1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
14 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15 * redistribution must be conditioned upon including a substantially
16 * similar Disclaimer requirement for further binary redistribution.
17 *
18 * NO WARRANTY
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29 * THE POSSIBILITY OF SUCH DAMAGES.
30 */
31
32 #include <sys/cdefs.h>
33 /*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40 #include "opt_inet.h"
41 #include "opt_ath.h"
42 /*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49 #include "opt_ah.h"
50 #include "opt_wlan.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/sysctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/malloc.h>
57 #include <sys/lock.h>
58 #include <sys/mutex.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/sockio.h>
62 #include <sys/errno.h>
63 #include <sys/callout.h>
64 #include <sys/bus.h>
65 #include <sys/endian.h>
66 #include <sys/kthread.h>
67 #include <sys/taskqueue.h>
68 #include <sys/priv.h>
69 #include <sys/module.h>
70 #include <sys/ktr.h>
71 #include <sys/smp.h> /* for mp_ncpus */
72
73 #include <machine/bus.h>
74
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <net/if_dl.h>
78 #include <net/if_media.h>
79 #include <net/if_types.h>
80 #include <net/if_arp.h>
81 #include <net/ethernet.h>
82 #include <net/if_llc.h>
83
84 #include <net80211/ieee80211_var.h>
85 #include <net80211/ieee80211_regdomain.h>
86 #ifdef IEEE80211_SUPPORT_SUPERG
87 #include <net80211/ieee80211_superg.h>
88 #endif
89 #ifdef IEEE80211_SUPPORT_TDMA
90 #include <net80211/ieee80211_tdma.h>
91 #endif
92
93 #include <net/bpf.h>
94
95 #ifdef INET
96 #include <netinet/in.h>
97 #include <netinet/if_ether.h>
98 #endif
99
100 #include <dev/ath/if_athvar.h>
101 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
102 #include <dev/ath/ath_hal/ah_diagcodes.h>
103
104 #include <dev/ath/if_ath_debug.h>
105 #include <dev/ath/if_ath_misc.h>
106 #include <dev/ath/if_ath_tsf.h>
107 #include <dev/ath/if_ath_tx.h>
108 #include <dev/ath/if_ath_sysctl.h>
109 #include <dev/ath/if_ath_led.h>
110 #include <dev/ath/if_ath_keycache.h>
111 #include <dev/ath/if_ath_rx.h>
112 #include <dev/ath/if_ath_rx_edma.h>
113 #include <dev/ath/if_ath_tx_edma.h>
114 #include <dev/ath/if_ath_beacon.h>
115 #include <dev/ath/if_ath_btcoex.h>
116 #include <dev/ath/if_ath_btcoex_mci.h>
117 #include <dev/ath/if_ath_spectral.h>
118 #include <dev/ath/if_ath_lna_div.h>
119 #include <dev/ath/if_athdfs.h>
120 #include <dev/ath/if_ath_ioctl.h>
121 #include <dev/ath/if_ath_descdma.h>
122
123 #ifdef ATH_TX99_DIAG
124 #include <dev/ath/ath_tx99/ath_tx99.h>
125 #endif
126
127 #ifdef ATH_DEBUG_ALQ
128 #include <dev/ath/if_ath_alq.h>
129 #endif
130
131 /*
132 * Only enable this if you're working on PS-POLL support.
133 */
134 #define ATH_SW_PSQ
135
136 /*
137 * ATH_BCBUF determines the number of vap's that can transmit
138 * beacons and also (currently) the number of vap's that can
139 * have unique mac addresses/bssid. When staggering beacons
140 * 4 is probably a good max as otherwise the beacons become
141 * very closely spaced and there is limited time for cab q traffic
142 * to go out. You can burst beacons instead but that is not good
143 * for stations in power save and at some point you really want
144 * another radio (and channel).
145 *
146 * The limit on the number of mac addresses is tied to our use of
147 * the U/L bit and tracking addresses in a byte; it would be
148 * worthwhile to allow more for applications like proxy sta.
149 */
150 CTASSERT(ATH_BCBUF <= 8);
151
152 static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
153 const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
154 const uint8_t [IEEE80211_ADDR_LEN],
155 const uint8_t [IEEE80211_ADDR_LEN]);
156 static void ath_vap_delete(struct ieee80211vap *);
157 static int ath_init(struct ath_softc *);
158 static void ath_stop(struct ath_softc *);
159 static int ath_reset_vap(struct ieee80211vap *, u_long);
160 static int ath_transmit(struct ieee80211com *, struct mbuf *);
161 static void ath_watchdog(void *);
162 static void ath_parent(struct ieee80211com *);
163 static void ath_fatal_proc(void *, int);
164 static void ath_bmiss_vap(struct ieee80211vap *);
165 static void ath_bmiss_proc(void *, int);
166 static void ath_tsfoor_proc(void *, int);
167 static void ath_key_update_begin(struct ieee80211vap *);
168 static void ath_key_update_end(struct ieee80211vap *);
169 static void ath_update_mcast_hw(struct ath_softc *);
170 static void ath_update_mcast(struct ieee80211com *);
171 static void ath_update_promisc(struct ieee80211com *);
172 static void ath_updateslot(struct ieee80211com *);
173 static void ath_bstuck_proc(void *, int);
174 static void ath_reset_proc(void *, int);
175 static int ath_desc_alloc(struct ath_softc *);
176 static void ath_desc_free(struct ath_softc *);
177 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
178 const uint8_t [IEEE80211_ADDR_LEN]);
179 static void ath_node_cleanup(struct ieee80211_node *);
180 static void ath_node_free(struct ieee80211_node *);
181 static void ath_node_getsignal(const struct ieee80211_node *,
182 int8_t *, int8_t *);
183 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
184 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
185 static int ath_tx_setup(struct ath_softc *, int, int);
186 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
187 static void ath_tx_cleanup(struct ath_softc *);
188 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
189 int dosched);
190 static void ath_tx_proc_q0(void *, int);
191 static void ath_tx_proc_q0123(void *, int);
192 static void ath_tx_proc(void *, int);
193 static void ath_txq_sched_tasklet(void *, int);
194 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
195 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196 static void ath_scan_start(struct ieee80211com *);
197 static void ath_scan_end(struct ieee80211com *);
198 static void ath_set_channel(struct ieee80211com *);
199 #ifdef ATH_ENABLE_11N
200 static void ath_update_chw(struct ieee80211com *);
201 #endif /* ATH_ENABLE_11N */
202 static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *);
203 static void ath_calibrate(void *);
204 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
205 static void ath_setup_stationkey(struct ieee80211_node *);
206 static void ath_newassoc(struct ieee80211_node *, int);
207 static int ath_setregdomain(struct ieee80211com *,
208 struct ieee80211_regdomain *, int,
209 struct ieee80211_channel []);
210 static void ath_getradiocaps(struct ieee80211com *, int, int *,
211 struct ieee80211_channel []);
212 static int ath_getchannels(struct ath_softc *);
213
214 static int ath_rate_setup(struct ath_softc *, u_int mode);
215 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
216
217 static void ath_announce(struct ath_softc *);
218
219 static void ath_dfs_tasklet(void *, int);
220 static void ath_node_powersave(struct ieee80211_node *, int);
221 static int ath_node_set_tim(struct ieee80211_node *, int);
222 static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
223
224 #ifdef IEEE80211_SUPPORT_TDMA
225 #include <dev/ath/if_ath_tdma.h>
226 #endif
227
228 SYSCTL_DECL(_hw_ath);
229
230 /* XXX validate sysctl values */
231 static int ath_longcalinterval = 30; /* long cals every 30 secs */
232 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
233 0, "long chip calibration interval (secs)");
234 static int ath_shortcalinterval = 100; /* short cals every 100 ms */
235 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
236 0, "short chip calibration interval (msecs)");
237 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
238 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
239 0, "reset chip calibration results (secs)");
240 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
241 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
242 0, "ANI calibration (msecs)");
243
244 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
245 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
246 0, "rx buffers allocated");
247 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
248 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
249 0, "tx buffers allocated");
250 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
251 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
252 0, "tx (mgmt) buffers allocated");
253
254 int ath_bstuck_threshold = 4; /* max missed beacons */
255 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256 0, "max missed beacon xmits before chip reset");
257
258 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259
260 void
ath_legacy_attach_comp_func(struct ath_softc * sc)261 ath_legacy_attach_comp_func(struct ath_softc *sc)
262 {
263
264 /*
265 * Special case certain configurations. Note the
266 * CAB queue is handled by these specially so don't
267 * include them when checking the txq setup mask.
268 */
269 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
270 case 0x01:
271 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
272 break;
273 case 0x0f:
274 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
275 break;
276 default:
277 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
278 break;
279 }
280 }
281
282 /*
283 * Set the target power mode.
284 *
285 * If this is called during a point in time where
286 * the hardware is being programmed elsewhere, it will
287 * simply store it away and update it when all current
288 * uses of the hardware are completed.
289 *
290 * If the chip is going into network sleep or power off, then
291 * we will wait until all uses of the chip are done before
292 * going into network sleep or power off.
293 *
294 * If the chip is being programmed full-awake, then immediately
295 * program it full-awake so we can actually stay awake rather than
296 * the chip potentially going to sleep underneath us.
297 */
298 void
_ath_power_setpower(struct ath_softc * sc,int power_state,int selfgen,const char * file,int line)299 _ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen,
300 const char *file, int line)
301 {
302 ATH_LOCK_ASSERT(sc);
303
304 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n",
305 __func__,
306 file,
307 line,
308 power_state,
309 sc->sc_powersave_refcnt,
310 sc->sc_target_powerstate,
311 sc->sc_cur_powerstate);
312
313 sc->sc_target_powerstate = power_state;
314
315 /*
316 * Don't program the chip into network sleep if the chip
317 * is being programmed elsewhere.
318 *
319 * However, if the chip is being programmed /awake/, force
320 * the chip awake so we stay awake.
321 */
322 if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) &&
323 power_state != sc->sc_cur_powerstate) {
324 sc->sc_cur_powerstate = power_state;
325 ath_hal_setpower(sc->sc_ah, power_state);
326
327 /*
328 * If the NIC is force-awake, then set the
329 * self-gen frame state appropriately.
330 *
331 * If the nic is in network sleep or full-sleep,
332 * we let the above call leave the self-gen
333 * state as "sleep".
334 */
335 if (selfgen &&
336 sc->sc_cur_powerstate == HAL_PM_AWAKE &&
337 sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
338 ath_hal_setselfgenpower(sc->sc_ah,
339 sc->sc_target_selfgen_state);
340 }
341 }
342 }
343
344 /*
345 * Set the current self-generated frames state.
346 *
347 * This is separate from the target power mode. The chip may be
348 * awake but the desired state is "sleep", so frames sent to the
349 * destination has PWRMGT=1 in the 802.11 header. The NIC also
350 * needs to know to set PWRMGT=1 in self-generated frames.
351 */
352 void
_ath_power_set_selfgen(struct ath_softc * sc,int power_state,const char * file,int line)353 _ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
354 {
355
356 ATH_LOCK_ASSERT(sc);
357
358 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
359 __func__,
360 file,
361 line,
362 power_state,
363 sc->sc_target_selfgen_state);
364
365 sc->sc_target_selfgen_state = power_state;
366
367 /*
368 * If the NIC is force-awake, then set the power state.
369 * Network-state and full-sleep will already transition it to
370 * mark self-gen frames as sleeping - and we can't
371 * guarantee the NIC is awake to program the self-gen frame
372 * setting anyway.
373 */
374 if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
375 ath_hal_setselfgenpower(sc->sc_ah, power_state);
376 }
377 }
378
379 /*
380 * Set the hardware power mode and take a reference.
381 *
382 * This doesn't update the target power mode in the driver;
383 * it just updates the hardware power state.
384 *
385 * XXX it should only ever force the hardware awake; it should
386 * never be called to set it asleep.
387 */
388 void
_ath_power_set_power_state(struct ath_softc * sc,int power_state,const char * file,int line)389 _ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
390 {
391 ATH_LOCK_ASSERT(sc);
392
393 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
394 __func__,
395 file,
396 line,
397 power_state,
398 sc->sc_powersave_refcnt);
399
400 sc->sc_powersave_refcnt++;
401
402 /*
403 * Only do the power state change if we're not programming
404 * it elsewhere.
405 */
406 if (power_state != sc->sc_cur_powerstate) {
407 ath_hal_setpower(sc->sc_ah, power_state);
408 sc->sc_cur_powerstate = power_state;
409 /*
410 * Adjust the self-gen powerstate if appropriate.
411 */
412 if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
413 sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
414 ath_hal_setselfgenpower(sc->sc_ah,
415 sc->sc_target_selfgen_state);
416 }
417 }
418 }
419
420 /*
421 * Restore the power save mode to what it once was.
422 *
423 * This will decrement the reference counter and once it hits
424 * zero, it'll restore the powersave state.
425 */
426 void
_ath_power_restore_power_state(struct ath_softc * sc,const char * file,int line)427 _ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
428 {
429
430 ATH_LOCK_ASSERT(sc);
431
432 DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
433 __func__,
434 file,
435 line,
436 sc->sc_powersave_refcnt,
437 sc->sc_target_powerstate);
438
439 if (sc->sc_powersave_refcnt == 0)
440 device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
441 else
442 sc->sc_powersave_refcnt--;
443
444 if (sc->sc_powersave_refcnt == 0 &&
445 sc->sc_target_powerstate != sc->sc_cur_powerstate) {
446 sc->sc_cur_powerstate = sc->sc_target_powerstate;
447 ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
448 }
449
450 /*
451 * Adjust the self-gen powerstate if appropriate.
452 */
453 if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
454 sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
455 ath_hal_setselfgenpower(sc->sc_ah,
456 sc->sc_target_selfgen_state);
457 }
458
459 }
460
461 /*
462 * Configure the initial HAL configuration values based on bus
463 * specific parameters.
464 *
465 * Some PCI IDs and other information may need tweaking.
466 *
467 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
468 * if BT antenna diversity isn't enabled.
469 *
470 * So, let's also figure out how to enable BT diversity for AR9485.
471 */
472 static void
ath_setup_hal_config(struct ath_softc * sc,HAL_OPS_CONFIG * ah_config)473 ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
474 {
475 /* XXX TODO: only for PCI devices? */
476
477 if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
478 ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
479 ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
480 ah_config->ath_hal_min_gainidx = AH_TRUE;
481 ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
482 /* XXX low_rssi_thresh */
483 /* XXX fast_div_bias */
484 device_printf(sc->sc_dev, "configuring for %s\n",
485 (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
486 "CUS198" : "CUS230");
487 }
488
489 if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
490 device_printf(sc->sc_dev, "CUS217 card detected\n");
491
492 if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
493 device_printf(sc->sc_dev, "CUS252 card detected\n");
494
495 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
496 device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
497
498 if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
499 device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
500
501 if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV)
502 device_printf(sc->sc_dev,
503 "Bluetooth Antenna Diversity card detected\n");
504
505 if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
506 device_printf(sc->sc_dev, "Killer Wireless card detected\n");
507
508 #if 0
509 /*
510 * Some WB335 cards do not support antenna diversity. Since
511 * we use a hardcoded value for AR9565 instead of using the
512 * EEPROM/OTP data, remove the combining feature from
513 * the HW capabilities bitmap.
514 */
515 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
516 if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
517 pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
518 }
519
520 if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
521 pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
522 device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
523 }
524 #endif
525
526 if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
527 ah_config->ath_hal_pcie_waen = 0x0040473b;
528 device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
529 }
530
531 #if 0
532 if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
533 ah->config.no_pll_pwrsave = true;
534 device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
535 }
536 #endif
537
538 }
539
540 /*
541 * Attempt to fetch the MAC address from the kernel environment.
542 *
543 * Returns 0, macaddr in macaddr if successful; -1 otherwise.
544 */
545 static int
ath_fetch_mac_kenv(struct ath_softc * sc,uint8_t * macaddr)546 ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
547 {
548 char devid_str[32];
549 int local_mac = 0;
550 char *local_macstr;
551
552 /*
553 * Fetch from the kenv rather than using hints.
554 *
555 * Hints would be nice but the transition to dynamic
556 * hints/kenv doesn't happen early enough for this
557 * to work reliably (eg on anything embedded.)
558 */
559 snprintf(devid_str, 32, "hint.%s.%d.macaddr",
560 device_get_name(sc->sc_dev),
561 device_get_unit(sc->sc_dev));
562
563 if ((local_macstr = kern_getenv(devid_str)) != NULL) {
564 uint32_t tmpmac[ETHER_ADDR_LEN];
565 int count;
566 int i;
567
568 /* Have a MAC address; should use it */
569 device_printf(sc->sc_dev,
570 "Overriding MAC address from environment: '%s'\n",
571 local_macstr);
572
573 /* Extract out the MAC address */
574 count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
575 &tmpmac[0], &tmpmac[1],
576 &tmpmac[2], &tmpmac[3],
577 &tmpmac[4], &tmpmac[5]);
578 if (count == 6) {
579 /* Valid! */
580 local_mac = 1;
581 for (i = 0; i < ETHER_ADDR_LEN; i++)
582 macaddr[i] = tmpmac[i];
583 }
584 /* Done! */
585 freeenv(local_macstr);
586 local_macstr = NULL;
587 }
588
589 if (local_mac)
590 return (0);
591 return (-1);
592 }
593
594 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
595 #define HAL_MODE_HT40 \
596 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
597 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
598 int
ath_attach(u_int16_t devid,struct ath_softc * sc)599 ath_attach(u_int16_t devid, struct ath_softc *sc)
600 {
601 struct ieee80211com *ic = &sc->sc_ic;
602 struct ath_hal *ah = NULL;
603 HAL_STATUS status;
604 int error = 0, i;
605 u_int wmodes;
606 int rx_chainmask, tx_chainmask;
607 HAL_OPS_CONFIG ah_config;
608
609 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
610
611 ic->ic_softc = sc;
612 ic->ic_name = device_get_nameunit(sc->sc_dev);
613
614 /*
615 * Configure the initial configuration data.
616 *
617 * This is stuff that may be needed early during attach
618 * rather than done via configuration calls later.
619 */
620 bzero(&ah_config, sizeof(ah_config));
621 ath_setup_hal_config(sc, &ah_config);
622
623 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
624 sc->sc_eepromdata, &ah_config, &status);
625 if (ah == NULL) {
626 device_printf(sc->sc_dev,
627 "unable to attach hardware; HAL status %u\n", status);
628 error = ENXIO;
629 goto bad;
630 }
631 sc->sc_ah = ah;
632 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
633 #ifdef ATH_DEBUG
634 sc->sc_debug = ath_debug;
635 #endif
636
637 /*
638 * Force the chip awake during setup, just to keep
639 * the HAL/driver power tracking happy.
640 *
641 * There are some methods (eg ath_hal_setmac())
642 * that poke the hardware.
643 */
644 ATH_LOCK(sc);
645 ath_power_setpower(sc, HAL_PM_AWAKE, 1);
646 ATH_UNLOCK(sc);
647
648 /*
649 * Setup the DMA/EDMA functions based on the current
650 * hardware support.
651 *
652 * This is required before the descriptors are allocated.
653 */
654 if (ath_hal_hasedma(sc->sc_ah)) {
655 sc->sc_isedma = 1;
656 ath_recv_setup_edma(sc);
657 ath_xmit_setup_edma(sc);
658 } else {
659 ath_recv_setup_legacy(sc);
660 ath_xmit_setup_legacy(sc);
661 }
662
663 if (ath_hal_hasmybeacon(sc->sc_ah)) {
664 sc->sc_do_mybeacon = 1;
665 }
666
667 /*
668 * Check if the MAC has multi-rate retry support.
669 * We do this by trying to setup a fake extended
670 * descriptor. MAC's that don't have support will
671 * return false w/o doing anything. MAC's that do
672 * support it will return true w/o doing anything.
673 */
674 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
675
676 /*
677 * Check if the device has hardware counters for PHY
678 * errors. If so we need to enable the MIB interrupt
679 * so we can act on stat triggers.
680 */
681 if (ath_hal_hwphycounters(ah))
682 sc->sc_needmib = 1;
683
684 /*
685 * Get the hardware key cache size.
686 */
687 sc->sc_keymax = ath_hal_keycachesize(ah);
688 if (sc->sc_keymax > ATH_KEYMAX) {
689 device_printf(sc->sc_dev,
690 "Warning, using only %u of %u key cache slots\n",
691 ATH_KEYMAX, sc->sc_keymax);
692 sc->sc_keymax = ATH_KEYMAX;
693 }
694 /*
695 * Reset the key cache since some parts do not
696 * reset the contents on initial power up.
697 */
698 for (i = 0; i < sc->sc_keymax; i++)
699 ath_hal_keyreset(ah, i);
700
701 /*
702 * Collect the default channel list.
703 */
704 error = ath_getchannels(sc);
705 if (error != 0)
706 goto bad;
707
708 /*
709 * Setup rate tables for all potential media types.
710 */
711 ath_rate_setup(sc, IEEE80211_MODE_11A);
712 ath_rate_setup(sc, IEEE80211_MODE_11B);
713 ath_rate_setup(sc, IEEE80211_MODE_11G);
714 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
715 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
716 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
717 ath_rate_setup(sc, IEEE80211_MODE_11NA);
718 ath_rate_setup(sc, IEEE80211_MODE_11NG);
719 ath_rate_setup(sc, IEEE80211_MODE_HALF);
720 ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
721
722 /* NB: setup here so ath_rate_update is happy */
723 ath_setcurmode(sc, IEEE80211_MODE_11A);
724
725 /*
726 * Allocate TX descriptors and populate the lists.
727 */
728 error = ath_desc_alloc(sc);
729 if (error != 0) {
730 device_printf(sc->sc_dev,
731 "failed to allocate TX descriptors: %d\n", error);
732 goto bad;
733 }
734 error = ath_txdma_setup(sc);
735 if (error != 0) {
736 device_printf(sc->sc_dev,
737 "failed to allocate TX descriptors: %d\n", error);
738 goto bad;
739 }
740
741 /*
742 * Allocate RX descriptors and populate the lists.
743 */
744 error = ath_rxdma_setup(sc);
745 if (error != 0) {
746 device_printf(sc->sc_dev,
747 "failed to allocate RX descriptors: %d\n", error);
748 goto bad;
749 }
750
751 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
752 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
753
754 ATH_TXBUF_LOCK_INIT(sc);
755
756 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
757 taskqueue_thread_enqueue, &sc->sc_tq);
758 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
759 device_get_nameunit(sc->sc_dev));
760
761 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
762 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
763 TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc);
764 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
765 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
766 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
767 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
768
769 /*
770 * Allocate hardware transmit queues: one queue for
771 * beacon frames and one data queue for each QoS
772 * priority. Note that the hal handles resetting
773 * these queues at the needed time.
774 *
775 * XXX PS-Poll
776 */
777 sc->sc_bhalq = ath_beaconq_setup(sc);
778 if (sc->sc_bhalq == (u_int) -1) {
779 device_printf(sc->sc_dev,
780 "unable to setup a beacon xmit queue!\n");
781 error = EIO;
782 goto bad2;
783 }
784 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
785 if (sc->sc_cabq == NULL) {
786 device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
787 error = EIO;
788 goto bad2;
789 }
790 /* NB: insure BK queue is the lowest priority h/w queue */
791 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
792 device_printf(sc->sc_dev,
793 "unable to setup xmit queue for %s traffic!\n",
794 ieee80211_wme_acnames[WME_AC_BK]);
795 error = EIO;
796 goto bad2;
797 }
798 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
799 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
800 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
801 /*
802 * Not enough hardware tx queues to properly do WME;
803 * just punt and assign them all to the same h/w queue.
804 * We could do a better job of this if, for example,
805 * we allocate queues when we switch from station to
806 * AP mode.
807 */
808 if (sc->sc_ac2q[WME_AC_VI] != NULL)
809 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
810 if (sc->sc_ac2q[WME_AC_BE] != NULL)
811 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
812 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
813 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
814 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
815 }
816
817 /*
818 * Attach the TX completion function.
819 *
820 * The non-EDMA chips may have some special case optimisations;
821 * this method gives everyone a chance to attach cleanly.
822 */
823 sc->sc_tx.xmit_attach_comp_func(sc);
824
825 /*
826 * Setup rate control. Some rate control modules
827 * call back to change the anntena state so expose
828 * the necessary entry points.
829 * XXX maybe belongs in struct ath_ratectrl?
830 */
831 sc->sc_setdefantenna = ath_setdefantenna;
832 sc->sc_rc = ath_rate_attach(sc);
833 if (sc->sc_rc == NULL) {
834 error = EIO;
835 goto bad2;
836 }
837
838 /* Attach DFS module */
839 if (! ath_dfs_attach(sc)) {
840 device_printf(sc->sc_dev,
841 "%s: unable to attach DFS\n", __func__);
842 error = EIO;
843 goto bad2;
844 }
845
846 /* Attach spectral module */
847 if (ath_spectral_attach(sc) < 0) {
848 device_printf(sc->sc_dev,
849 "%s: unable to attach spectral\n", __func__);
850 error = EIO;
851 goto bad2;
852 }
853
854 /* Attach bluetooth coexistence module */
855 if (ath_btcoex_attach(sc) < 0) {
856 device_printf(sc->sc_dev,
857 "%s: unable to attach bluetooth coexistence\n", __func__);
858 error = EIO;
859 goto bad2;
860 }
861
862 /* Attach LNA diversity module */
863 if (ath_lna_div_attach(sc) < 0) {
864 device_printf(sc->sc_dev,
865 "%s: unable to attach LNA diversity\n", __func__);
866 error = EIO;
867 goto bad2;
868 }
869
870 /* Start DFS processing tasklet */
871 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
872
873 /* Configure LED state */
874 sc->sc_blinking = 0;
875 sc->sc_ledstate = 1;
876 sc->sc_ledon = 0; /* low true */
877 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
878 callout_init(&sc->sc_ledtimer, 1);
879
880 /*
881 * Don't setup hardware-based blinking.
882 *
883 * Although some NICs may have this configured in the
884 * default reset register values, the user may wish
885 * to alter which pins have which function.
886 *
887 * The reference driver attaches the MAC network LED to GPIO1 and
888 * the MAC power LED to GPIO2. However, the DWA-552 cardbus
889 * NIC has these reversed.
890 */
891 sc->sc_hardled = (1 == 0);
892 sc->sc_led_net_pin = -1;
893 sc->sc_led_pwr_pin = -1;
894 /*
895 * Auto-enable soft led processing for IBM cards and for
896 * 5211 minipci cards. Users can also manually enable/disable
897 * support with a sysctl.
898 */
899 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
900 ath_led_config(sc);
901 ath_hal_setledstate(ah, HAL_LED_INIT);
902
903 /* XXX not right but it's not used anywhere important */
904 ic->ic_phytype = IEEE80211_T_OFDM;
905 ic->ic_opmode = IEEE80211_M_STA;
906 ic->ic_caps =
907 IEEE80211_C_STA /* station mode */
908 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
909 | IEEE80211_C_HOSTAP /* hostap mode */
910 | IEEE80211_C_MONITOR /* monitor mode */
911 | IEEE80211_C_AHDEMO /* adhoc demo mode */
912 | IEEE80211_C_WDS /* 4-address traffic works */
913 | IEEE80211_C_MBSS /* mesh point link mode */
914 | IEEE80211_C_SHPREAMBLE /* short preamble supported */
915 | IEEE80211_C_SHSLOT /* short slot time supported */
916 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */
917 #ifndef ATH_ENABLE_11N
918 | IEEE80211_C_BGSCAN /* capable of bg scanning */
919 #endif
920 | IEEE80211_C_TXFRAG /* handle tx frags */
921 #ifdef ATH_ENABLE_DFS
922 | IEEE80211_C_DFS /* Enable radar detection */
923 #endif
924 | IEEE80211_C_PMGT /* Station side power mgmt */
925 | IEEE80211_C_SWSLEEP
926 ;
927 /*
928 * Query the hal to figure out h/w crypto support.
929 */
930 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
931 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
932 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
933 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
934 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
935 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
936 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
937 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
938 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
939 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
940 /*
941 * Check if h/w does the MIC and/or whether the
942 * separate key cache entries are required to
943 * handle both tx+rx MIC keys.
944 */
945 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
946 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
947 /*
948 * If the h/w supports storing tx+rx MIC keys
949 * in one cache slot automatically enable use.
950 */
951 if (ath_hal_hastkipsplit(ah) ||
952 !ath_hal_settkipsplit(ah, AH_FALSE))
953 sc->sc_splitmic = 1;
954 /*
955 * If the h/w can do TKIP MIC together with WME then
956 * we use it; otherwise we force the MIC to be done
957 * in software by the net80211 layer.
958 */
959 if (ath_hal_haswmetkipmic(ah))
960 sc->sc_wmetkipmic = 1;
961 }
962 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
963 /*
964 * Check for multicast key search support.
965 */
966 if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
967 !ath_hal_getmcastkeysearch(sc->sc_ah)) {
968 ath_hal_setmcastkeysearch(sc->sc_ah, 1);
969 }
970 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
971 /*
972 * Mark key cache slots associated with global keys
973 * as in use. If we knew TKIP was not to be used we
974 * could leave the +32, +64, and +32+64 slots free.
