1 /*- 2 * Copyright (c) 2018 Emmanuel Vadot <manu@FreeBSD.org> 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 18 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 20 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 21 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/bus.h> 29 #include <sys/kernel.h> 30 #include <sys/lock.h> 31 #include <sys/module.h> 32 #include <sys/mutex.h> 33 #include <sys/rman.h> 34 #include <sys/resource.h> 35 #include <machine/bus.h> 36 37 #include <dev/ofw/ofw_bus.h> 38 #include <dev/ofw/ofw_bus_subr.h> 39 40 #include <dev/spibus/spi.h> 41 #include <dev/spibus/spibusvar.h> 42 43 #include <dev/clk/clk.h> 44 #include <dev/hwreset/hwreset.h> 45 46 #include "spibus_if.h" 47 48 #define AW_SPI_GCR 0x04 /* Global Control Register */ 49 #define AW_SPI_GCR_EN (1 << 0) /* ENable */ 50 #define AW_SPI_GCR_MODE_MASTER (1 << 1) /* 1 = Master, 0 = Slave */ 51 #define AW_SPI_GCR_TP_EN (1 << 7) /* 1 = Stop transmit when FIFO is full */ 52 #define AW_SPI_GCR_SRST (1 << 31) /* Soft Reset */ 53 54 #define AW_SPI_TCR 0x08 /* Transfer Control register */ 55 #define AW_SPI_TCR_XCH (1 << 31) /* Initiate transfer */ 56 #define AW_SPI_TCR_SDDM (1 << 14) /* Sending Delay Data Mode */ 57 #define AW_SPI_TCR_SDM (1 << 13) /* Master Sample Data Mode */ 58 #define AW_SPI_TCR_FBS (1 << 12) /* First Transmit Bit Select (1 == LSB) */ 59 #define AW_SPI_TCR_SDC (1 << 11) /* Master Sample Data Control */ 60 #define AW_SPI_TCR_RPSM (1 << 10) /* Rapid Mode Select */ 61 #define AW_SPI_TCR_DDB (1 << 9) /* Dummy Burst Type */ 62 #define AW_SPI_TCR_SSSEL_MASK 0x30 /* Chip select */ 63 #define AW_SPI_TCR_SSSEL_SHIFT 4 64 #define AW_SPI_TCR_SS_LEVEL (1 << 7) /* 1 == CS High */ 65 #define AW_SPI_TCR_SS_OWNER (1 << 6) /* 1 == Software controlled */ 66 #define AW_SPI_TCR_SPOL (1 << 2) /* 1 == Active low */ 67 #define AW_SPI_TCR_CPOL (1 << 1) /* 1 == Active low */ 68 #define AW_SPI_TCR_CPHA (1 << 0) /* 1 == Phase 1 */ 69 70 #define AW_SPI_IER 0x10 /* Interrupt Control Register */ 71 #define AW_SPI_IER_SS (1 << 13) /* Chip select went from valid to invalid */ 72 #define AW_SPI_IER_TC (1 << 12) /* Transfer complete */ 73 #define AW_SPI_IER_TF_UDR (1 << 11) /* TXFIFO underrun */ 74 #define AW_SPI_IER_TF_OVF (1 << 10) /* TXFIFO overrun */ 75 #define AW_SPI_IER_RF_UDR (1 << 9) /* RXFIFO underrun */ 76 #define AW_SPI_IER_RF_OVF (1 << 8) /* RXFIFO overrun */ 77 #define AW_SPI_IER_TF_FULL (1 << 6) /* TXFIFO Full */ 78 #define AW_SPI_IER_TF_EMP (1 << 5) /* TXFIFO Empty */ 79 #define AW_SPI_IER_TF_ERQ (1 << 4) /* TXFIFO Empty Request */ 80 #define AW_SPI_IER_RF_FULL (1 << 2) /* RXFIFO Full */ 81 #define AW_SPI_IER_RF_EMP (1 << 1) /* RXFIFO Empty */ 82 #define AW_SPI_IER_RF_RDY (1 << 0) /* RXFIFO Ready Request */ 83 84 #define AW_SPI_ISR 0x14 /* Interrupt Status Register */ 85 86 #define AW_SPI_FCR 0x18 /* FIFO Control Register */ 87 #define AW_SPI_FCR_TX_RST (1 << 31) /* Reset TX FIFO */ 88 #define AW_SPI_FCR_TX_TRIG_MASK 0xFF0000 /* TX FIFO Trigger level */ 89 #define AW_SPI_FCR_TX_TRIG_SHIFT 16 90 #define AW_SPI_FCR_RX_RST (1 << 15) /* Reset RX FIFO */ 91 #define AW_SPI_FCR_RX_TRIG_MASK 0xFF /* RX FIFO Trigger level */ 92 #define AW_SPI_FCR_RX_TRIG_SHIFT 0 93 94 #define AW_SPI_FSR 0x1C /* FIFO Status Register */ 95 #define AW_SPI_FSR_TB_WR (1 << 31) 96 #define AW_SPI_FSR_TB_CNT_MASK 0x70000000 97 #define AW_SPI_FSR_TB_CNT_SHIFT 28 98 #define AW_SPI_FSR_TF_CNT_MASK 0xFF0000 99 #define AW_SPI_FSR_TF_CNT_SHIFT 16 100 #define AW_SPI_FSR_RB_WR (1 << 15) 101 #define AW_SPI_FSR_RB_CNT_MASK 0x7000 102 #define AW_SPI_FSR_RB_CNT_SHIFT 12 103 #define AW_SPI_FSR_RF_CNT_MASK 0xFF 104 #define AW_SPI_FSR_RF_CNT_SHIFT 0 105 106 #define AW_SPI_WCR 0x20 /* Wait Clock Counter Register */ 107 108 #define AW_SPI_CCR 0x24 /* Clock Rate Control Register */ 109 #define AW_SPI_CCR_DRS (1 << 12) /* Clock divider select */ 110 #define AW_SPI_CCR_CDR1_MASK 0xF00 111 #define AW_SPI_CCR_CDR1_SHIFT 8 112 #define AW_SPI_CCR_CDR2_MASK 0xFF 113 #define AW_SPI_CCR_CDR2_SHIFT 0 114 115 #define AW_SPI_MBC 0x30 /* Burst Counter Register */ 116 #define AW_SPI_MTC 0x34 /* Transmit Counter Register */ 117 #define AW_SPI_BCC 0x38 /* Burst Control Register */ 118 #define AW_SPI_MDMA_CTL 0x88 /* Normal DMA Control Register */ 119 #define AW_SPI_TXD 0x200 /* TX Data Register */ 120 #define AW_SPI_RDX 0x300 /* RX Data Register */ 121 122 #define AW_SPI_MAX_CS 4 123 #define AW_SPI_FIFO_SIZE 64 124 125 static struct ofw_compat_data compat_data[] = { 126 { "allwinner,sun8i-h3-spi", 1 }, 127 { NULL, 0 } 128 }; 129 130 static struct resource_spec aw_spi_spec[] = { 131 { SYS_RES_MEMORY, 0, RF_ACTIVE }, 132 { SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE }, 133 { -1, 0 } 134 }; 135 136 struct aw_spi_softc { 137 device_t dev; 138 device_t spibus; 139 struct resource *res[2]; 140 struct mtx mtx; 141 clk_t clk_ahb; 142 clk_t clk_mod; 143 uint64_t mod_freq; 144 hwreset_t rst_ahb; 145 void * intrhand; 146 int transfer; 147 148 uint8_t *rxbuf; 149 uint32_t rxcnt; 150 uint8_t *txbuf; 151 uint32_t txcnt; 152 uint32_t txlen; 153 uint32_t rxlen; 154 }; 155 156 #define AW_SPI_LOCK(sc) mtx_lock(&(sc)->mtx) 157 #define AW_SPI_UNLOCK(sc) mtx_unlock(&(sc)->mtx) 158 #define AW_SPI_ASSERT_LOCKED(sc) mtx_assert(&(sc)->mtx, MA_OWNED) 159 #define AW_SPI_READ_1(sc, reg) bus_read_1((sc)->res[0], (reg)) 160 #define AW_SPI_WRITE_1(sc, reg, val) bus_write_1((sc)->res[0], (reg), (val)) 161 #define AW_SPI_READ_4(sc, reg) bus_read_4((sc)->res[0], (reg)) 162 #define AW_SPI_WRITE_4(sc, reg, val) bus_write_4((sc)->res[0], (reg), (val)) 163 164 