xref: /linux/drivers/staging/rtl8723bs/hal/rtl8723b_hal_init.c (revision a100922a3855eb35ecd465f1d558546b1e144445)
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 
8 #include <linux/firmware.h>
9 #include <linux/slab.h>
10 #include <drv_types.h>
11 #include <rtl8723b_hal.h>
12 #include "hal_com_h2c.h"
13 
_FWDownloadEnable(struct adapter * padapter,bool enable)14 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
15 {
16 	u8 tmp, count = 0;
17 
18 	if (enable) {
19 		/*  8051 enable */
20 		tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
21 		rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
22 
23 		tmp = rtw_read8(padapter, REG_MCUFWDL);
24 		rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
25 
26 		do {
27 			tmp = rtw_read8(padapter, REG_MCUFWDL);
28 			if (tmp & 0x01)
29 				break;
30 			rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
31 			msleep(1);
32 		} while (count++ < 100);
33 
34 		/*  8051 reset */
35 		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
36 		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
37 	} else {
38 		/*  MCU firmware download disable. */
39 		tmp = rtw_read8(padapter, REG_MCUFWDL);
40 		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
41 	}
42 }
43 
_BlockWrite(struct adapter * padapter,void * buffer,u32 buffSize)44 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
45 {
46 	int ret = _SUCCESS;
47 
48 	u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
49 	u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
50 	u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
51 	u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
52 	u32 remainSize_p1 = 0, remainSize_p2 = 0;
53 	u8 *bufferPtr = buffer;
54 	u32 i = 0, offset = 0;
55 
56 	/* 3 Phase #1 */
57 	blockCount_p1 = buffSize / blockSize_p1;
58 	remainSize_p1 = buffSize % blockSize_p1;
59 
60 	for (i = 0; i < blockCount_p1; i++) {
61 		ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
62 		if (ret == _FAIL) {
63 			netdev_dbg(padapter->pnetdev, "write failed at %s %d, block:%d\n",
64 				   __func__, __LINE__, i);
65 			goto exit;
66 		}
67 	}
68 
69 	/* 3 Phase #2 */
70 	if (remainSize_p1) {
71 		offset = blockCount_p1 * blockSize_p1;
72 
73 		blockCount_p2 = remainSize_p1/blockSize_p2;
74 		remainSize_p2 = remainSize_p1%blockSize_p2;
75 	}
76 
77 	/* 3 Phase #3 */
78 	if (remainSize_p2) {
79 		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
80 
81 		blockCount_p3 = remainSize_p2 / blockSize_p3;
82 
83 		for (i = 0; i < blockCount_p3; i++) {
84 			ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
85 
86 			if (ret == _FAIL) {
87 				netdev_dbg(padapter->pnetdev, "write failed at %s %d, block:%d\n",
88 					   __func__, __LINE__, i);
89 				goto exit;
90 			}
91 		}
92 	}
93 exit:
94 	return ret;
95 }
96 
_PageWrite(struct adapter * padapter,u32 page,void * buffer,u32 size)97 static int _PageWrite(
98 	struct adapter *padapter,
99 	u32 page,
100 	void *buffer,
101 	u32 size
102 )
103 {
104 	u8 value8;
105 	u8 u8Page = (u8) (page & 0x07);
106 
107 	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
108 	rtw_write8(padapter, REG_MCUFWDL+2, value8);
109 
110 	return _BlockWrite(padapter, buffer, size);
111 }
112 
_WriteFW(struct adapter * padapter,void * buffer,u32 size)113 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
114 {
115 	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
116 	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
117 	int ret = _SUCCESS;
118 	u32 pageNums, remainSize;
119 	u32 page, offset;
120 	u8 *bufferPtr = buffer;
121 
122 	pageNums = size / MAX_DLFW_PAGE_SIZE;
123 	remainSize = size % MAX_DLFW_PAGE_SIZE;
124 
125 	for (page = 0; page < pageNums; page++) {
126 		offset = page * MAX_DLFW_PAGE_SIZE;
127 		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
128 
129 		if (ret == _FAIL) {
130 			netdev_dbg(padapter->pnetdev, "page write failed at %s %d\n",
131 				   __func__, __LINE__);
132 			goto exit;
133 		}
134 	}
135 
136 	if (remainSize) {
137 		offset = pageNums * MAX_DLFW_PAGE_SIZE;
138 		page = pageNums;
139 		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
140 
141 		if (ret == _FAIL) {
142 			netdev_dbg(padapter->pnetdev, "remaining page write failed at %s %d\n",
143 				   __func__, __LINE__);
144 			goto exit;
145 		}
146 	}
147 
148 exit:
149 	return ret;
150 }
151 
_8051Reset8723(struct adapter * padapter)152 void _8051Reset8723(struct adapter *padapter)
153 {
154 	u8 cpu_rst;
155 	u8 io_rst;
156 
157 
158 	/*  Reset 8051(WLMCU) IO wrapper */
159 	/*  0x1c[8] = 0 */
160 	/*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
161 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
162 	io_rst &= ~BIT(0);
163 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
164 
165 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
166 	cpu_rst &= ~BIT(2);
167 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
168 
169 	/*  Enable 8051 IO wrapper */
170 	/*  0x1c[8] = 1 */
171 	io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
172 	io_rst |= BIT(0);
173 	rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
174 
175 	cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
176 	cpu_rst |= BIT(2);
177 	rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
178 }
179 
180 u8 g_fwdl_chksum_fail;
181 
polling_fwdl_chksum(struct adapter * adapter,u32 min_cnt,u32 timeout_ms)182 static s32 polling_fwdl_chksum(
183 	struct adapter *adapter, u32 min_cnt, u32 timeout_ms
184 )
185 {
186 	s32 ret = _FAIL;
187 	u32 value32;
188 	unsigned long start = jiffies;
189 	u32 cnt = 0;
190 
191 	/* polling CheckSum report */
192 	do {
193 		cnt++;
194 		value32 = rtw_read32(adapter, REG_MCUFWDL);
195 		if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
196 			break;
197 		yield();
198 	} while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
199 
200 	if (!(value32 & FWDL_ChkSum_rpt)) {
201 		goto exit;
202 	}
203 
204 	if (g_fwdl_chksum_fail) {
205 		g_fwdl_chksum_fail--;
206 		goto exit;
207 	}
208 
209 	ret = _SUCCESS;
210 
211 exit:
212 
213 	return ret;
214 }
215 
216 u8 g_fwdl_wintint_rdy_fail;
217 
_FWFreeToGo(struct adapter * adapter,u32 min_cnt,u32 timeout_ms)218 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
219 {
220 	s32 ret = _FAIL;
221 	u32 value32;
222 	unsigned long start = jiffies;
223 	u32 cnt = 0;
224 
225 	value32 = rtw_read32(adapter, REG_MCUFWDL);
226 	value32 |= MCUFWDL_RDY;
227 	value32 &= ~WINTINI_RDY;
228 	rtw_write32(adapter, REG_MCUFWDL, value32);
229 
230 	_8051Reset8723(adapter);
231 
232 	/*  polling for FW ready */
233 	do {
234 		cnt++;
235 		value32 = rtw_read32(adapter, REG_MCUFWDL);
236 		if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
237 			break;
238 		yield();
239 	} while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
240 
241 	if (!(value32 & WINTINI_RDY)) {
242 		goto exit;
243 	}
244 
245 	if (g_fwdl_wintint_rdy_fail) {
246 		g_fwdl_wintint_rdy_fail--;
247 		goto exit;
248 	}
249 
250 	ret = _SUCCESS;
251 
252 exit:
253 
254 	return ret;
255 }
256 
257 #define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
258 
rtl8723b_FirmwareSelfReset(struct adapter * padapter)259 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
260 {
261 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
262 	u8 u1bTmp;
263 	u8 Delay = 100;
264 
265 	if (
266 		!(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
267 	) { /*  after 88C Fw v33.1 */
268 		/* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
269 		rtw_write8(padapter, REG_HMETFR+3, 0x20);
270 
271 		u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
272 		while (u1bTmp & BIT2) {
273 			Delay--;
274 			if (Delay == 0)
275 				break;
276 			udelay(50);
277 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
278 		}
279 
280 		if (Delay == 0) {
281 			/* force firmware reset */
282 			u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
283 			rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
284 		}
285 	}
286 }
287 
288 /*  */
289 /* 	Description: */
290 /* 		Download 8192C firmware code. */
291 /*  */
292 /*  */
rtl8723b_FirmwareDownload(struct adapter * padapter,bool bUsedWoWLANFw)293 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
294 {
295 	s32 rtStatus = _SUCCESS;
296 	u8 write_fw = 0;
297 	unsigned long fwdl_start_time;
298 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
299 	struct rt_firmware *pFirmware;
300 	struct rt_firmware *pBTFirmware;
301 	struct rt_firmware_hdr *pFwHdr = NULL;
302 	u8 *pFirmwareBuf;
303 	u32 FirmwareLen;
304 	const struct firmware *fw;
305 	struct device *device = dvobj_to_dev(padapter->dvobj);
306 	u8 *fwfilepath;
307 	struct dvobj_priv *psdpriv = padapter->dvobj;
308 	struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
309 	u8 tmp_ps;
310 
311 	pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
312 	if (!pFirmware)
313 		return _FAIL;
314 	pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
315 	if (!pBTFirmware) {
316 		kfree(pFirmware);
317 		return _FAIL;
318 	}
319 	tmp_ps = rtw_read8(padapter, 0xa3);
320 	tmp_ps &= 0xf8;
321 	tmp_ps |= 0x02;
322 	/* 1. write 0xA3[:2:0] = 3b'010 */
323 	rtw_write8(padapter, 0xa3, tmp_ps);
324 	/* 2. read power_state = 0xA0[1:0] */
325 	tmp_ps = rtw_read8(padapter, 0xa0);
326 	tmp_ps &= 0x03;
327 	if (tmp_ps != 0x01)
328 		pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
329 
330 	fwfilepath = "rtlwifi/rtl8723bs_nic.bin";
331 
332 	pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
333 
334 	rtStatus = request_firmware(&fw, fwfilepath, device);
335 	if (rtStatus) {
336 		pr_err("Request firmware failed with error 0x%x\n", rtStatus);
337 		rtStatus = _FAIL;
338 		goto exit;
339 	}
340 
341 	if (!fw) {
342 		pr_err("Firmware %s not available\n", fwfilepath);
343 		rtStatus = _FAIL;
344 		goto exit;
345 	}
346 
347 	if (fw->size > FW_8723B_SIZE) {
348 		rtStatus = _FAIL;
349 		goto exit;
350 	}
351 
352 	pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
353 	if (!pFirmware->fw_buffer_sz) {
354 		rtStatus = _FAIL;
355 		goto exit;
356 	}
357 
358 	pFirmware->fw_length = fw->size;
359 	release_firmware(fw);
360 	if (pFirmware->fw_length > FW_8723B_SIZE) {
361 		rtStatus = _FAIL;
362 		netdev_emerg(padapter->pnetdev,
363 			     "Firmware size:%u exceed %u\n",
364 			     pFirmware->fw_length, FW_8723B_SIZE);
365 		goto release_fw1;
366 	}
367 
368 	pFirmwareBuf = pFirmware->fw_buffer_sz;
369 	FirmwareLen = pFirmware->fw_length;
370 
371 	/*  To Check Fw header. Added by tynli. 2009.12.04. */
372 	pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
373 
374 	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
375 	pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
376 	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
377 
378 	if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
379 		/*  Shift 32 bytes for FW header */
380 		pFirmwareBuf = pFirmwareBuf + 32;
381 		FirmwareLen = FirmwareLen - 32;
382 	}
383 
384 	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
385 	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
386 	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
387 		rtw_write8(padapter, REG_MCUFWDL, 0x00);
388 		rtl8723b_FirmwareSelfReset(padapter);
389 	}
390 
391 	_FWDownloadEnable(padapter, true);
392 	fwdl_start_time = jiffies;
393 	while (
394 		!padapter->bDriverStopped &&
395 		!padapter->bSurpriseRemoved &&
396 		(write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
397 	) {
398 		/* reset FWDL chksum */
399 		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
400 
401 		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
402 		if (rtStatus != _SUCCESS)
403 			continue;
404 
405 		rtStatus = polling_fwdl_chksum(padapter, 5, 50);
406 		if (rtStatus == _SUCCESS)
407 			break;
408 	}
409 	_FWDownloadEnable(padapter, false);
410 	if (_SUCCESS != rtStatus)
411 		goto fwdl_stat;
412 
413 	rtStatus = _FWFreeToGo(padapter, 10, 200);
414 	if (_SUCCESS != rtStatus)
415 		goto fwdl_stat;
416 
417 fwdl_stat:
418 
419 exit:
420 	kfree(pFirmware->fw_buffer_sz);
421 	kfree(pFirmware);
422 release_fw1:
423 	kfree(pBTFirmware);
424 	return rtStatus;
425 }
426 
rtl8723b_InitializeFirmwareVars(struct adapter * padapter)427 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
428 {
429 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
430 
431 	/*  Init Fw LPS related. */
432 	adapter_to_pwrctl(padapter)->fw_current_in_ps_mode = false;
433 
434 	/* Init H2C cmd. */
435 	rtw_write8(padapter, REG_HMETFR, 0x0f);
436 
437 	/*  Init H2C counter. by tynli. 2009.12.09. */
438 	pHalData->LastHMEBoxNum = 0;
439 /* pHalData->H2CQueueHead = 0; */
440 /* pHalData->H2CQueueTail = 0; */
441 /* pHalData->H2CStopInsertQueue = false; */
442 }
443 
444 /*  */
445 /* 				Efuse related code */
446 /*  */
hal_EfuseSwitchToBank(struct adapter * padapter,u8 bank,bool bPseudoTest)447 static u8 hal_EfuseSwitchToBank(
448 	struct adapter *padapter, u8 bank, bool bPseudoTest
449 )
450 {
451 	u8 bRet = false;
452 	u32 value32 = 0;
453 #ifdef HAL_EFUSE_MEMORY
454 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
455 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
456 #endif
457 
458 
459 	if (bPseudoTest) {
460 #ifdef HAL_EFUSE_MEMORY
461 		pEfuseHal->fakeEfuseBank = bank;
462 #else
463 		fakeEfuseBank = bank;
464 #endif
465 		bRet = true;
466 	} else {
467 		value32 = rtw_read32(padapter, EFUSE_TEST);
468 		bRet = true;
469 		switch (bank) {
470 		case 0:
471 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
472 			break;
473 		case 1:
474 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
475 			break;
476 		case 2:
477 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
478 			break;
479 		case 3:
480 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
481 			break;