975 */
976 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
977 setbit(sc->sc_keymap, i);
978 setbit(sc->sc_keymap, i+64);
979 if (sc->sc_splitmic) {
980 setbit(sc->sc_keymap, i+32);
981 setbit(sc->sc_keymap, i+32+64);
982 }
983 }
984 /*
985 * TPC support can be done either with a global cap or
986 * per-packet support. The latter is not available on
987 * all parts. We're a bit pedantic here as all parts
988 * support a global cap.
989 */
990 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
991 ic->ic_caps |= IEEE80211_C_TXPMGT;
992
993 /*
994 * Mark WME capability only if we have sufficient
995 * hardware queues to do proper priority scheduling.
996 */
997 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
998 ic->ic_caps |= IEEE80211_C_WME;
999 /*
1000 * Check for misc other capabilities.
1001 */
1002 if (ath_hal_hasbursting(ah))
1003 ic->ic_caps |= IEEE80211_C_BURST;
1004 sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
1005 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
1006 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
1007 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
1008
1009 /* XXX TODO: just make this a "store tx/rx timestamp length" operation */
1010 if (ath_hal_get_rx_tsf_prec(ah, &i)) {
1011 if (i == 32) {
1012 sc->sc_rxtsf32 = 1;
1013 }
1014 if (bootverbose)
1015 device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i);
1016 }
1017 if (ath_hal_get_tx_tsf_prec(ah, &i)) {
1018 if (bootverbose)
1019 device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i);
1020 }
1021
1022 sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
1023 sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
1024 sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
1025
1026 /*
1027 * Some WB335 cards do not support antenna diversity. Since
1028 * we use a hardcoded value for AR9565 instead of using the
1029 * EEPROM/OTP data, remove the combining feature from
1030 * the HW capabilities bitmap.
1031 */
1032 /*
1033 * XXX TODO: check reference driver and ath9k for what to do
1034 * here for WB335. I think we have to actually disable the
1035 * LNA div processing in the HAL and instead use the hard
1036 * coded values; and then use BT diversity.
1037 *
1038 * .. but also need to setup MCI too for WB335..
1039 */
1040 #if 0
1041 if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
1042 device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n",
1043 __func__);
1044 sc->sc_dolnadiv = 0;
1045 }
1046 #endif
1047
1048 if (ath_hal_hasfastframes(ah))
1049 ic->ic_caps |= IEEE80211_C_FF;
1050 wmodes = ath_hal_getwirelessmodes(ah);
1051 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
1052 ic->ic_caps |= IEEE80211_C_TURBOP;
1053 #ifdef IEEE80211_SUPPORT_TDMA
1054 if (ath_hal_macversion(ah) > 0x78) {
1055 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
1056 ic->ic_tdma_update = ath_tdma_update;
1057 }
1058 #endif
1059
1060 /*
1061 * TODO: enforce that at least this many frames are available
1062 * in the txbuf list before allowing data frames (raw or
1063 * otherwise) to be transmitted.
1064 */
1065 sc->sc_txq_data_minfree = 10;
1066
1067 /*
1068 * Shorten this to 64 packets, or 1/4 ath_txbuf, whichever
1069 * is smaller.
1070 *
1071 * Anything bigger can potentially see the cabq consume
1072 * almost all buffers, starving everything else, only to
1073 * see most fail to transmit in the given beacon interval.
1074 */
1075 sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4);
1076
1077 /*
1078 * How deep can the node software TX queue get whilst it's asleep.
1079 */
1080 sc->sc_txq_node_psq_maxdepth = 16;
1081
1082 /*
1083 * Default the maximum queue to 1/4'th the TX buffers, or
1084 * 128, whichever is smaller.
1085 *
1086 * Set it to 128 instead of the previous default (64) because
1087 * at 64, two full A-MPDU subframes of 32 frames each is
1088 * enough to treat this node queue as full and all subsequent
1089 * traffic is dropped. Setting it to 128 means there'll
1090 * hopefully be another 64 frames in the software queue
1091 * to begin making A-MPDU frames out of.
1092 */
1093 sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4);
1094
1095 /* Enable CABQ by default */
1096 sc->sc_cabq_enable = 1;
1097
1098 /*
1099 * Allow the TX and RX chainmasks to be overridden by
1100 * environment variables and/or device.hints.
1101 *
1102 * This must be done early - before the hardware is
1103 * calibrated or before the 802.11n stream calculation
1104 * is done.
1105 */
1106 if (resource_int_value(device_get_name(sc->sc_dev),
1107 device_get_unit(sc->sc_dev), "rx_chainmask",
1108 &rx_chainmask) == 0) {
1109 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1110 rx_chainmask);
1111 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1112 }
1113 if (resource_int_value(device_get_name(sc->sc_dev),
1114 device_get_unit(sc->sc_dev), "tx_chainmask",
1115 &tx_chainmask) == 0) {
1116 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1117 tx_chainmask);
1118 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1119 }
1120
1121 /*
1122 * Query the TX/RX chainmask configuration.
1123 *
1124 * This is only relevant for 11n devices.
1125 */
1126 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1127 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1128
1129 /*
1130 * Disable MRR with protected frames by default.
1131 * Only 802.11n series NICs can handle this.
1132 */
1133 sc->sc_mrrprot = 0; /* XXX should be a capability */
1134
1135 /*
1136 * Query the enterprise mode information the HAL.
1137 */
1138 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1139 &sc->sc_ent_cfg) == HAL_OK)
1140 sc->sc_use_ent = 1;
1141
1142 #ifdef ATH_ENABLE_11N
1143 /*
1144 * Query HT capabilities
1145 */
1146 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1147 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1148 uint32_t rxs, txs;
1149 uint32_t ldpc;
1150
1151 device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1152
1153 sc->sc_mrrprot = 1; /* XXX should be a capability */
1154
1155 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
1156 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
1157 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
1158 | IEEE80211_HTCAP_MAXAMSDU_3839
1159 /* max A-MSDU length */
1160 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
1161
1162 /*
1163 * Enable short-GI for HT20 only if the hardware
1164 * advertises support.
1165 * Notably, anything earlier than the AR9287 doesn't.
1166 */
1167 if ((ath_hal_getcapability(ah,
1168 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1169 (wmodes & HAL_MODE_HT20)) {
1170 device_printf(sc->sc_dev,
1171 "[HT] enabling short-GI in 20MHz mode\n");
1172 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1173 }
1174
1175 if (wmodes & HAL_MODE_HT40)
1176 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1177 | IEEE80211_HTCAP_SHORTGI40;
1178
1179 /*
1180 * TX/RX streams need to be taken into account when
1181 * negotiating which MCS rates it'll receive and
1182 * what MCS rates are available for TX.
1183 */
1184 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1185 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1186 ic->ic_txstream = txs;
1187 ic->ic_rxstream = rxs;
1188
1189 /*
1190 * Setup TX and RX STBC based on what the HAL allows and
1191 * the currently configured chainmask set.
1192 * Ie - don't enable STBC TX if only one chain is enabled.
1193 * STBC RX is fine on a single RX chain; it just won't
1194 * provide any real benefit.
1195 */
1196 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1197 NULL) == HAL_OK) {
1198 sc->sc_rx_stbc = 1;
1199 device_printf(sc->sc_dev,
1200 "[HT] 1 stream STBC receive enabled\n");
1201 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1202 }
1203 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1204 NULL) == HAL_OK) {
1205 sc->sc_tx_stbc = 1;
1206 device_printf(sc->sc_dev,
1207 "[HT] 1 stream STBC transmit enabled\n");
1208 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1209 }
1210
1211 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1212 &sc->sc_rts_aggr_limit);
1213 if (sc->sc_rts_aggr_limit != (64 * 1024))
1214 device_printf(sc->sc_dev,
1215 "[HT] RTS aggregates limited to %d KiB\n",
1216 sc->sc_rts_aggr_limit / 1024);
1217
1218 /*
1219 * LDPC
1220 */
1221 if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
1222 == HAL_OK && (ldpc == 1)) {
1223 sc->sc_has_ldpc = 1;
1224 device_printf(sc->sc_dev,
1225 "[HT] LDPC transmit/receive enabled\n");
1226 ic->ic_htcaps |= IEEE80211_HTCAP_LDPC |
1227 IEEE80211_HTC_TXLDPC;
1228 }
1229
1230 device_printf(sc->sc_dev,
1231 "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1232 }
1233 #endif
1234
1235 /*
1236 * Initial aggregation settings.
1237 */
1238 sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1239 sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1240 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1241 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1242 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1243 sc->sc_delim_min_pad = 0;
1244
1245 /*
1246 * Check if the hardware requires PCI register serialisation.
1247 * Some of the Owl based MACs require this.
1248 */
1249 if (mp_ncpus > 1 &&
1250 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1251 0, NULL) == HAL_OK) {
1252 sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1253 device_printf(sc->sc_dev,
1254 "Enabling register serialisation\n");
1255 }
1256
1257 /*
1258 * Initialise the deferred completed RX buffer list.
1259 */
1260 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1261 TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1262
1263 /*
1264 * Indicate we need the 802.11 header padded to a
1265 * 32-bit boundary for 4-address and QoS frames.
1266 */
1267 ic->ic_flags |= IEEE80211_F_DATAPAD;
1268
1269 /*
1270 * Query the hal about antenna support.
1271 */
1272 sc->sc_defant = ath_hal_getdefantenna(ah);
1273
1274 /*
1275 * Not all chips have the VEOL support we want to
1276 * use with IBSS beacons; check here for it.
1277 */
1278 sc->sc_hasveol = ath_hal_hasveol(ah);
1279
1280 /* get mac address from kenv first, then hardware */
1281 if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1282 /* Tell the HAL now about the new MAC */
1283 ath_hal_setmac(ah, ic->ic_macaddr);
1284 } else {
1285 ath_hal_getmac(ah, ic->ic_macaddr);
1286 }
1287
1288 if (sc->sc_hasbmask)
1289 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1290
1291 /* NB: used to size node table key mapping array */
1292 ic->ic_max_keyix = sc->sc_keymax;
1293 /* call MI attach routine. */
1294 ieee80211_ifattach(ic);
1295 ic->ic_setregdomain = ath_setregdomain;
1296 ic->ic_getradiocaps = ath_getradiocaps;
1297 sc->sc_opmode = HAL_M_STA;
1298
1299 /* override default methods */
1300 ic->ic_ioctl = ath_ioctl;
1301 ic->ic_parent = ath_parent;
1302 ic->ic_transmit = ath_transmit;
1303 ic->ic_newassoc = ath_newassoc;
1304 ic->ic_updateslot = ath_updateslot;
1305 ic->ic_wme.wme_update = ath_wme_update;
1306 ic->ic_vap_create = ath_vap_create;
1307 ic->ic_vap_delete = ath_vap_delete;
1308 ic->ic_raw_xmit = ath_raw_xmit;
1309 ic->ic_update_mcast = ath_update_mcast;
1310 ic->ic_update_promisc = ath_update_promisc;
1311 ic->ic_node_alloc = ath_node_alloc;
1312 sc->sc_node_free = ic->ic_node_free;
1313 ic->ic_node_free = ath_node_free;
1314 sc->sc_node_cleanup = ic->ic_node_cleanup;
1315 ic->ic_node_cleanup = ath_node_cleanup;
1316 ic->ic_node_getsignal = ath_node_getsignal;
1317 ic->ic_scan_start = ath_scan_start;
1318 ic->ic_scan_end = ath_scan_end;
1319 ic->ic_set_channel = ath_set_channel;
1320 #ifdef ATH_ENABLE_11N
1321 /* 802.11n specific - but just override anyway */
1322 sc->sc_addba_request = ic->ic_addba_request;
1323 sc->sc_addba_response = ic->ic_addba_response;
1324 sc->sc_addba_stop = ic->ic_addba_stop;
1325 sc->sc_bar_response = ic->ic_bar_response;
1326 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1327
1328 ic->ic_addba_request = ath_addba_request;
1329 ic->ic_addba_response = ath_addba_response;
1330 ic->ic_addba_response_timeout = ath_addba_response_timeout;
1331 ic->ic_addba_stop = ath_addba_stop;
1332 ic->ic_bar_response = ath_bar_response;
1333
1334 ic->ic_update_chw = ath_update_chw;
1335 #endif /* ATH_ENABLE_11N */
1336 ic->ic_set_quiet = ath_set_quiet_ie;
1337
1338 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
1339 /*
1340 * There's one vendor bitmap entry in the RX radiotap
1341 * header; make sure that's taken into account.
1342 */
1343 ieee80211_radiotap_attachv(ic,
1344 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1345 ATH_TX_RADIOTAP_PRESENT,
1346 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1347 ATH_RX_RADIOTAP_PRESENT);
1348 #else
1349 /*
1350 * No vendor bitmap/extensions are present.
1351 */
1352 ieee80211_radiotap_attach(ic,
1353 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1354 ATH_TX_RADIOTAP_PRESENT,
1355 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1356 ATH_RX_RADIOTAP_PRESENT);
1357 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1358
1359 /*
1360 * Setup the ALQ logging if required
1361 */
1362 #ifdef ATH_DEBUG_ALQ
1363 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1364 if_ath_alq_setcfg(&sc->sc_alq,
1365 sc->sc_ah->ah_macVersion,
1366 sc->sc_ah->ah_macRev,
1367 sc->sc_ah->ah_phyRev,
1368 sc->sc_ah->ah_magic);
1369 #endif
1370
1371 /*
1372 * Setup dynamic sysctl's now that country code and
1373 * regdomain are available from the hal.
1374 */
1375 ath_sysctlattach(sc);
1376 ath_sysctl_stats_attach(sc);
1377 ath_sysctl_hal_attach(sc);
1378
1379 if (bootverbose)
1380 ieee80211_announce(ic);
1381 ath_announce(sc);
1382
1383 /*
1384 * Put it to sleep for now.
1385 */
1386 ATH_LOCK(sc);
1387 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
1388 ATH_UNLOCK(sc);
1389
1390 return 0;
1391 bad2:
1392 ath_tx_cleanup(sc);
1393 ath_desc_free(sc);
1394 ath_txdma_teardown(sc);
1395 ath_rxdma_teardown(sc);
1396
1397 bad:
1398 if (ah)
1399 ath_hal_detach(ah);
1400 sc->sc_invalid = 1;
1401 return error;
1402 }
1403
1404 int
ath_detach(struct ath_softc * sc)1405 ath_detach(struct ath_softc *sc)
1406 {
1407
1408 /*
1409 * NB: the order of these is important:
1410 * o stop the chip so no more interrupts will fire
1411 * o call the 802.11 layer before detaching the hal to
1412 * insure callbacks into the driver to delete global
1413 * key cache entries can be handled
1414 * o free the taskqueue which drains any pending tasks
1415 * o reclaim the tx queue data structures after calling
1416 * the 802.11 layer as we'll get called back to reclaim
1417 * node state and potentially want to use them
1418 * o to cleanup the tx queues the hal is called, so detach
1419 * it last
1420 * Other than that, it's straightforward...
1421 */
1422
1423 /*
1424 * XXX Wake the hardware up first. ath_stop() will still
1425 * wake it up first, but I'd rather do it here just to
1426 * ensure it's awake.
1427 */
1428 ATH_LOCK(sc);
1429 ath_power_set_power_state(sc, HAL_PM_AWAKE);
1430 ath_power_setpower(sc, HAL_PM_AWAKE, 1);
1431
1432 /*
1433 * Stop things cleanly.
1434 */
1435 ath_stop(sc);
1436 ATH_UNLOCK(sc);
1437
1438 ieee80211_ifdetach(&sc->sc_ic);
1439 taskqueue_free(sc->sc_tq);
1440 #ifdef ATH_TX99_DIAG
1441 if (sc->sc_tx99 != NULL)
1442 sc->sc_tx99->detach(sc->sc_tx99);
1443 #endif
1444 ath_rate_detach(sc->sc_rc);
1445 #ifdef ATH_DEBUG_ALQ
1446 if_ath_alq_tidyup(&sc->sc_alq);
1447 #endif
1448 ath_lna_div_detach(sc);
1449 ath_btcoex_detach(sc);
1450 ath_spectral_detach(sc);
1451 ath_dfs_detach(sc);
1452 ath_desc_free(sc);
1453 ath_txdma_teardown(sc);
1454 ath_rxdma_teardown(sc);
1455 ath_tx_cleanup(sc);
1456 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
1457
1458 return 0;
1459 }
1460
1461 /*
1462 * MAC address handling for multiple BSS on the same radio.
1463 * The first vap uses the MAC address from the EEPROM. For
1464 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1465 * address and use the next six bits as an index.
1466 */
1467 static void
assign_address(struct ath_softc * sc,uint8_t mac[IEEE80211_ADDR_LEN],int clone)1468 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1469 {
1470 int i;
1471
1472 if (clone && sc->sc_hasbmask) {
1473 /* NB: we only do this if h/w supports multiple bssid */
1474 for (i = 0; i < 8; i++)
1475 if ((sc->sc_bssidmask & (1<<i)) == 0)
1476 break;
1477 if (i != 0)
1478 mac[0] |= (i << 2)|0x2;
1479 } else
1480 i = 0;
1481 sc->sc_bssidmask |= 1<<i;
1482 sc->sc_hwbssidmask[0] &= ~mac[0];
1483 if (i == 0)
1484 sc->sc_nbssid0++;
1485 }
1486
1487 static void
reclaim_address(struct ath_softc * sc,const uint8_t mac[IEEE80211_ADDR_LEN])1488 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1489 {
1490 int i = mac[0] >> 2;
1491 uint8_t mask;
1492
1493 if (i != 0 || --sc->sc_nbssid0 == 0) {
1494 sc->sc_bssidmask &= ~(1<<i);
1495 /* recalculate bssid mask from remaining addresses */
1496 mask = 0xff;
1497 for (i = 1; i < 8; i++)
1498 if (sc->sc_bssidmask & (1<<i))
1499 mask &= ~((i<<2)|0x2);
1500 sc->sc_hwbssidmask[0] |= mask;
1501 }
1502 }
1503
1504 /*
1505 * Assign a beacon xmit slot. We try to space out
1506 * assignments so when beacons are staggered the
1507 * traffic coming out of the cab q has maximal time
1508 * to go out before the next beacon is scheduled.
1509 */
1510 static int
assign_bslot(struct ath_softc * sc)1511 assign_bslot(struct ath_softc *sc)
1512 {
1513 u_int slot, free;
1514
1515 free = 0;
1516 for (slot = 0; slot < ATH_BCBUF; slot++)
1517 if (sc->sc_bslot[slot] == NULL) {
1518 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1519 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1520 return slot;
1521 free = slot;
1522 /* NB: keep looking for a double slot */
1523 }
1524 return free;
1525 }
1526
1527 static struct ieee80211vap *
ath_vap_create(struct ieee80211com * ic,const char name[IFNAMSIZ],int unit,enum ieee80211_opmode opmode,int flags,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t mac0[IEEE80211_ADDR_LEN])1528 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1529 enum ieee80211_opmode opmode, int flags,
1530 const uint8_t bssid[IEEE80211_ADDR_LEN],
1531 const uint8_t mac0[IEEE80211_ADDR_LEN])
1532 {
1533 struct ath_softc *sc = ic->ic_softc;
1534 struct ath_vap *avp;
1535 struct ieee80211vap *vap;
1536 uint8_t mac[IEEE80211_ADDR_LEN];
1537 int needbeacon, error;
1538 enum ieee80211_opmode ic_opmode;
1539
1540 avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1541 needbeacon = 0;
1542 IEEE80211_ADDR_COPY(mac, mac0);
1543
1544 ATH_LOCK(sc);
1545 ic_opmode = opmode; /* default to opmode of new vap */
1546 switch (opmode) {
1547 case IEEE80211_M_STA:
1548 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
1549 device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1550 goto bad;
1551 }
1552 if (sc->sc_nvaps) {
1553 /*
1554 * With multiple vaps we must fall back
1555 * to s/w beacon miss handling.
1556 */
1557 flags |= IEEE80211_CLONE_NOBEACONS;
1558 }
1559 if (flags & IEEE80211_CLONE_NOBEACONS) {
1560 /*
1561 * Station mode w/o beacons are implemented w/ AP mode.
1562 */
1563 ic_opmode = IEEE80211_M_HOSTAP;
1564 }
1565 break;
1566 case IEEE80211_M_IBSS:
1567 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
1568 device_printf(sc->sc_dev,
1569 "only 1 ibss vap supported\n");
1570 goto bad;
1571 }
1572 needbeacon = 1;
1573 break;
1574 case IEEE80211_M_AHDEMO:
1575 #ifdef IEEE80211_SUPPORT_TDMA
1576 if (flags & IEEE80211_CLONE_TDMA) {
1577 if (sc->sc_nvaps != 0) {
1578 device_printf(sc->sc_dev,
1579 "only 1 tdma vap supported\n");
1580 goto bad;
1581 }
1582 needbeacon = 1;
1583 flags |= IEEE80211_CLONE_NOBEACONS;
1584 }
1585 /* fall thru... */
1586 #endif
1587 case IEEE80211_M_MONITOR:
1588 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1589 /*
1590 * Adopt existing mode. Adding a monitor or ahdemo
1591 * vap to an existing configuration is of dubious
1592 * value but should be ok.
1593 */
1594 /* XXX not right for monitor mode */
1595 ic_opmode = ic->ic_opmode;
1596 }
1597 break;
1598 case IEEE80211_M_HOSTAP:
1599 case IEEE80211_M_MBSS:
1600 needbeacon = 1;
1601 break;
1602 case IEEE80211_M_WDS:
1603 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1604 device_printf(sc->sc_dev,
1605 "wds not supported in sta mode\n");
1606 goto bad;
1607 }
1608 /*
1609 * Silently remove any request for a unique
1610 * bssid; WDS vap's always share the local
1611 * mac address.
1612 */
1613 flags &= ~IEEE80211_CLONE_BSSID;
1614 if (sc->sc_nvaps == 0)
1615 ic_opmode = IEEE80211_M_HOSTAP;
1616 else
1617 ic_opmode = ic->ic_opmode;
1618 break;
1619 default:
1620 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1621 goto bad;
1622 }
1623 /*
1624 * Check that a beacon buffer is available; the code below assumes it.
1625 */
1626 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1627 device_printf(sc->sc_dev, "no beacon buffer available\n");
1628 goto bad;
1629 }
1630
1631 /* STA, AHDEMO? */
1632 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) {
1633 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1634 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1635 }
1636
1637 vap = &avp->av_vap;
1638 /* XXX can't hold mutex across if_alloc */
1639 ATH_UNLOCK(sc);
1640 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1641 ATH_LOCK(sc);
1642 if (error != 0) {
1643 device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1644 __func__, error);
1645 goto bad2;
1646 }
1647
1648 /* h/w crypto support */
1649 vap->iv_key_alloc = ath_key_alloc;
1650 vap->iv_key_delete = ath_key_delete;
1651 vap->iv_key_set = ath_key_set;
1652 vap->iv_key_update_begin = ath_key_update_begin;
1653 vap->iv_key_update_end = ath_key_update_end;
1654
1655 /* override various methods */
1656 avp->av_recv_mgmt = vap->iv_recv_mgmt;
1657 vap->iv_recv_mgmt = ath_recv_mgmt;
1658 vap->iv_reset = ath_reset_vap;
1659 vap->iv_update_beacon = ath_beacon_update;
1660 avp->av_newstate = vap->iv_newstate;
1661 vap->iv_newstate = ath_newstate;
1662 avp->av_bmiss = vap->iv_bmiss;
1663 vap->iv_bmiss = ath_bmiss_vap;
1664
1665 avp->av_node_ps = vap->iv_node_ps;
1666 vap->iv_node_ps = ath_node_powersave;
1667
1668 avp->av_set_tim = vap->iv_set_tim;
1669 vap->iv_set_tim = ath_node_set_tim;
1670
1671 avp->av_recv_pspoll = vap->iv_recv_pspoll;
1672 vap->iv_recv_pspoll = ath_node_recv_pspoll;
1673
1674 /* Set default parameters */
1675
1676 /*
1677 * Anything earlier than some AR9300 series MACs don't
1678 * support a smaller MPDU density.
1679 */
1680 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1681 /*
1682 * All NICs can handle the maximum size, however
1683 * AR5416 based MACs can only TX aggregates w/ RTS
1684 * protection when the total aggregate size is <= 8k.
1685 * However, for now that's enforced by the TX path.
1686 */
1687 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1688 vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1689
1690 avp->av_bslot = -1;
1691 if (needbeacon) {
1692 /*
1693 * Allocate beacon state and setup the q for buffered
1694 * multicast frames. We know a beacon buffer is
1695 * available because we checked above.
1696 */
1697 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1698 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1699 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1700 /*
1701 * Assign the vap to a beacon xmit slot. As above
1702 * this cannot fail to find a free one.
1703 */
1704 avp->av_bslot = assign_bslot(sc);
1705 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1706 ("beacon slot %u not empty", avp->av_bslot));
1707 sc->sc_bslot[avp->av_bslot] = vap;
1708 sc->sc_nbcnvaps++;
1709 }
1710 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1711 /*
1712 * Multple vaps are to transmit beacons and we
1713 * have h/w support for TSF adjusting; enable
1714 * use of staggered beacons.
1715 */
1716 sc->sc_stagbeacons = 1;
1717 }
1718 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1719 }
1720
1721 ic->ic_opmode = ic_opmode;
1722 if (opmode != IEEE80211_M_WDS) {
1723 sc->sc_nvaps++;
1724 if (opmode == IEEE80211_M_STA)
1725 sc->sc_nstavaps++;
1726 if (opmode == IEEE80211_M_MBSS)
1727 sc->sc_nmeshvaps++;
1728 }
1729 switch (ic_opmode) {
1730 case IEEE80211_M_IBSS:
1731 sc->sc_opmode = HAL_M_IBSS;
1732 break;
1733 case IEEE80211_M_STA:
1734 sc->sc_opmode = HAL_M_STA;
1735 break;
1736 case IEEE80211_M_AHDEMO:
1737 #ifdef IEEE80211_SUPPORT_TDMA
1738 if (vap->iv_caps & IEEE80211_C_TDMA) {
1739 sc->sc_tdma = 1;
1740 /* NB: disable tsf adjust */
1741 sc->sc_stagbeacons = 0;
1742 }
1743 /*
1744 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1745 * just ap mode.
1746 */
1747 /* fall thru... */
1748 #endif
1749 case IEEE80211_M_HOSTAP:
1750 case IEEE80211_M_MBSS:
1751 sc->sc_opmode = HAL_M_HOSTAP;
1752 break;
1753 case IEEE80211_M_MONITOR:
1754 sc->sc_opmode = HAL_M_MONITOR;
1755 break;
1756 default:
1757 /* XXX should not happen */
1758 break;
1759 }
1760 if (sc->sc_hastsfadd) {
1761 /*
1762 * Configure whether or not TSF adjust should be done.
1763 */
1764 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1765 }
1766 if (flags & IEEE80211_CLONE_NOBEACONS) {
1767 /*
1768 * Enable s/w beacon miss handling.
1769 */
1770 sc->sc_swbmiss = 1;
1771 }
1772 ATH_UNLOCK(sc);
1773
1774 /* complete setup */
1775 ieee80211_vap_attach(vap, ieee80211_media_change,
1776 ieee80211_media_status, mac);
1777 return vap;
1778 bad2:
1779 reclaim_address(sc, mac);
1780 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1781 bad:
1782 free(avp, M_80211_VAP);
1783 ATH_UNLOCK(sc);
1784 return NULL;
1785 }
1786
1787 static void
ath_vap_delete(struct ieee80211vap * vap)1788 ath_vap_delete(struct ieee80211vap *vap)
1789 {
1790 struct ieee80211com *ic = vap->iv_ic;
1791 struct ath_softc *sc = ic->ic_softc;
1792 struct ath_hal *ah = sc->sc_ah;
1793 struct ath_vap *avp = ATH_VAP(vap);
1794
1795 ATH_LOCK(sc);
1796 ath_power_set_power_state(sc, HAL_PM_AWAKE);
1797 ATH_UNLOCK(sc);
1798
1799 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1800 if (sc->sc_running) {
1801 /*
1802 * Quiesce the hardware while we remove the vap. In
1803 * particular we need to reclaim all references to
1804 * the vap state by any frames pending on the tx queues.
1805 */
1806 ath_hal_intrset(ah, 0); /* disable interrupts */
1807 /* XXX Do all frames from all vaps/nodes need draining here? */
1808 ath_stoprecv(sc, 1); /* stop recv side */
1809 ath_rx_flush(sc);
1810 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
1811 }
1812
1813 /* .. leave the hardware awake for now. */
1814
1815 ieee80211_vap_detach(vap);
1816
1817 /*
1818 * XXX Danger Will Robinson! Danger!
1819 *
1820 * Because ieee80211_vap_detach() can queue a frame (the station
1821 * diassociate message?) after we've drained the TXQ and
1822 * flushed the software TXQ, we will end up with a frame queued
1823 * to a node whose vap is about to be freed.
1824 *
1825 * To work around this, flush the hardware/software again.
1826 * This may be racy - the ath task may be running and the packet
1827 * may be being scheduled between sw->hw txq. Tsk.
1828 *
1829 * TODO: figure out why a new node gets allocated somewhere around
1830 * here (after the ath_tx_swq() call; and after an ath_stop()
1831 * call!)
1832 */
1833
1834 ath_draintxq(sc, ATH_RESET_DEFAULT);
1835
1836 ATH_LOCK(sc);
1837 /*
1838 * Reclaim beacon state. Note this must be done before
1839 * the vap instance is reclaimed as we may have a reference
1840 * to it in the buffer for the beacon frame.