static int aw_spi_probe(device_t dev); 165 static int aw_spi_attach(device_t dev); 166 static int aw_spi_detach(device_t dev); 167 static int aw_spi_intr(void *arg); 168 169 static int 170 aw_spi_probe(device_t dev) 171 { 172 if (!ofw_bus_status_okay(dev)) 173 return (ENXIO); 174 175 if (!ofw_bus_search_compatible(dev, compat_data)->ocd_data) 176 return (ENXIO); 177 178 device_set_desc(dev, "Allwinner SPI"); 179 return (BUS_PROBE_DEFAULT); 180 } 181 182 static int 183 aw_spi_attach(device_t dev) 184 { 185 struct aw_spi_softc *sc; 186 int error; 187 188 sc = device_get_softc(dev); 189 sc->dev = dev; 190 191 mtx_init(&sc->mtx, device_get_nameunit(dev), NULL, MTX_DEF); 192 193 if (bus_alloc_resources(dev, aw_spi_spec, sc->res) != 0) { 194 device_printf(dev, "cannot allocate resources for device\n"); 195 error = ENXIO; 196 goto fail; 197 } 198 199 if (bus_setup_intr(dev, sc->res[1], 200 INTR_TYPE_MISC | INTR_MPSAFE, aw_spi_intr, NULL, sc, 201 &sc->intrhand)) { 202 bus_release_resources(dev, aw_spi_spec, sc->res); 203 device_printf(dev, "cannot setup interrupt handler\n"); 204 return (ENXIO); 205 } 206 207 /* De-assert reset */ 208 if (hwreset_get_by_ofw_idx(dev, 0, 0, &sc->rst_ahb) == 0) { 209 error = hwreset_deassert(sc->rst_ahb); 210 if (error != 0) { 211 device_printf(dev, "cannot de-assert reset\n"); 212 goto fail; 213 } 214 } 215 216 /* Activate the module clock. */ 217 error = clk_get_by_ofw_name(dev, 0, "ahb", &sc->clk_ahb); 218 if (error != 0) { 219 device_printf(dev, "cannot get ahb clock\n"); 220 goto fail; 221 } 222 error = clk_get_by_ofw_name(dev, 0, "mod", &sc->clk_mod); 223 if (error != 0) { 224 device_printf(dev, "cannot get mod clock\n"); 225 goto fail; 226 } 227 error = clk_enable(sc->clk_ahb); 228 if (error != 0) { 229 device_printf(dev, "cannot enable ahb clock\n"); 230 goto fail; 231 } 232 error = clk_enable(sc->clk_mod); 233 if (error != 0) { 234 device_printf(dev, "cannot enable mod clock\n"); 235 goto fail; 236 } 237 238 sc->spibus = device_add_child(dev, "spibus", DEVICE_UNIT_ANY); 239 240 return (bus_generic_attach(dev)); 241 242 fail: 243 aw_spi_detach(dev); 244 return (error); 245 } 246 247 static int 248 aw_spi_detach(device_t dev) 249 { 250 struct aw_spi_softc *sc; 251 252 sc = device_get_softc(dev); 253 254 bus_generic_detach(sc->dev); 255 if (sc->spibus != NULL) 256 device_delete_child(dev, sc->spibus); 257 258 if (sc->clk_mod != NULL) 259 clk_release(sc->clk_mod); 260 if (sc->clk_ahb) 261 clk_release(sc->clk_ahb); 262 if (sc->rst_ahb) 263 hwreset_assert(sc->rst_ahb); 264 265 if (sc->intrhand != NULL) 266 bus_teardown_intr(sc->dev, sc->res[1], sc->intrhand); 267 268 bus_release_resources(dev, aw_spi_spec, sc->res); 269 mtx_destroy(&sc->mtx); 270 271 return (0); 272 } 273 274 static phandle_t 275 