xref: /freebsd/sys/contrib/openzfs/module/zfs/dmu_redact.c (revision 7a7741af18d6c8a804cc643cb7ecda9d730c6aa6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/txg.h>
27 #include <sys/dmu_objset.h>
28 #include <sys/dmu_traverse.h>
29 #include <sys/dmu_redact.h>
30 #include <sys/bqueue.h>
31 #include <sys/objlist.h>
32 #include <sys/dmu_tx.h>
33 #ifdef _KERNEL
34 #include <sys/zfs_vfsops.h>
35 #include <sys/zap.h>
36 #include <sys/zfs_znode.h>
37 #endif
38 
39 /*
40  * This controls the number of entries in the buffer the redaction_list_update
41  * synctask uses to buffer writes to the redaction list.
42  */
43 static const int redact_sync_bufsize = 1024;
44 
45 /*
46  * Controls how often to update the redaction list when creating a redaction
47  * list.
48  */
49 static const uint64_t redaction_list_update_interval_ns =
50     1000 * 1000 * 1000ULL; /* 1s */
51 
52 /*
53  * This tunable controls the length of the queues that zfs redact worker threads
54  * use to communicate.  If the dmu_redact_snap thread is blocking on these
55  * queues, this variable may need to be increased.  If there is a significant
56  * slowdown at the start of a redact operation as these threads consume all the
57  * available IO resources, or the queues are consuming too much memory, this
58  * variable may need to be decreased.
59  */
60 static const int zfs_redact_queue_length = 1024 * 1024;
61 
62 /*
63  * These tunables control the fill fraction of the queues by zfs redact. The
64  * fill fraction controls the frequency with which threads have to be
65  * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
66  * should be tuned down.  If the queues empty before the signalled thread can
67  * catch up, then these should be tuned up.
68  */
69 static const uint64_t zfs_redact_queue_ff = 20;
70 
71 struct redact_record {
72 	bqueue_node_t		ln;
73 	boolean_t		eos_marker; /* Marks the end of the stream */
74 	uint64_t		start_object;
75 	uint64_t		start_blkid;
76 	uint64_t		end_object;
77 	uint64_t		end_blkid;
78 	uint8_t			indblkshift;
79 	uint32_t		datablksz;
80 };
81 
82 struct redact_thread_arg {
83 	bqueue_t	q;
84 	objset_t	*os;		/* Objset to traverse */
85 	dsl_dataset_t	*ds;		/* Dataset to traverse */
86 	struct redact_record *current_record;
87 	int		error_code;
88 	boolean_t	cancel;
89 	zbookmark_phys_t resume;
90 	objlist_t	*deleted_objs;
91 	uint64_t	*num_blocks_visited;
92 	uint64_t	ignore_object;	/* ignore further callbacks on this */
93 	uint64_t	txg; /* txg to traverse since */
94 };
95 
96 /*
97  * The redaction node is a wrapper around the redaction record that is used
98  * by the redaction merging thread to sort the records and determine overlaps.
99  *
100  * It contains two nodes; one sorts the records by their start_zb, and the other
101  * sorts the records by their end_zb.
102  */
103 struct redact_node {
104 	avl_node_t			avl_node_start;
105 	avl_node_t			avl_node_end;
106 	struct redact_record		*record;
107 	struct redact_thread_arg	*rt_arg;
108 	uint32_t			thread_num;
109 };
110 
111 struct merge_data {
112 	list_t				md_redact_block_pending;
113 	redact_block_phys_t		md_coalesce_block;
114 	uint64_t			md_last_time;
115 	redact_block_phys_t		md_furthest[TXG_SIZE];
116 	/* Lists of struct redact_block_list_node. */
117 	list_t				md_blocks[TXG_SIZE];
118 	boolean_t			md_synctask_txg[TXG_SIZE];
119 	uint64_t			md_latest_synctask_txg;
120 	redaction_list_t		*md_redaction_list;
121 };
122 
123 /*
124  * A wrapper around struct redact_block so it can be stored in a list_t.
125  */
126 struct redact_block_list_node {
127 	redact_block_phys_t	block;
128 	list_node_t		node;
129 };
130 
131 /*
132  * We've found a new redaction candidate.  In order to improve performance, we
133  * coalesce these blocks when they're adjacent to each other.  This function
134  * handles that.  If the new candidate block range is immediately after the
135  * range we're building, coalesce it into the range we're building.  Otherwise,
136  * put the record we're building on the queue, and update the build pointer to
137  * point to the new record.
138  */
139 static void
record_merge_enqueue(bqueue_t * q,struct redact_record ** build,struct redact_record * new)140 record_merge_enqueue(bqueue_t *q, struct redact_record **build,
141     struct redact_record *new)
142 {
143 	if (new->eos_marker) {
144 		if (*build != NULL)
145 			bqueue_enqueue(q, *build, sizeof (**build));
146 		bqueue_enqueue_flush(q, new, sizeof (*new));
147 		return;
148 	}
149 	if (*build == NULL) {
150 		*build = new;
151 		return;
152 	}
153 	struct redact_record *curbuild = *build;
154 	if ((curbuild->end_object == new->start_object &&
155 	    curbuild->end_blkid + 1 == new->start_blkid &&
156 	    curbuild->end_blkid != UINT64_MAX) ||
157 	    (curbuild->end_object + 1 == new->start_object &&
158 	    curbuild->end_blkid == UINT64_MAX && new->start_blkid == 0)) {
159 		curbuild->end_object = new->end_object;
160 		curbuild->end_blkid = new->end_blkid;
161 		kmem_free(new, sizeof (*new));
162 	} else {
163 		bqueue_enqueue(q, curbuild, sizeof (*curbuild));
164 		*build = new;
165 	}
166 }
167 #ifdef _KERNEL
168 struct objnode {
169 	avl_node_t node;
170 	uint64_t obj;
171 };
172 
173 static int
objnode_compare(const void * o1,const void * o2)174 objnode_compare(const void *o1, const void *o2)
175 {
176 	const struct objnode *obj1 = o1;
177 	const struct objnode *obj2 = o2;
178 	if (obj1->obj < obj2->obj)
179 		return (-1);
180 	if (obj1->obj > obj2->obj)
181 		return (1);
182 	return (0);
183 }
184 
185 
186 static objlist_t *
zfs_get_deleteq(objset_t * os)187 zfs_get_deleteq(objset_t *os)
188 {
189 	objlist_t *deleteq_objlist = objlist_create();
190 	uint64_t deleteq_obj;
191 	zap_cursor_t zc;
192 	zap_attribute_t *za;
193 	dmu_object_info_t doi;
194 
195 	ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
196 	VERIFY0(dmu_object_info(os, MASTER_NODE_OBJ, &doi));
197 	ASSERT3U(doi.doi_type, ==, DMU_OT_MASTER_NODE);
198 
199 	VERIFY0(zap_lookup(os, MASTER_NODE_OBJ,
200 	    ZFS_UNLINKED_SET, sizeof (uint64_t), 1, &deleteq_obj));
201 
202 	/*
203 	 * In order to insert objects into the objlist, they must be in sorted
204 	 * order. We don't know what order we'll get them out of the ZAP in, so
205 	 * we insert them into and remove them from an avl_tree_t to sort them.