1841 */
1842 if (avp->av_bcbuf != NULL) {
1843 if (avp->av_bslot != -1) {
1844 sc->sc_bslot[avp->av_bslot] = NULL;
1845 sc->sc_nbcnvaps--;
1846 }
1847 ath_beacon_return(sc, avp->av_bcbuf);
1848 avp->av_bcbuf = NULL;
1849 if (sc->sc_nbcnvaps == 0) {
1850 sc->sc_stagbeacons = 0;
1851 if (sc->sc_hastsfadd)
1852 ath_hal_settsfadjust(sc->sc_ah, 0);
1853 }
1854 /*
1855 * Reclaim any pending mcast frames for the vap.
1856 */
1857 ath_tx_draintxq(sc, &avp->av_mcastq);
1858 }
1859 /*
1860 * Update bookkeeping.
1861 */
1862 if (vap->iv_opmode == IEEE80211_M_STA) {
1863 sc->sc_nstavaps--;
1864 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1865 sc->sc_swbmiss = 0;
1866 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1867 vap->iv_opmode == IEEE80211_M_STA ||
1868 vap->iv_opmode == IEEE80211_M_MBSS) {
1869 reclaim_address(sc, vap->iv_myaddr);
1870 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1871 if (vap->iv_opmode == IEEE80211_M_MBSS)
1872 sc->sc_nmeshvaps--;
1873 }
1874 if (vap->iv_opmode != IEEE80211_M_WDS)
1875 sc->sc_nvaps--;
1876 #ifdef IEEE80211_SUPPORT_TDMA
1877 /* TDMA operation ceases when the last vap is destroyed */
1878 if (sc->sc_tdma && sc->sc_nvaps == 0) {
1879 sc->sc_tdma = 0;
1880 sc->sc_swbmiss = 0;
1881 }
1882 #endif
1883 free(avp, M_80211_VAP);
1884
1885 if (sc->sc_running) {
1886 /*
1887 * Restart rx+tx machines if still running (RUNNING will
1888 * be reset if we just destroyed the last vap).
1889 */
1890 if (ath_startrecv(sc) != 0)
1891 device_printf(sc->sc_dev,
1892 "%s: unable to restart recv logic\n", __func__);
1893 if (sc->sc_beacons) { /* restart beacons */
1894 #ifdef IEEE80211_SUPPORT_TDMA
1895 if (sc->sc_tdma)
1896 ath_tdma_config(sc, NULL);
1897 else
1898 #endif
1899 ath_beacon_config(sc, NULL);
1900 }
1901 ath_hal_intrset(ah, sc->sc_imask);
1902 }
1903
1904 /* Ok, let the hardware asleep. */
1905 ath_power_restore_power_state(sc);
1906 ATH_UNLOCK(sc);
1907 }
1908
1909 void
ath_suspend(struct ath_softc * sc)1910 ath_suspend(struct ath_softc *sc)
1911 {
1912 struct ieee80211com *ic = &sc->sc_ic;
1913
1914 sc->sc_resume_up = ic->ic_nrunning != 0;
1915
1916 ieee80211_suspend_all(ic);
1917 /*
1918 * NB: don't worry about putting the chip in low power
1919 * mode; pci will power off our socket on suspend and
1920 * CardBus detaches the device.
1921 *
1922 * XXX TODO: well, that's great, except for non-cardbus
1923 * devices!
1924 */
1925
1926 /*
1927 * XXX This doesn't wait until all pending taskqueue
1928 * items and parallel transmit/receive/other threads
1929 * are running!
1930 */
1931 ath_hal_intrset(sc->sc_ah, 0);
1932 taskqueue_block(sc->sc_tq);
1933
1934 ATH_LOCK(sc);
1935 callout_stop(&sc->sc_cal_ch);
1936 ATH_UNLOCK(sc);
1937
1938 /*
1939 * XXX ensure sc_invalid is 1
1940 */
1941
1942 /* Disable the PCIe PHY, complete with workarounds */
1943 ath_hal_enablepcie(sc->sc_ah, 1, 1);
1944 }
1945
1946 /*
1947 * Reset the key cache since some parts do not reset the
1948 * contents on resume. First we clear all entries, then
1949 * re-load keys that the 802.11 layer assumes are setup
1950 * in h/w.
1951 */
1952 static void
ath_reset_keycache(struct ath_softc * sc)1953 ath_reset_keycache(struct ath_softc *sc)
1954 {
1955 struct ieee80211com *ic = &sc->sc_ic;
1956 struct ath_hal *ah = sc->sc_ah;
1957 int i;
1958
1959 ATH_LOCK(sc);
1960 ath_power_set_power_state(sc, HAL_PM_AWAKE);
1961 for (i = 0; i < sc->sc_keymax; i++)
1962 ath_hal_keyreset(ah, i);
1963 ath_power_restore_power_state(sc);
1964 ATH_UNLOCK(sc);
1965 ieee80211_crypto_reload_keys(ic);
1966 }
1967
1968 /*
1969 * Fetch the current chainmask configuration based on the current
1970 * operating channel and options.
1971 */
1972 static void
ath_update_chainmasks(struct ath_softc * sc,struct ieee80211_channel * chan)1973 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1974 {
1975
1976 /*
1977 * Set TX chainmask to the currently configured chainmask;
1978 * the TX chainmask depends upon the current operating mode.
1979 */
1980 sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1981 if (IEEE80211_IS_CHAN_HT(chan)) {
1982 sc->sc_cur_txchainmask = sc->sc_txchainmask;
1983 } else {
1984 sc->sc_cur_txchainmask = 1;
1985 }
1986
1987 DPRINTF(sc, ATH_DEBUG_RESET,
1988 "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1989 __func__,
1990 sc->sc_cur_txchainmask,
1991 sc->sc_cur_rxchainmask);
1992 }
1993
1994 void
ath_resume(struct ath_softc * sc)1995 ath_resume(struct ath_softc *sc)
1996 {
1997 struct ieee80211com *ic = &sc->sc_ic;
1998 struct ath_hal *ah = sc->sc_ah;
1999 HAL_STATUS status;
2000
2001 ath_hal_enablepcie(ah, 0, 0);
2002
2003 /*
2004 * Must reset the chip before we reload the
2005 * keycache as we were powered down on suspend.
2006 */
2007 ath_update_chainmasks(sc,
2008 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
2009 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2010 sc->sc_cur_rxchainmask);
2011
2012 /* Ensure we set the current power state to on */
2013 ATH_LOCK(sc);
2014 ath_power_setselfgen(sc, HAL_PM_AWAKE);
2015 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2016 ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2017 ATH_UNLOCK(sc);
2018
2019 ath_hal_reset(ah, sc->sc_opmode,
2020 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
2021 AH_FALSE, HAL_RESET_NORMAL, &status);
2022 ath_reset_keycache(sc);
2023
2024 ATH_RX_LOCK(sc);
2025 sc->sc_rx_stopped = 1;
2026 sc->sc_rx_resetted = 1;
2027 ATH_RX_UNLOCK(sc);
2028
2029 /* Let DFS at it in case it's a DFS channel */
2030 ath_dfs_radar_enable(sc, ic->ic_curchan);
2031
2032 /* Let spectral at in case spectral is enabled */
2033 ath_spectral_enable(sc, ic->ic_curchan);
2034
2035 /*
2036 * Let bluetooth coexistence at in case it's needed for this channel
2037 */
2038 ath_btcoex_enable(sc, ic->ic_curchan);
2039
2040 /*
2041 * If we're doing TDMA, enforce the TXOP limitation for chips that
2042 * support it.
2043 */
2044 if (sc->sc_hasenforcetxop && sc->sc_tdma)
2045 ath_hal_setenforcetxop(sc->sc_ah, 1);
2046 else
2047 ath_hal_setenforcetxop(sc->sc_ah, 0);
2048
2049 /* Restore the LED configuration */
2050 ath_led_config(sc);
2051 ath_hal_setledstate(ah, HAL_LED_INIT);
2052
2053 if (sc->sc_resume_up)
2054 ieee80211_resume_all(ic);
2055
2056 ATH_LOCK(sc);
2057 ath_power_restore_power_state(sc);
2058 ATH_UNLOCK(sc);
2059
2060 /* XXX beacons ? */
2061 }
2062
2063 void
ath_shutdown(struct ath_softc * sc)2064 ath_shutdown(struct ath_softc *sc)
2065 {
2066
2067 ATH_LOCK(sc);
2068 ath_stop(sc);
2069 ATH_UNLOCK(sc);
2070 /* NB: no point powering down chip as we're about to reboot */
2071 }
2072
2073 /*
2074 * Interrupt handler. Most of the actual processing is deferred.
2075 */
2076 void
ath_intr(void * arg)2077 ath_intr(void *arg)
2078 {
2079 struct ath_softc *sc = arg;
2080 struct ath_hal *ah = sc->sc_ah;
2081 HAL_INT status = 0;
2082 uint32_t txqs;
2083
2084 /*
2085 * If we're inside a reset path, just print a warning and
2086 * clear the ISR. The reset routine will finish it for us.
2087 */
2088 ATH_PCU_LOCK(sc);
2089 if (sc->sc_inreset_cnt) {
2090 HAL_INT status;
2091 ath_hal_getisr(ah, &status); /* clear ISR */
2092 ath_hal_intrset(ah, 0); /* disable further intr's */
2093 DPRINTF(sc, ATH_DEBUG_ANY,
2094 "%s: in reset, ignoring: status=0x%x\n",
2095 __func__, status);
2096 ATH_PCU_UNLOCK(sc);
2097 return;
2098 }
2099
2100 if (sc->sc_invalid) {
2101 /*
2102 * The hardware is not ready/present, don't touch anything.
2103 * Note this can happen early on if the IRQ is shared.
2104 */
2105 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2106 ATH_PCU_UNLOCK(sc);
2107 return;
2108 }
2109 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
2110 ATH_PCU_UNLOCK(sc);
2111 return;
2112 }
2113
2114 ATH_LOCK(sc);
2115 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2116 ATH_UNLOCK(sc);
2117
2118 if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2119 HAL_INT status;
2120
2121 DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2122 __func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2123 ath_hal_getisr(ah, &status); /* clear ISR */
2124 ath_hal_intrset(ah, 0); /* disable further intr's */
2125 ATH_PCU_UNLOCK(sc);
2126
2127 ATH_LOCK(sc);
2128 ath_power_restore_power_state(sc);
2129 ATH_UNLOCK(sc);
2130 return;
2131 }
2132
2133 /*
2134 * Figure out the reason(s) for the interrupt. Note
2135 * that the hal returns a pseudo-ISR that may include
2136 * bits we haven't explicitly enabled so we mask the
2137 * value to insure we only process bits we requested.
2138 */
2139 ath_hal_getisr(ah, &status); /* NB: clears ISR too */
2140 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2141 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2142 #ifdef ATH_DEBUG_ALQ
2143 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2144 ah->ah_syncstate);
2145 #endif /* ATH_DEBUG_ALQ */
2146 #ifdef ATH_KTR_INTR_DEBUG
2147 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2148 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2149 ah->ah_intrstate[0],
2150 ah->ah_intrstate[1],
2151 ah->ah_intrstate[2],
2152 ah->ah_intrstate[3],
2153 ah->ah_intrstate[6]);
2154 #endif
2155
2156 /* Squirrel away SYNC interrupt debugging */
2157 if (ah->ah_syncstate != 0) {
2158 int i;
2159 for (i = 0; i < 32; i++)
2160 if (ah->ah_syncstate & (1 << i))
2161 sc->sc_intr_stats.sync_intr[i]++;
2162 }
2163
2164 status &= sc->sc_imask; /* discard unasked for bits */
2165
2166 /* Short-circuit un-handled interrupts */
2167 if (status == 0x0) {
2168 ATH_PCU_UNLOCK(sc);
2169
2170 ATH_LOCK(sc);
2171 ath_power_restore_power_state(sc);
2172 ATH_UNLOCK(sc);
2173
2174 return;
2175 }
2176
2177 /*
2178 * Take a note that we're inside the interrupt handler, so
2179 * the reset routines know to wait.
2180 */
2181 sc->sc_intr_cnt++;
2182 ATH_PCU_UNLOCK(sc);
2183
2184 /*
2185 * Handle the interrupt. We won't run concurrent with the reset
2186 * or channel change routines as they'll wait for sc_intr_cnt
2187 * to be 0 before continuing.
2188 */
2189 if (status & HAL_INT_FATAL) {
2190 sc->sc_stats.ast_hardware++;
2191 ath_hal_intrset(ah, 0); /* disable intr's until reset */
2192 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2193 } else {
2194 if (status & HAL_INT_SWBA) {
2195 /*
2196 * Software beacon alert--time to send a beacon.
2197 * Handle beacon transmission directly; deferring
2198 * this is too slow to meet timing constraints
2199 * under load.
2200 */
2201 #ifdef IEEE80211_SUPPORT_TDMA
2202 if (sc->sc_tdma) {
2203 if (sc->sc_tdmaswba == 0) {
2204 struct ieee80211com *ic = &sc->sc_ic;
2205 struct ieee80211vap *vap =
2206 TAILQ_FIRST(&ic->ic_vaps);
2207 ath_tdma_beacon_send(sc, vap);
2208 sc->sc_tdmaswba =
2209 vap->iv_tdma->tdma_bintval;
2210 } else
2211 sc->sc_tdmaswba--;
2212 } else
2213 #endif
2214 {
2215 ath_beacon_proc(sc, 0);
2216 #ifdef IEEE80211_SUPPORT_SUPERG
2217 /*
2218 * Schedule the rx taskq in case there's no
2219 * traffic so any frames held on the staging
2220 * queue are aged and potentially flushed.
2221 */
2222 sc->sc_rx.recv_sched(sc, 1);
2223 #endif
2224 }
2225 }
2226 if (status & HAL_INT_RXEOL) {
2227 int imask;
2228 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2229 if (! sc->sc_isedma) {
2230 ATH_PCU_LOCK(sc);
2231 /*
2232 * NB: the hardware should re-read the link when
2233 * RXE bit is written, but it doesn't work at
2234 * least on older hardware revs.
2235 */
2236 sc->sc_stats.ast_rxeol++;
2237 /*
2238 * Disable RXEOL/RXORN - prevent an interrupt
2239 * storm until the PCU logic can be reset.
2240 * In case the interface is reset some other
2241 * way before "sc_kickpcu" is called, don't
2242 * modify sc_imask - that way if it is reset
2243 * by a call to ath_reset() somehow, the
2244 * interrupt mask will be correctly reprogrammed.
2245 */
2246 imask = sc->sc_imask;
2247 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2248 ath_hal_intrset(ah, imask);
2249 /*
2250 * Only blank sc_rxlink if we've not yet kicked
2251 * the PCU.
2252 *
2253 * This isn't entirely correct - the correct solution
2254 * would be to have a PCU lock and engage that for
2255 * the duration of the PCU fiddling; which would include
2256 * running the RX process. Otherwise we could end up
2257 * messing up the RX descriptor chain and making the
2258 * RX desc list much shorter.
2259 */
2260 if (! sc->sc_kickpcu)
2261 sc->sc_rxlink = NULL;
2262 sc->sc_kickpcu = 1;
2263 ATH_PCU_UNLOCK(sc);
2264 }
2265 /*
2266 * Enqueue an RX proc to handle whatever
2267 * is in the RX queue.
2268 * This will then kick the PCU if required.
2269 */
2270 sc->sc_rx.recv_sched(sc, 1);
2271 }
2272 if (status & HAL_INT_TXURN) {
2273 sc->sc_stats.ast_txurn++;
2274 /* bump tx trigger level */
2275 ath_hal_updatetxtriglevel(ah, AH_TRUE);
2276 }
2277 /*
2278 * Handle both the legacy and RX EDMA interrupt bits.
2279 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2280 */
2281 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2282 sc->sc_stats.ast_rx_intr++;
2283 sc->sc_rx.recv_sched(sc, 1);
2284 }
2285 if (status & HAL_INT_TX) {
2286 sc->sc_stats.ast_tx_intr++;
2287 /*
2288 * Grab all the currently set bits in the HAL txq bitmap
2289 * and blank them. This is the only place we should be
2290 * doing this.
2291 */
2292 if (! sc->sc_isedma) {
2293 ATH_PCU_LOCK(sc);
2294 txqs = 0xffffffff;
2295 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2296 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2297 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2298 txqs,
2299 sc->sc_txq_active,
2300 sc->sc_txq_active | txqs);
2301 sc->sc_txq_active |= txqs;
2302 ATH_PCU_UNLOCK(sc);
2303 }
2304 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2305 }
2306 if (status & HAL_INT_BMISS) {
2307 sc->sc_stats.ast_bmiss++;
2308 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2309 }
2310 if (status & HAL_INT_GTT)
2311 sc->sc_stats.ast_tx_timeout++;
2312 if (status & HAL_INT_CST)
2313 sc->sc_stats.ast_tx_cst++;
2314 if (status & HAL_INT_MIB) {
2315 sc->sc_stats.ast_mib++;
2316 ATH_PCU_LOCK(sc);
2317 /*
2318 * Disable interrupts until we service the MIB
2319 * interrupt; otherwise it will continue to fire.
2320 */
2321 ath_hal_intrset(ah, 0);
2322 /*
2323 * Let the hal handle the event. We assume it will
2324 * clear whatever condition caused the interrupt.
2325 */
2326 ath_hal_mibevent(ah, &sc->sc_halstats);
2327 /*
2328 * Don't reset the interrupt if we've just
2329 * kicked the PCU, or we may get a nested
2330 * RXEOL before the rxproc has had a chance
2331 * to run.
2332 */
2333 if (sc->sc_kickpcu == 0)
2334 ath_hal_intrset(ah, sc->sc_imask);
2335 ATH_PCU_UNLOCK(sc);
2336 }
2337 if (status & HAL_INT_RXORN) {
2338 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2339 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2340 sc->sc_stats.ast_rxorn++;
2341 }
2342 if (status & HAL_INT_TSFOOR) {
2343 /*
2344 * out of range beacon - wake the chip up,
2345 * but don't modify self-gen frame config.
2346 * Do a full reset to clear any potential stuck
2347 * PHY/MAC that generated this condition.
2348 */
2349 sc->sc_stats.ast_tsfoor++;
2350 ATH_LOCK(sc);
2351 ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2352 ATH_UNLOCK(sc);
2353 taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask);
2354 device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2355 }
2356 if (status & HAL_INT_MCI) {
2357 ath_btcoex_mci_intr(sc);
2358 }
2359 }
2360 ATH_PCU_LOCK(sc);
2361 sc->sc_intr_cnt--;
2362 ATH_PCU_UNLOCK(sc);
2363
2364 ATH_LOCK(sc);
2365 ath_power_restore_power_state(sc);
2366 ATH_UNLOCK(sc);
2367 }
2368
2369 static void
ath_fatal_proc(void * arg,int pending)2370 ath_fatal_proc(void *arg, int pending)
2371 {
2372 struct ath_softc *sc = arg;
2373 u_int32_t *state;
2374 u_int32_t len;
2375 void *sp;
2376
2377 if (sc->sc_invalid)
2378 return;
2379
2380 device_printf(sc->sc_dev, "hardware error; resetting\n");
2381 /*
2382 * Fatal errors are unrecoverable. Typically these
2383 * are caused by DMA errors. Collect h/w state from
2384 * the hal so we can diagnose what's going on.
2385 */
2386 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2387 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2388 state = sp;
2389 device_printf(sc->sc_dev,
2390 "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2391 state[1] , state[2], state[3], state[4], state[5]);
2392 }
2393 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2394 }
2395
2396 static void
ath_bmiss_vap(struct ieee80211vap * vap)2397 ath_bmiss_vap(struct ieee80211vap *vap)
2398 {
2399 struct ath_softc *sc = vap->iv_ic->ic_softc;
2400
2401 /*
2402 * Workaround phantom bmiss interrupts by sanity-checking
2403 * the time of our last rx'd frame. If it is within the
2404 * beacon miss interval then ignore the interrupt. If it's
2405 * truly a bmiss we'll get another interrupt soon and that'll
2406 * be dispatched up for processing. Note this applies only
2407 * for h/w beacon miss events.
2408 */
2409
2410 /*
2411 * XXX TODO: Just read the TSF during the interrupt path;
2412 * that way we don't have to wake up again just to read it
2413 * again.
2414 */
2415 ATH_LOCK(sc);
2416 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2417 ATH_UNLOCK(sc);
2418
2419 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2420 u_int64_t lastrx = sc->sc_lastrx;
2421 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2422 /* XXX should take a locked ref to iv_bss */
2423 u_int bmisstimeout =
2424 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2425
2426 DPRINTF(sc, ATH_DEBUG_BEACON,
2427 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2428 __func__, (unsigned long long) tsf,
2429 (unsigned long long)(tsf - lastrx),
2430 (unsigned long long) lastrx, bmisstimeout);
2431
2432 if (tsf - lastrx <= bmisstimeout) {
2433 sc->sc_stats.ast_bmiss_phantom++;
2434
2435 ATH_LOCK(sc);
2436 ath_power_restore_power_state(sc);
2437 ATH_UNLOCK(sc);
2438
2439 return;
2440 }
2441 }
2442
2443 /*
2444 * Keep the hardware awake if it's asleep (and leave self-gen
2445 * frame config alone) until the next beacon, so we can resync
2446 * against the next beacon.
2447 *
2448 * This handles three common beacon miss cases in STA powersave mode -
2449 * (a) the beacon TBTT isnt a multiple of bintval;
2450 * (b) the beacon was missed; and
2451 * (c) the beacons are being delayed because the AP is busy and
2452 * isn't reliably able to meet its TBTT.
2453 */
2454 ATH_LOCK(sc);
2455 ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2456 ath_power_restore_power_state(sc);
2457 ATH_UNLOCK(sc);
2458
2459 DPRINTF(sc, ATH_DEBUG_BEACON,
2460 "%s: forced awake; force syncbeacon=1\n", __func__);
2461 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2462 /*
2463 * Attempt to force a beacon resync.
2464 */
2465 sc->sc_syncbeacon = 1;
2466 }
2467
2468 ATH_VAP(vap)->av_bmiss(vap);
2469 }
2470
2471 /* XXX this needs a force wakeup! */
2472 int
ath_hal_gethangstate(struct ath_hal * ah,uint32_t mask,uint32_t * hangs)2473 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2474 {
2475 uint32_t rsize;
2476 void *sp;
2477
2478 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2479 return 0;
2480 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2481 *hangs = *(uint32_t *)sp;
2482 return 1;
2483 }
2484
2485 static void
ath_bmiss_proc(void * arg,int pending)2486 ath_bmiss_proc(void *arg, int pending)
2487 {
2488 struct ath_softc *sc = arg;
2489 uint32_t hangs;
2490
2491 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2492
2493 ATH_LOCK(sc);
2494 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2495 ATH_UNLOCK(sc);
2496
2497 ath_beacon_miss(sc);
2498
2499 /*
2500 * Do a reset upon any beacon miss event.
2501 *
2502 * It may be a non-recognised RX clear hang which needs a reset
2503 * to clear.
2504 */
2505 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2506 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC);
2507 device_printf(sc->sc_dev,
2508 "bb hang detected (0x%x), resetting\n", hangs);
2509 } else {
2510 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2511 ieee80211_beacon_miss(&sc->sc_ic);
2512 }
2513
2514 /* Force a beacon resync, in case they've drifted */
2515 sc->sc_syncbeacon = 1;
2516
2517 ATH_LOCK(sc);
2518 ath_power_restore_power_state(sc);
2519 ATH_UNLOCK(sc);
2520 }
2521
2522 /*
2523 * Handle a TSF out of range interrupt in STA mode.
2524 *
2525 * This may be due to a partially deaf looking radio, so
2526 * do a full reset just in case it is indeed deaf and
2527 * resync the beacon.
2528 */
2529 static void
ath_tsfoor_proc(void * arg,int pending)2530 ath_tsfoor_proc(void *arg, int pending)
2531 {
2532 struct ath_softc *sc = arg;
2533
2534 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2535
2536 ATH_LOCK(sc);
2537 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2538 ATH_UNLOCK(sc);
2539
2540 /*
2541 * Do a full reset after any TSFOOR. It's possible that
2542 * we've gone deaf or partially deaf (eg due to calibration
2543 * failures) and this should clean things up a bit.
2544 */
2545 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2546
2547 /* Force a beacon resync, in case they've drifted */
2548 sc->sc_syncbeacon = 1;
2549
2550 ATH_LOCK(sc);
2551 ath_power_restore_power_state(sc);
2552 ATH_UNLOCK(sc);
2553 }
2554
2555 /*
2556 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2557 * calcs together with WME. If necessary disable the crypto
2558 * hardware and mark the 802.11 state so keys will be setup
2559 * with the MIC work done in software.
2560 */
2561 static void
ath_settkipmic(struct ath_softc * sc)2562 ath_settkipmic(struct ath_softc *sc)
2563 {
2564 struct ieee80211com *ic = &sc->sc_ic;
2565
2566 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2567 if (ic->ic_flags & IEEE80211_F_WME) {
2568 ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2569 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2570 } else {
2571 ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2572 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2573 }
2574 }
2575 }
2576
2577 static void
ath_vap_clear_quiet_ie(struct ath_softc * sc)2578 ath_vap_clear_quiet_ie(struct ath_softc *sc)
2579 {
2580 struct ieee80211com *ic = &sc->sc_ic;
2581 struct ieee80211vap *vap;
2582 struct ath_vap *avp;
2583
2584 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2585 avp = ATH_VAP(vap);
2586 /* Quiet time handling - ensure we resync */
2587 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
2588 }
2589 }
2590
2591 static int
ath_init(struct ath_softc * sc)2592 ath_init(struct ath_softc *sc)
2593 {
2594 struct ieee80211com *ic = &sc->sc_ic;
2595 struct ath_hal *ah = sc->sc_ah;
2596 HAL_STATUS status;
2597
2598 ATH_LOCK_ASSERT(sc);
2599
2600 /*
2601 * Force the sleep state awake.
2602 */
2603 ath_power_setselfgen(sc, HAL_PM_AWAKE);
2604 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2605 ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2606
2607 /*
2608 * Stop anything previously setup. This is safe
2609 * whether this is the first time through or not.
2610 */
2611 ath_stop(sc);
2612
2613 /*
2614 * The basic interface to setting the hardware in a good
2615 * state is ``reset''. On return the hardware is known to
2616 * be powered up and with interrupts disabled. This must
2617 * be followed by initialization of the appropriate bits
2618 * and then setup of the interrupt mask.
2619 */
2620 ath_settkipmic(sc);
2621 ath_update_chainmasks(sc, ic->ic_curchan);
2622 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2623 sc->sc_cur_rxchainmask);
2624
2625 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2626 HAL_RESET_NORMAL, &status)) {
2627 device_printf(sc->sc_dev,
2628 "unable to reset hardware; hal status %u\n", status);
2629 return (ENODEV);
2630 }
2631
2632 ATH_RX_LOCK(sc);
2633 sc->sc_rx_stopped = 1;
2634 sc->sc_rx_resetted = 1;
2635 ATH_RX_UNLOCK(sc);
2636
2637 /* Clear quiet IE state for each VAP */
2638 ath_vap_clear_quiet_ie(sc);
2639
2640 ath_chan_change(sc, ic->ic_curchan);
2641
2642 /* Let DFS at it in case it's a DFS channel */
2643 ath_dfs_radar_enable(sc, ic->ic_curchan);
2644
2645 /* Let spectral at in case spectral is enabled */
2646 ath_spectral_enable(sc, ic->ic_curchan);
2647
2648 /*
2649 * Let bluetooth coexistence at in case it's needed for this channel
2650 */
2651 ath_btcoex_enable(sc, ic->ic_curchan);
2652
2653 /*
2654 * If we're doing TDMA, enforce the TXOP limitation for chips that
2655 * support it.
2656 */
2657 if (sc->sc_hasenforcetxop && sc->sc_tdma)
2658 ath_hal_setenforcetxop(sc->sc_ah, 1);
2659 else
2660 ath_hal_setenforcetxop(sc->sc_ah, 0);
2661
2662 /*
2663 * Likewise this is set during reset so update
2664 * state cached in the driver.
2665 */
2666 sc->sc_diversity = ath_hal_getdiversity(ah);
2667 sc->sc_lastlongcal = ticks;
2668 sc->sc_resetcal = 1;
2669 sc->sc_lastcalreset = 0;
2670 sc->sc_lastani = ticks;
2671 sc->sc_lastshortcal = ticks;
2672 sc->sc_doresetcal = AH_FALSE;
2673 /*
2674 * Beacon timers were cleared here; give ath_newstate()
2675 * a hint that the beacon timers should be poked when
2676 * things transition to the RUN state.
2677 */
2678 sc->sc_beacons = 0;
2679
2680 /*
2681 * Setup the hardware after reset: the key cache
2682 * is filled as needed and the receive engine is
2683 * set going. Frame transmit is handled entirely
2684 * in the frame output path; there's nothing to do
2685 * here except setup the interrupt mask.
2686 */
2687 if (ath_startrecv(sc) != 0) {
2688 device_printf(sc->sc_dev, "unable to start recv logic\n");
2689 ath_power_restore_power_state(sc);
2690 return (ENODEV);
2691 }
2692
2693 /*
2694 * Enable interrupts.
