xref: /titanic_41/usr/src/uts/common/io/ath/ath_main.c (revision 0dc2366f7b9f9f36e10909b1e95edbf2a261c2ac)
1 /*
2  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
3  * Use is subject to license terms.
4  */
5 
6 /*
7  * Copyright (c) 2002-2004 Sam Leffler, Errno Consulting
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  * notice, this list of conditions and the following disclaimer,
15  * without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  * redistribution must be conditioned upon including a substantially
19  * similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  * of any contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * NO WARRANTY
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
28  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
29  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
30  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
33  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
35  * THE POSSIBILITY OF SUCH DAMAGES.
36  *
37  */
38 
39 /*
40  * Driver for the Atheros Wireless LAN controller.
41  *
42  * The Atheros driver calls into net80211 module for IEEE80211 protocol
43  * management functionalities. The driver includes a LLD(Low Level Driver)
44  * part to implement H/W related operations.
45  * The following is the high level structure of ath driver.
46  * (The arrows between modules indicate function call direction.)
47  *
48  *
49  *                                                  |
50  *                                                  | GLD thread
51  *                                                  V
52  *         ==================  =========================================
53  *         |                |  |[1]                                    |
54  *         |                |  |  GLDv3 Callback functions registered  |
55  *         |   Net80211     |  =========================       by      |
56  *         |    module      |          |               |     driver    |
57  *         |                |          V               |               |
58  *         |                |========================  |               |
59  *         |   Functions exported by net80211       |  |               |
60  *         |                                        |  |               |
61  *         ==========================================  =================
62  *                         |                                  |
63  *                         V                                  |
64  *         +----------------------------------+               |
65  *         |[2]                               |               |
66  *         |    Net80211 Callback functions   |               |
67  *         |      registered by LLD           |               |
68  *         +----------------------------------+               |
69  *                         |                                  |
70  *                         V                                  v
71  *         +-----------------------------------------------------------+
72  *         |[3]                                                        |
73  *         |                LLD Internal functions                     |
74  *         |                                                           |
75  *         +-----------------------------------------------------------+
76  *                                    ^
77  *                                    | Software interrupt thread
78  *                                    |
79  *
80  * The short description of each module is as below:
81  *      Module 1: GLD callback functions, which are intercepting the calls from
82  *                GLD to LLD.
83  *      Module 2: Net80211 callback functions registered by LLD, which
84  *                calls into LLD for H/W related functions needed by net80211.
85  *      Module 3: LLD Internal functions, which are responsible for allocing
86  *                descriptor/buffer, handling interrupt and other H/W
87  *                operations.
88  *
89  * All functions are running in 3 types of thread:
90  * 1. GLD callbacks threads, such as ioctl, intr, etc.
91  * 2. Clock interruptt thread which is responsible for scan, rate control and
92  *    calibration.
93  * 3. Software Interrupt thread originated in LLD.
94  *
95  * The lock strategy is as below:
96  * There have 4 queues for tx, each queue has one asc_txqlock[i] to
97  *      prevent conflicts access to queue resource from different thread.
98  *
99  * All the transmit buffers are contained in asc_txbuf which are
100  *      protected by asc_txbuflock.
101  *
102  * Each receive buffers are contained in asc_rxbuf which are protected
103  *      by asc_rxbuflock.
104  *
105  * In ath struct, asc_genlock is a general lock, protecting most other
106  *      operational data in ath_softc struct and HAL accesses.
107  *      It is acquired by the interupt handler and most "mode-ctrl" routines.
108  *
109  * Any of the locks can be acquired singly, but where multiple
110  * locks are acquired, they *must* be in the order:
111  *    asc_genlock >> asc_txqlock[i] >> asc_txbuflock >> asc_rxbuflock
112  */
113 
114 #include <sys/param.h>
115 #include <sys/types.h>
116 #include <sys/signal.h>
117 #include <sys/stream.h>
118 #include <sys/termio.h>
119 #include <sys/errno.h>
120 #include <sys/file.h>
121 #include <sys/cmn_err.h>
122 #include <sys/stropts.h>
123 #include <sys/strsubr.h>
124 #include <sys/strtty.h>
125 #include <sys/kbio.h>
126 #include <sys/cred.h>
127 #include <sys/stat.h>
128 #include <sys/consdev.h>
129 #include <sys/kmem.h>
130 #include <sys/modctl.h>
131 #include <sys/ddi.h>
132 #include <sys/sunddi.h>
133 #include <sys/pci.h>
134 #include <sys/errno.h>
135 #include <sys/mac_provider.h>
136 #include <sys/dlpi.h>
137 #include <sys/ethernet.h>
138 #include <sys/list.h>
139 #include <sys/byteorder.h>
140 #include <sys/strsun.h>
141 #include <sys/policy.h>
142 #include <inet/common.h>
143 #include <inet/nd.h>
144 #include <inet/mi.h>
145 #include <inet/wifi_ioctl.h>
146 #include <sys/mac_wifi.h>
147 #include "ath_hal.h"
148 #include "ath_impl.h"
149 #include "ath_aux.h"
150 #include "ath_rate.h"
151 
152 #define	ATH_MAX_RSSI	63	/* max rssi */
153 
154 extern void ath_halfix_init(void);
155 extern void ath_halfix_finit(void);
156 extern int32_t ath_getset(ath_t *asc, mblk_t *mp, uint32_t cmd);
157 
158 /*
159  * PIO access attributes for registers
160  */
161 static ddi_device_acc_attr_t ath_reg_accattr = {
162 	DDI_DEVICE_ATTR_V0,
163 	DDI_STRUCTURE_LE_ACC,
164 	DDI_STRICTORDER_ACC
165 };
166 
167 /*
168  * DMA access attributes for descriptors: NOT to be byte swapped.