206 	 */
207 	avl_tree_t at;
208 	avl_create(&at, objnode_compare, sizeof (struct objnode),
209 	    offsetof(struct objnode, node));
210 
211 	za = zap_attribute_alloc();
212 	for (zap_cursor_init(&zc, os, deleteq_obj);
213 	    zap_cursor_retrieve(&zc, za) == 0; zap_cursor_advance(&zc)) {
214 		struct objnode *obj = kmem_zalloc(sizeof (*obj), KM_SLEEP);
215 		obj->obj = za->za_first_integer;
216 		avl_add(&at, obj);
217 	}
218 	zap_cursor_fini(&zc);
219 	zap_attribute_free(za);
220 
221 	struct objnode *next, *found = avl_first(&at);
222 	while (found != NULL) {
223 		next = AVL_NEXT(&at, found);
224 		objlist_insert(deleteq_objlist, found->obj);
225 		found = next;
226 	}
227 
228 	void *cookie = NULL;
229 	while ((found = avl_destroy_nodes(&at, &cookie)) != NULL)
230 		kmem_free(found, sizeof (*found));
231 	avl_destroy(&at);
232 	return (deleteq_objlist);
233 }
234 #endif
235 
236 /*
237  * This is the callback function to traverse_dataset for the redaction threads
238  * for dmu_redact_snap.  This thread is responsible for creating redaction
239  * records for all the data that is modified by the snapshots we're redacting
240  * with respect to.  Redaction records represent ranges of data that have been
241  * modified by one of the redaction snapshots, and are stored in the
242  * redact_record struct. We need to create redaction records for three
243  * cases:
244  *
245  * First, if there's a normal write, we need to create a redaction record for
246  * that block.
247  *
248  * Second, if there's a hole, we need to create a redaction record that covers
249  * the whole range of the hole.  If the hole is in the meta-dnode, it must cover
250  * every block in all of the objects in the hole.
251  *
252  * Third, if there is a deleted object, we need to create a redaction record for
253  * all of the blocks in that object.
254  */
255 static int
redact_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const struct dnode_phys * dnp,void * arg)256 redact_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
257     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
258 {
259 	(void) spa, (void) zilog;
260 	struct redact_thread_arg *rta = arg;
261 	struct redact_record *record;
262 
263 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
264 	    zb->zb_object >= rta->resume.zb_object);
265 
266 	if (rta->cancel)
267 		return (SET_ERROR(EINTR));
268 
269 	if (rta->ignore_object == zb->zb_object)
270 		return (0);
271 
272 	/*
273 	 * If we're visiting a dnode, we need to handle the case where the
274 	 * object has been deleted.
275 	 */
276 	if (zb->zb_level == ZB_DNODE_LEVEL) {
277 		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
278 
279 		if (zb->zb_object == 0)
280 			return (0);
281 
282 		/*
283 		 * If the object has been deleted, redact all of the blocks in
284 		 * it.
285 		 */
286 		if (dnp->dn_type == DMU_OT_NONE ||
287 		    objlist_exists(rta->deleted_objs, zb->zb_object)) {
288 			rta->ignore_object = zb->zb_object;
289 			record = kmem_zalloc(sizeof (struct redact_record),
290 			    KM_SLEEP);
291 
292 			record->eos_marker = B_FALSE;
293 			record->start_object = record->end_object =
294 			    zb->zb_object;
295 			record->start_blkid = 0;
296 			record->end_blkid = UINT64_MAX;
297 			record_merge_enqueue(&rta->q,
298 			    &rta->current_record, record);
299 		}
300 		return (0);
301 	} else if (zb->zb_level < 0) {
302 		return (0);
303 	} else if (zb->zb_level > 0 && !BP_IS_HOLE(bp)) {
304 		/*
305 		 * If this is an indirect block, but not a hole, it doesn't
306 		 * provide any useful information for redaction, so ignore it.
307 		 */
308 		return (0);
309 	}
310 
311 	/*
312 	 * At this point, there are two options left for the type of block we're
313 	 * looking at.  Either this is a hole (which could be in the dnode or
314 	 * the meta-dnode), or it's a level 0 block of some sort.  If it's a
315 	 * hole, we create a redaction record that covers the whole range.  If
316 	 * the hole is in a dnode, we need to redact all the blocks in that
317 	 * hole.  If the hole is in the meta-dnode, we instead need to redact
318 	 * all blocks in every object covered by that hole.  If it's a level 0
319 	 * block, we only need to redact that single block.