482 		default:
483 			value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
484 			bRet = false;
485 			break;
486 		}
487 		rtw_write32(padapter, EFUSE_TEST, value32);
488 	}
489 
490 	return bRet;
491 }
492 
Hal_GetEfuseDefinition(struct adapter * padapter,u8 efuseType,u8 type,void * pOut,bool bPseudoTest)493 void Hal_GetEfuseDefinition(
494 	struct adapter *padapter,
495 	u8 efuseType,
496 	u8 type,
497 	void *pOut,
498 	bool bPseudoTest
499 )
500 {
501 	switch (type) {
502 	case TYPE_EFUSE_MAX_SECTION:
503 		{
504 			u8 *pMax_section = pOut;
505 
506 			if (efuseType == EFUSE_WIFI)
507 				*pMax_section = EFUSE_MAX_SECTION_8723B;
508 			else
509 				*pMax_section = EFUSE_BT_MAX_SECTION;
510 		}
511 		break;
512 
513 	case TYPE_EFUSE_REAL_CONTENT_LEN:
514 		{
515 			u16 *pu2Tmp = pOut;
516 
517 			if (efuseType == EFUSE_WIFI)
518 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
519 			else
520 				*pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
521 		}
522 		break;
523 
524 	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
525 		{
526 			u16 *pu2Tmp = pOut;
527 
528 			if (efuseType == EFUSE_WIFI)
529 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
530 			else
531 				*pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
532 		}
533 		break;
534 
535 	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
536 		{
537 			u16 *pu2Tmp = pOut;
538 
539 			if (efuseType == EFUSE_WIFI)
540 				*pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
541 			else
542 				*pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
543 		}
544 		break;
545 
546 	case TYPE_EFUSE_MAP_LEN:
547 		{
548 			u16 *pu2Tmp = pOut;
549 
550 			if (efuseType == EFUSE_WIFI)
551 				*pu2Tmp = EFUSE_MAX_MAP_LEN;
552 			else
553 				*pu2Tmp = EFUSE_BT_MAP_LEN;
554 		}
555 		break;
556 
557 	case TYPE_EFUSE_PROTECT_BYTES_BANK:
558 		{
559 			u8 *pu1Tmp = pOut;
560 
561 			if (efuseType == EFUSE_WIFI)
562 				*pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
563 			else
564 				*pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
565 		}
566 		break;
567 
568 	case TYPE_EFUSE_CONTENT_LEN_BANK:
569 		{
570 			u16 *pu2Tmp = pOut;
571 
572 			if (efuseType == EFUSE_WIFI)
573 				*pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
574 			else
575 				*pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
576 		}
577 		break;
578 
579 	default:
580 		{
581 			u8 *pu1Tmp = pOut;
582 			*pu1Tmp = 0;
583 		}
584 		break;
585 	}
586 }
587 
588 #define VOLTAGE_V25		0x03
589 
590 /*  */
591 /* 	The following is for compile ok */
592 /* 	That should be merged with the original in the future */
593 /*  */
594 #define EFUSE_ACCESS_ON_8723			0x69	/*  For RTL8723 only. */
595 #define REG_EFUSE_ACCESS_8723			0x00CF	/*  Efuse access protection for RTL8723 */
596 
Hal_EfusePowerSwitch(struct adapter * padapter,u8 bWrite,u8 PwrState)597 void Hal_EfusePowerSwitch(
598 	struct adapter *padapter, u8 bWrite, u8 PwrState
599 )
600 {
601 	u8 tempval;
602 	u16 tmpV16;
603 
604 
605 	if (PwrState) {
606 		/*  To avoid cannot access efuse registers after disable/enable several times during DTM test. */
607 		/*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
608 		tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
609 		if (tempval & BIT(0)) { /*  SDIO local register is suspend */
610 			u8 count = 0;
611 
612 
613 			tempval &= ~BIT(0);
614 			rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
615 
616 			/*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
617 			do {
618 				tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
619 				tempval &= 0x3;
620 				if (tempval == 0x02)
621 					break;
622 
623 				count++;
624 				if (count >= 100)
625 					break;
626 
627 				mdelay(10);
628 			} while (1);
629 		}
630 
631 		rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
632 
633 		/*  Reset: 0x0000h[28], default valid */
634 		tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
635 		if (!(tmpV16 & FEN_ELDR)) {
636 			tmpV16 |= FEN_ELDR;
637 			rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
638 		}
639 
640 		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
641 		tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
642 		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
643 			tmpV16 |= (LOADER_CLK_EN | ANA8M);
644 			rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
645 		}
646 
647 		if (bWrite) {
648 			/*  Enable LDO 2.5V before read/write action */
649 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
650 			tempval &= 0x0F;
651 			tempval |= (VOLTAGE_V25 << 4);
652 			rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
653 
654 			/* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
655 		}
656 	} else {
657 		rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
658 
659 		if (bWrite) {
660 			/*  Disable LDO 2.5V after read/write action */
661 			tempval = rtw_read8(padapter, EFUSE_TEST+3);
662 			rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
663 		}
664 
665 	}
666 }
667 
hal_ReadEFuse_WiFi(struct adapter * padapter,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)668 static void hal_ReadEFuse_WiFi(
669 	struct adapter *padapter,
670 	u16 _offset,
671 	u16 _size_byte,
672 	u8 *pbuf,
673 	bool bPseudoTest
674 )
675 {
676 #ifdef HAL_EFUSE_MEMORY
677 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
678 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
679 #endif
680 	u8 *efuseTbl = NULL;
681 	u16 eFuse_Addr = 0;
682 	u8 offset, wden;
683 	u8 efuseHeader, efuseExtHdr, efuseData;
684 	u16 i, total, used;
685 	u8 efuse_usage = 0;
686 
687 	/*  */
688 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
689 	/*  */
690 	if ((_offset + _size_byte) > EFUSE_MAX_MAP_LEN)
691 		return;
692 
693 	efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
694 	if (!efuseTbl)
695 		return;
696 
697 	/*  0xff will be efuse default value instead of 0x00. */
698 	memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
699 
700 	/*  switch bank back to bank 0 for later BT and wifi use. */
701 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
702 
703 	while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
704 		efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
705 		if (efuseHeader == 0xFF)
706 			break;
707 
708 		/*  Check PG header for section num. */
709 		if (EXT_HEADER(efuseHeader)) { /* extended header */
710 			offset = GET_HDR_OFFSET_2_0(efuseHeader);
711 
712 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
713 			if (ALL_WORDS_DISABLED(efuseExtHdr))
714 				continue;
715 
716 			offset |= ((efuseExtHdr & 0xF0) >> 1);
717 			wden = (efuseExtHdr & 0x0F);
718 		} else {
719 			offset = ((efuseHeader >> 4) & 0x0f);
720 			wden = (efuseHeader & 0x0f);
721 		}
722 
723 		if (offset < EFUSE_MAX_SECTION_8723B) {
724 			u16 addr;
725 			/*  Get word enable value from PG header */
726 
727 			addr = offset * PGPKT_DATA_SIZE;
728 			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
729 				/*  Check word enable condition in the section */
730 				if (!(wden & (0x01<<i))) {
731 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
732 					efuseTbl[addr] = efuseData;
733 
734 					efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
735 					efuseTbl[addr+1] = efuseData;
736 				}
737 				addr += 2;
738 			}
739 		} else {
740 			eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
741 		}
742 	}
743 
744 	/*  Copy from Efuse map to output pointer memory!!! */
745 	for (i = 0; i < _size_byte; i++)
746 		pbuf[i] = efuseTbl[_offset+i];
747 
748 	/*  Calculate Efuse utilization */
749 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
750 	used = eFuse_Addr - 1;
751 	efuse_usage = (u8)((used*100)/total);
752 	if (bPseudoTest) {
753 #ifdef HAL_EFUSE_MEMORY
754 		pEfuseHal->fakeEfuseUsedBytes = used;
755 #else
756 		fakeEfuseUsedBytes = used;
757 #endif
758 	} else {
759 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
760 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
761 	}
762 
763 	kfree(efuseTbl);
764 }
765 
hal_ReadEFuse_BT(struct adapter * padapter,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)766 static void hal_ReadEFuse_BT(
767 	struct adapter *padapter,
768 	u16 _offset,
769 	u16 _size_byte,
770 	u8 *pbuf,
771 	bool bPseudoTest
772 )
773 {
774 #ifdef HAL_EFUSE_MEMORY
775 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
776 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
777 #endif
778 	u8 *efuseTbl;
779 	u8 bank;
780 	u16 eFuse_Addr;
781 	u8 efuseHeader, efuseExtHdr, efuseData;
782 	u8 offset, wden;
783 	u16 i, total, used;
784 	u8 efuse_usage;
785 
786 
787 	/*  */
788 	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
789 	/*  */
790 	if ((_offset + _size_byte) > EFUSE_BT_MAP_LEN)
791 		return;
792 
793 	efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
794 	if (!efuseTbl)
795 		return;
796 
797 	/*  0xff will be efuse default value instead of 0x00. */
798 	memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
799 
800 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
801 
802 	for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
803 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
804 			goto exit;
805 
806 		eFuse_Addr = 0;
807 
808 		while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
809 			efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
810 			if (efuseHeader == 0xFF)
811 				break;
812 
813 			/*  Check PG header for section num. */
814 			if (EXT_HEADER(efuseHeader)) { /* extended header */
815 				offset = GET_HDR_OFFSET_2_0(efuseHeader);
816 
817 				efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
818 				if (ALL_WORDS_DISABLED(efuseExtHdr))
819 					continue;
820 
821 
822 				offset |= ((efuseExtHdr & 0xF0) >> 1);
823 				wden = (efuseExtHdr & 0x0F);
824 			} else {
825 				offset = ((efuseHeader >> 4) & 0x0f);
826 				wden = (efuseHeader & 0x0f);
827 			}
828 
829 			if (offset < EFUSE_BT_MAX_SECTION) {
830 				u16 addr = offset * PGPKT_DATA_SIZE;
831 
832 				for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
833 					/*  Check word enable condition in the section */
834 					if (!(wden & (0x01<<i))) {
835 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
836 						efuseTbl[addr] = efuseData;
837 
838 						efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
839 						efuseTbl[addr+1] = efuseData;
840 					}
841 					addr += 2;
842 				}
843 			} else {
844 				eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
845 			}
846 		}
847 
848 		if ((eFuse_Addr - 1) < total)
849 			break;
850 
851 	}
852 
853 	/*  switch bank back to bank 0 for later BT and wifi use. */
854 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
855 
856 	/*  Copy from Efuse map to output pointer memory!!! */
857 	for (i = 0; i < _size_byte; i++)
858 		pbuf[i] = efuseTbl[_offset+i];
859 
860 	/*  */
861 	/*  Calculate Efuse utilization. */
862 	/*  */
863 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
864 	used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
865 	efuse_usage = (u8)((used*100)/total);
866 	if (bPseudoTest) {
867 #ifdef HAL_EFUSE_MEMORY
868 		pEfuseHal->fakeBTEfuseUsedBytes = used;
869 #else
870 		fakeBTEfuseUsedBytes = used;
871 #endif
872 	} else {
873 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
874 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
875 	}
876 
877 exit:
878 	kfree(efuseTbl);
879 }
880 
Hal_ReadEFuse(struct adapter * padapter,u8 efuseType,u16 _offset,u16 _size_byte,u8 * pbuf,bool bPseudoTest)881 void Hal_ReadEFuse(
882 	struct adapter *padapter,
883 	u8 efuseType,
884 	u16 _offset,
885 	u16 _size_byte,
886 	u8 *pbuf,
887 	bool bPseudoTest
888 )
889 {
890 	if (efuseType == EFUSE_WIFI)
891 		hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
892 	else
893 		hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
894 }
895 
hal_EfuseGetCurrentSize_WiFi(struct adapter * padapter,bool bPseudoTest)896 static u16 hal_EfuseGetCurrentSize_WiFi(
897 	struct adapter *padapter, bool bPseudoTest
898 )
899 {
900 #ifdef HAL_EFUSE_MEMORY
901 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
902 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
903 #endif
904 	u16 efuse_addr = 0;
905 	u16 start_addr = 0; /*  for debug */
906 	u8 hworden = 0;
907 	u8 efuse_data, word_cnts = 0;
908 	u32 count = 0; /*  for debug */
909 
910 
911 	if (bPseudoTest) {
912 #ifdef HAL_EFUSE_MEMORY
913 		efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
914 #else
915 		efuse_addr = (u16)fakeEfuseUsedBytes;
916 #endif
917 	} else
918 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
919 
920 	start_addr = efuse_addr;
921 
922 	/*  switch bank back to bank 0 for later BT and wifi use. */
923 	hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
924 
925 	count = 0;
926 	while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
927 		if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false)
928 			goto error;
929 
930 		if (efuse_data == 0xFF)
931 			break;
932 
933 		if ((start_addr != 0) && (efuse_addr == start_addr)) {
934 			count++;
935 
936 			efuse_data = 0xFF;
937 			if (count < 4) {
938 				/*  try again! */
939 
940 				if (count > 2) {
941 					/*  try again form address 0 */
942 					efuse_addr = 0;
943 					start_addr = 0;
944 				}
945 
946 				continue;
947 			}
948 
949 			goto error;
950 		}
951 
952 		if (EXT_HEADER(efuse_data)) {
953 			efuse_addr++;
954 			efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
955 			if (ALL_WORDS_DISABLED(efuse_data))
956 				continue;
957 
958 			hworden = efuse_data & 0x0F;
959 		} else {
960 			hworden = efuse_data & 0x0F;
961 		}
962 
963 		word_cnts = Efuse_CalculateWordCnts(hworden);
964 		efuse_addr += (word_cnts*2)+1;
965 	}
966 
967 	if (bPseudoTest) {
968 #ifdef HAL_EFUSE_MEMORY