aw_spi_get_node(device_t bus, device_t dev) 276 { 277 278 return ofw_bus_get_node(bus); 279 } 280 281 static void 282 aw_spi_setup_mode(struct aw_spi_softc *sc, uint32_t mode) 283 { 284 uint32_t reg; 285 286 /* We only support master mode */ 287 reg = AW_SPI_READ_4(sc, AW_SPI_GCR); 288 reg |= AW_SPI_GCR_MODE_MASTER; 289 AW_SPI_WRITE_4(sc, AW_SPI_GCR, reg); 290 291 /* Setup the modes */ 292 reg = AW_SPI_READ_4(sc, AW_SPI_TCR); 293 if (mode & SPIBUS_MODE_CPHA) 294 reg |= AW_SPI_TCR_CPHA; 295 if (mode & SPIBUS_MODE_CPOL) 296 reg |= AW_SPI_TCR_CPOL; 297 298 AW_SPI_WRITE_4(sc, AW_SPI_TCR, reg); 299 } 300 301 static void 302 aw_spi_setup_cs(struct aw_spi_softc *sc, uint32_t cs, bool low) 303 { 304 uint32_t reg; 305 306 /* Setup CS */ 307 reg = AW_SPI_READ_4(sc, AW_SPI_TCR); 308 reg &= ~(AW_SPI_TCR_SSSEL_MASK); 309 reg |= cs << AW_SPI_TCR_SSSEL_SHIFT; 310 reg |= AW_SPI_TCR_SS_OWNER; 311 if (low) 312 reg &= ~(AW_SPI_TCR_SS_LEVEL); 313 else 314 reg |= AW_SPI_TCR_SS_LEVEL; 315 316 AW_SPI_WRITE_4(sc, AW_SPI_TCR, reg); 317 } 318 319 static uint64_t 320 aw_spi_clock_test_cdr1(struct aw_spi_softc *sc, uint64_t clock, uint32_t *ccr) 321 { 322 uint64_t cur, best = 0; 323 int i, max, best_div; 324 325 max = AW_SPI_CCR_CDR1_MASK >> AW_SPI_CCR_CDR1_SHIFT; 326 for (i = 0; i < max; i++) { 327 cur = sc->mod_freq / (1 << i); 328 if ((clock - cur) < (clock - best)) { 329 best = cur; 330 best_div = i; 331 } 332 } 333 334 *ccr = (best_div << AW_SPI_CCR_CDR1_SHIFT); 335 return (best); 336 } 337 338 static uint64_t 339 aw_spi_clock_test_cdr2(struct aw_spi_softc *sc, uint64_t clock, uint32_t *ccr) 340 { 341 uint64_t cur, best = 0; 342 int i, max, best_div; 343 344 max = ((AW_SPI_CCR_CDR2_MASK) >> AW_SPI_CCR_CDR2_SHIFT); 345 for (i = 0; i < max; i++) { 346 cur = sc->mod_freq / (2 * i + 1); 347 if ((clock - cur) < (clock - best)) { 348 best = cur; 349 best_div = i; 350 } 351 } 352 353 *ccr = AW_SPI_CCR_DRS | (best_div << AW_SPI_CCR_CDR2_SHIFT); 354 return (best); 355 } 356 357 static void 358 aw_spi_setup_clock(struct aw_spi_softc *sc, uint64_t clock) 359 { 360 uint64_t best_ccr1, best_ccr2; 361 uint32_t ccr, ccr1, ccr2; 362 363 best_ccr1 = aw_spi_clock_test_cdr1(sc, clock, &ccr1); 364 best_ccr2 = aw_spi_clock_test_cdr2(sc, clock, &ccr2); 365 366 if (best_ccr1 == clock) { 367 ccr = ccr1; 368 } else if (best_ccr2 == clock) { 369 ccr = ccr2; 370 } else { 371 if ((clock - best_ccr1) < (clock - best_ccr2)) 372 ccr = ccr1; 373 else 374 ccr = ccr2; 375 } 376 377 AW_SPI_WRITE_4(sc, AW_SPI_CCR, ccr); 378 } 379 380 static inline void 381 aw_spi_fill_txfifo(struct aw_spi_softc *sc) 382 { 383 uint32_t reg, txcnt; 384 int i; 385 386 if (sc->txcnt == sc->txlen) 387 return; 388 389 reg = AW_SPI_READ_4(sc, AW_SPI_FSR); 390 reg &= AW_SPI_FSR_TF_CNT_MASK; 391 txcnt = reg >> AW_SPI_FSR_TF_CNT_SHIFT; 