 #define HDR_ISTYPE_METADATA(hdr) \
850 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
851 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
852
853 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
854 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
855
856 /*
857 * Other sizes
858 */
859
860 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
861 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
862
863 /*
864 * Hash table routines
865 */
866
867 #define HT_LOCK_PAD 64
868
869 struct ht_lock {
870 kmutex_t ht_lock;
871 #ifdef _KERNEL
872 unsigned char pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
873 #endif
874 };
875
876 #define BUF_LOCKS 256
877 typedef struct buf_hash_table {
878 uint64_t ht_mask;
879 arc_buf_hdr_t **ht_table;
880 struct ht_lock ht_locks[BUF_LOCKS];
881 } buf_hash_table_t;
882
883 static buf_hash_table_t buf_hash_table;
884
885 #define BUF_HASH_INDEX(spa, dva, birth) \
886 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
887 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
888 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
889 #define HDR_LOCK(hdr) \
890 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
891
892 uint64_t zfs_crc64_table[256];
893
894 /*
895 * Level 2 ARC
896 */
897
898 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
899 #define L2ARC_HEADROOM 2 /* num of writes */
900 /*
901 * If we discover during ARC scan any buffers to be compressed, we boost
902 * our headroom for the next scanning cycle by this percentage multiple.
903 */
904 #define L2ARC_HEADROOM_BOOST 200
905 #define L2ARC_FEED_SECS 1 /* caching interval secs */
906 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
907
908 /*
909 * Used to distinguish headers that are being process by
910 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
911 * address. This can happen when the header is added to the l2arc's list
912 * of buffers to write in the first stage of l2arc_write_buffers(), but
913 * has not yet been written out which happens in the second stage of
914 * l2arc_write_buffers().
915 */
916 #define L2ARC_ADDR_UNSET ((uint64_t)(-1))
917
918 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
919 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
920
921 /* L2ARC Performance Tunables */
922 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* default max write size */
923 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra write during warmup */
924 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* number of dev writes */
925 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
926 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
927 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval milliseconds */
928 boolean_t l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
929 boolean_t l2arc_feed_again = B_TRUE; /* turbo warmup */
930 boolean_t l2arc_norw = B_TRUE; /* no reads during writes */
931
932 static list_t L2ARC_dev_list; /* device list */
933 static list_t *l2arc_dev_list; /* device list pointer */
934 static kmutex_t l2arc_dev_mtx; /* device list mutex */
935 static l2arc_dev_t *l2arc_dev_last; /* last device used */
936 static list_t L2ARC_free_on_write; /* free after write buf list */
937 static list_t *l2arc_free_on_write; /* free after write list ptr */
938 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
939 static uint64_t l2arc_ndev; /* number of devices */
940
941 typedef struct l2arc_read_callback {
942 arc_buf_t *l2rcb_buf; /* read buffer */
943 spa_t *l2rcb_spa; /* spa */
944 blkptr_t l2rcb_bp; /* original blkptr */
945 zbookmark_phys_t l2rcb_zb; /* original bookmark */
946 int l2rcb_flags; /* original flags */
947 enum zio_compress l2rcb_compress; /* applied compress */
948 } l2arc_read_callback_t;
949
950 typedef struct l2arc_write_callback {
951 l2arc_dev_t *l2wcb_dev; /* device info */
952 arc_buf_hdr_t *l2wcb_head; /* head of write buflist */
953 list_t l2wcb_log_blk_buflist; /* in-flight log blocks */
954 } l2arc_write_callback_t;
955
956 typedef struct l2arc_data_free {
957 /* protected by l2arc_free_on_write_mtx */
958 void *l2df_data;
959 size_t l2df_size;
960 void (*l2df_func)(void *, size_t);
961 list_node_t l2df_list_node;
962 } l2arc_data_free_t;
963
964 static kmutex_t l2arc_feed_thr_lock;
965 static kcondvar_t l2arc_feed_thr_cv;
966 static uint8_t l2arc_thread_exit;
967
968 static void arc_get_data_buf(arc_buf_t *);
969 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
970 static boolean_t arc_is_overflowing();
971 static void arc_buf_watch(arc_buf_t *);
972 static void l2arc_read_done(zio_t *zio);
973 static l2arc_dev_t *l2arc_vdev_get(vdev_t *vd);
974
975 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
976 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
977 static arc_buf_contents_t arc_flags_to_bufc(uint32_t);
978
979 static boolean_t l2arc_write_eligible(uint64_t, uint64_t, arc_buf_hdr_t *);
980 static void l2arc_read_done(zio_t *);
981
982 static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
983 static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
984 static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
985
986 static void
arc_update_hit_stat(arc_buf_hdr_t * hdr,boolean_t hit)987 arc_update_hit_stat(arc_buf_hdr_t *hdr, boolean_t hit)
988 {
989 boolean_t pf = !HDR_PREFETCH(hdr);
990 switch (arc_buf_type(hdr)) {
991 case ARC_BUFC_DATA:
992 ARCSTAT_CONDSTAT(pf, demand, prefetch, hit, hits, misses, data);
993 break;
994 case ARC_BUFC_METADATA:
995 ARCSTAT_CONDSTAT(pf, demand, prefetch, hit, hits, misses,
996 metadata);
997 break;
998 default:
999 break;
1000 }
1001 }
1002
1003 enum {
1004 L2ARC_DEV_HDR_EVICT_FIRST = (1 << 0) /* mirror of l2ad_first */
1005 };
1006
1007 /*
1008 * Pointer used in persistent L2ARC (for pointing to log blocks & ARC buffers).
1009 */
1010 typedef struct l2arc_log_blkptr {
1011 uint64_t lbp_daddr; /* device address of log */
1012 /*
1013 * lbp_prop is the same format as the blk_prop in blkptr_t:
1014 * * logical size (in sectors)
1015 * * physical (compressed) size (in sectors)
1016 * * compression algorithm (we always LZ4-compress l2arc logs)
1017 * * checksum algorithm (used for lbp_cksum)
1018 * * object type & level (unused for now)
1019 */
1020 uint64_t lbp_prop;
1021 zio_cksum_t lbp_cksum; /* fletcher4 of log */
1022 } l2arc_log_blkptr_t;
1023
1024 /*
1025 * The persistent L2ARC device header.
1026 * Byte order of magic determines whether 64-bit bswap of fields is necessary.
1027 */
1028 typedef struct l2arc_dev_hdr_phys {
1029 uint64_t dh_magic; /* L2ARC_DEV_HDR_MAGIC */
1030 zio_cksum_t dh_self_cksum; /* fletcher4 of fields below */
1031
1032 /*
1033 * Global L2ARC device state and metadata.
1034 */
1035 uint64_t dh_spa_guid;
1036 uint64_t dh_alloc_space; /* vdev space alloc status */
1037 uint64_t dh_flags; /* l2arc_dev_hdr_flags_t */
1038
1039 /*
1040 * Start of log block chain. [0] -> newest log, [1] -> one older (used
1041 * for initiating prefetch).
1042 */
1043 l2arc_log_blkptr_t dh_start_lbps[2];
1044
1045 const uint64_t dh_pad[44]; /* pad to 512 bytes */
1046 } l2arc_dev_hdr_phys_t;
1047 CTASSERT(sizeof (l2arc_dev_hdr_phys_t) == SPA_MINBLOCKSIZE);
1048
1049 /*
1050 * A single ARC buffer header entry in a l2arc_log_blk_phys_t.
1051 */
1052 typedef struct l2arc_log_ent_phys {
1053 dva_t le_dva; /* dva of buffer */
1054 uint64_t le_birth; /* birth txg of buffer */
1055 zio_cksum_t le_freeze_cksum;
1056 /*
1057 * le_prop is the same format as the blk_prop in blkptr_t:
1058 * * logical size (in sectors)
1059 * * physical (compressed) size (in sectors)
1060 * * compression algorithm
1061 * * checksum algorithm (used for b_freeze_cksum)
1062 * * object type & level (used to restore arc_buf_contents_t)
1063 */
1064 uint64_t le_prop;
1065 uint64_t le_daddr; /* buf location on l2dev */
1066 const uint64_t le_pad[7]; /* resv'd for future use */
1067 } l2arc_log_ent_phys_t;
1068
1069 /*
1070 * These design limits give us the following metadata overhead (before
1071 * compression):
1072 * avg_blk_sz overhead
1073 * 1k 12.51 %
1074 * 2k 6.26 %
1075 * 4k 3.13 %
1076 * 8k 1.56 %
1077 * 16k 0.78 %
1078 * 32k 0.39 %
1079 * 64k 0.20 %
1080 * 128k 0.10 %
1081 * Compression should be able to sequeeze these down by about a factor of 2x.
1082 */
1083 #define L2ARC_LOG_BLK_SIZE (128 * 1024) /* 128k */
1084 #define L2ARC_LOG_BLK_HEADER_LEN (128)
1085 #define L2ARC_LOG_BLK_ENTRIES /* 1023 entries */ \
1086 ((L2ARC_LOG_BLK_SIZE - L2ARC_LOG_BLK_HEADER_LEN) / \
1087 sizeof (l2arc_log_ent_phys_t))
1088 /*
1089 * Maximum amount of data in an l2arc log block (used to terminate rebuilding
1090 * before we hit the write head and restore potentially corrupted blocks).
1091 */
1092 #define L2ARC_LOG_BLK_MAX_PAYLOAD_SIZE \
1093 (SPA_MAXBLOCKSIZE * L2ARC_LOG_BLK_ENTRIES)
1094 /*
1095 * For the persistency and rebuild algorithms to operate reliably we need
1096 * the L2ARC device to at least be able to hold 3 full log blocks (otherwise
1097 * excessive log block looping might confuse the log chain end detection).
1098 * Under normal circumstances this is not a problem, since this is somewhere
1099 * around only 400 MB.
1100 */
1101 #define L2ARC_PERSIST_MIN_SIZE (3 * L2ARC_LOG_BLK_MAX_PAYLOAD_SIZE)
1102
1103 /*
1104 * A log block of up to 1023 ARC buffer log entries, chained into the
1105 * persistent L2ARC metadata linked list. Byte order of magic determines
1106 * whether 64-bit bswap of fields is necessary.
1107 */
1108 typedef struct l2arc_log_blk_phys {
1109 /* Header - see L2ARC_LOG_BLK_HEADER_LEN above */
1110 uint64_t lb_magic; /* L2ARC_LOG_BLK_MAGIC */
1111 l2arc_log_blkptr_t lb_back2_lbp; /* back 2 steps in chain */
1112 uint64_t lb_pad[9]; /* resv'd for future use */
1113 /* Payload */
1114 l2arc_log_ent_phys_t lb_entries[L2ARC_LOG_BLK_ENTRIES];
1115 } l2arc_log_blk_phys_t;
1116
1117 CTASSERT(sizeof (l2arc_log_blk_phys_t) == L2ARC_LOG_BLK_SIZE);
1118 CTASSERT(offsetof(l2arc_log_blk_phys_t, lb_entries) -
1119 offsetof(l2arc_log_blk_phys_t, lb_magic) == L2ARC_LOG_BLK_HEADER_LEN);
1120
1121 /*
1122 * These structures hold in-flight l2arc_log_blk_phys_t's as they're being
1123 * written to the L2ARC device. They may be compressed, hence the uint8_t[].
1124 */
1125 typedef struct l2arc_log_blk_buf {
1126 uint8_t lbb_log_blk[sizeof (l2arc_log_blk_phys_t)];
1127 list_node_t lbb_node;
1128 } l2arc_log_blk_buf_t;
1129
1130 /* Macros for the manipulation fields in the blk_prop format of blkptr_t */
1131 #define BLKPROP_GET_LSIZE(_obj, _field) \
1132 BF64_GET_SB((_obj)->_field, 0, 16, SPA_MINBLOCKSHIFT, 1)
1133 #define BLKPROP_SET_LSIZE(_obj, _field, x) \
1134 BF64_SET_SB((_obj)->_field, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
1135 #define BLKPROP_GET_PSIZE(_obj, _field) \
1136 BF64_GET_SB((_obj)->_field, 16, 16, SPA_MINBLOCKSHIFT, 1)
1137 #define BLKPROP_SET_PSIZE(_obj, _field, x) \
1138 BF64_SET_SB((_obj)->_field, 16, 16, SPA_MINBLOCKSHIFT, 1, x)
1139 #define BLKPROP_GET_COMPRESS(_obj, _field) \
1140 BF64_GET((_obj)->_field, 32, 8)
1141 #define BLKPROP_SET_COMPRESS(_obj, _field, x) \
1142 BF64_SET((_obj)->_field, 32, 8, x)
1143 #define BLKPROP_GET_CHECKSUM(_obj, _field) \
1144 BF64_GET((_obj)->_field, 40, 8)
1145 #define BLKPROP_SET_CHECKSUM(_obj, _field, x) \
1146 BF64_SET((_obj)->_field, 40, 8, x)
1147 #define BLKPROP_GET_TYPE(_obj, _field) \
1148 BF64_GET((_obj)->_field, 48, 8)
1149 #define BLKPROP_SET_TYPE(_obj, _field, x) \
1150 BF64_SET((_obj)->_field, 48, 8, x)
1151
1152 /* Macros for manipulating a l2arc_log_blkptr_t->lbp_prop field */
1153 #define LBP_GET_LSIZE(_add) BLKPROP_GET_LSIZE(_add, lbp_prop)
1154 #define LBP_SET_LSIZE(_add, x) BLKPROP_SET_LSIZE(_add, lbp_prop, x)
1155 #define LBP_GET_PSIZE(_add) BLKPROP_GET_PSIZE(_add, lbp_prop)
1156 #define LBP_SET_PSIZE(_add, x) BLKPROP_SET_PSIZE(_add, lbp_prop, x)
1157 #define LBP_GET_COMPRESS(_add) BLKPROP_GET_COMPRESS(_add, lbp_prop)
1158 #define LBP_SET_COMPRESS(_add, x) BLKPROP_SET_COMPRESS(_add, lbp_prop, \
1159 x)
1160 #define LBP_GET_CHECKSUM(_add) BLKPROP_GET_CHECKSUM(_add, lbp_prop)
1161 #define LBP_SET_CHECKSUM(_add, x) BLKPROP_SET_CHECKSUM(_add, lbp_prop, \
1162 x)
1163 #define LBP_GET_TYPE(_add) BLKPROP_GET_TYPE(_add, lbp_prop)
1164 #define LBP_SET_TYPE(_add, x) BLKPROP_SET_TYPE(_add, lbp_prop, x)
1165
1166 /* Macros for manipulating a l2arc_log_ent_phys_t->le_prop field */
1167 #define LE_GET_LSIZE(_le) BLKPROP_GET_LSIZE(_le, le_prop)
1168 #define LE_SET_LSIZE(_le, x) BLKPROP_SET_LSIZE(_le, le_prop, x)
1169 #define LE_GET_PSIZE(_le) BLKPROP_GET_PSIZE(_le, le_prop)
1170 #define LE_SET_PSIZE(_le, x) BLKPROP_SET_PSIZE(_le, le_prop, x)
1171 #define LE_GET_COMPRESS(_le) BLKPROP_GET_COMPRESS(_le, le_prop)
1172 #define LE_SET_COMPRESS(_le, x) BLKPROP_SET_COMPRESS(_le, le_prop, x)
1173 #define LE_GET_CHECKSUM(_le) BLKPROP_GET_CHECKSUM(_le, le_prop)
1174 #define LE_SET_CHECKSUM(_le, x) BLKPROP_SET_CHECKSUM(_le, le_prop, x)
1175 #define LE_GET_TYPE(_le) BLKPROP_GET_TYPE(_le, le_prop)
1176 #define LE_SET_TYPE(_le, x) BLKPROP_SET_TYPE(_le, le_prop, x)
1177
1178 #define PTR_SWAP(x, y) \
1179 do { \
1180 void *tmp = (x);\
1181 x = y; \
1182 y = tmp; \
1183 _NOTE(CONSTCOND)\
1184 } while (0)
1185
1186 #define L2ARC_DEV_HDR_MAGIC 0x5a46534341434845LLU /* ASCII: "ZFSCACHE" */
1187 #define L2ARC_LOG_BLK_MAGIC 0x4c4f47424c4b4844LLU /* ASCII: "LOGBLKHD" */
1188
1189 /*
1190 * Performance tuning of L2ARC persistency:
1191 *
1192 * l2arc_rebuild_enabled : Controls whether L2ARC device adds (either at
1193 * pool import or when adding one manually later) will attempt
1194 * to rebuild L2ARC buffer contents. In special circumstances,
1195 * the administrator may want to set this to B_FALSE, if they
1196 * are having trouble importing a pool or attaching an L2ARC
1197 * device (e.g. the L2ARC device is slow to read in stored log
1198 * metadata, or the metadata has become somehow
1199 * fragmented/unusable).
1200 */
1201 boolean_t l2arc_rebuild_enabled = B_TRUE;
1202
1203 /* L2ARC persistency rebuild control routines. */
1204 static void l2arc_dev_rebuild_start(l2arc_dev_t *dev);
1205 static int l2arc_rebuild(l2arc_dev_t *dev);
1206
1207 /* L2ARC persistency read I/O routines. */
1208 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
1209 static int l2arc_log_blk_read(l2arc_dev_t *dev,
1210 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
1211 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
1212 uint8_t *this_lb_buf, uint8_t *next_lb_buf,
1213 zio_t *this_io, zio_t **next_io);
1214 static zio_t *l2arc_log_blk_prefetch(vdev_t *vd,
1215 const l2arc_log_blkptr_t *lp, uint8_t *lb_buf);
1216 static void l2arc_log_blk_prefetch_abort(zio_t *zio);
1217
1218 /* L2ARC persistency block restoration routines. */
1219 static void l2arc_log_blk_restore(l2arc_dev_t *dev, uint64_t load_guid,
1220 const l2arc_log_blk_phys_t *lb, uint64_t lb_psize);
1221 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
1222 l2arc_dev_t *dev, uint64_t guid);
1223
1224 /* L2ARC persistency write I/O routines. */
1225 static void l2arc_dev_hdr_update(l2arc_dev_t *dev, zio_t *pio);
1226 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
1227 l2arc_write_callback_t *cb);
1228
1229 /* L2ARC persistency auxilliary routines. */
1230 static boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
1231 const l2arc_log_blkptr_t *lp);
1232 static void l2arc_dev_hdr_checksum(const l2arc_dev_hdr_phys_t *hdr,
1233 zio_cksum_t *cksum);
1234 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
1235 const arc_buf_hdr_t *ab);
1236 static inline boolean_t l2arc_range_check_overlap(uint64_t bottom,
1237 uint64_t top, uint64_t check);
1238
1239 /*
1240 * L2ARC Internals
1241 */
1242 struct l2arc_dev {
1243 vdev_t *l2ad_vdev; /* vdev */
1244 spa_t *l2ad_spa; /* spa */
1245 uint64_t l2ad_hand; /* next write location */
1246 uint64_t l2ad_start; /* first addr on device */
1247 uint64_t l2ad_end; /* last addr on device */
1248 boolean_t l2ad_first; /* first sweep through */
1249 boolean_t l2ad_writing; /* currently writing */
1250 kmutex_t l2ad_mtx; /* lock for buffer list */
1251 list_t l2ad_buflist; /* buffer list */
1252 list_node_t l2ad_node; /* device list node */
1253 refcount_t l2ad_alloc; /* allocated bytes */
1254 l2arc_dev_hdr_phys_t *l2ad_dev_hdr; /* persistent device header */
1255 uint64_t l2ad_dev_hdr_asize; /* aligned hdr size */
1256 l2arc_log_blk_phys_t l2ad_log_blk; /* currently open log block */
1257 int l2ad_log_ent_idx; /* index into cur log blk */
1258 /* number of bytes in current log block's payload */
1259 uint64_t l2ad_log_blk_payload_asize;
1260 /* flag indicating whether a rebuild is scheduled or is going on */
1261 boolean_t l2ad_rebuild;
1262 boolean_t l2ad_rebuild_cancel;
1263 kt_did_t l2ad_rebuild_did;
1264 };
1265
1266 static inline uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1267 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1268 {
1269 uint8_t *vdva = (uint8_t *)dva;
1270 uint64_t crc = -1ULL;
1271 int i;
1272
1273 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1274
1275 for (i = 0; i < sizeof (dva_t); i++)
1276 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1277
1278 crc ^= (spa>>8) ^ birth;
1279
1280 return (crc);
1281 }
1282
1283 #define BUF_EMPTY(buf) \
1284 ((buf)->b_dva.dva_word[0] == 0 && \
1285 (buf)->b_dva.dva_word[1] == 0)
1286
1287 #define BUF_EQUAL(spa, dva, birth, buf) \
1288 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1289 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1290 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
1291
1292 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1293 buf_discard_identity(arc_buf_hdr_t *hdr)
1294 {
1295 hdr->b_dva.dva_word[0] = 0;
1296 hdr->b_dva.dva_word[1] = 0;
1297 hdr->b_birth = 0;
1298 }
1299
1300 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1301 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1302 {
1303 const dva_t *dva = BP_IDENTITY(bp);
1304 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1305 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1306 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1307 arc_buf_hdr_t *hdr;
1308
1309 mutex_enter(hash_lock);
1310 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1311 hdr = hdr->b_hash_next) {
1312 if (BUF_EQUAL(spa, dva, birth, hdr)) {
1313 *lockp = hash_lock;
1314 return (hdr);
1315 }
1316 }
1317 mutex_exit(hash_lock);
1318 *lockp = NULL;
1319 return (NULL);
1320 }
1321
1322 /*
1323 * Insert an entry into the hash table. If there is already an element
1324 * equal to elem in the hash table, then the already existing element
1325 * will be returned and the new element will not be inserted.
1326 * Otherwise returns NULL.
1327 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1328 */
1329 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1330 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1331 {
1332 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1333 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1334 arc_buf_hdr_t *fhdr;
1335 uint32_t i;
1336
1337 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1338 ASSERT(hdr->b_birth != 0);
1339 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1340
1341 if (lockp != NULL) {
1342 *lockp = hash_lock;
1343 mutex_enter(hash_lock);
1344 } else {
1345 ASSERT(MUTEX_HELD(hash_lock));
1346 }
1347
1348 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1349 fhdr = fhdr->b_hash_next, i++) {
1350 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1351 return (fhdr);
1352 }
1353
1354 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1355 buf_hash_table.ht_table[idx] = hdr;
1356 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
1357
1358 /* collect some hash table performance data */
1359 if (i > 0) {
1360 ARCSTAT_BUMP(arcstat_hash_collisions);
1361 if (i == 1)
1362 ARCSTAT_BUMP(arcstat_hash_chains);
1363
1364 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1365 }
1366
1367 ARCSTAT_BUMP(arcstat_hash_elements);
1368 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1369
1370 return (NULL);
1371 }
1372
1373 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1374 buf_hash_remove(arc_buf_hdr_t *hdr)
1375 {
1376 arc_buf_hdr_t *fhdr, **hdrp;
1377 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1378
1379 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1380 ASSERT(HDR_IN_HASH_TABLE(hdr));
1381
1382 hdrp = &buf_hash_table.ht_table[idx];
1383 while ((fhdr = *hdrp) != hdr) {
1384 ASSERT(fhdr != NULL);
1385 hdrp = &fhdr->b_hash_next;
1386 }
1387 *hdrp = hdr->b_hash_next;
1388 hdr->b_hash_next = NULL;
1389 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
1390
1391 /* collect some hash table performance data */
1392 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1393
1394 if (buf_hash_table.ht_table[idx] &&
1395 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1396 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1397 }
1398
1399 /*
1400 * Global data structures and functions for the buf kmem cache.
1401 */
1402 static kmem_cache_t *hdr_full_cache;
1403 static kmem_cache_t *hdr_l2only_cache;
1404 static kmem_cache_t *buf_cache;
1405
1406 static void
buf_fini(void)1407 buf_fini(void)
1408 {
1409 int i;
1410
1411 kmem_free(buf_hash_table.ht_table,
1412 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1413 for (i = 0; i < BUF_LOCKS; i++)
1414 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1415 kmem_cache_destroy(hdr_full_cache);
1416 kmem_cache_destroy(hdr_l2only_cache);
1417 kmem_cache_destroy(buf_cache);
1418 }
1419
1420 /*
1421 * Constructor callback - called when the cache is empty
1422 * and a new buf is requested.
1423 */
1424 /* ARGSUSED */
1425 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1426 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1427 {
1428 arc_buf_hdr_t *hdr = vbuf;
1429
1430 bzero(hdr, HDR_FULL_SIZE);
1431 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1432 refcount_create(&hdr->b_l1hdr.b_refcnt);
1433 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1434 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1435 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1436
1437 return (0);
1438 }
1439
1440 /* ARGSUSED */
1441 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1442 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1443 {
1444 arc_buf_hdr_t *hdr = vbuf;
1445
1446 bzero(hdr, HDR_L2ONLY_SIZE);
1447 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1448
1449 return (0);
1450 }
1451
1452 /* ARGSUSED */
1453 static int
buf_cons(void * vbuf,void * unused,int kmflag)1454 buf_cons(void *vbuf, void *unused, int kmflag)
1455 {
1456 arc_buf_t *buf = vbuf;
1457
1458 bzero(buf, sizeof (arc_buf_t));
1459 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1460 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1461
1462 return (0);
1463 }
1464
1465 /*
1466 * Destructor callback - called when a cached buf is
1467 * no longer required.
1468 */
1469 /* ARGSUSED */
1470 static void
hdr_full_dest(void * vbuf,void * unused)1471 hdr_full_dest(void *vbuf, void *unused)
1472 {
1473 arc_buf_hdr_t *hdr = vbuf;
1474
1475 ASSERT(BUF_EMPTY(hdr));
1476 cv_destroy(&hdr->b_l1hdr.b_cv);
1477 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1478 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1479 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1480 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1481 }
1482
1483 /* ARGSUSED */
1484 static void
hdr_l2only_dest(void * vbuf,void * unused)1485 hdr_l2only_dest(void *vbuf, void *unused)
1486 {
1487 arc_buf_hdr_t *hdr = vbuf;
1488
1489 ASSERT(BUF_EMPTY(hdr));
1490 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1491 }
1492
1493 /* ARGSUSED */
1494 static void
buf_dest(void * vbuf,void * unused)1495 buf_dest(void *vbuf, void *unused)
1496 {
1497 arc_buf_t *buf = vbuf;
1498
1499 mutex_destroy(&buf->b_evict_lock);
1500 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1501 }
1502
1503 /*
1504 * Reclaim callback -- invoked when memory is low.
1505 */
1506 /* ARGSUSED */
1507 static void
hdr_recl(void * unused)1508 hdr_recl(void *unused)
1509 {
1510 dprintf("hdr_recl called\n");
1511 /*
1512 * umem calls the reclaim func when we destroy the buf cache,
1513 * which is after we do arc_fini().
1514 */
1515 if (!arc_dead)
1516 cv_signal(&arc_reclaim_thread_cv);
1517 }
1518
1519 static void
buf_init(void)1520 buf_init(void)
1521 {
1522 uint64_t *ct;
1523 uint64_t hsize = 1ULL << 12;
1524 int i, j;
1525
1526 /*
1527 * The hash table is big enough to fill all of physical memory
1528 * with an average block size of zfs_arc_average_blocksize (default 8K).
1529 * By default, the table will take up
1530 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1531 */
1532 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
1533 hsize <<= 1;
1534 retry:
1535 buf_hash_table.ht_mask = hsize - 1;
1536 buf_hash_table.ht_table =
1537 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1538 if (buf_hash_table.ht_table == NULL) {
1539 ASSERT(hsize > (1ULL << 8));
1540 hsize >>= 1;
1541 goto retry;
1542 }
1543
1544 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1545 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1546 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1547 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1548 NULL, NULL, 0);
1549 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1550 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1551
1552 for (i = 0; i < 256; i++)
1553 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1554 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1555
1556 for (i = 0; i < BUF_LOCKS; i++) {
1557 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1558 NULL, MUTEX_DEFAULT, NULL);
1559 }
1560 }
1561
1562 /*
1563 * Transition between the two allocation states for the arc_buf_hdr struct.
1564 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1565 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1566 * version is used when a cache buffer is only in the L2ARC in order to reduce
1567 * memory usage.
1568 */
1569 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)1570 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1571 {
1572 ASSERT(HDR_HAS_L2HDR(hdr));
1573
1574 arc_buf_hdr_t *nhdr;
1575 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1576
1577 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1578 (old == hdr_l2only_cache && new == hdr_full_cache));
1579
1580 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1581
1582 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1583 buf_hash_remove(hdr);
1584
1585 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
1586
1587 if (new == hdr_full_cache) {
1588 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1589 /*
1590 * arc_access and arc_change_state need to be aware that a
1591 * header has just come out of L2ARC, so we set its state to
1592 * l2c_only even though it's about to change.
1593 */
1594 nhdr->b_l1hdr.b_state = arc_l2c_only;
1595
1596 /* Verify previous threads set to NULL before freeing */
1597 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1598 } else {
1599 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1600 ASSERT0(hdr->b_l1hdr.b_datacnt);
1601
1602 /*
1603 * If we've reached here, We must have been called from
1604 * arc_evict_hdr(), as such we should have already been
1605 * removed from any ghost list we were previously on
1606 * (which protects us from racing with arc_evict_state),
1607 * thus no locking is needed during this check.
1608 */
1609 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1610
1611 /*
1612 * A buffer must not be moved into the arc_l2c_only
1613 * state if it's not finished being written out to the
1614 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1615 * might try to be accessed, even though it was removed.
1616 */
1617 VERIFY(!HDR_L2_WRITING(hdr));
1618 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1619
1620 #ifdef ZFS_DEBUG
1621 if (hdr->b_l1hdr.b_thawed != NULL) {
1622 kmem_free(hdr->b_l1hdr.b_thawed, 1);
1623 hdr->b_l1hdr.b_thawed = NULL;
1624 }
1625 #endif
1626
1627 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1628 }
1629 /*
1630 * The header has been reallocated so we need to re-insert it into any
1631 * lists it was on.
1632 */
1633 (void) buf_hash_insert(nhdr, NULL);
1634
1635 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1636
1637 mutex_enter(&dev->l2ad_mtx);
1638
1639 /*
1640 * We must place the realloc'ed header back into the list at
1641 * the same spot. Otherwise, if it's placed earlier in the list,
1642 * l2arc_write_buffers() could find it during the function's
1643 * write phase, and try to write it out to the l2arc.
1644 */
1645 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1646 list_remove(&dev->l2ad_buflist, hdr);
1647
1648 mutex_exit(&dev->l2ad_mtx);
1649
1650 /*
1651 * Since we're using the pointer address as the tag when
1652 * incrementing and decrementing the l2ad_alloc refcount, we
1653 * must remove the old pointer (that we're about to destroy) and
1654 * add the new pointer to the refcount. Otherwise we'd remove
1655 * the wrong pointer address when calling arc_hdr_destroy() later.
