1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2019-2020 Intel Corporation
4 *
5 * Please see Documentation/driver-api/auxiliary_bus.rst for more information.
6 */
7
8 #define pr_fmt(fmt) "%s:%s: " fmt, KBUILD_MODNAME, __func__
9
10 #include <linux/device.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/module.h>
14 #include <linux/pm_domain.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/string.h>
17 #include <linux/auxiliary_bus.h>
18 #include "base.h"
19
20 /**
21 * DOC: PURPOSE
22 *
23 * In some subsystems, the functionality of the core device (PCI/ACPI/other) is
24 * too complex for a single device to be managed by a monolithic driver (e.g.
25 * Sound Open Firmware), multiple devices might implement a common intersection
26 * of functionality (e.g. NICs + RDMA), or a driver may want to export an
27 * interface for another subsystem to drive (e.g. SIOV Physical Function export
28 * Virtual Function management). A split of the functionality into child-
29 * devices representing sub-domains of functionality makes it possible to
30 * compartmentalize, layer, and distribute domain-specific concerns via a Linux
31 * device-driver model.
32 *
33 * An example for this kind of requirement is the audio subsystem where a
34 * single IP is handling multiple entities such as HDMI, Soundwire, local
35 * devices such as mics/speakers etc. The split for the core's functionality
36 * can be arbitrary or be defined by the DSP firmware topology and include
37 * hooks for test/debug. This allows for the audio core device to be minimal
38 * and focused on hardware-specific control and communication.
39 *
40 * Each auxiliary_device represents a part of its parent functionality. The
41 * generic behavior can be extended and specialized as needed by encapsulating
42 * an auxiliary_device within other domain-specific structures and the use of
43 * .ops callbacks. Devices on the auxiliary bus do not share any structures and
44 * the use of a communication channel with the parent is domain-specific.
45 *
46 * Note that ops are intended as a way to augment instance behavior within a
47 * class of auxiliary devices, it is not the mechanism for exporting common
48 * infrastructure from the parent. Consider EXPORT_SYMBOL_NS() to convey
49 * infrastructure from the parent module to the auxiliary module(s).
50 */
51
52 /**
53 * DOC: USAGE
54 *
55 * The auxiliary bus is to be used when a driver and one or more kernel
56 * modules, who share a common header file with the driver, need a mechanism to
57 * connect and provide access to a shared object allocated by the
58 * auxiliary_device's registering driver. The registering driver for the
59 * auxiliary_device(s) and the kernel module(s) registering auxiliary_drivers
60 * can be from the same subsystem, or from multiple subsystems.
61 *
62 * The emphasis here is on a common generic interface that keeps subsystem
63 * customization out of the bus infrastructure.
64 *
65 * One example is a PCI network device that is RDMA-capable and exports a child
66 * device to be driven by an auxiliary_driver in the RDMA subsystem. The PCI
67 * driver allocates and registers an auxiliary_device for each physical
68 * function on the NIC. The RDMA driver registers an auxiliary_driver that
69 * claims each of these auxiliary_devices. This conveys data/ops published by
70 * the parent PCI device/driver to the RDMA auxiliary_driver.
71 *
72 * Another use case is for the PCI device to be split out into multiple sub
73 * functions. For each sub function an auxiliary_device is created. A PCI sub
74 * function driver binds to such devices that creates its own one or more class
75 * devices. A PCI sub function auxiliary device is likely to be contained in a
76 * struct with additional attributes such as user defined sub function number
77 * and optional attributes such as resources and a link to the parent device.
78 * These attributes could be used by systemd/udev; and hence should be
79 * initialized before a driver binds to an auxiliary_device.
80 *
81 * A key requirement for utilizing the auxiliary bus is that there is no
82 * dependency on a physical bus, device, register accesses or regmap support.
83 * These individual devices split from the core cannot live on the platform bus
84 * as they are not physical devices that are controlled by DT/ACPI. The same
85 * argument applies for not using MFD in this scenario as MFD relies on
86 * individual function devices being physical devices.