392 393 for (i = 0; i < (AW_SPI_FIFO_SIZE - txcnt); i++) { 394 AW_SPI_WRITE_1(sc, AW_SPI_TXD, sc->txbuf[sc->txcnt++]); 395 if (sc->txcnt == sc->txlen) 396 break; 397 } 398 399 return; 400 } 401 402 static inline void 403 aw_spi_read_rxfifo(struct aw_spi_softc *sc) 404 { 405 uint32_t reg; 406 uint8_t val; 407 int i; 408 409 if (sc->rxcnt == sc->rxlen) 410 return; 411 412 reg = AW_SPI_READ_4(sc, AW_SPI_FSR); 413 reg = (reg & AW_SPI_FSR_RF_CNT_MASK) >> AW_SPI_FSR_RF_CNT_SHIFT; 414 415 for (i = 0; i < reg; i++) { 416 val = AW_SPI_READ_1(sc, AW_SPI_RDX); 417 if (sc->rxcnt < sc->rxlen) 418 sc->rxbuf[sc->rxcnt++] = val; 419 } 420 } 421 422 static int 423 aw_spi_intr(void *arg) 424 { 425 struct aw_spi_softc *sc; 426 uint32_t intr; 427 428 sc = (struct aw_spi_softc *)arg; 429 430 intr = AW_SPI_READ_4(sc, AW_SPI_ISR); 431 432 if (intr & AW_SPI_IER_RF_RDY) 433 aw_spi_read_rxfifo(sc); 434 435 if (intr & AW_SPI_IER_TF_ERQ) { 436 aw_spi_fill_txfifo(sc); 437 438 /* 439 * If we don't have anything else to write 440 * disable TXFifo interrupts 441 */ 442 if (sc->txcnt == sc->txlen) 443 AW_SPI_WRITE_4(sc, AW_SPI_IER, AW_SPI_IER_TC | 444 AW_SPI_IER_RF_RDY); 445 } 446 447 if (intr & AW_SPI_IER_TC) { 448 /* read the rest of the data from the fifo */ 449 aw_spi_read_rxfifo(sc); 450 451 /* Disable the interrupts */ 452 AW_SPI_WRITE_4(sc, AW_SPI_IER, 0); 453 sc->transfer = 0; 454 wakeup(sc); 455 } 456 457 /* Clear Interrupts */ 458 AW_SPI_WRITE_4(sc, AW_SPI_ISR, intr); 459 return (intr != 0 ? FILTER_HANDLED : FILTER_STRAY); 460 } 461 462 static int 463 aw_spi_xfer(struct aw_spi_softc *sc, void *rxbuf, void *txbuf, uint32_t txlen, uint32_t rxlen) 464 { 465 uint32_t reg; 466 int error = 0, timeout; 467 468 sc->rxbuf = rxbuf; 469 sc->rxcnt = 0; 470 sc->txbuf = txbuf; 471 sc->txcnt = 0; 472 sc->txlen = txlen; 473 sc->rxlen = rxlen; 474 475 /* Reset the FIFOs */ 476 AW_SPI_WRITE_4(sc, AW_SPI_FCR, AW_SPI_FCR_TX_RST | AW_SPI_FCR_RX_RST); 477 478 for (timeout = 1000; timeout > 0; timeout--) { 479 reg = AW_SPI_READ_4(sc, AW_SPI_FCR); 480 if (reg == 0) 481 break; 482 } 483 if (timeout == 0) { 484 device_printf(sc->dev, "Cannot reset the FIFOs\n"); 485 return (EIO); 486 } 487 488 /* 489 * Set the TX FIFO threshold to 3/4-th the size and 490 * the RX FIFO one to 1/4-th. 491 */ 492 AW_SPI_WRITE_4(sc, AW_SPI_FCR, 493 ((3 * AW_SPI_FIFO_SIZE / 4) << AW_SPI_FCR_TX_TRIG_SHIFT) | 494 ((AW_SPI_FIFO_SIZE / 4) << AW_SPI_FCR_RX_TRIG_SHIFT)); 495 496 /* Write the counters */ 497 AW_SPI_WRITE_4(sc, AW_SPI_MBC, txlen); 498 AW_SPI_WRITE_4(sc, AW_SPI_MTC, txlen); 499 AW_SPI_WRITE_4(sc, AW_SPI_BCC, txlen); 500 501 /* First fill */ 502 aw_spi_fill_txfifo(sc); 503 504 /* Start transmit */ 505 reg = AW_SPI_READ_4(sc, AW_SPI_TCR); 506 reg |= AW_SPI_TCR_XCH; 507 