169  */
170 static ddi_device_acc_attr_t ath_desc_accattr = {
171 	DDI_DEVICE_ATTR_V0,
172 	DDI_STRUCTURE_LE_ACC,
173 	DDI_STRICTORDER_ACC
174 };
175 
176 /*
177  * DMA attributes for rx/tx buffers
178  */
179 static ddi_dma_attr_t ath_dma_attr = {
180 	DMA_ATTR_V0,		/* version number */
181 	0,			/* low address */
182 	0xffffffffU,		/* high address */
183 	0x3ffffU,		/* counter register max */
184 	1,			/* alignment */
185 	0xFFF,			/* burst sizes */
186 	1,			/* minimum transfer size */
187 	0x3ffffU,		/* max transfer size */
188 	0xffffffffU,		/* address register max */
189 	1,			/* no scatter-gather */
190 	1,			/* granularity of device */
191 	0,			/* DMA flags */
192 };
193 
194 static ddi_dma_attr_t ath_desc_dma_attr = {
195 	DMA_ATTR_V0,		/* version number */
196 	0,			/* low address */
197 	0xffffffffU,		/* high address */
198 	0xffffffffU,		/* counter register max */
199 	0x1000,			/* alignment */
200 	0xFFF,			/* burst sizes */
201 	1,			/* minimum transfer size */
202 	0xffffffffU,		/* max transfer size */
203 	0xffffffffU,		/* address register max */
204 	1,			/* no scatter-gather */
205 	1,			/* granularity of device */
206 	0,			/* DMA flags */
207 };
208 
209 static kmutex_t ath_loglock;
210 static void *ath_soft_state_p = NULL;
211 static int ath_dwelltime = 150;		/* scan interval, ms */
212 
213 static int	ath_m_stat(void *,  uint_t, uint64_t *);
214 static int	ath_m_start(void *);
215 static void	ath_m_stop(void *);
216 static int	ath_m_promisc(void *, boolean_t);
217 static int	ath_m_multicst(void *, boolean_t, const uint8_t *);
218 static int	ath_m_unicst(void *, const uint8_t *);
219 static mblk_t	*ath_m_tx(void *, mblk_t *);
220 static void	ath_m_ioctl(void *, queue_t *, mblk_t *);
221 static int	ath_m_setprop(void *, const char *, mac_prop_id_t,
222     uint_t, const void *);
223 static int	ath_m_getprop(void *, const char *, mac_prop_id_t,
224     uint_t, void *);
225 static void	ath_m_propinfo(void *, const char *, mac_prop_id_t,
226     mac_prop_info_handle_t);
227 
228 static mac_callbacks_t ath_m_callbacks = {
229 	MC_IOCTL | MC_SETPROP | MC_GETPROP | MC_PROPINFO,
230 	ath_m_stat,
231 	ath_m_start,
232 	ath_m_stop,
233 	ath_m_promisc,
234 	ath_m_multicst,
235 	ath_m_unicst,
236 	ath_m_tx,
237 	NULL,
238 	ath_m_ioctl,
239 	NULL,		/* mc_getcapab */
240 	NULL,
241 	NULL,
242 	ath_m_setprop,
243 	ath_m_getprop,
244 	ath_m_propinfo
245 };
246 
247 /*
248  * Available debug flags:
249  * ATH_DBG_INIT, ATH_DBG_GLD, ATH_DBG_HAL, ATH_DBG_INT, ATH_DBG_ATTACH,
250  * ATH_DBG_DETACH, ATH_DBG_AUX, ATH_DBG_WIFICFG, ATH_DBG_OSDEP
251  */
252 uint32_t ath_dbg_flags = 0;
253 
254 /*
255  * Exception/warning cases not leading to panic.