87 */
88
89 /**
90 * DOC: EXAMPLE
91 *
92 * Auxiliary devices are created and registered by a subsystem-level core
93 * device that needs to break up its functionality into smaller fragments. One
94 * way to extend the scope of an auxiliary_device is to encapsulate it within a
95 * domain-specific structure defined by the parent device. This structure
96 * contains the auxiliary_device and any associated shared data/callbacks
97 * needed to establish the connection with the parent.
98 *
99 * An example is:
100 *
101 * .. code-block:: c
102 *
103 * struct foo {
104 * struct auxiliary_device auxdev;
105 * void (*connect)(struct auxiliary_device *auxdev);
106 * void (*disconnect)(struct auxiliary_device *auxdev);
107 * void *data;
108 * };
109 *
110 * The parent device then registers the auxiliary_device by calling
111 * auxiliary_device_init(), and then auxiliary_device_add(), with the pointer
112 * to the auxdev member of the above structure. The parent provides a name for
113 * the auxiliary_device that, combined with the parent's KBUILD_MODNAME,
114 * creates a match_name that is be used for matching and binding with a driver.
115 *
116 * Whenever an auxiliary_driver is registered, based on the match_name, the
117 * auxiliary_driver's probe() is invoked for the matching devices. The
118 * auxiliary_driver can also be encapsulated inside custom drivers that make
119 * the core device's functionality extensible by adding additional
120 * domain-specific ops as follows:
121 *
122 * .. code-block:: c
123 *
124 * struct my_ops {
125 * void (*send)(struct auxiliary_device *auxdev);
126 * void (*receive)(struct auxiliary_device *auxdev);
127 * };
128 *
129 *
130 * struct my_driver {
131 * struct auxiliary_driver auxiliary_drv;
132 * const struct my_ops ops;
133 * };
134 *
135 * An example of this type of usage is:
136 *
137 * .. code-block:: c
138 *
139 * const struct auxiliary_device_id my_auxiliary_id_table[] = {
140 * { .name = "foo_mod.foo_dev" },
141 * { },
142 * };
143 *
144 * const struct my_ops my_custom_ops = {
145 * .send = my_tx,
146 * .receive = my_rx,
147 * };
148 *
149 * const struct my_driver my_drv = {
150 * .auxiliary_drv = {
151 * .name = "myauxiliarydrv",
152 * .id_table = my_auxiliary_id_table,
153 * .probe = my_probe,
154 * .remove = my_remove,
155 * .shutdown = my_shutdown,
156 * },
157 * .ops = my_custom_ops,
158 * };
159 *
160 * Please note that such custom ops approach is valid, but it is hard to implement
161 * it right without global locks per-device to protect from auxiliary_drv removal
162 * during call to that ops. In addition, this implementation lacks proper module
163 * dependency, which causes to load/unload races between auxiliary parent and devices
164 * modules.
165 *
166 * The most easiest way to provide these ops reliably without needing to
167 * have a lock is to EXPORT_SYMBOL*() them and rely on already existing
168 * modules infrastructure for validity and correct dependencies chains.