969 		pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
970 #else
971 		fakeEfuseUsedBytes = efuse_addr;
972 #endif
973 	} else
974 		rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
975 
976 	goto exit;
977 
978 error:
979 	/*  report max size to prevent write efuse */
980 	EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
981 
982 exit:
983 
984 	return efuse_addr;
985 }
986 
hal_EfuseGetCurrentSize_BT(struct adapter * padapter,u8 bPseudoTest)987 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
988 {
989 #ifdef HAL_EFUSE_MEMORY
990 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
991 	struct efuse_hal *pEfuseHal = &pHalData->EfuseHal;
992 #endif
993 	u16 btusedbytes;
994 	u16 efuse_addr;
995 	u8 bank, startBank;
996 	u8 hworden = 0;
997 	u8 efuse_data, word_cnts = 0;
998 	u16 retU2 = 0;
999 
1000 	if (bPseudoTest) {
1001 #ifdef HAL_EFUSE_MEMORY
1002 		btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1003 #else
1004 		btusedbytes = fakeBTEfuseUsedBytes;
1005 #endif
1006 	} else
1007 		rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1008 
1009 	efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1010 	startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1011 
1012 	EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1013 
1014 	for (bank = startBank; bank < 3; bank++) {
1015 		if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false)
1016 			/* bank = EFUSE_MAX_BANK; */
1017 			break;
1018 
1019 		/*  only when bank is switched we have to reset the efuse_addr. */
1020 		if (bank != startBank)
1021 			efuse_addr = 0;
1022 
1023 		while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1024 			if (efuse_OneByteRead(padapter, efuse_addr,
1025 					      &efuse_data, bPseudoTest) == false)
1026 				/* bank = EFUSE_MAX_BANK; */
1027 				break;
1028 
1029 			if (efuse_data == 0xFF)
1030 				break;
1031 
1032 			if (EXT_HEADER(efuse_data)) {
1033 				efuse_addr++;
1034 				efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1035 
1036 				if (ALL_WORDS_DISABLED(efuse_data)) {
1037 					efuse_addr++;
1038 					continue;
1039 				}
1040 
1041 				hworden = efuse_data & 0x0F;
1042 			} else {
1043 				hworden =  efuse_data & 0x0F;
1044 			}
1045 
1046 			word_cnts = Efuse_CalculateWordCnts(hworden);
1047 			/* read next header */
1048 			efuse_addr += (word_cnts*2)+1;
1049 		}
1050 
1051 		/*  Check if we need to check next bank efuse */
1052 		if (efuse_addr < retU2)
1053 			break; /*  don't need to check next bank. */
1054 	}
1055 
1056 	retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1057 	if (bPseudoTest) {
1058 		pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1059 	} else {
1060 		pEfuseHal->BTEfuseUsedBytes = retU2;
1061 	}
1062 
1063 	return retU2;
1064 }
1065 
Hal_EfuseGetCurrentSize(struct adapter * padapter,u8 efuseType,bool bPseudoTest)1066 u16 Hal_EfuseGetCurrentSize(
1067 	struct adapter *padapter, u8 efuseType, bool bPseudoTest
1068 )
1069 {
1070 	u16 ret = 0;
1071 
1072 	if (efuseType == EFUSE_WIFI)
1073 		ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1074 	else
1075 		ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1076 
1077 	return ret;
1078 }
1079 
Hal_EfuseWordEnableDataWrite(struct adapter * padapter,u16 efuse_addr,u8 word_en,u8 * data,bool bPseudoTest)1080 static u8 Hal_EfuseWordEnableDataWrite(
1081 	struct adapter *padapter,
1082 	u16 efuse_addr,
1083 	u8 word_en,
1084 	u8 *data,
1085 	bool bPseudoTest
1086 )
1087 {
1088 	u16 tmpaddr = 0;
1089 	u16 start_addr = efuse_addr;
1090 	u8 badworden = 0x0F;
1091 	u8 tmpdata[PGPKT_DATA_SIZE];
1092 
1093 	memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1094 
1095 	if (!(word_en & BIT(0))) {
1096 		tmpaddr = start_addr;
1097 		efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1098 		efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1099 
1100 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1101 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1102 		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1103 			badworden &= (~BIT(0));
1104 		}
1105 	}
1106 	if (!(word_en & BIT(1))) {
1107 		tmpaddr = start_addr;
1108 		efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1109 		efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1110 
1111 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1112 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1113 		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1114 			badworden &= (~BIT(1));
1115 		}
1116 	}
1117 
1118 	if (!(word_en & BIT(2))) {
1119 		tmpaddr = start_addr;
1120 		efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1121 		efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1122 
1123 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1124 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1125 		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1126 			badworden &= (~BIT(2));
1127 		}
1128 	}
1129 
1130 	if (!(word_en & BIT(3))) {
1131 		tmpaddr = start_addr;
1132 		efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1133 		efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1134 
1135 		efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1136 		efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1137 		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1138 			badworden &= (~BIT(3));
1139 		}
1140 	}
1141 
1142 	return badworden;
1143 }
1144 
ReadChipVersion8723B(struct adapter * padapter)1145 static struct hal_version ReadChipVersion8723B(struct adapter *padapter)
1146 {
1147 	u32 value32;
1148 	struct hal_version ChipVersion;
1149 	struct hal_com_data *pHalData;
1150 
1151 /* YJ, TODO, move read chip type here */
1152 	pHalData = GET_HAL_DATA(padapter);
1153 
1154 	value32 = rtw_read32(padapter, REG_SYS_CFG);
1155 	ChipVersion.ICType = CHIP_8723B;
1156 	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1157 	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1158 	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1159 
1160 	/*  For regulator mode. by tynli. 2011.01.14 */
1161 	pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1162 
1163 	value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1164 	ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);	/*  ROM code version. */
1165 
1166 	/*  For multi-function consideration. Added by Roger, 2010.10.06. */
1167 	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1168 	value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1169 	pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1170 	pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1171 	pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1172 	pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1173 
1174 	dump_chip_info(ChipVersion);
1175 
1176 	pHalData->VersionID = ChipVersion;
1177 
1178 	return ChipVersion;
1179 }
1180 
rtl8723b_read_chip_version(struct adapter * padapter)1181 void rtl8723b_read_chip_version(struct adapter *padapter)
1182 {
1183 	ReadChipVersion8723B(padapter);
1184 }
1185 
rtl8723b_InitBeaconParameters(struct adapter * padapter)1186 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1187 {
1188 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1189 	u16 val16;
1190 	u8 val8 = DIS_TSF_UDT;
1191 
1192 
1193 	val16 = val8 | (val8 << 8); /*  port0 and port1 */
1194 
1195 	/*  Enable prot0 beacon function for PSTDMA */
1196 	val16 |= EN_BCN_FUNCTION;
1197 
1198 	rtw_write16(padapter, REG_BCN_CTRL, val16);
1199 
1200 	/*  TODO: Remove these magic number */
1201 	rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1202 	/*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1203 	/*  so don't set this register on STA mode. */
1204 	if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1205 		rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1206 	rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1207 
1208 	/*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1209 	/*  because test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1210 	rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1211 
1212 	pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1213 	pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1214 	pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1215 	pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1216 	pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1217 }
1218 
_InitBurstPktLen_8723BS(struct adapter * Adapter)1219 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1220 {
1221 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1222 
1223 	rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1224 	rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);		/* for VHT packet length 11K */
1225 	rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1226 	rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1227 	rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1228 	if (pHalData->AMPDUBurstMode)
1229 		rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1230 	rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1231 
1232 	/*  ARFB table 9 for 11ac 5G 2SS */
1233 	rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1234 	if (IS_NORMAL_CHIP(pHalData->VersionID))
1235 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1236 	else
1237 		rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1238 
1239 	/*  ARFB table 10 for 11ac 5G 1SS */
1240 	rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1241 	rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1242 }
1243 
ResumeTxBeacon(struct adapter * padapter)1244 static void ResumeTxBeacon(struct adapter *padapter)
1245 {
1246 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1247 
1248 	pHalData->RegFwHwTxQCtrl |= BIT(6);
1249 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1250 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
1251 	pHalData->RegReg542 |= BIT(0);
1252 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1253 }
1254 
StopTxBeacon(struct adapter * padapter)1255 static void StopTxBeacon(struct adapter *padapter)
1256 {
1257 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1258 
1259 	pHalData->RegFwHwTxQCtrl &= ~BIT(6);
1260 	rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
1261 	rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
1262 	pHalData->RegReg542 &= ~BIT(0);
1263 	rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
1264 
1265 	CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
1266 }
1267 
_BeaconFunctionEnable(struct adapter * padapter,u8 Enable,u8 Linked)1268 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
1269 {
1270 	rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
1271 	rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
1272 }
1273 
rtl8723b_SetBeaconRelatedRegisters(struct adapter * padapter)1274 void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
1275 {
1276 	u8 val8;
1277 	u32 value32;
1278 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1279 	struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
1280 	u32 bcn_ctrl_reg;
1281 
1282 	/* reset TSF, enable update TSF, correcting TSF On Beacon */
1283 
1284 	/* REG_BCN_INTERVAL */
1285 	/* REG_BCNDMATIM */
1286 	/* REG_ATIMWND */
1287 	/* REG_TBTT_PROHIBIT */
1288 	/* REG_DRVERLYINT */
1289 	/* REG_BCN_MAX_ERR */
1290 	/* REG_BCNTCFG (0x510) */
1291 	/* REG_DUAL_TSF_RST */
1292 	/* REG_BCN_CTRL (0x550) */
1293 
1294 
1295 	bcn_ctrl_reg = REG_BCN_CTRL;
1296 
1297 	/*  */
1298 	/*  ATIM window */
1299 	/*  */
1300 	rtw_write16(padapter, REG_ATIMWND, 2);
1301 
1302 	/*  */
1303 	/*  Beacon interval (in unit of TU). */
1304 	/*  */
1305 	rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
1306 
1307 	rtl8723b_InitBeaconParameters(padapter);
1308 
1309 	rtw_write8(padapter, REG_SLOT, 0x09);
1310 
1311 	/*  */
1312 	/*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
1313 	/*  */
1314 	value32 = rtw_read32(padapter, REG_TCR);
1315 	value32 &= ~TSFRST;
1316 	rtw_write32(padapter, REG_TCR, value32);
1317 
1318 	value32 |= TSFRST;
1319 	rtw_write32(padapter, REG_TCR, value32);
1320 
1321 	/*  NOTE: Fix test chip's bug (about contention windows's randomness) */
1322 	if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
1323 		rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
1324 		rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
1325 	}
1326 
1327 	_BeaconFunctionEnable(padapter, true, true);
1328 
1329 	ResumeTxBeacon(padapter);
1330 	val8 = rtw_read8(padapter, bcn_ctrl_reg);
1331 	val8 |= DIS_BCNQ_SUB;
1332 	rtw_write8(padapter, bcn_ctrl_reg, val8);
1333 }
1334 
rtl8723b_SetHalODMVar(struct adapter * Adapter,enum hal_odm_variable eVariable,void * pValue1,bool bSet)1335 static void rtl8723b_SetHalODMVar(
1336 	struct adapter *Adapter,
1337 	enum hal_odm_variable eVariable,
1338 	void *pValue1,
1339 	bool bSet
1340 )
1341 {
1342 	SetHalODMVar(Adapter, eVariable, pValue1, bSet);
1343 }
1344 
hal_notch_filter_8723b(struct adapter * adapter,bool enable)1345 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
1346 {
1347 	if (enable)
1348 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
1349 	else
1350 		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
1351 }
1352 
UpdateHalRAMask8723B(struct adapter * padapter,u32 mac_id,u8 rssi_level)1353 void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
1354 {
1355 	u32 mask, rate_bitmap;
1356 	u8 shortGIrate = false;
1357 	struct sta_info *psta;
1358 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1359 	struct dm_priv *pdmpriv = &pHalData->dmpriv;
1360 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
1361 	struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
1362 
1363 	if (mac_id >= NUM_STA) /* CAM_SIZE */
1364 		return;
1365 
1366 	psta = pmlmeinfo->FW_sta_info[mac_id].psta;
1367 	if (!psta)