320 	 */
321 	record = kmem_zalloc(sizeof (struct redact_record), KM_SLEEP);
322 	record->eos_marker = B_FALSE;
323 
324 	record->start_object = record->end_object = zb->zb_object;
325 	if (BP_IS_HOLE(bp)) {
326 		record->start_blkid = zb->zb_blkid *
327 		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level);
328 
329 		record->end_blkid = ((zb->zb_blkid + 1) *
330 		    bp_span_in_blocks(dnp->dn_indblkshift, zb->zb_level)) - 1;
331 
332 		if (zb->zb_object == DMU_META_DNODE_OBJECT) {
333 			record->start_object = record->start_blkid *
334 			    ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
335 			    sizeof (dnode_phys_t));
336 			record->start_blkid = 0;
337 			record->end_object = ((record->end_blkid +
338 			    1) * ((SPA_MINBLOCKSIZE * dnp->dn_datablkszsec) /
339 			    sizeof (dnode_phys_t))) - 1;
340 			record->end_blkid = UINT64_MAX;
341 		}
342 	} else if (zb->zb_level != 0 ||
343 	    zb->zb_object == DMU_META_DNODE_OBJECT) {
344 		kmem_free(record, sizeof (*record));
345 		return (0);
346 	} else {
347 		record->start_blkid = record->end_blkid = zb->zb_blkid;
348 	}
349 	record->indblkshift = dnp->dn_indblkshift;
350 	record->datablksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
351 	record_merge_enqueue(&rta->q, &rta->current_record, record);
352 
353 	return (0);
354 }
355 
356 static __attribute__((noreturn)) void
redact_traverse_thread(void * arg)357 redact_traverse_thread(void *arg)
358 {
359 	struct redact_thread_arg *rt_arg = arg;
360 	int err;
361 	struct redact_record *data;
362 #ifdef _KERNEL
363 	if (rt_arg->os->os_phys->os_type == DMU_OST_ZFS)
364 		rt_arg->deleted_objs = zfs_get_deleteq(rt_arg->os);
365 	else
366 		rt_arg->deleted_objs = objlist_create();
367 #else
368 	rt_arg->deleted_objs = objlist_create();
369 #endif
370 
371 	err = traverse_dataset_resume(rt_arg->ds, rt_arg->txg,
372 	    &rt_arg->resume, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
373 	    redact_cb, rt_arg);
374 
375 	if (err != EINTR)
376 		rt_arg->error_code = err;
377 	objlist_destroy(rt_arg->deleted_objs);
378 	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
379 	data->eos_marker = B_TRUE;
380 	record_merge_enqueue(&rt_arg->q, &rt_arg->current_record, data);
381 	thread_exit();
382 }
383 
384 static inline void
create_zbookmark_from_obj_off(zbookmark_phys_t * zb,uint64_t object,uint64_t blkid)385 create_zbookmark_from_obj_off(zbookmark_phys_t *zb, uint64_t object,
386     uint64_t blkid)
387 {
388 	zb->zb_object = object;
389 	zb->zb_level = 0;
390 	zb->zb_blkid = blkid;
391 }
392 
393 /*
394  * This is a utility function that can do the comparison for the start or ends
395  * of the ranges in a redact_record.
396  */
397 static int
redact_range_compare(uint64_t obj1,uint64_t off1,uint32_t dbss1,uint64_t obj2,uint64_t off2,uint32_t dbss2)398 redact_range_compare(uint64_t obj1, uint64_t off1, uint32_t dbss1,
399     uint64_t obj2, uint64_t off2, uint32_t dbss2)
400 {
401 	zbookmark_phys_t z1, z2;
402 	create_zbookmark_from_obj_off(&z1, obj1, off1);
403 	create_zbookmark_from_obj_off(&z2, obj2, off2);
404 
405 	return (zbookmark_compare(dbss1 >> SPA_MINBLOCKSHIFT, 0,
406 	    dbss2 >> SPA_MINBLOCKSHIFT, 0, &z1, &z2));
407 }
408 
409 /*
410  * Compare two redaction records by their range's start location.  Also makes
411  * eos records always compare last.  We use the thread number in the redact_node
412  * to ensure that records do not compare equal (which is not allowed in our avl
413  * trees).
414  */
415 static int
redact_node_compare_start(const void * arg1,const void * arg2)416 redact_node_compare_start(const void *arg1, const void *arg2)
417 {
418 	const struct redact_node *rn1 = arg1;
419 	const struct redact_node *rn2 = arg2;
420 	const struct redact_record *rr1 = rn1->record;
421 	const struct redact_record *rr2 = rn2->record;
422 	if (rr1->eos_marker)
423 		return (1);
424 	if (rr2->eos_marker)
425 		return (-1);
426 
427 	int cmp = redact_range_compare(rr1->start_object, rr1->start_blkid,
428 	    rr1->datablksz, rr2->start_object, rr2->start_blkid,
429 	    rr2->datablksz);
430 	if (cmp == 0)
431 		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
432 	return (cmp);
433 }
434 
435 /*
436  * Compare two redaction records by their range's end location.  Also makes
437  * eos records always compare last.  We use the thread number in the redact_node
438  * to ensure that records do not compare equal (which is not allowed in our avl
439  * trees).
440  */
441 static int
redact_node_compare_end(const void * arg1,const void * arg2)442 redact_node_compare_end(const void *arg1, const void *arg2)
443 {
444 	const struct redact_node *rn1 = arg1;
445 	const struct redact_node *rn2 = arg2;
446 	const struct redact_record *srr1 = rn1->record;
447 	const struct redact_record *srr2 = rn2->record;
448 	if (srr1->eos_marker)
449 		return (1);
450 	if (srr2->eos_marker)
451 		return (-1);
452 
453 	int cmp = redact_range_compare(srr1->end_object, srr1->end_blkid,
454 	    srr1->datablksz, srr2->end_object, srr2->end_blkid,
455 	    srr2->datablksz);
456 	if (cmp == 0)
457 		cmp = (rn1->thread_num < rn2->thread_num ? -1 : 1);
458 	return (cmp);
459 }
460 
461 /*
462  * Utility function that compares two redaction records to determine if any part
463  * of the "from" record is before any part of the "to" record. Also causes End
464  * of Stream redaction records to compare after all others, so that the
465  * redaction merging logic can stay simple.
466  */
467 static boolean_t
redact_record_before(const struct redact_record * from,const struct redact_record * to)468 redact_record_before(const struct redact_record *from,
469     const struct redact_record *to)
470 {
471 	if (from->eos_marker == B_TRUE)
472 		return (B_FALSE);
473 	else if (to->eos_marker == B_TRUE)
474 		return (B_TRUE);
475 	return (redact_range_compare(from->start_object, from->start_blkid,
476 	    from->datablksz, to->end_object, to->end_blkid,
477 	    to->datablksz) <= 0);
478 }
479 
480 /*
481  * Pop a new redaction record off the queue, check that the records are in the
482  * right order, and free the old data.
483  */
484 static struct redact_record *
get_next_redact_record(bqueue_t * bq,struct redact_record * prev)485 get_next_redact_record(bqueue_t *bq, struct redact_record *prev)
486 {
487 	struct redact_record *next = bqueue_dequeue(bq);
488 	ASSERT(redact_record_before(prev, next));
489 	kmem_free(prev, sizeof (*prev));
490 	return (next);
491 }
492 
493 /*
494  * Remove the given redaction node from both trees, pull a new redaction record
495  * off the queue, free the old redaction record, update the redaction node, and
496  * reinsert the node into the trees.