256  */
257 void
ath_problem(const int8_t * fmt,...)258 ath_problem(const int8_t *fmt, ...)
259 {
260 	va_list args;
261 
262 	mutex_enter(&ath_loglock);
263 
264 	va_start(args, fmt);
265 	vcmn_err(CE_WARN, fmt, args);
266 	va_end(args);
267 
268 	mutex_exit(&ath_loglock);
269 }
270 
271 /*
272  * Normal log information independent of debug.
273  */
274 void
ath_log(const int8_t * fmt,...)275 ath_log(const int8_t *fmt, ...)
276 {
277 	va_list args;
278 
279 	mutex_enter(&ath_loglock);
280 
281 	va_start(args, fmt);
282 	vcmn_err(CE_CONT, fmt, args);
283 	va_end(args);
284 
285 	mutex_exit(&ath_loglock);
286 }
287 
288 void
ath_dbg(uint32_t dbg_flags,const int8_t * fmt,...)289 ath_dbg(uint32_t dbg_flags, const int8_t *fmt, ...)
290 {
291 	va_list args;
292 
293 	if (dbg_flags & ath_dbg_flags) {
294 		mutex_enter(&ath_loglock);
295 		va_start(args, fmt);
296 		vcmn_err(CE_CONT, fmt, args);
297 		va_end(args);
298 		mutex_exit(&ath_loglock);
299 	}
300 }
301 
302 void
ath_setup_desc(ath_t * asc,struct ath_buf * bf)303 ath_setup_desc(ath_t *asc, struct ath_buf *bf)
304 {
305 	struct ath_desc *ds;
306 
307 	ds = bf->bf_desc;
308 	ds->ds_link = bf->bf_daddr;
309 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
310 	ATH_HAL_SETUPRXDESC(asc->asc_ah, ds,
311 	    bf->bf_dma.alength,		/* buffer size */
312 	    0);
313 
314 	if (asc->asc_rxlink != NULL)
315 		*asc->asc_rxlink = bf->bf_daddr;
316 	asc->asc_rxlink = &ds->ds_link;
317 }
318 
319 
320 /*
321  * Allocate an area of memory and a DMA handle for accessing it
322  */
323 static int
ath_alloc_dma_mem(dev_info_t * devinfo,ddi_dma_attr_t * dma_attr,size_t memsize,ddi_device_acc_attr_t * attr_p,uint_t alloc_flags,uint_t bind_flags,dma_area_t * dma_p)324 ath_alloc_dma_mem(dev_info_t *devinfo, ddi_dma_attr_t *dma_attr, size_t memsize,
325     ddi_device_acc_attr_t *attr_p, uint_t alloc_flags,
326     uint_t bind_flags, dma_area_t *dma_p)
327 {
328 	int err;
329 
330 	/*
331 	 * Allocate handle
332 	 */
333 	err = ddi_dma_alloc_handle(devinfo, dma_attr,
334 	    DDI_DMA_SLEEP, NULL, &dma_p->dma_hdl);
335 	if (err != DDI_SUCCESS)
336 		return (DDI_FAILURE);
337 
338 	/*
339 	 * Allocate memory
340 	 */
341 	err = ddi_dma_mem_alloc(dma_p->dma_hdl, memsize, attr_p,
342 	    alloc_flags, DDI_DMA_SLEEP, NULL, &dma_p->mem_va,
343 	    &dma_p->alength, &dma_p->acc_hdl);
344 	if (err != DDI_SUCCESS)
345 		return (DDI_FAILURE);
346 
347 	/*
348 	 * Bind the two together
349 	 */
350 	err = ddi_dma_addr_bind_handle(dma_p->dma_hdl, NULL,
351 	    dma_p->mem_va, dma_p->alength, bind_flags,
352 	    DDI_DMA_SLEEP, NULL, &dma_p->cookie, &dma_p->ncookies);
353 	if (err != DDI_DMA_MAPPED)
354 		return (DDI_FAILURE);
355 
356 	dma_p->nslots = ~0U;
357 	dma_p->size = ~0U;
358 	dma_p->token = ~0U;
359 	dma_p->offset = 0;
360 	return (DDI_SUCCESS);
361 }
362 
363 /*
364  * Free one allocated area of DMAable memory
365  */
366 static void
ath_free_dma_mem(dma_area_t * dma_p)367 ath_free_dma_mem(dma_area_t *dma_p)
368 {
369 	if (dma_p->dma_hdl != NULL) {
370 		(void) ddi_dma_unbind_handle(dma_p->dma_hdl);
371 		if (dma_p->acc_hdl != NULL) {
372 			ddi_dma_mem_free(&dma_p->acc_hdl);
373 			dma_p->acc_hdl = NULL;
374 		}
375 		ddi_dma_free_handle(&dma_p->dma_hdl);
376 		dma_p->ncookies = 0;
377 		dma_p->dma_hdl = NULL;
378 	}
379 }
380 
381 
382 /*
383  * Initialize tx/rx buffer list. Allocate DMA memory for
384  * each buffer.