1368 		return;
1369 
1370 	shortGIrate = query_ra_short_GI(psta);
1371 
1372 	mask = psta->ra_mask;
1373 
1374 	rate_bitmap = 0xffffffff;
1375 	rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
1376 
1377 	mask &= rate_bitmap;
1378 
1379 	rate_bitmap = hal_btcoex_GetRaMask(padapter);
1380 	mask &= ~rate_bitmap;
1381 
1382 	if (pHalData->fw_ractrl) {
1383 		rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
1384 	}
1385 
1386 	/* set correct initial date rate for each mac_id */
1387 	pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
1388 }
1389 
1390 
rtl8723b_set_hal_ops(struct hal_ops * pHalFunc)1391 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
1392 {
1393 	/*  Efuse related function */
1394 	pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
1395 
1396 	pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
1397 
1398 	pHalFunc->xmit_thread_handler = &hal_xmit_handler;
1399 	pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
1400 
1401 	pHalFunc->c2h_handler = c2h_handler_8723b;
1402 	pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
1403 
1404 	pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
1405 }
1406 
rtl8723b_InitAntenna_Selection(struct adapter * padapter)1407 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
1408 {
1409 	u8 val;
1410 
1411 	val = rtw_read8(padapter, REG_LEDCFG2);
1412 	/*  Let 8051 take control antenna setting */
1413 	val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
1414 	rtw_write8(padapter, REG_LEDCFG2, val);
1415 }
1416 
rtl8723b_init_default_value(struct adapter * padapter)1417 void rtl8723b_init_default_value(struct adapter *padapter)
1418 {
1419 	struct hal_com_data *pHalData;
1420 	struct dm_priv *pdmpriv;
1421 	u8 i;
1422 
1423 
1424 	pHalData = GET_HAL_DATA(padapter);
1425 	pdmpriv = &pHalData->dmpriv;
1426 
1427 	padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
1428 
1429 	/*  init default value */
1430 	pHalData->fw_ractrl = false;
1431 	pHalData->bIQKInitialized = false;
1432 	if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
1433 		pHalData->LastHMEBoxNum = 0;
1434 
1435 	pHalData->bIQKInitialized = false;
1436 
1437 	/*  init dm default value */
1438 	pdmpriv->TM_Trigger = 0;/* for IQK */
1439 /* 	pdmpriv->binitialized = false; */
1440 /* 	pdmpriv->prv_traffic_idx = 3; */
1441 /* 	pdmpriv->initialize = 0; */
1442 
1443 	pdmpriv->ThermalValue_HP_index = 0;
1444 	for (i = 0; i < HP_THERMAL_NUM; i++)
1445 		pdmpriv->ThermalValue_HP[i] = 0;
1446 
1447 	/*  init Efuse variables */
1448 	pHalData->EfuseUsedBytes = 0;
1449 	pHalData->EfuseUsedPercentage = 0;
1450 #ifdef HAL_EFUSE_MEMORY
1451 	pHalData->EfuseHal.fakeEfuseBank = 0;
1452 	pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
1453 	memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
1454 	memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
1455 	memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
1456 	pHalData->EfuseHal.BTEfuseUsedBytes = 0;
1457 	pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
1458 	memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1459 	memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1460 	memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1461 	pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
1462 	memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
1463 	memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1464 	memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
1465 #endif
1466 }
1467 
GetEEPROMSize8723B(struct adapter * padapter)1468 u8 GetEEPROMSize8723B(struct adapter *padapter)
1469 {
1470 	u8 size = 0;
1471 	u32 cr;
1472 
1473 	cr = rtw_read16(padapter, REG_9346CR);
1474 	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
1475 	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
1476 
1477 	return size;
1478 }
1479 
1480 /*  */
1481 /*  */
1482 /*  LLT R/W/Init function */
1483 /*  */
1484 /*  */
rtl8723b_InitLLTTable(struct adapter * padapter)1485 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
1486 {
1487 	unsigned long start, passing_time;
1488 	u32 val32;
1489 	s32 ret = _FAIL;
1490 
1491 	val32 = rtw_read32(padapter, REG_AUTO_LLT);
1492 	val32 |= BIT_AUTO_INIT_LLT;
1493 	rtw_write32(padapter, REG_AUTO_LLT, val32);
1494 
1495 	start = jiffies;
1496 
1497 	do {
1498 		val32 = rtw_read32(padapter, REG_AUTO_LLT);
1499 		if (!(val32 & BIT_AUTO_INIT_LLT)) {
1500 			ret = _SUCCESS;
1501 			break;
1502 		}
1503 
1504 		passing_time = jiffies_to_msecs(jiffies - start);
1505 		if (passing_time > 1000)
1506 			break;
1507 
1508 		msleep(1);
1509 	} while (1);
1510 
1511 	return ret;
1512 }
1513 
hal_get_chnl_group_8723b(u8 channel,u8 * group)1514 static void hal_get_chnl_group_8723b(u8 channel, u8 *group)
1515 {
1516 	if (1  <= channel && channel <= 2)
1517 		*group = 0;
1518 	else if (3  <= channel && channel <= 5)
1519 		*group = 1;
1520 	else if (6  <= channel && channel <= 8)
1521 		*group = 2;
1522 	else if (9  <= channel && channel <= 11)
1523 		*group = 3;
1524 	else if (12 <= channel && channel <= 14)
1525 		*group = 4;
1526 }
1527 
Hal_InitPGData(struct adapter * padapter,u8 * PROMContent)1528 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
1529 {
1530 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
1531 
1532 	if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
1533 		if (!pEEPROM->EepromOrEfuse) {
1534 			/*  Read EFUSE real map to shadow. */
1535 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
1536 			memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
1537 		}
1538 	} else {/* autoload fail */
1539 		if (!pEEPROM->EepromOrEfuse)
1540 			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
1541 		memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
1542 	}
1543 }
1544 
Hal_EfuseParseIDCode(struct adapter * padapter,u8 * hwinfo)1545 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
1546 {
1547 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
1548 /* 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter); */
1549 	u16 EEPROMId;
1550 
1551 
1552 	/*  Check 0x8129 again for making sure autoload status!! */
1553 	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
1554 	if (EEPROMId != RTL_EEPROM_ID) {
1555 		pEEPROM->bautoload_fail_flag = true;
1556 	} else
1557 		pEEPROM->bautoload_fail_flag = false;
1558 }
1559 
Hal_ReadPowerValueFromPROM_8723B(struct adapter * Adapter,struct TxPowerInfo24G * pwrInfo24G,u8 * PROMContent,bool AutoLoadFail)1560 static void Hal_ReadPowerValueFromPROM_8723B(
1561 	struct adapter *Adapter,
1562 	struct TxPowerInfo24G *pwrInfo24G,
1563 	u8 *PROMContent,
1564 	bool AutoLoadFail
1565 )
1566 {
1567 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1568 	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
1569 
1570 	memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
1571 
1572 	if (0xFF == PROMContent[eeAddr+1])
1573 		AutoLoadFail = true;
1574 
1575 	if (AutoLoadFail) {
1576 		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
1577 			/* 2.4G default value */
1578 			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
1579 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
1580 				pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
1581 			}
1582 
1583 			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
1584 				if (TxCount == 0) {
1585 					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
1586 					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
1587 				} else {
1588 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1589 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1590 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1591 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1592 				}
1593 			}
1594 		}
1595 
1596 		return;
1597 	}
1598 
1599 	pHalData->bTXPowerDataReadFromEEPORM = true;		/* YJ, move, 120316 */
1600 
1601 	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
1602 		/* 2 2.4G default value */
1603 		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
1604 			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
1605 			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
1606 				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
1607 		}
1608 
1609 		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
1610 			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
1611 			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
1612 				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
1613 		}
1614 
1615 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
1616 			if (TxCount == 0) {
1617 				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
1618 				if (PROMContent[eeAddr] == 0xFF)
1619 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_HT20_DIFF;
1620 				else {
1621 					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
1622 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1623 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
1624 				}
1625 
1626 				if (PROMContent[eeAddr] == 0xFF)
1627 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
1628 				else {
1629 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
1630 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1631 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
1632 				}
1633 				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
1634 				eeAddr++;
1635 			} else {
1636 				if (PROMContent[eeAddr] == 0xFF)
1637 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1638 				else {
1639 					pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
1640 					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1641 						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
1642 				}
1643 
1644 				if (PROMContent[eeAddr] == 0xFF)
1645 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1646 				else {
1647 					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
1648 					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1649 						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
1650 				}
1651 				eeAddr++;
1652 
1653 				if (PROMContent[eeAddr] == 0xFF)
1654 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1655 				else {
1656 					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
1657 					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1658 						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
1659 				}
1660 
1661 				if (PROMContent[eeAddr] == 0xFF)
1662 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
1663 				else {
1664 					pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
1665 					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
1666 						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
1667 				}
1668 				eeAddr++;
1669 			}
1670 		}
1671 	}
1672 }
1673 
1674 
Hal_EfuseParseTxPowerInfo_8723B(struct adapter * padapter,u8 * PROMContent,bool AutoLoadFail)1675 void Hal_EfuseParseTxPowerInfo_8723B(
1676 	struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
1677 )
1678 {
1679 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1680 	struct TxPowerInfo24G	pwrInfo24G;
1681 	u8 	rfPath, ch, TxCount = 1;
1682 
1683 	Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
1684 	for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
1685 		for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
1686 			u8 group = 0;
1687 
1688 			hal_get_chnl_group_8723b(ch + 1, &group);
1689 
1690 			if (ch == 14-1) {
1691 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
1692 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
1693 			} else {
1694 				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
1695 				pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
1696 			}
1697 		}
1698 
1699 		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
1700 			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
1701 			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
1702 			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
1703 			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
1704 		}
1705 	}
1706 
1707 	/*  2010/10/19 MH Add Regulator recognize for CU. */
1708 	if (!AutoLoadFail) {
1709 		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);	/* bit0~2 */
1710 		if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
1711 			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
1712 	} else
1713 		pHalData->EEPROMRegulatory = 0;
1714 }
1715 
Hal_EfuseParseBTCoexistInfo_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1716 void Hal_EfuseParseBTCoexistInfo_8723B(
1717 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1718 )
1719 {
1720 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1721 	u8 tempval;
1722 	u32 tmpu4;
1723 
1724 	if (!AutoLoadFail) {
1725 		tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1726 		if (tmpu4 & BT_FUNC_EN)
1727 			pHalData->EEPROMBluetoothCoexist = true;
1728 		else
1729 			pHalData->EEPROMBluetoothCoexist = false;
1730 
1731 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
1732 
1733 		tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
1734 		if (tempval != 0xFF) {
1735 			pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
1736 			/*  EFUSE_0xC3[6] == 0, S1(Main)-RF_PATH_A; */
1737 			/*  EFUSE_0xC3[6] == 1, S0(Aux)-RF_PATH_B */
1738 			if (tempval & BIT(6))
1739 				pHalData->ant_path = RF_PATH_B;
1740 			else
1741 				pHalData->ant_path = RF_PATH_A;
1742 		} else {
1743 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
1744 			if (pHalData->PackageType == PACKAGE_QFN68)
1745 				pHalData->ant_path = RF_PATH_B;
1746 			else
1747 				pHalData->ant_path = RF_PATH_A;
1748 		}
1749 	} else {
1750 		pHalData->EEPROMBluetoothCoexist = false;
1751 		pHalData->EEPROMBluetoothType = BT_RTL8723B;
1752 		pHalData->EEPROMBluetoothAntNum = Ant_x1;
1753 		pHalData->ant_path = RF_PATH_A;
1754 	}
1755 