169 */
170
auxiliary_match_id(const struct auxiliary_device_id * id,const struct auxiliary_device * auxdev)171 static const struct auxiliary_device_id *auxiliary_match_id(const struct auxiliary_device_id *id,
172 const struct auxiliary_device *auxdev)
173 {
174 for (; id->name[0]; id++) {
175 const char *p = strrchr(dev_name(&auxdev->dev), '.');
176 int match_size;
177
178 if (!p)
179 continue;
180 match_size = p - dev_name(&auxdev->dev);
181
182 /* use dev_name(&auxdev->dev) prefix before last '.' char to match to */
183 if (strlen(id->name) == match_size &&
184 !strncmp(dev_name(&auxdev->dev), id->name, match_size))
185 return id;
186 }
187 return NULL;
188 }
189
auxiliary_match(struct device * dev,const struct device_driver * drv)190 static int auxiliary_match(struct device *dev, const struct device_driver *drv)
191 {
192 struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
193 const struct auxiliary_driver *auxdrv = to_auxiliary_drv(drv);
194
195 return !!auxiliary_match_id(auxdrv->id_table, auxdev);
196 }
197
auxiliary_uevent(const struct device * dev,struct kobj_uevent_env * env)198 static int auxiliary_uevent(const struct device *dev, struct kobj_uevent_env *env)
199 {
200 const char *name, *p;
201
202 name = dev_name(dev);
203 p = strrchr(name, '.');
204
205 return add_uevent_var(env, "MODALIAS=%s%.*s", AUXILIARY_MODULE_PREFIX,
206 (int)(p - name), name);
207 }
208
209 static const struct dev_pm_ops auxiliary_dev_pm_ops = {
210 SET_RUNTIME_PM_OPS(pm_generic_runtime_suspend, pm_generic_runtime_resume, NULL)
211 SET_SYSTEM_SLEEP_PM_OPS(pm_generic_suspend, pm_generic_resume)
212 };
213
auxiliary_bus_probe(struct device * dev)214 static int auxiliary_bus_probe(struct device *dev)
215 {
216 const struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver);
217 struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
218 int ret;
219
220 ret = dev_pm_domain_attach(dev, true);
221 if (ret) {
222 dev_warn(dev, "Failed to attach to PM Domain : %d\n", ret);
223 return ret;
224 }
225
226 ret = auxdrv->probe(auxdev, auxiliary_match_id(auxdrv->id_table, auxdev));
227 if (ret)
228 dev_pm_domain_detach(dev, true);
229
230 return ret;
231 }
232
auxiliary_bus_remove(struct device * dev)233 static void auxiliary_bus_remove(struct device *dev)
234 {
235 const struct auxiliary_driver *auxdrv = to_auxiliary_drv(dev->driver);
236 struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
237
238 if (auxdrv->remove)
239 auxdrv->remove(auxdev);
240 dev_pm_domain_detach(dev, true);
241 }
242
auxiliary_bus_shutdown(struct device * dev)243 static void auxiliary_bus_shutdown(struct device *dev)
244 {
245 const struct auxiliary_driver *auxdrv = NULL;
246 struct auxiliary_device *auxdev;
247
248 if (dev->driver) {
249 auxdrv = to_auxiliary_drv(dev->driver);
250 auxdev = to_auxiliary_dev(dev);
251 }
252
253 if (auxdrv && auxdrv->shutdown)
254 auxdrv->shutdown(auxdev);
255 }
256
257 static const struct bus_type auxiliary_bus_type = {
258 .name = "auxiliary",
259 .probe = auxiliary_bus_probe,
260 .remove = auxiliary_bus_remove,
261 .shutdown = auxiliary_bus_shutdown,
262 .match = auxiliary_match,
263 .uevent = auxiliary_uevent,
264 .pm = &auxiliary_dev_pm_ops,
265 };
266
267 /**
268 * auxiliary_device_init - check auxiliary_device and initialize
269 * @auxdev: auxiliary device struct
270 *
271 * This is the second step in the three-step process to register an
272 * auxiliary_device.
273 *
274 * When this function returns an error code, then the device_initialize will
275 * *not* have been performed, and the caller will be responsible to free any
276 * memory allocated for the auxiliary_device in the error path directly.
277 *
278 * It returns 0 on success. On success, the device_initialize has been
279 * performed. After this point any error unwinding will need to include a call
280 * to auxiliary_device_uninit(). In this post-initialize error scenario, a call
281 * to the device's .release callback will be triggered, and all memory clean-up
282 * is expected to be handled there.