385  */
386 static int
ath_buflist_setup(dev_info_t * devinfo,ath_t * asc,list_t * bflist,struct ath_buf ** pbf,struct ath_desc ** pds,int nbuf,uint_t dmabflags)387 ath_buflist_setup(dev_info_t *devinfo, ath_t *asc, list_t *bflist,
388     struct ath_buf **pbf, struct ath_desc **pds, int nbuf, uint_t dmabflags)
389 {
390 	int i, err;
391 	struct ath_buf *bf = *pbf;
392 	struct ath_desc *ds = *pds;
393 
394 	list_create(bflist, sizeof (struct ath_buf),
395 	    offsetof(struct ath_buf, bf_node));
396 	for (i = 0; i < nbuf; i++, bf++, ds++) {
397 		bf->bf_desc = ds;
398 		bf->bf_daddr = asc->asc_desc_dma.cookie.dmac_address +
399 		    ((uintptr_t)ds - (uintptr_t)asc->asc_desc);
400 		list_insert_tail(bflist, bf);
401 
402 		/* alloc DMA memory */
403 		err = ath_alloc_dma_mem(devinfo, &ath_dma_attr,
404 		    asc->asc_dmabuf_size, &ath_desc_accattr, DDI_DMA_STREAMING,
405 		    dmabflags, &bf->bf_dma);
406 		if (err != DDI_SUCCESS)
407 			return (err);
408 	}
409 	*pbf = bf;
410 	*pds = ds;
411 
412 	return (DDI_SUCCESS);
413 }
414 
415 /*
416  * Destroy tx/rx buffer list. Free DMA memory.
417  */
418 static void
ath_buflist_cleanup(list_t * buflist)419 ath_buflist_cleanup(list_t *buflist)
420 {
421 	struct ath_buf *bf;
422 
423 	if (!buflist)
424 		return;
425 
426 	bf = list_head(buflist);
427 	while (bf != NULL) {
428 		if (bf->bf_m != NULL) {
429 			freemsg(bf->bf_m);
430 			bf->bf_m = NULL;
431 		}
432 		/* Free DMA buffer */
433 		ath_free_dma_mem(&bf->bf_dma);
434 		if (bf->bf_in != NULL) {
435 			ieee80211_free_node(bf->bf_in);
436 			bf->bf_in = NULL;
437 		}
438 		list_remove(buflist, bf);
439 		bf = list_head(buflist);
440 	}
441 	list_destroy(buflist);
442 }
443 
444 
445 static void
ath_desc_free(ath_t * asc)446 ath_desc_free(ath_t *asc)
447 {
448 	ath_buflist_cleanup(&asc->asc_txbuf_list);
449 	ath_buflist_cleanup(&asc->asc_rxbuf_list);
450 
451 	/* Free descriptor DMA buffer */
452 	ath_free_dma_mem(&asc->asc_desc_dma);
453 
454 	kmem_free((void *)asc->asc_vbufptr, asc->asc_vbuflen);
455 	asc->asc_vbufptr = NULL;
456 }
457 
458 static int
ath_desc_alloc(dev_info_t * devinfo,ath_t * asc)459 ath_desc_alloc(dev_info_t *devinfo, ath_t *asc)
460 {
461 	int err;
462 	size_t size;
463 	struct ath_desc *ds;
464 	struct ath_buf *bf;
465 
466 	size = sizeof (struct ath_desc) * (ATH_TXBUF + ATH_RXBUF);
467 
468 	err = ath_alloc_dma_mem(devinfo, &ath_desc_dma_attr, size,
469 	    &ath_desc_accattr, DDI_DMA_CONSISTENT,
470 	    DDI_DMA_RDWR | DDI_DMA_CONSISTENT, &asc->asc_desc_dma);
471 
472 	/* virtual address of the first descriptor */
473 	asc->asc_desc = (struct ath_desc *)asc->asc_desc_dma.mem_va;
474 
475 	ds = asc->asc_desc;