2695 */
2696 sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2697 | HAL_INT_RXORN | HAL_INT_TXURN
2698 | HAL_INT_FATAL | HAL_INT_GLOBAL;
2699
2700 /*
2701 * Enable RX EDMA bits. Note these overlap with
2702 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2703 */
2704 if (sc->sc_isedma)
2705 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2706
2707 /*
2708 * If we're an EDMA NIC, we don't care about RXEOL.
2709 * Writing a new descriptor in will simply restart
2710 * RX DMA.
2711 */
2712 if (! sc->sc_isedma)
2713 sc->sc_imask |= HAL_INT_RXEOL;
2714
2715 /*
2716 * Enable MCI interrupt for MCI devices.
2717 */
2718 if (sc->sc_btcoex_mci)
2719 sc->sc_imask |= HAL_INT_MCI;
2720
2721 /*
2722 * Enable MIB interrupts when there are hardware phy counters.
2723 * Note we only do this (at the moment) for station mode.
2724 */
2725 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2726 sc->sc_imask |= HAL_INT_MIB;
2727
2728 /*
2729 * XXX add capability for this.
2730 *
2731 * If we're in STA mode (and maybe IBSS?) then register for
2732 * TSFOOR interrupts.
2733 */
2734 if (ic->ic_opmode == IEEE80211_M_STA)
2735 sc->sc_imask |= HAL_INT_TSFOOR;
2736
2737 /* Enable global TX timeout and carrier sense timeout if available */
2738 if (ath_hal_gtxto_supported(ah))
2739 sc->sc_imask |= HAL_INT_GTT;
2740
2741 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2742 __func__, sc->sc_imask);
2743
2744 sc->sc_running = 1;
2745 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2746 ath_hal_intrset(ah, sc->sc_imask);
2747
2748 ath_power_restore_power_state(sc);
2749
2750 return (0);
2751 }
2752
2753 static void
ath_stop(struct ath_softc * sc)2754 ath_stop(struct ath_softc *sc)
2755 {
2756 struct ath_hal *ah = sc->sc_ah;
2757
2758 ATH_LOCK_ASSERT(sc);
2759
2760 /*
2761 * Wake the hardware up before fiddling with it.
2762 */
2763 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2764
2765 if (sc->sc_running) {
2766 /*
2767 * Shutdown the hardware and driver:
2768 * reset 802.11 state machine
2769 * turn off timers
2770 * disable interrupts
2771 * turn off the radio
2772 * clear transmit machinery
2773 * clear receive machinery
2774 * drain and release tx queues
2775 * reclaim beacon resources
2776 * power down hardware
2777 *
2778 * Note that some of this work is not possible if the
2779 * hardware is gone (invalid).
2780 */
2781 #ifdef ATH_TX99_DIAG
2782 if (sc->sc_tx99 != NULL)
2783 sc->sc_tx99->stop(sc->sc_tx99);
2784 #endif
2785 callout_stop(&sc->sc_wd_ch);
2786 sc->sc_wd_timer = 0;
2787 sc->sc_running = 0;
2788 if (!sc->sc_invalid) {
2789 if (sc->sc_softled) {
2790 callout_stop(&sc->sc_ledtimer);
2791 ath_hal_gpioset(ah, sc->sc_ledpin,
2792 !sc->sc_ledon);
2793 sc->sc_blinking = 0;
2794 }
2795 ath_hal_intrset(ah, 0);
2796 }
2797 /* XXX we should stop RX regardless of whether it's valid */
2798 if (!sc->sc_invalid) {
2799 ath_stoprecv(sc, 1);
2800 ath_hal_phydisable(ah);
2801 } else
2802 sc->sc_rxlink = NULL;
2803 ath_draintxq(sc, ATH_RESET_DEFAULT);
2804 ath_beacon_free(sc); /* XXX not needed */
2805 }
2806
2807 /* And now, restore the current power state */
2808 ath_power_restore_power_state(sc);
2809 }
2810
2811 /*
2812 * Wait until all pending TX/RX has completed.
2813 *
2814 * This waits until all existing transmit, receive and interrupts
2815 * have completed. It's assumed that the caller has first
2816 * grabbed the reset lock so it doesn't try to do overlapping
2817 * chip resets.
2818 */
2819 #define MAX_TXRX_ITERATIONS 100
2820 static void
ath_txrx_stop_locked(struct ath_softc * sc)2821 ath_txrx_stop_locked(struct ath_softc *sc)
2822 {
2823 int i = MAX_TXRX_ITERATIONS;
2824
2825 ATH_UNLOCK_ASSERT(sc);
2826 ATH_PCU_LOCK_ASSERT(sc);
2827
2828 /*
2829 * Sleep until all the pending operations have completed.
2830 *
2831 * The caller must ensure that reset has been incremented
2832 * or the pending operations may continue being queued.
2833 */
2834 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2835 sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2836 if (i <= 0)
2837 break;
2838 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2839 msecs_to_ticks(10));
2840 i--;
2841 }
2842
2843 if (i <= 0)
2844 device_printf(sc->sc_dev,
2845 "%s: didn't finish after %d iterations\n",
2846 __func__, MAX_TXRX_ITERATIONS);
2847 }
2848 #undef MAX_TXRX_ITERATIONS
2849
2850 #if 0
2851 static void
2852 ath_txrx_stop(struct ath_softc *sc)
2853 {
2854 ATH_UNLOCK_ASSERT(sc);
2855 ATH_PCU_UNLOCK_ASSERT(sc);
2856
2857 ATH_PCU_LOCK(sc);
2858 ath_txrx_stop_locked(sc);
2859 ATH_PCU_UNLOCK(sc);
2860 }
2861 #endif
2862
2863 static void
ath_txrx_start(struct ath_softc * sc)2864 ath_txrx_start(struct ath_softc *sc)
2865 {
2866
2867 taskqueue_unblock(sc->sc_tq);
2868 }
2869
2870 /*
2871 * Grab the reset lock, and wait around until no one else
2872 * is trying to do anything with it.
2873 *
2874 * This is totally horrible but we can't hold this lock for
2875 * long enough to do TX/RX or we end up with net80211/ip stack
2876 * LORs and eventual deadlock.
2877 *
2878 * "dowait" signals whether to spin, waiting for the reset
2879 * lock count to reach 0. This should (for now) only be used
2880 * during the reset path, as the rest of the code may not
2881 * be locking-reentrant enough to behave correctly.
2882 *
2883 * Another, cleaner way should be found to serialise all of
2884 * these operations.
2885 */
2886 #define MAX_RESET_ITERATIONS 25
2887 static int
ath_reset_grablock(struct ath_softc * sc,int dowait)2888 ath_reset_grablock(struct ath_softc *sc, int dowait)
2889 {
2890 int w = 0;
2891 int i = MAX_RESET_ITERATIONS;
2892
2893 ATH_PCU_LOCK_ASSERT(sc);
2894 do {
2895 if (sc->sc_inreset_cnt == 0) {
2896 w = 1;
2897 break;
2898 }
2899 if (dowait == 0) {
2900 w = 0;
2901 break;
2902 }
2903 ATH_PCU_UNLOCK(sc);
2904 /*
2905 * 1 tick is likely not enough time for long calibrations
2906 * to complete. So we should wait quite a while.
2907 */
2908 pause("ath_reset_grablock", msecs_to_ticks(100));
2909 i--;
2910 ATH_PCU_LOCK(sc);
2911 } while (i > 0);
2912
2913 /*
2914 * We always increment the refcounter, regardless
2915 * of whether we succeeded to get it in an exclusive
2916 * way.
2917 */
2918 sc->sc_inreset_cnt++;
2919
2920 if (i <= 0)
2921 device_printf(sc->sc_dev,
2922 "%s: didn't finish after %d iterations\n",
2923 __func__, MAX_RESET_ITERATIONS);
2924
2925 if (w == 0)
2926 device_printf(sc->sc_dev,
2927 "%s: warning, recursive reset path!\n",
2928 __func__);
2929
2930 return w;
2931 }
2932 #undef MAX_RESET_ITERATIONS
2933
2934 /*
2935 * Reset the hardware w/o losing operational state. This is
2936 * basically a more efficient way of doing ath_stop, ath_init,
2937 * followed by state transitions to the current 802.11
2938 * operational state. Used to recover from various errors and
2939 * to reset or reload hardware state.
2940 */
2941 int
ath_reset(struct ath_softc * sc,ATH_RESET_TYPE reset_type,HAL_RESET_TYPE ah_reset_type)2942 ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type,
2943 HAL_RESET_TYPE ah_reset_type)
2944 {
2945 struct ieee80211com *ic = &sc->sc_ic;
2946 struct ath_hal *ah = sc->sc_ah;
2947 HAL_STATUS status;
2948 int i;
2949
2950 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2951
2952 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2953 ATH_PCU_UNLOCK_ASSERT(sc);
2954 ATH_UNLOCK_ASSERT(sc);
2955
2956 /* Try to (stop any further TX/RX from occurring */
2957 taskqueue_block(sc->sc_tq);
2958
2959 /*
2960 * Wake the hardware up.
2961 */
2962 ATH_LOCK(sc);
2963 ath_power_set_power_state(sc, HAL_PM_AWAKE);
2964 ATH_UNLOCK(sc);
2965
2966 ATH_PCU_LOCK(sc);
2967
2968 /*
2969 * Grab the reset lock before TX/RX is stopped.
2970 *
2971 * This is needed to ensure that when the TX/RX actually does finish,
2972 * no further TX/RX/reset runs in parallel with this.
2973 */
2974 if (ath_reset_grablock(sc, 1) == 0) {
2975 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2976 __func__);
2977 }
2978
2979 /* disable interrupts */
2980 ath_hal_intrset(ah, 0);
2981
2982 /*
2983 * Now, ensure that any in progress TX/RX completes before we
2984 * continue.
2985 */
2986 ath_txrx_stop_locked(sc);
2987
2988 ATH_PCU_UNLOCK(sc);
2989
2990 /*
2991 * Regardless of whether we're doing a no-loss flush or
2992 * not, stop the PCU and handle what's in the RX queue.
2993 * That way frames aren't dropped which shouldn't be.
2994 */
2995 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2996 ath_rx_flush(sc);
2997
2998 /*
2999 * Should now wait for pending TX/RX to complete
3000 * and block future ones from occurring. This needs to be
3001 * done before the TX queue is drained.
3002 */
3003 ath_draintxq(sc, reset_type); /* stop xmit side */
3004
3005 ath_settkipmic(sc); /* configure TKIP MIC handling */
3006 /* NB: indicate channel change so we do a full reset */
3007 ath_update_chainmasks(sc, ic->ic_curchan);
3008 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
3009 sc->sc_cur_rxchainmask);
3010 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
3011 ah_reset_type, &status))
3012 device_printf(sc->sc_dev,
3013 "%s: unable to reset hardware; hal status %u\n",
3014 __func__, status);
3015 sc->sc_diversity = ath_hal_getdiversity(ah);
3016
3017 ATH_RX_LOCK(sc);
3018 sc->sc_rx_stopped = 1;
3019 sc->sc_rx_resetted = 1;
3020 ATH_RX_UNLOCK(sc);
3021
3022 /* Quiet time handling - ensure we resync */
3023 ath_vap_clear_quiet_ie(sc);
3024
3025 /* Let DFS at it in case it's a DFS channel */
3026 ath_dfs_radar_enable(sc, ic->ic_curchan);
3027
3028 /* Let spectral at in case spectral is enabled */
3029 ath_spectral_enable(sc, ic->ic_curchan);
3030
3031 /*
3032 * Let bluetooth coexistence at in case it's needed for this channel
3033 */
3034 ath_btcoex_enable(sc, ic->ic_curchan);
3035
3036 /*
3037 * If we're doing TDMA, enforce the TXOP limitation for chips that
3038 * support it.
3039 */
3040 if (sc->sc_hasenforcetxop && sc->sc_tdma)
3041 ath_hal_setenforcetxop(sc->sc_ah, 1);
3042 else
3043 ath_hal_setenforcetxop(sc->sc_ah, 0);
3044
3045 if (ath_startrecv(sc) != 0) /* restart recv */
3046 device_printf(sc->sc_dev,
3047 "%s: unable to start recv logic\n", __func__);
3048 /*
3049 * We may be doing a reset in response to an ioctl
3050 * that changes the channel so update any state that
3051 * might change as a result.
3052 */
3053 ath_chan_change(sc, ic->ic_curchan);
3054 if (sc->sc_beacons) { /* restart beacons */
3055 #ifdef IEEE80211_SUPPORT_TDMA
3056 if (sc->sc_tdma)
3057 ath_tdma_config(sc, NULL);
3058 else
3059 #endif
3060 ath_beacon_config(sc, NULL);
3061 }
3062
3063 /*
3064 * Release the reset lock and re-enable interrupts here.
3065 * If an interrupt was being processed in ath_intr(),
3066 * it would disable interrupts at this point. So we have
3067 * to atomically enable interrupts and decrement the
3068 * reset counter - this way ath_intr() doesn't end up
3069 * disabling interrupts without a corresponding enable
3070 * in the rest or channel change path.
3071 *
3072 * Grab the TX reference in case we need to transmit.
3073 * That way a parallel transmit doesn't.
3074 */
3075 ATH_PCU_LOCK(sc);
3076 sc->sc_inreset_cnt--;
3077 sc->sc_txstart_cnt++;
3078 /* XXX only do this if sc_inreset_cnt == 0? */
3079 ath_hal_intrset(ah, sc->sc_imask);
3080 ATH_PCU_UNLOCK(sc);
3081
3082 /*
3083 * TX and RX can be started here. If it were started with
3084 * sc_inreset_cnt > 0, the TX and RX path would abort.
3085 * Thus if this is a nested call through the reset or
3086 * channel change code, TX completion will occur but
3087 * RX completion and ath_start / ath_tx_start will not
3088 * run.
3089 */
3090
3091 /* Restart TX/RX as needed */
3092 ath_txrx_start(sc);
3093
3094 /* XXX TODO: we need to hold the tx refcount here! */
3095
3096 /* Restart TX completion and pending TX */
3097 if (reset_type == ATH_RESET_NOLOSS) {
3098 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3099 if (ATH_TXQ_SETUP(sc, i)) {
3100 ATH_TXQ_LOCK(&sc->sc_txq[i]);
3101 ath_txq_restart_dma(sc, &sc->sc_txq[i]);
3102 ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3103
3104 ATH_TX_LOCK(sc);
3105 ath_txq_sched(sc, &sc->sc_txq[i]);
3106 ATH_TX_UNLOCK(sc);
3107 }
3108 }
3109 }
3110
3111 ATH_LOCK(sc);
3112 ath_power_restore_power_state(sc);
3113 ATH_UNLOCK(sc);
3114
3115 ATH_PCU_LOCK(sc);
3116 sc->sc_txstart_cnt--;
3117 ATH_PCU_UNLOCK(sc);
3118
3119 /* Handle any frames in the TX queue */
3120 /*
3121 * XXX should this be done by the caller, rather than
3122 * ath_reset() ?
3123 */
3124 ath_tx_kick(sc); /* restart xmit */
3125 return 0;
3126 }
3127
3128 static int
ath_reset_vap(struct ieee80211vap * vap,u_long cmd)3129 ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3130 {
3131 struct ieee80211com *ic = vap->iv_ic;
3132 struct ath_softc *sc = ic->ic_softc;
3133 struct ath_hal *ah = sc->sc_ah;
3134
3135 switch (cmd) {
3136 case IEEE80211_IOC_TXPOWER:
3137 /*
3138 * If per-packet TPC is enabled, then we have nothing
3139 * to do; otherwise we need to force the global limit.
3140 * All this can happen directly; no need to reset.
3141 */
3142 if (!ath_hal_gettpc(ah))
3143 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3144 return 0;
3145 }
3146 /* XXX? Full or NOLOSS? */
3147 return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL);
3148 }
3149
3150 struct ath_buf *
_ath_getbuf_locked(struct ath_softc * sc,ath_buf_type_t btype)3151 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3152 {
3153 struct ath_buf *bf;
3154
3155 ATH_TXBUF_LOCK_ASSERT(sc);
3156
3157 if (btype == ATH_BUFTYPE_MGMT)
3158 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3159 else
3160 bf = TAILQ_FIRST(&sc->sc_txbuf);
3161
3162 if (bf == NULL) {
3163 sc->sc_stats.ast_tx_getnobuf++;
3164 } else {
3165 if (bf->bf_flags & ATH_BUF_BUSY) {
3166 sc->sc_stats.ast_tx_getbusybuf++;
3167 bf = NULL;
3168 }
3169 }
3170
3171 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3172 if (btype == ATH_BUFTYPE_MGMT)
3173 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3174 else {
3175 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3176 sc->sc_txbuf_cnt--;
3177
3178 /*
3179 * This shuldn't happen; however just to be
3180 * safe print a warning and fudge the txbuf
3181 * count.
3182 */
3183 if (sc->sc_txbuf_cnt < 0) {
3184 device_printf(sc->sc_dev,
3185 "%s: sc_txbuf_cnt < 0?\n",
3186 __func__);
3187 sc->sc_txbuf_cnt = 0;
3188 }
3189 }
3190 } else
3191 bf = NULL;
3192
3193 if (bf == NULL) {
3194 /* XXX should check which list, mgmt or otherwise */
3195 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3196 TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3197 "out of xmit buffers" : "xmit buffer busy");
3198 return NULL;
3199 }
3200
3201 /* XXX TODO: should do this at buffer list initialisation */
3202 /* XXX (then, ensure the buffer has the right flag set) */
3203 bf->bf_flags = 0;
3204 if (btype == ATH_BUFTYPE_MGMT)
3205 bf->bf_flags |= ATH_BUF_MGMT;
3206 else
3207 bf->bf_flags &= (~ATH_BUF_MGMT);
3208
3209 /* Valid bf here; clear some basic fields */
3210 bf->bf_next = NULL; /* XXX just to be sure */
3211 bf->bf_last = NULL; /* XXX again, just to be sure */
3212 bf->bf_comp = NULL; /* XXX again, just to be sure */
3213 bzero(&bf->bf_state, sizeof(bf->bf_state));
3214
3215 /*
3216 * Track the descriptor ID only if doing EDMA
3217 */
3218 if (sc->sc_isedma) {
3219 bf->bf_descid = sc->sc_txbuf_descid;
3220 sc->sc_txbuf_descid++;
3221 }
3222
3223 return bf;
3224 }
3225
3226 /*
3227 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3228 * can't be thrown back on the queue as they could still be
3229 * in use by the hardware.
3230 *
3231 * This duplicates the buffer, or returns NULL.
3232 *
3233 * The descriptor is also copied but the link pointers and
3234 * the DMA segments aren't copied; this frame should thus
3235 * be again passed through the descriptor setup/chain routines
3236 * so the link is correct.
3237 *
3238 * The caller must free the buffer using ath_freebuf().
3239 */
3240 struct ath_buf *
ath_buf_clone(struct ath_softc * sc,struct ath_buf * bf)3241 ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3242 {
3243 struct ath_buf *tbf;
3244
3245 tbf = ath_getbuf(sc,
3246 (bf->bf_flags & ATH_BUF_MGMT) ?
3247 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3248 if (tbf == NULL)
3249 return NULL; /* XXX failure? Why? */
3250
3251 /* Copy basics */
3252 tbf->bf_next = NULL;
3253 tbf->bf_nseg = bf->bf_nseg;
3254 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3255 tbf->bf_status = bf->bf_status;
3256 tbf->bf_m = bf->bf_m;
3257 tbf->bf_node = bf->bf_node;
3258 KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3259 /* will be setup by the chain/setup function */
3260 tbf->bf_lastds = NULL;
3261 /* for now, last == self */
3262 tbf->bf_last = tbf;
3263 tbf->bf_comp = bf->bf_comp;
3264
3265 /* NOTE: DMA segments will be setup by the setup/chain functions */
3266
3267 /* The caller has to re-init the descriptor + links */
3268
3269 /*
3270 * Free the DMA mapping here, before we NULL the mbuf.
3271 * We must only call bus_dmamap_unload() once per mbuf chain
3272 * or behaviour is undefined.
3273 */
3274 if (bf->bf_m != NULL) {
3275 /*
3276 * XXX is this POSTWRITE call required?
3277 */
3278 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3279 BUS_DMASYNC_POSTWRITE);
3280 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3281 }
3282
3283 bf->bf_m = NULL;
3284 bf->bf_node = NULL;
3285
3286 /* Copy state */
3287 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3288
3289 return tbf;
3290 }
3291
3292 struct ath_buf *
ath_getbuf(struct ath_softc * sc,ath_buf_type_t btype)3293 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3294 {
3295 struct ath_buf *bf;
3296
3297 ATH_TXBUF_LOCK(sc);
3298 bf = _ath_getbuf_locked(sc, btype);
3299 /*
3300 * If a mgmt buffer was requested but we're out of those,
3301 * try requesting a normal one.
3302 */
3303 if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3304 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3305 ATH_TXBUF_UNLOCK(sc);
3306 if (bf == NULL) {
3307 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3308 sc->sc_stats.ast_tx_qstop++;
3309 }
3310 return bf;
3311 }
3312
3313 /*
3314 * Transmit a single frame.
3315 *
3316 * net80211 will free the node reference if the transmit
3317 * fails, so don't free the node reference here.
3318 */
3319 static int
ath_transmit(struct ieee80211com * ic,struct mbuf * m)3320 ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3321 {
3322 struct ath_softc *sc = ic->ic_softc;
3323 struct ieee80211_node *ni;
3324 struct mbuf *next;
3325 struct ath_buf *bf;
3326 ath_bufhead frags;
3327 int retval = 0;
3328
3329 /*
3330 * Tell the reset path that we're currently transmitting.
3331 */
3332 ATH_PCU_LOCK(sc);
3333 if (sc->sc_inreset_cnt > 0) {
3334 DPRINTF(sc, ATH_DEBUG_XMIT,
3335 "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3336 ATH_PCU_UNLOCK(sc);
3337 sc->sc_stats.ast_tx_qstop++;
3338 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3339 return (ENOBUFS); /* XXX should be EINVAL or? */
3340 }
3341 sc->sc_txstart_cnt++;
3342 ATH_PCU_UNLOCK(sc);
3343
3344 /* Wake the hardware up already */
3345 ATH_LOCK(sc);
3346 ath_power_set_power_state(sc, HAL_PM_AWAKE);
3347 ATH_UNLOCK(sc);
3348
3349 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3350 /*
3351 * Grab the TX lock - it's ok to do this here; we haven't
3352 * yet started transmitting.
3353 */
3354 ATH_TX_LOCK(sc);
3355
3356 /*
3357 * Node reference, if there's one.
3358 */
3359 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3360
3361 /*
3362 * Enforce how deep a node queue can get.
3363 *
3364 * XXX it would be nicer if we kept an mbuf queue per
3365 * node and only whacked them into ath_bufs when we
3366 * are ready to schedule some traffic from them.
3367 * .. that may come later.
3368 *
3369 * XXX we should also track the per-node hardware queue
3370 * depth so it is easy to limit the _SUM_ of the swq and
3371 * hwq frames. Since we only schedule two HWQ frames
3372 * at a time, this should be OK for now.
3373 */
3374 if ((!(m->m_flags & M_EAPOL)) &&
3375 (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3376 sc->sc_stats.ast_tx_nodeq_overflow++;
3377 retval = ENOBUFS;
3378 goto finish;
3379 }
3380
3381 /*
3382 * Check how many TX buffers are available.
3383 *
3384 * If this is for non-EAPOL traffic, just leave some
3385 * space free in order for buffer cloning and raw
3386 * frame transmission to occur.
3387 *
3388 * If it's for EAPOL traffic, ignore this for now.
3389 * Management traffic will be sent via the raw transmit
3390 * method which bypasses this check.
3391 *
3392 * This is needed to ensure that EAPOL frames during
3393 * (re) keying have a chance to go out.
3394 *
3395 * See kern/138379 for more information.
3396 */
3397 if ((!(m->m_flags & M_EAPOL)) &&
3398 (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3399 sc->sc_stats.ast_tx_nobuf++;
3400 retval = ENOBUFS;
3401 goto finish;
3402 }
3403
3404 /*
3405 * Grab a TX buffer and associated resources.
3406 *
3407 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3408 * That way even with temporary buffer exhaustion due to
3409 * the data path doesn't leave us without the ability
3410 * to transmit management frames.
3411 *
3412 * Otherwise allocate a normal buffer.
3413 */
3414 if (m->m_flags & M_EAPOL)
3415 bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3416 else
3417 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3418
3419 if (bf == NULL) {
3420 /*
3421 * If we failed to allocate a buffer, fail.
3422 *
3423 * We shouldn't fail normally, due to the check
3424 * above.
3425 */
3426 sc->sc_stats.ast_tx_nobuf++;
3427 retval = ENOBUFS;
3428 goto finish;
3429 }
3430
3431 /*
3432 * At this point we have a buffer; so we need to free it
3433 * if we hit any error conditions.
3434 */
3435
3436 /*
3437 * Check for fragmentation. If this frame
3438 * has been broken up verify we have enough
3439 * buffers to send all the fragments so all
3440 * go out or none...
3441 */
3442 TAILQ_INIT(&frags);
3443 if ((m->m_flags & M_FRAG) &&
3444 !ath_txfrag_setup(sc, &frags, m, ni)) {
3445 DPRINTF(sc, ATH_DEBUG_XMIT,
3446 "%s: out of txfrag buffers\n", __func__);
3447 sc->sc_stats.ast_tx_nofrag++;
3448 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3449 /*
3450 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3451 * we shouldn't free it but return back.
3452 */
3453 ieee80211_free_mbuf(m);
3454 m = NULL;
3455 goto bad;
3456 }
3457
3458 /*
3459 * At this point if we have any TX fragments, then we will
3460 * have bumped the node reference once for each of those.
3461 */
3462
3463 /*
3464 * XXX Is there anything actually _enforcing_ that the
3465 * fragments are being transmitted in one hit, rather than
3466 * being interleaved with other transmissions on that
3467 * hardware queue?
3468 *
3469 * The ATH TX output lock is the only thing serialising this
3470 * right now.
3471 */
3472
3473 /*
3474 * Calculate the "next fragment" length field in ath_buf
3475 * in order to let the transmit path know enough about
3476 * what to next write to the hardware.
3477 */
3478 if (m->m_flags & M_FRAG) {
3479 struct ath_buf *fbf = bf;
3480 struct ath_buf *n_fbf = NULL;
3481 struct mbuf *fm = m->m_nextpkt;
3482
3483 /*
3484 * We need to walk the list of fragments and set
3485 * the next size to the following buffer.
3486 * However, the first buffer isn't in the frag
3487 * list, so we have to do some gymnastics here.
3488 */
3489 TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3490 fbf->bf_nextfraglen = fm->m_pkthdr.len;
3491 fbf = n_fbf;
3492 fm = fm->m_nextpkt;
3493 }
3494 }
3495
3496 nextfrag:
3497 /*
3498 * Pass the frame to the h/w for transmission.
3499 * Fragmented frames have each frag chained together
3500 * with m_nextpkt. We know there are sufficient ath_buf's
3501 * to send all the frags because of work done by
3502 * ath_txfrag_setup. We leave m_nextpkt set while
3503 * calling ath_tx_start so it can use it to extend the
3504 * the tx duration to cover the subsequent frag and
3505 * so it can reclaim all the mbufs in case of an error;
3506 * ath_tx_start clears m_nextpkt once it commits to
3507 * handing the frame to the hardware.
3508 *
3509 * Note: if this fails, then the mbufs are freed but
3510 * not the node reference.
3511 *
3512 * So, we now have to free the node reference ourselves here
3513 * and return OK up to the stack.
3514 */
3515 next = m->m_nextpkt;
3516 if (ath_tx_start(sc, ni, bf, m)) {
3517 bad:
3518 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3519 reclaim:
3520 bf->bf_m = NULL;
3521 bf->bf_node = NULL;
3522 ATH_TXBUF_LOCK(sc);
3523 ath_returnbuf_head(sc, bf);
3524 /*
3525 * Free the rest of the node references and
3526 * buffers for the fragment list.
3527 */
3528 ath_txfrag_cleanup(sc, &frags, ni);
3529 ATH_TXBUF_UNLOCK(sc);
3530
3531 /*
3532 * XXX: And free the node/return OK; ath_tx_start() may have
3533 * modified the buffer. We currently have no way to
3534 * signify that the mbuf was freed but there was an error.
3535 */
3536 ieee80211_free_node(ni);
3537 retval = 0;
3538 goto finish;
3539 }
3540
3541 /*
3542 * Check here if the node is in power save state.
3543 */
3544 ath_tx_update_tim(sc, ni, 1);
3545
3546 if (next != NULL) {
3547 /*
3548 * Beware of state changing between frags.
3549 * XXX check sta power-save state?
3550 */
3551 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3552 DPRINTF(sc, ATH_DEBUG_XMIT,
3553 "%s: flush fragmented packet, state %s\n",
3554 __func__,
3555 ieee80211_state_name[ni->ni_vap->iv_state]);
3556 /* XXX dmamap */
3557 ieee80211_free_mbuf(next);
3558 goto reclaim;
3559 }
3560 m = next;
3561 bf = TAILQ_FIRST(&frags);
3562 KASSERT(bf != NULL, ("no buf for txfrag"));
3563 TAILQ_REMOVE(&frags, bf, bf_list);
3564 goto nextfrag;
3565 }
3566
3567 /*
3568 * Bump watchdog timer.