1656 */
1657
1658 (void) refcount_remove_many(&dev->l2ad_alloc,
1659 hdr->b_l2hdr.b_asize, hdr);
1660
1661 (void) refcount_add_many(&dev->l2ad_alloc,
1662 nhdr->b_l2hdr.b_asize, nhdr);
1663
1664 buf_discard_identity(hdr);
1665 hdr->b_freeze_cksum = NULL;
1666 kmem_cache_free(old, hdr);
1667
1668 return (nhdr);
1669 }
1670
1671
1672 #define ARC_MINTIME (hz>>4) /* 62 ms */
1673
1674 static void
arc_cksum_verify(arc_buf_t * buf)1675 arc_cksum_verify(arc_buf_t *buf)
1676 {
1677 zio_cksum_t zc;
1678
1679 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1680 return;
1681
1682 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1683 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1684 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1685 return;
1686 }
1687 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1688 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1689 panic("buffer modified while frozen!");
1690 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1691 }
1692
1693 static int
arc_cksum_equal(arc_buf_t * buf)1694 arc_cksum_equal(arc_buf_t *buf)
1695 {
1696 zio_cksum_t zc;
1697 int equal;
1698
1699 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1700 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1701 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
1702 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1703
1704 return (equal);
1705 }
1706
1707 static void
arc_cksum_compute(arc_buf_t * buf,boolean_t force)1708 arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1709 {
1710 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1711 return;
1712
1713 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1714 if (buf->b_hdr->b_freeze_cksum != NULL) {
1715 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1716 return;
1717 }
1718 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
1719 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1720 buf->b_hdr->b_freeze_cksum);
1721 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1722 arc_buf_watch(buf);
1723 }
1724
1725 #ifndef _KERNEL
1726 typedef struct procctl {
1727 long cmd;
1728 prwatch_t prwatch;
1729 } procctl_t;
1730 #endif
1731
1732 /* ARGSUSED */
1733 static void
arc_buf_unwatch(arc_buf_t * buf)1734 arc_buf_unwatch(arc_buf_t *buf)
1735 {
1736 #ifndef _KERNEL
1737 if (arc_watch) {
1738 int result;
1739 procctl_t ctl;
1740 ctl.cmd = PCWATCH;
1741 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1742 ctl.prwatch.pr_size = 0;
1743 ctl.prwatch.pr_wflags = 0;
1744 result = write(arc_procfd, &ctl, sizeof (ctl));
1745 ASSERT3U(result, ==, sizeof (ctl));
1746 }
1747 #endif
1748 }
1749
1750 /* ARGSUSED */
1751 static void
arc_buf_watch(arc_buf_t * buf)1752 arc_buf_watch(arc_buf_t *buf)
1753 {
1754 #ifndef _KERNEL
1755 if (arc_watch) {
1756 int result;
1757 procctl_t ctl;
1758 ctl.cmd = PCWATCH;
1759 ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1760 ctl.prwatch.pr_size = buf->b_hdr->b_size;
1761 ctl.prwatch.pr_wflags = WA_WRITE;
1762 result = write(arc_procfd, &ctl, sizeof (ctl));
1763 ASSERT3U(result, ==, sizeof (ctl));
1764 }
1765 #endif
1766 }
1767
1768 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1769 arc_buf_type(arc_buf_hdr_t *hdr)
1770 {
1771 if (HDR_ISTYPE_METADATA(hdr)) {
1772 return (ARC_BUFC_METADATA);
1773 } else {
1774 return (ARC_BUFC_DATA);
1775 }
1776 }
1777
1778 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1779 arc_bufc_to_flags(arc_buf_contents_t type)
1780 {
1781 switch (type) {
1782 case ARC_BUFC_DATA:
1783 /* metadata field is 0 if buffer contains normal data */
1784 return (0);
1785 case ARC_BUFC_METADATA:
1786 return (ARC_FLAG_BUFC_METADATA);
1787 default:
1788 break;
1789 }
1790 panic("undefined ARC buffer type!");
1791 return ((uint32_t)-1);
1792 }
1793
1794 static arc_buf_contents_t
arc_flags_to_bufc(uint32_t flags)1795 arc_flags_to_bufc(uint32_t flags)
1796 {
1797 if (flags & ARC_FLAG_BUFC_METADATA)
1798 return (ARC_BUFC_METADATA);
1799 return (ARC_BUFC_DATA);
1800 }
1801
1802 void
arc_buf_thaw(arc_buf_t * buf)1803 arc_buf_thaw(arc_buf_t *buf)
1804 {
1805 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1806 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
1807 panic("modifying non-anon buffer!");
1808 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
1809 panic("modifying buffer while i/o in progress!");
1810 arc_cksum_verify(buf);
1811 }
1812
1813 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1814 if (buf->b_hdr->b_freeze_cksum != NULL) {
1815 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1816 buf->b_hdr->b_freeze_cksum = NULL;
1817 }
1818
1819 #ifdef ZFS_DEBUG
1820 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1821 if (buf->b_hdr->b_l1hdr.b_thawed != NULL)
1822 kmem_free(buf->b_hdr->b_l1hdr.b_thawed, 1);
1823 buf->b_hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
1824 }
1825 #endif
1826
1827 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1828
1829 arc_buf_unwatch(buf);
1830 }
1831
1832 void
arc_buf_freeze(arc_buf_t * buf)1833 arc_buf_freeze(arc_buf_t *buf)
1834 {
1835 kmutex_t *hash_lock;
1836
1837 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1838 return;
1839
1840 hash_lock = HDR_LOCK(buf->b_hdr);
1841 mutex_enter(hash_lock);
1842
1843 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1844 buf->b_hdr->b_l1hdr.b_state == arc_anon);
1845 arc_cksum_compute(buf, B_FALSE);
1846 mutex_exit(hash_lock);
1847
1848 }
1849
1850 static void
add_reference(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,void * tag)1851 add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1852 {
1853 ASSERT(HDR_HAS_L1HDR(hdr));
1854 ASSERT(MUTEX_HELD(hash_lock));
1855 arc_state_t *state = hdr->b_l1hdr.b_state;
1856
1857 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1858 (state != arc_anon)) {
1859 /* We don't use the L2-only state list. */
1860 if (state != arc_l2c_only) {
1861 arc_buf_contents_t type = arc_buf_type(hdr);
1862 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
1863 multilist_t *list = &state->arcs_list[type];
1864 uint64_t *size = &state->arcs_lsize[type];
1865
1866 multilist_remove(list, hdr);
1867
1868 if (GHOST_STATE(state)) {
1869 ASSERT0(hdr->b_l1hdr.b_datacnt);
1870 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1871 delta = hdr->b_size;
1872 }
1873 ASSERT(delta > 0);
1874 ASSERT3U(*size, >=, delta);
1875 atomic_add_64(size, -delta);
1876 }
1877 /* remove the prefetch flag if we get a reference */
1878 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
1879 }
1880 }
1881
1882 static int
remove_reference(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,void * tag)1883 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1884 {
1885 int cnt;
1886 arc_state_t *state = hdr->b_l1hdr.b_state;
1887
1888 ASSERT(HDR_HAS_L1HDR(hdr));
1889 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1890 ASSERT(!GHOST_STATE(state));
1891
1892 /*
1893 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1894 * check to prevent usage of the arc_l2c_only list.
1895 */
1896 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
1897 (state != arc_anon)) {
1898 arc_buf_contents_t type = arc_buf_type(hdr);
1899 multilist_t *list = &state->arcs_list[type];
1900 uint64_t *size = &state->arcs_lsize[type];
1901
1902 multilist_insert(list, hdr);
1903
1904 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1905 atomic_add_64(size, hdr->b_size *
1906 hdr->b_l1hdr.b_datacnt);
1907 }
1908 return (cnt);
1909 }
1910
1911 /*
1912 * Move the supplied buffer to the indicated state. The hash lock
1913 * for the buffer must be held by the caller.
1914 */
1915 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr,kmutex_t * hash_lock)1916 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1917 kmutex_t *hash_lock)
1918 {
1919 arc_state_t *old_state;
1920 int64_t refcnt;
1921 uint32_t datacnt;
1922 uint64_t from_delta, to_delta;
1923 arc_buf_contents_t buftype = arc_buf_type(hdr);
1924
1925 /*
1926 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1927 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1928 * L1 hdr doesn't always exist when we change state to arc_anon before
1929 * destroying a header, in which case reallocating to add the L1 hdr is
1930 * pointless.
1931 */
1932 if (HDR_HAS_L1HDR(hdr)) {
1933 old_state = hdr->b_l1hdr.b_state;
1934 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1935 datacnt = hdr->b_l1hdr.b_datacnt;
1936 } else {
1937 old_state = arc_l2c_only;
1938 refcnt = 0;
1939 datacnt = 0;
1940 }
1941
1942 ASSERT(MUTEX_HELD(hash_lock));
1943 ASSERT3P(new_state, !=, old_state);
1944 ASSERT(refcnt == 0 || datacnt > 0);
1945 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1946 ASSERT(old_state != arc_anon || datacnt <= 1);
1947
1948 from_delta = to_delta = datacnt * hdr->b_size;
1949
1950 /*
1951 * If this buffer is evictable, transfer it from the
1952 * old state list to the new state list.
1953 */
1954 if (refcnt == 0) {
1955 if (old_state != arc_anon && old_state != arc_l2c_only) {
1956 uint64_t *size = &old_state->arcs_lsize[buftype];
1957
1958 ASSERT(HDR_HAS_L1HDR(hdr));
1959 multilist_remove(&old_state->arcs_list[buftype], hdr);
1960
1961 /*
1962 * If prefetching out of the ghost cache,
1963 * we will have a non-zero datacnt.
1964 */
1965 if (GHOST_STATE(old_state) && datacnt == 0) {
1966 /* ghost elements have a ghost size */
1967 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1968 from_delta = hdr->b_size;
1969 }
1970 ASSERT3U(*size, >=, from_delta);
1971 atomic_add_64(size, -from_delta);
1972 }
1973 if (new_state != arc_anon && new_state != arc_l2c_only) {
1974 uint64_t *size = &new_state->arcs_lsize[buftype];
1975
1976 /*
1977 * An L1 header always exists here, since if we're
1978 * moving to some L1-cached state (i.e. not l2c_only or
1979 * anonymous), we realloc the header to add an L1hdr
1980 * beforehand.
1981 */
1982 ASSERT(HDR_HAS_L1HDR(hdr));
1983 multilist_insert(&new_state->arcs_list[buftype], hdr);
1984
1985 /* ghost elements have a ghost size */
1986 if (GHOST_STATE(new_state)) {
1987 ASSERT0(datacnt);
1988 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1989 to_delta = hdr->b_size;
1990 }
1991 atomic_add_64(size, to_delta);
1992 }
1993 }
1994
1995 ASSERT(!BUF_EMPTY(hdr));
1996 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1997 buf_hash_remove(hdr);
1998
1999 /* adjust state sizes (ignore arc_l2c_only) */
2000
2001 if (to_delta && new_state != arc_l2c_only) {
2002 ASSERT(HDR_HAS_L1HDR(hdr));
2003 if (GHOST_STATE(new_state)) {
2004 ASSERT0(datacnt);
2005
2006 /*
2007 * We moving a header to a ghost state, we first
2008 * remove all arc buffers. Thus, we'll have a
2009 * datacnt of zero, and no arc buffer to use for
2010 * the reference. As a result, we use the arc
2011 * header pointer for the reference.
2012 */
2013 (void) refcount_add_many(&new_state->arcs_size,
2014 hdr->b_size, hdr);
2015 } else {
2016 ASSERT3U(datacnt, !=, 0);
2017
2018 /*
2019 * Each individual buffer holds a unique reference,
2020 * thus we must remove each of these references one
2021 * at a time.
2022 */
2023 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2024 buf = buf->b_next) {
2025 (void) refcount_add_many(&new_state->arcs_size,
2026 hdr->b_size, buf);
2027 }
2028 }
2029 }
2030
2031 if (from_delta && old_state != arc_l2c_only) {
2032 ASSERT(HDR_HAS_L1HDR(hdr));
2033 if (GHOST_STATE(old_state)) {
2034 /*
2035 * When moving a header off of a ghost state,
2036 * there's the possibility for datacnt to be
2037 * non-zero. This is because we first add the
2038 * arc buffer to the header prior to changing
2039 * the header's state. Since we used the header
2040 * for the reference when putting the header on
2041 * the ghost state, we must balance that and use
2042 * the header when removing off the ghost state
2043 * (even though datacnt is non zero).
2044 */
2045
2046 IMPLY(datacnt == 0, new_state == arc_anon ||
2047 new_state == arc_l2c_only);
2048
2049 (void) refcount_remove_many(&old_state->arcs_size,
2050 hdr->b_size, hdr);
2051 } else {
2052 ASSERT3P(datacnt, !=, 0);
2053
2054 /*
2055 * Each individual buffer holds a unique reference,
2056 * thus we must remove each of these references one
2057 * at a time.
2058 */
2059 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2060 buf = buf->b_next) {
2061 (void) refcount_remove_many(
2062 &old_state->arcs_size, hdr->b_size, buf);
2063 }
2064 }
2065 }
2066
2067 if (HDR_HAS_L1HDR(hdr))
2068 hdr->b_l1hdr.b_state = new_state;
2069
2070 /*
2071 * L2 headers should never be on the L2 state list since they don't
2072 * have L1 headers allocated.
2073 */
2074 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2075 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2076 }
2077
2078 void
arc_space_consume(uint64_t space,arc_space_type_t type)2079 arc_space_consume(uint64_t space, arc_space_type_t type)
2080 {
2081 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2082
2083 switch (type) {
2084 case ARC_SPACE_DATA:
2085 ARCSTAT_INCR(arcstat_data_size, space);
2086 break;
2087 case ARC_SPACE_META:
2088 ARCSTAT_INCR(arcstat_metadata_size, space);
2089 break;
2090 case ARC_SPACE_OTHER:
2091 ARCSTAT_INCR(arcstat_other_size, space);
2092 break;
2093 case ARC_SPACE_HDRS:
2094 ARCSTAT_INCR(arcstat_hdr_size, space);
2095 break;
2096 case ARC_SPACE_L2HDRS:
2097 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2098 break;
2099 }
2100
2101 if (type != ARC_SPACE_DATA)
2102 ARCSTAT_INCR(arcstat_meta_used, space);
2103
2104 atomic_add_64(&arc_size, space);
2105 }
2106
2107 void
arc_space_return(uint64_t space,arc_space_type_t type)2108 arc_space_return(uint64_t space, arc_space_type_t type)
2109 {
2110 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2111
2112 switch (type) {
2113 case ARC_SPACE_DATA:
2114 ARCSTAT_INCR(arcstat_data_size, -space);
2115 break;
2116 case ARC_SPACE_META:
2117 ARCSTAT_INCR(arcstat_metadata_size, -space);
2118 break;
2119 case ARC_SPACE_OTHER:
2120 ARCSTAT_INCR(arcstat_other_size, -space);
2121 break;
2122 case ARC_SPACE_HDRS:
2123 ARCSTAT_INCR(arcstat_hdr_size, -space);
2124 break;
2125 case ARC_SPACE_L2HDRS:
2126 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2127 break;
2128 }
2129
2130 if (type != ARC_SPACE_DATA) {
2131 ASSERT(arc_meta_used >= space);
2132 if (arc_meta_max < arc_meta_used)
2133 arc_meta_max = arc_meta_used;
2134 ARCSTAT_INCR(arcstat_meta_used, -space);
2135 }
2136
2137 ASSERT(arc_size >= space);
2138 atomic_add_64(&arc_size, -space);
2139 }
2140
2141 arc_buf_t *
arc_buf_alloc(spa_t * spa,int32_t size,void * tag,arc_buf_contents_t type)2142 arc_buf_alloc(spa_t *spa, int32_t size, void *tag, arc_buf_contents_t type)
2143 {
2144 arc_buf_hdr_t *hdr;
2145 arc_buf_t *buf;
2146
2147 ASSERT3U(size, >, 0);
2148 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2149 ASSERT(BUF_EMPTY(hdr));
2150 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2151 hdr->b_size = size;
2152 hdr->b_spa = spa_load_guid(spa);
2153
2154 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2155 buf->b_hdr = hdr;
2156 buf->b_data = NULL;
2157 buf->b_efunc = NULL;
2158 buf->b_private = NULL;
2159 buf->b_next = NULL;
2160
2161 hdr->b_flags = arc_bufc_to_flags(type);
2162 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
2163
2164 hdr->b_l1hdr.b_buf = buf;
2165 hdr->b_l1hdr.b_state = arc_anon;
2166 hdr->b_l1hdr.b_arc_access = 0;
2167 hdr->b_l1hdr.b_datacnt = 1;
2168 hdr->b_l1hdr.b_tmp_cdata = NULL;
2169
2170 arc_get_data_buf(buf);
2171 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2172 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2173
2174 return (buf);
2175 }
2176
2177 /*
2178 * Allocates an ARC buf header that's in an evicted & L2-cached state.
2179 * This is used during l2arc reconstruction to make empty ARC buffers
2180 * which circumvent the regular disk->arc->l2arc path and instead come
2181 * into being in the reverse order, i.e. l2arc->arc.
2182 */
2183 arc_buf_hdr_t *
arc_buf_alloc_l2only(uint64_t load_guid,int size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t asize,uint64_t birth,zio_cksum_t cksum,enum zio_compress compress)2184 arc_buf_alloc_l2only(uint64_t load_guid, int size, arc_buf_contents_t type,
2185 l2arc_dev_t *dev, dva_t dva, uint64_t daddr, int32_t asize, uint64_t birth,
2186 zio_cksum_t cksum, enum zio_compress compress)
2187 {
2188 arc_buf_hdr_t *hdr;
2189
2190 ASSERT3U(size, >, 0);
2191 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
2192 ASSERT(BUF_EMPTY(hdr));
2193 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
2194 hdr->b_dva = dva;
2195 hdr->b_birth = birth;
2196 hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
2197 bcopy(&cksum, hdr->b_freeze_cksum, sizeof (cksum));
2198 hdr->b_flags = arc_bufc_to_flags(type);
2199 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
2200 hdr->b_size = size;
2201 hdr->b_spa = load_guid;
2202
2203 hdr->b_l2hdr.b_compress = compress;
2204 hdr->b_l2hdr.b_dev = dev;
2205 hdr->b_l2hdr.b_daddr = daddr;
2206 hdr->b_l2hdr.b_asize = asize;
2207
2208 return (hdr);
2209 }
2210
2211 static char *arc_onloan_tag = "onloan";
2212
2213 /*
2214 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2215 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2216 * buffers must be returned to the arc before they can be used by the DMU or
2217 * freed.
2218 */
2219 arc_buf_t *
arc_loan_buf(spa_t * spa,int size)2220 arc_loan_buf(spa_t *spa, int size)
2221 {
2222 arc_buf_t *buf;
2223
2224 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
2225
2226 atomic_add_64(&arc_loaned_bytes, size);
2227 return (buf);
2228 }
2229
2230 /*
2231 * Return a loaned arc buffer to the arc.
2232 */
2233 void
arc_return_buf(arc_buf_t * buf,void * tag)2234 arc_return_buf(arc_buf_t *buf, void *tag)
2235 {
2236 arc_buf_hdr_t *hdr = buf->b_hdr;
2237
2238 ASSERT(buf->b_data != NULL);
2239 ASSERT(HDR_HAS_L1HDR(hdr));
2240 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2241 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2242
2243 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
2244 }
2245
2246 /* Detach an arc_buf from a dbuf (tag) */
2247 void
arc_loan_inuse_buf(arc_buf_t * buf,void * tag)2248 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2249 {
2250 arc_buf_hdr_t *hdr = buf->b_hdr;
2251
2252 ASSERT(buf->b_data != NULL);
2253 ASSERT(HDR_HAS_L1HDR(hdr));
2254 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2255 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2256 buf->b_efunc = NULL;
2257 buf->b_private = NULL;
2258
2259 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
2260 }
2261
2262 static arc_buf_t *
arc_buf_clone(arc_buf_t * from)2263 arc_buf_clone(arc_buf_t *from)
2264 {
2265 arc_buf_t *buf;
2266 arc_buf_hdr_t *hdr = from->b_hdr;
2267 uint64_t size = hdr->b_size;
2268
2269 ASSERT(HDR_HAS_L1HDR(hdr));
2270 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2271
2272 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2273 buf->b_hdr = hdr;
2274 buf->b_data = NULL;
2275 buf->b_efunc = NULL;
2276 buf->b_private = NULL;
2277 buf->b_next = hdr->b_l1hdr.b_buf;
2278 hdr->b_l1hdr.b_buf = buf;
2279 arc_get_data_buf(buf);
2280 bcopy(from->b_data, buf->b_data, size);
2281
2282 /*
2283 * This buffer already exists in the arc so create a duplicate
2284 * copy for the caller. If the buffer is associated with user data
2285 * then track the size and number of duplicates. These stats will be
2286 * updated as duplicate buffers are created and destroyed.
2287 */
2288 if (HDR_ISTYPE_DATA(hdr)) {
2289 ARCSTAT_BUMP(arcstat_duplicate_buffers);
2290 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
2291 }
2292 hdr->b_l1hdr.b_datacnt += 1;
2293 return (buf);
2294 }
2295
2296 void
arc_buf_add_ref(arc_buf_t * buf,void * tag)2297 arc_buf_add_ref(arc_buf_t *buf, void* tag)
2298 {
2299 arc_buf_hdr_t *hdr;
2300 kmutex_t *hash_lock;
2301
2302 /*
2303 * Check to see if this buffer is evicted. Callers
2304 * must verify b_data != NULL to know if the add_ref
2305 * was successful.
2306 */
2307 mutex_enter(&buf->b_evict_lock);
2308 if (buf->b_data == NULL) {
2309 mutex_exit(&buf->b_evict_lock);
2310 return;
2311 }
2312 hash_lock = HDR_LOCK(buf->b_hdr);
2313 mutex_enter(hash_lock);
2314 hdr = buf->b_hdr;
2315 ASSERT(HDR_HAS_L1HDR(hdr));
2316 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2317 mutex_exit(&buf->b_evict_lock);
2318
2319 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
2320 hdr->b_l1hdr.b_state == arc_mfu);
2321
2322 add_reference(hdr, hash_lock, tag);
2323 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2324 arc_access(hdr, hash_lock);
2325 mutex_exit(hash_lock);
2326 ARCSTAT_BUMP(arcstat_hits);
2327 arc_update_hit_stat(hdr, B_TRUE);
2328 }
2329
2330 static void
arc_buf_free_on_write(void * data,size_t size,void (* free_func)(void *,size_t))2331 arc_buf_free_on_write(void *data, size_t size,
2332 void (*free_func)(void *, size_t))
2333 {
2334 l2arc_data_free_t *df;
2335
2336 df = kmem_alloc(sizeof (*df), KM_SLEEP);
2337 df->l2df_data = data;
2338 df->l2df_size = size;
2339 df->l2df_func = free_func;
2340 mutex_enter(&l2arc_free_on_write_mtx);
2341 list_insert_head(l2arc_free_on_write, df);
2342 mutex_exit(&l2arc_free_on_write_mtx);
2343 }
2344
2345 /*
2346 * Free the arc data buffer. If it is an l2arc write in progress,
2347 * the buffer is placed on l2arc_free_on_write to be freed later.
2348 */
2349 static void
arc_buf_data_free(arc_buf_t * buf,void (* free_func)(void *,size_t))2350 arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
2351 {
2352 arc_buf_hdr_t *hdr = buf->b_hdr;
2353
2354 if (HDR_L2_WRITING(hdr)) {
2355 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
2356 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2357 } else {
2358 free_func(buf->b_data, hdr->b_size);
2359 }
2360 }
2361
2362 static void
arc_buf_l2_cdata_free(arc_buf_hdr_t * hdr)2363 arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
2364 {
2365 ASSERT(HDR_HAS_L2HDR(hdr));
2366 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
2367
2368 /*
2369 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
2370 * that doesn't exist, the header is in the arc_l2c_only state,
2371 * and there isn't anything to free (it's already been freed).
2372 */
2373 if (!HDR_HAS_L1HDR(hdr))
2374 return;
2375
2376 /*
2377 * The header isn't being written to the l2arc device, thus it
2378 * shouldn't have a b_tmp_cdata to free.
2379 */
2380 if (!HDR_L2_WRITING(hdr)) {
2381 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2382 return;
2383 }
2384
2385 /*
2386 * The header does not have compression enabled. This can be due
2387 * to the buffer not being compressible, or because we're
2388 * freeing the buffer before the second phase of
2389 * l2arc_write_buffer() has started (which does the compression
2390 * step). In either case, b_tmp_cdata does not point to a
2391 * separately compressed buffer, so there's nothing to free (it
2392 * points to the same buffer as the arc_buf_t's b_data field).
2393 */
2394 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
2395 hdr->b_l1hdr.b_tmp_cdata = NULL;
2396 return;
2397 }
2398
2399 /*
2400 * There's nothing to free since the buffer was all zero's and
2401 * compressed to a zero length buffer.
2402 */
2403 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
2404 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2405 return;
2406 }
2407
2408 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
2409
2410 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2411 hdr->b_size, zio_data_buf_free);
2412
2413 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2414 hdr->b_l1hdr.b_tmp_cdata = NULL;
2415 }
2416
2417 /*
2418 * Free up buf->b_data and if 'remove' is set, then pull the
2419 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2420 */
2421 static void
arc_buf_destroy(arc_buf_t * buf,boolean_t remove)2422 arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
2423 {
2424 arc_buf_t **bufp;
2425
2426 /* free up data associated with the buf */
2427 if (buf->b_data != NULL) {
2428 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
2429 uint64_t size = buf->b_hdr->b_size;
2430 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
2431
2432 arc_cksum_verify(buf);
2433 arc_buf_unwatch(buf);
2434
2435 if (type == ARC_BUFC_METADATA) {
2436 arc_buf_data_free(buf, zio_buf_free);
2437 arc_space_return(size, ARC_SPACE_META);
2438 } else {
2439 ASSERT(type == ARC_BUFC_DATA);
2440 arc_buf_data_free(buf, zio_data_buf_free);
2441 arc_space_return(size, ARC_SPACE_DATA);
2442 }
2443
2444 /* protected by hash lock, if in the hash table */
2445 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
2446 uint64_t *cnt = &state->arcs_lsize[type];
2447
2448 ASSERT(refcount_is_zero(
2449 &buf->b_hdr->b_l1hdr.b_refcnt));
2450 ASSERT(state != arc_anon && state != arc_l2c_only);
2451
2452 ASSERT3U(*cnt, >=, size);
2453 atomic_add_64(cnt, -size);
2454 }
2455
2456 (void) refcount_remove_many(&state->arcs_size, size, buf);
2457 buf->b_data = NULL;
2458
2459 /*
2460 * If we're destroying a duplicate buffer make sure
2461 * that the appropriate statistics are updated.
2462 */
2463 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2464 HDR_ISTYPE_DATA(buf->b_hdr)) {
2465 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2466 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2467 }
2468 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2469 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
2470 }
2471
2472 /* only remove the buf if requested */
2473 if (!remove)
2474 return;
2475
2476 /* remove the buf from the hdr list */
2477 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2478 bufp = &(*bufp)->b_next)
2479 continue;
2480 *bufp = buf->b_next;
2481 buf->b_next = NULL;
2482
2483 ASSERT(buf->b_efunc == NULL);
2484
2485 /* clean up the buf */
2486 buf->b_hdr = NULL;
2487 kmem_cache_free(buf_cache, buf);
2488 }
2489
2490 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)2491 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2492 {
2493 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2494 l2arc_dev_t *dev = l2hdr->b_dev;
2495
2496 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2497 ASSERT(HDR_HAS_L2HDR(hdr));
2498
2499 list_remove(&dev->l2ad_buflist, hdr);
2500
2501 /*
2502 * We don't want to leak the b_tmp_cdata buffer that was
2503 * allocated in l2arc_write_buffers()
2504 */
2505 arc_buf_l2_cdata_free(hdr);
2506
2507 /*
2508 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2509 * this header is being processed by l2arc_write_buffers() (i.e.
2510 * it's in the first stage of l2arc_write_buffers()).
2511 * Re-affirming that truth here, just to serve as a reminder. If
2512 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2513 * may not have its HDR_L2_WRITING flag set. (the write may have
2514 * completed, in which case HDR_L2_WRITING will be false and the
2515 * b_daddr field will point to the address of the buffer on disk).
2516 */
2517 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2518
2519 /*
2520 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2521 * l2arc_write_buffers(). Since we've just removed this header
2522 * from the l2arc buffer list, this header will never reach the
2523 * second stage of l2arc_write_buffers(), which increments the
2524 * accounting stats for this header. Thus, we must be careful
2525 * not to decrement them for this header either.
2526 */
2527 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2528 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2529 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2530
2531 vdev_space_update(dev->l2ad_vdev,
2532 -l2hdr->b_asize, 0, 0);
2533
2534 (void) refcount_remove_many(&dev->l2ad_alloc,
2535 l2hdr->b_asize, hdr);
2536 }
2537
2538 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2539 }
2540
2541 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)2542 arc_hdr_destroy(arc_buf_hdr_t *hdr)
2543 {
2544 if (HDR_HAS_L1HDR(hdr)) {
2545 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2546 hdr->b_l1hdr.b_datacnt > 0);
2547 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2548 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2549 }
2550 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2551 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2552
2553 if (HDR_HAS_L2HDR(hdr)) {
2554 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2555 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
2556
2557 if (!buflist_held)
2558 mutex_enter(&dev->l2ad_mtx);
2559
2560 /*
2561 * Even though we checked this conditional above, we
2562 * need to check this again now that we have the
2563 * l2ad_mtx. This is because we could be racing with
2564 * another thread calling l2arc_evict() which might have
2565 * destroyed this header's L2 portion as we were waiting
2566 * to acquire the l2ad_mtx. If that happens, we don't
2567 * want to re-destroy the header's L2 portion.
2568 */
2569 if (HDR_HAS_L2HDR(hdr))
2570 arc_hdr_l2hdr_destroy(hdr);
2571
2572 if (!buflist_held)
2573 mutex_exit(&dev->l2ad_mtx);
2574 }
2575
2576 if (!BUF_EMPTY(hdr))
2577 buf_discard_identity(hdr);
2578
2579 if (hdr->b_freeze_cksum != NULL) {
2580 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2581 hdr->b_freeze_cksum = NULL;
2582 }
2583
2584 if (HDR_HAS_L1HDR(hdr)) {
2585 while (hdr->b_l1hdr.b_buf) {
2586 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2587
2588 if (buf->b_efunc != NULL) {
2589 mutex_enter(&arc_user_evicts_lock);
2590 mutex_enter(&buf->b_evict_lock);
2591 ASSERT(buf->b_hdr != NULL);
2592 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
2593 hdr->b_l1hdr.b_buf = buf->b_next;
2594 buf->b_hdr = &arc_eviction_hdr;
2595 buf->b_next = arc_eviction_list;
2596 arc_eviction_list = buf;
2597 mutex_exit(&buf->b_evict_lock);
2598 cv_signal(&arc_user_evicts_cv);
2599 mutex_exit(&arc_user_evicts_lock);
2600 } else {
2601 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
2602 }
2603 }
2604 #ifdef ZFS_DEBUG
2605 if (hdr->b_l1hdr.b_thawed != NULL) {
2606 kmem_free(hdr->b_l1hdr.b_thawed, 1);
2607 hdr->b_l1hdr.b_thawed = NULL;
2608 }
2609 #endif
2610 }
2611
2612 ASSERT3P(hdr->b_hash_next, ==, NULL);
2613 if (HDR_HAS_L1HDR(hdr)) {
2614 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2615 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2616 kmem_cache_free(hdr_full_cache, hdr);
2617 } else {
2618 kmem_cache_free(hdr_l2only_cache, hdr);
2619 }
2620 }
2621
2622 void
arc_buf_free(arc_buf_t * buf,void * tag)2623 arc_buf_free(arc_buf_t *buf, void *tag)
2624 {
2625 arc_buf_hdr_t *hdr = buf->b_hdr;
2626 int hashed = hdr->b_l1hdr.b_state != arc_anon;
2627
2628 ASSERT(buf->b_efunc == NULL);
2629 ASSERT(buf->b_data != NULL);
2630
2631 if (hashed) {
2632 kmutex_t *hash_lock = HDR_LOCK(hdr);
2633
2634 mutex_enter(hash_lock);
2635 hdr = buf->b_hdr;
2636 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2637
2638 (void) remove_reference(hdr, hash_lock, tag);
2639 if (hdr->b_l1hdr.b_datacnt > 1) {
2640 arc_buf_destroy(buf, TRUE);
2641 } else {
2642 ASSERT(buf == hdr->b_l1hdr.b_buf);
2643 ASSERT(buf->b_efunc == NULL);
2644 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2645 }
2646 mutex_exit(hash_lock);
2647 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2648 int destroy_hdr;
2649 /*
2650 * We are in the middle of an async write. Don't destroy
2651 * this buffer unless the write completes before we finish
2652 * decrementing the reference count.