497  */
498 static int
update_avl_trees(avl_tree_t * start_tree,avl_tree_t * end_tree,struct redact_node * redact_node)499 update_avl_trees(avl_tree_t *start_tree, avl_tree_t *end_tree,
500     struct redact_node *redact_node)
501 {
502 	avl_remove(start_tree, redact_node);
503 	avl_remove(end_tree, redact_node);
504 	redact_node->record = get_next_redact_record(&redact_node->rt_arg->q,
505 	    redact_node->record);
506 	avl_add(end_tree, redact_node);
507 	avl_add(start_tree, redact_node);
508 	return (redact_node->rt_arg->error_code);
509 }
510 
511 /*
512  * Synctask for updating redaction lists.  We first take this txg's list of
513  * redacted blocks and append those to the redaction list.  We then update the
514  * redaction list's bonus buffer.  We store the furthest blocks we visited and
515  * the list of snapshots that we're redacting with respect to.  We need these so
516  * that redacted sends and receives can be correctly resumed.
517  */
518 static void
redaction_list_update_sync(void * arg,dmu_tx_t * tx)519 redaction_list_update_sync(void *arg, dmu_tx_t *tx)
520 {
521 	struct merge_data *md = arg;
522 	uint64_t txg = dmu_tx_get_txg(tx);
523 	list_t *list = &md->md_blocks[txg & TXG_MASK];
524 	redact_block_phys_t *furthest_visited =
525 	    &md->md_furthest[txg & TXG_MASK];
526 	objset_t *mos = tx->tx_pool->dp_meta_objset;
527 	redaction_list_t *rl = md->md_redaction_list;
528 	int bufsize = redact_sync_bufsize;
529 	redact_block_phys_t *buf = kmem_alloc(bufsize * sizeof (*buf),
530 	    KM_SLEEP);
531 	int index = 0;
532 
533 	dmu_buf_will_dirty(rl->rl_dbuf, tx);
534 
535 	for (struct redact_block_list_node *rbln = list_remove_head(list);
536 	    rbln != NULL; rbln = list_remove_head(list)) {
537 		ASSERT3U(rbln->block.rbp_object, <=,
538 		    furthest_visited->rbp_object);
539 		ASSERT(rbln->block.rbp_object < furthest_visited->rbp_object ||
540 		    rbln->block.rbp_blkid <= furthest_visited->rbp_blkid);
541 		buf[index] = rbln->block;
542 		index++;
543 		if (index == bufsize) {
544 			dmu_write(mos, rl->rl_object,
545 			    rl->rl_phys->rlp_num_entries * sizeof (*buf),
546 			    bufsize * sizeof (*buf), buf, tx);
547 			rl->rl_phys->rlp_num_entries += bufsize;
548 			index = 0;
549 		}
550 		kmem_free(rbln, sizeof (*rbln));
551 	}
552 	if (index > 0) {
553 		dmu_write(mos, rl->rl_object, rl->rl_phys->rlp_num_entries *
554 		    sizeof (*buf), index * sizeof (*buf), buf, tx);
555 		rl->rl_phys->rlp_num_entries += index;
556 	}
557 	kmem_free(buf, bufsize * sizeof (*buf));
558 
559 	md->md_synctask_txg[txg & TXG_MASK] = B_FALSE;
560 	rl->rl_phys->rlp_last_object = furthest_visited->rbp_object;
561 	rl->rl_phys->rlp_last_blkid = furthest_visited->rbp_blkid;
562 }
563 
564 static void
commit_rl_updates(objset_t * os,struct merge_data * md,uint64_t object,uint64_t blkid)565 commit_rl_updates(objset_t *os, struct merge_data *md, uint64_t object,
566     uint64_t blkid)
567 {
568 	dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(os->os_spa)->dp_mos_dir);
569 	dmu_tx_hold_space(tx, sizeof (struct redact_block_list_node));
570 	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
571 	uint64_t txg = dmu_tx_get_txg(tx);
572 	if (!md->md_synctask_txg[txg & TXG_MASK]) {
573 		dsl_sync_task_nowait(dmu_tx_pool(tx),
574 		    redaction_list_update_sync, md, tx);
575 		md->md_synctask_txg[txg & TXG_MASK] = B_TRUE;
576 		md->md_latest_synctask_txg = txg;
577 	}
578 	md->md_furthest[txg & TXG_MASK].rbp_object = object;
579 	md->md_furthest[txg & TXG_MASK].rbp_blkid = blkid;
580 	list_move_tail(&md->md_blocks[txg & TXG_MASK],
581 	    &md->md_redact_block_pending);
582 	dmu_tx_commit(tx);
583 	md->md_last_time = gethrtime();
584 }
585 
586 /*
587  * We want to store the list of blocks that we're redacting in the bookmark's
588  * redaction list.  However, this list is stored in the MOS, which means it can
589  * only be written to in syncing context.  To get around this, we create a
590  * synctask that will write to the mos for us.  We tell it what to write by
591  * a linked list for each current transaction group; every time we decide to
592  * redact a block, we append it to the transaction group that is currently in
593  * open context.  We also update some progress information that the synctask
594  * will store to enable resumable redacted sends.