283 */
auxiliary_device_init(struct auxiliary_device * auxdev)284 int auxiliary_device_init(struct auxiliary_device *auxdev)
285 {
286 struct device *dev = &auxdev->dev;
287
288 if (!dev->parent) {
289 pr_err("auxiliary_device has a NULL dev->parent\n");
290 return -EINVAL;
291 }
292
293 if (!auxdev->name) {
294 pr_err("auxiliary_device has a NULL name\n");
295 return -EINVAL;
296 }
297
298 dev->bus = &auxiliary_bus_type;
299 device_initialize(&auxdev->dev);
300 mutex_init(&auxdev->sysfs.lock);
301 return 0;
302 }
303 EXPORT_SYMBOL_GPL(auxiliary_device_init);
304
305 /**
306 * __auxiliary_device_add - add an auxiliary bus device
307 * @auxdev: auxiliary bus device to add to the bus
308 * @modname: name of the parent device's driver module
309 *
310 * This is the third step in the three-step process to register an
311 * auxiliary_device.
312 *
313 * This function must be called after a successful call to
314 * auxiliary_device_init(), which will perform the device_initialize. This
315 * means that if this returns an error code, then a call to
316 * auxiliary_device_uninit() must be performed so that the .release callback
317 * will be triggered to free the memory associated with the auxiliary_device.
318 *
319 * The expectation is that users will call the "auxiliary_device_add" macro so
320 * that the caller's KBUILD_MODNAME is automatically inserted for the modname
321 * parameter. Only if a user requires a custom name would this version be
322 * called directly.
323 */
__auxiliary_device_add(struct auxiliary_device * auxdev,const char * modname)324 int __auxiliary_device_add(struct auxiliary_device *auxdev, const char *modname)
325 {
326 struct device *dev = &auxdev->dev;
327 int ret;
328
329 if (!modname) {
330 dev_err(dev, "auxiliary device modname is NULL\n");
331 return -EINVAL;
332 }
333
334 ret = dev_set_name(dev, "%s.%s.%d", modname, auxdev->name, auxdev->id);
335 if (ret) {
336 dev_err(dev, "auxiliary device dev_set_name failed: %d\n", ret);
337 return ret;
338 }
339
340 ret = device_add(dev);
341 if (ret)
342 dev_err(dev, "adding auxiliary device failed!: %d\n", ret);
343
344 return ret;
345 }
346 EXPORT_SYMBOL_GPL(__auxiliary_device_add);
347
348 /**
349 * __auxiliary_driver_register - register a driver for auxiliary bus devices
350 * @auxdrv: auxiliary_driver structure
351 * @owner: owning module/driver
352 * @modname: KBUILD_MODNAME for parent driver
353 *
354 * The expectation is that users will call the "auxiliary_driver_register"
355 * macro so that the caller's KBUILD_MODNAME is automatically inserted for the
356 * modname parameter. Only if a user requires a custom name would this version
357 * be called directly.
358 */
__auxiliary_driver_register(struct auxiliary_driver * auxdrv,struct module * owner,const char * modname)359 int __auxiliary_driver_register(struct auxiliary_driver *auxdrv,
360 struct module *owner, const char *modname)
361 {
362 int ret;
363
364 if (WARN_ON(!auxdrv->probe) || WARN_ON(!auxdrv->id_table))
365 return -EINVAL;
366
367 if (auxdrv->name)
368 auxdrv->driver.name = kasprintf(GFP_KERNEL, "%s.%s", modname,
369 auxdrv->name);
370 else
371 auxdrv->driver.name = kasprintf(GFP_KERNEL, "%s", modname);
372 if (!auxdrv->driver.name)
373 return -ENOMEM;
374
375 auxdrv->driver.owner = owner;
376 auxdrv->driver.bus = &auxiliary_bus_type;
377 auxdrv->driver.mod_name = modname;
378
379 ret = driver_register(&auxdrv->driver);
380 if (ret)
381 kfree(auxdrv->driver.name);
382
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(__auxiliary_driver_register);
386
387 /**
388 * auxiliary_driver_unregister - unregister a driver
389 * @auxdrv: auxiliary_driver structure
390 */
auxiliary_driver_unregister(struct auxiliary_driver * auxdrv)391 void auxiliary_driver_unregister(struct auxiliary_driver *auxdrv)
392 {
393 driver_unregister(&auxdrv->driver);
394 kfree(auxdrv->driver.name);
395 }
396 EXPORT_SYMBOL_GPL(auxiliary_driver_unregister);
397
auxiliary_device_release(struct device * dev)398 static void auxiliary_device_release(struct device *dev)
399 {
400 struct auxiliary_device *auxdev = to_auxiliary_dev(dev);
401
402 kfree(auxdev);
403 }
404
405 /**
406 * auxiliary_device_create - create a device on the auxiliary bus
407 * @dev: parent device
408 * @modname: module name used to create the auxiliary driver name.