476 	ATH_DEBUG((ATH_DBG_INIT, "ath: ath_desc_alloc(): DMA map: "
477 	    "%p (%d) -> %p\n",
478 	    asc->asc_desc, asc->asc_desc_dma.alength,
479 	    asc->asc_desc_dma.cookie.dmac_address));
480 
481 	/* allocate data structures to describe TX/RX DMA buffers */
482 	asc->asc_vbuflen = sizeof (struct ath_buf) * (ATH_TXBUF + ATH_RXBUF);
483 	bf = (struct ath_buf *)kmem_zalloc(asc->asc_vbuflen, KM_SLEEP);
484 	asc->asc_vbufptr = bf;
485 
486 	/* DMA buffer size for each TX/RX packet */
487 	asc->asc_dmabuf_size = roundup(1000 + sizeof (struct ieee80211_frame) +
488 	    IEEE80211_MTU + IEEE80211_CRC_LEN +
489 	    (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN +
490 	    IEEE80211_WEP_CRCLEN), asc->asc_cachelsz);
491 
492 	/* create RX buffer list */
493 	err = ath_buflist_setup(devinfo, asc, &asc->asc_rxbuf_list, &bf, &ds,
494 	    ATH_RXBUF, DDI_DMA_READ | DDI_DMA_STREAMING);
495 	if (err != DDI_SUCCESS) {
496 		ath_desc_free(asc);
497 		return (err);
498 	}
499 
500 	/* create TX buffer list */
501 	err = ath_buflist_setup(devinfo, asc, &asc->asc_txbuf_list, &bf, &ds,
502 	    ATH_TXBUF, DDI_DMA_STREAMING);
503 	if (err != DDI_SUCCESS) {
504 		ath_desc_free(asc);
505 		return (err);
506 	}
507 
508 
509 	return (DDI_SUCCESS);
510 }
511 
512 static void
ath_printrxbuf(struct ath_buf * bf,int32_t done)513 ath_printrxbuf(struct ath_buf *bf, int32_t done)
514 {
515 	struct ath_desc *ds = bf->bf_desc;
516 	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
517 
518 	ATH_DEBUG((ATH_DBG_RECV, "ath: R (%p %p) %08x %08x %08x "
519 	    "%08x %08x %08x %c\n",
520 	    ds, bf->bf_daddr,
521 	    ds->ds_link, ds->ds_data,
522 	    ds->ds_ctl0, ds->ds_ctl1,
523 	    ds->ds_hw[0], ds->ds_hw[1],
524 	    !done ? ' ' : (rs->rs_status == 0) ? '*' : '!'));
525 }
526 
527 static void
ath_rx_handler(ath_t * asc)528 ath_rx_handler(ath_t *asc)
529 {
530 	ieee80211com_t *ic = (ieee80211com_t *)asc;
531 	struct ath_buf *bf;
532 	struct ath_hal *ah = asc->asc_ah;
533 	struct ath_desc *ds;
534 	struct ath_rx_status *rs;
535 	mblk_t *rx_mp;
536 	struct ieee80211_frame *wh;
537 	int32_t len, loop = 1;
538 	uint8_t phyerr;
539 	HAL_STATUS status;
540 	HAL_NODE_STATS hal_node_stats;
541 	struct ieee80211_node *in;
542 
543 	do {
544 		mutex_enter(&asc->asc_rxbuflock);
545 		bf = list_head(&asc->asc_rxbuf_list);
546 		if (bf == NULL) {
547 			ATH_DEBUG((ATH_DBG_RECV, "ath: ath_rx_handler(): "
548 			    "no buffer\n"));
549 			mutex_exit(&asc->asc_rxbuflock);
550 			break;
551 		}
552 		ASSERT(bf->bf_dma.cookie.dmac_address != NULL);
553 		ds = bf->bf_desc;
554 		if (ds->ds_link == bf->bf_daddr) {
555 			/*
556 			 * Never process the self-linked entry at the end,
557 			 * this may be met at heavy load.