1756 	if (padapter->registrypriv.ant_num > 0) {
1757 		switch (padapter->registrypriv.ant_num) {
1758 		case 1:
1759 			pHalData->EEPROMBluetoothAntNum = Ant_x1;
1760 			break;
1761 		case 2:
1762 			pHalData->EEPROMBluetoothAntNum = Ant_x2;
1763 			break;
1764 		default:
1765 			break;
1766 		}
1767 	}
1768 
1769 	hal_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
1770 	hal_btcoex_SetPgAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
1771 	if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
1772 		hal_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
1773 }
1774 
Hal_EfuseParseEEPROMVer_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1775 void Hal_EfuseParseEEPROMVer_8723B(
1776 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1777 )
1778 {
1779 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1780 
1781 	if (!AutoLoadFail)
1782 		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
1783 	else
1784 		pHalData->EEPROMVersion = 1;
1785 }
1786 
1787 
1788 
Hal_EfuseParsePackageType_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1789 void Hal_EfuseParsePackageType_8723B(
1790 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1791 )
1792 {
1793 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1794 	u8 package;
1795 	u8 efuseContent;
1796 
1797 	Efuse_PowerSwitch(padapter, false, true);
1798 	efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
1799 	Efuse_PowerSwitch(padapter, false, false);
1800 
1801 	package = efuseContent & 0x7;
1802 	switch (package) {
1803 	case 0x4:
1804 		pHalData->PackageType = PACKAGE_TFBGA79;
1805 		break;
1806 	case 0x5:
1807 		pHalData->PackageType = PACKAGE_TFBGA90;
1808 		break;
1809 	case 0x6:
1810 		pHalData->PackageType = PACKAGE_QFN68;
1811 		break;
1812 	case 0x7:
1813 		pHalData->PackageType = PACKAGE_TFBGA80;
1814 		break;
1815 
1816 	default:
1817 		pHalData->PackageType = PACKAGE_DEFAULT;
1818 		break;
1819 	}
1820 }
1821 
1822 
Hal_EfuseParseVoltage_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1823 void Hal_EfuseParseVoltage_8723B(
1824 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1825 )
1826 {
1827 	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
1828 
1829 	/* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
1830 	pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
1831 }
1832 
Hal_EfuseParseChnlPlan_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1833 void Hal_EfuseParseChnlPlan_8723B(
1834 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1835 )
1836 {
1837 	padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
1838 		padapter,
1839 		hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
1840 		padapter->registrypriv.channel_plan,
1841 		RT_CHANNEL_DOMAIN_WORLD_NULL,
1842 		AutoLoadFail
1843 	);
1844 
1845 	Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
1846 }
1847 
Hal_EfuseParseCustomerID_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1848 void Hal_EfuseParseCustomerID_8723B(
1849 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1850 )
1851 {
1852 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1853 
1854 	if (!AutoLoadFail)
1855 		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
1856 	else
1857 		pHalData->EEPROMCustomerID = 0;
1858 }
1859 
Hal_EfuseParseAntennaDiversity_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1860 void Hal_EfuseParseAntennaDiversity_8723B(
1861 	struct adapter *padapter,
1862 	u8 *hwinfo,
1863 	bool AutoLoadFail
1864 )
1865 {
1866 }
1867 
Hal_EfuseParseXtal_8723B(struct adapter * padapter,u8 * hwinfo,bool AutoLoadFail)1868 void Hal_EfuseParseXtal_8723B(
1869 	struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
1870 )
1871 {
1872 	struct hal_com_data	*pHalData = GET_HAL_DATA(padapter);
1873 
1874 	if (!AutoLoadFail) {
1875 		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
1876 		if (pHalData->CrystalCap == 0xFF)
1877 			pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;	   /* what value should 8812 set? */
1878 	} else
1879 		pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
1880 }
1881 
1882 
Hal_EfuseParseThermalMeter_8723B(struct adapter * padapter,u8 * PROMContent,u8 AutoLoadFail)1883 void Hal_EfuseParseThermalMeter_8723B(
1884 	struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
1885 )
1886 {
1887 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1888 
1889 	/*  */
1890 	/*  ThermalMeter from EEPROM */
1891 	/*  */
1892 	if (!AutoLoadFail)
1893 		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
1894 	else
1895 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
1896 
1897 	if ((pHalData->EEPROMThermalMeter == 0xff) || AutoLoadFail) {
1898 		pHalData->bAPKThermalMeterIgnore = true;
1899 		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
1900 	}
1901 }
1902 
1903 
Hal_ReadRFGainOffset(struct adapter * Adapter,u8 * PROMContent,bool AutoloadFail)1904 void Hal_ReadRFGainOffset(
1905 	struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
1906 )
1907 {
1908 	/*  */
1909 	/*  BB_RF Gain Offset from EEPROM */
1910 	/*  */
1911 
1912 	if (!AutoloadFail) {
1913 		Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
1914 		Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
1915 	} else {
1916 		Adapter->eeprompriv.EEPROMRFGainOffset = 0;
1917 		Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
1918 	}
1919 }
1920 
BWMapping_8723B(struct adapter * Adapter,struct pkt_attrib * pattrib)1921 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
1922 {
1923 	u8 BWSettingOfDesc = 0;
1924 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1925 
1926 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
1927 		if (pattrib->bwmode == CHANNEL_WIDTH_40)
1928 			BWSettingOfDesc = 1;
1929 		else
1930 			BWSettingOfDesc = 0;
1931 	} else
1932 		BWSettingOfDesc = 0;
1933 
1934 	/* if (pTcb->bBTTxPacket) */
1935 	/* 	BWSettingOfDesc = 0; */
1936 
1937 	return BWSettingOfDesc;
1938 }
1939 
SCMapping_8723B(struct adapter * Adapter,struct pkt_attrib * pattrib)1940 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
1941 {
1942 	u8 SCSettingOfDesc = 0;
1943 	struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1944 
1945 	if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
1946 		if (pattrib->bwmode == CHANNEL_WIDTH_40) {
1947 			SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
1948 		} else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
1949 			if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
1950 				SCSettingOfDesc = HT_DATA_SC_20_UPPER_OF_40MHZ;
1951 			} else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
1952 				SCSettingOfDesc = HT_DATA_SC_20_LOWER_OF_40MHZ;
1953 			} else {
1954 				SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
1955 			}
1956 		}
1957 	} else {
1958 		SCSettingOfDesc = HT_DATA_SC_DONOT_CARE;
1959 	}
1960 
1961 	return SCSettingOfDesc;
1962 }
1963 
rtl8723b_cal_txdesc_chksum(struct tx_desc * ptxdesc)1964 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
1965 {
1966 	u16 *usPtr = (u16 *)ptxdesc;
1967 	u32 count;
1968 	u32 index;
1969 	u16 checksum = 0;
1970 
1971 
1972 	/*  Clear first */
1973 	ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
1974 
1975 	/*  checksum is always calculated by first 32 bytes, */
1976 	/*  and it doesn't depend on TX DESC length. */
1977 	/*  Thomas, Lucas@SD4, 20130515 */
1978 	count = 16;
1979 
1980 	for (index = 0; index < count; index++) {
1981 		checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
1982 	}
1983 
1984 	ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
1985 }
1986 
fill_txdesc_sectype(struct pkt_attrib * pattrib)1987 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
1988 {
1989 	u8 sectype = 0;
1990 	if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
1991 		switch (pattrib->encrypt) {
1992 		/*  SEC_TYPE */
1993 		case _WEP40_:
1994 		case _WEP104_:
1995 		case _TKIP_:
1996 		case _TKIP_WTMIC_:
1997 			sectype = 1;
1998 			break;
1999 
2000 		case _AES_:
2001 			sectype = 3;
2002 			break;
2003 
2004 		case _NO_PRIVACY_:
2005 		default:
2006 			break;
2007 		}
2008 	}
2009 	return sectype;
2010 }
2011 
fill_txdesc_vcs_8723b(struct adapter * padapter,struct pkt_attrib * pattrib,struct txdesc_8723b * ptxdesc)2012 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2013 {
2014 	if (pattrib->vcs_mode) {
2015 		switch (pattrib->vcs_mode) {
2016 		case RTS_CTS:
2017 			ptxdesc->rtsen = 1;
2018 			/*  ENABLE HW RTS */
2019 			ptxdesc->hw_rts_en = 1;
2020 			break;
2021 
2022 		case CTS_TO_SELF:
2023 			ptxdesc->cts2self = 1;
2024 			break;
2025 
2026 		case NONE_VCS:
2027 		default:
2028 			break;
2029 		}
2030 
2031 		ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
2032 		ptxdesc->rts_ratefb_lmt = 0xF;
2033 
2034 		if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
2035 			ptxdesc->rts_short = 1;
2036 
2037 		/*  Set RTS BW */
2038 		if (pattrib->ht_en)
2039 			ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
2040 	}
2041 }
2042 
fill_txdesc_phy_8723b(struct adapter * padapter,struct pkt_attrib * pattrib,struct txdesc_8723b * ptxdesc)2043 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, struct txdesc_8723b *ptxdesc)
2044 {
2045 	if (pattrib->ht_en) {
2046 		ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
2047 
2048 		ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
2049 	}
2050 }
2051 
rtl8723b_fill_default_txdesc(struct xmit_frame * pxmitframe,u8 * pbuf)2052 static void rtl8723b_fill_default_txdesc(
2053 	struct xmit_frame *pxmitframe, u8 *pbuf
2054 )
2055 {
2056 	struct adapter *padapter;
2057 	struct hal_com_data *pHalData;
2058 	struct mlme_ext_priv *pmlmeext;
2059 	struct mlme_ext_info *pmlmeinfo;
2060 	struct pkt_attrib *pattrib;
2061 	struct txdesc_8723b *ptxdesc;
2062 	s32 bmcst;
2063 
2064 	memset(pbuf, 0, TXDESC_SIZE);
2065 
2066 	padapter = pxmitframe->padapter;
2067 	pHalData = GET_HAL_DATA(padapter);
2068 	pmlmeext = &padapter->mlmeextpriv;
2069 	pmlmeinfo = &(pmlmeext->mlmext_info);
2070 
2071 	pattrib = &pxmitframe->attrib;
2072 	bmcst = is_multicast_ether_addr(pattrib->ra);
2073 
2074 	ptxdesc = (struct txdesc_8723b *)pbuf;
2075 
2076 	if (pxmitframe->frame_tag == DATA_FRAMETAG) {
2077 		u8 drv_userate = 0;
2078 
2079 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2080 		ptxdesc->rate_id = pattrib->raid;
2081 		ptxdesc->qsel = pattrib->qsel;
2082 		ptxdesc->seq = pattrib->seqnum;
2083 
2084 		ptxdesc->sectype = fill_txdesc_sectype(pattrib);
2085 		fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
2086 
2087 		if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
2088 			drv_userate = 1;
2089 
2090 		if (
2091 			(pattrib->ether_type != 0x888e) &&
2092 			(pattrib->ether_type != 0x0806) &&
2093 			(pattrib->ether_type != 0x88B4) &&
2094 			(pattrib->dhcp_pkt != 1) &&
2095 			(drv_userate != 1)
2096 		) {
2097 			/*  Non EAP & ARP & DHCP type data packet */
2098 
2099 			if (pattrib->ampdu_en) {
2100 				ptxdesc->agg_en = 1; /*  AGG EN */
2101 				ptxdesc->max_agg_num = 0x1f;
2102 				ptxdesc->ampdu_density = pattrib->ampdu_spacing;
2103 			} else
2104 				ptxdesc->bk = 1; /*  AGG BK */
2105 
2106 			fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
2107 
2108 			ptxdesc->data_ratefb_lmt = 0x1F;
2109 
2110 			if (!pHalData->fw_ractrl) {
2111 				ptxdesc->userate = 1;
2112 
2113 				if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
2114 					ptxdesc->data_short = 1;
2115 
2116 				ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
2117 			}
2118 
2119 			if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
2120 				ptxdesc->userate = 1;
2121 				if (padapter->fix_rate & BIT(7))
2122 					ptxdesc->data_short = 1;
2123 
2124 				ptxdesc->datarate = (padapter->fix_rate & 0x7F);
2125 				ptxdesc->disdatafb = 1;
2126 			}
2127 
2128 			if (pattrib->ldpc)
2129 				ptxdesc->data_ldpc = 1;
2130 			if (pattrib->stbc)
2131 				ptxdesc->data_stbc = 1;
2132 		} else {
2133 			/*  EAP data packet and ARP packet. */
2134 			/*  Use the 1M data rate to send the EAP/ARP packet. */
2135 			/*  This will maybe make the handshake smooth. */
2136 
2137 			ptxdesc->bk = 1; /*  AGG BK */
2138 			ptxdesc->userate = 1; /*  driver uses rate */
2139 			if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
2140 				ptxdesc->data_short = 1;/*  DATA_SHORT */
2141 			ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2142 		}
2143 
2144 		ptxdesc->usb_txagg_num = pxmitframe->agg_num;
2145 	} else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
2146 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2147 		ptxdesc->qsel = pattrib->qsel;
2148 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2149 		ptxdesc->seq = pattrib->seqnum;
2150 		ptxdesc->userate = 1; /*  driver uses rate, 1M */
2151 
2152 		ptxdesc->mbssid = pattrib->mbssid & 0xF;
2153 
2154 		ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
2155 		if (pattrib->retry_ctrl) {
2156 			ptxdesc->data_rt_lmt = 6;
2157 		} else {
2158 			ptxdesc->data_rt_lmt = 12;
2159 		}
2160 
2161 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2162 
2163 		/*  CCX-TXRPT ack for xmit mgmt frames. */
2164 		if (pxmitframe->ack_report) {
2165 			ptxdesc->spe_rpt = 1;
2166 			ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
2167 		}
2168 	} else {
2169 		ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
2170 		ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
2171 		ptxdesc->qsel = pattrib->qsel;
2172 		ptxdesc->seq = pattrib->seqnum;
2173 		ptxdesc->userate = 1; /*  driver uses rate */
2174 		ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
2175 	}
2176 
2177 	ptxdesc->pktlen = pattrib->last_txcmdsz;
2178 	ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
2179 
2180 	if (bmcst)
2181 		ptxdesc->bmc = 1;
2182 
2183 	/* 2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS.