595  */
596 static void
update_redaction_list(struct merge_data * md,objset_t * os,uint64_t object,uint64_t blkid,uint64_t endblkid,uint32_t blksz)597 update_redaction_list(struct merge_data *md, objset_t *os,
598     uint64_t object, uint64_t blkid, uint64_t endblkid, uint32_t blksz)
599 {
600 	boolean_t enqueue = B_FALSE;
601 	redact_block_phys_t cur = {0};
602 	uint64_t count = endblkid - blkid + 1;
603 	while (count > REDACT_BLOCK_MAX_COUNT) {
604 		update_redaction_list(md, os, object, blkid,
605 		    blkid + REDACT_BLOCK_MAX_COUNT - 1, blksz);
606 		blkid += REDACT_BLOCK_MAX_COUNT;
607 		count -= REDACT_BLOCK_MAX_COUNT;
608 	}
609 	redact_block_phys_t *coalesce = &md->md_coalesce_block;
610 	boolean_t new;
611 	if (coalesce->rbp_size_count == 0) {
612 		new = B_TRUE;
613 		enqueue = B_FALSE;
614 	} else  {
615 		uint64_t old_count = redact_block_get_count(coalesce);
616 		if (coalesce->rbp_object == object &&
617 		    coalesce->rbp_blkid + old_count == blkid &&
618 		    old_count + count <= REDACT_BLOCK_MAX_COUNT) {
619 			ASSERT3U(redact_block_get_size(coalesce), ==, blksz);
620 			redact_block_set_count(coalesce, old_count + count);
621 			new = B_FALSE;
622 			enqueue = B_FALSE;
623 		} else {
624 			new = B_TRUE;
625 			enqueue = B_TRUE;
626 		}
627 	}
628 
629 	if (new) {
630 		cur = *coalesce;
631 		coalesce->rbp_blkid = blkid;
632 		coalesce->rbp_object = object;
633 
634 		redact_block_set_count(coalesce, count);
635 		redact_block_set_size(coalesce, blksz);
636 	}
637 
638 	if (enqueue && redact_block_get_size(&cur) != 0) {
639 		struct redact_block_list_node *rbln =
640 		    kmem_alloc(sizeof (struct redact_block_list_node),
641 		    KM_SLEEP);
642 		rbln->block = cur;
643 		list_insert_tail(&md->md_redact_block_pending, rbln);
644 	}
645 
646 	if (gethrtime() > md->md_last_time +
647 	    redaction_list_update_interval_ns) {
648 		commit_rl_updates(os, md, object, blkid);
649 	}
650 }
651 
652 /*
653  * This thread merges all the redaction records provided by the worker threads,
654  * and determines which blocks are redacted by all the snapshots.  The algorithm
655  * for doing so is similar to performing a merge in mergesort with n sub-lists
656  * instead of 2, with some added complexity due to the fact that the entries are
657  * ranges, not just single blocks.  This algorithm relies on the fact that the
658  * queues are sorted, which is ensured by the fact that traverse_dataset
659  * traverses the dataset in a consistent order.  We pull one entry off the front
660  * of the queues of each secure dataset traversal thread.  Then we repeat the
661  * following: each record represents a range of blocks modified by one of the
662  * redaction snapshots, and each block in that range may need to be redacted in
663  * the send stream.  Find the record with the latest start of its range, and the
664  * record with the earliest end of its range. If the last start is before the
665  * first end, then we know that the blocks in the range [last_start, first_end]
666  * are covered by all of the ranges at the front of the queues, which means
667  * every thread redacts that whole range.  For example, let's say the ranges on
668  * each queue look like this:
669  *
670  * Block Id   1  2  3  4  5  6  7  8  9 10 11
671  * Thread 1 |    [====================]
672  * Thread 2 |       [========]
673  * Thread 3 |             [=================]
674  *
675  * Thread 3 has the last start (5), and the thread 2 has the last end (6).  All
676  * three threads modified the range [5,6], so that data should not be sent over
677  * the wire.  After we've determined whether or not to redact anything, we take
678  * the record with the first end.  We discard that record, and pull a new one
679  * off the front of the queue it came from.  In the above example, we would
680  * discard Thread 2's record, and pull a new one.  Let's say the next record we
681  * pulled from Thread 2 covered range [10,11].  The new layout would look like
682  * this:
683  *
684  * Block Id   1  2  3  4  5  6  7  8  9 10 11
685  * Thread 1 |    [====================]
686  * Thread 2 |                            [==]
687  * Thread 3 |             [=================]
688  *
689  * When we compare the last start (10, from Thread 2) and the first end (9, from
690  * Thread 1), we see that the last start is greater than the first end.
691  * Therefore, we do not redact anything from these records.  We'll iterate by
692  * replacing the record from Thread 1.
693  *
694  * We iterate by replacing the record with the lowest end because we know
695  * that the record with the lowest end has helped us as much as it can.  All the
696  * ranges before it that we will ever redact have been redacted.  In addition,
697  * by replacing the one with the lowest end, we guarantee we catch all ranges
698  * that need to be redacted.  For example, if in the case above we had replaced
699  * the record from Thread 1 instead, we might have ended up with the following:
700  *
701  * Block Id   1  2  3  4  5  6  7  8  9 10 11 12
702  * Thread 1 |                               [==]
703  * Thread 2 |       [========]
704  * Thread 3 |             [=================]
705  *
706  * If the next record from Thread 2 had been [8,10], for example, we should have
707  * redacted part of that range, but because we updated Thread 1's record, we
708  * missed it.
709  *
710  * We implement this algorithm by using two trees.  The first sorts the
711  * redaction records by their start_zb, and the second sorts them by their
712  * end_zb.  We use these to find the record with the last start and the record
713  * with the first end.  We create a record with that start and end, and send it
714  * on.  The overall runtime of this implementation is O(n log m), where n is the
715  * total number of redaction records from all the different redaction snapshots,
716  * and m is the number of redaction snapshots.
717  *
718  * If we redact with respect to zero snapshots, we create a redaction
719  * record with the start object and blkid to 0, and the end object and blkid to
720  * UINT64_MAX.  This will result in us redacting every block.
721  */
722 static int
perform_thread_merge(bqueue_t * q,uint32_t num_threads,struct redact_thread_arg * thread_args,boolean_t * cancel)723 perform_thread_merge(bqueue_t *q, uint32_t num_threads,
724     struct redact_thread_arg *thread_args, boolean_t *cancel)
725 {
726 	struct redact_node *redact_nodes = NULL;
727 	avl_tree_t start_tree, end_tree;
728 	struct redact_record *record;
729 	struct redact_record *current_record = NULL;
730 	int err = 0;
731 	struct merge_data md = { {0} };
732 	list_create(&md.md_redact_block_pending,
733 	    sizeof (struct redact_block_list_node),
734 	    offsetof(struct redact_block_list_node, node));
735 
736 	/*
737 	 * If we're redacting with respect to zero snapshots, then no data is
738 	 * permitted to be sent.  We enqueue a record that redacts all blocks,
739 	 * and an eos marker.
740 	 */
741 	if (num_threads == 0) {
742 		record = kmem_zalloc(sizeof (struct redact_record),
743 		    KM_SLEEP);
744 		// We can't redact object 0, so don't try.