2653 */
2654 mutex_enter(&arc_user_evicts_lock);
2655 (void) remove_reference(hdr, NULL, tag);
2656 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2657 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
2658 mutex_exit(&arc_user_evicts_lock);
2659 if (destroy_hdr)
2660 arc_hdr_destroy(hdr);
2661 } else {
2662 if (remove_reference(hdr, NULL, tag) > 0)
2663 arc_buf_destroy(buf, TRUE);
2664 else
2665 arc_hdr_destroy(hdr);
2666 }
2667 }
2668
2669 boolean_t
arc_buf_remove_ref(arc_buf_t * buf,void * tag)2670 arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2671 {
2672 arc_buf_hdr_t *hdr = buf->b_hdr;
2673 kmutex_t *hash_lock = HDR_LOCK(hdr);
2674 boolean_t no_callback = (buf->b_efunc == NULL);
2675
2676 if (hdr->b_l1hdr.b_state == arc_anon) {
2677 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2678 arc_buf_free(buf, tag);
2679 return (no_callback);
2680 }
2681
2682 mutex_enter(hash_lock);
2683 hdr = buf->b_hdr;
2684 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
2685 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2686 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
2687 ASSERT(buf->b_data != NULL);
2688
2689 (void) remove_reference(hdr, hash_lock, tag);
2690 if (hdr->b_l1hdr.b_datacnt > 1) {
2691 if (no_callback)
2692 arc_buf_destroy(buf, TRUE);
2693 } else if (no_callback) {
2694 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
2695 ASSERT(buf->b_efunc == NULL);
2696 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
2697 }
2698 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2699 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2700 mutex_exit(hash_lock);
2701 return (no_callback);
2702 }
2703
2704 int32_t
arc_buf_size(arc_buf_t * buf)2705 arc_buf_size(arc_buf_t *buf)
2706 {
2707 return (buf->b_hdr->b_size);
2708 }
2709
2710 /*
2711 * Called from the DMU to determine if the current buffer should be
2712 * evicted. In order to ensure proper locking, the eviction must be initiated
2713 * from the DMU. Return true if the buffer is associated with user data and
2714 * duplicate buffers still exist.
2715 */
2716 boolean_t
arc_buf_eviction_needed(arc_buf_t * buf)2717 arc_buf_eviction_needed(arc_buf_t *buf)
2718 {
2719 arc_buf_hdr_t *hdr;
2720 boolean_t evict_needed = B_FALSE;
2721
2722 if (zfs_disable_dup_eviction)
2723 return (B_FALSE);
2724
2725 mutex_enter(&buf->b_evict_lock);
2726 hdr = buf->b_hdr;
2727 if (hdr == NULL) {
2728 /*
2729 * We are in arc_do_user_evicts(); let that function
2730 * perform the eviction.
2731 */
2732 ASSERT(buf->b_data == NULL);
2733 mutex_exit(&buf->b_evict_lock);
2734 return (B_FALSE);
2735 } else if (buf->b_data == NULL) {
2736 /*
2737 * We have already been added to the arc eviction list;
2738 * recommend eviction.
2739 */
2740 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2741 mutex_exit(&buf->b_evict_lock);
2742 return (B_TRUE);
2743 }
2744
2745 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
2746 evict_needed = B_TRUE;
2747
2748 mutex_exit(&buf->b_evict_lock);
2749 return (evict_needed);
2750 }
2751
2752 /*
2753 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2754 * state of the header is dependent on it's state prior to entering this
2755 * function. The following transitions are possible:
2756 *
2757 * - arc_mru -> arc_mru_ghost
2758 * - arc_mfu -> arc_mfu_ghost
2759 * - arc_mru_ghost -> arc_l2c_only
2760 * - arc_mru_ghost -> deleted
2761 * - arc_mfu_ghost -> arc_l2c_only
2762 * - arc_mfu_ghost -> deleted
2763 */
2764 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)2765 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
2766 {
2767 arc_state_t *evicted_state, *state;
2768 int64_t bytes_evicted = 0;
2769
2770 ASSERT(MUTEX_HELD(hash_lock));
2771 ASSERT(HDR_HAS_L1HDR(hdr));
2772
2773 state = hdr->b_l1hdr.b_state;
2774 if (GHOST_STATE(state)) {
2775 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2776 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2777
2778 /*
2779 * l2arc_write_buffers() relies on a header's L1 portion
2780 * (i.e. it's b_tmp_cdata field) during it's write phase.
2781 * Thus, we cannot push a header onto the arc_l2c_only
2782 * state (removing it's L1 piece) until the header is
2783 * done being written to the l2arc.
2784 */
2785 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2786 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2787 return (bytes_evicted);
2788 }
2789
2790 ARCSTAT_BUMP(arcstat_deleted);
2791 bytes_evicted += hdr->b_size;
2792
2793 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
2794
2795 if (HDR_HAS_L2HDR(hdr)) {
2796 /*
2797 * This buffer is cached on the 2nd Level ARC;
2798 * don't destroy the header.
2799 */
2800 arc_change_state(arc_l2c_only, hdr, hash_lock);
2801 /*
2802 * dropping from L1+L2 cached to L2-only,
2803 * realloc to remove the L1 header.
2804 */
2805 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2806 hdr_l2only_cache);
2807 } else {
2808 arc_change_state(arc_anon, hdr, hash_lock);
2809 arc_hdr_destroy(hdr);
2810 }
2811 return (bytes_evicted);
2812 }
2813
2814 ASSERT(state == arc_mru || state == arc_mfu);
2815 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
2816
2817 /* prefetch buffers have a minimum lifespan */
2818 if (HDR_IO_IN_PROGRESS(hdr) ||
2819 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2820 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2821 arc_min_prefetch_lifespan)) {
2822 ARCSTAT_BUMP(arcstat_evict_skip);
2823 return (bytes_evicted);
2824 }
2825
2826 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2827 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2828 while (hdr->b_l1hdr.b_buf) {
2829 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2830 if (!mutex_tryenter(&buf->b_evict_lock)) {
2831 ARCSTAT_BUMP(arcstat_mutex_miss);
2832 break;
2833 }
2834 if (buf->b_data != NULL)
2835 bytes_evicted += hdr->b_size;
2836 if (buf->b_efunc != NULL) {
2837 mutex_enter(&arc_user_evicts_lock);
2838 arc_buf_destroy(buf, FALSE);
2839 hdr->b_l1hdr.b_buf = buf->b_next;
2840 buf->b_hdr = &arc_eviction_hdr;
2841 buf->b_next = arc_eviction_list;
2842 arc_eviction_list = buf;
2843 cv_signal(&arc_user_evicts_cv);
2844 mutex_exit(&arc_user_evicts_lock);
2845 mutex_exit(&buf->b_evict_lock);
2846 } else {
2847 mutex_exit(&buf->b_evict_lock);
2848 arc_buf_destroy(buf, TRUE);
2849 }
2850 }
2851
2852 if (HDR_HAS_L2HDR(hdr)) {
2853 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2854 } else {
2855 if (l2arc_write_eligible(hdr->b_spa, UINT64_MAX, hdr))
2856 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2857 else
2858 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2859 }
2860
2861 if (hdr->b_l1hdr.b_datacnt == 0) {
2862 arc_change_state(evicted_state, hdr, hash_lock);
2863 ASSERT(HDR_IN_HASH_TABLE(hdr));
2864 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2865 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2866 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2867 }
2868
2869 return (bytes_evicted);
2870 }
2871
2872 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,int64_t bytes)2873 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2874 uint64_t spa, int64_t bytes)
2875 {
2876 multilist_sublist_t *mls;
2877 uint64_t bytes_evicted = 0;
2878 arc_buf_hdr_t *hdr;
2879 kmutex_t *hash_lock;
2880 int evict_count = 0;
2881
2882 ASSERT3P(marker, !=, NULL);
2883 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
2884
2885 mls = multilist_sublist_lock(ml, idx);
2886
2887 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2888 hdr = multilist_sublist_prev(mls, marker)) {
2889 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2890 (evict_count >= zfs_arc_evict_batch_limit))
2891 break;
2892
2893 /*
2894 * To keep our iteration location, move the marker
2895 * forward. Since we're not holding hdr's hash lock, we
2896 * must be very careful and not remove 'hdr' from the
2897 * sublist. Otherwise, other consumers might mistake the
2898 * 'hdr' as not being on a sublist when they call the
2899 * multilist_link_active() function (they all rely on
2900 * the hash lock protecting concurrent insertions and
2901 * removals). multilist_sublist_move_forward() was
2902 * specifically implemented to ensure this is the case
2903 * (only 'marker' will be removed and re-inserted).
2904 */
2905 multilist_sublist_move_forward(mls, marker);
2906
2907 /*
2908 * The only case where the b_spa field should ever be
2909 * zero, is the marker headers inserted by
2910 * arc_evict_state(). It's possible for multiple threads
2911 * to be calling arc_evict_state() concurrently (e.g.
2912 * dsl_pool_close() and zio_inject_fault()), so we must
2913 * skip any markers we see from these other threads.
2914 */
2915 if (hdr->b_spa == 0)
2916 continue;
2917
2918 /* we're only interested in evicting buffers of a certain spa */
2919 if (spa != 0 && hdr->b_spa != spa) {
2920 ARCSTAT_BUMP(arcstat_evict_skip);
2921 continue;
2922 }
2923
2924 hash_lock = HDR_LOCK(hdr);
2925
2926 /*
2927 * We aren't calling this function from any code path
2928 * that would already be holding a hash lock, so we're
2929 * asserting on this assumption to be defensive in case
2930 * this ever changes. Without this check, it would be
2931 * possible to incorrectly increment arcstat_mutex_miss
2932 * below (e.g. if the code changed such that we called
2933 * this function with a hash lock held).
2934 */
2935 ASSERT(!MUTEX_HELD(hash_lock));
2936
2937 if (mutex_tryenter(hash_lock)) {
2938 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2939 mutex_exit(hash_lock);
2940
2941 bytes_evicted += evicted;
2942
2943 /*
2944 * If evicted is zero, arc_evict_hdr() must have
2945 * decided to skip this header, don't increment
2946 * evict_count in this case.
2947 */
2948 if (evicted != 0)
2949 evict_count++;
2950
2951 /*
2952 * If arc_size isn't overflowing, signal any
2953 * threads that might happen to be waiting.
2954 *
2955 * For each header evicted, we wake up a single
2956 * thread. If we used cv_broadcast, we could
2957 * wake up "too many" threads causing arc_size
2958 * to significantly overflow arc_c; since
2959 * arc_get_data_buf() doesn't check for overflow
2960 * when it's woken up (it doesn't because it's
2961 * possible for the ARC to be overflowing while
2962 * full of un-evictable buffers, and the
2963 * function should proceed in this case).
2964 *
2965 * If threads are left sleeping, due to not
2966 * using cv_broadcast, they will be woken up
2967 * just before arc_reclaim_thread() sleeps.
2968 */
2969 mutex_enter(&arc_reclaim_lock);
2970 if (!arc_is_overflowing())
2971 cv_signal(&arc_reclaim_waiters_cv);
2972 mutex_exit(&arc_reclaim_lock);
2973 } else {
2974 ARCSTAT_BUMP(arcstat_mutex_miss);
2975 }
2976 }
2977
2978 multilist_sublist_unlock(mls);
2979
2980 return (bytes_evicted);
2981 }
2982
2983 /*
2984 * Evict buffers from the given arc state, until we've removed the
2985 * specified number of bytes. Move the removed buffers to the
2986 * appropriate evict state.
2987 *
2988 * This function makes a "best effort". It skips over any buffers
2989 * it can't get a hash_lock on, and so, may not catch all candidates.
2990 * It may also return without evicting as much space as requested.
2991 *
2992 * If bytes is specified using the special value ARC_EVICT_ALL, this
2993 * will evict all available (i.e. unlocked and evictable) buffers from
2994 * the given arc state; which is used by arc_flush().
2995 */
2996 static uint64_t
arc_evict_state(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)2997 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2998 arc_buf_contents_t type)
2999 {
3000 uint64_t total_evicted = 0;
3001 multilist_t *ml = &state->arcs_list[type];
3002 int num_sublists;
3003 arc_buf_hdr_t **markers;
3004
3005 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3006
3007 num_sublists = multilist_get_num_sublists(ml);
3008
3009 /*
3010 * If we've tried to evict from each sublist, made some
3011 * progress, but still have not hit the target number of bytes
3012 * to evict, we want to keep trying. The markers allow us to
3013 * pick up where we left off for each individual sublist, rather
3014 * than starting from the tail each time.
3015 */
3016 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3017 for (int i = 0; i < num_sublists; i++) {
3018 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3019
3020 /*
3021 * A b_spa of 0 is used to indicate that this header is
3022 * a marker. This fact is used in arc_adjust_type() and
3023 * arc_evict_state_impl().
3024 */
3025 markers[i]->b_spa = 0;
3026
3027 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3028 multilist_sublist_insert_tail(mls, markers[i]);
3029 multilist_sublist_unlock(mls);
3030 }
3031
3032 /*
3033 * While we haven't hit our target number of bytes to evict, or
3034 * we're evicting all available buffers.
3035 */
3036 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3037 /*
3038 * Start eviction using a randomly selected sublist,
3039 * this is to try and evenly balance eviction across all
3040 * sublists. Always starting at the same sublist
3041 * (e.g. index 0) would cause evictions to favor certain
3042 * sublists over others.
3043 */
3044 int sublist_idx = multilist_get_random_index(ml);
3045 uint64_t scan_evicted = 0;
3046
3047 for (int i = 0; i < num_sublists; i++) {
3048 uint64_t bytes_remaining;
3049 uint64_t bytes_evicted;
3050
3051 if (bytes == ARC_EVICT_ALL)
3052 bytes_remaining = ARC_EVICT_ALL;
3053 else if (total_evicted < bytes)
3054 bytes_remaining = bytes - total_evicted;
3055 else
3056 break;
3057
3058 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3059 markers[sublist_idx], spa, bytes_remaining);
3060
3061 scan_evicted += bytes_evicted;
3062 total_evicted += bytes_evicted;
3063
3064 /* we've reached the end, wrap to the beginning */
3065 if (++sublist_idx >= num_sublists)
3066 sublist_idx = 0;
3067 }
3068
3069 /*
3070 * If we didn't evict anything during this scan, we have
3071 * no reason to believe we'll evict more during another
3072 * scan, so break the loop.
3073 */
3074 if (scan_evicted == 0) {
3075 /* This isn't possible, let's make that obvious */
3076 ASSERT3S(bytes, !=, 0);
3077
3078 /*
3079 * When bytes is ARC_EVICT_ALL, the only way to
3080 * break the loop is when scan_evicted is zero.
3081 * In that case, we actually have evicted enough,
3082 * so we don't want to increment the kstat.
3083 */
3084 if (bytes != ARC_EVICT_ALL) {
3085 ASSERT3S(total_evicted, <, bytes);
3086 ARCSTAT_BUMP(arcstat_evict_not_enough);
3087 }
3088
3089 break;
3090 }
3091 }
3092
3093 for (int i = 0; i < num_sublists; i++) {
3094 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3095 multilist_sublist_remove(mls, markers[i]);
3096 multilist_sublist_unlock(mls);
3097
3098 kmem_cache_free(hdr_full_cache, markers[i]);
3099 }
3100 kmem_free(markers, sizeof (*markers) * num_sublists);
3101
3102 return (total_evicted);
3103 }
3104
3105 /*
3106 * Flush all "evictable" data of the given type from the arc state
3107 * specified. This will not evict any "active" buffers (i.e. referenced).
3108 *
3109 * When 'retry' is set to FALSE, the function will make a single pass
3110 * over the state and evict any buffers that it can. Since it doesn't
3111 * continually retry the eviction, it might end up leaving some buffers
3112 * in the ARC due to lock misses.
3113 *
3114 * When 'retry' is set to TRUE, the function will continually retry the
3115 * eviction until *all* evictable buffers have been removed from the
3116 * state. As a result, if concurrent insertions into the state are
3117 * allowed (e.g. if the ARC isn't shutting down), this function might
3118 * wind up in an infinite loop, continually trying to evict buffers.
3119 */
3120 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)3121 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3122 boolean_t retry)
3123 {
3124 uint64_t evicted = 0;
3125
3126 while (state->arcs_lsize[type] != 0) {
3127 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3128
3129 if (!retry)
3130 break;
3131 }
3132
3133 return (evicted);
3134 }
3135
3136 /*
3137 * Evict the specified number of bytes from the state specified,
3138 * restricting eviction to the spa and type given. This function
3139 * prevents us from trying to evict more from a state's list than
3140 * is "evictable", and to skip evicting altogether when passed a
3141 * negative value for "bytes". In contrast, arc_evict_state() will
3142 * evict everything it can, when passed a negative value for "bytes".
3143 */
3144 static uint64_t
arc_adjust_impl(arc_state_t * state,uint64_t spa,int64_t bytes,arc_buf_contents_t type)3145 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3146 arc_buf_contents_t type)
3147 {
3148 int64_t delta;
3149
3150 if (bytes > 0 && state->arcs_lsize[type] > 0) {
3151 delta = MIN(state->arcs_lsize[type], bytes);
3152 return (arc_evict_state(state, spa, delta, type));
3153 }
3154
3155 return (0);
3156 }
3157
3158 /*
3159 * Evict metadata buffers from the cache, such that arc_meta_used is
3160 * capped by the arc_meta_limit tunable.
3161 */
3162 static uint64_t
arc_adjust_meta(void)3163 arc_adjust_meta(void)
3164 {
3165 uint64_t total_evicted = 0;
3166 int64_t target;
3167
3168 /*
3169 * If we're over the meta limit, we want to evict enough
3170 * metadata to get back under the meta limit. We don't want to
3171 * evict so much that we drop the MRU below arc_p, though. If
3172 * we're over the meta limit more than we're over arc_p, we
3173 * evict some from the MRU here, and some from the MFU below.
3174 */
3175 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3176 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3177 refcount_count(&arc_mru->arcs_size) - arc_p));
3178
3179 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3180
3181 /*
3182 * Similar to the above, we want to evict enough bytes to get us
3183 * below the meta limit, but not so much as to drop us below the
3184 * space alloted to the MFU (which is defined as arc_c - arc_p).
3185 */
3186 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3187 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3188
3189 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3190
3191 return (total_evicted);
3192 }
3193
3194 /*
3195 * Return the type of the oldest buffer in the given arc state
3196 *
3197 * This function will select a random sublist of type ARC_BUFC_DATA and
3198 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3199 * is compared, and the type which contains the "older" buffer will be
3200 * returned.
3201 */
3202 static arc_buf_contents_t
arc_adjust_type(arc_state_t * state)3203 arc_adjust_type(arc_state_t *state)
3204 {
3205 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
3206 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
3207 int data_idx = multilist_get_random_index(data_ml);
3208 int meta_idx = multilist_get_random_index(meta_ml);
3209 multilist_sublist_t *data_mls;
3210 multilist_sublist_t *meta_mls;
3211 arc_buf_contents_t type;
3212 arc_buf_hdr_t *data_hdr;
3213 arc_buf_hdr_t *meta_hdr;
3214
3215 /*
3216 * We keep the sublist lock until we're finished, to prevent
3217 * the headers from being destroyed via arc_evict_state().
3218 */
3219 data_mls = multilist_sublist_lock(data_ml, data_idx);
3220 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3221
3222 /*
3223 * These two loops are to ensure we skip any markers that
3224 * might be at the tail of the lists due to arc_evict_state().
3225 */
3226
3227 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3228 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3229 if (data_hdr->b_spa != 0)
3230 break;
3231 }
3232
3233 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3234 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3235 if (meta_hdr->b_spa != 0)
3236 break;
3237 }
3238
3239 if (data_hdr == NULL && meta_hdr == NULL) {
3240 type = ARC_BUFC_DATA;
3241 } else if (data_hdr == NULL) {
3242 ASSERT3P(meta_hdr, !=, NULL);
3243 type = ARC_BUFC_METADATA;
3244 } else if (meta_hdr == NULL) {
3245 ASSERT3P(data_hdr, !=, NULL);
3246 type = ARC_BUFC_DATA;
3247 } else {
3248 ASSERT3P(data_hdr, !=, NULL);
3249 ASSERT3P(meta_hdr, !=, NULL);
3250
3251 /* The headers can't be on the sublist without an L1 header */
3252 ASSERT(HDR_HAS_L1HDR(data_hdr));
3253 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3254
3255 if (data_hdr->b_l1hdr.b_arc_access <
3256 meta_hdr->b_l1hdr.b_arc_access) {
3257 type = ARC_BUFC_DATA;
3258 } else {
3259 type = ARC_BUFC_METADATA;
3260 }
3261 }
3262
3263 multilist_sublist_unlock(meta_mls);
3264 multilist_sublist_unlock(data_mls);
3265
3266 return (type);
3267 }
3268
3269 /*
3270 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3271 */
3272 static uint64_t
arc_adjust(void)3273 arc_adjust(void)
3274 {
3275 uint64_t total_evicted = 0;
3276 uint64_t bytes;
3277 int64_t target;
3278
3279 /*
3280 * If we're over arc_meta_limit, we want to correct that before
3281 * potentially evicting data buffers below.
3282 */
3283 total_evicted += arc_adjust_meta();
3284
3285 /*
3286 * Adjust MRU size
3287 *
3288 * If we're over the target cache size, we want to evict enough
3289 * from the list to get back to our target size. We don't want
3290 * to evict too much from the MRU, such that it drops below
3291 * arc_p. So, if we're over our target cache size more than
3292 * the MRU is over arc_p, we'll evict enough to get back to
3293 * arc_p here, and then evict more from the MFU below.
3294 */
3295 target = MIN((int64_t)(arc_size - arc_c),
3296 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3297 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3298
3299 /*
3300 * If we're below arc_meta_min, always prefer to evict data.
3301 * Otherwise, try to satisfy the requested number of bytes to
3302 * evict from the type which contains older buffers; in an
3303 * effort to keep newer buffers in the cache regardless of their
3304 * type. If we cannot satisfy the number of bytes from this
3305 * type, spill over into the next type.
3306 */
3307 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3308 arc_meta_used > arc_meta_min) {
3309 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3310 total_evicted += bytes;
3311
3312 /*
3313 * If we couldn't evict our target number of bytes from
3314 * metadata, we try to get the rest from data.
3315 */
3316 target -= bytes;
3317
3318 total_evicted +=
3319 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3320 } else {
3321 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3322 total_evicted += bytes;
3323
3324 /*
3325 * If we couldn't evict our target number of bytes from
3326 * data, we try to get the rest from metadata.
3327 */
3328 target -= bytes;
3329
3330 total_evicted +=
3331 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3332 }
3333
3334 /*
3335 * Adjust MFU size
3336 *
3337 * Now that we've tried to evict enough from the MRU to get its
3338 * size back to arc_p, if we're still above the target cache
3339 * size, we evict the rest from the MFU.
3340 */
3341 target = arc_size - arc_c;
3342
3343 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3344 arc_meta_used > arc_meta_min) {
3345 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3346 total_evicted += bytes;
3347
3348 /*
3349 * If we couldn't evict our target number of bytes from
3350 * metadata, we try to get the rest from data.
3351 */
3352 target -= bytes;
3353
3354 total_evicted +=
3355 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3356 } else {
3357 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3358 total_evicted += bytes;
3359
3360 /*
3361 * If we couldn't evict our target number of bytes from
3362 * data, we try to get the rest from data.
3363 */
3364 target -= bytes;
3365
3366 total_evicted +=
3367 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3368 }
3369
3370 /*
3371 * Adjust ghost lists
3372 *
3373 * In addition to the above, the ARC also defines target values
3374 * for the ghost lists. The sum of the mru list and mru ghost
3375 * list should never exceed the target size of the cache, and
3376 * the sum of the mru list, mfu list, mru ghost list, and mfu
3377 * ghost list should never exceed twice the target size of the
3378 * cache. The following logic enforces these limits on the ghost
3379 * caches, and evicts from them as needed.
3380 */
3381 target = refcount_count(&arc_mru->arcs_size) +
3382 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3383
3384 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3385 total_evicted += bytes;
3386
3387 target -= bytes;
3388
3389 total_evicted +=
3390 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3391
3392 /*
3393 * We assume the sum of the mru list and mfu list is less than
3394 * or equal to arc_c (we enforced this above), which means we
3395 * can use the simpler of the two equations below:
3396 *
3397 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3398 * mru ghost + mfu ghost <= arc_c
3399 */
3400 target = refcount_count(&arc_mru_ghost->arcs_size) +
3401 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3402
3403 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3404 total_evicted += bytes;
3405
3406 target -= bytes;
3407
3408 total_evicted +=
3409 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3410
3411 return (total_evicted);
3412 }
3413
3414 static void
arc_do_user_evicts(void)3415 arc_do_user_evicts(void)
3416 {
3417 mutex_enter(&arc_user_evicts_lock);
3418 while (arc_eviction_list != NULL) {
3419 arc_buf_t *buf = arc_eviction_list;
3420 arc_eviction_list = buf->b_next;
3421 mutex_enter(&buf->b_evict_lock);
3422 buf->b_hdr = NULL;
3423 mutex_exit(&buf->b_evict_lock);
3424 mutex_exit(&arc_user_evicts_lock);
3425
3426 if (buf->b_efunc != NULL)
3427 VERIFY0(buf->b_efunc(buf->b_private));
3428
3429 buf->b_efunc = NULL;
3430 buf->b_private = NULL;
3431 kmem_cache_free(buf_cache, buf);
3432 mutex_enter(&arc_user_evicts_lock);
3433 }
3434 mutex_exit(&arc_user_evicts_lock);
3435 }
3436
3437 void
arc_flush(spa_t * spa,boolean_t retry)3438 arc_flush(spa_t *spa, boolean_t retry)
3439 {
3440 uint64_t guid = 0;
3441
3442 /*
3443 * If retry is TRUE, a spa must not be specified since we have
3444 * no good way to determine if all of a spa's buffers have been
3445 * evicted from an arc state.
3446 */
3447 ASSERT(!retry || spa == 0);
3448
3449 if (spa != NULL)
3450 guid = spa_load_guid(spa);
3451
3452 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3453 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3454
3455 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3456 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3457
3458 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3459 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3460
3461 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3462 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3463
3464 arc_do_user_evicts();
3465 ASSERT(spa || arc_eviction_list == NULL);
3466 }
3467
3468 void
arc_shrink(int64_t to_free)3469 arc_shrink(int64_t to_free)
3470 {
3471 if (arc_c > arc_c_min) {
3472
3473 if (arc_c > arc_c_min + to_free)
3474 atomic_add_64(&arc_c, -to_free);
3475 else
3476 arc_c = arc_c_min;
3477
3478 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3479 if (arc_c > arc_size)
3480 arc_c = MAX(arc_size, arc_c_min);
3481 if (arc_p > arc_c)
3482 arc_p = (arc_c >> 1);
3483 ASSERT(arc_c >= arc_c_min);
3484 ASSERT((int64_t)arc_p >= 0);
3485 }
3486
3487 if (arc_size > arc_c)
3488 (void) arc_adjust();
3489 }
3490
3491 typedef enum free_memory_reason_t {
3492 FMR_UNKNOWN,
3493 FMR_NEEDFREE,
3494 FMR_LOTSFREE,
3495 FMR_SWAPFS_MINFREE,
3496 FMR_PAGES_PP_MAXIMUM,
3497 FMR_HEAP_ARENA,
3498 FMR_ZIO_ARENA,
3499 } free_memory_reason_t;
3500
3501 int64_t last_free_memory;
3502 free_memory_reason_t last_free_reason;
3503
3504 /*
3505 * Additional reserve of pages for pp_reserve.
3506 */
3507 int64_t arc_pages_pp_reserve = 64;
3508
3509 /*
3510 * Additional reserve of pages for swapfs.
3511 */
3512 int64_t arc_swapfs_reserve = 64;
3513
3514 /*
3515 * Return the amount of memory that can be consumed before reclaim will be
3516 * needed. Positive if there is sufficient free memory, negative indicates
3517 * the amount of memory that needs to be freed up.
3518 */
3519 static int64_t
arc_available_memory(void)3520 arc_available_memory(void)
3521 {
3522 int64_t lowest = INT64_MAX;
3523 int64_t n;
3524 free_memory_reason_t r = FMR_UNKNOWN;
3525
3526 #ifdef _KERNEL
3527 if (needfree > 0) {
3528 n = PAGESIZE * (-needfree);
3529 if (n < lowest) {
3530 lowest = n;
3531 r = FMR_NEEDFREE;
3532 }
3533 }
3534
3535 /*
3536 * check that we're out of range of the pageout scanner. It starts to
3537 * schedule paging if freemem is less than lotsfree and needfree.
3538 * lotsfree is the high-water mark for pageout, and needfree is the
3539 * number of needed free pages. We add extra pages here to make sure
3540 * the scanner doesn't start up while we're freeing memory.
3541 */
3542 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3543 if (n < lowest) {
3544 lowest = n;
3545 r = FMR_LOTSFREE;
3546 }
3547
3548 /*
3549 * check to make sure that swapfs has enough space so that anon
3550 * reservations can still succeed. anon_resvmem() checks that the
3551 * availrmem is greater than swapfs_minfree, and the number of reserved
3552 * swap pages. We also add a bit of extra here just to prevent
3553 * circumstances from getting really dire.
3554 */
3555 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3556 desfree - arc_swapfs_reserve);
3557 if (n < lowest) {
3558 lowest = n;
3559 r = FMR_SWAPFS_MINFREE;
3560 }
3561
3562
3563 /*
3564 * Check that we have enough availrmem that memory locking (e.g., via
3565 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3566 * stores the number of pages that cannot be locked; when availrmem
3567 * drops below pages_pp_maximum, page locking mechanisms such as
3568 * page_pp_lock() will fail.)