3569 */
3570 sc->sc_wd_timer = 5;
3571
3572 finish:
3573 ATH_TX_UNLOCK(sc);
3574
3575 /*
3576 * Finished transmitting!
3577 */
3578 ATH_PCU_LOCK(sc);
3579 sc->sc_txstart_cnt--;
3580 ATH_PCU_UNLOCK(sc);
3581
3582 /* Sleep the hardware if required */
3583 ATH_LOCK(sc);
3584 ath_power_restore_power_state(sc);
3585 ATH_UNLOCK(sc);
3586
3587 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3588
3589 return (retval);
3590 }
3591
3592 /*
3593 * Block/unblock tx+rx processing while a key change is done.
3594 * We assume the caller serializes key management operations
3595 * so we only need to worry about synchronization with other
3596 * uses that originate in the driver.
3597 */
3598 static void
ath_key_update_begin(struct ieee80211vap * vap)3599 ath_key_update_begin(struct ieee80211vap *vap)
3600 {
3601 struct ath_softc *sc = vap->iv_ic->ic_softc;
3602
3603 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3604 taskqueue_block(sc->sc_tq);
3605 }
3606
3607 static void
ath_key_update_end(struct ieee80211vap * vap)3608 ath_key_update_end(struct ieee80211vap *vap)
3609 {
3610 struct ath_softc *sc = vap->iv_ic->ic_softc;
3611
3612 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3613 taskqueue_unblock(sc->sc_tq);
3614 }
3615
3616 static void
ath_update_promisc(struct ieee80211com * ic)3617 ath_update_promisc(struct ieee80211com *ic)
3618 {
3619 struct ath_softc *sc = ic->ic_softc;
3620 u_int32_t rfilt;
3621
3622 /* configure rx filter */
3623 ATH_LOCK(sc);
3624 ath_power_set_power_state(sc, HAL_PM_AWAKE);
3625 rfilt = ath_calcrxfilter(sc);
3626 ath_hal_setrxfilter(sc->sc_ah, rfilt);
3627 ath_power_restore_power_state(sc);
3628 ATH_UNLOCK(sc);
3629
3630 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3631 }
3632
3633 static u_int
ath_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)3634 ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3635 {
3636 uint32_t val, *mfilt = arg;
3637 char *dl;
3638 uint8_t pos;
3639
3640 /* calculate XOR of eight 6bit values */
3641 dl = LLADDR(sdl);
3642 val = le32dec(dl + 0);
3643 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3644 val = le32dec(dl + 3);
3645 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3646 pos &= 0x3f;
3647 mfilt[pos / 32] |= (1 << (pos % 32));
3648
3649 return (1);
3650 }
3651
3652 /*
3653 * Driver-internal mcast update call.
3654 *
3655 * Assumes the hardware is already awake.
3656 */
3657 static void
ath_update_mcast_hw(struct ath_softc * sc)3658 ath_update_mcast_hw(struct ath_softc *sc)
3659 {
3660 struct ieee80211com *ic = &sc->sc_ic;
3661 u_int32_t mfilt[2];
3662
3663 /* calculate and install multicast filter */
3664 if (ic->ic_allmulti == 0) {
3665 struct ieee80211vap *vap;
3666
3667 /*
3668 * Merge multicast addresses to form the hardware filter.
3669 */
3670 mfilt[0] = mfilt[1] = 0;
3671 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
3672 if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt);
3673 } else
3674 mfilt[0] = mfilt[1] = ~0;
3675
3676 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3677
3678 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3679 __func__, mfilt[0], mfilt[1]);
3680 }
3681
3682 /*
3683 * Called from the net80211 layer - force the hardware
3684 * awake before operating.
3685 */
3686 static void
ath_update_mcast(struct ieee80211com * ic)3687 ath_update_mcast(struct ieee80211com *ic)
3688 {
3689 struct ath_softc *sc = ic->ic_softc;
3690
3691 ATH_LOCK(sc);
3692 ath_power_set_power_state(sc, HAL_PM_AWAKE);
3693 ATH_UNLOCK(sc);
3694
3695 ath_update_mcast_hw(sc);
3696
3697 ATH_LOCK(sc);
3698 ath_power_restore_power_state(sc);
3699 ATH_UNLOCK(sc);
3700 }
3701
3702 void
ath_mode_init(struct ath_softc * sc)3703 ath_mode_init(struct ath_softc *sc)
3704 {
3705 struct ieee80211com *ic = &sc->sc_ic;
3706 struct ath_hal *ah = sc->sc_ah;
3707 u_int32_t rfilt;
3708
3709 /* XXX power state? */
3710
3711 /* configure rx filter */
3712 rfilt = ath_calcrxfilter(sc);
3713 ath_hal_setrxfilter(ah, rfilt);
3714
3715 /* configure operational mode */
3716 ath_hal_setopmode(ah);
3717
3718 /* handle any link-level address change */
3719 ath_hal_setmac(ah, ic->ic_macaddr);
3720
3721 /* calculate and install multicast filter */
3722 ath_update_mcast_hw(sc);
3723 }
3724
3725 /*
3726 * Set the slot time based on the current setting.
3727 */
3728 void
ath_setslottime(struct ath_softc * sc)3729 ath_setslottime(struct ath_softc *sc)
3730 {
3731 struct ieee80211com *ic = &sc->sc_ic;
3732 struct ath_hal *ah = sc->sc_ah;
3733 u_int usec;
3734
3735 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3736 usec = 13;
3737 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3738 usec = 21;
3739 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3740 /* honor short/long slot time only in 11g */
3741 /* XXX shouldn't honor on pure g or turbo g channel */
3742 if (ic->ic_flags & IEEE80211_F_SHSLOT)
3743 usec = HAL_SLOT_TIME_9;
3744 else
3745 usec = HAL_SLOT_TIME_20;
3746 } else
3747 usec = HAL_SLOT_TIME_9;
3748
3749 DPRINTF(sc, ATH_DEBUG_RESET,
3750 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3751 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3752 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3753
3754 /* Wake up the hardware first before updating the slot time */
3755 ATH_LOCK(sc);
3756 ath_power_set_power_state(sc, HAL_PM_AWAKE);
3757 ath_hal_setslottime(ah, usec);
3758 ath_power_restore_power_state(sc);
3759 sc->sc_updateslot = OK;
3760 ATH_UNLOCK(sc);
3761 }
3762
3763 /*
3764 * Callback from the 802.11 layer to update the
3765 * slot time based on the current setting.
3766 */
3767 static void
ath_updateslot(struct ieee80211com * ic)3768 ath_updateslot(struct ieee80211com *ic)
3769 {
3770 struct ath_softc *sc = ic->ic_softc;
3771
3772 /*
3773 * When not coordinating the BSS, change the hardware
3774 * immediately. For other operation we defer the change
3775 * until beacon updates have propagated to the stations.
3776 *
3777 * XXX sc_updateslot isn't changed behind a lock?
3778 */
3779 if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3780 ic->ic_opmode == IEEE80211_M_MBSS)
3781 sc->sc_updateslot = UPDATE;
3782 else
3783 ath_setslottime(sc);
3784 }
3785
3786 /*
3787 * Append the contents of src to dst; both queues
3788 * are assumed to be locked.
3789 */
3790 void
ath_txqmove(struct ath_txq * dst,struct ath_txq * src)3791 ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3792 {
3793
3794 ATH_TXQ_LOCK_ASSERT(src);
3795 ATH_TXQ_LOCK_ASSERT(dst);
3796
3797 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3798 dst->axq_link = src->axq_link;
3799 src->axq_link = NULL;
3800 dst->axq_depth += src->axq_depth;
3801 dst->axq_aggr_depth += src->axq_aggr_depth;
3802 src->axq_depth = 0;
3803 src->axq_aggr_depth = 0;
3804 }
3805
3806 /*
3807 * Reset the hardware, with no loss.
3808 *
3809 * This can't be used for a general case reset.
3810 */
3811 static void
ath_reset_proc(void * arg,int pending)3812 ath_reset_proc(void *arg, int pending)
3813 {
3814 struct ath_softc *sc = arg;
3815
3816 #if 0
3817 device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3818 #endif
3819 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3820 }
3821
3822 /*
3823 * Reset the hardware after detecting beacons have stopped.
3824 */
3825 static void
ath_bstuck_proc(void * arg,int pending)3826 ath_bstuck_proc(void *arg, int pending)
3827 {
3828 struct ath_softc *sc = arg;
3829 uint32_t hangs = 0;
3830
3831 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3832 device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3833
3834 #ifdef ATH_DEBUG_ALQ
3835 if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3836 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3837 #endif
3838
3839 device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3840 sc->sc_bmisscount);
3841 sc->sc_stats.ast_bstuck++;
3842 /*
3843 * This assumes that there's no simultaneous channel mode change
3844 * occurring.
3845 */
3846 ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3847 }
3848
3849 static int
ath_desc_alloc(struct ath_softc * sc)3850 ath_desc_alloc(struct ath_softc *sc)
3851 {
3852 int error;
3853
3854 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3855 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3856 if (error != 0) {
3857 return error;
3858 }
3859 sc->sc_txbuf_cnt = ath_txbuf;
3860
3861 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3862 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3863 ATH_TXDESC);
3864 if (error != 0) {
3865 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3866 return error;
3867 }
3868
3869 /*
3870 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3871 * flag doesn't have to be set in ath_getbuf_locked().
3872 */
3873
3874 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3875 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3876 if (error != 0) {
3877 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3878 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3879 &sc->sc_txbuf_mgmt);
3880 return error;
3881 }
3882 return 0;
3883 }
3884
3885 static void
ath_desc_free(struct ath_softc * sc)3886 ath_desc_free(struct ath_softc *sc)
3887 {
3888
3889 if (sc->sc_bdma.dd_desc_len != 0)
3890 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3891 if (sc->sc_txdma.dd_desc_len != 0)
3892 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3893 if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3894 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3895 &sc->sc_txbuf_mgmt);
3896 }
3897
3898 static struct ieee80211_node *
ath_node_alloc(struct ieee80211vap * vap,const uint8_t mac[IEEE80211_ADDR_LEN])3899 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3900 {
3901 struct ieee80211com *ic = vap->iv_ic;
3902 struct ath_softc *sc = ic->ic_softc;
3903 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3904 struct ath_node *an;
3905
3906 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3907 if (an == NULL) {
3908 /* XXX stat+msg */
3909 return NULL;
3910 }
3911 ath_rate_node_init(sc, an);
3912
3913 /* Setup the mutex - there's no associd yet so set the name to NULL */
3914 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3915 device_get_nameunit(sc->sc_dev), an);
3916 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3917
3918 /* XXX setup ath_tid */
3919 ath_tx_tid_init(sc, an);
3920
3921 an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
3922 an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
3923 an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
3924
3925 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3926 return &an->an_node;
3927 }
3928
3929 static void
ath_node_cleanup(struct ieee80211_node * ni)3930 ath_node_cleanup(struct ieee80211_node *ni)
3931 {
3932 struct ieee80211com *ic = ni->ni_ic;
3933 struct ath_softc *sc = ic->ic_softc;
3934
3935 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3936 ni->ni_macaddr, ":", ATH_NODE(ni));
3937
3938 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3939 ath_tx_node_flush(sc, ATH_NODE(ni));
3940 ath_rate_node_cleanup(sc, ATH_NODE(ni));
3941 sc->sc_node_cleanup(ni);
3942 }
3943
3944 static void
ath_node_free(struct ieee80211_node * ni)3945 ath_node_free(struct ieee80211_node *ni)
3946 {
3947 struct ieee80211com *ic = ni->ni_ic;
3948 struct ath_softc *sc = ic->ic_softc;
3949
3950 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3951 ni->ni_macaddr, ":", ATH_NODE(ni));
3952 mtx_destroy(&ATH_NODE(ni)->an_mtx);
3953 sc->sc_node_free(ni);
3954 }
3955
3956 static void
ath_node_getsignal(const struct ieee80211_node * ni,int8_t * rssi,int8_t * noise)3957 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3958 {
3959 struct ieee80211com *ic = ni->ni_ic;
3960 struct ath_softc *sc = ic->ic_softc;
3961 struct ath_hal *ah = sc->sc_ah;
3962
3963 *rssi = ic->ic_node_getrssi(ni);
3964 if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3965 *noise = ath_hal_getchannoise(ah, ni->ni_chan);
3966 else
3967 *noise = -95; /* nominally correct */
3968 }
3969
3970 /*
3971 * Set the default antenna.
3972 */
3973 void
ath_setdefantenna(struct ath_softc * sc,u_int antenna)3974 ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3975 {
3976 struct ath_hal *ah = sc->sc_ah;
3977
3978 /* XXX block beacon interrupts */
3979 ath_hal_setdefantenna(ah, antenna);
3980 if (sc->sc_defant != antenna)
3981 sc->sc_stats.ast_ant_defswitch++;
3982 sc->sc_defant = antenna;
3983 sc->sc_rxotherant = 0;
3984 }
3985
3986 static void
ath_txq_init(struct ath_softc * sc,struct ath_txq * txq,int qnum)3987 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3988 {
3989 txq->axq_qnum = qnum;
3990 txq->axq_ac = 0;
3991 txq->axq_depth = 0;
3992 txq->axq_aggr_depth = 0;
3993 txq->axq_intrcnt = 0;
3994 txq->axq_link = NULL;
3995 txq->axq_softc = sc;
3996 TAILQ_INIT(&txq->axq_q);
3997 TAILQ_INIT(&txq->axq_tidq);
3998 TAILQ_INIT(&txq->fifo.axq_q);
3999 ATH_TXQ_LOCK_INIT(sc, txq);
4000 }
4001
4002 /*
4003 * Setup a h/w transmit queue.
4004 */
4005 static struct ath_txq *
ath_txq_setup(struct ath_softc * sc,int qtype,int subtype)4006 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4007 {
4008 struct ath_hal *ah = sc->sc_ah;
4009 HAL_TXQ_INFO qi;
4010 int qnum;
4011
4012 memset(&qi, 0, sizeof(qi));
4013 qi.tqi_subtype = subtype;
4014 qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4015 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4016 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4017 /*
4018 * Enable interrupts only for EOL and DESC conditions.
4019 * We mark tx descriptors to receive a DESC interrupt
4020 * when a tx queue gets deep; otherwise waiting for the
4021 * EOL to reap descriptors. Note that this is done to
4022 * reduce interrupt load and this only defers reaping
4023 * descriptors, never transmitting frames. Aside from
4024 * reducing interrupts this also permits more concurrency.
4025 * The only potential downside is if the tx queue backs
4026 * up in which case the top half of the kernel may backup
4027 * due to a lack of tx descriptors.
4028 */
4029 if (sc->sc_isedma)
4030 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4031 HAL_TXQ_TXOKINT_ENABLE;
4032 else
4033 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4034 HAL_TXQ_TXDESCINT_ENABLE;
4035
4036 qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4037 if (qnum == -1) {
4038 /*
4039 * NB: don't print a message, this happens
4040 * normally on parts with too few tx queues
4041 */
4042 return NULL;
4043 }
4044 if (qnum >= nitems(sc->sc_txq)) {
4045 device_printf(sc->sc_dev,
4046 "hal qnum %u out of range, max %zu!\n",
4047 qnum, nitems(sc->sc_txq));
4048 ath_hal_releasetxqueue(ah, qnum);
4049 return NULL;
4050 }
4051 if (!ATH_TXQ_SETUP(sc, qnum)) {
4052 ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4053 sc->sc_txqsetup |= 1<<qnum;
4054 }
4055 return &sc->sc_txq[qnum];
4056 }
4057
4058 /*
4059 * Setup a hardware data transmit queue for the specified
4060 * access control. The hal may not support all requested
4061 * queues in which case it will return a reference to a
4062 * previously setup queue. We record the mapping from ac's
4063 * to h/w queues for use by ath_tx_start and also track
4064 * the set of h/w queues being used to optimize work in the
4065 * transmit interrupt handler and related routines.
4066 */
4067 static int
ath_tx_setup(struct ath_softc * sc,int ac,int haltype)4068 ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4069 {
4070 struct ath_txq *txq;
4071
4072 if (ac >= nitems(sc->sc_ac2q)) {
4073 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4074 ac, nitems(sc->sc_ac2q));
4075 return 0;
4076 }
4077 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4078 if (txq != NULL) {
4079 txq->axq_ac = ac;
4080 sc->sc_ac2q[ac] = txq;
4081 return 1;
4082 } else
4083 return 0;
4084 }
4085
4086 /*
4087 * Update WME parameters for a transmit queue.
4088 */
4089 static int
ath_txq_update(struct ath_softc * sc,int ac)4090 ath_txq_update(struct ath_softc *sc, int ac)
4091 {
4092 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
4093 struct ieee80211com *ic = &sc->sc_ic;
4094 struct ath_txq *txq = sc->sc_ac2q[ac];
4095 struct chanAccParams chp;
4096 struct wmeParams *wmep;
4097 struct ath_hal *ah = sc->sc_ah;
4098 HAL_TXQ_INFO qi;
4099
4100 ieee80211_wme_ic_getparams(ic, &chp);
4101 wmep = &chp.cap_wmeParams[ac];
4102
4103 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4104 #ifdef IEEE80211_SUPPORT_TDMA
4105 if (sc->sc_tdma) {
4106 /*
4107 * AIFS is zero so there's no pre-transmit wait. The
4108 * burst time defines the slot duration and is configured
4109 * through net80211. The QCU is setup to not do post-xmit
4110 * back off, lockout all lower-priority QCU's, and fire
4111 * off the DMA beacon alert timer which is setup based
4112 * on the slot configuration.
4113 */
4114 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4115 | HAL_TXQ_TXERRINT_ENABLE
4116 | HAL_TXQ_TXURNINT_ENABLE
4117 | HAL_TXQ_TXEOLINT_ENABLE
4118 | HAL_TXQ_DBA_GATED
4119 | HAL_TXQ_BACKOFF_DISABLE
4120 | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4121 ;
4122 qi.tqi_aifs = 0;
4123 /* XXX +dbaprep? */
4124 qi.tqi_readyTime = sc->sc_tdmaslotlen;
4125 qi.tqi_burstTime = qi.tqi_readyTime;
4126 } else {
4127 #endif
4128 /*
4129 * XXX shouldn't this just use the default flags
4130 * used in the previous queue setup?
4131 */
4132 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4133 | HAL_TXQ_TXERRINT_ENABLE
4134 | HAL_TXQ_TXDESCINT_ENABLE
4135 | HAL_TXQ_TXURNINT_ENABLE
4136 | HAL_TXQ_TXEOLINT_ENABLE
4137 ;
4138 qi.tqi_aifs = wmep->wmep_aifsn;
4139 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4140 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4141 qi.tqi_readyTime = 0;
4142 qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
4143 #ifdef IEEE80211_SUPPORT_TDMA
4144 }
4145 #endif
4146
4147 DPRINTF(sc, ATH_DEBUG_RESET,
4148 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4149 __func__, txq->axq_qnum, qi.tqi_qflags,
4150 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4151
4152 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4153 device_printf(sc->sc_dev, "unable to update hardware queue "
4154 "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
4155 return 0;
4156 } else {
4157 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4158 return 1;
4159 }
4160 #undef ATH_EXPONENT_TO_VALUE
4161 }
4162
4163 /*
4164 * Callback from the 802.11 layer to update WME parameters.
4165 */
4166 int
ath_wme_update(struct ieee80211com * ic)4167 ath_wme_update(struct ieee80211com *ic)
4168 {
4169 struct ath_softc *sc = ic->ic_softc;
4170
4171 return !ath_txq_update(sc, WME_AC_BE) ||
4172 !ath_txq_update(sc, WME_AC_BK) ||
4173 !ath_txq_update(sc, WME_AC_VI) ||
4174 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4175 }
4176
4177 /*
4178 * Reclaim resources for a setup queue.
4179 */
4180 static void
ath_tx_cleanupq(struct ath_softc * sc,struct ath_txq * txq)4181 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4182 {
4183
4184 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4185 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4186 ATH_TXQ_LOCK_DESTROY(txq);
4187 }
4188
4189 /*
4190 * Reclaim all tx queue resources.
4191 */
4192 static void
ath_tx_cleanup(struct ath_softc * sc)4193 ath_tx_cleanup(struct ath_softc *sc)
4194 {
4195 int i;
4196
4197 ATH_TXBUF_LOCK_DESTROY(sc);
4198 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4199 if (ATH_TXQ_SETUP(sc, i))
4200 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4201 }
4202
4203 /*
4204 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4205 * using the current rates in sc_rixmap.
4206 */
4207 int
ath_tx_findrix(const struct ath_softc * sc,uint8_t rate)4208 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4209 {
4210 int rix = sc->sc_rixmap[rate];
4211 /* NB: return lowest rix for invalid rate */
4212 return (rix == 0xff ? 0 : rix);
4213 }
4214
4215 static void
ath_tx_update_stats(struct ath_softc * sc,struct ath_tx_status * ts,struct ath_buf * bf)4216 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4217 struct ath_buf *bf)
4218 {
4219 struct ieee80211_node *ni = bf->bf_node;
4220 struct ieee80211com *ic = &sc->sc_ic;
4221 int sr, lr, pri;
4222
4223 if (ts->ts_status == 0) {
4224 u_int8_t txant = ts->ts_antenna;
4225 /*
4226 * Handle weird/corrupted tx antenna field
4227 */
4228 if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA)
4229 txant = 0;
4230 sc->sc_stats.ast_ant_tx[txant]++;
4231 sc->sc_ant_tx[txant]++;
4232 if (ts->ts_finaltsi != 0)
4233 sc->sc_stats.ast_tx_altrate++;
4234
4235 /* XXX TODO: should do per-pri conuters */
4236 pri = M_WME_GETAC(bf->bf_m);
4237 if (pri >= WME_AC_VO)
4238 ic->ic_wme.wme_hipri_traffic++;
4239
4240 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4241 ni->ni_inact = ni->ni_inact_reload;
4242 } else {
4243 if (ts->ts_status & HAL_TXERR_XRETRY)
4244 sc->sc_stats.ast_tx_xretries++;
4245 if (ts->ts_status & HAL_TXERR_FIFO)
4246 sc->sc_stats.ast_tx_fifoerr++;
4247 if (ts->ts_status & HAL_TXERR_FILT)
4248 sc->sc_stats.ast_tx_filtered++;
4249 if (ts->ts_status & HAL_TXERR_XTXOP)
4250 sc->sc_stats.ast_tx_xtxop++;
4251 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4252 sc->sc_stats.ast_tx_timerexpired++;
4253
4254 if (bf->bf_m->m_flags & M_FF)
4255 sc->sc_stats.ast_ff_txerr++;
4256 }
4257 /* XXX when is this valid? */
4258 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4259 sc->sc_stats.ast_tx_desccfgerr++;
4260 /*
4261 * This can be valid for successful frame transmission!
4262 * If there's a TX FIFO underrun during aggregate transmission,
4263 * the MAC will pad the rest of the aggregate with delimiters.
4264 * If a BA is returned, the frame is marked as "OK" and it's up
4265 * to the TX completion code to notice which frames weren't
4266 * successfully transmitted.
4267 */
4268 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4269 sc->sc_stats.ast_tx_data_underrun++;
4270 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4271 sc->sc_stats.ast_tx_delim_underrun++;
4272
4273 sr = ts->ts_shortretry;
4274 lr = ts->ts_longretry;
4275 sc->sc_stats.ast_tx_shortretry += sr;
4276 sc->sc_stats.ast_tx_longretry += lr;
4277
4278 }
4279
4280 /*
4281 * The default completion. If fail is 1, this means
4282 * "please don't retry the frame, and just return -1 status
4283 * to the net80211 stack.
4284 */
4285 void
ath_tx_default_comp(struct ath_softc * sc,struct ath_buf * bf,int fail)4286 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4287 {
4288 struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4289 int st;
4290
4291 if (fail == 1)
4292 st = -1;
4293 else
4294 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4295 ts->ts_status : HAL_TXERR_XRETRY;
4296
4297 #if 0
4298 if (bf->bf_state.bfs_dobaw)
4299 device_printf(sc->sc_dev,
4300 "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4301 __func__,
4302 bf,
4303 SEQNO(bf->bf_state.bfs_seqno));
4304 #endif
4305 if (bf->bf_next != NULL)
4306 device_printf(sc->sc_dev,
4307 "%s: bf %p: seqno %d: bf_next not NULL!\n",
4308 __func__,
4309 bf,
4310 SEQNO(bf->bf_state.bfs_seqno));
4311
4312 /*
4313 * Check if the node software queue is empty; if so
4314 * then clear the TIM.
4315 *
4316 * This needs to be done before the buffer is freed as
4317 * otherwise the node reference will have been released
4318 * and the node may not actually exist any longer.
4319 *
4320 * XXX I don't like this belonging here, but it's cleaner
4321 * to do it here right now then all the other places
4322 * where ath_tx_default_comp() is called.
4323 *
4324 * XXX TODO: during drain, ensure that the callback is
4325 * being called so we get a chance to update the TIM.
4326 */
4327 if (bf->bf_node) {
4328 ATH_TX_LOCK(sc);
4329 ath_tx_update_tim(sc, bf->bf_node, 0);
4330 ATH_TX_UNLOCK(sc);
4331 }
4332
4333 /*
4334 * Do any tx complete callback. Note this must
4335 * be done before releasing the node reference.
4336 * This will free the mbuf, release the net80211
4337 * node and recycle the ath_buf.
4338 */
4339 ath_tx_freebuf(sc, bf, st);
4340 }
4341
4342 /*
4343 * Update rate control with the given completion status.
4344 */
4345 void
ath_tx_update_ratectrl(struct ath_softc * sc,struct ieee80211_node * ni,struct ath_rc_series * rc,struct ath_tx_status * ts,int frmlen,int rc_framelen,int nframes,int nbad)4346 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4347 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4348 int rc_framelen, int nframes, int nbad)
4349 {
4350 struct ath_node *an;
4351
4352 /* Only for unicast frames */
4353 if (ni == NULL)
4354 return;
4355
4356 an = ATH_NODE(ni);
4357 ATH_NODE_UNLOCK_ASSERT(an);
4358
4359 /*
4360 * XXX TODO: teach the rate control about TXERR_FILT and
4361 * see about handling it (eg see how many attempts were
4362 * made before it got filtered and account for that.)
4363 */
4364
4365 if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4366 ATH_NODE_LOCK(an);
4367 ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen,
4368 nframes, nbad);
4369 ATH_NODE_UNLOCK(an);
4370 }
4371 }
4372
4373 /*
4374 * Process the completion of the given buffer.
4375 *
4376 * This calls the rate control update and then the buffer completion.
4377 * This will either free the buffer or requeue it. In any case, the
4378 * bf pointer should be treated as invalid after this function is called.
4379 */
4380 void
ath_tx_process_buf_completion(struct ath_softc * sc,struct ath_txq * txq,struct ath_tx_status * ts,struct ath_buf * bf)4381 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4382 struct ath_tx_status *ts, struct ath_buf *bf)
4383 {
4384 struct ieee80211_node *ni = bf->bf_node;
4385
4386 ATH_TX_UNLOCK_ASSERT(sc);
4387 ATH_TXQ_UNLOCK_ASSERT(txq);
4388
4389 /* If unicast frame, update general statistics */
4390 if (ni != NULL) {
4391 /* update statistics */
4392 ath_tx_update_stats(sc, ts, bf);
4393 }
4394
4395 /*
4396 * Call the completion handler.
4397 * The completion handler is responsible for
4398 * calling the rate control code.
4399 *
4400 * Frames with no completion handler get the
4401 * rate control code called here.
4402 */
4403 if (bf->bf_comp == NULL) {
4404 if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4405 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4406 /*
4407 * XXX assume this isn't an aggregate
4408 * frame.
4409 *
4410 * XXX TODO: also do this for filtered frames?
4411 * Once rate control knows about them?
4412 */
4413 ath_tx_update_ratectrl(sc, ni,
4414 bf->bf_state.bfs_rc, ts,
4415 bf->bf_state.bfs_pktlen,
4416 bf->bf_state.bfs_pktlen,
4417 1,
4418 (ts->ts_status == 0 ? 0 : 1));
4419 }
4420 ath_tx_default_comp(sc, bf, 0);
4421 } else
4422 bf->bf_comp(sc, bf, 0);
4423 }
4424
4425 /*
4426 * Process completed xmit descriptors from the specified queue.
4427 * Kick the packet scheduler if needed. This can occur from this
4428 * particular task.