745 		record->start_object = 1;
746 		record->start_blkid = 0;
747 		record->end_object = record->end_blkid = UINT64_MAX;
748 		bqueue_enqueue(q, record, sizeof (*record));
749 		return (0);
750 	}
751 	redact_nodes = vmem_zalloc(num_threads *
752 	    sizeof (*redact_nodes), KM_SLEEP);
753 
754 	avl_create(&start_tree, redact_node_compare_start,
755 	    sizeof (struct redact_node),
756 	    offsetof(struct redact_node, avl_node_start));
757 	avl_create(&end_tree, redact_node_compare_end,
758 	    sizeof (struct redact_node),
759 	    offsetof(struct redact_node, avl_node_end));
760 
761 	for (int i = 0; i < num_threads; i++) {
762 		struct redact_node *node = &redact_nodes[i];
763 		struct redact_thread_arg *targ = &thread_args[i];
764 		node->record = bqueue_dequeue(&targ->q);
765 		node->rt_arg = targ;
766 		node->thread_num = i;
767 		avl_add(&start_tree, node);
768 		avl_add(&end_tree, node);
769 	}
770 
771 	/*
772 	 * Once the first record in the end tree has returned EOS, every record
773 	 * must be an EOS record, so we should stop.
774 	 */
775 	while (err == 0 && !((struct redact_node *)avl_first(&end_tree))->
776 	    record->eos_marker) {
777 		if (*cancel) {
778 			err = EINTR;
779 			break;
780 		}
781 		struct redact_node *last_start = avl_last(&start_tree);
782 		struct redact_node *first_end = avl_first(&end_tree);
783 
784 		/*
785 		 * If the last start record is before the first end record,
786 		 * then we have blocks that are redacted by all threads.
787 		 * Therefore, we should redact them.  Copy the record, and send
788 		 * it to the main thread.
789 		 */
790 		if (redact_record_before(last_start->record,
791 		    first_end->record)) {
792 			record = kmem_zalloc(sizeof (struct redact_record),
793 			    KM_SLEEP);
794 			*record = *first_end->record;
795 			record->start_object = last_start->record->start_object;
796 			record->start_blkid = last_start->record->start_blkid;
797 			record_merge_enqueue(q, &current_record,
798 			    record);
799 		}
800 		err = update_avl_trees(&start_tree, &end_tree, first_end);
801 	}
802 
803 	/*
804 	 * We're done; if we were cancelled, we need to cancel our workers and
805 	 * clear out their queues.  Either way, we need to remove every thread's
806 	 * redact_node struct from the avl trees.
807 	 */
808 	for (int i = 0; i < num_threads; i++) {
809 		if (err != 0) {
810 			thread_args[i].cancel = B_TRUE;
811 			while (!redact_nodes[i].record->eos_marker) {
812 				(void) update_avl_trees(&start_tree, &end_tree,
813 				    &redact_nodes[i]);
814 			}
815 		}
816 		avl_remove(&start_tree, &redact_nodes[i]);
817 		avl_remove(&end_tree, &redact_nodes[i]);
818 		kmem_free(redact_nodes[i].record,
819 		    sizeof (struct redact_record));
820 		bqueue_destroy(&thread_args[i].q);
821 	}
822 
823 	avl_destroy(&start_tree);
824 	avl_destroy(&end_tree);
825 	vmem_free(redact_nodes, num_threads * sizeof (*redact_nodes));
826 	if (current_record != NULL)
827 		bqueue_enqueue(q, current_record, sizeof (*current_record));
828 	return (err);
829 }
830 
831 struct redact_merge_thread_arg {
832 	bqueue_t q;
833 	spa_t *spa;
834 	int numsnaps;
835 	struct redact_thread_arg *thr_args;
836 	boolean_t cancel;
837 	int error_code;
838 };
839 
840 static __attribute__((noreturn)) void
redact_merge_thread(void * arg)841 redact_merge_thread(void *arg)
842 {
843 	struct redact_merge_thread_arg *rmta = arg;
844 	rmta->error_code = perform_thread_merge(&rmta->q,
845 	    rmta->numsnaps, rmta->thr_args, &rmta->cancel);
846 	struct redact_record *rec = kmem_zalloc(sizeof (*rec), KM_SLEEP);
847 	rec->eos_marker = B_TRUE;
848 	bqueue_enqueue_flush(&rmta->q, rec, 1);
849 	thread_exit();
850 }
851 
852 /*
853  * Find the next object in or after the redaction range passed in, and hold
854  * its dnode with the provided tag.  Also update *object to contain the new
855  * object number.
856  */
857 static int
hold_next_object(objset_t * os,struct redact_record * rec,const void * tag,uint64_t * object,dnode_t ** dn)858 hold_next_object(objset_t *os, struct redact_record *rec, const void *tag,
859     uint64_t *object, dnode_t **dn)
860 {
861 	int err = 0;
862 	if (*dn != NULL)
863 		dnode_rele(*dn, tag);
864 	*dn = NULL;
865 	if (*object < rec->start_object) {
866 		*object = rec->start_object - 1;
867 	}
868 	err = dmu_object_next(os, object, B_FALSE, 0);
869 	if (err != 0)
870 		return (err);
871 
872 	err = dnode_hold(os, *object, tag, dn);
873 	while (err == 0 && (*object < rec->start_object ||
874 	    DMU_OT_IS_METADATA((*dn)->dn_type))) {
875 		dnode_rele(*dn, tag);
876 		*dn = NULL;
877 		err = dmu_object_next(os, object, B_FALSE, 0);
878 		if (err != 0)
879 			break;
880 		err = dnode_hold(os, *object, tag, dn);
881 	}
882 	return (err);
883 }
884 
885 static int
perform_redaction(objset_t * os,redaction_list_t * rl,struct redact_merge_thread_arg * rmta)886 perform_redaction(objset_t *os, redaction_list_t *rl,
887     struct redact_merge_thread_arg *rmta)
888 {
889 	int err = 0;
890 	bqueue_t *q = &rmta->q;
891 	struct redact_record *rec = NULL;
892 	struct merge_data md = { {0} };
893 
894 	list_create(&md.md_redact_block_pending,
895 	    sizeof (struct redact_block_list_node),
896 	    offsetof(struct redact_block_list_node, node));
897 	md.md_redaction_list = rl;
898 
899 	for (int i = 0; i < TXG_SIZE; i++) {
900 		list_create(&md.md_blocks[i],
901 		    sizeof (struct redact_block_list_node),
902 		    offsetof(struct redact_block_list_node, node));
903 	}
904 	dnode_t *dn = NULL;
905 	uint64_t prev_obj = 0;
906 	for (rec = bqueue_dequeue(q); !rec->eos_marker && err == 0;
907 	    rec = get_next_redact_record(q, rec)) {
908 		ASSERT3U(rec->start_object, !=, 0);
909 		uint64_t object;
910 		if (prev_obj != rec->start_object) {
911 			object = rec->start_object - 1;
912 			err = hold_next_object(os, rec, FTAG, &object, &dn);
913 		} else {
914 			object = prev_obj;
915 		}
916 		while (err == 0 && object <= rec->end_object) {
917 			if (issig()) {
918 				err = EINTR;
919 				break;
920 			}
921 			/*
922 			 * Part of the current object is contained somewhere in
923 			 * the range covered by rec.