2184 	 * (1) The sequence number of each non-Qos frame / broadcast /
2185 	 * multicast / mgnt frame should be controlled by Hw because Fw
2186 	 * will also send null data which we cannot control when Fw LPS
2187 	 * enable.
2188 	 * --> default enable non-Qos data sequence number. 2010.06.23.
2189 	 * by tynli.
2190 	 * (2) Enable HW SEQ control for beacon packet, because we use
2191 	 * Hw beacon.
2192 	 * (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos
2193 	 * packets.
2194 	 * 2010.06.23. Added by tynli.
2195 	 */
2196 	if (!pattrib->qos_en) /*  Hw set sequence number */
2197 		ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
2198 }
2199 
2200 /* Description:
2201  *
2202  * Parameters:
2203  *	pxmitframe	xmitframe
2204  *	pbuf		where to fill tx desc
2205  */
rtl8723b_update_txdesc(struct xmit_frame * pxmitframe,u8 * pbuf)2206 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
2207 {
2208 	struct tx_desc *pdesc;
2209 
2210 	rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
2211 	pdesc = (struct tx_desc *)pbuf;
2212 	rtl8723b_cal_txdesc_chksum(pdesc);
2213 }
2214 
2215 /*  */
2216 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
2217 /* 			in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
2218 /* 			Fw can tell Hw to send these packet derectly. */
2219 /*  Added by tynli. 2009.10.15. */
2220 /*  */
2221 /* type1:pspoll, type2:null */
rtl8723b_fill_fake_txdesc(struct adapter * padapter,u8 * pDesc,u32 BufferLen,u8 IsPsPoll,u8 IsBTQosNull,u8 bDataFrame)2222 void rtl8723b_fill_fake_txdesc(
2223 	struct adapter *padapter,
2224 	u8 *pDesc,
2225 	u32 BufferLen,
2226 	u8 IsPsPoll,
2227 	u8 IsBTQosNull,
2228 	u8 bDataFrame
2229 )
2230 {
2231 	/*  Clear all status */
2232 	memset(pDesc, 0, TXDESC_SIZE);
2233 
2234 	SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
2235 	SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
2236 
2237 	SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
2238 
2239 	SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
2240 	SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
2241 
2242 	/*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error value by Hw. */
2243 	if (IsPsPoll) {
2244 		SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
2245 	} else {
2246 		SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
2247 		SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
2248 	}
2249 
2250 	if (IsBTQosNull) {
2251 		SET_TX_DESC_BT_INT_8723B(pDesc, 1);
2252 	}
2253 
2254 	SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
2255 	SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
2256 
2257 	SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
2258 
2259 	/*  */
2260 	/*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
2261 	/*  */
2262 	if (bDataFrame) {
2263 		u32 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
2264 
2265 		switch (EncAlg) {
2266 		case _NO_PRIVACY_:
2267 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2268 			break;
2269 		case _WEP40_:
2270 		case _WEP104_:
2271 		case _TKIP_:
2272 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
2273 			break;
2274 		case _SMS4_:
2275 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
2276 			break;
2277 		case _AES_:
2278 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
2279 			break;
2280 		default:
2281 			SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
2282 			break;
2283 		}
2284 	}
2285 
2286 	/*  USB interface drop packet if the checksum of descriptor isn't correct. */
2287 	/*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
2288 	rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
2289 }
2290 
hw_var_set_opmode(struct adapter * padapter,u8 variable,u8 * val)2291 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
2292 {
2293 	u8 val8;
2294 	u8 mode = *((u8 *)val);
2295 
2296 	{
2297 		/*  disable Port0 TSF update */
2298 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2299 		val8 |= DIS_TSF_UDT;
2300 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2301 
2302 		/*  set net_type */
2303 		Set_MSR(padapter, mode);
2304 
2305 		if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
2306 			{
2307 				StopTxBeacon(padapter);
2308 			}
2309 
2310 			/*  disable atim wnd */
2311 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
2312 			/* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
2313 		} else if (mode == _HW_STATE_ADHOC_) {
2314 			ResumeTxBeacon(padapter);
2315 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
2316 		} else if (mode == _HW_STATE_AP_) {
2317 
2318 			ResumeTxBeacon(padapter);
2319 
2320 			rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
2321 
2322 			/* Set RCR */
2323 			rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
2324 			/* enable to rx data frame */
2325 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2326 			/* enable to rx ps-poll */
2327 			rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
2328 
2329 			/* Beacon Control related register for first time */
2330 			rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
2331 
2332 			/* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
2333 			rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
2334 			rtw_write16(padapter, REG_BCNTCFG, 0x00);
2335 			rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
2336 			rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
2337 
2338 			/* reset TSF */
2339 			rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2340 
2341 			/* enable BCN0 Function for if1 */
2342 			/* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
2343 			rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
2344 
2345 			/* SW_BCN_SEL - Port0 */
2346 			/* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
2347 			rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
2348 
2349 			/*  select BCN on port 0 */
2350 			rtw_write8(
2351 				padapter,
2352 				REG_CCK_CHECK_8723B,
2353 				(rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
2354 			);
2355 
2356 			/*  dis BCN1 ATIM  WND if if2 is station */
2357 			val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
2358 			val8 |= DIS_ATIM;
2359 			rtw_write8(padapter, REG_BCN_CTRL_1, val8);
2360 		}
2361 	}
2362 }
2363 
hw_var_set_macaddr(struct adapter * padapter,u8 variable,u8 * val)2364 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
2365 {
2366 	u8 idx = 0;
2367 	u32 reg_macid = REG_MACID;
2368 
2369 	for (idx = 0 ; idx < 6; idx++)
2370 		rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
2371 }
2372 
hw_var_set_bssid(struct adapter * padapter,u8 variable,u8 * val)2373 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
2374 {
2375 	u8 idx = 0;
2376 	u32 reg_bssid = REG_BSSID;
2377 
2378 	for (idx = 0 ; idx < 6; idx++)
2379 		rtw_write8(padapter, (reg_bssid+idx), val[idx]);
2380 }
2381 
hw_var_set_bcn_func(struct adapter * padapter,u8 variable,u8 * val)2382 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
2383 {
2384 	u32 bcn_ctrl_reg = REG_BCN_CTRL;
2385 
2386 	if (*(u8 *)val)
2387 		rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
2388 	else {
2389 		u8 val8;
2390 		val8 = rtw_read8(padapter, bcn_ctrl_reg);
2391 		val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
2392 
2393 		/*  Always enable port0 beacon function for PSTDMA */
2394 		if (REG_BCN_CTRL == bcn_ctrl_reg)
2395 			val8 |= EN_BCN_FUNCTION;
2396 
2397 		rtw_write8(padapter, bcn_ctrl_reg, val8);
2398 	}
2399 }
2400 
hw_var_set_correct_tsf(struct adapter * padapter,u8 variable,u8 * val)2401 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
2402 {
2403 	u8 val8;
2404 	u64 tsf;
2405 	struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2406 	struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2407 
2408 	tsf = pmlmeext->TSFValue-do_div(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
2409 
2410 	if (
2411 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2412 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2413 	)
2414 		StopTxBeacon(padapter);
2415 
2416 	{
2417 		/*  disable related TSF function */
2418 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2419 		val8 &= ~EN_BCN_FUNCTION;
2420 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2421 
2422 		rtw_write32(padapter, REG_TSFTR, tsf);
2423 		rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
2424 
2425 		/*  enable related TSF function */
2426 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2427 		val8 |= EN_BCN_FUNCTION;
2428 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2429 	}
2430 
2431 	if (
2432 		((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
2433 		((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
2434 	)
2435 		ResumeTxBeacon(padapter);
2436 }
2437 
hw_var_set_mlme_disconnect(struct adapter * padapter,u8 variable,u8 * val)2438 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
2439 {
2440 	u8 val8;
2441 
2442 	/*  Set RCR to not to receive data frame when NO LINK state */
2443 	/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
2444 	/*  reject all data frames */
2445 	rtw_write16(padapter, REG_RXFLTMAP2, 0);
2446 
2447 	/*  reset TSF */
2448 	rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
2449 
2450 	/*  disable update TSF */
2451 	val8 = rtw_read8(padapter, REG_BCN_CTRL);
2452 	val8 |= DIS_TSF_UDT;
2453 	rtw_write8(padapter, REG_BCN_CTRL, val8);
2454 }
2455 
hw_var_set_mlme_sitesurvey(struct adapter * padapter,u8 variable,u8 * val)2456 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
2457 {
2458 	u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
2459 	u16 value_rxfltmap2;
2460 	u8 val8;
2461 	struct hal_com_data *pHalData;
2462 	struct mlme_priv *pmlmepriv;
2463 
2464 
2465 	pHalData = GET_HAL_DATA(padapter);
2466 	pmlmepriv = &padapter->mlmepriv;
2467 
2468 	reg_bcn_ctl = REG_BCN_CTRL;
2469 
2470 	rcr_clear_bit = RCR_CBSSID_BCN;
2471 
2472 	/*  config RCR to receive different BSSID & not to receive data frame */
2473 	value_rxfltmap2 = 0;
2474 
2475 	if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
2476 		rcr_clear_bit = RCR_CBSSID_BCN;
2477 
2478 	value_rcr = rtw_read32(padapter, REG_RCR);
2479 
2480 	if (*((u8 *)val)) {
2481 		/*  under sitesurvey */
2482 		value_rcr &= ~(rcr_clear_bit);
2483 		rtw_write32(padapter, REG_RCR, value_rcr);
2484 
2485 		rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
2486 
2487 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
2488 			/*  disable update TSF */
2489 			val8 = rtw_read8(padapter, reg_bcn_ctl);
2490 			val8 |= DIS_TSF_UDT;
2491 			rtw_write8(padapter, reg_bcn_ctl, val8);
2492 		}
2493 
2494 		/*  Save original RRSR setting. */
2495 		pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
2496 	} else {
2497 		/*  sitesurvey done */
2498 		if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
2499 			/*  enable to rx data frame */
2500 			rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2501 
2502 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
2503 			/*  enable update TSF */
2504 			val8 = rtw_read8(padapter, reg_bcn_ctl);
2505 			val8 &= ~DIS_TSF_UDT;
2506 			rtw_write8(padapter, reg_bcn_ctl, val8);
2507 		}
2508 
2509 		value_rcr |= rcr_clear_bit;
2510 		rtw_write32(padapter, REG_RCR, value_rcr);
2511 
2512 		/*  Restore original RRSR setting. */
2513 		rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
2514 	}
2515 }
2516 