3569 */
3570 n = PAGESIZE * (availrmem - pages_pp_maximum -
3571 arc_pages_pp_reserve);
3572 if (n < lowest) {
3573 lowest = n;
3574 r = FMR_PAGES_PP_MAXIMUM;
3575 }
3576
3577 #if defined(__i386)
3578 /*
3579 * If we're on an i386 platform, it's possible that we'll exhaust the
3580 * kernel heap space before we ever run out of available physical
3581 * memory. Most checks of the size of the heap_area compare against
3582 * tune.t_minarmem, which is the minimum available real memory that we
3583 * can have in the system. However, this is generally fixed at 25 pages
3584 * which is so low that it's useless. In this comparison, we seek to
3585 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3586 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3587 * free)
3588 */
3589 n = vmem_size(heap_arena, VMEM_FREE) -
3590 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3591 if (n < lowest) {
3592 lowest = n;
3593 r = FMR_HEAP_ARENA;
3594 }
3595 #endif
3596
3597 /*
3598 * If zio data pages are being allocated out of a separate heap segment,
3599 * then enforce that the size of available vmem for this arena remains
3600 * above about 1/16th free.
3601 *
3602 * Note: The 1/16th arena free requirement was put in place
3603 * to aggressively evict memory from the arc in order to avoid
3604 * memory fragmentation issues.
3605 */
3606 if (zio_arena != NULL) {
3607 n = vmem_size(zio_arena, VMEM_FREE) -
3608 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3609 if (n < lowest) {
3610 lowest = n;
3611 r = FMR_ZIO_ARENA;
3612 }
3613 }
3614 #else
3615 /* Every 100 calls, free a small amount */
3616 if (spa_get_random(100) == 0)
3617 lowest = -1024;
3618 #endif
3619
3620 last_free_memory = lowest;
3621 last_free_reason = r;
3622
3623 return (lowest);
3624 }
3625
3626
3627 /*
3628 * Determine if the system is under memory pressure and is asking
3629 * to reclaim memory. A return value of TRUE indicates that the system
3630 * is under memory pressure and that the arc should adjust accordingly.
3631 */
3632 static boolean_t
arc_reclaim_needed(void)3633 arc_reclaim_needed(void)
3634 {
3635 return (arc_available_memory() < 0);
3636 }
3637
3638 static void
arc_kmem_reap_now(void)3639 arc_kmem_reap_now(void)
3640 {
3641 size_t i;
3642 kmem_cache_t *prev_cache = NULL;
3643 kmem_cache_t *prev_data_cache = NULL;
3644 extern kmem_cache_t *zio_buf_cache[];
3645 extern kmem_cache_t *zio_data_buf_cache[];
3646 extern kmem_cache_t *range_seg_cache;
3647
3648 #ifdef _KERNEL
3649 if (arc_meta_used >= arc_meta_limit) {
3650 /*
3651 * We are exceeding our meta-data cache limit.
3652 * Purge some DNLC entries to release holds on meta-data.
3653 */
3654 dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
3655 }
3656 #if defined(__i386)
3657 /*
3658 * Reclaim unused memory from all kmem caches.
3659 */
3660 kmem_reap();
3661 #endif
3662 #endif
3663
3664 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3665 if (zio_buf_cache[i] != prev_cache) {
3666 prev_cache = zio_buf_cache[i];
3667 kmem_cache_reap_now(zio_buf_cache[i]);
3668 }
3669 if (zio_data_buf_cache[i] != prev_data_cache) {
3670 prev_data_cache = zio_data_buf_cache[i];
3671 kmem_cache_reap_now(zio_data_buf_cache[i]);
3672 }
3673 }
3674 kmem_cache_reap_now(buf_cache);
3675 kmem_cache_reap_now(hdr_full_cache);
3676 kmem_cache_reap_now(hdr_l2only_cache);
3677 kmem_cache_reap_now(range_seg_cache);
3678
3679 if (zio_arena != NULL) {
3680 /*
3681 * Ask the vmem arena to reclaim unused memory from its
3682 * quantum caches.
3683 */
3684 vmem_qcache_reap(zio_arena);
3685 }
3686 }
3687
3688 /*
3689 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3690 * enough data and signal them to proceed. When this happens, the threads in
3691 * arc_get_data_buf() are sleeping while holding the hash lock for their
3692 * particular arc header. Thus, we must be careful to never sleep on a
3693 * hash lock in this thread. This is to prevent the following deadlock:
3694 *
3695 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3696 * waiting for the reclaim thread to signal it.
3697 *
3698 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3699 * fails, and goes to sleep forever.
3700 *
3701 * This possible deadlock is avoided by always acquiring a hash lock
3702 * using mutex_tryenter() from arc_reclaim_thread().
3703 */
3704 static void
arc_reclaim_thread(void)3705 arc_reclaim_thread(void)
3706 {
3707 clock_t growtime = 0;
3708 callb_cpr_t cpr;
3709
3710 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
3711
3712 mutex_enter(&arc_reclaim_lock);
3713 while (!arc_reclaim_thread_exit) {
3714 int64_t free_memory = arc_available_memory();
3715 uint64_t evicted = 0;
3716
3717 mutex_exit(&arc_reclaim_lock);
3718
3719 if (free_memory < 0) {
3720
3721 arc_no_grow = B_TRUE;
3722 arc_warm = B_TRUE;
3723
3724 /*
3725 * Wait at least zfs_grow_retry (default 60) seconds
3726 * before considering growing.
3727 */
3728 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
3729
3730 arc_kmem_reap_now();
3731
3732 /*
3733 * If we are still low on memory, shrink the ARC
3734 * so that we have arc_shrink_min free space.
3735 */
3736 free_memory = arc_available_memory();
3737
3738 int64_t to_free =
3739 (arc_c >> arc_shrink_shift) - free_memory;
3740 if (to_free > 0) {
3741 #ifdef _KERNEL
3742 to_free = MAX(to_free, ptob(needfree));
3743 #endif
3744 arc_shrink(to_free);
3745 }
3746 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3747 arc_no_grow = B_TRUE;
3748 } else if (ddi_get_lbolt() >= growtime) {
3749 arc_no_grow = B_FALSE;
3750 }
3751
3752 evicted = arc_adjust();
3753
3754 mutex_enter(&arc_reclaim_lock);
3755
3756 /*
3757 * If evicted is zero, we couldn't evict anything via
3758 * arc_adjust(). This could be due to hash lock
3759 * collisions, but more likely due to the majority of
3760 * arc buffers being unevictable. Therefore, even if
3761 * arc_size is above arc_c, another pass is unlikely to
3762 * be helpful and could potentially cause us to enter an
3763 * infinite loop.
3764 */
3765 if (arc_size <= arc_c || evicted == 0) {
3766 /*
3767 * We're either no longer overflowing, or we
3768 * can't evict anything more, so we should wake
3769 * up any threads before we go to sleep.
3770 */
3771 cv_broadcast(&arc_reclaim_waiters_cv);
3772
3773 /*
3774 * Block until signaled, or after one second (we
3775 * might need to perform arc_kmem_reap_now()
3776 * even if we aren't being signalled)
3777 */
3778 CALLB_CPR_SAFE_BEGIN(&cpr);
3779 (void) cv_timedwait(&arc_reclaim_thread_cv,
3780 &arc_reclaim_lock, ddi_get_lbolt() + hz);
3781 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3782 }
3783 }
3784
3785 arc_reclaim_thread_exit = FALSE;
3786 cv_broadcast(&arc_reclaim_thread_cv);
3787 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3788 thread_exit();
3789 }
3790
3791 static void
arc_user_evicts_thread(void)3792 arc_user_evicts_thread(void)
3793 {
3794 callb_cpr_t cpr;
3795
3796 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
3797
3798 mutex_enter(&arc_user_evicts_lock);
3799 while (!arc_user_evicts_thread_exit) {
3800 mutex_exit(&arc_user_evicts_lock);
3801
3802 arc_do_user_evicts();
3803
3804 /*
3805 * This is necessary in order for the mdb ::arc dcmd to
3806 * show up to date information. Since the ::arc command
3807 * does not call the kstat's update function, without
3808 * this call, the command may show stale stats for the
3809 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3810 * with this change, the data might be up to 1 second
3811 * out of date; but that should suffice. The arc_state_t
3812 * structures can be queried directly if more accurate
3813 * information is needed.
3814 */
3815 if (arc_ksp != NULL)
3816 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3817
3818 mutex_enter(&arc_user_evicts_lock);
3819
3820 /*
3821 * Block until signaled, or after one second (we need to
3822 * call the arc's kstat update function regularly).
3823 */
3824 CALLB_CPR_SAFE_BEGIN(&cpr);
3825 (void) cv_timedwait(&arc_user_evicts_cv,
3826 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3827 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
3828 }
3829
3830 arc_user_evicts_thread_exit = FALSE;
3831 cv_broadcast(&arc_user_evicts_cv);
3832 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
3833 thread_exit();
3834 }
3835
3836 /*
3837 * Adapt arc info given the number of bytes we are trying to add and
3838 * the state that we are comming from. This function is only called
3839 * when we are adding new content to the cache.
3840 */
3841 static void
arc_adapt(int bytes,arc_state_t * state)3842 arc_adapt(int bytes, arc_state_t *state)
3843 {
3844 int mult;
3845 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
3846 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3847 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
3848
3849 if (state == arc_l2c_only)
3850 return;
3851
3852 ASSERT(bytes > 0);
3853 /*
3854 * Adapt the target size of the MRU list:
3855 * - if we just hit in the MRU ghost list, then increase
3856 * the target size of the MRU list.
3857 * - if we just hit in the MFU ghost list, then increase
3858 * the target size of the MFU list by decreasing the
3859 * target size of the MRU list.
3860 */
3861 if (state == arc_mru_ghost) {
3862 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
3863 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
3864
3865 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
3866 } else if (state == arc_mfu_ghost) {
3867 uint64_t delta;
3868
3869 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
3870 mult = MIN(mult, 10);
3871
3872 delta = MIN(bytes * mult, arc_p);
3873 arc_p = MAX(arc_p_min, arc_p - delta);
3874 }
3875 ASSERT((int64_t)arc_p >= 0);
3876
3877 if (arc_reclaim_needed()) {
3878 cv_signal(&arc_reclaim_thread_cv);
3879 return;
3880 }
3881
3882 if (arc_no_grow)
3883 return;
3884
3885 if (arc_c >= arc_c_max)
3886 return;
3887
3888 /*
3889 * If we're within (2 * maxblocksize) bytes of the target
3890 * cache size, increment the target cache size
3891 */
3892 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
3893 atomic_add_64(&arc_c, (int64_t)bytes);
3894 if (arc_c > arc_c_max)
3895 arc_c = arc_c_max;
3896 else if (state == arc_anon)
3897 atomic_add_64(&arc_p, (int64_t)bytes);
3898 if (arc_p > arc_c)
3899 arc_p = arc_c;
3900 }
3901 ASSERT((int64_t)arc_p >= 0);
3902 }
3903
3904 /*
3905 * Check if arc_size has grown past our upper threshold, determined by
3906 * zfs_arc_overflow_shift.
3907 */
3908 static boolean_t
arc_is_overflowing(void)3909 arc_is_overflowing(void)
3910 {
3911 /* Always allow at least one block of overflow */
3912 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3913 arc_c >> zfs_arc_overflow_shift);
3914
3915 return (arc_size >= arc_c + overflow);
3916 }
3917
3918 /*
3919 * The buffer, supplied as the first argument, needs a data block. If we
3920 * are hitting the hard limit for the cache size, we must sleep, waiting
3921 * for the eviction thread to catch up. If we're past the target size
3922 * but below the hard limit, we'll only signal the reclaim thread and
3923 * continue on.
3924 */
3925 static void
arc_get_data_buf(arc_buf_t * buf)3926 arc_get_data_buf(arc_buf_t *buf)
3927 {
3928 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
3929 uint64_t size = buf->b_hdr->b_size;
3930 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
3931
3932 arc_adapt(size, state);
3933
3934 /*
3935 * If arc_size is currently overflowing, and has grown past our
3936 * upper limit, we must be adding data faster than the evict
3937 * thread can evict. Thus, to ensure we don't compound the
3938 * problem by adding more data and forcing arc_size to grow even
3939 * further past it's target size, we halt and wait for the
3940 * eviction thread to catch up.
3941 *
3942 * It's also possible that the reclaim thread is unable to evict
3943 * enough buffers to get arc_size below the overflow limit (e.g.
3944 * due to buffers being un-evictable, or hash lock collisions).
3945 * In this case, we want to proceed regardless if we're
3946 * overflowing; thus we don't use a while loop here.
3947 */
3948 if (arc_is_overflowing()) {
3949 mutex_enter(&arc_reclaim_lock);
3950
3951 /*
3952 * Now that we've acquired the lock, we may no longer be
3953 * over the overflow limit, lets check.
3954 *
3955 * We're ignoring the case of spurious wake ups. If that
3956 * were to happen, it'd let this thread consume an ARC
3957 * buffer before it should have (i.e. before we're under
3958 * the overflow limit and were signalled by the reclaim
3959 * thread). As long as that is a rare occurrence, it
3960 * shouldn't cause any harm.
3961 */
3962 if (arc_is_overflowing()) {
3963 cv_signal(&arc_reclaim_thread_cv);
3964 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
3965 }
3966
3967 mutex_exit(&arc_reclaim_lock);
3968 }
3969
3970 if (type == ARC_BUFC_METADATA) {
3971 buf->b_data = zio_buf_alloc(size);
3972 arc_space_consume(size, ARC_SPACE_META);
3973 } else {
3974 ASSERT(type == ARC_BUFC_DATA);
3975 buf->b_data = zio_data_buf_alloc(size);
3976 arc_space_consume(size, ARC_SPACE_DATA);
3977 }
3978
3979 /*
3980 * Update the state size. Note that ghost states have a
3981 * "ghost size" and so don't need to be updated.
3982 */
3983 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
3984 arc_buf_hdr_t *hdr = buf->b_hdr;
3985 arc_state_t *state = hdr->b_l1hdr.b_state;
3986
3987 (void) refcount_add_many(&state->arcs_size, size, buf);
3988
3989 /*
3990 * If this is reached via arc_read, the link is
3991 * protected by the hash lock. If reached via
3992 * arc_buf_alloc, the header should not be accessed by
3993 * any other thread. And, if reached via arc_read_done,
3994 * the hash lock will protect it if it's found in the
3995 * hash table; otherwise no other thread should be
3996 * trying to [add|remove]_reference it.
3997 */
3998 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
3999 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4000 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
4001 size);
4002 }
4003 /*
4004 * If we are growing the cache, and we are adding anonymous
4005 * data, and we have outgrown arc_p, update arc_p
4006 */
4007 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4008 (refcount_count(&arc_anon->arcs_size) +
4009 refcount_count(&arc_mru->arcs_size) > arc_p))
4010 arc_p = MIN(arc_c, arc_p + size);
4011 }
4012 }
4013
4014 /*
4015 * This routine is called whenever a buffer is accessed.
4016 * NOTE: the hash lock is dropped in this function.
4017 */
4018 static void
arc_access(arc_buf_hdr_t * hdr,kmutex_t * hash_lock)4019 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4020 {
4021 clock_t now;
4022
4023 ASSERT(MUTEX_HELD(hash_lock));
4024 ASSERT(HDR_HAS_L1HDR(hdr));
4025
4026 if (hdr->b_l1hdr.b_state == arc_anon) {
4027 /*
4028 * This buffer is not in the cache, and does not
4029 * appear in our "ghost" list. Add the new buffer
4030 * to the MRU state.
4031 */
4032
4033 ASSERT0(hdr->b_l1hdr.b_arc_access);
4034 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4035 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4036 arc_change_state(arc_mru, hdr, hash_lock);
4037
4038 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4039 now = ddi_get_lbolt();
4040
4041 /*
4042 * If this buffer is here because of a prefetch, then either:
4043 * - clear the flag if this is a "referencing" read
4044 * (any subsequent access will bump this into the MFU state).
4045 * or
4046 * - move the buffer to the head of the list if this is
4047 * another prefetch (to make it less likely to be evicted).
4048 */
4049 if (HDR_PREFETCH(hdr)) {
4050 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4051 /* link protected by hash lock */
4052 ASSERT(multilist_link_active(
4053 &hdr->b_l1hdr.b_arc_node));
4054 } else {
4055 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4056 ARCSTAT_BUMP(arcstat_mru_hits);
4057 }
4058 hdr->b_l1hdr.b_arc_access = now;
4059 return;
4060 }
4061
4062 /*
4063 * This buffer has been "accessed" only once so far,
4064 * but it is still in the cache. Move it to the MFU
4065 * state.
4066 */
4067 if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4068 /*
4069 * More than 125ms have passed since we
4070 * instantiated this buffer. Move it to the
4071 * most frequently used state.
4072 */
4073 hdr->b_l1hdr.b_arc_access = now;
4074 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4075 arc_change_state(arc_mfu, hdr, hash_lock);
4076 }
4077 ARCSTAT_BUMP(arcstat_mru_hits);
4078 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4079 arc_state_t *new_state;
4080 /*
4081 * This buffer has been "accessed" recently, but
4082 * was evicted from the cache. Move it to the
4083 * MFU state.
4084 */
4085
4086 if (HDR_PREFETCH(hdr)) {
4087 new_state = arc_mru;
4088 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4089 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4090 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4091 } else {
4092 new_state = arc_mfu;
4093 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4094 }
4095
4096 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4097 arc_change_state(new_state, hdr, hash_lock);
4098
4099 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4100 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4101 /*
4102 * This buffer has been accessed more than once and is
4103 * still in the cache. Keep it in the MFU state.
4104 *
4105 * NOTE: an add_reference() that occurred when we did
4106 * the arc_read() will have kicked this off the list.
4107 * If it was a prefetch, we will explicitly move it to
4108 * the head of the list now.
4109 */
4110 if ((HDR_PREFETCH(hdr)) != 0) {
4111 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4112 /* link protected by hash_lock */
4113 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4114 }
4115 ARCSTAT_BUMP(arcstat_mfu_hits);
4116 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4117 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4118 arc_state_t *new_state = arc_mfu;
4119 /*
4120 * This buffer has been accessed more than once but has
4121 * been evicted from the cache. Move it back to the
4122 * MFU state.
4123 */
4124
4125 if (HDR_PREFETCH(hdr)) {
4126 /*
4127 * This is a prefetch access...
4128 * move this block back to the MRU state.
4129 */
4130 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4131 new_state = arc_mru;
4132 }
4133
4134 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4135 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4136 arc_change_state(new_state, hdr, hash_lock);
4137
4138 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4139 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4140 /*
4141 * This buffer is on the 2nd Level ARC.
4142 */
4143
4144 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4145 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4146 arc_change_state(arc_mfu, hdr, hash_lock);
4147 } else {
4148 ASSERT(!"invalid arc state");
4149 }
4150 }
4151
4152 /* a generic arc_done_func_t which you can use */
4153 /* ARGSUSED */
4154 void
arc_bcopy_func(zio_t * zio,arc_buf_t * buf,void * arg)4155 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4156 {
4157 if (zio == NULL || zio->io_error == 0)
4158 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
4159 VERIFY(arc_buf_remove_ref(buf, arg));
4160 }
4161
4162 /* a generic arc_done_func_t */
4163 void
arc_getbuf_func(zio_t * zio,arc_buf_t * buf,void * arg)4164 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4165 {
4166 arc_buf_t **bufp = arg;
4167 if (zio && zio->io_error) {
4168 VERIFY(arc_buf_remove_ref(buf, arg));
4169 *bufp = NULL;
4170 } else {
4171 *bufp = buf;
4172 ASSERT(buf->b_data);
4173 }
4174 }
4175
4176 static void
arc_read_done(zio_t * zio)4177 arc_read_done(zio_t *zio)
4178 {
4179 arc_buf_hdr_t *hdr;
4180 arc_buf_t *buf;
4181 arc_buf_t *abuf; /* buffer we're assigning to callback */
4182 kmutex_t *hash_lock = NULL;
4183 arc_callback_t *callback_list, *acb;
4184 int freeable = FALSE;
4185
4186 buf = zio->io_private;
4187 hdr = buf->b_hdr;
4188
4189 /*
4190 * The hdr was inserted into hash-table and removed from lists
4191 * prior to starting I/O. We should find this header, since
4192 * it's in the hash table, and it should be legit since it's
4193 * not possible to evict it during the I/O. The only possible
4194 * reason for it not to be found is if we were freed during the
4195 * read.
4196 */
4197 if (HDR_IN_HASH_TABLE(hdr)) {
4198 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4199 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4200 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4201 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4202 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4203
4204 arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
4205 &hash_lock);
4206
4207 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4208 hash_lock == NULL) ||
4209 (found == hdr &&
4210 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4211 (found == hdr && HDR_L2_READING(hdr)));
4212 }
4213
4214 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
4215 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
4216 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
4217
4218 /* byteswap if necessary */
4219 callback_list = hdr->b_l1hdr.b_acb;
4220 ASSERT(callback_list != NULL);
4221 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
4222 dmu_object_byteswap_t bswap =
4223 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4224 arc_byteswap_func_t *func = BP_GET_LEVEL(zio->io_bp) > 0 ?
4225 byteswap_uint64_array :
4226 dmu_ot_byteswap[bswap].ob_func;
4227 func(buf->b_data, hdr->b_size);
4228 }
4229
4230 arc_cksum_compute(buf, B_FALSE);
4231 arc_buf_watch(buf);
4232
4233 if (hash_lock && zio->io_error == 0 &&
4234 hdr->b_l1hdr.b_state == arc_anon) {
4235 /*
4236 * Only call arc_access on anonymous buffers. This is because
4237 * if we've issued an I/O for an evicted buffer, we've already
4238 * called arc_access (to prevent any simultaneous readers from
4239 * getting confused).
4240 */
4241 arc_access(hdr, hash_lock);
4242 }
4243
4244 /* create copies of the data buffer for the callers */
4245 abuf = buf;
4246 for (acb = callback_list; acb; acb = acb->acb_next) {
4247 if (acb->acb_done) {
4248 if (abuf == NULL) {
4249 ARCSTAT_BUMP(arcstat_duplicate_reads);
4250 abuf = arc_buf_clone(buf);
4251 }
4252 acb->acb_buf = abuf;
4253 abuf = NULL;
4254 }
4255 }
4256 hdr->b_l1hdr.b_acb = NULL;
4257 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
4258 ASSERT(!HDR_BUF_AVAILABLE(hdr));
4259 if (abuf == buf) {
4260 ASSERT(buf->b_efunc == NULL);
4261 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
4262 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4263 }
4264
4265 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4266 callback_list != NULL);
4267
4268 if (zio->io_error != 0) {
4269 hdr->b_flags |= ARC_FLAG_IO_ERROR;
4270 if (hdr->b_l1hdr.b_state != arc_anon)
4271 arc_change_state(arc_anon, hdr, hash_lock);
4272 if (HDR_IN_HASH_TABLE(hdr))
4273 buf_hash_remove(hdr);
4274 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4275 }
4276
4277 /*
4278 * Broadcast before we drop the hash_lock to avoid the possibility
4279 * that the hdr (and hence the cv) might be freed before we get to
4280 * the cv_broadcast().
4281 */
4282 cv_broadcast(&hdr->b_l1hdr.b_cv);
4283
4284 if (hash_lock != NULL) {
4285 mutex_exit(hash_lock);
4286 } else {
4287 /*
4288 * This block was freed while we waited for the read to
4289 * complete. It has been removed from the hash table and
4290 * moved to the anonymous state (so that it won't show up
4291 * in the cache).
4292 */
4293 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4294 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
4295 }
4296
4297 /* execute each callback and free its structure */
4298 while ((acb = callback_list) != NULL) {
4299 if (acb->acb_done)
4300 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4301
4302 if (acb->acb_zio_dummy != NULL) {
4303 acb->acb_zio_dummy->io_error = zio->io_error;
4304 zio_nowait(acb->acb_zio_dummy);
4305 }
4306
4307 callback_list = acb->acb_next;
4308 kmem_free(acb, sizeof (arc_callback_t));
4309 }
4310
4311 if (freeable)
4312 arc_hdr_destroy(hdr);
4313 }
4314
4315 /*
4316 * "Read" the block at the specified DVA (in bp) via the
4317 * cache. If the block is found in the cache, invoke the provided
4318 * callback immediately and return. Note that the `zio' parameter
4319 * in the callback will be NULL in this case, since no IO was
4320 * required. If the block is not in the cache pass the read request
4321 * on to the spa with a substitute callback function, so that the
4322 * requested block will be added to the cache.
4323 *
4324 * If a read request arrives for a block that has a read in-progress,
4325 * either wait for the in-progress read to complete (and return the
4326 * results); or, if this is a read with a "done" func, add a record
4327 * to the read to invoke the "done" func when the read completes,
4328 * and return; or just return.
4329 *
4330 * arc_read_done() will invoke all the requested "done" functions
4331 * for readers of this block.
4332 */
4333 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)4334 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
4335 void *private, zio_priority_t priority, int zio_flags,
4336 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
4337 {
4338 arc_buf_hdr_t *hdr = NULL;
4339 arc_buf_t *buf = NULL;
4340 kmutex_t *hash_lock = NULL;
4341 zio_t *rzio;
4342 uint64_t guid = spa_load_guid(spa);
4343
4344 ASSERT(!BP_IS_EMBEDDED(bp) ||
4345 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4346
4347 top:
4348 if (!BP_IS_EMBEDDED(bp)) {
4349 /*
4350 * Embedded BP's have no DVA and require no I/O to "read".
4351 * Create an anonymous arc buf to back it.
4352 */
4353 hdr = buf_hash_find(guid, bp, &hash_lock);
4354 }
4355
4356 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
4357
4358 *arc_flags |= ARC_FLAG_CACHED;
4359
4360 if (HDR_IO_IN_PROGRESS(hdr)) {
4361
4362 if (*arc_flags & ARC_FLAG_WAIT) {
4363 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
4364 mutex_exit(hash_lock);
4365 goto top;
4366 }
4367 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4368
4369 if (done) {
4370 arc_callback_t *acb = NULL;
4371
4372 acb = kmem_zalloc(sizeof (arc_callback_t),
4373 KM_SLEEP);
4374 acb->acb_done = done;
4375 acb->acb_private = private;
4376 if (pio != NULL)
4377 acb->acb_zio_dummy = zio_null(pio,
4378 spa, NULL, NULL, NULL, zio_flags);
4379
4380 ASSERT(acb->acb_done != NULL);
4381 acb->acb_next = hdr->b_l1hdr.b_acb;
4382 hdr->b_l1hdr.b_acb = acb;
4383 add_reference(hdr, hash_lock, private);
4384 mutex_exit(hash_lock);
4385 return (0);
4386 }
4387 mutex_exit(hash_lock);
4388 return (0);
4389 }
4390
4391 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4392 hdr->b_l1hdr.b_state == arc_mfu);
4393
4394 if (done) {
4395 add_reference(hdr, hash_lock, private);
4396 /*
4397 * If this block is already in use, create a new
4398 * copy of the data so that we will be guaranteed
4399 * that arc_release() will always succeed.
4400 */
4401 buf = hdr->b_l1hdr.b_buf;
4402 ASSERT(buf);
4403 ASSERT(buf->b_data);
4404 if (HDR_BUF_AVAILABLE(hdr)) {
4405 ASSERT(buf->b_efunc == NULL);
4406 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4407 } else {
4408 buf = arc_buf_clone(buf);
4409 }
4410
4411 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
4412 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4413 hdr->b_flags |= ARC_FLAG_PREFETCH;
4414 }
4415 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4416 arc_access(hdr, hash_lock);
4417 if (*arc_flags & ARC_FLAG_L2CACHE)
4418 hdr->b_flags |= ARC_FLAG_L2CACHE;
4419 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4420 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4421 mutex_exit(hash_lock);
4422 ARCSTAT_BUMP(arcstat_hits);
4423 arc_update_hit_stat(hdr, B_TRUE);
4424
4425 if (done)
4426 done(NULL, buf, private);
4427 } else {
4428 uint64_t size = BP_GET_LSIZE(bp);
4429 arc_callback_t *acb;
4430 vdev_t *vd = NULL;
4431 uint64_t addr = 0;
4432 boolean_t devw = B_FALSE;
4433 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
4434 int32_t b_asize = 0;
4435
4436 if (hdr == NULL) {
4437 /* this block is not in the cache */
4438 arc_buf_hdr_t *exists = NULL;
4439 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4440 buf = arc_buf_alloc(spa, size, private, type);
4441 hdr = buf->b_hdr;
4442 if (!BP_IS_EMBEDDED(bp)) {
4443 hdr->b_dva = *BP_IDENTITY(bp);
4444 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
4445 exists = buf_hash_insert(hdr, &hash_lock);
4446 }
4447 if (exists != NULL) {
4448 /* somebody beat us to the hash insert */
4449 mutex_exit(hash_lock);
4450 buf_discard_identity(hdr);
4451 (void) arc_buf_remove_ref(buf, private);
4452 goto top; /* restart the IO request */
4453 }
4454
4455 /* if this is a prefetch, we don't have a reference */
4456 if (*arc_flags & ARC_FLAG_PREFETCH) {
4457 (void) remove_reference(hdr, hash_lock,
4458 private);
4459 hdr->b_flags |= ARC_FLAG_PREFETCH;
4460 }
4461 if (*arc_flags & ARC_FLAG_L2CACHE)
4462 hdr->b_flags |= ARC_FLAG_L2CACHE;
4463 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4464 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4465 if (BP_GET_LEVEL(bp) > 0)
4466 hdr->b_flags |= ARC_FLAG_INDIRECT;
4467 } else {
4468 /*
4469 * This block is in the ghost cache. If it was L2-only
4470 * (and thus didn't have an L1 hdr), we realloc the
4471 * header to add an L1 hdr.
4472 */
4473 if (!HDR_HAS_L1HDR(hdr)) {
4474 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4475 hdr_full_cache);
4476 }
4477
4478 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
4479 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4480 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4481 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
4482
4483 /* if this is a prefetch, we don't have a reference */
4484 if (*arc_flags & ARC_FLAG_PREFETCH)
4485 hdr->b_flags |= ARC_FLAG_PREFETCH;
4486 else
4487 add_reference(hdr, hash_lock, private);
4488 if (*arc_flags & ARC_FLAG_L2CACHE)
4489 hdr->b_flags |= ARC_FLAG_L2CACHE;
4490 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4491 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
4492 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4493 buf->b_hdr = hdr;
4494 buf->b_data = NULL;
4495 buf->b_efunc = NULL;
4496 buf->b_private = NULL;
4497 buf->b_next = NULL;
4498 hdr->b_l1hdr.b_buf = buf;
4499 ASSERT0(hdr->b_l1hdr.b_datacnt);
4500 hdr->b_l1hdr.b_datacnt = 1;
4501 arc_get_data_buf(buf);
4502 arc_access(hdr, hash_lock);
4503 }
4504
4505 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
4506
4507 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
4508 acb->acb_done = done;
4509 acb->acb_private = private;
4510
4511 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4512 hdr->b_l1hdr.b_acb = acb;
4513 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4514
4515 if (HDR_HAS_L2HDR(hdr) &&
4516 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4517 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4518 addr = hdr->b_l2hdr.b_daddr;
4519 b_compress = hdr->b_l2hdr.b_compress;
4520 b_asize = hdr->b_l2hdr.b_asize;
4521 /*
4522 * Lock out device removal.
4523 */
4524 if (vdev_is_dead(vd) ||
4525 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4526 vd = NULL;
4527 }
4528
4529 if (hash_lock != NULL)
4530 mutex_exit(hash_lock);
4531
4532 /*
4533 * At this point, we have a level 1 cache miss. Try again in
4534 * L2ARC if possible.