558 			 */
559 			mutex_exit(&asc->asc_rxbuflock);
560 			break;
561 		}
562 
563 		rs = &bf->bf_status.ds_rxstat;
564 		status = ATH_HAL_RXPROCDESC(ah, ds,
565 		    bf->bf_daddr,
566 		    ATH_PA2DESC(asc, ds->ds_link), rs);
567 		if (status == HAL_EINPROGRESS) {
568 			mutex_exit(&asc->asc_rxbuflock);
569 			break;
570 		}
571 		list_remove(&asc->asc_rxbuf_list, bf);
572 		mutex_exit(&asc->asc_rxbuflock);
573 
574 		if (rs->rs_status != 0) {
575 			if (rs->rs_status & HAL_RXERR_CRC)
576 				asc->asc_stats.ast_rx_crcerr++;
577 			if (rs->rs_status & HAL_RXERR_FIFO)
578 				asc->asc_stats.ast_rx_fifoerr++;
579 			if (rs->rs_status & HAL_RXERR_DECRYPT)
580 				asc->asc_stats.ast_rx_badcrypt++;
581 			if (rs->rs_status & HAL_RXERR_PHY) {
582 				asc->asc_stats.ast_rx_phyerr++;
583 				phyerr = rs->rs_phyerr & 0x1f;
584 				asc->asc_stats.ast_rx_phy[phyerr]++;
585 			}
586 			goto rx_next;
587 		}
588 		len = rs->rs_datalen;
589 
590 		/* less than sizeof(struct ieee80211_frame) */
591 		if (len < 20) {
592 			asc->asc_stats.ast_rx_tooshort++;
593 			goto rx_next;
594 		}
595 
596 		if ((rx_mp = allocb(asc->asc_dmabuf_size, BPRI_MED)) == NULL) {
597 			ath_problem("ath: ath_rx_handler(): "
598 			    "allocing mblk buffer failed.\n");
599 			return;
600 		}
601 
602 		ATH_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORCPU);
603 		bcopy(bf->bf_dma.mem_va, rx_mp->b_rptr, len);
604 
605 		rx_mp->b_wptr += len;
606 		wh = (struct ieee80211_frame *)rx_mp->b_rptr;
607 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
608 		    IEEE80211_FC0_TYPE_CTL) {
609 			/*
610 			 * Ignore control frame received in promisc mode.
611 			 */
612 			freemsg(rx_mp);
613 			goto rx_next;
614 		}
615 		/* Remove the CRC at the end of IEEE80211 frame */
616 		rx_mp->b_wptr -= IEEE80211_CRC_LEN;
617 #ifdef DEBUG
618 		ath_printrxbuf(bf, status == HAL_OK);
619 #endif /* DEBUG */
620 		/*
621 		 * Locate the node for sender, track state, and then
622 		 * pass the (referenced) node up to the 802.11 layer
623 		 * for its use.
624 		 */
625 		in = ieee80211_find_rxnode(ic, wh);
626 
627 		/*
628 		 * Send frame up for processing.
629 		 */
630 		(void) ieee80211_input(ic, rx_mp, in,
631 		    rs->rs_rssi, rs->rs_tstamp);
632 
633 		ieee80211_free_node(in);
634 
635 rx_next:
636 		mutex_enter(&asc->asc_rxbuflock);
637 		list_insert_tail(&asc->asc_rxbuf_list, bf);
638 		mutex_exit(&asc->asc_rxbuflock);
639 		ath_setup_desc(asc, bf);
640 	} while (loop);
641 
642 	/* rx signal state monitoring */
643 	ATH_HAL_RXMONITOR(ah, &hal_node_stats, &asc->asc_curchan);
644 }
645 
646 static void
ath_printtxbuf(struct ath_buf * bf,int done)647 ath_printtxbuf(struct ath_buf *bf, int done)
648 {
649 	struct ath_desc *ds = bf->bf_desc;
650 	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
651 
652 	ATH_DEBUG((ATH_DBG_SEND, "ath: T(%p %p) %08x %08x %08x %08x %08x"
653 	    " %08x %08x %08x %c\n",
654 	    ds, bf->bf_daddr,
655 	    ds->ds_link, ds->ds_data,
656 	    ds->ds_ctl0, ds->ds_ctl1,
657 	    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
658 	    !done ? ' ' : (ts->ts_status == 0) ? '*' : '!'));
659 }
660 
661 /*
662  * The input parameter mp has following assumption:
663  * For data packets, GLDv3 mac_wifi plugin allocates and fills the
664  * ieee80211 header. For management packets, net80211 allocates and
665  * fills the ieee80211 header. In both cases, enough spaces in the
666  * header are left for encryption option.
667  */
668 static int32_t
ath_tx_start(ath_t * asc,struct ieee80211_node * in,struct ath_buf * bf,mblk_t * mp)669 ath_tx_start(ath_t *asc, struct ieee80211_node *in, struct ath_buf *bf,
670     mblk_t *mp)
671 {
672 	ieee80211com_t *ic = (ieee80211com_t *)asc;
673 	struct ieee80211_frame *wh;
674 	struct ath_hal *ah = asc->asc_ah;
675 	uint32_t subtype, flags, ctsduration;
676 	int32_t keyix, iswep, hdrlen, pktlen, mblen, mbslen, try0;
677 	uint8_t rix, cix, txrate, ctsrate;
678 	struct ath_desc *ds;
679 	struct ath_txq *txq;
680 	HAL_PKT_TYPE atype;
681 	const HAL_RATE_TABLE *rt;
682 	HAL_BOOL shortPreamble;
683 	struct ath_node *an;
684 	caddr_t dest;
685 
686 	/*
687 	 * CRC are added by H/W, not encaped by driver,
688 	 * but we must count it in pkt length.