hw_var_set_mlme_join(struct adapter * padapter,u8 variable,u8 * val)2517 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
2518 {
2519 	u8 val8;
2520 	u16 val16;
2521 	u32 val32;
2522 	u8 RetryLimit = 0x30;
2523 	u8 type = *(u8 *)val;
2524 	struct mlme_priv *pmlmepriv = &padapter->mlmepriv;
2525 	struct eeprom_priv *pEEPROM;
2526 
2527 
2528 	pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2529 
2530 	if (type == 0) { /*  prepare to join */
2531 		/* enable to rx data frame.Accept all data frame */
2532 		/* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
2533 		rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
2534 
2535 		val32 = rtw_read32(padapter, REG_RCR);
2536 		if (padapter->in_cta_test)
2537 			val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
2538 		else
2539 			val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
2540 		rtw_write32(padapter, REG_RCR, val32);
2541 
2542 		if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
2543 			RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
2544 		else /*  Ad-hoc Mode */
2545 			RetryLimit = 0x7;
2546 	} else if (type == 1) /* joinbss_event call back when join res < 0 */
2547 		rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
2548 	else if (type == 2) { /* sta add event call back */
2549 		/* enable update TSF */
2550 		val8 = rtw_read8(padapter, REG_BCN_CTRL);
2551 		val8 &= ~DIS_TSF_UDT;
2552 		rtw_write8(padapter, REG_BCN_CTRL, val8);
2553 
2554 		if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
2555 			RetryLimit = 0x7;
2556 	}
2557 
2558 	val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
2559 	rtw_write16(padapter, REG_RL, val16);
2560 }
2561 
CCX_FwC2HTxRpt_8723b(struct adapter * padapter,u8 * pdata,u8 len)2562 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
2563 {
2564 
2565 #define	GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
2566 #define	GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)	LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
2567 
2568 	if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
2569 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
2570 	}
2571 /*
2572 	else if (seq_no != padapter->xmitpriv.seq_no) {
2573 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
2574 	}
2575 */
2576 	else
2577 		rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
2578 }
2579 
c2h_id_filter_ccx_8723b(u8 * buf)2580 s32 c2h_id_filter_ccx_8723b(u8 *buf)
2581 {
2582 	struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
2583 	s32 ret = false;
2584 	if (c2h_evt->id == C2H_CCX_TX_RPT)
2585 		ret = true;
2586 
2587 	return ret;
2588 }
2589 
2590 
c2h_handler_8723b(struct adapter * padapter,u8 * buf)2591 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
2592 {
2593 	struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
2594 	s32 ret = _SUCCESS;
2595 
2596 	if (!pC2hEvent) {
2597 		ret = _FAIL;
2598 		goto exit;
2599 	}
2600 
2601 	switch (pC2hEvent->id) {
2602 	case C2H_AP_RPT_RSP:
2603 		break;
2604 	case C2H_DBG:
2605 		{
2606 		}
2607 		break;
2608 
2609 	case C2H_CCX_TX_RPT:
2610 /* 			CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
2611 		break;
2612 
2613 	case C2H_EXT_RA_RPT:
2614 /* 			C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
2615 		break;
2616 
2617 	case C2H_HW_INFO_EXCH:
2618 		break;
2619 
2620 	case C2H_8723B_BT_INFO:
2621 		hal_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
2622 		break;
2623 
2624 	default:
2625 		break;
2626 	}
2627 
2628 	/*  Clear event to notify FW we have read the command. */
2629 	/*  Note: */
2630 	/* 	If this field isn't clear, the FW won't update the next command message. */
2631 /* 	rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
2632 exit:
2633 	return ret;
2634 }
2635 
process_c2h_event(struct adapter * padapter,struct c2h_evt_hdr_t * pC2hEvent,u8 * c2hBuf)2636 static void process_c2h_event(struct adapter *padapter, struct c2h_evt_hdr_t *pC2hEvent, u8 *c2hBuf)
2637 {
2638 	if (!c2hBuf)
2639 		return;
2640 
2641 	switch (pC2hEvent->CmdID) {
2642 	case C2H_AP_RPT_RSP:
2643 		break;
2644 	case C2H_DBG:
2645 		{
2646 		}
2647 		break;
2648 
2649 	case C2H_CCX_TX_RPT:
2650 /* 			CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
2651 		break;
2652 
2653 	case C2H_EXT_RA_RPT:
2654 /* 			C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
2655 		break;
2656 
2657 	case C2H_HW_INFO_EXCH:
2658 		break;
2659 
2660 	case C2H_8723B_BT_INFO:
2661 		hal_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
2662 		break;
2663 
2664 	default:
2665 		break;
2666 	}
2667 }
2668 
C2HPacketHandler_8723B(struct adapter * padapter,u8 * pbuffer,u16 length)2669 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
2670 {
2671 	struct c2h_evt_hdr_t	C2hEvent;
2672 	u8 *tmpBuf = NULL;
2673 	C2hEvent.CmdID = pbuffer[0];
2674 	C2hEvent.CmdSeq = pbuffer[1];
2675 	C2hEvent.CmdLen = length-2;
2676 	tmpBuf = pbuffer+2;
2677 
2678 	process_c2h_event(padapter, &C2hEvent, tmpBuf);
2679 	/* c2h_handler_8723b(padapter,&C2hEvent); */
2680 }
2681 
SetHwReg8723B(struct adapter * padapter,u8 variable,u8 * val)2682 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
2683 {
2684 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2685 	u8 val8;
2686 	u32 val32;
2687 
2688 	switch (variable) {
2689 	case HW_VAR_MEDIA_STATUS:
2690 		val8 = rtw_read8(padapter, MSR) & 0x0c;
2691 		val8 |= *val;
2692 		rtw_write8(padapter, MSR, val8);
2693 		break;
2694 
2695 	case HW_VAR_MEDIA_STATUS1:
2696 		val8 = rtw_read8(padapter, MSR) & 0x03;
2697 		val8 |= *val << 2;
2698 		rtw_write8(padapter, MSR, val8);
2699 		break;
2700 
2701 	case HW_VAR_SET_OPMODE:
2702 		hw_var_set_opmode(padapter, variable, val);
2703 		break;
2704 
2705 	case HW_VAR_MAC_ADDR:
2706 		hw_var_set_macaddr(padapter, variable, val);
2707 		break;
2708 
2709 	case HW_VAR_BSSID:
2710 		hw_var_set_bssid(padapter, variable, val);
2711 		break;
2712 
2713 	case HW_VAR_BASIC_RATE:
2714 	{
2715 		struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
2716 		u16 BrateCfg = 0;
2717 		u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
2718 		u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
2719 
2720 		HalSetBrateCfg(padapter, val, &BrateCfg);
2721 
2722 		/* apply force and allow mask */
2723 		BrateCfg |= rrsr_2g_force_mask;
2724 		BrateCfg &= rrsr_2g_allow_mask;
2725 
2726 		/* IOT consideration */
2727 		if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
2728 			/* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
2729 			if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
2730 				BrateCfg |= RRSR_6M;
2731 		}
2732 
2733 		pHalData->BasicRateSet = BrateCfg;
2734 
2735 		/*  Set RRSR rate table. */
2736 		rtw_write16(padapter, REG_RRSR, BrateCfg);
2737 		rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
2738 	}
2739 		break;
2740 
2741 	case HW_VAR_TXPAUSE:
2742 		rtw_write8(padapter, REG_TXPAUSE, *val);
2743 		break;
2744 
2745 	case HW_VAR_BCN_FUNC:
2746 		hw_var_set_bcn_func(padapter, variable, val);
2747 		break;
2748 
2749 	case HW_VAR_CORRECT_TSF:
2750 		hw_var_set_correct_tsf(padapter, variable, val);
2751 		break;
2752 
2753 	case HW_VAR_CHECK_BSSID:
2754 		{
2755 			u32 val32;
2756 			val32 = rtw_read32(padapter, REG_RCR);
2757 			if (*val)
2758 				val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
2759 			else
2760 				val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
2761 			rtw_write32(padapter, REG_RCR, val32);
2762 		}
2763 		break;
2764 
2765 	case HW_VAR_MLME_DISCONNECT:
2766 		hw_var_set_mlme_disconnect(padapter, variable, val);
2767 		break;
2768 
2769 	case HW_VAR_MLME_SITESURVEY:
2770 		hw_var_set_mlme_sitesurvey(padapter, variable,  val);
2771 
2772 		hal_btcoex_ScanNotify(padapter, *val?true:false);
2773 		break;
2774 
2775 	case HW_VAR_MLME_JOIN:
2776 		hw_var_set_mlme_join(padapter, variable, val);
2777 
2778 		switch (*val) {
2779 		case 0:
2780 			/*  prepare to join */
2781 			hal_btcoex_ConnectNotify(padapter, true);
2782 			break;
2783 		case 1:
2784 			/*  joinbss_event callback when join res < 0 */
2785 			hal_btcoex_ConnectNotify(padapter, false);
2786 			break;
2787 		case 2:
2788 			/*  sta add event callback */
2789 /* 				rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
2790 			break;
2791 		}
2792 		break;
2793 
2794 	case HW_VAR_ON_RCR_AM:
2795 		val32 = rtw_read32(padapter, REG_RCR);
2796 		val32 |= RCR_AM;
2797 		rtw_write32(padapter, REG_RCR, val32);
2798 		break;
2799 
2800 	case HW_VAR_OFF_RCR_AM:
2801 		val32 = rtw_read32(padapter, REG_RCR);
2802 		val32 &= ~RCR_AM;
2803 		rtw_write32(padapter, REG_RCR, val32);
2804 		break;
2805 
2806 	case HW_VAR_BEACON_INTERVAL:
2807 		rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
2808 		break;
2809 
2810 	case HW_VAR_SLOT_TIME:
2811 		rtw_write8(padapter, REG_SLOT, *val);
2812 		break;
2813 
2814 	case HW_VAR_RESP_SIFS:
2815 		/* SIFS_Timer = 0x0a0a0808; */
2816 		/* RESP_SIFS for CCK */
2817 		rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
2818 		rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
2819 		/* RESP_SIFS for OFDM */
2820 		rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
2821 		rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
2822 		break;
2823 
2824 	case HW_VAR_ACK_PREAMBLE:
2825 		{
2826 			u8 regTmp = 0;
2827 			u8 bShortPreamble = *val;
2828 
2829 			/*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
2830 			/* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
2831 			if (bShortPreamble)
2832 				regTmp |= 0x80;
2833 			rtw_write8(padapter, REG_RRSR+2, regTmp);
2834 		}
2835 		break;
2836 
2837 	case HW_VAR_CAM_EMPTY_ENTRY:
2838 		{
2839 			u8 ucIndex = *val;
2840 			u8 i;
2841 			u32 ulCommand = 0;
2842 			u32 ulContent = 0;
2843 			u32 ulEncAlgo = CAM_AES;
2844 
2845 			for (i = 0; i < CAM_CONTENT_COUNT; i++) {
2846 				/*  filled id in CAM config 2 byte */
2847 				if (i == 0) {
2848 					ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
2849 					/* ulContent |= CAM_VALID; */
2850 				} else
2851 					ulContent = 0;
2852 
2853 				/*  polling bit, and No Write enable, and address */
2854 				ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
2855 				ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
2856 				/*  write content 0 is equal to mark as invalid */
2857 				rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
2858 				rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
2859 			}
2860 		}
2861 		break;
2862 
2863 	case HW_VAR_CAM_INVALID_ALL:
2864 		rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
2865 		break;
2866 
2867 	case HW_VAR_CAM_WRITE:
2868 		{
2869 			u32 cmd;
2870 			u32 *cam_val = (u32 *)val;
2871 
2872 			rtw_write32(padapter, WCAMI, cam_val[0]);
2873 
2874 			cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
2875 			rtw_write32(padapter, RWCAM, cmd);
2876 		}
2877 		break;
2878 
2879 	case HW_VAR_AC_PARAM_VO:
2880 		rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
2881 		break;
2882 
2883 	case HW_VAR_AC_PARAM_VI:
2884 		rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
2885 		break;
2886 
2887 	case HW_VAR_AC_PARAM_BE:
2888 		pHalData->AcParam_BE = ((u32 *)(val))[0];
2889 		rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
2890 		break;
2891 
2892 	case HW_VAR_AC_PARAM_BK:
2893 		rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
2894 		break;
2895 
2896 	case HW_VAR_ACM_CTRL:
2897 		{
2898 			u8 ctrl = *((u8 *)val);
2899 			u8 hwctrl = 0;
2900 