AW_SPI_WRITE_4(sc, AW_SPI_TCR, reg); 508 509 /* 510 * Enable interrupts for : 511 * Transmit complete 512 * TX Fifo is below its trigger threshold 513 * RX Fifo is above its trigger threshold 514 */ 515 AW_SPI_WRITE_4(sc, AW_SPI_IER, AW_SPI_IER_TC | 516 AW_SPI_IER_TF_ERQ | AW_SPI_IER_RF_RDY); 517 518 sc->transfer = 1; 519 520 while (error == 0 && sc->transfer != 0) 521 error = msleep(sc, &sc->mtx, 0, "aw_spi", 10 * hz); 522 523 return (0); 524 } 525 526 static int 527 aw_spi_transfer(device_t dev, device_t child, struct spi_command *cmd) 528 { 529 struct aw_spi_softc *sc; 530 uint32_t cs, mode, clock, reg; 531 int err = 0; 532 533 sc = device_get_softc(dev); 534 535 spibus_get_cs(child, &cs); 536 spibus_get_clock(child, &clock); 537 spibus_get_mode(child, &mode); 538 539 /* The minimum divider is 2 so set the clock at twice the needed speed */ 540 clk_set_freq(sc->clk_mod, 2 * clock, CLK_SET_ROUND_DOWN); 541 clk_get_freq(sc->clk_mod, &sc->mod_freq); 542 if (cs >= AW_SPI_MAX_CS) { 543 device_printf(dev, "Invalid cs %d\n", cs); 544 return (EINVAL); 545 } 546 547 mtx_lock(&sc->mtx); 548 549 /* Enable and reset the module */ 550 reg = AW_SPI_READ_4(sc, AW_SPI_GCR); 551 reg |= AW_SPI_GCR_EN | AW_SPI_GCR_SRST; 552 AW_SPI_WRITE_4(sc, AW_SPI_GCR, reg); 553 554 /* Setup clock, CS and mode */ 555 aw_spi_setup_clock(sc, clock); 556 aw_spi_setup_mode(sc, mode); 557 if (cs & SPIBUS_CS_HIGH) 558 aw_spi_setup_cs(sc, cs, false); 559 else 560 aw_spi_setup_cs(sc, cs, true); 561 562 /* xfer */ 563 err = 0; 564 if (cmd->tx_cmd_sz > 0) 565 err = aw_spi_xfer(sc, cmd->rx_cmd, cmd->tx_cmd, 566 cmd->tx_cmd_sz, cmd->rx_cmd_sz); 567 if (cmd->tx_data_sz > 0 && err == 0) 568 err = aw_spi_xfer(sc, cmd->rx_data, cmd->tx_data, 569 cmd->tx_data_sz, cmd->rx_data_sz); 570 571 if (cs & SPIBUS_CS_HIGH) 572 aw_spi_setup_cs(sc, cs, true); 573 else 574 aw_spi_setup_cs(sc, cs, false); 575 576 /* Disable the module */ 577 reg = AW_SPI_READ_4(sc, AW_SPI_GCR); 578 reg &= ~AW_SPI_GCR_EN; 579 AW_SPI_WRITE_4(sc, AW_SPI_GCR, reg); 580 581 mtx_unlock(&sc->mtx); 582 583 return (err); 584 } 585 586 static device_method_t aw_spi_methods[] = { 587 /* Device interface */ 588 DEVMETHOD(device_probe, aw_spi_probe), 589 DEVMETHOD(device_attach, aw_spi_attach), 590 DEVMETHOD(device_detach, aw_spi_detach), 591 592 /* spibus_if */ 593 DEVMETHOD(spibus_transfer, aw_spi_transfer), 594 595 /* ofw_bus_if */ 596 DEVMETHOD(ofw_bus_get_node, aw_spi_get_node), 597 598 DEVMETHOD_END 599 }; 600 601 static driver_t aw_spi_driver = { 602 "aw_spi", 603 aw_spi_methods, 604 sizeof(struct aw_spi_softc), 605 }; 606 607 DRIVER_MODULE(aw_spi, simplebus, aw_spi_driver, 0, 0); 608 DRIVER_MODULE(ofw_spibus, aw_spi, ofw_spibus_driver, 0, 0); 609 MODULE_DEPEND(aw_spi, ofw_spibus, 1, 1, 1); 610 SIMPLEBUS_PNP_INFO(compat_data); 611