689 	 */
690 	pktlen = IEEE80211_CRC_LEN;
691 
692 	wh = (struct ieee80211_frame *)mp->b_rptr;
693 	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
694 	keyix = HAL_TXKEYIX_INVALID;
695 	hdrlen = sizeof (struct ieee80211_frame);
696 	if (iswep != 0) {
697 		const struct ieee80211_cipher *cip;
698 		struct ieee80211_key *k;
699 
700 		/*
701 		 * Construct the 802.11 header+trailer for an encrypted
702 		 * frame. The only reason this can fail is because of an
703 		 * unknown or unsupported cipher/key type.
704 		 */
705 		k = ieee80211_crypto_encap(ic, mp);
706 		if (k == NULL) {
707 			ATH_DEBUG((ATH_DBG_AUX, "crypto_encap failed\n"));
708 			/*
709 			 * This can happen when the key is yanked after the
710 			 * frame was queued.  Just discard the frame; the
711 			 * 802.11 layer counts failures and provides
712 			 * debugging/diagnostics.
713 			 */
714 			return (EIO);
715 		}
716 		cip = k->wk_cipher;
717 		/*
718 		 * Adjust the packet + header lengths for the crypto
719 		 * additions and calculate the h/w key index.  When
720 		 * a s/w mic is done the frame will have had any mic
721 		 * added to it prior to entry so m0->m_pkthdr.len above will
722 		 * account for it. Otherwise we need to add it to the
723 		 * packet length.
724 		 */
725 		hdrlen += cip->ic_header;
726 		pktlen += cip->ic_trailer;
727 		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
728 			pktlen += cip->ic_miclen;
729 		keyix = k->wk_keyix;
730 
731 		/* packet header may have moved, reset our local pointer */
732 		wh = (struct ieee80211_frame *)mp->b_rptr;
733 	}
734 
735 	dest = bf->bf_dma.mem_va;
736 	for (; mp != NULL; mp = mp->b_cont) {
737 		mblen = MBLKL(mp);
738 		bcopy(mp->b_rptr, dest, mblen);
739 		dest += mblen;
740 	}
741 	mbslen = (uintptr_t)dest - (uintptr_t)bf->bf_dma.mem_va;
742 	pktlen += mbslen;
743 
744 	bf->bf_in = in;
745 
746 	/* setup descriptors */
747 	ds = bf->bf_desc;
748 	rt = asc->asc_currates;
749 	ASSERT(rt != NULL);
750 
751 	/*
752 	 * The 802.11 layer marks whether or not we should
753 	 * use short preamble based on the current mode and
754 	 * negotiated parameters.
755 	 */
756 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
757 	    (in->in_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
758 		shortPreamble = AH_TRUE;
759 		asc->asc_stats.ast_tx_shortpre++;
760 	} else {
761 		shortPreamble = AH_FALSE;
762 	}
763 
764 	an = ATH_NODE(in);
765 
766 	/*
767 	 * Calculate Atheros packet type from IEEE80211 packet header
768 	 * and setup for rate calculations.
769 	 */
770 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
771 	case IEEE80211_FC0_TYPE_MGT:
772 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
773 		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
774 			atype = HAL_PKT_TYPE_BEACON;
775 		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
776 			atype = HAL_PKT_TYPE_PROBE_RESP;
777 		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
778 			atype = HAL_PKT_TYPE_ATIM;
779 		else
780 			atype = HAL_PKT_TYPE_NORMAL;
781 		rix = 0;	/* lowest rate */
782 		try0 = ATH_TXMAXTRY;
783 		if (shortPreamble)
784 			txrate = an->an_tx_mgtratesp;
785 		else
786 			txrate = an->an_tx_mgtrate;
787 		/* force all ctl frames to highest queue */
788 		txq = asc->asc_ac2q[WME_AC_VO];
789 		break;
790 	case IEEE80211_FC0_TYPE_CTL:
791 		atype = HAL_PKT_TYPE_PSPOLL;
792 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
793 		rix = 0;	/* lowest rate */
794 		try0 = ATH_TXMAXTRY;
795 		if (shortPreamble)
796 			txrate = an->an_tx_mgtratesp;
797 		else
798 			txrate = an->an_tx_mgtrate;
799 		/* force all ctl frames to highest queue */
800 		txq = asc->asc_ac2q[WME_AC_VO];
801 		break;
802 	case IEEE80211_FC0_TYPE_DATA:
803 		atype = HAL_PKT_TYPE_NORMAL;
804 		rix = an->an_tx_rix0;
805 		try0 = an->an_tx_try0;
806 		if (shortPreamble)
807 			txrate = an->an_tx_rate0sp;
808 		else
809 			txrate = an->an_tx_rate0;
810 		/* Always use background queue */
811 		txq = asc->asc_ac2q[WME_AC_BK];
812 		break;
813 	default:
814 		/* Unknown 802.11 frame */
815 		asc->asc_stats.ast_tx_invalid++;
816 		return (1);
817 	}
818 	/*
819 	 * Calculate miscellaneous flags.