409 * @devname: auxiliary bus device name
410 * @platform_data: auxiliary bus device platform data
411 * @id: auxiliary bus device id
412 *
413 * Helper to create an auxiliary bus device.
414 * The device created matches driver 'modname.devname' on the auxiliary bus.
415 */
auxiliary_device_create(struct device * dev,const char * modname,const char * devname,void * platform_data,int id)416 struct auxiliary_device *auxiliary_device_create(struct device *dev,
417 const char *modname,
418 const char *devname,
419 void *platform_data,
420 int id)
421 {
422 struct auxiliary_device *auxdev;
423 int ret;
424
425 auxdev = kzalloc(sizeof(*auxdev), GFP_KERNEL);
426 if (!auxdev)
427 return NULL;
428
429 auxdev->id = id;
430 auxdev->name = devname;
431 auxdev->dev.parent = dev;
432 auxdev->dev.platform_data = platform_data;
433 auxdev->dev.release = auxiliary_device_release;
434 device_set_of_node_from_dev(&auxdev->dev, dev);
435
436 ret = auxiliary_device_init(auxdev);
437 if (ret) {
438 kfree(auxdev);
439 return NULL;
440 }
441
442 ret = __auxiliary_device_add(auxdev, modname);
443 if (ret) {
444 /*
445 * It may look odd but auxdev should not be freed here.
446 * auxiliary_device_uninit() calls device_put() which call
447 * the device release function, freeing auxdev.
448 */
449 auxiliary_device_uninit(auxdev);
450 return NULL;
451 }
452
453 return auxdev;
454 }
455 EXPORT_SYMBOL_GPL(auxiliary_device_create);
456
457 /**
458 * auxiliary_device_destroy - remove an auxiliary device
459 * @auxdev: pointer to the auxdev to be removed
460 *
461 * Helper to remove an auxiliary device created with
462 * auxiliary_device_create()
463 */
auxiliary_device_destroy(void * auxdev)464 void auxiliary_device_destroy(void *auxdev)
465 {
466 struct auxiliary_device *_auxdev = auxdev;
467
468 auxiliary_device_delete(_auxdev);
469 auxiliary_device_uninit(_auxdev);
470 }
471 EXPORT_SYMBOL_GPL(auxiliary_device_destroy);
472
473 /**
474 * __devm_auxiliary_device_create - create a managed device on the auxiliary bus
475 * @dev: parent device
476 * @modname: module name used to create the auxiliary driver name.
477 * @devname: auxiliary bus device name
478 * @platform_data: auxiliary bus device platform data
479 * @id: auxiliary bus device id
480 *
481 * Device managed helper to create an auxiliary bus device.
482 * The device created matches driver 'modname.devname' on the auxiliary bus.
483 */
__devm_auxiliary_device_create(struct device * dev,const char * modname,const char * devname,void * platform_data,int id)484 struct auxiliary_device *__devm_auxiliary_device_create(struct device *dev,
485 const char *modname,
486 const char *devname,
487 void *platform_data,
488 int id)
489 {
490 struct auxiliary_device *auxdev;
491 int ret;
492
493 auxdev = auxiliary_device_create(dev, modname, devname, platform_data, id);
494 if (!auxdev)
495 return NULL;
496
497 ret = devm_add_action_or_reset(dev, auxiliary_device_destroy,
498 auxdev);
499 if (ret)
500 return NULL;
501
502 return auxdev;
503 }
504 EXPORT_SYMBOL_GPL(__devm_auxiliary_device_create);
505
auxiliary_bus_init(void)506 void __init auxiliary_bus_init(void)
507 {
508 WARN_ON(bus_register(&auxiliary_bus_type));
509 }
510