924 			 */
925 			uint64_t startblkid;
926 			uint64_t endblkid;
927 			uint64_t maxblkid = dn->dn_phys->dn_maxblkid;
928 
929 			if (rec->start_object < object)
930 				startblkid = 0;
931 			else if (rec->start_blkid > maxblkid)
932 				break;
933 			else
934 				startblkid = rec->start_blkid;
935 
936 			if (rec->end_object > object || rec->end_blkid >
937 			    maxblkid) {
938 				endblkid = maxblkid;
939 			} else {
940 				endblkid = rec->end_blkid;
941 			}
942 			update_redaction_list(&md, os, object, startblkid,
943 			    endblkid, dn->dn_datablksz);
944 
945 			if (object == rec->end_object)
946 				break;
947 			err = hold_next_object(os, rec, FTAG, &object, &dn);
948 		}
949 		if (err == ESRCH)
950 			err = 0;
951 		if (dn != NULL)
952 			prev_obj = object;
953 	}
954 	if (err == 0 && dn != NULL)
955 		dnode_rele(dn, FTAG);
956 
957 	if (err == ESRCH)
958 		err = 0;
959 	rmta->cancel = B_TRUE;
960 	while (!rec->eos_marker)
961 		rec = get_next_redact_record(q, rec);
962 	kmem_free(rec, sizeof (*rec));
963 
964 	/*
965 	 * There may be a block that's being coalesced, sync that out before we
966 	 * return.
967 	 */
968 	if (err == 0 && md.md_coalesce_block.rbp_size_count != 0) {
969 		struct redact_block_list_node *rbln =
970 		    kmem_alloc(sizeof (struct redact_block_list_node),
971 		    KM_SLEEP);
972 		rbln->block = md.md_coalesce_block;
973 		list_insert_tail(&md.md_redact_block_pending, rbln);
974 	}
975 	commit_rl_updates(os, &md, UINT64_MAX, UINT64_MAX);
976 
977 	/*
978 	 * Wait for all the redaction info to sync out before we return, so that
979 	 * anyone who attempts to resume this redaction will have all the data
980 	 * they need.
981 	 */
982 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
983 	if (md.md_latest_synctask_txg != 0)
984 		txg_wait_synced(dp, md.md_latest_synctask_txg);
985 	for (int i = 0; i < TXG_SIZE; i++)
986 		list_destroy(&md.md_blocks[i]);
987 	return (err);
988 }
989 
990 static boolean_t
redact_snaps_contains(uint64_t * snaps,uint64_t num_snaps,uint64_t guid)991 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
992 {
993 	for (int i = 0; i < num_snaps; i++) {
994 		if (snaps[i] == guid)
995 			return (B_TRUE);
996 	}
997 	return (B_FALSE);
998 }
999 
1000 int
dmu_redact_snap(const char * snapname,nvlist_t * redactnvl,const char * redactbook)1001 dmu_redact_snap(const char *snapname, nvlist_t *redactnvl,
1002     const char *redactbook)
1003 {
1004 	int err = 0;
1005 	dsl_pool_t *dp = NULL;
1006 	dsl_dataset_t *ds = NULL;
1007 	int numsnaps = 0;
1008 	objset_t *os;
1009 	struct redact_thread_arg *args = NULL;
1010 	redaction_list_t *new_rl = NULL;
1011 	char *newredactbook;
1012 
1013 	if ((err = dsl_pool_hold(snapname, FTAG, &dp)) != 0)
1014 		return (err);
1015 
1016 	newredactbook = kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN,
1017 	    KM_SLEEP);
1018 
1019 	if ((err = dsl_dataset_hold_flags(dp, snapname, DS_HOLD_FLAG_DECRYPT,
1020 	    FTAG, &ds)) != 0) {
1021 		goto out;
1022 	}
1023 	dsl_dataset_long_hold(ds, FTAG);
1024 	if (!ds->ds_is_snapshot || dmu_objset_from_ds(ds, &os) != 0) {
1025 		err = EINVAL;
1026 		goto out;
1027 	}
1028 	if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_REDACTED_DATASETS)) {
1029 		err = EALREADY;
1030 		goto out;
1031 	}
1032 
1033 	numsnaps = fnvlist_num_pairs(redactnvl);
1034 	if (numsnaps > 0)
1035 		args = vmem_zalloc(numsnaps * sizeof (*args), KM_SLEEP);
1036 
1037 	nvpair_t *pair = NULL;
1038 	for (int i = 0; i < numsnaps; i++) {
1039 		pair = nvlist_next_nvpair(redactnvl, pair);
1040 		const char *name = nvpair_name(pair);
1041 		struct redact_thread_arg *rta = &args[i];
1042 		err = dsl_dataset_hold_flags(dp, name, DS_HOLD_FLAG_DECRYPT,
1043 		    FTAG, &rta->ds);
1044 		if (err != 0)
1045 			break;
1046 		/*
1047 		 * We want to do the long hold before we can get any other
1048 		 * errors, because the cleanup code will release the long
1049 		 * hold if rta->ds is filled in.