4535 */
4536 ASSERT3U(hdr->b_size, ==, size);
4537 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
4538 uint64_t, size, zbookmark_phys_t *, zb);
4539 ARCSTAT_BUMP(arcstat_misses);
4540 arc_update_hit_stat(hdr, B_FALSE);
4541
4542 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
4543 /*
4544 * Read from the L2ARC if the following are true:
4545 * 1. The L2ARC vdev was previously cached.
4546 * 2. This buffer still has L2ARC metadata.
4547 * 3. This buffer isn't currently writing to the L2ARC.
4548 * 4. The L2ARC entry wasn't evicted, which may
4549 * also have invalidated the vdev.
4550 * 5. This isn't prefetch and l2arc_noprefetch is set.
4551 */
4552 if (HDR_HAS_L2HDR(hdr) &&
4553 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4554 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
4555 l2arc_read_callback_t *cb;
4556
4557 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4558 ARCSTAT_BUMP(arcstat_l2_hits);
4559
4560 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
4561 KM_SLEEP);
4562 cb->l2rcb_buf = buf;
4563 cb->l2rcb_spa = spa;
4564 cb->l2rcb_bp = *bp;
4565 cb->l2rcb_zb = *zb;
4566 cb->l2rcb_flags = zio_flags;
4567 cb->l2rcb_compress = b_compress;
4568
4569 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4570 addr + size < vd->vdev_psize -
4571 VDEV_LABEL_END_SIZE);
4572
4573 /*
4574 * l2arc read. The SCL_L2ARC lock will be
4575 * released by l2arc_read_done().
4576 * Issue a null zio if the underlying buffer
4577 * was squashed to zero size by compression.
4578 */
4579 if (b_compress == ZIO_COMPRESS_EMPTY) {
4580 rzio = zio_null(pio, spa, vd,
4581 l2arc_read_done, cb,
4582 zio_flags | ZIO_FLAG_DONT_CACHE |
4583 ZIO_FLAG_CANFAIL |
4584 ZIO_FLAG_DONT_PROPAGATE |
4585 ZIO_FLAG_DONT_RETRY);
4586 } else {
4587 rzio = zio_read_phys(pio, vd, addr,
4588 b_asize, buf->b_data,
4589 ZIO_CHECKSUM_OFF,
4590 l2arc_read_done, cb, priority,
4591 zio_flags | ZIO_FLAG_DONT_CACHE |
4592 ZIO_FLAG_CANFAIL |
4593 ZIO_FLAG_DONT_PROPAGATE |
4594 ZIO_FLAG_DONT_RETRY, B_FALSE);
4595 }
4596 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4597 zio_t *, rzio);
4598 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
4599
4600 if (*arc_flags & ARC_FLAG_NOWAIT) {
4601 zio_nowait(rzio);
4602 return (0);
4603 }
4604
4605 ASSERT(*arc_flags & ARC_FLAG_WAIT);
4606 if (zio_wait(rzio) == 0)
4607 return (0);
4608
4609 /* l2arc read error; goto zio_read() */
4610 } else {
4611 DTRACE_PROBE1(l2arc__miss,
4612 arc_buf_hdr_t *, hdr);
4613 ARCSTAT_BUMP(arcstat_l2_misses);
4614 if (HDR_L2_WRITING(hdr))
4615 ARCSTAT_BUMP(arcstat_l2_rw_clash);
4616 spa_config_exit(spa, SCL_L2ARC, vd);
4617 }
4618 } else {
4619 if (vd != NULL)
4620 spa_config_exit(spa, SCL_L2ARC, vd);
4621 if (l2arc_ndev != 0) {
4622 DTRACE_PROBE1(l2arc__miss,
4623 arc_buf_hdr_t *, hdr);
4624 ARCSTAT_BUMP(arcstat_l2_misses);
4625 }
4626 }
4627
4628 rzio = zio_read(pio, spa, bp, buf->b_data, size,
4629 arc_read_done, buf, priority, zio_flags, zb);
4630
4631 if (*arc_flags & ARC_FLAG_WAIT)
4632 return (zio_wait(rzio));
4633
4634 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
4635 zio_nowait(rzio);
4636 }
4637 return (0);
4638 }
4639
4640 void
arc_set_callback(arc_buf_t * buf,arc_evict_func_t * func,void * private)4641 arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4642 {
4643 ASSERT(buf->b_hdr != NULL);
4644 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4645 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4646 func == NULL);
4647 ASSERT(buf->b_efunc == NULL);
4648 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4649
4650 buf->b_efunc = func;
4651 buf->b_private = private;
4652 }
4653
4654 /*
4655 * Notify the arc that a block was freed, and thus will never be used again.
4656 */
4657 void
arc_freed(spa_t * spa,const blkptr_t * bp)4658 arc_freed(spa_t *spa, const blkptr_t *bp)
4659 {
4660 arc_buf_hdr_t *hdr;
4661 kmutex_t *hash_lock;
4662 uint64_t guid = spa_load_guid(spa);
4663
4664 ASSERT(!BP_IS_EMBEDDED(bp));
4665
4666 hdr = buf_hash_find(guid, bp, &hash_lock);
4667 if (hdr == NULL)
4668 return;
4669 if (HDR_BUF_AVAILABLE(hdr)) {
4670 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
4671 add_reference(hdr, hash_lock, FTAG);
4672 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
4673 mutex_exit(hash_lock);
4674
4675 arc_release(buf, FTAG);
4676 (void) arc_buf_remove_ref(buf, FTAG);
4677 } else {
4678 mutex_exit(hash_lock);
4679 }
4680
4681 }
4682
4683 /*
4684 * Clear the user eviction callback set by arc_set_callback(), first calling
4685 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4686 * clearing the callback may result in the arc_buf being destroyed. However,
4687 * it will not result in the *last* arc_buf being destroyed, hence the data
4688 * will remain cached in the ARC. We make a copy of the arc buffer here so
4689 * that we can process the callback without holding any locks.
4690 *
4691 * It's possible that the callback is already in the process of being cleared
4692 * by another thread. In this case we can not clear the callback.
4693 *
4694 * Returns B_TRUE if the callback was successfully called and cleared.
4695 */
4696 boolean_t
arc_clear_callback(arc_buf_t * buf)4697 arc_clear_callback(arc_buf_t *buf)
4698 {
4699 arc_buf_hdr_t *hdr;
4700 kmutex_t *hash_lock;
4701 arc_evict_func_t *efunc = buf->b_efunc;
4702 void *private = buf->b_private;
4703
4704 mutex_enter(&buf->b_evict_lock);
4705 hdr = buf->b_hdr;
4706 if (hdr == NULL) {
4707 /*
4708 * We are in arc_do_user_evicts().
4709 */
4710 ASSERT(buf->b_data == NULL);
4711 mutex_exit(&buf->b_evict_lock);
4712 return (B_FALSE);
4713 } else if (buf->b_data == NULL) {
4714 /*
4715 * We are on the eviction list; process this buffer now
4716 * but let arc_do_user_evicts() do the reaping.
4717 */
4718 buf->b_efunc = NULL;
4719 mutex_exit(&buf->b_evict_lock);
4720 VERIFY0(efunc(private));
4721 return (B_TRUE);
4722 }
4723 hash_lock = HDR_LOCK(hdr);
4724 mutex_enter(hash_lock);
4725 hdr = buf->b_hdr;
4726 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4727
4728 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4729 hdr->b_l1hdr.b_datacnt);
4730 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4731 hdr->b_l1hdr.b_state == arc_mfu);
4732
4733 buf->b_efunc = NULL;
4734 buf->b_private = NULL;
4735
4736 if (hdr->b_l1hdr.b_datacnt > 1) {
4737 mutex_exit(&buf->b_evict_lock);
4738 arc_buf_destroy(buf, TRUE);
4739 } else {
4740 ASSERT(buf == hdr->b_l1hdr.b_buf);
4741 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
4742 mutex_exit(&buf->b_evict_lock);
4743 }
4744
4745 mutex_exit(hash_lock);
4746 VERIFY0(efunc(private));
4747 return (B_TRUE);
4748 }
4749
4750 /*
4751 * Release this buffer from the cache, making it an anonymous buffer. This
4752 * must be done after a read and prior to modifying the buffer contents.
4753 * If the buffer has more than one reference, we must make
4754 * a new hdr for the buffer.
4755 */
4756 void
arc_release(arc_buf_t * buf,void * tag)4757 arc_release(arc_buf_t *buf, void *tag)
4758 {
4759 arc_buf_hdr_t *hdr = buf->b_hdr;
4760
4761 /*
4762 * It would be nice to assert that if it's DMU metadata (level >
4763 * 0 || it's the dnode file), then it must be syncing context.
4764 * But we don't know that information at this level.
4765 */
4766
4767 mutex_enter(&buf->b_evict_lock);
4768
4769 ASSERT(HDR_HAS_L1HDR(hdr));
4770
4771 /*
4772 * We don't grab the hash lock prior to this check, because if
4773 * the buffer's header is in the arc_anon state, it won't be
4774 * linked into the hash table.
4775 */
4776 if (hdr->b_l1hdr.b_state == arc_anon) {
4777 mutex_exit(&buf->b_evict_lock);
4778 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4779 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4780 ASSERT(!HDR_HAS_L2HDR(hdr));
4781 ASSERT(BUF_EMPTY(hdr));
4782
4783 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4784 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4785 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4786
4787 ASSERT3P(buf->b_efunc, ==, NULL);
4788 ASSERT3P(buf->b_private, ==, NULL);
4789
4790 hdr->b_l1hdr.b_arc_access = 0;
4791 arc_buf_thaw(buf);
4792
4793 return;
4794 }
4795
4796 kmutex_t *hash_lock = HDR_LOCK(hdr);
4797 mutex_enter(hash_lock);
4798
4799 /*
4800 * This assignment is only valid as long as the hash_lock is
4801 * held, we must be careful not to reference state or the
4802 * b_state field after dropping the lock.
4803 */
4804 arc_state_t *state = hdr->b_l1hdr.b_state;
4805 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4806 ASSERT3P(state, !=, arc_anon);
4807
4808 /* this buffer is not on any list */
4809 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4810
4811 if (HDR_HAS_L2HDR(hdr)) {
4812 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4813
4814 /*
4815 * We have to recheck this conditional again now that
4816 * we're holding the l2ad_mtx to prevent a race with
4817 * another thread which might be concurrently calling
4818 * l2arc_evict(). In that case, l2arc_evict() might have
4819 * destroyed the header's L2 portion as we were waiting
4820 * to acquire the l2ad_mtx.
4821 */
4822 if (HDR_HAS_L2HDR(hdr))
4823 arc_hdr_l2hdr_destroy(hdr);
4824
4825 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
4826 }
4827
4828 /*
4829 * Do we have more than one buf?
4830 */
4831 if (hdr->b_l1hdr.b_datacnt > 1) {
4832 arc_buf_hdr_t *nhdr;
4833 arc_buf_t **bufp;
4834 uint64_t blksz = hdr->b_size;
4835 uint64_t spa = hdr->b_spa;
4836 arc_buf_contents_t type = arc_buf_type(hdr);
4837 uint32_t flags = hdr->b_flags;
4838
4839 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
4840 /*
4841 * Pull the data off of this hdr and attach it to
4842 * a new anonymous hdr.
4843 */
4844 (void) remove_reference(hdr, hash_lock, tag);
4845 bufp = &hdr->b_l1hdr.b_buf;
4846 while (*bufp != buf)
4847 bufp = &(*bufp)->b_next;
4848 *bufp = buf->b_next;
4849 buf->b_next = NULL;
4850
4851 ASSERT3P(state, !=, arc_l2c_only);
4852
4853 (void) refcount_remove_many(
4854 &state->arcs_size, hdr->b_size, buf);
4855
4856 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4857 ASSERT3P(state, !=, arc_l2c_only);
4858 uint64_t *size = &state->arcs_lsize[type];
4859 ASSERT3U(*size, >=, hdr->b_size);
4860 atomic_add_64(size, -hdr->b_size);
4861 }
4862
4863 /*
4864 * We're releasing a duplicate user data buffer, update
4865 * our statistics accordingly.
4866 */
4867 if (HDR_ISTYPE_DATA(hdr)) {
4868 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4869 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4870 -hdr->b_size);
4871 }
4872 hdr->b_l1hdr.b_datacnt -= 1;
4873 arc_cksum_verify(buf);
4874 arc_buf_unwatch(buf);
4875
4876 mutex_exit(hash_lock);
4877
4878 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
4879 nhdr->b_size = blksz;
4880 nhdr->b_spa = spa;
4881
4882 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
4883 nhdr->b_flags |= arc_bufc_to_flags(type);
4884 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4885
4886 nhdr->b_l1hdr.b_buf = buf;
4887 nhdr->b_l1hdr.b_datacnt = 1;
4888 nhdr->b_l1hdr.b_state = arc_anon;
4889 nhdr->b_l1hdr.b_arc_access = 0;
4890 nhdr->b_l1hdr.b_tmp_cdata = NULL;
4891 nhdr->b_freeze_cksum = NULL;
4892
4893 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
4894 buf->b_hdr = nhdr;
4895 mutex_exit(&buf->b_evict_lock);
4896 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
4897 } else {
4898 mutex_exit(&buf->b_evict_lock);
4899 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
4900 /* protected by hash lock, or hdr is on arc_anon */
4901 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4902 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4903 arc_change_state(arc_anon, hdr, hash_lock);
4904 hdr->b_l1hdr.b_arc_access = 0;
4905 mutex_exit(hash_lock);
4906
4907 buf_discard_identity(hdr);
4908 arc_buf_thaw(buf);
4909 }
4910 buf->b_efunc = NULL;
4911 buf->b_private = NULL;
4912 }
4913
4914 int
arc_released(arc_buf_t * buf)4915 arc_released(arc_buf_t *buf)
4916 {
4917 int released;
4918
4919 mutex_enter(&buf->b_evict_lock);
4920 released = (buf->b_data != NULL &&
4921 buf->b_hdr->b_l1hdr.b_state == arc_anon);
4922 mutex_exit(&buf->b_evict_lock);
4923 return (released);
4924 }
4925
4926 #ifdef ZFS_DEBUG
4927 int
arc_referenced(arc_buf_t * buf)4928 arc_referenced(arc_buf_t *buf)
4929 {
4930 int referenced;
4931
4932 mutex_enter(&buf->b_evict_lock);
4933 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
4934 mutex_exit(&buf->b_evict_lock);
4935 return (referenced);
4936 }
4937 #endif
4938
4939 static void
arc_write_ready(zio_t * zio)4940 arc_write_ready(zio_t *zio)
4941 {
4942 arc_write_callback_t *callback = zio->io_private;
4943 arc_buf_t *buf = callback->awcb_buf;
4944 arc_buf_hdr_t *hdr = buf->b_hdr;
4945
4946 ASSERT(HDR_HAS_L1HDR(hdr));
4947 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4948 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
4949 callback->awcb_ready(zio, buf, callback->awcb_private);
4950
4951 /*
4952 * If the IO is already in progress, then this is a re-write
4953 * attempt, so we need to thaw and re-compute the cksum.
4954 * It is the responsibility of the callback to handle the
4955 * accounting for any re-write attempt.
4956 */
4957 if (HDR_IO_IN_PROGRESS(hdr)) {
4958 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
4959 if (hdr->b_freeze_cksum != NULL) {
4960 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4961 hdr->b_freeze_cksum = NULL;
4962 }
4963 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
4964 }
4965 arc_cksum_compute(buf, B_FALSE);
4966 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
4967 }
4968
4969 /*
4970 * The SPA calls this callback for each physical write that happens on behalf
4971 * of a logical write. See the comment in dbuf_write_physdone() for details.
4972 */
4973 static void
arc_write_physdone(zio_t * zio)4974 arc_write_physdone(zio_t *zio)
4975 {
4976 arc_write_callback_t *cb = zio->io_private;
4977 if (cb->awcb_physdone != NULL)
4978 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4979 }
4980
4981 static void
arc_write_done(zio_t * zio)4982 arc_write_done(zio_t *zio)
4983 {
4984 arc_write_callback_t *callback = zio->io_private;
4985 arc_buf_t *buf = callback->awcb_buf;
4986 arc_buf_hdr_t *hdr = buf->b_hdr;
4987
4988 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4989
4990 if (zio->io_error == 0) {
4991 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
4992 buf_discard_identity(hdr);
4993 } else {
4994 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4995 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
4996 }
4997 } else {
4998 ASSERT(BUF_EMPTY(hdr));
4999 }
5000
5001 /*
5002 * If the block to be written was all-zero or compressed enough to be
5003 * embedded in the BP, no write was performed so there will be no
5004 * dva/birth/checksum. The buffer must therefore remain anonymous
5005 * (and uncached).
5006 */
5007 if (!BUF_EMPTY(hdr)) {
5008 arc_buf_hdr_t *exists;
5009 kmutex_t *hash_lock;
5010
5011 ASSERT(zio->io_error == 0);
5012
5013 arc_cksum_verify(buf);
5014
5015 exists = buf_hash_insert(hdr, &hash_lock);
5016 if (exists != NULL) {
5017 /*
5018 * This can only happen if we overwrite for
5019 * sync-to-convergence, because we remove
5020 * buffers from the hash table when we arc_free().
5021 */
5022 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5023 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5024 panic("bad overwrite, hdr=%p exists=%p",
5025 (void *)hdr, (void *)exists);
5026 ASSERT(refcount_is_zero(
5027 &exists->b_l1hdr.b_refcnt));
5028 arc_change_state(arc_anon, exists, hash_lock);
5029 mutex_exit(hash_lock);
5030 arc_hdr_destroy(exists);
5031 exists = buf_hash_insert(hdr, &hash_lock);
5032 ASSERT3P(exists, ==, NULL);
5033 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5034 /* nopwrite */
5035 ASSERT(zio->io_prop.zp_nopwrite);
5036 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5037 panic("bad nopwrite, hdr=%p exists=%p",
5038 (void *)hdr, (void *)exists);
5039 } else {
5040 /* Dedup */
5041 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5042 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
5043 ASSERT(BP_GET_DEDUP(zio->io_bp));
5044 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5045 }
5046 }
5047 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5048 /* if it's not anon, we are doing a scrub */
5049 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
5050 arc_access(hdr, hash_lock);
5051 mutex_exit(hash_lock);
5052 } else {
5053 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
5054 }
5055
5056 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5057 callback->awcb_done(zio, buf, callback->awcb_private);
5058
5059 kmem_free(callback, sizeof (arc_write_callback_t));
5060 }
5061
5062 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t l2arc,boolean_t l2arc_compress,const zio_prop_t * zp,arc_done_func_t * ready,arc_done_func_t * physdone,arc_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)5063 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
5064 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
5065 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5066 arc_done_func_t *done, void *private, zio_priority_t priority,
5067 int zio_flags, const zbookmark_phys_t *zb)
5068 {
5069 arc_buf_hdr_t *hdr = buf->b_hdr;
5070 arc_write_callback_t *callback;
5071 zio_t *zio;
5072
5073 ASSERT(ready != NULL);
5074 ASSERT(done != NULL);
5075 ASSERT(!HDR_IO_ERROR(hdr));
5076 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5077 ASSERT(hdr->b_l1hdr.b_acb == NULL);
5078 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
5079 if (l2arc)
5080 hdr->b_flags |= ARC_FLAG_L2CACHE;
5081 if (l2arc_compress)
5082 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
5083 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
5084 callback->awcb_ready = ready;
5085 callback->awcb_physdone = physdone;
5086 callback->awcb_done = done;
5087 callback->awcb_private = private;
5088 callback->awcb_buf = buf;
5089
5090 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
5091 arc_write_ready, arc_write_physdone, arc_write_done, callback,
5092 priority, zio_flags, zb);
5093
5094 return (zio);
5095 }
5096
5097 static int
arc_memory_throttle(uint64_t reserve,uint64_t txg)5098 arc_memory_throttle(uint64_t reserve, uint64_t txg)
5099 {
5100 #ifdef _KERNEL
5101 uint64_t available_memory = ptob(freemem);
5102 static uint64_t page_load = 0;
5103 static uint64_t last_txg = 0;
5104
5105 #if defined(__i386)
5106 available_memory =
5107 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
5108 #endif
5109
5110 if (freemem > physmem * arc_lotsfree_percent / 100)
5111 return (0);
5112
5113 if (txg > last_txg) {
5114 last_txg = txg;
5115 page_load = 0;
5116 }
5117 /*
5118 * If we are in pageout, we know that memory is already tight,
5119 * the arc is already going to be evicting, so we just want to
5120 * continue to let page writes occur as quickly as possible.
5121 */
5122 if (curproc == proc_pageout) {
5123 if (page_load > MAX(ptob(minfree), available_memory) / 4)
5124 return (SET_ERROR(ERESTART));
5125 /* Note: reserve is inflated, so we deflate */
5126 page_load += reserve / 8;
5127 return (0);
5128 } else if (page_load > 0 && arc_reclaim_needed()) {
5129 /* memory is low, delay before restarting */
5130 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
5131 return (SET_ERROR(EAGAIN));
5132 }
5133 page_load = 0;
5134 #endif
5135 return (0);
5136 }
5137
5138 void
arc_tempreserve_clear(uint64_t reserve)5139 arc_tempreserve_clear(uint64_t reserve)
5140 {
5141 atomic_add_64(&arc_tempreserve, -reserve);
5142 ASSERT((int64_t)arc_tempreserve >= 0);
5143 }
5144
5145 int
arc_tempreserve_space(uint64_t reserve,uint64_t txg)5146 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5147 {
5148 int error;
5149 uint64_t anon_size;
5150
5151 if (reserve > arc_c/4 && !arc_no_grow)
5152 arc_c = MIN(arc_c_max, reserve * 4);
5153 if (reserve > arc_c)
5154 return (SET_ERROR(ENOMEM));
5155
5156 /*
5157 * Don't count loaned bufs as in flight dirty data to prevent long
5158 * network delays from blocking transactions that are ready to be
5159 * assigned to a txg.
5160 */
5161 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5162 arc_loaned_bytes), 0);
5163
5164 /*
5165 * Writes will, almost always, require additional memory allocations
5166 * in order to compress/encrypt/etc the data. We therefore need to
5167 * make sure that there is sufficient available memory for this.
5168 */
5169 error = arc_memory_throttle(reserve, txg);
5170 if (error != 0)
5171 return (error);
5172
5173 /*
5174 * Throttle writes when the amount of dirty data in the cache
5175 * gets too large. We try to keep the cache less than half full
5176 * of dirty blocks so that our sync times don't grow too large.
5177 * Note: if two requests come in concurrently, we might let them
5178 * both succeed, when one of them should fail. Not a huge deal.
5179 */
5180
5181 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5182 anon_size > arc_c / 4) {
5183 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5184 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5185 arc_tempreserve>>10,
5186 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5187 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5188 reserve>>10, arc_c>>10);
5189 return (SET_ERROR(ERESTART));
5190 }
5191 atomic_add_64(&arc_tempreserve, reserve);
5192 return (0);
5193 }
5194
5195 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * evict_data,kstat_named_t * evict_metadata)5196 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5197 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5198 {
5199 size->value.ui64 = refcount_count(&state->arcs_size);
5200 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5201 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5202 }
5203
5204 static int
arc_kstat_update(kstat_t * ksp,int rw)5205 arc_kstat_update(kstat_t *ksp, int rw)
5206 {
5207 arc_stats_t *as = ksp->ks_data;
5208
5209 if (rw == KSTAT_WRITE) {
5210 return (EACCES);
5211 } else {
5212 arc_kstat_update_state(arc_anon,
5213 &as->arcstat_anon_size,
5214 &as->arcstat_anon_evictable_data,
5215 &as->arcstat_anon_evictable_metadata);
5216 arc_kstat_update_state(arc_mru,
5217 &as->arcstat_mru_size,
5218 &as->arcstat_mru_evictable_data,
5219 &as->arcstat_mru_evictable_metadata);
5220 arc_kstat_update_state(arc_mru_ghost,
5221 &as->arcstat_mru_ghost_size,
5222 &as->arcstat_mru_ghost_evictable_data,
5223 &as->arcstat_mru_ghost_evictable_metadata);
5224 arc_kstat_update_state(arc_mfu,
5225 &as->arcstat_mfu_size,
5226 &as->arcstat_mfu_evictable_data,
5227 &as->arcstat_mfu_evictable_metadata);
5228 arc_kstat_update_state(arc_mfu_ghost,
5229 &as->arcstat_mfu_ghost_size,
5230 &as->arcstat_mfu_ghost_evictable_data,
5231 &as->arcstat_mfu_ghost_evictable_metadata);
5232 }
5233
5234 return (0);
5235 }
5236
5237 /*
5238 * This function *must* return indices evenly distributed between all
5239 * sublists of the multilist. This is needed due to how the ARC eviction
5240 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5241 * distributed between all sublists and uses this assumption when
5242 * deciding which sublist to evict from and how much to evict from it.
5243 */
5244 unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)5245 arc_state_multilist_index_func(multilist_t *ml, void *obj)
5246 {
5247 arc_buf_hdr_t *hdr = obj;
5248
5249 /*
5250 * We rely on b_dva to generate evenly distributed index
5251 * numbers using buf_hash below. So, as an added precaution,
5252 * let's make sure we never add empty buffers to the arc lists.
5253 */
5254 ASSERT(!BUF_EMPTY(hdr));
5255
5256 /*
5257 * The assumption here, is the hash value for a given
5258 * arc_buf_hdr_t will remain constant throughout it's lifetime
5259 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
5260 * Thus, we don't need to store the header's sublist index
5261 * on insertion, as this index can be recalculated on removal.
5262 *
5263 * Also, the low order bits of the hash value are thought to be
5264 * distributed evenly. Otherwise, in the case that the multilist
5265 * has a power of two number of sublists, each sublists' usage
5266 * would not be evenly distributed.
5267 */
5268 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5269 multilist_get_num_sublists(ml));
5270 }
5271
5272 void
arc_init(void)5273 arc_init(void)
5274 {
5275 /*
5276 * allmem is "all memory that we could possibly use".
5277 */
5278 #ifdef _KERNEL
5279 uint64_t allmem = ptob(physmem - swapfs_minfree);
5280 #else
5281 uint64_t allmem = (physmem * PAGESIZE) / 2;
5282 #endif
5283
5284 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5285 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5286 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5287
5288 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5289 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
5290
5291 /* Convert seconds to clock ticks */
5292 arc_min_prefetch_lifespan = 1 * hz;
5293
5294 /* Start out with 1/8 of all memory */
5295 arc_c = allmem / 8;
5296
5297 #ifdef _KERNEL
5298 /*
5299 * On architectures where the physical memory can be larger
5300 * than the addressable space (intel in 32-bit mode), we may
5301 * need to limit the cache to 1/8 of VM size.
5302 */
5303 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
5304 #endif
5305
5306 /* set min cache to 1/32 of all memory, or 64MB, whichever is more */
5307 arc_c_min = MAX(allmem / 32, 64 << 20);
5308 /* set max to 3/4 of all memory, or all but 1GB, whichever is more */
5309 if (allmem >= 1 << 30)
5310 arc_c_max = allmem - (1 << 30);
5311 else
5312 arc_c_max = arc_c_min;
5313 arc_c_max = MAX(allmem * 3 / 4, arc_c_max);
5314
5315 /*
5316 * Allow the tunables to override our calculations if they are
5317 * reasonable (ie. over 64MB)
5318 */
5319 if (zfs_arc_max > 64 << 20 && zfs_arc_max < allmem)
5320 arc_c_max = zfs_arc_max;
5321 if (zfs_arc_min > 64 << 20 && zfs_arc_min <= arc_c_max)
5322 arc_c_min = zfs_arc_min;
5323
5324 arc_c = arc_c_max;
5325 arc_p = (arc_c >> 1);
5326
5327 /* limit meta-data to 1/4 of the arc capacity */
5328 arc_meta_limit = arc_c_max / 4;
5329
5330 /* Allow the tunable to override if it is reasonable */
5331 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
5332 arc_meta_limit = zfs_arc_meta_limit;
5333
5334 if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
5335 arc_c_min = arc_meta_limit / 2;
5336
5337 if (zfs_arc_meta_min > 0) {
5338 arc_meta_min = zfs_arc_meta_min;
5339 } else {
5340 arc_meta_min = arc_c_min / 2;
5341 }
5342
5343 if (zfs_arc_grow_retry > 0)
5344 arc_grow_retry = zfs_arc_grow_retry;
5345
5346 if (zfs_arc_shrink_shift > 0)
5347 arc_shrink_shift = zfs_arc_shrink_shift;
5348
5349 /*
5350 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
5351 */
5352 if (arc_no_grow_shift >= arc_shrink_shift)
5353 arc_no_grow_shift = arc_shrink_shift - 1;
5354
5355 if (zfs_arc_p_min_shift > 0)
5356 arc_p_min_shift = zfs_arc_p_min_shift;
5357
5358 if (zfs_arc_num_sublists_per_state < 1)
5359 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
5360
5361 /* if kmem_flags are set, lets try to use less memory */
5362 if (kmem_debugging())
5363 arc_c = arc_c / 2;
5364 if (arc_c < arc_c_min)
5365 arc_c = arc_c_min;
5366
5367 arc_anon = &ARC_anon;
5368 arc_mru = &ARC_mru;
5369 arc_mru_ghost = &ARC_mru_ghost;
5370 arc_mfu = &ARC_mfu;
5371 arc_mfu_ghost = &ARC_mfu_ghost;
5372 arc_l2c_only = &ARC_l2c_only;
5373 arc_size = 0;
5374
5375 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
5376 sizeof (arc_buf_hdr_t),
5377 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5378 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5379 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
5380 sizeof (arc_buf_hdr_t),
5381 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5382 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5383 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
5384 sizeof (arc_buf_hdr_t),
5385 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5386 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5387 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
5388 sizeof (arc_buf_hdr_t),
5389 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5390 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5391 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
5392 sizeof (arc_buf_hdr_t),
5393 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5394 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5395 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
5396 sizeof (arc_buf_hdr_t),
5397 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5398 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5399 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
5400 sizeof (arc_buf_hdr_t),
5401 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5402 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5403 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
5404 sizeof (arc_buf_hdr_t),
5405 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5406 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5407 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
5408 sizeof (arc_buf_hdr_t),
5409 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5410 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5411 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
5412 sizeof (arc_buf_hdr_t),
5413 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5414 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5415
5416 refcount_create(&arc_anon->arcs_size);
5417 refcount_create(&arc_mru->arcs_size);
5418 refcount_create(&arc_mru_ghost->arcs_size);
5419 refcount_create(&arc_mfu->arcs_size);
5420 refcount_create(&arc_mfu_ghost->arcs_size);
5421 refcount_create(&arc_l2c_only->arcs_size);
5422
5423 buf_init();
5424
5425 arc_reclaim_thread_exit = FALSE;
5426 arc_user_evicts_thread_exit = FALSE;
5427 arc_eviction_list = NULL;
5428 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5429
5430 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5431 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5432
5433 if (arc_ksp != NULL) {
5434 arc_ksp->ks_data = &arc_stats;
5435 arc_ksp->ks_update = arc_kstat_update;
5436 kstat_install(arc_ksp);
5437 }
5438
5439 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
5440 TS_RUN, minclsyspri);
5441
5442 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
5443 TS_RUN, minclsyspri);
5444
5445 arc_dead = FALSE;
5446 arc_warm = B_FALSE;
5447
5448 /*
5449 * Calculate maximum amount of dirty data per pool.