4429 */
4430 static int
ath_tx_processq(struct ath_softc * sc,struct ath_txq * txq,int dosched)4431 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4432 {
4433 struct ath_hal *ah = sc->sc_ah;
4434 struct ath_buf *bf;
4435 struct ath_desc *ds;
4436 struct ath_tx_status *ts;
4437 struct ieee80211_node *ni;
4438 #ifdef IEEE80211_SUPPORT_SUPERG
4439 struct ieee80211com *ic = &sc->sc_ic;
4440 #endif /* IEEE80211_SUPPORT_SUPERG */
4441 int nacked;
4442 HAL_STATUS status;
4443
4444 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4445 __func__, txq->axq_qnum,
4446 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4447 txq->axq_link);
4448
4449 ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4450 "ath_tx_processq: txq=%u head %p link %p depth %p",
4451 txq->axq_qnum,
4452 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4453 txq->axq_link,
4454 txq->axq_depth);
4455
4456 nacked = 0;
4457 for (;;) {
4458 ATH_TXQ_LOCK(txq);
4459 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4460 bf = TAILQ_FIRST(&txq->axq_q);
4461 if (bf == NULL) {
4462 ATH_TXQ_UNLOCK(txq);
4463 break;
4464 }
4465 ds = bf->bf_lastds; /* XXX must be setup correctly! */
4466 ts = &bf->bf_status.ds_txstat;
4467
4468 status = ath_hal_txprocdesc(ah, ds, ts);
4469 #ifdef ATH_DEBUG
4470 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4471 ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4472 status == HAL_OK);
4473 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4474 ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4475 status == HAL_OK);
4476 #endif
4477 #ifdef ATH_DEBUG_ALQ
4478 if (if_ath_alq_checkdebug(&sc->sc_alq,
4479 ATH_ALQ_EDMA_TXSTATUS)) {
4480 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4481 sc->sc_tx_statuslen,
4482 (char *) ds);
4483 }
4484 #endif
4485
4486 if (status == HAL_EINPROGRESS) {
4487 ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4488 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4489 txq->axq_qnum, bf, ds);
4490 ATH_TXQ_UNLOCK(txq);
4491 break;
4492 }
4493 ATH_TXQ_REMOVE(txq, bf, bf_list);
4494
4495 /*
4496 * Sanity check.
4497 */
4498 if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4499 device_printf(sc->sc_dev,
4500 "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4501 __func__,
4502 txq->axq_qnum,
4503 bf,
4504 bf->bf_state.bfs_tx_queue);
4505 }
4506 if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4507 device_printf(sc->sc_dev,
4508 "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4509 __func__,
4510 txq->axq_qnum,
4511 bf->bf_last,
4512 bf->bf_last->bf_state.bfs_tx_queue);
4513 }
4514
4515 #if 0
4516 if (txq->axq_depth > 0) {
4517 /*
4518 * More frames follow. Mark the buffer busy
4519 * so it's not re-used while the hardware may
4520 * still re-read the link field in the descriptor.
4521 *
4522 * Use the last buffer in an aggregate as that
4523 * is where the hardware may be - intermediate
4524 * descriptors won't be "busy".
4525 */
4526 bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4527 } else
4528 txq->axq_link = NULL;
4529 #else
4530 bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4531 #endif
4532 if (bf->bf_state.bfs_aggr)
4533 txq->axq_aggr_depth--;
4534
4535 ni = bf->bf_node;
4536
4537 ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4538 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4539 txq->axq_qnum, bf, ds, ni, ts->ts_status);
4540 /*
4541 * If unicast frame was ack'd update RSSI,
4542 * including the last rx time used to
4543 * workaround phantom bmiss interrupts.
4544 */
4545 if (ni != NULL && ts->ts_status == 0 &&
4546 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4547 nacked++;
4548 sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4549 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4550 ts->ts_rssi);
4551 ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi,
4552 ts->ts_rssi);
4553 }
4554 ATH_TXQ_UNLOCK(txq);
4555
4556 /*
4557 * Update statistics and call completion
4558 */
4559 ath_tx_process_buf_completion(sc, txq, ts, bf);
4560
4561 /* XXX at this point, bf and ni may be totally invalid */
4562 }
4563 #ifdef IEEE80211_SUPPORT_SUPERG
4564 /*
4565 * Flush fast-frame staging queue when traffic slows.
4566 */
4567 if (txq->axq_depth <= 1)
4568 ieee80211_ff_flush(ic, txq->axq_ac);
4569 #endif
4570
4571 /* Kick the software TXQ scheduler */
4572 if (dosched) {
4573 ATH_TX_LOCK(sc);
4574 ath_txq_sched(sc, txq);
4575 ATH_TX_UNLOCK(sc);
4576 }
4577
4578 ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4579 "ath_tx_processq: txq=%u: done",
4580 txq->axq_qnum);
4581
4582 return nacked;
4583 }
4584
4585 #define TXQACTIVE(t, q) ( (t) & (1 << (q)))
4586
4587 /*
4588 * Deferred processing of transmit interrupt; special-cased
4589 * for a single hardware transmit queue (e.g. 5210 and 5211).
4590 */
4591 static void
ath_tx_proc_q0(void * arg,int npending)4592 ath_tx_proc_q0(void *arg, int npending)
4593 {
4594 struct ath_softc *sc = arg;
4595 uint32_t txqs;
4596
4597 ATH_PCU_LOCK(sc);
4598 sc->sc_txproc_cnt++;
4599 txqs = sc->sc_txq_active;
4600 sc->sc_txq_active &= ~txqs;
4601 ATH_PCU_UNLOCK(sc);
4602
4603 ATH_LOCK(sc);
4604 ath_power_set_power_state(sc, HAL_PM_AWAKE);
4605 ATH_UNLOCK(sc);
4606
4607 ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4608 "ath_tx_proc_q0: txqs=0x%08x", txqs);
4609
4610 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4611 /* XXX why is lastrx updated in tx code? */
4612 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4613 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4614 ath_tx_processq(sc, sc->sc_cabq, 1);
4615 sc->sc_wd_timer = 0;
4616
4617 if (sc->sc_softled)
4618 ath_led_event(sc, sc->sc_txrix);
4619
4620 ATH_PCU_LOCK(sc);
4621 sc->sc_txproc_cnt--;
4622 ATH_PCU_UNLOCK(sc);
4623
4624 ATH_LOCK(sc);
4625 ath_power_restore_power_state(sc);
4626 ATH_UNLOCK(sc);
4627
4628 ath_tx_kick(sc);
4629 }
4630
4631 /*
4632 * Deferred processing of transmit interrupt; special-cased
4633 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4634 */
4635 static void
ath_tx_proc_q0123(void * arg,int npending)4636 ath_tx_proc_q0123(void *arg, int npending)
4637 {
4638 struct ath_softc *sc = arg;
4639 int nacked;
4640 uint32_t txqs;
4641
4642 ATH_PCU_LOCK(sc);
4643 sc->sc_txproc_cnt++;
4644 txqs = sc->sc_txq_active;
4645 sc->sc_txq_active &= ~txqs;
4646 ATH_PCU_UNLOCK(sc);
4647
4648 ATH_LOCK(sc);
4649 ath_power_set_power_state(sc, HAL_PM_AWAKE);
4650 ATH_UNLOCK(sc);
4651
4652 ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4653 "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4654
4655 /*
4656 * Process each active queue.
4657 */
4658 nacked = 0;
4659 if (TXQACTIVE(txqs, 0))
4660 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4661 if (TXQACTIVE(txqs, 1))
4662 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4663 if (TXQACTIVE(txqs, 2))
4664 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4665 if (TXQACTIVE(txqs, 3))
4666 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4667 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4668 ath_tx_processq(sc, sc->sc_cabq, 1);
4669 if (nacked)
4670 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4671
4672 sc->sc_wd_timer = 0;
4673
4674 if (sc->sc_softled)
4675 ath_led_event(sc, sc->sc_txrix);
4676
4677 ATH_PCU_LOCK(sc);
4678 sc->sc_txproc_cnt--;
4679 ATH_PCU_UNLOCK(sc);
4680
4681 ATH_LOCK(sc);
4682 ath_power_restore_power_state(sc);
4683 ATH_UNLOCK(sc);
4684
4685 ath_tx_kick(sc);
4686 }
4687
4688 /*
4689 * Deferred processing of transmit interrupt.
4690 */
4691 static void
ath_tx_proc(void * arg,int npending)4692 ath_tx_proc(void *arg, int npending)
4693 {
4694 struct ath_softc *sc = arg;
4695 int i, nacked;
4696 uint32_t txqs;
4697
4698 ATH_PCU_LOCK(sc);
4699 sc->sc_txproc_cnt++;
4700 txqs = sc->sc_txq_active;
4701 sc->sc_txq_active &= ~txqs;
4702 ATH_PCU_UNLOCK(sc);
4703
4704 ATH_LOCK(sc);
4705 ath_power_set_power_state(sc, HAL_PM_AWAKE);
4706 ATH_UNLOCK(sc);
4707
4708 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4709
4710 /*
4711 * Process each active queue.
4712 */
4713 nacked = 0;
4714 for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4715 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4716 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4717 if (nacked)
4718 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4719
4720 sc->sc_wd_timer = 0;
4721
4722 if (sc->sc_softled)
4723 ath_led_event(sc, sc->sc_txrix);
4724
4725 ATH_PCU_LOCK(sc);
4726 sc->sc_txproc_cnt--;
4727 ATH_PCU_UNLOCK(sc);
4728
4729 ATH_LOCK(sc);
4730 ath_power_restore_power_state(sc);
4731 ATH_UNLOCK(sc);
4732
4733 ath_tx_kick(sc);
4734 }
4735 #undef TXQACTIVE
4736
4737 /*
4738 * Deferred processing of TXQ rescheduling.
4739 */
4740 static void
ath_txq_sched_tasklet(void * arg,int npending)4741 ath_txq_sched_tasklet(void *arg, int npending)
4742 {
4743 struct ath_softc *sc = arg;
4744 int i;
4745
4746 /* XXX is skipping ok? */
4747 ATH_PCU_LOCK(sc);
4748 #if 0
4749 if (sc->sc_inreset_cnt > 0) {
4750 device_printf(sc->sc_dev,
4751 "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4752 ATH_PCU_UNLOCK(sc);
4753 return;
4754 }
4755 #endif
4756 sc->sc_txproc_cnt++;
4757 ATH_PCU_UNLOCK(sc);
4758
4759 ATH_LOCK(sc);
4760 ath_power_set_power_state(sc, HAL_PM_AWAKE);
4761 ATH_UNLOCK(sc);
4762
4763 ATH_TX_LOCK(sc);
4764 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4765 if (ATH_TXQ_SETUP(sc, i)) {
4766 ath_txq_sched(sc, &sc->sc_txq[i]);
4767 }
4768 }
4769 ATH_TX_UNLOCK(sc);
4770
4771 ATH_LOCK(sc);
4772 ath_power_restore_power_state(sc);
4773 ATH_UNLOCK(sc);
4774
4775 ATH_PCU_LOCK(sc);
4776 sc->sc_txproc_cnt--;
4777 ATH_PCU_UNLOCK(sc);
4778 }
4779
4780 void
ath_returnbuf_tail(struct ath_softc * sc,struct ath_buf * bf)4781 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4782 {
4783
4784 ATH_TXBUF_LOCK_ASSERT(sc);
4785
4786 if (bf->bf_flags & ATH_BUF_MGMT)
4787 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4788 else {
4789 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4790 sc->sc_txbuf_cnt++;
4791 if (sc->sc_txbuf_cnt > ath_txbuf) {
4792 device_printf(sc->sc_dev,
4793 "%s: sc_txbuf_cnt > %d?\n",
4794 __func__,
4795 ath_txbuf);
4796 sc->sc_txbuf_cnt = ath_txbuf;
4797 }
4798 }
4799 }
4800
4801 void
ath_returnbuf_head(struct ath_softc * sc,struct ath_buf * bf)4802 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4803 {
4804
4805 ATH_TXBUF_LOCK_ASSERT(sc);
4806
4807 if (bf->bf_flags & ATH_BUF_MGMT)
4808 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4809 else {
4810 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4811 sc->sc_txbuf_cnt++;
4812 if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4813 device_printf(sc->sc_dev,
4814 "%s: sc_txbuf_cnt > %d?\n",
4815 __func__,
4816 ATH_TXBUF);
4817 sc->sc_txbuf_cnt = ATH_TXBUF;
4818 }
4819 }
4820 }
4821
4822 /*
4823 * Free the holding buffer if it exists
4824 */
4825 void
ath_txq_freeholdingbuf(struct ath_softc * sc,struct ath_txq * txq)4826 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4827 {
4828 ATH_TXBUF_UNLOCK_ASSERT(sc);
4829 ATH_TXQ_LOCK_ASSERT(txq);
4830
4831 if (txq->axq_holdingbf == NULL)
4832 return;
4833
4834 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4835
4836 ATH_TXBUF_LOCK(sc);
4837 ath_returnbuf_tail(sc, txq->axq_holdingbf);
4838 ATH_TXBUF_UNLOCK(sc);
4839
4840 txq->axq_holdingbf = NULL;
4841 }
4842
4843 /*
4844 * Add this buffer to the holding queue, freeing the previous
4845 * one if it exists.
4846 */
4847 static void
ath_txq_addholdingbuf(struct ath_softc * sc,struct ath_buf * bf)4848 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4849 {
4850 struct ath_txq *txq;
4851
4852 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4853
4854 ATH_TXBUF_UNLOCK_ASSERT(sc);
4855 ATH_TXQ_LOCK_ASSERT(txq);
4856
4857 /* XXX assert ATH_BUF_BUSY is set */
4858
4859 /* XXX assert the tx queue is under the max number */
4860 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4861 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4862 __func__,
4863 bf,
4864 bf->bf_state.bfs_tx_queue);
4865 bf->bf_flags &= ~ATH_BUF_BUSY;
4866 ath_returnbuf_tail(sc, bf);
4867 return;
4868 }
4869 ath_txq_freeholdingbuf(sc, txq);
4870 txq->axq_holdingbf = bf;
4871 }
4872
4873 /*
4874 * Return a buffer to the pool and update the 'busy' flag on the
4875 * previous 'tail' entry.
4876 *
4877 * This _must_ only be called when the buffer is involved in a completed
4878 * TX. The logic is that if it was part of an active TX, the previous
4879 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4880 * for restart (eg for TDMA.)
4881 *
4882 * The caller must free the mbuf and recycle the node reference.
4883 *
4884 * XXX This method of handling busy / holding buffers is insanely stupid.
4885 * It requires bf_state.bfs_tx_queue to be correctly assigned. It would
4886 * be much nicer if buffers in the processq() methods would instead be
4887 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4888 * exactly what hardware queue they came from in the first place.
4889 */
4890 void
ath_freebuf(struct ath_softc * sc,struct ath_buf * bf)4891 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4892 {
4893 struct ath_txq *txq;
4894
4895 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4896
4897 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4898 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4899
4900 /*
4901 * If this buffer is busy, push it onto the holding queue.
4902 */
4903 if (bf->bf_flags & ATH_BUF_BUSY) {
4904 ATH_TXQ_LOCK(txq);
4905 ath_txq_addholdingbuf(sc, bf);
4906 ATH_TXQ_UNLOCK(txq);
4907 return;
4908 }
4909
4910 /*
4911 * Not a busy buffer, so free normally
4912 */
4913 ATH_TXBUF_LOCK(sc);
4914 ath_returnbuf_tail(sc, bf);
4915 ATH_TXBUF_UNLOCK(sc);
4916 }
4917
4918 /*
4919 * This is currently used by ath_tx_draintxq() and
4920 * ath_tx_tid_free_pkts().
4921 *
4922 * It recycles a single ath_buf.
4923 */
4924 void
ath_tx_freebuf(struct ath_softc * sc,struct ath_buf * bf,int status)4925 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4926 {
4927 struct ieee80211_node *ni = bf->bf_node;
4928 struct mbuf *m0 = bf->bf_m;
4929
4930 /*
4931 * Make sure that we only sync/unload if there's an mbuf.
4932 * If not (eg we cloned a buffer), the unload will have already
4933 * occurred.
4934 */
4935 if (bf->bf_m != NULL) {
4936 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4937 BUS_DMASYNC_POSTWRITE);
4938 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4939 }
4940
4941 bf->bf_node = NULL;
4942 bf->bf_m = NULL;
4943
4944 /* Free the buffer, it's not needed any longer */
4945 ath_freebuf(sc, bf);
4946
4947 /* Pass the buffer back to net80211 - completing it */
4948 ieee80211_tx_complete(ni, m0, status);
4949 }
4950
4951 static struct ath_buf *
ath_tx_draintxq_get_one(struct ath_softc * sc,struct ath_txq * txq)4952 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4953 {
4954 struct ath_buf *bf;
4955
4956 ATH_TXQ_LOCK_ASSERT(txq);
4957
4958 /*
4959 * Drain the FIFO queue first, then if it's
4960 * empty, move to the normal frame queue.
4961 */
4962 bf = TAILQ_FIRST(&txq->fifo.axq_q);
4963 if (bf != NULL) {
4964 /*
4965 * Is it the last buffer in this set?
4966 * Decrement the FIFO counter.
4967 */
4968 if (bf->bf_flags & ATH_BUF_FIFOEND) {
4969 if (txq->axq_fifo_depth == 0) {
4970 device_printf(sc->sc_dev,
4971 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4972 __func__,
4973 txq->axq_qnum,
4974 txq->fifo.axq_depth);
4975 } else
4976 txq->axq_fifo_depth--;
4977 }
4978 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4979 return (bf);
4980 }
4981
4982 /*
4983 * Debugging!
4984 */
4985 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4986 device_printf(sc->sc_dev,
4987 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4988 __func__,
4989 txq->axq_qnum,
4990 txq->axq_fifo_depth,
4991 txq->fifo.axq_depth);
4992 }
4993
4994 /*
4995 * Now drain the pending queue.
4996 */
4997 bf = TAILQ_FIRST(&txq->axq_q);
4998 if (bf == NULL) {
4999 txq->axq_link = NULL;
5000 return (NULL);
5001 }
5002 ATH_TXQ_REMOVE(txq, bf, bf_list);
5003 return (bf);
5004 }
5005
5006 void
ath_tx_draintxq(struct ath_softc * sc,struct ath_txq * txq)5007 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5008 {
5009 #ifdef ATH_DEBUG
5010 struct ath_hal *ah = sc->sc_ah;
5011 #endif
5012 struct ath_buf *bf;
5013 u_int ix;
5014
5015 /*
5016 * NB: this assumes output has been stopped and
5017 * we do not need to block ath_tx_proc
5018 */
5019 for (ix = 0;; ix++) {
5020 ATH_TXQ_LOCK(txq);
5021 bf = ath_tx_draintxq_get_one(sc, txq);
5022 if (bf == NULL) {
5023 ATH_TXQ_UNLOCK(txq);
5024 break;
5025 }
5026 if (bf->bf_state.bfs_aggr)
5027 txq->axq_aggr_depth--;
5028 #ifdef ATH_DEBUG
5029 if (sc->sc_debug & ATH_DEBUG_RESET) {
5030 struct ieee80211com *ic = &sc->sc_ic;
5031 int status = 0;
5032
5033 /*
5034 * EDMA operation has a TX completion FIFO
5035 * separate from the TX descriptor, so this
5036 * method of checking the "completion" status
5037 * is wrong.
5038 */
5039 if (! sc->sc_isedma) {
5040 status = (ath_hal_txprocdesc(ah,
5041 bf->bf_lastds,
5042 &bf->bf_status.ds_txstat) == HAL_OK);
5043 }
5044 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5045 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5046 bf->bf_m->m_len, 0, -1);
5047 }
5048 #endif /* ATH_DEBUG */
5049 /*
5050 * Since we're now doing magic in the completion
5051 * functions, we -must- call it for aggregation
5052 * destinations or BAW tracking will get upset.
5053 */
5054 /*
5055 * Clear ATH_BUF_BUSY; the completion handler
5056 * will free the buffer.
5057 */
5058 ATH_TXQ_UNLOCK(txq);
5059 bf->bf_flags &= ~ATH_BUF_BUSY;
5060 if (bf->bf_comp)
5061 bf->bf_comp(sc, bf, 1);
5062 else
5063 ath_tx_default_comp(sc, bf, 1);
5064 }
5065
5066 /*
5067 * Free the holding buffer if it exists
5068 */
5069 ATH_TXQ_LOCK(txq);
5070 ath_txq_freeholdingbuf(sc, txq);
5071 ATH_TXQ_UNLOCK(txq);
5072
5073 /*
5074 * Drain software queued frames which are on
5075 * active TIDs.
5076 */
5077 ath_tx_txq_drain(sc, txq);
5078 }
5079
5080 static void
ath_tx_stopdma(struct ath_softc * sc,struct ath_txq * txq)5081 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5082 {
5083 struct ath_hal *ah = sc->sc_ah;
5084
5085 ATH_TXQ_LOCK_ASSERT(txq);
5086
5087 DPRINTF(sc, ATH_DEBUG_RESET,
5088 "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5089 "link %p, holdingbf=%p\n",
5090 __func__,
5091 txq->axq_qnum,
5092 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5093 (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5094 (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5095 txq->axq_flags,
5096 txq->axq_link,
5097 txq->axq_holdingbf);
5098
5099 (void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5100 /* We've stopped TX DMA, so mark this as stopped. */
5101 txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5102
5103 #ifdef ATH_DEBUG
5104 if ((sc->sc_debug & ATH_DEBUG_RESET)
5105 && (txq->axq_holdingbf != NULL)) {
5106 ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5107 }
5108 #endif
5109 }
5110
5111 int
ath_stoptxdma(struct ath_softc * sc)5112 ath_stoptxdma(struct ath_softc *sc)
5113 {
5114 struct ath_hal *ah = sc->sc_ah;
5115 int i;
5116
5117 /* XXX return value */
5118 if (sc->sc_invalid)
5119 return 0;
5120
5121 if (!sc->sc_invalid) {
5122 /* don't touch the hardware if marked invalid */
5123 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5124 __func__, sc->sc_bhalq,
5125 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5126 NULL);
5127
5128 /* stop the beacon queue */
5129 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5130
5131 /* Stop the data queues */
5132 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5133 if (ATH_TXQ_SETUP(sc, i)) {
5134 ATH_TXQ_LOCK(&sc->sc_txq[i]);
5135 ath_tx_stopdma(sc, &sc->sc_txq[i]);
5136 ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5137 }
5138 }
5139 }
5140
5141 return 1;
5142 }
5143
5144 #ifdef ATH_DEBUG
5145 void
ath_tx_dump(struct ath_softc * sc,struct ath_txq * txq)5146 ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5147 {
5148 struct ath_hal *ah = sc->sc_ah;
5149 struct ath_buf *bf;
5150 int i = 0;
5151
5152 if (! (sc->sc_debug & ATH_DEBUG_RESET))
5153 return;
5154
5155 device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5156 __func__, txq->axq_qnum);
5157 TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5158 ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5159 ath_hal_txprocdesc(ah, bf->bf_lastds,
5160 &bf->bf_status.ds_txstat) == HAL_OK);
5161 i++;
5162 }
5163 device_printf(sc->sc_dev, "%s: Q%d: end\n",
5164 __func__, txq->axq_qnum);
5165 }
5166 #endif /* ATH_DEBUG */
5167
5168 /*
5169 * Drain the transmit queues and reclaim resources.
5170 */
5171 void
ath_legacy_tx_drain(struct ath_softc * sc,ATH_RESET_TYPE reset_type)5172 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5173 {
5174 struct ath_hal *ah = sc->sc_ah;
5175 struct ath_buf *bf_last;
5176 int i;
5177
5178 (void) ath_stoptxdma(sc);
5179
5180 /*
5181 * Dump the queue contents
5182 */
5183 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5184 /*
5185 * XXX TODO: should we just handle the completed TX frames
5186 * here, whether or not the reset is a full one or not?
5187 */
5188 if (ATH_TXQ_SETUP(sc, i)) {
5189 #ifdef ATH_DEBUG
5190 if (sc->sc_debug & ATH_DEBUG_RESET)
5191 ath_tx_dump(sc, &sc->sc_txq[i]);
5192 #endif /* ATH_DEBUG */
5193 if (reset_type == ATH_RESET_NOLOSS) {
5194 ath_tx_processq(sc, &sc->sc_txq[i], 0);
5195 ATH_TXQ_LOCK(&sc->sc_txq[i]);
5196 /*
5197 * Free the holding buffer; DMA is now
5198 * stopped.
5199 */
5200 ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5201 /*
5202 * Setup the link pointer to be the
5203 * _last_ buffer/descriptor in the list.
5204 * If there's nothing in the list, set it
5205 * to NULL.
5206 */
5207 bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5208 axq_q_s);
5209 if (bf_last != NULL) {
5210 ath_hal_gettxdesclinkptr(ah,
5211 bf_last->bf_lastds,
5212 &sc->sc_txq[i].axq_link);
5213 } else {
5214 sc->sc_txq[i].axq_link = NULL;
5215 }
5216 ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5217 } else
5218 ath_tx_draintxq(sc, &sc->sc_txq[i]);
5219 }
5220 }
5221 #ifdef ATH_DEBUG
5222 if (sc->sc_debug & ATH_DEBUG_RESET) {
5223 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5224 if (bf != NULL && bf->bf_m != NULL) {
5225 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5226 ath_hal_txprocdesc(ah, bf->bf_lastds,
5227 &bf->bf_status.ds_txstat) == HAL_OK);
5228 ieee80211_dump_pkt(&sc->sc_ic,
5229 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5230 0, -1);
5231 }
5232 }
5233 #endif /* ATH_DEBUG */
5234 sc->sc_wd_timer = 0;
5235 }
5236
5237 /*
5238 * Update internal state after a channel change.
5239 */
5240 static void
ath_chan_change(struct ath_softc * sc,struct ieee80211_channel * chan)5241 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5242 {
5243 enum ieee80211_phymode mode;
5244
5245 /*
5246 * Change channels and update the h/w rate map
5247 * if we're switching; e.g. 11a to 11b/g.
5248 */
5249 mode = ieee80211_chan2mode(chan);
5250 if (mode != sc->sc_curmode)
5251 ath_setcurmode(sc, mode);
5252 sc->sc_curchan = chan;
5253 }
5254
5255 /*
5256 * Set/change channels. If the channel is really being changed,
5257 * it's done by resetting the chip. To accomplish this we must
5258 * first cleanup any pending DMA, then restart stuff after a la
5259 * ath_init.
5260 */
5261 static int
ath_chan_set(struct ath_softc * sc,struct ieee80211_channel * chan)5262 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5263 {
5264 struct ieee80211com *ic = &sc->sc_ic;
5265 struct ath_hal *ah = sc->sc_ah;
5266 int ret = 0;
5267
5268 /* Treat this as an interface reset */
5269 ATH_PCU_UNLOCK_ASSERT(sc);
5270 ATH_UNLOCK_ASSERT(sc);
5271
5272 /* (Try to) stop TX/RX from occurring */
5273 taskqueue_block(sc->sc_tq);
5274
5275 ATH_PCU_LOCK(sc);
5276
5277 /* Disable interrupts */
5278 ath_hal_intrset(ah, 0);
5279
5280 /* Stop new RX/TX/interrupt completion */
5281 if (ath_reset_grablock(sc, 1) == 0) {
5282 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5283 __func__);
5284 }
5285
5286 /* Stop pending RX/TX completion */
5287 ath_txrx_stop_locked(sc);
5288
5289 ATH_PCU_UNLOCK(sc);
5290
5291 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5292 __func__, ieee80211_chan2ieee(ic, chan),
5293 chan->ic_freq, chan->ic_flags);
5294 if (chan != sc->sc_curchan) {
5295 HAL_STATUS status;
5296 /*
5297 * To switch channels clear any pending DMA operations;
5298 * wait long enough for the RX fifo to drain, reset the
5299 * hardware at the new frequency, and then re-enable
5300 * the relevant bits of the h/w.
5301 */
5302 #if 0
5303 ath_hal_intrset(ah, 0); /* disable interrupts */
5304 #endif
5305 ath_stoprecv(sc, 1); /* turn off frame recv */
5306 /*
5307 * First, handle completed TX/RX frames.
5308 */
5309 ath_rx_flush(sc);
5310 ath_draintxq(sc, ATH_RESET_NOLOSS);
5311 /*
5312 * Next, flush the non-scheduled frames.
5313 */
5314 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
5315
5316 ath_update_chainmasks(sc, chan);
5317 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5318 sc->sc_cur_rxchainmask);
5319 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
5320 HAL_RESET_NORMAL, &status)) {
5321 device_printf(sc->sc_dev, "%s: unable to reset "
5322 "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5323 __func__, ieee80211_chan2ieee(ic, chan),
5324 chan->ic_freq, chan->ic_flags, status);
5325 ret = EIO;
5326 goto finish;
5327 }
5328 sc->sc_diversity = ath_hal_getdiversity(ah);
5329
5330 ATH_RX_LOCK(sc);
5331 sc->sc_rx_stopped = 1;
5332 sc->sc_rx_resetted = 1;
5333 ATH_RX_UNLOCK(sc);
5334
5335 /* Quiet time handling - ensure we resync */
5336 ath_vap_clear_quiet_ie(sc);
5337
5338 /* Let DFS at it in case it's a DFS channel */
5339 ath_dfs_radar_enable(sc, chan);
5340
5341 /* Let spectral at in case spectral is enabled */
5342 ath_spectral_enable(sc, chan);
5343
5344 /*
5345 * Let bluetooth coexistence at in case it's needed for this
5346 * channel
5347 */
5348 ath_btcoex_enable(sc, ic->ic_curchan);
5349
5350 /*
5351 * If we're doing TDMA, enforce the TXOP limitation for chips
5352 * that support it.
5353 */
5354 if (sc->sc_hasenforcetxop && sc->sc_tdma)
5355 ath_hal_setenforcetxop(sc->sc_ah, 1);
5356 else
5357 ath_hal_setenforcetxop(sc->sc_ah, 0);
5358
5359 /*
5360 * Re-enable rx framework.