2901 			if (ctrl != 0) {
2902 				hwctrl |= AcmHw_HwEn;
2903 
2904 				if (ctrl & BIT(1)) /*  BE */
2905 					hwctrl |= AcmHw_BeqEn;
2906 
2907 				if (ctrl & BIT(2)) /*  VI */
2908 					hwctrl |= AcmHw_ViqEn;
2909 
2910 				if (ctrl & BIT(3)) /*  VO */
2911 					hwctrl |= AcmHw_VoqEn;
2912 			}
2913 
2914 			rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
2915 		}
2916 		break;
2917 
2918 	case HW_VAR_AMPDU_FACTOR:
2919 		{
2920 			u32 AMPDULen =  (*((u8 *)val));
2921 
2922 			if (AMPDULen < HT_AGG_SIZE_32K)
2923 				AMPDULen = (0x2000 << (*((u8 *)val)))-1;
2924 			else
2925 				AMPDULen = 0x7fff;
2926 
2927 			rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
2928 		}
2929 		break;
2930 
2931 	case HW_VAR_H2C_FW_PWRMODE:
2932 		{
2933 			u8 psmode = *val;
2934 
2935 			/*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
2936 			/*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
2937 			if (psmode != PS_MODE_ACTIVE) {
2938 				ODM_RF_Saving(&pHalData->odmpriv, true);
2939 			}
2940 
2941 			/* if (psmode != PS_MODE_ACTIVE)	{ */
2942 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
2943 			/*  else { */
2944 			/* 	rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
2945 			/*  */
2946 			rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
2947 		}
2948 		break;
2949 	case HW_VAR_H2C_PS_TUNE_PARAM:
2950 		rtl8723b_set_FwPsTuneParam_cmd(padapter);
2951 		break;
2952 
2953 	case HW_VAR_H2C_FW_JOINBSSRPT:
2954 		rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
2955 		break;
2956 
2957 	case HW_VAR_INITIAL_GAIN:
2958 		{
2959 			struct dig_t *pDigTable = &pHalData->odmpriv.DM_DigTable;
2960 			u32 rx_gain = *(u32 *)val;
2961 
2962 			if (rx_gain == 0xff) {/* restore rx gain */
2963 				ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
2964 			} else {
2965 				pDigTable->BackupIGValue = pDigTable->CurIGValue;
2966 				ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
2967 			}
2968 		}
2969 		break;
2970 
2971 	case HW_VAR_EFUSE_USAGE:
2972 		pHalData->EfuseUsedPercentage = *val;
2973 		break;
2974 
2975 	case HW_VAR_EFUSE_BYTES:
2976 		pHalData->EfuseUsedBytes = *((u16 *)val);
2977 		break;
2978 
2979 	case HW_VAR_EFUSE_BT_USAGE:
2980 #ifdef HAL_EFUSE_MEMORY
2981 		pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
2982 #endif
2983 		break;
2984 
2985 	case HW_VAR_EFUSE_BT_BYTES:
2986 #ifdef HAL_EFUSE_MEMORY
2987 		pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
2988 #else
2989 		BTEfuseUsedBytes = *((u16 *)val);
2990 #endif
2991 		break;
2992 
2993 	case HW_VAR_FIFO_CLEARN_UP:
2994 		{
2995 			#define RW_RELEASE_EN		BIT(18)
2996 			#define RXDMA_IDLE			BIT(17)
2997 
2998 			struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
2999 			u8 trycnt = 100;
3000 
3001 			/*  pause tx */
3002 			rtw_write8(padapter, REG_TXPAUSE, 0xff);
3003 
3004 			/*  keep sn */
3005 			padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
3006 
3007 			if (!pwrpriv->bkeepfwalive) {
3008 				/* RX DMA stop */
3009 				val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3010 				val32 |= RW_RELEASE_EN;
3011 				rtw_write32(padapter, REG_RXPKT_NUM, val32);
3012 				do {
3013 					val32 = rtw_read32(padapter, REG_RXPKT_NUM);
3014 					val32 &= RXDMA_IDLE;
3015 					if (val32)
3016 						break;
3017 				} while (--trycnt);
3018 
3019 				/*  RQPN Load 0 */
3020 				rtw_write16(padapter, REG_RQPN_NPQ, 0);
3021 				rtw_write32(padapter, REG_RQPN, 0x80000000);
3022 				mdelay(2);
3023 			}
3024 		}
3025 		break;
3026 
3027 	case HW_VAR_APFM_ON_MAC:
3028 		pHalData->bMacPwrCtrlOn = *val;
3029 		break;
3030 
3031 	case HW_VAR_NAV_UPPER:
3032 		{
3033 			u32 usNavUpper = *((u32 *)val);
3034 
3035 			if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF)
3036 				break;
3037 
3038 			usNavUpper = DIV_ROUND_UP(usNavUpper,
3039 						  HAL_NAV_UPPER_UNIT_8723B);
3040 			rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
3041 		}
3042 		break;
3043 
3044 	case HW_VAR_H2C_MEDIA_STATUS_RPT:
3045 		{
3046 			u16 mstatus_rpt = (*(u16 *)val);
3047 			u8 mstatus, macId;
3048 
3049 			mstatus = (u8) (mstatus_rpt & 0xFF);
3050 			macId = (u8)(mstatus_rpt >> 8);
3051 			rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
3052 		}
3053 		break;
3054 	case HW_VAR_BCN_VALID:
3055 		{
3056 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
3057 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
3058 			val8 |= BIT(0);
3059 			rtw_write8(padapter, REG_TDECTRL+2, val8);
3060 		}
3061 		break;
3062 
3063 	case HW_VAR_DL_BCN_SEL:
3064 		{
3065 			/*  SW_BCN_SEL - Port0 */
3066 			val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
3067 			val8 &= ~BIT(4);
3068 			rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
3069 		}
3070 		break;
3071 
3072 	case HW_VAR_DO_IQK:
3073 		pHalData->bNeedIQK = true;
3074 		break;
3075 
3076 	case HW_VAR_DL_RSVD_PAGE:
3077 		if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
3078 			rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
3079 		else
3080 			rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
3081 		break;
3082 
3083 	case HW_VAR_MACID_SLEEP:
3084 		/*  Input is MACID */
3085 		val32 = *(u32 *)val;
3086 		if (val32 > 31)
3087 			break;
3088 
3089 		val8 = (u8)val32; /*  macid is between 0~31 */
3090 
3091 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3092 		if (val32 & BIT(val8))
3093 			break;
3094 		val32 |= BIT(val8);
3095 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
3096 		break;
3097 
3098 	case HW_VAR_MACID_WAKEUP:
3099 		/*  Input is MACID */
3100 		val32 = *(u32 *)val;
3101 		if (val32 > 31)
3102 			break;
3103 
3104 		val8 = (u8)val32; /*  macid is between 0~31 */
3105 
3106 		val32 = rtw_read32(padapter, REG_MACID_SLEEP);
3107 		if (!(val32 & BIT(val8)))
3108 			break;
3109 		val32 &= ~BIT(val8);
3110 		rtw_write32(padapter, REG_MACID_SLEEP, val32);
3111 		break;
3112 
3113 	default:
3114 		SetHwReg(padapter, variable, val);
3115 		break;
3116 	}
3117 }
3118 
GetHwReg8723B(struct adapter * padapter,u8 variable,u8 * val)3119 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3120 {
3121 	struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3122 	u8 val8;
3123 	u16 val16;
3124 
3125 	switch (variable) {
3126 	case HW_VAR_TXPAUSE:
3127 		*val = rtw_read8(padapter, REG_TXPAUSE);
3128 		break;
3129 
3130 	case HW_VAR_BCN_VALID:
3131 		{
3132 			/*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
3133 			val8 = rtw_read8(padapter, REG_TDECTRL+2);
3134 			*val = (BIT(0) & val8) ? true : false;
3135 		}
3136 		break;
3137 
3138 	case HW_VAR_FWLPS_RF_ON:
3139 		{
3140 			/*  When we halt NIC, we should check if FW LPS is leave. */
3141 			u32 valRCR;
3142 
3143 			if (
3144 				padapter->bSurpriseRemoved  ||
3145 				(adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
3146 			) {
3147 				/*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
3148 				/*  because Fw is unload. */
3149 				*val = true;
3150 			} else {
3151 				valRCR = rtw_read32(padapter, REG_RCR);
3152 				valRCR &= 0x00070000;
3153 				if (valRCR)
3154 					*val = false;
3155 				else
3156 					*val = true;
3157 			}
3158 		}
3159 		break;
3160 
3161 	case HW_VAR_EFUSE_USAGE:
3162 		*val = pHalData->EfuseUsedPercentage;
3163 		break;
3164 
3165 	case HW_VAR_EFUSE_BYTES:
3166 		*((u16 *)val) = pHalData->EfuseUsedBytes;
3167 		break;
3168 
3169 	case HW_VAR_EFUSE_BT_USAGE:
3170 #ifdef HAL_EFUSE_MEMORY
3171 		*val = pHalData->EfuseHal.BTEfuseUsedPercentage;
3172 #endif
3173 		break;
3174 
3175 	case HW_VAR_EFUSE_BT_BYTES:
3176 #ifdef HAL_EFUSE_MEMORY
3177 		*((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
3178 #else
3179 		*((u16 *)val) = BTEfuseUsedBytes;
3180 #endif
3181 		break;
3182 
3183 	case HW_VAR_APFM_ON_MAC:
3184 		*val = pHalData->bMacPwrCtrlOn;
3185 		break;
3186 	case HW_VAR_CHK_HI_QUEUE_EMPTY:
3187 		val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
3188 		*val = (val16 & BIT(10)) ? true:false;
3189 		break;
3190 	default:
3191 		GetHwReg(padapter, variable, val);
3192 		break;
3193 	}
3194 }
3195 
3196 /* Description:
3197  *	Change default setting of specified variable.
3198  */
SetHalDefVar8723B(struct adapter * padapter,enum hal_def_variable variable,void * pval)3199 u8 SetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3200 {
3201 	u8 bResult = _SUCCESS;
3202 
3203 	switch (variable) {
3204 	default:
3205 		bResult = SetHalDefVar(padapter, variable, pval);
3206 		break;
3207 	}
3208 
3209 	return bResult;
3210 }
3211 
3212 /* Description:
3213  *	Query setting of specified variable.
3214  */
GetHalDefVar8723B(struct adapter * padapter,enum hal_def_variable variable,void * pval)3215 u8 GetHalDefVar8723B(struct adapter *padapter, enum hal_def_variable variable, void *pval)
3216 {
3217 	u8 bResult = _SUCCESS;
3218 
3219 	switch (variable) {
3220 	case HAL_DEF_MAX_RECVBUF_SZ:
3221 		*((u32 *)pval) = MAX_RECVBUF_SZ;
3222 		break;
3223 
3224 	case HAL_DEF_RX_PACKET_OFFSET:
3225 		*((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
3226 		break;
3227 
3228 	case HW_VAR_MAX_RX_AMPDU_FACTOR:
3229 		/*  Stanley@BB.SD3 suggests 16K can get stable performance */
3230 		/*  The experiment was done on SDIO interface */
3231 		/*  coding by Lucas@20130730 */
3232 		*(u32 *)pval = IEEE80211_HT_MAX_AMPDU_16K;
3233 		break;
3234 	case HAL_DEF_TX_LDPC:
3235 	case HAL_DEF_RX_LDPC:
3236 		*((u8 *)pval) = false;
3237 		break;
3238 	case HAL_DEF_TX_STBC:
3239 		*((u8 *)pval) = 0;
3240 		break;
3241 	case HAL_DEF_RX_STBC:
3242 		*((u8 *)pval) = 1;
3243 		break;
3244 	case HAL_DEF_EXPLICIT_BEAMFORMER:
3245 	case HAL_DEF_EXPLICIT_BEAMFORMEE:
3246 		*((u8 *)pval) = false;
3247 		break;
3248 
3249 	case HW_DEF_RA_INFO_DUMP:
3250 		{
3251 			u8 mac_id = *(u8 *)pval;
3252 			u32 cmd = 0x40000100 | mac_id;
3253 
3254 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3255 			msleep(10);
3256 			rtw_read32(padapter, 0x2F0);	// info 1
3257 
3258 			cmd = 0x40000400 | mac_id;
3259 			rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
3260 			msleep(10);
3261 			rtw_read32(padapter, 0x2F0);	// info 1
3262 			rtw_read32(padapter, 0x2F4);	// info 2
3263 			rtw_read32(padapter, 0x2F8);	// rate mask 1
3264 			rtw_read32(padapter, 0x2FC);	// rate mask 2
3265 		}
3266 		break;
3267 
3268 	case HAL_DEF_TX_PAGE_BOUNDARY:
3269 		if (!padapter->registrypriv.wifi_spec) {
3270 			*(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
3271 		} else {
3272 			*(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
3273 		}
3274 		break;
3275 
3276 	case HAL_DEF_MACID_SLEEP:
3277 		*(u8 *)pval = true; /*  support macid sleep */
3278 		break;
3279 
3280 	default:
3281 		bResult = GetHalDefVar(padapter, variable, pval);
3282 		break;
3283 	}
3284 
3285 	return bResult;
3286 }
3287 
rtl8723b_start_thread(struct adapter * padapter)3288 void rtl8723b_start_thread(struct adapter *padapter)
3289 {
3290 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3291 
3292 	xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
3293 }
3294 
rtl8723b_stop_thread(struct adapter * padapter)3295 void rtl8723b_stop_thread(struct adapter *padapter)
3296 {
3297 	struct xmit_priv *xmitpriv = &padapter->xmitpriv;
3298 
3299 	/*  stop xmit_buf_thread */
3300 	if (xmitpriv->SdioXmitThread) {
3301 		complete(&xmitpriv->SdioXmitStart);
3302 		wait_for_completion(&xmitpriv->SdioXmitTerminate);
3303 		xmitpriv->SdioXmitThread = NULL;
3304 	}
3305 }
3306