5450 *
5451 * If it has been set by /etc/system, take that.
5452 * Otherwise, use a percentage of physical memory defined by
5453 * zfs_dirty_data_max_percent (default 10%) with a cap at
5454 * zfs_dirty_data_max_max (default 4GB).
5455 */
5456 if (zfs_dirty_data_max == 0) {
5457 zfs_dirty_data_max = physmem * PAGESIZE *
5458 zfs_dirty_data_max_percent / 100;
5459 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5460 zfs_dirty_data_max_max);
5461 }
5462 }
5463
5464 void
arc_fini(void)5465 arc_fini(void)
5466 {
5467 mutex_enter(&arc_reclaim_lock);
5468 arc_reclaim_thread_exit = TRUE;
5469 /*
5470 * The reclaim thread will set arc_reclaim_thread_exit back to
5471 * FALSE when it is finished exiting; we're waiting for that.
5472 */
5473 while (arc_reclaim_thread_exit) {
5474 cv_signal(&arc_reclaim_thread_cv);
5475 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5476 }
5477 mutex_exit(&arc_reclaim_lock);
5478
5479 mutex_enter(&arc_user_evicts_lock);
5480 arc_user_evicts_thread_exit = TRUE;
5481 /*
5482 * The user evicts thread will set arc_user_evicts_thread_exit
5483 * to FALSE when it is finished exiting; we're waiting for that.
5484 */
5485 while (arc_user_evicts_thread_exit) {
5486 cv_signal(&arc_user_evicts_cv);
5487 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5488 }
5489 mutex_exit(&arc_user_evicts_lock);
5490
5491 /* Use TRUE to ensure *all* buffers are evicted */
5492 arc_flush(NULL, TRUE);
5493
5494 arc_dead = TRUE;
5495
5496 if (arc_ksp != NULL) {
5497 kstat_delete(arc_ksp);
5498 arc_ksp = NULL;
5499 }
5500
5501 mutex_destroy(&arc_reclaim_lock);
5502 cv_destroy(&arc_reclaim_thread_cv);
5503 cv_destroy(&arc_reclaim_waiters_cv);
5504
5505 mutex_destroy(&arc_user_evicts_lock);
5506 cv_destroy(&arc_user_evicts_cv);
5507
5508 refcount_destroy(&arc_anon->arcs_size);
5509 refcount_destroy(&arc_mru->arcs_size);
5510 refcount_destroy(&arc_mru_ghost->arcs_size);
5511 refcount_destroy(&arc_mfu->arcs_size);
5512 refcount_destroy(&arc_mfu_ghost->arcs_size);
5513 refcount_destroy(&arc_l2c_only->arcs_size);
5514
5515 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5516 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5517 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5518 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5519 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5520 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5521 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5522 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5523
5524 buf_fini();
5525
5526 ASSERT0(arc_loaned_bytes);
5527 }
5528
5529 /*
5530 * Level 2 ARC
5531 *
5532 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5533 * It uses dedicated storage devices to hold cached data, which are populated
5534 * using large infrequent writes. The main role of this cache is to boost
5535 * the performance of random read workloads. The intended L2ARC devices
5536 * include short-stroked disks, solid state disks, and other media with
5537 * substantially faster read latency than disk.
5538 *
5539 * +-----------------------+
5540 * | ARC |
5541 * +-----------------------+
5542 * | ^ ^
5543 * | | |
5544 * l2arc_feed_thread() arc_read()
5545 * | | |
5546 * | l2arc read |
5547 * V | |
5548 * +---------------+ |
5549 * | L2ARC | |
5550 * +---------------+ |
5551 * | ^ |
5552 * l2arc_write() | |
5553 * | | |
5554 * V | |
5555 * +-------+ +-------+
5556 * | vdev | | vdev |
5557 * | cache | | cache |
5558 * +-------+ +-------+
5559 * +=========+ .-----.
5560 * : L2ARC : |-_____-|
5561 * : devices : | Disks |
5562 * +=========+ `-_____-'
5563 *
5564 * Read requests are satisfied from the following sources, in order:
5565 *
5566 * 1) ARC
5567 * 2) vdev cache of L2ARC devices
5568 * 3) L2ARC devices
5569 * 4) vdev cache of disks
5570 * 5) disks
5571 *
5572 * Some L2ARC device types exhibit extremely slow write performance.
5573 * To accommodate for this there are some significant differences between
5574 * the L2ARC and traditional cache design:
5575 *
5576 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5577 * the ARC behave as usual, freeing buffers and placing headers on ghost
5578 * lists. The ARC does not send buffers to the L2ARC during eviction as
5579 * this would add inflated write latencies for all ARC memory pressure.
5580 *
5581 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5582 * It does this by periodically scanning buffers from the eviction-end of
5583 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
5584 * not already there. It scans until a headroom of buffers is satisfied,
5585 * which itself is a buffer for ARC eviction. If a compressible buffer is
5586 * found during scanning and selected for writing to an L2ARC device, we
5587 * temporarily boost scanning headroom during the next scan cycle to make
5588 * sure we adapt to compression effects (which might significantly reduce
5589 * the data volume we write to L2ARC). The thread that does this is
5590 * l2arc_feed_thread(), illustrated below; example sizes are included to
5591 * provide a better sense of ratio than this diagram:
5592 *
5593 * head --> tail
5594 * +---------------------+----------+
5595 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5596 * +---------------------+----------+ | o L2ARC eligible
5597 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5598 * +---------------------+----------+ |
5599 * 15.9 Gbytes ^ 32 Mbytes |
5600 * headroom |
5601 * l2arc_feed_thread()
5602 * |
5603 * l2arc write hand <--[oooo]--'
5604 * | 8 Mbyte
5605 * | write max
5606 * V
5607 * +==============================+
5608 * L2ARC dev |####|#|###|###| |####| ... |
5609 * +==============================+
5610 * 32 Gbytes
5611 *
5612 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5613 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5614 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5615 * safe to say that this is an uncommon case, since buffers at the end of
5616 * the ARC lists have moved there due to inactivity.
5617 *
5618 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5619 * then the L2ARC simply misses copying some buffers. This serves as a
5620 * pressure valve to prevent heavy read workloads from both stalling the ARC
5621 * with waits and clogging the L2ARC with writes. This also helps prevent
5622 * the potential for the L2ARC to churn if it attempts to cache content too
5623 * quickly, such as during backups of the entire pool.
5624 *
5625 * 5. After system boot and before the ARC has filled main memory, there are
5626 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5627 * lists can remain mostly static. Instead of searching from tail of these
5628 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5629 * for eligible buffers, greatly increasing its chance of finding them.
5630 *
5631 * The L2ARC device write speed is also boosted during this time so that
5632 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5633 * there are no L2ARC reads, and no fear of degrading read performance
5634 * through increased writes.
5635 *
5636 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
5637 * the vdev queue can aggregate them into larger and fewer writes. Each
5638 * device is written to in a rotor fashion, sweeping writes through
5639 * available space then repeating.
5640 *
5641 * 7. The L2ARC does not store dirty content. It never needs to flush
5642 * write buffers back to disk based storage.
5643 *
5644 * 8. If an ARC buffer is written (and dirtied) which also exists in the
5645 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5646 *
5647 * The performance of the L2ARC can be tweaked by a number of tunables, which
5648 * may be necessary for different workloads:
5649 *
5650 * l2arc_write_max max write bytes per interval
5651 * l2arc_write_boost extra write bytes during device warmup
5652 * l2arc_noprefetch skip caching prefetched buffers
5653 * l2arc_headroom number of max device writes to precache
5654 * l2arc_headroom_boost when we find compressed buffers during ARC
5655 * scanning, we multiply headroom by this
5656 * percentage factor for the next scan cycle,
5657 * since more compressed buffers are likely to
5658 * be present
5659 * l2arc_feed_secs seconds between L2ARC writing
5660 *
5661 * Tunables may be removed or added as future performance improvements are
5662 * integrated, and also may become zpool properties.
5663 *
5664 * There are three key functions that control how the L2ARC warms up:
5665 *
5666 * l2arc_write_eligible() check if a buffer is eligible to cache
5667 * l2arc_write_size() calculate how much to write
5668 * l2arc_write_interval() calculate sleep delay between writes
5669 *
5670 * These three functions determine what to write, how much, and how quickly
5671 * to send writes.
5672 *
5673 * L2ARC persistency:
5674 *
5675 * When writing buffers to L2ARC, we periodically add some metadata to
5676 * make sure we can pick them up after reboot, thus dramatically reducing
5677 * the impact that any downtime has on the performance of storage systems
5678 * with large caches.
5679 *
5680 * The implementation works fairly simply by integrating the following two
5681 * modifications:
5682 *
5683 * *) Every now and then we mix in a piece of metadata (called a log block)
5684 * into the L2ARC write. This allows us to understand what's been written,
5685 * so that we can rebuild the arc_buf_hdr_t structures of the main ARC
5686 * buffers. The log block also includes a "2-back-reference" pointer to
5687 * he second-to-previous block, forming a back-linked list of blocks on
5688 * the L2ARC device.
5689 *
5690 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
5691 * for our header bookkeeping purposes. This contains a device header,
5692 * which contains our top-level reference structures. We update it each
5693 * time we write a new log block, so that we're able to locate it in the
5694 * L2ARC device. If this write results in an inconsistent device header
5695 * (e.g. due to power failure), we detect this by verifying the header's
5696 * checksum and simply drop the entries from L2ARC.
5697 *
5698 * Implementation diagram:
5699 *
5700 * +=== L2ARC device (not to scale) ======================================+
5701 * | ___two newest log block pointers__.__________ |
5702 * | / \1 back \latest |
5703 * |.____/_. V V |
5704 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
5705 * || hdr| ^ /^ /^ / / |
5706 * |+------+ ...--\-------/ \-----/--\------/ / |
5707 * | \--------------/ \--------------/ |
5708 * +======================================================================+
5709 *
5710 * As can be seen on the diagram, rather than using a simple linked list,
5711 * we use a pair of linked lists with alternating elements. This is a
5712 * performance enhancement due to the fact that we only find out of the
5713 * address of the next log block access once the current block has been
5714 * completely read in. Obviously, this hurts performance, because we'd be
5715 * keeping the device's I/O queue at only a 1 operation deep, thus
5716 * incurring a large amount of I/O round-trip latency. Having two lists
5717 * allows us to "prefetch" two log blocks ahead of where we are currently
5718 * rebuilding L2ARC buffers.
5719 *
5720 * On-device data structures:
5721 *
5722 * L2ARC device header: l2arc_dev_hdr_phys_t
5723 * L2ARC log block: l2arc_log_blk_phys_t
5724 *
5725 * L2ARC reconstruction:
5726 *
5727 * When writing data, we simply write in the standard rotary fashion,
5728 * evicting buffers as we go and simply writing new data over them (writing
5729 * a new log block every now and then). This obviously means that once we
5730 * loop around the end of the device, we will start cutting into an already
5731 * committed log block (and its referenced data buffers), like so:
5732 *
5733 * current write head__ __old tail
5734 * \ /
5735 * V V
5736 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
5737 * ^ ^^^^^^^^^___________________________________
5738 * | \
5739 * <<nextwrite>> may overwrite this blk and/or its bufs --'
5740 *
5741 * When importing the pool, we detect this situation and use it to stop
5742 * our scanning process (see l2arc_rebuild).
5743 *
5744 * There is one significant caveat to consider when rebuilding ARC contents
5745 * from an L2ARC device: what about invalidated buffers? Given the above
5746 * construction, we cannot update blocks which we've already written to amend
5747 * them to remove buffers which were invalidated. Thus, during reconstruction,
5748 * we might be populating the cache with buffers for data that's not on the
5749 * main pool anymore, or may have been overwritten!
5750 *
5751 * As it turns out, this isn't a problem. Every arc_read request includes
5752 * both the DVA and, crucially, the birth TXG of the BP the caller is
5753 * looking for. So even if the cache were populated by completely rotten
5754 * blocks for data that had been long deleted and/or overwritten, we'll
5755 * never actually return bad data from the cache, since the DVA with the
5756 * birth TXG uniquely identify a block in space and time - once created,
5757 * a block is immutable on disk. The worst thing we have done is wasted
5758 * some time and memory at l2arc rebuild to reconstruct outdated ARC
5759 * entries that will get dropped from the l2arc as it is being updated
5760 * with new blocks.
5761 */
5762
5763 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,uint64_t sync_txg,arc_buf_hdr_t * hdr)5764 l2arc_write_eligible(uint64_t spa_guid, uint64_t sync_txg, arc_buf_hdr_t *hdr)
5765 {
5766 /*
5767 * A buffer is *not* eligible for the L2ARC if it:
5768 * 1. belongs to a different spa.
5769 * 2. is already cached on the L2ARC.
5770 * 3. has an I/O in progress (it may be an incomplete read).
5771 * 4. is flagged not eligible (zfs property).
5772 * 5. is part of the syncing txg (and thus subject to change).
5773 */
5774 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
5775 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr) ||
5776 hdr->b_birth >= sync_txg)
5777 return (B_FALSE);
5778
5779 return (B_TRUE);
5780 }
5781
5782 static uint64_t
l2arc_write_size(void)5783 l2arc_write_size(void)
5784 {
5785 uint64_t size;
5786
5787 /*
5788 * Make sure our globals have meaningful values in case the user
5789 * altered them.
5790 */
5791 size = l2arc_write_max;
5792 if (size == 0) {
5793 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5794 "be greater than zero, resetting it to the default (%d)",
5795 L2ARC_WRITE_SIZE);
5796 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5797 }
5798
5799 if (arc_warm == B_FALSE)
5800 size += l2arc_write_boost;
5801
5802 return (size);
5803
5804 }
5805
5806 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)5807 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5808 {
5809 clock_t interval, next, now;
5810
5811 /*
5812 * If the ARC lists are busy, increase our write rate; if the
5813 * lists are stale, idle back. This is achieved by checking
5814 * how much we previously wrote - if it was more than half of
5815 * what we wanted, schedule the next write much sooner.
5816 */
5817 if (l2arc_feed_again && wrote > (wanted / 2))
5818 interval = (hz * l2arc_feed_min_ms) / 1000;
5819 else
5820 interval = hz * l2arc_feed_secs;
5821
5822 now = ddi_get_lbolt();
5823 next = MAX(now, MIN(now + interval, began + interval));
5824
5825 return (next);
5826 }
5827
5828 /*
5829 * Cycle through L2ARC devices. This is how L2ARC load balances.
5830 * If a device is returned, this also returns holding the spa config lock.
5831 */
5832 static l2arc_dev_t *
l2arc_dev_get_next(void)5833 l2arc_dev_get_next(void)
5834 {
5835 l2arc_dev_t *first, *next = NULL;
5836
5837 /*
5838 * Lock out the removal of spas (spa_namespace_lock), then removal
5839 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5840 * both locks will be dropped and a spa config lock held instead.
5841 */
5842 mutex_enter(&spa_namespace_lock);
5843 mutex_enter(&l2arc_dev_mtx);
5844
5845 /* if there are no vdevs, there is nothing to do */
5846 if (l2arc_ndev == 0)
5847 goto out;
5848
5849 first = NULL;
5850 next = l2arc_dev_last;
5851 do {
5852 /* loop around the list looking for a non-faulted vdev */
5853 if (next == NULL) {
5854 next = list_head(l2arc_dev_list);
5855 } else {
5856 next = list_next(l2arc_dev_list, next);
5857 if (next == NULL)
5858 next = list_head(l2arc_dev_list);
5859 }
5860
5861 /* if we have come back to the start, bail out */
5862 if (first == NULL)
5863 first = next;
5864 else if (next == first)
5865 break;
5866
5867 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild);
5868
5869 /* if we were unable to find any usable vdevs, return NULL */
5870 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild)
5871 next = NULL;
5872
5873 l2arc_dev_last = next;
5874
5875 out:
5876 mutex_exit(&l2arc_dev_mtx);
5877
5878 /*
5879 * Grab the config lock to prevent the 'next' device from being
5880 * removed while we are writing to it.
5881 */
5882 if (next != NULL)
5883 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5884 mutex_exit(&spa_namespace_lock);
5885
5886 return (next);
5887 }
5888
5889 /*
5890 * Free buffers that were tagged for destruction.
5891 */
5892 static void
l2arc_do_free_on_write()5893 l2arc_do_free_on_write()
5894 {
5895 list_t *buflist;
5896 l2arc_data_free_t *df, *df_prev;
5897
5898 mutex_enter(&l2arc_free_on_write_mtx);
5899 buflist = l2arc_free_on_write;
5900
5901 for (df = list_tail(buflist); df; df = df_prev) {
5902 df_prev = list_prev(buflist, df);
5903 ASSERT(df->l2df_data != NULL);
5904 ASSERT(df->l2df_func != NULL);
5905 df->l2df_func(df->l2df_data, df->l2df_size);
5906 list_remove(buflist, df);
5907 kmem_free(df, sizeof (l2arc_data_free_t));
5908 }
5909
5910 mutex_exit(&l2arc_free_on_write_mtx);
5911 }
5912
5913 /*
5914 * A write to a cache device has completed. Update all headers to allow
5915 * reads from these buffers to begin.
5916 */
5917 static void
l2arc_write_done(zio_t * zio)5918 l2arc_write_done(zio_t *zio)
5919 {
5920 l2arc_write_callback_t *cb;
5921 l2arc_dev_t *dev;
5922 list_t *buflist;
5923 arc_buf_hdr_t *head, *hdr, *hdr_prev;
5924 kmutex_t *hash_lock;
5925 int64_t bytes_dropped = 0;
5926 l2arc_log_blk_buf_t *lb_buf;
5927
5928 cb = zio->io_private;
5929 ASSERT(cb != NULL);
5930 dev = cb->l2wcb_dev;
5931 ASSERT(dev != NULL);
5932 head = cb->l2wcb_head;
5933 ASSERT(head != NULL);
5934 buflist = &dev->l2ad_buflist;
5935 ASSERT(buflist != NULL);
5936 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5937 l2arc_write_callback_t *, cb);
5938
5939 if (zio->io_error != 0)
5940 ARCSTAT_BUMP(arcstat_l2_writes_error);
5941
5942 /*
5943 * All writes completed, or an error was hit.
5944 */
5945 top:
5946 mutex_enter(&dev->l2ad_mtx);
5947 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5948 hdr_prev = list_prev(buflist, hdr);
5949
5950 hash_lock = HDR_LOCK(hdr);
5951
5952 /*
5953 * We cannot use mutex_enter or else we can deadlock
5954 * with l2arc_write_buffers (due to swapping the order
5955 * the hash lock and l2ad_mtx are taken).
5956 */
5957 if (!mutex_tryenter(hash_lock)) {
5958 /*
5959 * Missed the hash lock. We must retry so we
5960 * don't leave the ARC_FLAG_L2_WRITING bit set.
5961 */
5962 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5963
5964 /*
5965 * We don't want to rescan the headers we've
5966 * already marked as having been written out, so
5967 * we reinsert the head node so we can pick up
5968 * where we left off.
5969 */
5970 list_remove(buflist, head);
5971 list_insert_after(buflist, hdr, head);
5972
5973 mutex_exit(&dev->l2ad_mtx);
5974
5975 /*
5976 * We wait for the hash lock to become available
5977 * to try and prevent busy waiting, and increase
5978 * the chance we'll be able to acquire the lock
5979 * the next time around.
5980 */
5981 mutex_enter(hash_lock);
5982 mutex_exit(hash_lock);
5983 goto top;
5984 }
5985
5986 /*
5987 * We could not have been moved into the arc_l2c_only
5988 * state while in-flight due to our ARC_FLAG_L2_WRITING
5989 * bit being set. Let's just ensure that's being enforced.
5990 */
5991 ASSERT(HDR_HAS_L1HDR(hdr));
5992
5993 /*
5994 * We may have allocated a buffer for L2ARC compression,
5995 * we must release it to avoid leaking this data.
5996 */
5997 l2arc_release_cdata_buf(hdr);
5998
5999 if (zio->io_error != 0) {
6000 /*
6001 * Error - drop L2ARC entry.
6002 */
6003 list_remove(buflist, hdr);
6004 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6005
6006 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
6007 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
6008
6009 bytes_dropped += hdr->b_l2hdr.b_asize;
6010 (void) refcount_remove_many(&dev->l2ad_alloc,
6011 hdr->b_l2hdr.b_asize, hdr);
6012 }
6013
6014 /*
6015 * Allow ARC to begin reads and ghost list evictions to
6016 * this L2ARC entry.
6017 */
6018 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
6019
6020 mutex_exit(hash_lock);
6021 }
6022
6023 atomic_inc_64(&l2arc_writes_done);
6024 list_remove(buflist, head);
6025 ASSERT(!HDR_HAS_L1HDR(head));
6026 kmem_cache_free(hdr_l2only_cache, head);
6027 mutex_exit(&dev->l2ad_mtx);
6028
6029 ASSERT(dev->l2ad_vdev != NULL);
6030 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6031
6032 l2arc_do_free_on_write();
6033
6034 while ((lb_buf = list_remove_tail(&cb->l2wcb_log_blk_buflist)) != NULL)
6035 kmem_free(lb_buf, sizeof (*lb_buf));
6036 list_destroy(&cb->l2wcb_log_blk_buflist);
6037 kmem_free(cb, sizeof (l2arc_write_callback_t));
6038 }
6039
6040 /*
6041 * A read to a cache device completed. Validate buffer contents before
6042 * handing over to the regular ARC routines.
6043 */
6044 static void
l2arc_read_done(zio_t * zio)6045 l2arc_read_done(zio_t *zio)
6046 {
6047 l2arc_read_callback_t *cb;
6048 arc_buf_hdr_t *hdr;
6049 arc_buf_t *buf;
6050 kmutex_t *hash_lock;
6051 int equal;
6052
6053 ASSERT(zio->io_vd != NULL);
6054 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6055
6056 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
6057
6058 cb = zio->io_private;
6059 ASSERT(cb != NULL);
6060 buf = cb->l2rcb_buf;
6061 ASSERT(buf != NULL);
6062
6063 hash_lock = HDR_LOCK(buf->b_hdr);
6064 mutex_enter(hash_lock);
6065 hdr = buf->b_hdr;
6066 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6067
6068 /*
6069 * If the buffer was compressed, decompress it first.
6070 */
6071 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6072 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6073 ASSERT(zio->io_data != NULL);
6074 ASSERT3U(zio->io_size, ==, hdr->b_size);
6075 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
6076
6077 /*
6078 * Check this survived the L2ARC journey.
6079 */
6080 equal = arc_cksum_equal(buf);
6081 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6082 mutex_exit(hash_lock);
6083 zio->io_private = buf;
6084 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6085 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
6086 arc_read_done(zio);
6087 } else {
6088 mutex_exit(hash_lock);
6089 /*
6090 * Buffer didn't survive caching. Increment stats and
6091 * reissue to the original storage device.
6092 */
6093 if (zio->io_error != 0) {
6094 ARCSTAT_BUMP(arcstat_l2_io_error);
6095 } else {
6096 zio->io_error = SET_ERROR(EIO);
6097 }
6098 if (!equal)
6099 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6100
6101 /*
6102 * If there's no waiter, issue an async i/o to the primary
6103 * storage now. If there *is* a waiter, the caller must
6104 * issue the i/o in a context where it's OK to block.
6105 */
6106 if (zio->io_waiter == NULL) {
6107 zio_t *pio = zio_unique_parent(zio);
6108
6109 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6110
6111 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
6112 buf->b_data, hdr->b_size, arc_read_done, buf,
6113 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
6114 }
6115 }
6116
6117 kmem_free(cb, sizeof (l2arc_read_callback_t));
6118 }
6119
6120 /*
6121 * This is the list priority from which the L2ARC will search for pages to
6122 * cache. This is used within loops (0..3) to cycle through lists in the
6123 * desired order. This order can have a significant effect on cache
6124 * performance.
6125 *
6126 * Currently the metadata lists are hit first, MFU then MRU, followed by
6127 * the data lists. This function returns a locked list, and also returns
6128 * the lock pointer.
6129 */
6130 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)6131 l2arc_sublist_lock(int list_num)
6132 {
6133 multilist_t *ml = NULL;
6134 unsigned int idx;
6135
6136 ASSERT(list_num >= 0 && list_num <= 3);
6137
6138 switch (list_num) {
6139 case 0:
6140 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
6141 break;
6142 case 1:
6143 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
6144 break;
6145 case 2:
6146 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
6147 break;
6148 case 3:
6149 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
6150 break;
6151 }
6152
6153 /*
6154 * Return a randomly-selected sublist. This is acceptable
6155 * because the caller feeds only a little bit of data for each
6156 * call (8MB). Subsequent calls will result in different
6157 * sublists being selected.
6158 */
6159 idx = multilist_get_random_index(ml);
6160 return (multilist_sublist_lock(ml, idx));
6161 }
6162
6163 /*
6164 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
6165 * L2ARC write size. l2arc_evict and l2arc_write_buffers need to include this
6166 * overhead in processing to make sure there is enough headroom available
6167 * when writing buffers.
6168 */
6169 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz)6170 l2arc_log_blk_overhead(uint64_t write_sz)
6171 {
6172 return ((write_sz / SPA_MINBLOCKSIZE / L2ARC_LOG_BLK_ENTRIES) + 1) *
6173 L2ARC_LOG_BLK_SIZE;
6174 }
6175
6176 /*
6177 * Evict buffers from the device write hand to the distance specified in
6178 * bytes. This distance may span populated buffers, it may span nothing.
6179 * This is clearing a region on the L2ARC device ready for writing.
6180 * If the 'all' boolean is set, every buffer is evicted.
6181 */
6182 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)6183 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6184 {
6185 list_t *buflist;
6186 arc_buf_hdr_t *hdr, *hdr_prev;
6187 kmutex_t *hash_lock;
6188 uint64_t taddr;
6189
6190 buflist = &dev->l2ad_buflist;
6191
6192 if (!all && dev->l2ad_first) {
6193 /*
6194 * This is the first sweep through the device. There is
6195 * nothing to evict.
6196 */
6197 return;
6198 }
6199
6200 /*
6201 * We need to add in the worst case scenario of log block overhead.
6202 */
6203 distance += l2arc_log_blk_overhead(distance);
6204 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
6205 /*
6206 * When nearing the end of the device, evict to the end
6207 * before the device write hand jumps to the start.
6208 */
6209 taddr = dev->l2ad_end;
6210 } else {
6211 taddr = dev->l2ad_hand + distance;
6212 }
6213 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6214 uint64_t, taddr, boolean_t, all);
6215
6216 top:
6217 mutex_enter(&dev->l2ad_mtx);
6218 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6219 hdr_prev = list_prev(buflist, hdr);
6220
6221 hash_lock = HDR_LOCK(hdr);
6222
6223 /*
6224 * We cannot use mutex_enter or else we can deadlock
6225 * with l2arc_write_buffers (due to swapping the order
6226 * the hash lock and l2ad_mtx are taken).
6227 */
6228 if (!mutex_tryenter(hash_lock)) {
6229 /*
6230 * Missed the hash lock. Retry.
6231 */
6232 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
6233 mutex_exit(&dev->l2ad_mtx);
6234 mutex_enter(hash_lock);
6235 mutex_exit(hash_lock);
6236 goto top;
6237 }
6238
6239 if (HDR_L2_WRITE_HEAD(hdr)) {
6240 /*
6241 * We hit a write head node. Leave it for
6242 * l2arc_write_done().
6243 */
6244 list_remove(buflist, hdr);
6245 mutex_exit(hash_lock);
6246 continue;
6247 }
6248
6249 if (!all && HDR_HAS_L2HDR(hdr) &&
6250 (hdr->b_l2hdr.b_daddr > taddr ||
6251 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
6252 /*
6253 * We've evicted to the target address,
6254 * or the end of the device.
6255 */
6256 mutex_exit(hash_lock);
6257 break;
6258 }
6259
6260 ASSERT(HDR_HAS_L2HDR(hdr));
6261 if (!HDR_HAS_L1HDR(hdr)) {
6262 ASSERT(!HDR_L2_READING(hdr));
6263 /*
6264 * This doesn't exist in the ARC. Destroy.
6265 * arc_hdr_destroy() will call list_remove()
6266 * and decrement arcstat_l2_size.
6267 */
6268 arc_change_state(arc_anon, hdr, hash_lock);
6269 arc_hdr_destroy(hdr);
6270 } else {
6271 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6272 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
6273 /*
6274 * Invalidate issued or about to be issued
6275 * reads, since we may be about to write
6276 * over this location.
6277 */
6278 if (HDR_L2_READING(hdr)) {
6279 ARCSTAT_BUMP(arcstat_l2_evict_reading);
6280 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
6281 }
6282
6283 /* Ensure this header has finished being written */
6284 ASSERT(!HDR_L2_WRITING(hdr));
6285 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6286
6287 arc_hdr_l2hdr_destroy(hdr);
6288 }
6289 mutex_exit(hash_lock);
6290 }
6291 mutex_exit(&dev->l2ad_mtx);
6292 }
6293
6294 /*
6295 * Find and write ARC buffers to the L2ARC device.
6296 *
6297 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
6298 * for reading until they have completed writing.
6299 * The headroom_boost is an in-out parameter used to maintain headroom boost
6300 * state between calls to this function.
6301 *
6302 * Returns the number of bytes actually written (which may be smaller than
6303 * the delta by which the device hand has changed due to alignment).
6304 */
6305 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz,boolean_t * headroom_boost)6306 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6307 boolean_t *headroom_boost)
6308 {
6309 arc_buf_hdr_t *hdr, *hdr_prev, *head;
6310 uint64_t headroom, buf_compress_minsz;
6311 /*
6312 * We must carefully track the space we deal with here:
6313 * - write_size: sum of the size of all buffers to be written
6314 * without compression or inter-buffer alignment applied.
6315 * This size is added to arcstat_l2_size, because subsequent
6316 * eviction of buffers decrements this kstat by only the
6317 * buffer's b_size (which doesn't take alignment into account).
6318 * - write_asize: sum of the size of all buffers to be written
6319 * without compression, but WITH inter-buffer alignment applied.
6320 * This size is used to estimate the maximum number of bytes
6321 * we could take up on the device and is thus used to gauge how
6322 * close we are to hitting target_sz.
6323 * - write_comp_size: sum of the size of all buffers to be written
6324 * WITH compression but WITHOUT inter-buffer alignment applied.
6325 * Similarly to write_size, this is used with the
6326 * arcstat_l2_asize kstat. It is also the sum of the actual
6327 * number bytes sent to zio_write_phys.
6328 * - write_comp_asize: sum of the size of all buffers to be written
6329 * WITH compression and inter-buffer alignment applied.
6330 * This is the actual number of bytes taken up on the device
6331 * and so this is the actual amount by which we adjusted the
6332 * l2ad_hand and is also used in vdev_space_update().