5361 */
5362 if (ath_startrecv(sc) != 0) {
5363 device_printf(sc->sc_dev,
5364 "%s: unable to restart recv logic\n", __func__);
5365 ret = EIO;
5366 goto finish;
5367 }
5368
5369 /*
5370 * Change channels and update the h/w rate map
5371 * if we're switching; e.g. 11a to 11b/g.
5372 */
5373 ath_chan_change(sc, chan);
5374
5375 /*
5376 * Reset clears the beacon timers; reset them
5377 * here if needed.
5378 */
5379 if (sc->sc_beacons) { /* restart beacons */
5380 #ifdef IEEE80211_SUPPORT_TDMA
5381 if (sc->sc_tdma)
5382 ath_tdma_config(sc, NULL);
5383 else
5384 #endif
5385 ath_beacon_config(sc, NULL);
5386 }
5387
5388 /*
5389 * Re-enable interrupts.
5390 */
5391 #if 0
5392 ath_hal_intrset(ah, sc->sc_imask);
5393 #endif
5394 }
5395
5396 finish:
5397 ATH_PCU_LOCK(sc);
5398 sc->sc_inreset_cnt--;
5399 /* XXX only do this if sc_inreset_cnt == 0? */
5400 ath_hal_intrset(ah, sc->sc_imask);
5401 ATH_PCU_UNLOCK(sc);
5402
5403 ath_txrx_start(sc);
5404 /* XXX ath_start? */
5405
5406 return ret;
5407 }
5408
5409 /*
5410 * Periodically recalibrate the PHY to account
5411 * for temperature/environment changes.
5412 */
5413 static void
ath_calibrate(void * arg)5414 ath_calibrate(void *arg)
5415 {
5416 struct ath_softc *sc = arg;
5417 struct ath_hal *ah = sc->sc_ah;
5418 struct ieee80211com *ic = &sc->sc_ic;
5419 HAL_BOOL longCal, isCalDone = AH_TRUE;
5420 HAL_BOOL aniCal, shortCal = AH_FALSE;
5421 int nextcal;
5422
5423 ATH_LOCK_ASSERT(sc);
5424
5425 /*
5426 * Force the hardware awake for ANI work.
5427 */
5428 ath_power_set_power_state(sc, HAL_PM_AWAKE);
5429
5430 /* Skip trying to do this if we're in reset */
5431 if (sc->sc_inreset_cnt)
5432 goto restart;
5433
5434 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
5435 goto restart;
5436 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5437 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5438 if (sc->sc_doresetcal)
5439 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5440
5441 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5442 if (aniCal) {
5443 sc->sc_stats.ast_ani_cal++;
5444 sc->sc_lastani = ticks;
5445 ath_hal_ani_poll(ah, sc->sc_curchan);
5446 }
5447
5448 if (longCal) {
5449 sc->sc_stats.ast_per_cal++;
5450 sc->sc_lastlongcal = ticks;
5451 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5452 /*
5453 * Rfgain is out of bounds, reset the chip
5454 * to load new gain values.
5455 */
5456 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5457 "%s: rfgain change\n", __func__);
5458 sc->sc_stats.ast_per_rfgain++;
5459 sc->sc_resetcal = 0;
5460 sc->sc_doresetcal = AH_TRUE;
5461 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5462 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5463 ath_power_restore_power_state(sc);
5464 return;
5465 }
5466 /*
5467 * If this long cal is after an idle period, then
5468 * reset the data collection state so we start fresh.
5469 */
5470 if (sc->sc_resetcal) {
5471 (void) ath_hal_calreset(ah, sc->sc_curchan);
5472 sc->sc_lastcalreset = ticks;
5473 sc->sc_lastshortcal = ticks;
5474 sc->sc_resetcal = 0;
5475 sc->sc_doresetcal = AH_TRUE;
5476 }
5477 }
5478
5479 /* Only call if we're doing a short/long cal, not for ANI calibration */
5480 if (shortCal || longCal) {
5481 isCalDone = AH_FALSE;
5482 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5483 if (longCal) {
5484 /*
5485 * Calibrate noise floor data again in case of change.
5486 */
5487 ath_hal_process_noisefloor(ah);
5488 }
5489 } else {
5490 DPRINTF(sc, ATH_DEBUG_ANY,
5491 "%s: calibration of channel %u failed\n",
5492 __func__, sc->sc_curchan->ic_freq);
5493 sc->sc_stats.ast_per_calfail++;
5494 }
5495 /*
5496 * XXX TODO: get the NF calibration results from the HAL.
5497 * If we failed NF cal then schedule a hard reset to potentially
5498 * un-freeze the PHY.
5499 *
5500 * Note we have to be careful here to not get stuck in an
5501 * infinite NIC restart. Ideally we'd not restart if we
5502 * failed the first NF cal - that /can/ fail sometimes in
5503 * a noisy environment.
5504 *
5505 * Instead, we should likely temporarily shorten the longCal
5506 * period to happen pretty quickly and if a subsequent one
5507 * fails, do a full reset.
5508 */
5509 if (shortCal)
5510 sc->sc_lastshortcal = ticks;
5511 }
5512 if (!isCalDone) {
5513 restart:
5514 /*
5515 * Use a shorter interval to potentially collect multiple
5516 * data samples required to complete calibration. Once
5517 * we're told the work is done we drop back to a longer
5518 * interval between requests. We're more aggressive doing
5519 * work when operating as an AP to improve operation right
5520 * after startup.
5521 */
5522 sc->sc_lastshortcal = ticks;
5523 nextcal = ath_shortcalinterval*hz/1000;
5524 if (sc->sc_opmode != HAL_M_HOSTAP)
5525 nextcal *= 10;
5526 sc->sc_doresetcal = AH_TRUE;
5527 } else {
5528 /* nextcal should be the shortest time for next event */
5529 nextcal = ath_longcalinterval*hz;
5530 if (sc->sc_lastcalreset == 0)
5531 sc->sc_lastcalreset = sc->sc_lastlongcal;
5532 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5533 sc->sc_resetcal = 1; /* setup reset next trip */
5534 sc->sc_doresetcal = AH_FALSE;
5535 }
5536 /* ANI calibration may occur more often than short/long/resetcal */
5537 if (ath_anicalinterval > 0)
5538 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5539
5540 if (nextcal != 0) {
5541 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5542 __func__, nextcal, isCalDone ? "" : "!");
5543 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5544 } else {
5545 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5546 __func__);
5547 /* NB: don't rearm timer */
5548 }
5549 /*
5550 * Restore power state now that we're done.
5551 */
5552 ath_power_restore_power_state(sc);
5553 }
5554
5555 static void
ath_scan_start(struct ieee80211com * ic)5556 ath_scan_start(struct ieee80211com *ic)
5557 {
5558 struct ath_softc *sc = ic->ic_softc;
5559 struct ath_hal *ah = sc->sc_ah;
5560 u_int32_t rfilt;
5561
5562 /* XXX calibration timer? */
5563 /* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5564
5565 ATH_LOCK(sc);
5566 sc->sc_scanning = 1;
5567 sc->sc_syncbeacon = 0;
5568 rfilt = ath_calcrxfilter(sc);
5569 ATH_UNLOCK(sc);
5570
5571 ATH_PCU_LOCK(sc);
5572 ath_hal_setrxfilter(ah, rfilt);
5573 ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5574 ATH_PCU_UNLOCK(sc);
5575
5576 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5577 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5578 }
5579
5580 static void
ath_scan_end(struct ieee80211com * ic)5581 ath_scan_end(struct ieee80211com *ic)
5582 {
5583 struct ath_softc *sc = ic->ic_softc;
5584 struct ath_hal *ah = sc->sc_ah;
5585 u_int32_t rfilt;
5586
5587 ATH_LOCK(sc);
5588 sc->sc_scanning = 0;
5589 rfilt = ath_calcrxfilter(sc);
5590 ATH_UNLOCK(sc);
5591
5592 ATH_PCU_LOCK(sc);
5593 ath_hal_setrxfilter(ah, rfilt);
5594 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5595
5596 ath_hal_process_noisefloor(ah);
5597 ATH_PCU_UNLOCK(sc);
5598
5599 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5600 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5601 sc->sc_curaid);
5602 }
5603
5604 #ifdef ATH_ENABLE_11N
5605 /*
5606 * For now, just do a channel change.
5607 *
5608 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5609 * control state and resetting the hardware without dropping frames out
5610 * of the queue.
5611 *
5612 * The unfortunate trouble here is making absolutely sure that the
5613 * channel width change has propagated enough so the hardware
5614 * absolutely isn't handed bogus frames for it's current operating
5615 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5616 * does occur in parallel, we need to make certain we've blocked
5617 * any further ongoing TX (and RX, that can cause raw TX)
5618 * before we do this.
5619 */
5620 static void
ath_update_chw(struct ieee80211com * ic)5621 ath_update_chw(struct ieee80211com *ic)
5622 {
5623 struct ath_softc *sc = ic->ic_softc;
5624
5625 //DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5626 device_printf(sc->sc_dev, "%s: called\n", __func__);
5627
5628 /*
5629 * XXX TODO: schedule a tasklet that stops things without freeing,
5630 * walks the now stopped TX queue(s) looking for frames to retry
5631 * as if we TX filtered them (whch may mean dropping non-ampdu frames!)
5632 * but okay) then place them back on the software queue so they
5633 * can have the rate control lookup done again.
5634 */
5635 ath_set_channel(ic);
5636 }
5637 #endif /* ATH_ENABLE_11N */
5638
5639 /*
5640 * This is called by the beacon parsing routine in the receive
5641 * path to update the current quiet time information provided by
5642 * an AP.
5643 *
5644 * This is STA specific, it doesn't take the AP TBTT/beacon slot
5645 * offset into account.
5646 *
5647 * The quiet IE doesn't control the /now/ beacon interval - it
5648 * controls the upcoming beacon interval. So, when tbtt=1,
5649 * the quiet element programming shall be for the next beacon
5650 * interval. There's no tbtt=0 behaviour defined, so don't.
5651 *
5652 * Since we're programming the next quiet interval, we have
5653 * to keep in mind what we will see when the next beacon
5654 * is received with potentially a quiet IE. For example, if
5655 * quiet_period is 1, then we are always getting a quiet interval
5656 * each TBTT - so if we just program it in upon each beacon received,
5657 * it will constantly reflect the "next" TBTT and we will never
5658 * let the counter stay programmed correctly.
5659 *
5660 * So:
5661 * + the first time we see the quiet IE, program it and store
5662 * the details somewhere;
5663 * + if the quiet parameters don't change (ie, period/duration/offset)
5664 * then just leave the programming enabled;
5665 * + (we can "skip" beacons, so don't try to enforce tbttcount unless
5666 * you're willing to also do the skipped beacon math);
5667 * + if the quiet IE is removed, then halt quiet time.
5668 */
5669 static int
ath_set_quiet_ie(struct ieee80211_node * ni,uint8_t * ie)5670 ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie)
5671 {
5672 struct ieee80211_quiet_ie *q;
5673 struct ieee80211vap *vap = ni->ni_vap;
5674 struct ath_vap *avp = ATH_VAP(vap);
5675 struct ieee80211com *ic = vap->iv_ic;
5676 struct ath_softc *sc = ic->ic_softc;
5677
5678 if (vap->iv_opmode != IEEE80211_M_STA)
5679 return (0);
5680
5681 /* Verify we have a quiet time IE */
5682 if (ie == NULL) {
5683 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5684 "%s: called; NULL IE, disabling\n", __func__);
5685
5686 ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE);
5687 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
5688 return (0);
5689 }
5690
5691 /* If we do, verify it's actually legit */
5692 if (ie[0] != IEEE80211_ELEMID_QUIET)
5693 return 0;
5694 if (ie[1] != 6)
5695 return 0;
5696
5697 /* Note: this belongs in net80211, parsed out and everything */
5698 q = (void *) ie;
5699
5700 /*
5701 * Compare what we have stored to what we last saw.
5702 * If they're the same then don't program in anything.
5703 */
5704 if ((q->period == avp->quiet_ie.period) &&
5705 (le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) &&
5706 (le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset)))
5707 return (0);
5708
5709 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5710 "%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n",
5711 __func__,
5712 (int) q->tbttcount,
5713 (int) q->period,
5714 (int) le16dec(&q->duration),
5715 (int) le16dec(&q->offset));
5716
5717 /*
5718 * Don't program in garbage values.
5719 */
5720 if ((le16dec(&q->duration) == 0) ||
5721 (le16dec(&q->duration) >= ni->ni_intval)) {
5722 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5723 "%s: invalid duration (%d)\n", __func__,
5724 le16dec(&q->duration));
5725 return (0);
5726 }
5727 /*
5728 * Can have a 0 offset, but not a duration - so just check
5729 * they don't exceed the intval.
5730 */
5731 if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) {
5732 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5733 "%s: invalid duration + offset (%d+%d)\n", __func__,
5734 le16dec(&q->duration),
5735 le16dec(&q->offset));
5736 return (0);
5737 }
5738 if (q->tbttcount == 0) {
5739 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5740 "%s: invalid tbttcount (0)\n", __func__);
5741 return (0);
5742 }
5743 if (q->period == 0) {
5744 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5745 "%s: invalid period (0)\n", __func__);
5746 return (0);
5747 }
5748
5749 /*
5750 * This is a new quiet time IE config, so wait until tbttcount
5751 * is equal to 1, and program it in.
5752 */
5753 if (q->tbttcount == 1) {
5754 DPRINTF(sc, ATH_DEBUG_QUIETIE,
5755 "%s: programming\n", __func__);
5756 ath_hal_set_quiet(sc->sc_ah,
5757 q->period * ni->ni_intval, /* convert to TU */
5758 le16dec(&q->duration), /* already in TU */
5759 le16dec(&q->offset) + ni->ni_intval,
5760 HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF);
5761 /*
5762 * Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for
5763 * STA mode
5764 */
5765
5766 /* Update local state */
5767 memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie));
5768 }
5769
5770 return (0);
5771 }
5772
5773 static void
ath_set_channel(struct ieee80211com * ic)5774 ath_set_channel(struct ieee80211com *ic)
5775 {
5776 struct ath_softc *sc = ic->ic_softc;
5777
5778 ATH_LOCK(sc);
5779 ath_power_set_power_state(sc, HAL_PM_AWAKE);
5780 ATH_UNLOCK(sc);
5781
5782 (void) ath_chan_set(sc, ic->ic_curchan);
5783 /*
5784 * If we are returning to our bss channel then mark state
5785 * so the next recv'd beacon's tsf will be used to sync the
5786 * beacon timers. Note that since we only hear beacons in
5787 * sta/ibss mode this has no effect in other operating modes.
5788 */
5789 ATH_LOCK(sc);
5790 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5791 sc->sc_syncbeacon = 1;
5792 ath_power_restore_power_state(sc);
5793 ATH_UNLOCK(sc);
5794 }
5795
5796 /*
5797 * Walk the vap list and check if there any vap's in RUN state.
5798 */
5799 static int
ath_isanyrunningvaps(struct ieee80211vap * this)5800 ath_isanyrunningvaps(struct ieee80211vap *this)
5801 {
5802 struct ieee80211com *ic = this->iv_ic;
5803 struct ieee80211vap *vap;
5804
5805 IEEE80211_LOCK_ASSERT(ic);
5806
5807 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5808 if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5809 return 1;
5810 }
5811 return 0;
5812 }
5813
5814 static int
ath_newstate(struct ieee80211vap * vap,enum ieee80211_state nstate,int arg)5815 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5816 {
5817 struct ieee80211com *ic = vap->iv_ic;
5818 struct ath_softc *sc = ic->ic_softc;
5819 struct ath_vap *avp = ATH_VAP(vap);
5820 struct ath_hal *ah = sc->sc_ah;
5821 struct ieee80211_node *ni = NULL;
5822 int i, error, stamode;
5823 u_int32_t rfilt;
5824 int csa_run_transition = 0;
5825 enum ieee80211_state ostate = vap->iv_state;
5826
5827 static const HAL_LED_STATE leds[] = {
5828 HAL_LED_INIT, /* IEEE80211_S_INIT */
5829 HAL_LED_SCAN, /* IEEE80211_S_SCAN */
5830 HAL_LED_AUTH, /* IEEE80211_S_AUTH */
5831 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
5832 HAL_LED_RUN, /* IEEE80211_S_CAC */
5833 HAL_LED_RUN, /* IEEE80211_S_RUN */
5834 HAL_LED_RUN, /* IEEE80211_S_CSA */
5835 HAL_LED_RUN, /* IEEE80211_S_SLEEP */
5836 };
5837
5838 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5839 ieee80211_state_name[ostate],
5840 ieee80211_state_name[nstate]);
5841
5842 /*
5843 * net80211 _should_ have the comlock asserted at this point.
5844 * There are some comments around the calls to vap->iv_newstate
5845 * which indicate that it (newstate) may end up dropping the
5846 * lock. This and the subsequent lock assert check after newstate
5847 * are an attempt to catch these and figure out how/why.
5848 */
5849 IEEE80211_LOCK_ASSERT(ic);
5850
5851 /* Before we touch the hardware - wake it up */
5852 ATH_LOCK(sc);
5853 /*
5854 * If the NIC is in anything other than SLEEP state,
5855 * we need to ensure that self-generated frames are
5856 * set for PWRMGT=0. Otherwise we may end up with
5857 * strange situations.
5858 *
5859 * XXX TODO: is this actually the case? :-)
5860 */
5861 if (nstate != IEEE80211_S_SLEEP)
5862 ath_power_setselfgen(sc, HAL_PM_AWAKE);
5863
5864 /*
5865 * Now, wake the thing up.
5866 */
5867 ath_power_set_power_state(sc, HAL_PM_AWAKE);
5868
5869 /*
5870 * And stop the calibration callout whilst we have
5871 * ATH_LOCK held.
5872 */
5873 callout_stop(&sc->sc_cal_ch);
5874 ATH_UNLOCK(sc);
5875
5876 if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5877 csa_run_transition = 1;
5878
5879 ath_hal_setledstate(ah, leds[nstate]); /* set LED */
5880
5881 if (nstate == IEEE80211_S_SCAN) {
5882 /*
5883 * Scanning: turn off beacon miss and don't beacon.
5884 * Mark beacon state so when we reach RUN state we'll
5885 * [re]setup beacons. Unblock the task q thread so
5886 * deferred interrupt processing is done.
5887 */
5888
5889 /* Ensure we stay awake during scan */
5890 ATH_LOCK(sc);
5891 ath_power_setselfgen(sc, HAL_PM_AWAKE);
5892 ath_power_setpower(sc, HAL_PM_AWAKE, 1);
5893 ATH_UNLOCK(sc);
5894
5895 ath_hal_intrset(ah,
5896 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5897 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5898 sc->sc_beacons = 0;
5899 taskqueue_unblock(sc->sc_tq);
5900 }
5901
5902 ni = ieee80211_ref_node(vap->iv_bss);
5903 rfilt = ath_calcrxfilter(sc);
5904 stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5905 vap->iv_opmode == IEEE80211_M_AHDEMO ||
5906 vap->iv_opmode == IEEE80211_M_IBSS);
5907
5908 /*
5909 * XXX Dont need to do this (and others) if we've transitioned
5910 * from SLEEP->RUN.
5911 */
5912 if (stamode && nstate == IEEE80211_S_RUN) {
5913 sc->sc_curaid = ni->ni_associd;
5914 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5915 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5916 }
5917 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5918 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5919 ath_hal_setrxfilter(ah, rfilt);
5920
5921 /* XXX is this to restore keycache on resume? */
5922 if (vap->iv_opmode != IEEE80211_M_STA &&
5923 (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5924 for (i = 0; i < IEEE80211_WEP_NKID; i++)
5925 if (ath_hal_keyisvalid(ah, i))
5926 ath_hal_keysetmac(ah, i, ni->ni_bssid);
5927 }
5928
5929 /*
5930 * Invoke the parent method to do net80211 work.
5931 */
5932 error = avp->av_newstate(vap, nstate, arg);
5933 if (error != 0)
5934 goto bad;
5935
5936 /*
5937 * See above: ensure av_newstate() doesn't drop the lock
5938 * on us.
5939 */
5940 IEEE80211_LOCK_ASSERT(ic);
5941
5942 /*
5943 * XXX TODO: if nstate is _S_CAC, then we should disable
5944 * ACK processing until CAC is completed.
5945 */
5946
5947 /*
5948 * XXX TODO: if we're on a passive channel, then we should
5949 * not allow any ACKs or self-generated frames until we hear
5950 * a beacon. Unfortunately there isn't a notification from
5951 * net80211 so perhaps we could slot that particular check
5952 * into the mgmt receive path and just ensure that we clear
5953 * it on RX of beacons in passive mode (and only clear it
5954 * once, obviously.)
5955 */
5956
5957 /*
5958 * XXX TODO: net80211 should be tracking whether channels
5959 * have heard beacons and are thus considered "OK" for
5960 * transmitting - and then inform the driver about this
5961 * state change. That way if we hear an AP go quiet
5962 * (and nothing else is beaconing on a channel) the
5963 * channel can go back to being passive until another
5964 * beacon is heard.
5965 */
5966
5967 /*
5968 * XXX TODO: if nstate is _S_CAC, then we should disable
5969 * ACK processing until CAC is completed.
5970 */
5971
5972 /*
5973 * XXX TODO: if we're on a passive channel, then we should
5974 * not allow any ACKs or self-generated frames until we hear
5975 * a beacon. Unfortunately there isn't a notification from
5976 * net80211 so perhaps we could slot that particular check
5977 * into the mgmt receive path and just ensure that we clear
5978 * it on RX of beacons in passive mode (and only clear it
5979 * once, obviously.)
5980 */
5981
5982 /*
5983 * XXX TODO: net80211 should be tracking whether channels
5984 * have heard beacons and are thus considered "OK" for
5985 * transmitting - and then inform the driver about this
5986 * state change. That way if we hear an AP go quiet
5987 * (and nothing else is beaconing on a channel) the
5988 * channel can go back to being passive until another
5989 * beacon is heard.
5990 */
5991
5992 if (nstate == IEEE80211_S_RUN) {
5993 /* NB: collect bss node again, it may have changed */
5994 ieee80211_free_node(ni);
5995 ni = ieee80211_ref_node(vap->iv_bss);
5996
5997 DPRINTF(sc, ATH_DEBUG_STATE,
5998 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5999 "capinfo 0x%04x chan %d\n", __func__,
6000 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6001 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6002
6003 switch (vap->iv_opmode) {
6004 #ifdef IEEE80211_SUPPORT_TDMA
6005 case IEEE80211_M_AHDEMO:
6006 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6007 break;
6008 /* fall thru... */
6009 #endif
6010 case IEEE80211_M_HOSTAP:
6011 case IEEE80211_M_IBSS:
6012 case IEEE80211_M_MBSS:
6013
6014 /*
6015 * TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.)
6016 * For channels that are in CAC, we may have disabled
6017 * this during CAC to ensure we don't ACK frames
6018 * sent to us.
6019 */
6020
6021 /*
6022 * Allocate and setup the beacon frame.
6023 *
6024 * Stop any previous beacon DMA. This may be
6025 * necessary, for example, when an ibss merge
6026 * causes reconfiguration; there will be a state
6027 * transition from RUN->RUN that means we may
6028 * be called with beacon transmission active.
6029 */
6030 ath_hal_stoptxdma(ah, sc->sc_bhalq);
6031
6032 error = ath_beacon_alloc(sc, ni);
6033 if (error != 0)
6034 goto bad;
6035 /*
6036 * If joining an adhoc network defer beacon timer
6037 * configuration to the next beacon frame so we
6038 * have a current TSF to use. Otherwise we're
6039 * starting an ibss/bss so there's no need to delay;
6040 * if this is the first vap moving to RUN state, then
6041 * beacon state needs to be [re]configured.
6042 */
6043 if (vap->iv_opmode == IEEE80211_M_IBSS &&
6044 ni->ni_tstamp.tsf != 0) {
6045 sc->sc_syncbeacon = 1;
6046 } else if (!sc->sc_beacons) {
6047 #ifdef IEEE80211_SUPPORT_TDMA
6048 if (vap->iv_caps & IEEE80211_C_TDMA)
6049 ath_tdma_config(sc, vap);
6050 else
6051 #endif
6052 ath_beacon_config(sc, vap);
6053 sc->sc_beacons = 1;
6054 }
6055 break;
6056 case IEEE80211_M_STA:
6057 /*
6058 * Defer beacon timer configuration to the next
6059 * beacon frame so we have a current TSF to use
6060 * (any TSF collected when scanning is likely old).
6061 * However if it's due to a CSA -> RUN transition,
6062 * force a beacon update so we pick up a lack of
6063 * beacons from an AP in CAC and thus force a
6064 * scan.
6065 *
6066 * And, there's also corner cases here where
6067 * after a scan, the AP may have disappeared.
6068 * In that case, we may not receive an actual
6069 * beacon to update the beacon timer and thus we
6070 * won't get notified of the missing beacons.
6071 *
6072 * Also, don't do any of this if we're not running
6073 * with hardware beacon support, as that'll interfere
6074 * with an AP VAP.
6075 */
6076 if (ostate != IEEE80211_S_RUN &&
6077 ostate != IEEE80211_S_SLEEP) {
6078
6079 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6080 DPRINTF(sc, ATH_DEBUG_BEACON,
6081 "%s: STA; syncbeacon=1\n", __func__);
6082 sc->sc_syncbeacon = 1;
6083 if (csa_run_transition)
6084 ath_beacon_config(sc, vap);
6085 }
6086
6087 /* Quiet time handling - ensure we resync */
6088 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6089
6090 /*
6091 * PR: kern/175227
6092 *
6093 * Reconfigure beacons during reset; as otherwise
6094 * we won't get the beacon timers reprogrammed
6095 * after a reset and thus we won't pick up a
6096 * beacon miss interrupt.
6097 *
6098 * Hopefully we'll see a beacon before the BMISS
6099 * timer fires (too often), leading to a STA
6100 * disassociation.
6101 */
6102 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6103 sc->sc_beacons = 1;
6104 }
6105 }
6106 break;
6107 case IEEE80211_M_MONITOR:
6108 /*
6109 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6110 * transitions so we must re-enable interrupts here to
6111 * handle the case of a single monitor mode vap.
6112 */
6113 ath_hal_intrset(ah, sc->sc_imask);
6114 break;
6115 case IEEE80211_M_WDS:
6116 break;
6117 default:
6118 break;
6119 }
6120 /*
6121 * Let the hal process statistics collected during a
6122 * scan so it can provide calibrated noise floor data.
6123 */
6124 ath_hal_process_noisefloor(ah);
6125 /*
6126 * Reset rssi stats; maybe not the best place...
6127 */
6128 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6129 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6130 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6131
6132 /*
6133 * Force awake for RUN mode.
6134 */
6135 ATH_LOCK(sc);
6136 ath_power_setselfgen(sc, HAL_PM_AWAKE);
6137 ath_power_setpower(sc, HAL_PM_AWAKE, 1);
6138
6139 /*
6140 * Finally, start any timers and the task q thread
6141 * (in case we didn't go through SCAN state).
6142 */
6143 if (ath_longcalinterval != 0) {
6144 /* start periodic recalibration timer */
6145 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6146 } else {
6147 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6148 "%s: calibration disabled\n", __func__);
6149 }
6150 ATH_UNLOCK(sc);
6151
6152 taskqueue_unblock(sc->sc_tq);
6153 } else if (nstate == IEEE80211_S_INIT) {
6154 /* Quiet time handling - ensure we resync */
6155 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6156
6157 /*
6158 * If there are no vaps left in RUN state then
6159 * shutdown host/driver operation:
6160 * o disable interrupts
6161 * o disable the task queue thread
6162 * o mark beacon processing as stopped
6163 */
6164 if (!ath_isanyrunningvaps(vap)) {
6165 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6166 /* disable interrupts */
6167 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6168 taskqueue_block(sc->sc_tq);
6169 sc->sc_beacons = 0;
6170 }
6171
6172 /*
6173 * For at least STA mode we likely should clear the ANI
6174 * and NF calibration state and allow the NIC/HAL to figure
6175 * out optimal parameters at runtime. Otherwise if we
6176 * disassociate due to interference / deafness it may persist
6177 * when we reconnect.
6178 *
6179 * Note: may need to do this for other states too, not just
6180 * _S_INIT.
6181 */
6182 #ifdef IEEE80211_SUPPORT_TDMA
6183 ath_hal_setcca(ah, AH_TRUE);
6184 #endif
6185 } else if (nstate == IEEE80211_S_SLEEP) {
6186 /* We're going to sleep, so transition appropriately */
6187 /* For now, only do this if we're a single STA vap */
6188 if (sc->sc_nvaps == 1 &&
6189 vap->iv_opmode == IEEE80211_M_STA) {
6190 DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6191 ATH_LOCK(sc);
6192 /*
6193 * Always at least set the self-generated
6194 * frame config to set PWRMGT=1.
6195 */
6196 ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6197
6198 /*
6199 * If we're not syncing beacons, transition
6200 * to NETWORK_SLEEP.
6201 *
6202 * We stay awake if syncbeacon > 0 in case
6203 * we need to listen for some beacons otherwise
6204 * our beacon timer config may be wrong.