1050 		 */
1051 		dsl_dataset_long_hold(rta->ds, FTAG);
1052 
1053 		err = dmu_objset_from_ds(rta->ds, &rta->os);
1054 		if (err != 0)
1055 			break;
1056 		if (!dsl_dataset_is_before(rta->ds, ds, 0)) {
1057 			err = EINVAL;
1058 			break;
1059 		}
1060 		if (dsl_dataset_feature_is_active(rta->ds,
1061 		    SPA_FEATURE_REDACTED_DATASETS)) {
1062 			err = EALREADY;
1063 			break;
1064 
1065 		}
1066 	}
1067 	if (err != 0)
1068 		goto out;
1069 	VERIFY3P(nvlist_next_nvpair(redactnvl, pair), ==, NULL);
1070 
1071 	boolean_t resuming = B_FALSE;
1072 	zfs_bookmark_phys_t bookmark;
1073 
1074 	(void) strlcpy(newredactbook, snapname, ZFS_MAX_DATASET_NAME_LEN);
1075 	char *c = strchr(newredactbook, '@');
1076 	ASSERT3P(c, !=, NULL);
1077 	int n = snprintf(c, ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook),
1078 	    "#%s", redactbook);
1079 	if (n >= ZFS_MAX_DATASET_NAME_LEN - (c - newredactbook)) {
1080 		dsl_pool_rele(dp, FTAG);
1081 		kmem_free(newredactbook,
1082 		    sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1083 		if (args != NULL)
1084 			vmem_free(args, numsnaps * sizeof (*args));
1085 		return (SET_ERROR(ENAMETOOLONG));
1086 	}
1087 	err = dsl_bookmark_lookup(dp, newredactbook, NULL, &bookmark);
1088 	if (err == 0) {
1089 		resuming = B_TRUE;
1090 		if (bookmark.zbm_redaction_obj == 0) {
1091 			err = EEXIST;
1092 			goto out;
1093 		}
1094 		err = dsl_redaction_list_hold_obj(dp,
1095 		    bookmark.zbm_redaction_obj, FTAG, &new_rl);
1096 		if (err != 0) {
1097 			err = EIO;
1098 			goto out;
1099 		}
1100 		dsl_redaction_list_long_hold(dp, new_rl, FTAG);
1101 		if (new_rl->rl_phys->rlp_num_snaps != numsnaps) {
1102 			err = ESRCH;
1103 			goto out;
1104 		}
1105 		for (int i = 0; i < numsnaps; i++) {
1106 			struct redact_thread_arg *rta = &args[i];
1107 			if (!redact_snaps_contains(new_rl->rl_phys->rlp_snaps,
1108 			    new_rl->rl_phys->rlp_num_snaps,
1109 			    dsl_dataset_phys(rta->ds)->ds_guid)) {
1110 				err = ESRCH;
1111 				goto out;
1112 			}
1113 		}
1114 		if (new_rl->rl_phys->rlp_last_blkid == UINT64_MAX &&
1115 		    new_rl->rl_phys->rlp_last_object == UINT64_MAX) {
1116 			err = EEXIST;
1117 			goto out;
1118 		}
1119 		dsl_pool_rele(dp, FTAG);
1120 		dp = NULL;
1121 	} else {
1122 		uint64_t *guids = NULL;
1123 		if (numsnaps > 0) {
1124 			guids = vmem_zalloc(numsnaps * sizeof (uint64_t),
1125 			    KM_SLEEP);
1126 		}
1127 		for (int i = 0; i < numsnaps; i++) {
1128 			struct redact_thread_arg *rta = &args[i];
1129 			guids[i] = dsl_dataset_phys(rta->ds)->ds_guid;
1130 		}
1131 
1132 		dsl_pool_rele(dp, FTAG);
1133 		dp = NULL;
1134 		err = dsl_bookmark_create_redacted(newredactbook, snapname,
1135 		    numsnaps, guids, FTAG, &new_rl);
1136 		vmem_free(guids, numsnaps * sizeof (uint64_t));
1137 		if (err != 0)
1138 			goto out;
1139 	}
1140 
1141 	for (int i = 0; i < numsnaps; i++) {
1142 		struct redact_thread_arg *rta = &args[i];
1143 		(void) bqueue_init(&rta->q, zfs_redact_queue_ff,
1144 		    zfs_redact_queue_length,
1145 		    offsetof(struct redact_record, ln));
1146 		if (resuming) {
1147 			rta->resume.zb_blkid =
1148 			    new_rl->rl_phys->rlp_last_blkid;
1149 			rta->resume.zb_object =
1150 			    new_rl->rl_phys->rlp_last_object;
1151 		}
1152 		rta->txg = dsl_dataset_phys(ds)->ds_creation_txg;
1153 		(void) thread_create(NULL, 0, redact_traverse_thread, rta,
1154 		    0, curproc, TS_RUN, minclsyspri);
1155 	}
1156 
1157 	struct redact_merge_thread_arg *rmta;
1158 	rmta = kmem_zalloc(sizeof (struct redact_merge_thread_arg), KM_SLEEP);
1159 
1160 	(void) bqueue_init(&rmta->q, zfs_redact_queue_ff,
1161 	    zfs_redact_queue_length, offsetof(struct redact_record, ln));
1162 	rmta->numsnaps = numsnaps;
1163 	rmta->spa = os->os_spa;
1164 	rmta->thr_args = args;
1165 	(void) thread_create(NULL, 0, redact_merge_thread, rmta, 0, curproc,
1166 	    TS_RUN, minclsyspri);
1167 	err = perform_redaction(os, new_rl, rmta);
1168 	bqueue_destroy(&rmta->q);
1169 	kmem_free(rmta, sizeof (struct redact_merge_thread_arg));
1170 
1171 out:
1172 	kmem_free(newredactbook, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN);
1173 
1174 	if (new_rl != NULL) {
1175 		dsl_redaction_list_long_rele(new_rl, FTAG);
1176 		dsl_redaction_list_rele(new_rl, FTAG);
1177 	}
1178 	for (int i = 0; i < numsnaps; i++) {
1179 		struct redact_thread_arg *rta = &args[i];
1180 		/*
1181 		 * rta->ds may be NULL if we got an error while filling
1182 		 * it in.
1183 		 */
1184 		if (rta->ds != NULL) {
1185 			dsl_dataset_long_rele(rta->ds, FTAG);
1186 			dsl_dataset_rele_flags(rta->ds,
1187 			    DS_HOLD_FLAG_DECRYPT, FTAG);
1188 		}
1189 	}
1190 
1191 	if (args != NULL)
1192 		vmem_free(args, numsnaps * sizeof (*args));
1193 	if (dp != NULL)
1194 		dsl_pool_rele(dp, FTAG);
1195 	if (ds != NULL) {
1196 		dsl_dataset_long_rele(ds, FTAG);
1197 		dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
1198 	}
1199 	return (SET_ERROR(err));
1200 
1201 }
1202