6333 */
6334 uint64_t write_size, write_asize; /* uncompressed */
6335 uint64_t write_comp_size, write_comp_asize; /* compressed */
6336 void *buf_data;
6337 boolean_t full;
6338 l2arc_write_callback_t *cb;
6339 zio_t *pio, *wzio;
6340 uint64_t guid = spa_load_guid(spa);
6341 uint64_t sync_txg = spa_syncing_txg(spa);
6342 const boolean_t do_headroom_boost = *headroom_boost;
6343 boolean_t dev_hdr_update = B_FALSE;
6344
6345 ASSERT(dev->l2ad_vdev != NULL);
6346
6347 /* Lower the flag now, we might want to raise it again later. */
6348 *headroom_boost = B_FALSE;
6349
6350 pio = NULL;
6351 cb = NULL;
6352 write_size = write_asize = 0;
6353 write_comp_size = write_comp_asize = 0;
6354 full = B_FALSE;
6355 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
6356 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
6357 head->b_flags |= ARC_FLAG_HAS_L2HDR;
6358
6359 /*
6360 * We will want to try to compress buffers that are at least 2x the
6361 * device sector size.
6362 */
6363 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6364
6365 /*
6366 * Copy buffers for L2ARC writing.
6367 */
6368 for (int try = 0; try <= 3; try++) {
6369 multilist_sublist_t *mls = l2arc_sublist_lock(try);
6370 uint64_t passed_sz = 0;
6371
6372 /*
6373 * L2ARC fast warmup.
6374 *
6375 * Until the ARC is warm and starts to evict, read from the
6376 * head of the ARC lists rather than the tail.
6377 */
6378 if (arc_warm == B_FALSE)
6379 hdr = multilist_sublist_head(mls);
6380 else
6381 hdr = multilist_sublist_tail(mls);
6382
6383 headroom = target_sz * l2arc_headroom;
6384 if (do_headroom_boost)
6385 headroom = (headroom * l2arc_headroom_boost) / 100;
6386
6387 for (; hdr; hdr = hdr_prev) {
6388 kmutex_t *hash_lock;
6389 uint64_t buf_size, buf_asize;
6390
6391 if (arc_warm == B_FALSE)
6392 hdr_prev = multilist_sublist_next(mls, hdr);
6393 else
6394 hdr_prev = multilist_sublist_prev(mls, hdr);
6395
6396 hash_lock = HDR_LOCK(hdr);
6397 if (!mutex_tryenter(hash_lock)) {
6398 /*
6399 * Skip this buffer rather than waiting.
6400 */
6401 continue;
6402 }
6403
6404 /*
6405 * When examining whether we've met our write target,
6406 * we use psize_to_asize to account for inter-block
6407 * gaps due to different physical sector size on
6408 * L2ARC device.
6409 */
6410 buf_size = hdr->b_size;
6411 buf_asize = vdev_psize_to_asize(dev->l2ad_vdev,
6412 hdr->b_size);
6413 passed_sz += buf_size;
6414 if (passed_sz > headroom) {
6415 /*
6416 * Searched too far.
6417 */
6418 mutex_exit(hash_lock);
6419 break;
6420 }
6421
6422 if (!l2arc_write_eligible(guid, sync_txg, hdr)) {
6423 mutex_exit(hash_lock);
6424 continue;
6425 }
6426
6427 if (write_asize + buf_asize > target_sz) {
6428 full = B_TRUE;
6429 mutex_exit(hash_lock);
6430 break;
6431 }
6432
6433 if (pio == NULL) {
6434 /*
6435 * Insert a dummy header on the buflist so
6436 * l2arc_write_done() can find where the
6437 * write buffers begin without searching.
6438 */
6439 mutex_enter(&dev->l2ad_mtx);
6440 list_insert_head(&dev->l2ad_buflist, head);
6441 mutex_exit(&dev->l2ad_mtx);
6442
6443 cb = kmem_zalloc(
6444 sizeof (l2arc_write_callback_t), KM_SLEEP);
6445 cb->l2wcb_dev = dev;
6446 cb->l2wcb_head = head;
6447 list_create(&cb->l2wcb_log_blk_buflist,
6448 sizeof (l2arc_log_blk_buf_t),
6449 offsetof(l2arc_log_blk_buf_t, lbb_node));
6450 pio = zio_root(spa, l2arc_write_done, cb,
6451 ZIO_FLAG_CANFAIL);
6452 }
6453
6454 /*
6455 * Create and add a new L2ARC header.
6456 */
6457 hdr->b_l2hdr.b_dev = dev;
6458 hdr->b_flags |= ARC_FLAG_L2_WRITING;
6459 /*
6460 * Temporarily stash the data buffer in b_tmp_cdata.
6461 * The subsequent write step will pick it up from
6462 * there. This is because can't access b_l1hdr.b_buf
6463 * without holding the hash_lock, which we in turn
6464 * can't access without holding the ARC list locks
6465 * (which we want to avoid during compression/writing).
6466 */
6467 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
6468 hdr->b_l2hdr.b_asize = hdr->b_size;
6469 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
6470
6471 /*
6472 * Explicitly set the b_daddr field to a known
6473 * value which means "invalid address". This
6474 * enables us to differentiate which stage of
6475 * l2arc_write_buffers() the particular header
6476 * is in (e.g. this loop, or the one below).
6477 * ARC_FLAG_L2_WRITING is not enough to make
6478 * this distinction, and we need to know in
6479 * order to do proper l2arc vdev accounting in
6480 * arc_release() and arc_hdr_destroy().
6481 *
6482 * Note, we can't use a new flag to distinguish
6483 * the two stages because we don't hold the
6484 * header's hash_lock below, in the second stage
6485 * of this function. Thus, we can't simply
6486 * change the b_flags field to denote that the
6487 * IO has been sent. We can change the b_daddr
6488 * field of the L2 portion, though, since we'll
6489 * be holding the l2ad_mtx; which is why we're
6490 * using it to denote the header's state change.
6491 */
6492 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6493
6494 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
6495
6496 mutex_enter(&dev->l2ad_mtx);
6497 list_insert_head(&dev->l2ad_buflist, hdr);
6498 mutex_exit(&dev->l2ad_mtx);
6499
6500 /*
6501 * Compute and store the buffer cksum before
6502 * writing. On debug the cksum is verified first.
6503 */
6504 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6505 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
6506
6507 mutex_exit(hash_lock);
6508
6509 write_size += buf_size;
6510 write_asize += buf_asize;
6511 }
6512
6513 multilist_sublist_unlock(mls);
6514
6515 if (full == B_TRUE)
6516 break;
6517 }
6518
6519 /* No buffers selected for writing? */
6520 if (pio == NULL) {
6521 ASSERT0(write_size);
6522 ASSERT(!HDR_HAS_L1HDR(head));
6523 kmem_cache_free(hdr_l2only_cache, head);
6524 return (0);
6525 }
6526
6527 mutex_enter(&dev->l2ad_mtx);
6528
6529 /*
6530 * Now start writing the buffers. We're starting at the write head
6531 * and work backwards, retracing the course of the buffer selector
6532 * loop above.
6533 */
6534 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6535 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
6536 uint64_t buf_comp_size;
6537
6538 /*
6539 * We rely on the L1 portion of the header below, so
6540 * it's invalid for this header to have been evicted out
6541 * of the ghost cache, prior to being written out. The
6542 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6543 */
6544 ASSERT(HDR_HAS_L1HDR(hdr));
6545
6546 /*
6547 * We shouldn't need to lock the buffer here, since we flagged
6548 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6549 * take care to only access its L2 cache parameters. In
6550 * particular, hdr->l1hdr.b_buf may be invalid by now due to
6551 * ARC eviction.
6552 */
6553 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
6554
6555 if ((HDR_L2COMPRESS(hdr)) &&
6556 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6557 if (l2arc_compress_buf(hdr)) {
6558 /*
6559 * If compression succeeded, enable headroom
6560 * boost on the next scan cycle.
6561 */
6562 *headroom_boost = B_TRUE;
6563 }
6564 }
6565
6566 /*
6567 * Pick up the buffer data we had previously stashed away
6568 * (and now potentially also compressed).
6569 */
6570 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6571 buf_comp_size = hdr->b_l2hdr.b_asize;
6572
6573 /*
6574 * We need to do this regardless if buf_comp_size is zero or
6575 * not, otherwise, when this l2hdr is evicted we'll
6576 * remove a reference that was never added.
6577 */
6578 (void) refcount_add_many(&dev->l2ad_alloc, buf_comp_size, hdr);
6579
6580 /* Compression may have squashed the buffer to zero length. */
6581 if (buf_comp_size != 0) {
6582 uint64_t buf_comp_asize;
6583
6584 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6585 dev->l2ad_hand, buf_comp_size, buf_data,
6586 ZIO_CHECKSUM_OFF, NULL, NULL,
6587 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL,
6588 B_FALSE);
6589
6590 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6591 zio_t *, wzio);
6592 (void) zio_nowait(wzio);
6593
6594 write_comp_size += buf_comp_size;
6595 /*
6596 * Keep the clock hand suitably device-aligned.
6597 */
6598 buf_comp_asize = vdev_psize_to_asize(dev->l2ad_vdev,
6599 buf_comp_size);
6600 write_comp_asize += buf_comp_asize;
6601 dev->l2ad_hand += buf_comp_asize;
6602 }
6603
6604 /*
6605 * Append buf info to current log and commit if full.
6606 * arcstat_l2_{size,asize} kstats are updated internally.
6607 */
6608 if (l2arc_log_blk_insert(dev, hdr)) {
6609 l2arc_log_blk_commit(dev, pio, cb);
6610 dev_hdr_update = B_TRUE;
6611 }
6612 }
6613
6614 mutex_exit(&dev->l2ad_mtx);
6615
6616 /*
6617 * If we wrote any logs as part of this write, update dev hdr
6618 * to point to it.
6619 */
6620 if (dev_hdr_update)
6621 l2arc_dev_hdr_update(dev, pio);
6622
6623 VERIFY3U(write_asize, <=, target_sz);
6624 ARCSTAT_BUMP(arcstat_l2_writes_sent);
6625 ARCSTAT_INCR(arcstat_l2_write_bytes, write_comp_size);
6626 ARCSTAT_INCR(arcstat_l2_size, write_size);
6627 ARCSTAT_INCR(arcstat_l2_asize, write_comp_size);
6628 vdev_space_update(dev->l2ad_vdev, write_comp_asize, 0, 0);
6629
6630 /*
6631 * Bump device hand to the device start if it is approaching the end.
6632 * l2arc_evict() will already have evicted ahead for this case.
6633 */
6634 if (dev->l2ad_hand + target_sz + l2arc_log_blk_overhead(target_sz) >=
6635 dev->l2ad_end) {
6636 dev->l2ad_hand = dev->l2ad_start;
6637 dev->l2ad_first = B_FALSE;
6638 }
6639
6640 dev->l2ad_writing = B_TRUE;
6641 (void) zio_wait(pio);
6642 dev->l2ad_writing = B_FALSE;
6643
6644 return (write_comp_size);
6645 }
6646
6647 /*
6648 * Compresses an L2ARC buffer.
6649 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
6650 * size in l2hdr->b_asize. This routine tries to compress the data and
6651 * depending on the compression result there are three possible outcomes:
6652 * *) The buffer was incompressible. The original l2hdr contents were left
6653 * untouched and are ready for writing to an L2 device.
6654 * *) The buffer was all-zeros, so there is no need to write it to an L2
6655 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6656 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6657 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6658 * data buffer which holds the compressed data to be written, and b_asize
6659 * tells us how much data there is. b_compress is set to the appropriate
6660 * compression algorithm. Once writing is done, invoke
6661 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6662 *
6663 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6664 * buffer was incompressible).
6665 */
6666 static boolean_t
l2arc_compress_buf(arc_buf_hdr_t * hdr)6667 l2arc_compress_buf(arc_buf_hdr_t *hdr)
6668 {
6669 void *cdata;
6670 size_t csize, len, rounded;
6671 ASSERT(HDR_HAS_L2HDR(hdr));
6672 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
6673
6674 ASSERT(HDR_HAS_L1HDR(hdr));
6675 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
6676 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6677
6678 len = l2hdr->b_asize;
6679 cdata = zio_data_buf_alloc(len);
6680 ASSERT3P(cdata, !=, NULL);
6681 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
6682 cdata, l2hdr->b_asize);
6683
6684 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6685 if (rounded > csize) {
6686 bzero((char *)cdata + csize, rounded - csize);
6687 csize = rounded;
6688 }
6689
6690 if (csize == 0) {
6691 /* zero block, indicate that there's nothing to write */
6692 zio_data_buf_free(cdata, len);
6693 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
6694 l2hdr->b_asize = 0;
6695 hdr->b_l1hdr.b_tmp_cdata = NULL;
6696 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6697 return (B_TRUE);
6698 } else if (csize > 0 && csize < len) {
6699 /*
6700 * Compression succeeded, we'll keep the cdata around for
6701 * writing and release it afterwards.
6702 */
6703 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
6704 l2hdr->b_asize = csize;
6705 hdr->b_l1hdr.b_tmp_cdata = cdata;
6706 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6707 return (B_TRUE);
6708 } else {
6709 /*
6710 * Compression failed, release the compressed buffer.
6711 * l2hdr will be left unmodified.
6712 */
6713 zio_data_buf_free(cdata, len);
6714 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6715 return (B_FALSE);
6716 }
6717 }
6718
6719 /*
6720 * Decompresses a zio read back from an l2arc device. On success, the
6721 * underlying zio's io_data buffer is overwritten by the uncompressed
6722 * version. On decompression error (corrupt compressed stream), the
6723 * zio->io_error value is set to signal an I/O error.
6724 *
6725 * Please note that the compressed data stream is not checksummed, so
6726 * if the underlying device is experiencing data corruption, we may feed
6727 * corrupt data to the decompressor, so the decompressor needs to be
6728 * able to handle this situation (LZ4 does).
6729 */
6730 static void
l2arc_decompress_zio(zio_t * zio,arc_buf_hdr_t * hdr,enum zio_compress c)6731 l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6732 {
6733 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6734
6735 if (zio->io_error != 0) {
6736 /*
6737 * An io error has occured, just restore the original io
6738 * size in preparation for a main pool read.
6739 */
6740 zio->io_orig_size = zio->io_size = hdr->b_size;
6741 return;
6742 }
6743
6744 if (c == ZIO_COMPRESS_EMPTY) {
6745 /*
6746 * An empty buffer results in a null zio, which means we
6747 * need to fill its io_data after we're done restoring the
6748 * buffer's contents.
6749 */
6750 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6751 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6752 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
6753 } else {
6754 ASSERT(zio->io_data != NULL);
6755 /*
6756 * We copy the compressed data from the start of the arc buffer
6757 * (the zio_read will have pulled in only what we need, the
6758 * rest is garbage which we will overwrite at decompression)
6759 * and then decompress back to the ARC data buffer. This way we
6760 * can minimize copying by simply decompressing back over the
6761 * original compressed data (rather than decompressing to an
6762 * aux buffer and then copying back the uncompressed buffer,
6763 * which is likely to be much larger).
6764 */
6765 uint64_t csize;
6766 void *cdata;
6767
6768 csize = zio->io_size;
6769 cdata = zio_data_buf_alloc(csize);
6770 bcopy(zio->io_data, cdata, csize);
6771 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6772 hdr->b_size) != 0)
6773 zio->io_error = EIO;
6774 zio_data_buf_free(cdata, csize);
6775 }
6776
6777 /* Restore the expected uncompressed IO size. */
6778 zio->io_orig_size = zio->io_size = hdr->b_size;
6779 }
6780
6781 /*
6782 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6783 * This buffer serves as a temporary holder of compressed data while
6784 * the buffer entry is being written to an l2arc device. Once that is
6785 * done, we can dispose of it.
6786 */
6787 static void
l2arc_release_cdata_buf(arc_buf_hdr_t * hdr)6788 l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
6789 {
6790 ASSERT(HDR_HAS_L2HDR(hdr));
6791 enum zio_compress comp = hdr->b_l2hdr.b_compress;
6792
6793 ASSERT(HDR_HAS_L1HDR(hdr));
6794 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6795
6796 if (comp == ZIO_COMPRESS_OFF) {
6797 /*
6798 * In this case, b_tmp_cdata points to the same buffer
6799 * as the arc_buf_t's b_data field. We don't want to
6800 * free it, since the arc_buf_t will handle that.
6801 */
6802 hdr->b_l1hdr.b_tmp_cdata = NULL;
6803 } else if (comp == ZIO_COMPRESS_EMPTY) {
6804 /*
6805 * In this case, b_tmp_cdata was compressed to an empty
6806 * buffer, thus there's nothing to free and b_tmp_cdata
6807 * should have been set to NULL in l2arc_write_buffers().
6808 */
6809 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6810 } else {
6811 /*
6812 * If the data was compressed, then we've allocated a
6813 * temporary buffer for it, so now we need to release it.
6814 */
6815 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6816 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6817 hdr->b_size);
6818 hdr->b_l1hdr.b_tmp_cdata = NULL;
6819 }
6820
6821 }
6822
6823 /*
6824 * This thread feeds the L2ARC at regular intervals. This is the beating
6825 * heart of the L2ARC.
6826 */
6827 static void
l2arc_feed_thread(void)6828 l2arc_feed_thread(void)
6829 {
6830 callb_cpr_t cpr;
6831 l2arc_dev_t *dev;
6832 spa_t *spa;
6833 uint64_t size, wrote;
6834 clock_t begin, next = ddi_get_lbolt();
6835 boolean_t headroom_boost = B_FALSE;
6836
6837 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6838
6839 mutex_enter(&l2arc_feed_thr_lock);
6840
6841 while (l2arc_thread_exit == 0) {
6842 CALLB_CPR_SAFE_BEGIN(&cpr);
6843 (void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
6844 next);
6845 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
6846 next = ddi_get_lbolt() + hz;
6847
6848 /*
6849 * Quick check for L2ARC devices.
6850 */
6851 mutex_enter(&l2arc_dev_mtx);
6852 if (l2arc_ndev == 0) {
6853 mutex_exit(&l2arc_dev_mtx);
6854 continue;
6855 }
6856 mutex_exit(&l2arc_dev_mtx);
6857 begin = ddi_get_lbolt();
6858
6859 /*
6860 * This selects the next l2arc device to write to, and in
6861 * doing so the next spa to feed from: dev->l2ad_spa. This
6862 * will return NULL if there are now no l2arc devices or if
6863 * they are all faulted.
6864 *
6865 * If a device is returned, its spa's config lock is also
6866 * held to prevent device removal. l2arc_dev_get_next()
6867 * will grab and release l2arc_dev_mtx.
6868 */
6869 if ((dev = l2arc_dev_get_next()) == NULL)
6870 continue;
6871
6872 spa = dev->l2ad_spa;
6873 ASSERT(spa != NULL);
6874
6875 /*
6876 * If the pool is read-only then force the feed thread to
6877 * sleep a little longer.
6878 */
6879 if (!spa_writeable(spa)) {
6880 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6881 spa_config_exit(spa, SCL_L2ARC, dev);
6882 continue;
6883 }
6884
6885 /*
6886 * Avoid contributing to memory pressure.
6887 */
6888 if (arc_reclaim_needed()) {
6889 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6890 spa_config_exit(spa, SCL_L2ARC, dev);
6891 continue;
6892 }
6893
6894 ARCSTAT_BUMP(arcstat_l2_feeds);
6895
6896 size = l2arc_write_size();
6897
6898 /*
6899 * Evict L2ARC buffers that will be overwritten.
6900 */
6901 l2arc_evict(dev, size, B_FALSE);
6902
6903 /*
6904 * Write ARC buffers.
6905 */
6906 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
6907
6908 /*
6909 * Calculate interval between writes.
6910 */
6911 next = l2arc_write_interval(begin, size, wrote);
6912 spa_config_exit(spa, SCL_L2ARC, dev);
6913 }
6914
6915 l2arc_thread_exit = 0;
6916 cv_broadcast(&l2arc_feed_thr_cv);
6917 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6918 thread_exit();
6919 }
6920
6921 boolean_t
l2arc_vdev_present(vdev_t * vd)6922 l2arc_vdev_present(vdev_t *vd)
6923 {
6924 return (l2arc_vdev_get(vd) != NULL);
6925 }
6926
6927 /*
6928 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
6929 * the vdev_t isn't an L2ARC device.
6930 */
6931 static l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)6932 l2arc_vdev_get(vdev_t *vd)
6933 {
6934 l2arc_dev_t *dev;
6935 boolean_t held = MUTEX_HELD(&l2arc_dev_mtx);
6936
6937 if (!held)
6938 mutex_enter(&l2arc_dev_mtx);
6939 for (dev = list_head(l2arc_dev_list); dev != NULL;
6940 dev = list_next(l2arc_dev_list, dev)) {
6941 if (dev->l2ad_vdev == vd)
6942 break;
6943 }
6944 if (!held)
6945 mutex_exit(&l2arc_dev_mtx);
6946
6947 return (dev);
6948 }
6949
6950 /*
6951 * Add a vdev for use by the L2ARC. By this point the spa has already
6952 * validated the vdev and opened it. The `rebuild' flag indicates whether
6953 * we should attempt an L2ARC persistency rebuild.
6954 */
6955 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd,boolean_t rebuild)6956 l2arc_add_vdev(spa_t *spa, vdev_t *vd, boolean_t rebuild)
6957 {
6958 l2arc_dev_t *adddev;
6959
6960 ASSERT(!l2arc_vdev_present(vd));
6961
6962 /*
6963 * Create a new l2arc device entry.
6964 */
6965 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6966 adddev->l2ad_spa = spa;
6967 adddev->l2ad_vdev = vd;
6968 /* leave extra size for an l2arc device header */
6969 adddev->l2ad_dev_hdr_asize = MAX(sizeof (*adddev->l2ad_dev_hdr),
6970 1 << vd->vdev_ashift);
6971 adddev->l2ad_start = VDEV_LABEL_START_SIZE + adddev->l2ad_dev_hdr_asize;
6972 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
6973 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
6974 adddev->l2ad_hand = adddev->l2ad_start;
6975 adddev->l2ad_first = B_TRUE;
6976 adddev->l2ad_writing = B_FALSE;
6977 adddev->l2ad_dev_hdr = kmem_zalloc(adddev->l2ad_dev_hdr_asize,
6978 KM_SLEEP);
6979
6980 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
6981 /*
6982 * This is a list of all ARC buffers that are still valid on the
6983 * device.
6984 */
6985 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6986 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
6987
6988 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
6989 refcount_create(&adddev->l2ad_alloc);
6990
6991 /*
6992 * Add device to global list
6993 */
6994 mutex_enter(&l2arc_dev_mtx);
6995 list_insert_head(l2arc_dev_list, adddev);
6996 atomic_inc_64(&l2arc_ndev);
6997 if (rebuild && l2arc_rebuild_enabled &&
6998 adddev->l2ad_end - adddev->l2ad_start > L2ARC_PERSIST_MIN_SIZE) {
6999 /*
7000 * Just mark the device as pending for a rebuild. We won't
7001 * be starting a rebuild in line here as it would block pool
7002 * import. Instead spa_load_impl will hand that off to an
7003 * async task which will call l2arc_spa_rebuild_start.
7004 */
7005 adddev->l2ad_rebuild = B_TRUE;
7006 }
7007 mutex_exit(&l2arc_dev_mtx);
7008 }
7009
7010 /*
7011 * Remove a vdev from the L2ARC.
7012 */
7013 void
l2arc_remove_vdev(vdev_t * vd)7014 l2arc_remove_vdev(vdev_t *vd)
7015 {
7016 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7017
7018 /*
7019 * Find the device by vdev
7020 */
7021 mutex_enter(&l2arc_dev_mtx);
7022 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7023 nextdev = list_next(l2arc_dev_list, dev);
7024 if (vd == dev->l2ad_vdev) {
7025 remdev = dev;
7026 break;
7027 }
7028 }
7029 ASSERT(remdev != NULL);
7030
7031 /*
7032 * Cancel any ongoing or scheduled rebuild (race protection with
7033 * l2arc_spa_rebuild_start provided via l2arc_dev_mtx).
7034 */
7035 remdev->l2ad_rebuild_cancel = B_TRUE;
7036 if (remdev->l2ad_rebuild_did != 0) {
7037 /*
7038 * N.B. it should be safe to thread_join with the rebuild
7039 * thread while holding l2arc_dev_mtx because it is not
7040 * accessed from anywhere in the l2arc rebuild code below
7041 * (except for l2arc_spa_rebuild_start, which is ok).
7042 */
7043 thread_join(remdev->l2ad_rebuild_did);
7044 }
7045
7046 /*
7047 * Remove device from global list
7048 */
7049 list_remove(l2arc_dev_list, remdev);
7050 l2arc_dev_last = NULL; /* may have been invalidated */
7051 atomic_dec_64(&l2arc_ndev);
7052 mutex_exit(&l2arc_dev_mtx);
7053
7054 /*
7055 * Clear all buflists and ARC references. L2ARC device flush.
7056 */
7057 l2arc_evict(remdev, 0, B_TRUE);
7058 list_destroy(&remdev->l2ad_buflist);
7059 mutex_destroy(&remdev->l2ad_mtx);
7060 refcount_destroy(&remdev->l2ad_alloc);
7061 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
7062 kmem_free(remdev, sizeof (l2arc_dev_t));
7063 }
7064
7065 void
l2arc_init(void)7066 l2arc_init(void)
7067 {
7068 l2arc_thread_exit = 0;
7069 l2arc_ndev = 0;
7070 l2arc_writes_sent = 0;
7071 l2arc_writes_done = 0;
7072
7073 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7074 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7075 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7076 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7077
7078 l2arc_dev_list = &L2ARC_dev_list;
7079 l2arc_free_on_write = &L2ARC_free_on_write;
7080 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7081 offsetof(l2arc_dev_t, l2ad_node));
7082 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7083 offsetof(l2arc_data_free_t, l2df_list_node));
7084 }
7085
7086 void
l2arc_fini(void)7087 l2arc_fini(void)
7088 {
7089 /*
7090 * This is called from dmu_fini(), which is called from spa_fini();
7091 * Because of this, we can assume that all l2arc devices have
7092 * already been removed when the pools themselves were removed.
7093 */
7094
7095 l2arc_do_free_on_write();
7096
7097 mutex_destroy(&l2arc_feed_thr_lock);
7098 cv_destroy(&l2arc_feed_thr_cv);
7099 mutex_destroy(&l2arc_dev_mtx);
7100 mutex_destroy(&l2arc_free_on_write_mtx);
7101
7102 list_destroy(l2arc_dev_list);
7103 list_destroy(l2arc_free_on_write);
7104 }
7105
7106 void
l2arc_start(void)7107 l2arc_start(void)
7108 {
7109 if (!(spa_mode_global & FWRITE))
7110 return;
7111
7112 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7113 TS_RUN, minclsyspri);
7114 }
7115
7116 void
l2arc_stop(void)7117 l2arc_stop(void)
7118 {
7119 if (!(spa_mode_global & FWRITE))
7120 return;
7121
7122 mutex_enter(&l2arc_feed_thr_lock);
7123 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7124 l2arc_thread_exit = 1;
7125 while (l2arc_thread_exit != 0)
7126 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7127 mutex_exit(&l2arc_feed_thr_lock);
7128 }
7129
7130 /*
7131 * Punches out rebuild threads for the L2ARC devices in a spa. This should
7132 * be called after pool import from the spa async thread, since starting
7133 * these threads directly from spa_import() will make them part of the
7134 * "zpool import" context and delay process exit (and thus pool import).
7135 */
7136 void
l2arc_spa_rebuild_start(spa_t * spa)7137 l2arc_spa_rebuild_start(spa_t *spa)
7138 {
7139 /*
7140 * Locate the spa's l2arc devices and kick off rebuild threads.
7141 */
7142 mutex_enter(&l2arc_dev_mtx);
7143 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
7144 l2arc_dev_t *dev =
7145 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
7146 ASSERT(dev != NULL);
7147 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
7148 VERIFY3U(dev->l2ad_rebuild_did, ==, 0);
7149 #ifdef _KERNEL
7150 dev->l2ad_rebuild_did = thread_create(NULL, 0,
7151 l2arc_dev_rebuild_start, dev, 0, &p0, TS_RUN,
7152 minclsyspri)->t_did;
7153 #endif
7154 }
7155 }
7156 mutex_exit(&l2arc_dev_mtx);
7157 }
7158
7159 /*
7160 * Main entry point for L2ARC rebuilding.
7161 */
7162 static void
l2arc_dev_rebuild_start(l2arc_dev_t * dev)7163 l2arc_dev_rebuild_start(l2arc_dev_t *dev)
7164 {
7165 if (!dev->l2ad_rebuild_cancel) {
7166 VERIFY(dev->l2ad_rebuild);
7167 (void) l2arc_rebuild(dev);
7168 dev->l2ad_rebuild = B_FALSE;
7169 }
7170 }
7171
7172 /*
7173 * This function implements the actual L2ARC metadata rebuild. It:
7174 *
7175 * 1) reads the device's header
7176 * 2) if a good device header is found, starts reading the log block chain
7177 * 3) restores each block's contents to memory (reconstructing arc_buf_hdr_t's)
7178 *
7179 * Operation stops under any of the following conditions:
7180 *
7181 * 1) We reach the end of the log blk chain (the back-reference in the blk is
7182 * invalid or loops over our starting point).
7183 * 2) We encounter *any* error condition (cksum errors, io errors, looped
7184 * blocks, etc.).
7185 */
7186 static int
l2arc_rebuild(l2arc_dev_t * dev)7187 l2arc_rebuild(l2arc_dev_t *dev)
7188 {
7189 vdev_t *vd = dev->l2ad_vdev;
7190 spa_t *spa = vd->vdev_spa;
7191 int err;
7192 l2arc_log_blk_phys_t *this_lb, *next_lb;
7193 uint8_t *this_lb_buf, *next_lb_buf;
7194 zio_t *this_io = NULL, *next_io = NULL;
7195 l2arc_log_blkptr_t lb_ptrs[2];
7196 boolean_t first_pass, lock_held;
7197 uint64_t load_guid;
7198
7199 this_lb = kmem_zalloc(sizeof (*this_lb), KM_SLEEP);
7200 next_lb = kmem_zalloc(sizeof (*next_lb), KM_SLEEP);
7201 this_lb_buf = kmem_zalloc(sizeof (l2arc_log_blk_phys_t), KM_SLEEP);
7202 next_lb_buf = kmem_zalloc(sizeof (l2arc_log_blk_phys_t), KM_SLEEP);
7203
7204 /*
7205 * We prevent device removal while issuing reads to the device,
7206 * then during the rebuilding phases we drop this lock again so
7207 * that a spa_unload or device remove can be initiated - this is
7208 * safe, because the spa will signal us to stop before removing
7209 * our device and wait for us to stop.
7210 */
7211 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
7212 lock_held = B_TRUE;
7213
7214 load_guid = spa_load_guid(dev->l2ad_vdev->vdev_spa);
7215 /*
7216 * Device header processing phase.