6205 */
6206 if (sc->sc_syncbeacon == 0) {
6207 ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1);
6208 }
6209 ATH_UNLOCK(sc);
6210 }
6211
6212 /*
6213 * Note - the ANI/calibration timer isn't re-enabled during
6214 * network sleep for now. One unfortunate side-effect is that
6215 * the PHY/airtime statistics aren't gathered on the channel
6216 * but I haven't yet tested to see if reading those registers
6217 * CAN occur during network sleep.
6218 *
6219 * This should be revisited in a future commit, even if it's
6220 * just to split out the airtime polling from ANI/calibration.
6221 */
6222 } else if (nstate == IEEE80211_S_SCAN) {
6223 /* Quiet time handling - ensure we resync */
6224 memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6225
6226 /*
6227 * If we're in scan mode then startpcureceive() is
6228 * hopefully being called with "reset ANI" for this channel;
6229 * but once we attempt to reassociate we program in the previous
6230 * ANI values and.. not do any calibration until we're running.
6231 * This may mean we stay deaf unless we can associate successfully.
6232 *
6233 * So do kick off the cal timer to get NF/ANI going.
6234 */
6235 ATH_LOCK(sc);
6236 if (ath_longcalinterval != 0) {
6237 /* start periodic recalibration timer */
6238 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6239 } else {
6240 DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6241 "%s: calibration disabled\n", __func__);
6242 }
6243 ATH_UNLOCK(sc);
6244 }
6245 bad:
6246 ieee80211_free_node(ni);
6247
6248 /*
6249 * Restore the power state - either to what it was, or
6250 * to network_sleep if it's alright.
6251 */
6252 ATH_LOCK(sc);
6253 ath_power_restore_power_state(sc);
6254 ATH_UNLOCK(sc);
6255 return error;
6256 }
6257
6258 /*
6259 * Allocate a key cache slot to the station so we can
6260 * setup a mapping from key index to node. The key cache
6261 * slot is needed for managing antenna state and for
6262 * compression when stations do not use crypto. We do
6263 * it uniliaterally here; if crypto is employed this slot
6264 * will be reassigned.
6265 */
6266 static void
ath_setup_stationkey(struct ieee80211_node * ni)6267 ath_setup_stationkey(struct ieee80211_node *ni)
6268 {
6269 struct ieee80211vap *vap = ni->ni_vap;
6270 struct ath_softc *sc = vap->iv_ic->ic_softc;
6271 ieee80211_keyix keyix, rxkeyix;
6272
6273 /* XXX should take a locked ref to vap->iv_bss */
6274 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6275 /*
6276 * Key cache is full; we'll fall back to doing
6277 * the more expensive lookup in software. Note
6278 * this also means no h/w compression.
6279 */
6280 /* XXX msg+statistic */
6281 } else {
6282 /* XXX locking? */
6283 ni->ni_ucastkey.wk_keyix = keyix;
6284 ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6285 /* NB: must mark device key to get called back on delete */
6286 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6287 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6288 /* NB: this will create a pass-thru key entry */
6289 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6290 }
6291 }
6292
6293 /*
6294 * Setup driver-specific state for a newly associated node.
6295 * Note that we're called also on a re-associate, the isnew
6296 * param tells us if this is the first time or not.
6297 */
6298 static void
ath_newassoc(struct ieee80211_node * ni,int isnew)6299 ath_newassoc(struct ieee80211_node *ni, int isnew)
6300 {
6301 struct ath_node *an = ATH_NODE(ni);
6302 struct ieee80211vap *vap = ni->ni_vap;
6303 struct ath_softc *sc = vap->iv_ic->ic_softc;
6304 const struct ieee80211_txparam *tp = ni->ni_txparms;
6305
6306 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6307 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6308
6309 DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6310 __func__,
6311 ni->ni_macaddr,
6312 ":",
6313 isnew,
6314 an->an_is_powersave);
6315
6316 ATH_NODE_LOCK(an);
6317 ath_rate_newassoc(sc, an, isnew);
6318 ATH_NODE_UNLOCK(an);
6319
6320 if (isnew &&
6321 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6322 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6323 ath_setup_stationkey(ni);
6324
6325 /*
6326 * If we're reassociating, make sure that any paused queues
6327 * get unpaused.
6328 *
6329 * Now, we may have frames in the hardware queue for this node.
6330 * So if we are reassociating and there are frames in the queue,
6331 * we need to go through the cleanup path to ensure that they're
6332 * marked as non-aggregate.
6333 */
6334 if (! isnew) {
6335 DPRINTF(sc, ATH_DEBUG_NODE,
6336 "%s: %6D: reassoc; is_powersave=%d\n",
6337 __func__,
6338 ni->ni_macaddr,
6339 ":",
6340 an->an_is_powersave);
6341
6342 /* XXX for now, we can't hold the lock across assoc */
6343 ath_tx_node_reassoc(sc, an);
6344
6345 /* XXX for now, we can't hold the lock across wakeup */
6346 if (an->an_is_powersave)
6347 ath_tx_node_wakeup(sc, an);
6348 }
6349 }
6350
6351 static int
ath_setregdomain(struct ieee80211com * ic,struct ieee80211_regdomain * reg,int nchans,struct ieee80211_channel chans[])6352 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6353 int nchans, struct ieee80211_channel chans[])
6354 {
6355 struct ath_softc *sc = ic->ic_softc;
6356 struct ath_hal *ah = sc->sc_ah;
6357 HAL_STATUS status;
6358
6359 DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6360 "%s: rd %u cc %u location %c%s\n",
6361 __func__, reg->regdomain, reg->country, reg->location,
6362 reg->ecm ? " ecm" : "");
6363
6364 status = ath_hal_set_channels(ah, chans, nchans,
6365 reg->country, reg->regdomain);
6366 if (status != HAL_OK) {
6367 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6368 __func__, status);
6369 return EINVAL; /* XXX */
6370 }
6371
6372 return 0;
6373 }
6374
6375 static void
ath_getradiocaps(struct ieee80211com * ic,int maxchans,int * nchans,struct ieee80211_channel chans[])6376 ath_getradiocaps(struct ieee80211com *ic,
6377 int maxchans, int *nchans, struct ieee80211_channel chans[])
6378 {
6379 struct ath_softc *sc = ic->ic_softc;
6380 struct ath_hal *ah = sc->sc_ah;
6381
6382 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6383 __func__, SKU_DEBUG, CTRY_DEFAULT);
6384
6385 /* XXX check return */
6386 (void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6387 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6388
6389 }
6390
6391 static int
ath_getchannels(struct ath_softc * sc)6392 ath_getchannels(struct ath_softc *sc)
6393 {
6394 struct ieee80211com *ic = &sc->sc_ic;
6395 struct ath_hal *ah = sc->sc_ah;
6396 HAL_STATUS status;
6397
6398 /*
6399 * Collect channel set based on EEPROM contents.
6400 */
6401 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6402 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6403 if (status != HAL_OK) {
6404 device_printf(sc->sc_dev,
6405 "%s: unable to collect channel list from hal, status %d\n",
6406 __func__, status);
6407 return EINVAL;
6408 }
6409 (void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6410 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
6411 /* XXX map Atheros sku's to net80211 SKU's */
6412 /* XXX net80211 types too small */
6413 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6414 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6415 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
6416 ic->ic_regdomain.isocc[1] = ' ';
6417
6418 ic->ic_regdomain.ecm = 1;
6419 ic->ic_regdomain.location = 'I';
6420
6421 DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6422 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6423 __func__, sc->sc_eerd, sc->sc_eecc,
6424 ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6425 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6426 return 0;
6427 }
6428
6429 static int
ath_rate_setup(struct ath_softc * sc,u_int mode)6430 ath_rate_setup(struct ath_softc *sc, u_int mode)
6431 {
6432 struct ath_hal *ah = sc->sc_ah;
6433 const HAL_RATE_TABLE *rt;
6434
6435 switch (mode) {
6436 case IEEE80211_MODE_11A:
6437 rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6438 break;
6439 case IEEE80211_MODE_HALF:
6440 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6441 break;
6442 case IEEE80211_MODE_QUARTER:
6443 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6444 break;
6445 case IEEE80211_MODE_11B:
6446 rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6447 break;
6448 case IEEE80211_MODE_11G:
6449 rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6450 break;
6451 case IEEE80211_MODE_TURBO_A:
6452 rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6453 break;
6454 case IEEE80211_MODE_TURBO_G:
6455 rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6456 break;
6457 case IEEE80211_MODE_STURBO_A:
6458 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6459 break;
6460 case IEEE80211_MODE_11NA:
6461 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6462 break;
6463 case IEEE80211_MODE_11NG:
6464 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6465 break;
6466 default:
6467 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6468 __func__, mode);
6469 return 0;
6470 }
6471 sc->sc_rates[mode] = rt;
6472 return (rt != NULL);
6473 }
6474
6475 static void
ath_setcurmode(struct ath_softc * sc,enum ieee80211_phymode mode)6476 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6477 {
6478 /* NB: on/off times from the Atheros NDIS driver, w/ permission */
6479 static const struct {
6480 u_int rate; /* tx/rx 802.11 rate */
6481 u_int16_t timeOn; /* LED on time (ms) */
6482 u_int16_t timeOff; /* LED off time (ms) */
6483 } blinkrates[] = {
6484 { 108, 40, 10 },
6485 { 96, 44, 11 },
6486 { 72, 50, 13 },
6487 { 48, 57, 14 },
6488 { 36, 67, 16 },
6489 { 24, 80, 20 },
6490 { 22, 100, 25 },
6491 { 18, 133, 34 },
6492 { 12, 160, 40 },
6493 { 10, 200, 50 },
6494 { 6, 240, 58 },
6495 { 4, 267, 66 },
6496 { 2, 400, 100 },
6497 { 0, 500, 130 },
6498 /* XXX half/quarter rates */
6499 };
6500 const HAL_RATE_TABLE *rt;
6501 int i, j;
6502
6503 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6504 rt = sc->sc_rates[mode];
6505 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6506 for (i = 0; i < rt->rateCount; i++) {
6507 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6508 if (rt->info[i].phy != IEEE80211_T_HT)
6509 sc->sc_rixmap[ieeerate] = i;
6510 else
6511 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6512 }
6513 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6514 for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6515 if (i >= rt->rateCount) {
6516 sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6517 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6518 continue;
6519 }
6520 sc->sc_hwmap[i].ieeerate =
6521 rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6522 if (rt->info[i].phy == IEEE80211_T_HT)
6523 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6524 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6525 if (rt->info[i].shortPreamble ||
6526 rt->info[i].phy == IEEE80211_T_OFDM)
6527 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6528 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6529 for (j = 0; j < nitems(blinkrates)-1; j++)
6530 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6531 break;
6532 /* NB: this uses the last entry if the rate isn't found */
6533 /* XXX beware of overlow */
6534 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6535 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6536 }
6537 sc->sc_currates = rt;
6538 sc->sc_curmode = mode;
6539 /*
6540 * All protection frames are transmitted at 2Mb/s for
6541 * 11g, otherwise at 1Mb/s.
6542 */
6543 if (mode == IEEE80211_MODE_11G)
6544 sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6545 else
6546 sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6547 /* NB: caller is responsible for resetting rate control state */
6548 }
6549
6550 static void
ath_watchdog(void * arg)6551 ath_watchdog(void *arg)
6552 {
6553 struct ath_softc *sc = arg;
6554 struct ieee80211com *ic = &sc->sc_ic;
6555 int do_reset = 0;
6556
6557 ATH_LOCK_ASSERT(sc);
6558
6559 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6560 uint32_t hangs;
6561
6562 ath_power_set_power_state(sc, HAL_PM_AWAKE);
6563
6564 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6565 hangs != 0) {
6566 device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6567 hangs & 0xff ? "bb" : "mac", hangs);
6568 } else
6569 device_printf(sc->sc_dev, "device timeout\n");
6570 do_reset = 1;
6571 counter_u64_add(ic->ic_oerrors, 1);
6572 sc->sc_stats.ast_watchdog++;
6573
6574 ath_power_restore_power_state(sc);
6575 }
6576
6577 /*
6578 * We can't hold the lock across the ath_reset() call.
6579 *
6580 * And since this routine can't hold a lock and sleep,
6581 * do the reset deferred.
6582 */
6583 if (do_reset) {
6584 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6585 }
6586
6587 callout_schedule(&sc->sc_wd_ch, hz);
6588 }
6589
6590 static void
ath_parent(struct ieee80211com * ic)6591 ath_parent(struct ieee80211com *ic)
6592 {
6593 struct ath_softc *sc = ic->ic_softc;
6594 int error = EDOOFUS;
6595
6596 ATH_LOCK(sc);
6597 if (ic->ic_nrunning > 0) {
6598 /*
6599 * To avoid rescanning another access point,
6600 * do not call ath_init() here. Instead,
6601 * only reflect promisc mode settings.
6602 */
6603 if (sc->sc_running) {
6604 ath_power_set_power_state(sc, HAL_PM_AWAKE);
6605 ath_mode_init(sc);
6606 ath_power_restore_power_state(sc);
6607 } else if (!sc->sc_invalid) {
6608 /*
6609 * Beware of being called during attach/detach
6610 * to reset promiscuous mode. In that case we
6611 * will still be marked UP but not RUNNING.
6612 * However trying to re-init the interface
6613 * is the wrong thing to do as we've already
6614 * torn down much of our state. There's
6615 * probably a better way to deal with this.
6616 */
6617 error = ath_init(sc);
6618 }
6619 } else {
6620 ath_stop(sc);
6621 if (!sc->sc_invalid)
6622 ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
6623 }
6624 ATH_UNLOCK(sc);
6625
6626 if (error == 0) {
6627 #ifdef ATH_TX99_DIAG
6628 if (sc->sc_tx99 != NULL)
6629 sc->sc_tx99->start(sc->sc_tx99);
6630 else
6631 #endif
6632 ieee80211_start_all(ic);
6633 }
6634 }
6635
6636 /*
6637 * Announce various information on device/driver attach.
6638 */
6639 static void
ath_announce(struct ath_softc * sc)6640 ath_announce(struct ath_softc *sc)
6641 {
6642 struct ath_hal *ah = sc->sc_ah;
6643
6644 device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
6645 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6646 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6647 device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6648 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6649 if (bootverbose) {
6650 int i;
6651 for (i = 0; i <= WME_AC_VO; i++) {
6652 struct ath_txq *txq = sc->sc_ac2q[i];
6653 device_printf(sc->sc_dev,
6654 "Use hw queue %u for %s traffic\n",
6655 txq->axq_qnum, ieee80211_wme_acnames[i]);
6656 }
6657 device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6658 sc->sc_cabq->axq_qnum);
6659 device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6660 sc->sc_bhalq);
6661 }
6662 if (ath_rxbuf != ATH_RXBUF)
6663 device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6664 if (ath_txbuf != ATH_TXBUF)
6665 device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6666 if (sc->sc_mcastkey && bootverbose)
6667 device_printf(sc->sc_dev, "using multicast key search\n");
6668 }
6669
6670 static void
ath_dfs_tasklet(void * p,int npending)6671 ath_dfs_tasklet(void *p, int npending)
6672 {
6673 struct ath_softc *sc = (struct ath_softc *) p;
6674 struct ieee80211com *ic = &sc->sc_ic;
6675
6676 /*
6677 * If previous processing has found a radar event,
6678 * signal this to the net80211 layer to begin DFS
6679 * processing.
6680 */
6681 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6682 /* DFS event found, initiate channel change */
6683
6684 /*
6685 * XXX TODO: immediately disable ACK processing
6686 * on the current channel. This would be done
6687 * by setting AR_DIAG_ACK_DIS (AR5212; may be
6688 * different for others) until we are out of
6689 * CAC.
6690 */
6691
6692 /*
6693 * XXX doesn't currently tell us whether the event
6694 * XXX was found in the primary or extension
6695 * XXX channel!
6696 */
6697 IEEE80211_LOCK(ic);
6698 ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6699 IEEE80211_UNLOCK(ic);
6700 }
6701 }
6702
6703 /*
6704 * Enable/disable power save. This must be called with
6705 * no TX driver locks currently held, so it should only
6706 * be called from the RX path (which doesn't hold any
6707 * TX driver locks.)
6708 */
6709 static void
ath_node_powersave(struct ieee80211_node * ni,int enable)6710 ath_node_powersave(struct ieee80211_node *ni, int enable)
6711 {
6712 #ifdef ATH_SW_PSQ
6713 struct ath_node *an = ATH_NODE(ni);
6714 struct ieee80211com *ic = ni->ni_ic;
6715 struct ath_softc *sc = ic->ic_softc;
6716 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6717
6718 /* XXX and no TXQ locks should be held here */
6719
6720 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6721 __func__,
6722 ni->ni_macaddr,
6723 ":",
6724 !! enable);
6725
6726 /* Suspend or resume software queue handling */
6727 if (enable)
6728 ath_tx_node_sleep(sc, an);
6729 else
6730 ath_tx_node_wakeup(sc, an);
6731
6732 /* Update net80211 state */
6733 avp->av_node_ps(ni, enable);
6734 #else
6735 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6736
6737 /* Update net80211 state */
6738 avp->av_node_ps(ni, enable);
6739 #endif/* ATH_SW_PSQ */
6740 }
6741
6742 /*
6743 * Notification from net80211 that the powersave queue state has
6744 * changed.
6745 *
6746 * Since the software queue also may have some frames:
6747 *
6748 * + if the node software queue has frames and the TID state
6749 * is 0, we set the TIM;
6750 * + if the node and the stack are both empty, we clear the TIM bit.
6751 * + If the stack tries to set the bit, always set it.
6752 * + If the stack tries to clear the bit, only clear it if the
6753 * software queue in question is also cleared.
6754 *
6755 * TODO: this is called during node teardown; so let's ensure this
6756 * is all correctly handled and that the TIM bit is cleared.
6757 * It may be that the node flush is called _AFTER_ the net80211
6758 * stack clears the TIM.
6759 *
6760 * Here is the racy part. Since it's possible >1 concurrent,
6761 * overlapping TXes will appear complete with a TX completion in
6762 * another thread, it's possible that the concurrent TIM calls will
6763 * clash. We can't hold the node lock here because setting the
6764 * TIM grabs the net80211 comlock and this may cause a LOR.
6765 * The solution is either to totally serialise _everything_ at
6766 * this point (ie, all TX, completion and any reset/flush go into
6767 * one taskqueue) or a new "ath TIM lock" needs to be created that
6768 * just wraps the driver state change and this call to avp->av_set_tim().
6769 *
6770 * The same race exists in the net80211 power save queue handling
6771 * as well. Since multiple transmitting threads may queue frames
6772 * into the driver, as well as ps-poll and the driver transmitting
6773 * frames (and thus clearing the psq), it's quite possible that
6774 * a packet entering the PSQ and a ps-poll being handled will
6775 * race, causing the TIM to be cleared and not re-set.
6776 */
6777 static int
ath_node_set_tim(struct ieee80211_node * ni,int enable)6778 ath_node_set_tim(struct ieee80211_node *ni, int enable)
6779 {
6780 #ifdef ATH_SW_PSQ
6781 struct ieee80211com *ic = ni->ni_ic;
6782 struct ath_softc *sc = ic->ic_softc;
6783 struct ath_node *an = ATH_NODE(ni);
6784 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6785 int changed = 0;
6786
6787 ATH_TX_LOCK(sc);
6788 an->an_stack_psq = enable;
6789
6790 /*
6791 * This will get called for all operating modes,
6792 * even if avp->av_set_tim is unset.
6793 * It's currently set for hostap/ibss modes; but
6794 * the same infrastructure is used for both STA
6795 * and AP/IBSS node power save.
6796 */
6797 if (avp->av_set_tim == NULL) {
6798 ATH_TX_UNLOCK(sc);
6799 return (0);
6800 }
6801
6802 /*
6803 * If setting the bit, always set it here.
6804 * If clearing the bit, only clear it if the
6805 * software queue is also empty.
6806 *
6807 * If the node has left power save, just clear the TIM
6808 * bit regardless of the state of the power save queue.
6809 *
6810 * XXX TODO: although atomics are used, it's quite possible
6811 * that a race will occur between this and setting/clearing
6812 * in another thread. TX completion will occur always in
6813 * one thread, however setting/clearing the TIM bit can come
6814 * from a variety of different process contexts!
6815 */
6816 if (enable && an->an_tim_set == 1) {
6817 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6818 "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6819 __func__,
6820 ni->ni_macaddr,
6821 ":",
6822 enable);
6823 ATH_TX_UNLOCK(sc);
6824 } else if (enable) {
6825 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6826 "%s: %6D: enable=%d, enabling TIM\n",
6827 __func__,
6828 ni->ni_macaddr,
6829 ":",
6830 enable);
6831 an->an_tim_set = 1;
6832 ATH_TX_UNLOCK(sc);
6833 changed = avp->av_set_tim(ni, enable);
6834 } else if (an->an_swq_depth == 0) {
6835 /* disable */
6836 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6837 "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6838 __func__,
6839 ni->ni_macaddr,
6840 ":",
6841 enable);
6842 an->an_tim_set = 0;
6843 ATH_TX_UNLOCK(sc);
6844 changed = avp->av_set_tim(ni, enable);
6845 } else if (! an->an_is_powersave) {
6846 /*
6847 * disable regardless; the node isn't in powersave now
6848 */
6849 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6850 "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6851 __func__,
6852 ni->ni_macaddr,
6853 ":",
6854 enable);
6855 an->an_tim_set = 0;
6856 ATH_TX_UNLOCK(sc);
6857 changed = avp->av_set_tim(ni, enable);
6858 } else {
6859 /*
6860 * psq disable, node is currently in powersave, node
6861 * software queue isn't empty, so don't clear the TIM bit
6862 * for now.
6863 */
6864 ATH_TX_UNLOCK(sc);
6865 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6866 "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6867 __func__,
6868 ni->ni_macaddr,
6869 ":",
6870 enable);
6871 changed = 0;
6872 }
6873
6874 return (changed);
6875 #else
6876 struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6877
6878 /*
6879 * Some operating modes don't set av_set_tim(), so don't
6880 * update it here.
6881 */
6882 if (avp->av_set_tim == NULL)
6883 return (0);
6884
6885 return (avp->av_set_tim(ni, enable));
6886 #endif /* ATH_SW_PSQ */
6887 }
6888
6889 /*
6890 * Set or update the TIM from the software queue.
6891 *
6892 * Check the software queue depth before attempting to do lock
6893 * anything; that avoids trying to obtain the lock. Then,
6894 * re-check afterwards to ensure nothing has changed in the
6895 * meantime.
6896 *
6897 * set: This is designed to be called from the TX path, after
6898 * a frame has been queued; to see if the swq > 0.
6899 *
6900 * clear: This is designed to be called from the buffer completion point
6901 * (right now it's ath_tx_default_comp()) where the state of
6902 * a software queue has changed.
6903 *
6904 * It makes sense to place it at buffer free / completion rather
6905 * than after each software queue operation, as there's no real
6906 * point in churning the TIM bit as the last frames in the software
6907 * queue are transmitted. If they fail and we retry them, we'd
6908 * just be setting the TIM bit again anyway.
6909 */
6910 void
ath_tx_update_tim(struct ath_softc * sc,struct ieee80211_node * ni,int enable)6911 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6912 int enable)
6913 {
6914 #ifdef ATH_SW_PSQ
6915 struct ath_node *an;
6916 struct ath_vap *avp;
6917
6918 /* Don't do this for broadcast/etc frames */
6919 if (ni == NULL)
6920 return;
6921
6922 an = ATH_NODE(ni);
6923 avp = ATH_VAP(ni->ni_vap);
6924
6925 /*
6926 * And for operating modes without the TIM handler set, let's
6927 * just skip those.
6928 */
6929 if (avp->av_set_tim == NULL)
6930 return;
6931
6932 ATH_TX_LOCK_ASSERT(sc);
6933
6934 if (enable) {
6935 if (an->an_is_powersave &&
6936 an->an_tim_set == 0 &&
6937 an->an_swq_depth != 0) {
6938 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6939 "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6940 __func__,
6941 ni->ni_macaddr,
6942 ":");
6943 an->an_tim_set = 1;
6944 (void) avp->av_set_tim(ni, 1);
6945 }
6946 } else {
6947 /*
6948 * Don't bother grabbing the lock unless the queue is empty.
6949 */
6950 if (an->an_swq_depth != 0)
6951 return;
6952
6953 if (an->an_is_powersave &&
6954 an->an_stack_psq == 0 &&
6955 an->an_tim_set == 1 &&
6956 an->an_swq_depth == 0) {
6957 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6958 "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6959 " clear!\n",
6960 __func__,
6961 ni->ni_macaddr,
6962 ":");
6963 an->an_tim_set = 0;
6964 (void) avp->av_set_tim(ni, 0);
6965 }
6966 }
6967 #else
6968 return;
6969 #endif /* ATH_SW_PSQ */
6970 }
6971
6972 /*
6973 * Received a ps-poll frame from net80211.
6974 *
6975 * Here we get a chance to serve out a software-queued frame ourselves
6976 * before we punt it to net80211 to transmit us one itself - either
6977 * because there's traffic in the net80211 psq, or a NULL frame to
6978 * indicate there's nothing else.
6979 */
6980 static void
ath_node_recv_pspoll(struct ieee80211_node * ni,struct mbuf * m)6981 ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6982 {
6983 #ifdef ATH_SW_PSQ
6984 struct ath_node *an;
6985 struct ath_vap *avp;
6986 struct ieee80211com *ic = ni->ni_ic;
6987 struct ath_softc *sc = ic->ic_softc;
6988 int tid;
6989
6990 /* Just paranoia */
6991 if (ni == NULL)
6992 return;
6993
6994 /*
6995 * Unassociated (temporary node) station.
6996 */
6997 if (ni->ni_associd == 0)
6998 return;
6999
7000 /*
7001 * We do have an active node, so let's begin looking into it.
7002 */
7003 an = ATH_NODE(ni);
7004 avp = ATH_VAP(ni->ni_vap);
7005
7006 /*
7007 * For now, we just call the original ps-poll method.
7008 * Once we're ready to flip this on:
7009 *
7010 * + Set leak to 1, as no matter what we're going to have
7011 * to send a frame;
7012 * + Check the software queue and if there's something in it,
7013 * schedule the highest TID thas has traffic from this node.
7014 * Then make sure we schedule the software scheduler to
7015 * run so it picks up said frame.
7016 *
7017 * That way whatever happens, we'll at least send _a_ frame
7018 * to the given node.
7019 *
7020 * Again, yes, it's crappy QoS if the node has multiple
7021 * TIDs worth of traffic - but let's get it working first
7022 * before we optimise it.
7023 *
7024 * Also yes, there's definitely latency here - we're not
7025 * direct dispatching to the hardware in this path (and
7026 * we're likely being called from the packet receive path,
7027 * so going back into TX may be a little hairy!) but again
7028 * I'd like to get this working first before optimising
7029 * turn-around time.
7030 */
7031
7032 ATH_TX_LOCK(sc);
7033
7034 /*
7035 * Legacy - we're called and the node isn't asleep.
7036 * Immediately punt.
7037 */
7038 if (! an->an_is_powersave) {
7039 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7040 "%s: %6D: not in powersave?\n",
7041 __func__,
7042 ni->ni_macaddr,
7043 ":");
7044 ATH_TX_UNLOCK(sc);
7045 avp->av_recv_pspoll(ni, m);
7046 return;
7047 }
7048
7049 /*
7050 * We're in powersave.
7051 *
7052 * Leak a frame.
7053 */
7054 an->an_leak_count = 1;
7055
7056 /*
7057 * Now, if there's no frames in the node, just punt to
7058 * recv_pspoll.
7059 *
7060 * Don't bother checking if the TIM bit is set, we really
7061 * only care if there are any frames here!
7062 */
7063 if (an->an_swq_depth == 0) {
7064 ATH_TX_UNLOCK(sc);
7065 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7066 "%s: %6D: SWQ empty; punting to net80211\n",
7067 __func__,
7068 ni->ni_macaddr,
7069 ":");
7070 avp->av_recv_pspoll(ni, m);
7071 return;
7072 }
7073
7074 /*
7075 * Ok, let's schedule the highest TID that has traffic
7076 * and then schedule something.
7077 */
7078 for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7079 struct ath_tid *atid = &an->an_tid[tid];
7080 /*
7081 * No frames? Skip.
7082 */
7083 if (atid->axq_depth == 0)
7084 continue;
7085 ath_tx_tid_sched(sc, atid);
7086 /*
7087 * XXX we could do a direct call to the TXQ
7088 * scheduler code here to optimise latency
7089 * at the expense of a REALLY deep callstack.
7090 */
7091 ATH_TX_UNLOCK(sc);
7092 taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7093 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7094 "%s: %6D: leaking frame to TID %d\n",
7095 __func__,
7096 ni->ni_macaddr,
7097 ":",
7098 tid);
7099 return;
7100 }
7101
7102 ATH_TX_UNLOCK(sc);
7103
7104 /*
7105 * XXX nothing in the TIDs at this point? Eek.
7106 */
7107 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7108 "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7109 __func__,
7110 ni->ni_macaddr,
7111 ":");
7112 avp->av_recv_pspoll(ni, m);
7113 #else
7114 avp->av_recv_pspoll(ni, m);
7115 #endif /* ATH_SW_PSQ */
7116 }
7117
7118 MODULE_VERSION(ath_main, 1);
7119 MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */
7120 MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1);
7121 MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1);
7122 MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1);
7123 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7124 MODULE_DEPEND(ath_main, alq, 1, 1, 1);
7125 #endif
7126