7217 */
7218 if ((err = l2arc_dev_hdr_read(dev)) != 0) {
7219 /* device header corrupted, start a new one */
7220 bzero(dev->l2ad_dev_hdr, dev->l2ad_dev_hdr_asize);
7221 goto out;
7222 }
7223
7224 /* Retrieve the persistent L2ARC device state */
7225 dev->l2ad_hand = vdev_psize_to_asize(dev->l2ad_vdev,
7226 dev->l2ad_dev_hdr->dh_start_lbps[0].lbp_daddr +
7227 LBP_GET_PSIZE(&dev->l2ad_dev_hdr->dh_start_lbps[0]));
7228 dev->l2ad_first = !!(dev->l2ad_dev_hdr->dh_flags &
7229 L2ARC_DEV_HDR_EVICT_FIRST);
7230
7231 /* Prepare the rebuild processing state */
7232 bcopy(dev->l2ad_dev_hdr->dh_start_lbps, lb_ptrs, sizeof (lb_ptrs));
7233 first_pass = B_TRUE;
7234
7235 /* Start the rebuild process */
7236 for (;;) {
7237 if (!l2arc_log_blkptr_valid(dev, &lb_ptrs[0]))
7238 /* We hit an invalid block address, end the rebuild. */
7239 break;
7240
7241 if ((err = l2arc_log_blk_read(dev, &lb_ptrs[0], &lb_ptrs[1],
7242 this_lb, next_lb, this_lb_buf, next_lb_buf,
7243 this_io, &next_io)) != 0)
7244 break;
7245
7246 spa_config_exit(spa, SCL_L2ARC, vd);
7247 lock_held = B_FALSE;
7248
7249 /* Protection against infinite loops of log blocks. */
7250 if (l2arc_range_check_overlap(lb_ptrs[1].lbp_daddr,
7251 lb_ptrs[0].lbp_daddr,
7252 dev->l2ad_dev_hdr->dh_start_lbps[0].lbp_daddr) &&
7253 !first_pass) {
7254 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_loop_errors);
7255 err = SET_ERROR(ELOOP);
7256 break;
7257 }
7258
7259 /*
7260 * Our memory pressure valve. If the system is running low
7261 * on memory, rather than swamping memory with new ARC buf
7262 * hdrs, we opt not to rebuild the L2ARC. At this point,
7263 * however, we have already set up our L2ARC dev to chain in
7264 * new metadata log blk, so the user may choose to re-add the
7265 * L2ARC dev at a later time to reconstruct it (when there's
7266 * less memory pressure).
7267 */
7268 if (arc_reclaim_needed()) {
7269 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
7270 cmn_err(CE_NOTE, "System running low on memory, "
7271 "aborting L2ARC rebuild.");
7272 err = SET_ERROR(ENOMEM);
7273 break;
7274 }
7275
7276 /*
7277 * Now that we know that the next_lb checks out alright, we
7278 * can start reconstruction from this lb - we can be sure
7279 * that the L2ARC write hand has not yet reached any of our
7280 * buffers.
7281 */
7282 l2arc_log_blk_restore(dev, load_guid, this_lb,
7283 LBP_GET_PSIZE(&lb_ptrs[0]));
7284
7285 /*
7286 * End of list detection. We can look ahead two steps in the
7287 * blk chain and if the 2nd blk from this_lb dips below the
7288 * initial chain starting point, then we know two things:
7289 * 1) it can't be valid, and
7290 * 2) the next_lb's ARC entries might have already been
7291 * partially overwritten and so we should stop before
7292 * we restore it
7293 */
7294 if (l2arc_range_check_overlap(
7295 this_lb->lb_back2_lbp.lbp_daddr, lb_ptrs[0].lbp_daddr,
7296 dev->l2ad_dev_hdr->dh_start_lbps[0].lbp_daddr) &&
7297 !first_pass)
7298 break;
7299
7300 /* log blk restored, continue with next one in the list */
7301 lb_ptrs[0] = lb_ptrs[1];
7302 lb_ptrs[1] = this_lb->lb_back2_lbp;
7303 PTR_SWAP(this_lb, next_lb);
7304 PTR_SWAP(this_lb_buf, next_lb_buf);
7305 this_io = next_io;
7306 next_io = NULL;
7307 first_pass = B_FALSE;
7308
7309 for (;;) {
7310 if (dev->l2ad_rebuild_cancel) {
7311 err = SET_ERROR(ECANCELED);
7312 goto out;
7313 }
7314 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
7315 RW_READER)) {
7316 lock_held = B_TRUE;
7317 break;
7318 }
7319 /*
7320 * L2ARC config lock held by somebody in writer,
7321 * possibly due to them trying to remove us. They'll
7322 * likely to want us to shut down, so after a little
7323 * delay, we check l2ad_rebuild_cancel and retry
7324 * the lock again.
7325 */
7326 delay(1);
7327 }
7328 }
7329 out:
7330 if (next_io != NULL)
7331 l2arc_log_blk_prefetch_abort(next_io);
7332 kmem_free(this_lb, sizeof (*this_lb));
7333 kmem_free(next_lb, sizeof (*next_lb));
7334 kmem_free(this_lb_buf, sizeof (l2arc_log_blk_phys_t));
7335 kmem_free(next_lb_buf, sizeof (l2arc_log_blk_phys_t));
7336 if (err == 0)
7337 ARCSTAT_BUMP(arcstat_l2_rebuild_successes);
7338
7339 if (lock_held)
7340 spa_config_exit(spa, SCL_L2ARC, vd);
7341
7342 return (err);
7343 }
7344
7345 /*
7346 * Attempts to read the device header on the provided L2ARC device and writes
7347 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
7348 * error code is returned.
7349 */
7350 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)7351 l2arc_dev_hdr_read(l2arc_dev_t *dev)
7352 {
7353 int err;
7354 uint64_t guid;
7355 zio_cksum_t cksum;
7356 l2arc_dev_hdr_phys_t *hdr = dev->l2ad_dev_hdr;
7357 const uint64_t hdr_asize = dev->l2ad_dev_hdr_asize;
7358
7359 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
7360
7361 if ((err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
7362 VDEV_LABEL_START_SIZE, hdr_asize, hdr,
7363 ZIO_CHECKSUM_OFF, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
7364 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
7365 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE))) != 0) {
7366 spa_config_exit(dev->l2ad_vdev->vdev_spa, SCL_L2ARC,
7367 dev->l2ad_vdev);
7368 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
7369 return (err);
7370 }
7371
7372 if (hdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
7373 byteswap_uint64_array(hdr, sizeof (*hdr));
7374
7375 if (hdr->dh_magic != L2ARC_DEV_HDR_MAGIC || hdr->dh_spa_guid != guid) {
7376 /*
7377 * Attempt to rebuild a device containing no actual dev hdr
7378 * or containing a header from some other pool.
7379 */
7380 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
7381 return (SET_ERROR(ENOTSUP));
7382 }
7383
7384 l2arc_dev_hdr_checksum(hdr, &cksum);
7385 if (!ZIO_CHECKSUM_EQUAL(hdr->dh_self_cksum, cksum)) {
7386 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_errors);
7387 return (SET_ERROR(EINVAL));
7388 }
7389
7390 return (0);
7391 }
7392
7393 /*
7394 * Reads L2ARC log blocks from storage and validates their contents.
7395 *
7396 * This function implements a simple prefetcher to make sure that while
7397 * we're processing one buffer the L2ARC is already prefetching the next
7398 * one in the chain.
7399 *
7400 * The arguments this_lp and next_lp point to the current and next log blk
7401 * address in the block chain. Similarly, this_lb and next_lb hold the
7402 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. The this_lb_buf
7403 * and next_lb_buf must be buffers of appropriate to hold a raw
7404 * l2arc_log_blk_phys_t (they are used as catch buffers for read ops prior
7405 * to buffer decompression).
7406 *
7407 * The `this_io' and `next_io' arguments are used for block prefetching.
7408 * When issuing the first blk IO during rebuild, you should pass NULL for
7409 * `this_io'. This function will then issue a sync IO to read the block and
7410 * also issue an async IO to fetch the next block in the block chain. The
7411 * prefetch IO is returned in `next_io'. On subsequent calls to this
7412 * function, pass the value returned in `next_io' from the previous call
7413 * as `this_io' and a fresh `next_io' pointer to hold the next prefetch IO.
7414 * Prior to the call, you should initialize your `next_io' pointer to be
7415 * NULL. If no prefetch IO was issued, the pointer is left set at NULL.
7416 *
7417 * On success, this function returns 0, otherwise it returns an appropriate
7418 * error code. On error the prefetching IO is aborted and cleared before
7419 * returning from this function. Therefore, if we return `success', the
7420 * caller can assume that we have taken care of cleanup of prefetch IOs.
7421 */
7422 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,uint8_t * this_lb_buf,uint8_t * next_lb_buf,zio_t * this_io,zio_t ** next_io)7423 l2arc_log_blk_read(l2arc_dev_t *dev,
7424 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
7425 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
7426 uint8_t *this_lb_buf, uint8_t *next_lb_buf,
7427 zio_t *this_io, zio_t **next_io)
7428 {
7429 int err = 0;
7430 zio_cksum_t cksum;
7431
7432 ASSERT(this_lbp != NULL && next_lbp != NULL);
7433 ASSERT(this_lb != NULL && next_lb != NULL);
7434 ASSERT(this_lb_buf != NULL && next_lb_buf != NULL);
7435 ASSERT(next_io != NULL && *next_io == NULL);
7436 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
7437
7438 /*
7439 * Check to see if we have issued the IO for this log blk in a
7440 * previous run. If not, this is the first call, so issue it now.
7441 */
7442 if (this_io == NULL) {
7443 this_io = l2arc_log_blk_prefetch(dev->l2ad_vdev, this_lbp,
7444 this_lb_buf);
7445 }
7446
7447 /*
7448 * Peek to see if we can start issuing the next IO immediately.
7449 */
7450 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
7451 /*
7452 * Start issuing IO for the next log blk early - this
7453 * should help keep the L2ARC device busy while we
7454 * decompress and restore this log blk.
7455 */
7456 *next_io = l2arc_log_blk_prefetch(dev->l2ad_vdev, next_lbp,
7457 next_lb_buf);
7458 }
7459
7460 /* Wait for the IO to read this log block to complete */
7461 if ((err = zio_wait(this_io)) != 0) {
7462 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
7463 goto cleanup;
7464 }
7465
7466 /* Make sure the buffer checks out */
7467 fletcher_4_native(this_lb_buf, LBP_GET_PSIZE(this_lbp), &cksum);
7468 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
7469 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_errors);
7470 err = SET_ERROR(EINVAL);
7471 goto cleanup;
7472 }
7473
7474 /* Now we can take our time decoding this buffer */
7475 switch (LBP_GET_COMPRESS(this_lbp)) {
7476 case ZIO_COMPRESS_OFF:
7477 bcopy(this_lb_buf, this_lb, sizeof (*this_lb));
7478 break;
7479 case ZIO_COMPRESS_LZ4:
7480 if ((err = zio_decompress_data(LBP_GET_COMPRESS(this_lbp),
7481 this_lb_buf, this_lb, LBP_GET_PSIZE(this_lbp),
7482 sizeof (*this_lb))) != 0) {
7483 err = SET_ERROR(EINVAL);
7484 goto cleanup;
7485 }
7486 break;
7487 default:
7488 err = SET_ERROR(EINVAL);
7489 goto cleanup;
7490 }
7491 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
7492 byteswap_uint64_array(this_lb, sizeof (*this_lb));
7493 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
7494 err = SET_ERROR(EINVAL);
7495 goto cleanup;
7496 }
7497 cleanup:
7498 /* Abort an in-flight prefetch I/O in case of error */
7499 if (err != 0 && *next_io != NULL) {
7500 l2arc_log_blk_prefetch_abort(*next_io);
7501 *next_io = NULL;
7502 }
7503 return (err);
7504 }
7505
7506 /*
7507 * Restores the payload of a log blk to ARC. This creates empty ARC hdr
7508 * entries which only contain an l2arc hdr, essentially restoring the
7509 * buffers to their L2ARC evicted state. This function also updates space
7510 * usage on the L2ARC vdev to make sure it tracks restored buffers.
7511 */
7512 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,uint64_t load_guid,const l2arc_log_blk_phys_t * lb,uint64_t lb_psize)7513 l2arc_log_blk_restore(l2arc_dev_t *dev, uint64_t load_guid,
7514 const l2arc_log_blk_phys_t *lb, uint64_t lb_psize)
7515 {
7516 uint64_t size = 0, psize = 0;
7517
7518 for (int i = L2ARC_LOG_BLK_ENTRIES - 1; i >= 0; i--) {
7519 /*
7520 * Restore goes in the reverse temporal direction to preserve
7521 * correct temporal ordering of buffers in the l2ad_buflist.
7522 * l2arc_hdr_restore also does a list_insert_tail instead of
7523 * list_insert_head on the l2ad_buflist:
7524 *
7525 * LIST l2ad_buflist LIST
7526 * HEAD <------ (time) ------ TAIL
7527 * direction +-----+-----+-----+-----+-----+ direction
7528 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
7529 * fill +-----+-----+-----+-----+-----+
7530 * ^ ^
7531 * | |
7532 * | |
7533 * l2arc_fill_thread l2arc_rebuild
7534 * places new bufs here restores bufs here
7535 *
7536 * This also works when the restored bufs get evicted at any
7537 * point during the rebuild.
7538 */
7539 l2arc_hdr_restore(&lb->lb_entries[i], dev, load_guid);
7540 size += LE_GET_LSIZE(&lb->lb_entries[i]);
7541 psize += LE_GET_PSIZE(&lb->lb_entries[i]);
7542 }
7543
7544 /*
7545 * Record rebuild stats:
7546 * size In-memory size of restored buffer data in ARC
7547 * psize Physical size of restored buffers in the L2ARC
7548 * bufs # of ARC buffer headers restored
7549 * log_blks # of L2ARC log entries processed during restore
7550 */
7551 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
7552 ARCSTAT_INCR(arcstat_l2_rebuild_psize, psize);
7553 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, L2ARC_LOG_BLK_ENTRIES);
7554 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
7555 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_size, lb_psize);
7556 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, psize / lb_psize);
7557 vdev_space_update(dev->l2ad_vdev, psize, 0, 0);
7558 }
7559
7560 /*
7561 * Restores a single ARC buf hdr from a log block. The ARC buffer is put
7562 * into a state indicating that it has been evicted to L2ARC.
7563 */
7564 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev,uint64_t load_guid)7565 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev,
7566 uint64_t load_guid)
7567 {
7568 arc_buf_hdr_t *hdr, *exists;
7569 kmutex_t *hash_lock;
7570 arc_buf_contents_t type = LE_GET_TYPE(le);
7571
7572 /*
7573 * Do all the allocation before grabbing any locks, this lets us
7574 * sleep if memory is full and we don't have to deal with failed
7575 * allocations.
7576 */
7577 ASSERT(L2ARC_IS_VALID_COMPRESS(LE_GET_COMPRESS(le)) ||
7578 LE_GET_COMPRESS(le) == ZIO_COMPRESS_OFF);
7579 hdr = arc_buf_alloc_l2only(load_guid, LE_GET_LSIZE(le), type,
7580 dev, le->le_dva, le->le_daddr, LE_GET_PSIZE(le), le->le_birth,
7581 le->le_freeze_cksum, LE_GET_COMPRESS(le));
7582 if (hdr->b_l2hdr.b_daddr != L2ARC_ADDR_UNSET) {
7583 ARCSTAT_INCR(arcstat_l2_size, hdr->b_size);
7584 ARCSTAT_INCR(arcstat_l2_asize, hdr->b_l2hdr.b_asize);
7585 }
7586
7587 mutex_enter(&dev->l2ad_mtx);
7588 /*
7589 * We connect the l2hdr to the hdr only after the hdr is in the hash
7590 * table, otherwise the rest of the arc hdr manipulation machinery
7591 * might get confused.
7592 */
7593 list_insert_tail(&dev->l2ad_buflist, hdr);
7594 (void) refcount_add_many(&dev->l2ad_alloc, hdr->b_l2hdr.b_asize, hdr);
7595 mutex_exit(&dev->l2ad_mtx);
7596
7597 exists = buf_hash_insert(hdr, &hash_lock);
7598 if (exists) {
7599 /* Buffer was already cached, no need to restore it. */
7600 mutex_exit(hash_lock);
7601 arc_hdr_destroy(hdr);
7602 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
7603 return;
7604 }
7605
7606 mutex_exit(hash_lock);
7607 }
7608
7609 /*
7610 * Starts an asynchronous read IO to read a log block. This is used in log
7611 * block reconstruction to start reading the next block before we are done
7612 * decoding and reconstructing the current block, to keep the l2arc device
7613 * nice and hot with read IO to process.
7614 * The returned zio will contain a newly allocated memory buffers for the IO
7615 * data which should then be freed by the caller once the zio is no longer
7616 * needed (i.e. due to it having completed). If you wish to abort this
7617 * zio, you should do so using l2arc_log_blk_prefetch_abort, which takes
7618 * care of disposing of the allocated buffers correctly.
7619 */
7620 static zio_t *
l2arc_log_blk_prefetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,uint8_t * lb_buf)7621 l2arc_log_blk_prefetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
7622 uint8_t *lb_buf)
7623 {
7624 uint32_t psize;
7625 zio_t *pio;
7626
7627 psize = LBP_GET_PSIZE(lbp);
7628 ASSERT(psize <= sizeof (l2arc_log_blk_phys_t));
7629 pio = zio_root(vd->vdev_spa, NULL, NULL, ZIO_FLAG_DONT_CACHE |
7630 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
7631 ZIO_FLAG_DONT_RETRY);
7632 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, psize,
7633 lb_buf, ZIO_CHECKSUM_OFF, NULL, NULL, ZIO_PRIORITY_ASYNC_READ,
7634 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
7635 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
7636
7637 return (pio);
7638 }
7639
7640 /*
7641 * Aborts a zio returned from l2arc_log_blk_prefetch and frees the data
7642 * buffers allocated for it.
7643 */
7644 static void
l2arc_log_blk_prefetch_abort(zio_t * zio)7645 l2arc_log_blk_prefetch_abort(zio_t *zio)
7646 {
7647 (void) zio_wait(zio);
7648 }
7649
7650 /*
7651 * Creates a zio to update the device header on an l2arc device. The zio is
7652 * initiated as a child of `pio'.
7653 */
7654 static void
l2arc_dev_hdr_update(l2arc_dev_t * dev,zio_t * pio)7655 l2arc_dev_hdr_update(l2arc_dev_t *dev, zio_t *pio)
7656 {
7657 zio_t *wzio;
7658 l2arc_dev_hdr_phys_t *hdr = dev->l2ad_dev_hdr;
7659 const uint64_t hdr_asize = dev->l2ad_dev_hdr_asize;
7660
7661 hdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
7662 hdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
7663 hdr->dh_alloc_space = refcount_count(&dev->l2ad_alloc);
7664 hdr->dh_flags = 0;
7665 if (dev->l2ad_first)
7666 hdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
7667
7668 /* checksum operation goes last */
7669 l2arc_dev_hdr_checksum(hdr, &hdr->dh_self_cksum);
7670
7671 wzio = zio_write_phys(pio, dev->l2ad_vdev, VDEV_LABEL_START_SIZE,
7672 hdr_asize, hdr, ZIO_CHECKSUM_OFF, NULL, NULL,
7673 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
7674 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
7675 (void) zio_nowait(wzio);
7676 }
7677
7678 /*
7679 * Commits a log block to the L2ARC device. This routine is invoked from
7680 * l2arc_write_buffers when the log block fills up.
7681 * This function allocates some memory to temporarily hold the serialized
7682 * buffer to be written. This is then released in l2arc_write_done.
7683 */
7684 static void
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)7685 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
7686 l2arc_write_callback_t *cb)
7687 {
7688 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
7689 uint64_t psize, asize;
7690 l2arc_log_blk_buf_t *lb_buf;
7691 zio_t *wzio;
7692
7693 VERIFY(dev->l2ad_log_ent_idx == L2ARC_LOG_BLK_ENTRIES);
7694
7695 /* link the buffer into the block chain */
7696 lb->lb_back2_lbp = dev->l2ad_dev_hdr->dh_start_lbps[1];
7697 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
7698
7699 /* try to compress the buffer */
7700 lb_buf = kmem_zalloc(sizeof (*lb_buf), KM_SLEEP);
7701 list_insert_tail(&cb->l2wcb_log_blk_buflist, lb_buf);
7702 psize = zio_compress_data(ZIO_COMPRESS_LZ4, lb, lb_buf->lbb_log_blk,
7703 sizeof (*lb));
7704 /* a log block is never entirely zero */
7705 ASSERT(psize != 0);
7706 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
7707 ASSERT(asize <= sizeof (lb_buf->lbb_log_blk));
7708
7709 /*
7710 * Update the start log blk pointer in the device header to point
7711 * to the log block we're about to write.
7712 */
7713 dev->l2ad_dev_hdr->dh_start_lbps[1] =
7714 dev->l2ad_dev_hdr->dh_start_lbps[0];
7715 dev->l2ad_dev_hdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
7716 _NOTE(CONSTCOND)
7717 LBP_SET_LSIZE(&dev->l2ad_dev_hdr->dh_start_lbps[0], sizeof (*lb));
7718 LBP_SET_PSIZE(&dev->l2ad_dev_hdr->dh_start_lbps[0], asize);
7719 LBP_SET_CHECKSUM(&dev->l2ad_dev_hdr->dh_start_lbps[0],
7720 ZIO_CHECKSUM_FLETCHER_4);
7721 LBP_SET_TYPE(&dev->l2ad_dev_hdr->dh_start_lbps[0], 0);
7722 if (asize < sizeof (*lb)) {
7723 /* compression succeeded */
7724 bzero(lb_buf->lbb_log_blk + psize, asize - psize);
7725 LBP_SET_COMPRESS(&dev->l2ad_dev_hdr->dh_start_lbps[0],
7726 ZIO_COMPRESS_LZ4);
7727 } else {
7728 /* compression failed */
7729 bcopy(lb, lb_buf->lbb_log_blk, sizeof (*lb));
7730 LBP_SET_COMPRESS(&dev->l2ad_dev_hdr->dh_start_lbps[0],
7731 ZIO_COMPRESS_OFF);
7732 }
7733 /* checksum what we're about to write */
7734 fletcher_4_native(lb_buf->lbb_log_blk, asize,
7735 &dev->l2ad_dev_hdr->dh_start_lbps[0].lbp_cksum);
7736
7737 /* perform the write itself */
7738 CTASSERT(L2ARC_LOG_BLK_SIZE >= SPA_MINBLOCKSIZE &&
7739 L2ARC_LOG_BLK_SIZE <= SPA_MAXBLOCKSIZE);
7740 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
7741 asize, lb_buf->lbb_log_blk, ZIO_CHECKSUM_OFF, NULL, NULL,
7742 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
7743 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
7744 (void) zio_nowait(wzio);
7745
7746 dev->l2ad_hand += asize;
7747 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
7748
7749 /* bump the kstats */
7750 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
7751 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
7752 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_size, asize);
7753 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
7754 dev->l2ad_log_blk_payload_asize / asize);
7755
7756 /* start a new log block */
7757 dev->l2ad_log_ent_idx = 0;
7758 dev->l2ad_log_blk_payload_asize = 0;
7759 }
7760
7761 /*
7762 * Validates an L2ARC log blk address to make sure that it can be read
7763 * from the provided L2ARC device. Returns B_TRUE if the address is
7764 * within the device's bounds, or B_FALSE if not.
7765 */
7766 static boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)7767 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
7768 {
7769 uint64_t psize = LBP_GET_PSIZE(lbp);
7770 uint64_t end = lbp->lbp_daddr + psize;
7771
7772 /*
7773 * A log block is valid if all of the following conditions are true:
7774 * - it fits entirely between l2ad_start and l2ad_end
7775 * - it has a valid size
7776 */
7777 return (lbp->lbp_daddr >= dev->l2ad_start && end <= dev->l2ad_end &&
7778 psize > 0 && psize <= sizeof (l2arc_log_blk_phys_t));
7779 }
7780
7781 /*
7782 * Computes the checksum of `hdr' and stores it in `cksum'.
7783 */
7784 static void
l2arc_dev_hdr_checksum(const l2arc_dev_hdr_phys_t * hdr,zio_cksum_t * cksum)7785 l2arc_dev_hdr_checksum(const l2arc_dev_hdr_phys_t *hdr, zio_cksum_t *cksum)
7786 {
7787 fletcher_4_native((uint8_t *)hdr +
7788 offsetof(l2arc_dev_hdr_phys_t, dh_spa_guid),
7789 sizeof (*hdr) - offsetof(l2arc_dev_hdr_phys_t, dh_spa_guid),
7790 cksum);
7791 }
7792
7793 /*
7794 * Inserts ARC buffer `ab' into the current L2ARC log blk on the device.
7795 * The buffer being inserted must be present in L2ARC.
7796 * Returns B_TRUE if the L2ARC log blk is full and needs to be committed
7797 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
7798 */
7799 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * ab)7800 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *ab)
7801 {
7802 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
7803 l2arc_log_ent_phys_t *le;
7804 int index = dev->l2ad_log_ent_idx++;
7805
7806 ASSERT(index < L2ARC_LOG_BLK_ENTRIES);
7807
7808 le = &lb->lb_entries[index];
7809 bzero(le, sizeof (*le));
7810 le->le_dva = ab->b_dva;
7811 le->le_birth = ab->b_birth;
7812 le->le_daddr = ab->b_l2hdr.b_daddr;
7813 LE_SET_LSIZE(le, ab->b_size);
7814 LE_SET_PSIZE(le, ab->b_l2hdr.b_asize);
7815 LE_SET_COMPRESS(le, ab->b_l2hdr.b_compress);
7816 if (ab->b_l2hdr.b_compress != ZIO_COMPRESS_OFF) {
7817 ASSERT(L2ARC_IS_VALID_COMPRESS(ab->b_l2hdr.b_compress));
7818 ASSERT(L2ARC_IS_VALID_COMPRESS(LE_GET_COMPRESS(le)));
7819 }
7820 le->le_freeze_cksum = *ab->b_freeze_cksum;
7821 LE_SET_CHECKSUM(le, ZIO_CHECKSUM_FLETCHER_2);
7822 LE_SET_TYPE(le, arc_flags_to_bufc(ab->b_flags));
7823 dev->l2ad_log_blk_payload_asize += ab->b_l2hdr.b_asize;
7824
7825 return (dev->l2ad_log_ent_idx == L2ARC_LOG_BLK_ENTRIES);
7826 }
7827
7828 /*
7829 * Checks whether a given L2ARC device address sits in a time-sequential
7830 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
7831 * just do a range comparison, we need to handle the situation in which the
7832 * range wraps around the end of the L2ARC device. Arguments:
7833 * bottom Lower end of the range to check (written to earlier).
7834 * top Upper end of the range to check (written to later).
7835 * check The address for which we want to determine if it sits in
7836 * between the top and bottom.
7837 *
7838 * The 3-way conditional below represents the following cases:
7839 *
7840 * bottom < top : Sequentially ordered case:
7841 * <check>--------+-------------------+
7842 * | (overlap here?) |
7843 * L2ARC dev V V
7844 * |---------------<bottom>============<top>--------------|
7845 *
7846 * bottom > top: Looped-around case:
7847 * <check>--------+------------------+
7848 * | (overlap here?) |
7849 * L2ARC dev V V
7850 * |===============<top>---------------<bottom>===========|
7851 * ^ ^
7852 * | (or here?) |
7853 * +---------------+---------<check>
7854 *
7855 * top == bottom : Just a single address comparison.
7856 */
7857 static inline boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)7858 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
7859 {
7860 if (bottom < top)
7861 return (bottom <= check && check <= top);
7862 else if (bottom > top)
7863 return (check <= top || bottom <= check);
7864 else
7865 return (check == top);
7866 }
7867
7868 /*
7869 * dump arc cache to user mode for debugging purposes
7870 */
7871 static void
arc_dump_entry(arc_buf_hdr_t * entry,arc_info_t * outp)7872 arc_dump_entry(arc_buf_hdr_t *entry, arc_info_t *outp)
7873 {
7874 outp->ai_dva = entry->b_dva;
7875 outp->ai_birth = entry->b_birth;
7876 outp->ai_flags = entry->b_flags;
7877 outp->ai_spa = entry->b_spa;
7878 outp->ai_size = entry->b_size;
7879 if (HDR_HAS_L1HDR(entry)) {
7880 arc_state_t *state = entry->b_l1hdr.b_state;
7881 if (state == arc_anon)
7882 outp->ai_state = AIS_ANON;
7883 else if (state == arc_mru)
7884 outp->ai_state = AIS_MRU;
7885 else if (state == arc_mru_ghost)
7886 outp->ai_state = AIS_MRU_GHOST;
7887 else if (state == arc_mfu)
7888 outp->ai_state = AIS_MFU;
7889 else if (state == arc_mfu_ghost)
7890 outp->ai_state = AIS_MFU_GHOST;
7891 else if (state == arc_l2c_only)
7892 outp->ai_state = AIS_L2C_ONLY;
7893 else
7894 outp->ai_state = AIS_UNKNOWN;
7895 } else {
7896 outp->ai_state = AIS_NO_L1HDR;
7897 }
7898 }
7899
7900 int
arc_dump(int start_bucket,void * buf,size_t bufsize,size_t * returned_bytes)7901 arc_dump(int start_bucket, void *buf, size_t bufsize, size_t *returned_bytes)
7902 {
7903 int i;
7904 arc_info_t *outp = buf + sizeof(arc_info_hdr_t);
7905 arc_info_t *maxp = buf + bufsize;
7906 arc_info_hdr_t *aih = buf;
7907 size_t nbuckets = buf_hash_table.ht_mask + 1;
7908 size_t bph = nbuckets / BUF_LOCKS; /* buckets per hash */
7909 kmutex_t *last_lock = NULL;
7910
7911 if (bufsize < sizeof(arc_info_hdr_t))
7912 return (ENOMEM);
7913
7914 aih->aih_buckets = nbuckets;
7915 aih->aih_buf_locks = BUF_LOCKS;
7916
7917 ASSERT(start_bucket >= 0);
7918 ASSERT(start_bucket < nbuckets);
7919
7920 for (i = start_bucket; i < nbuckets; ++i) {
7921 kmutex_t *hash_lock;
7922 arc_buf_hdr_t *entry;
7923 arc_info_t *dryrun = outp;
7924 int bucket;
7925
7926 /*
7927 * transform index. We want to enumerate the buckets in an
7928 * order that allows us to keep the mutex as long as possible
7929 */
7930 bucket = (i / bph) + (i % bph) * BUF_LOCKS;
7931
7932 hash_lock = BUF_HASH_LOCK(bucket);
7933 if (hash_lock != last_lock) {
7934 if (last_lock)
7935 mutex_exit(last_lock);
7936 mutex_enter(hash_lock);
7937 }
7938 last_lock = hash_lock;
7939 /* count entries to see if they will fit */
7940 entry = buf_hash_table.ht_table[bucket];
7941 while (entry != NULL) {
7942 ++dryrun;
7943 entry = entry->b_hash_next;
7944 }
7945 if (dryrun > maxp) {
7946 break;
7947 }
7948 /* actually copy entries */
7949 entry = buf_hash_table.ht_table[bucket];
7950 while (entry != NULL) {
7951 arc_dump_entry(entry, outp);
7952 ++outp;
7953 entry = entry->b_hash_next;
7954 }
7955 }
7956 if (last_lock)
7957 mutex_exit(last_lock);
7958
7959 *returned_bytes = (void *)outp - buf;
7960 aih->aih_entries = (*returned_bytes - sizeof(*aih)) / sizeof(*outp);
7961
7962 if (i <= buf_hash_table.ht_mask)
7963 aih->aih_next = i;
7964 else
7965 aih->aih_next = 0;
7966
7967 return (0);
7968 }
7969