820 	 */
821 	flags = HAL_TXDESC_CLRDMASK;
822 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
823 		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
824 		asc->asc_stats.ast_tx_noack++;
825 	} else if (pktlen > ic->ic_rtsthreshold) {
826 		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
827 		asc->asc_stats.ast_tx_rts++;
828 	}
829 
830 	/*
831 	 * Calculate duration.  This logically belongs in the 802.11
832 	 * layer but it lacks sufficient information to calculate it.
833 	 */
834 	if ((flags & HAL_TXDESC_NOACK) == 0 &&
835 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
836 	    IEEE80211_FC0_TYPE_CTL) {
837 		uint16_t dur;
838 		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
839 		    rix, shortPreamble);
840 		/* LINTED E_BAD_PTR_CAST_ALIGN */
841 		*(uint16_t *)wh->i_dur = LE_16(dur);
842 	}
843 
844 	/*
845 	 * Calculate RTS/CTS rate and duration if needed.
846 	 */
847 	ctsduration = 0;
848 	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
849 		/*
850 		 * CTS transmit rate is derived from the transmit rate
851 		 * by looking in the h/w rate table.  We must also factor
852 		 * in whether or not a short preamble is to be used.
853 		 */
854 		cix = rt->info[rix].controlRate;
855 		ctsrate = rt->info[cix].rateCode;
856 		if (shortPreamble)
857 			ctsrate |= rt->info[cix].shortPreamble;
858 		/*
859 		 * Compute the transmit duration based on the size
860 		 * of an ACK frame.  We call into the HAL to do the
861 		 * computation since it depends on the characteristics
862 		 * of the actual PHY being used.
863 		 */
864 		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
865 			ctsduration += ath_hal_computetxtime(ah,
866 			    rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
867 		}
868 		/* SIFS + data */
869 		ctsduration += ath_hal_computetxtime(ah,
870 		    rt, pktlen, rix, shortPreamble);
871 		if ((flags & HAL_TXDESC_NOACK) == 0) {  /* SIFS + ACK */
872 			ctsduration += ath_hal_computetxtime(ah,
873 			    rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
874 		}
875 	} else
876 		ctsrate = 0;
877 
878 	if (++txq->axq_intrcnt >= ATH_TXINTR_PERIOD) {
879 		flags |= HAL_TXDESC_INTREQ;
880 		txq->axq_intrcnt = 0;
881 	}
882 
883 	/*
884 	 * Formulate first tx descriptor with tx controls.
885 	 */
886 	ATH_HAL_SETUPTXDESC(ah, ds,
887 	    pktlen,			/* packet length */
888 	    hdrlen,			/* header length */
889 	    atype,			/* Atheros packet type */
890 	    MIN(in->in_txpower, 60),	/* txpower */
891 	    txrate, try0,		/* series 0 rate/tries */
892 	    keyix,			/* key cache index */
893 	    an->an_tx_antenna,		/* antenna mode */
894 	    flags,			/* flags */
895 	    ctsrate,			/* rts/cts rate */
896 	    ctsduration);		/* rts/cts duration */
897 	bf->bf_flags = flags;
898 
899 	/* LINTED E_BAD_PTR_CAST_ALIGN */
900 	ATH_DEBUG((ATH_DBG_SEND, "ath: ath_xmit(): to %s totlen=%d "
901 	    "an->an_tx_rate1sp=%d tx_rate2sp=%d tx_rate3sp=%d "
902 	    "qnum=%d rix=%d sht=%d dur = %d\n",
903 	    ieee80211_macaddr_sprintf(wh->i_addr1), mbslen, an->an_tx_rate1sp,
904 	    an->an_tx_rate2sp, an->an_tx_rate3sp,
905 	    txq->axq_qnum, rix, shortPreamble, *(uint16_t *)wh->i_dur));
906 
907 	/*
908 	 * Setup the multi-rate retry state only when we're
909 	 * going to use it.  This assumes ath_hal_setuptxdesc
910 	 * initializes the descriptors (so we don't have to)
911 	 * when the hardware supports multi-rate retry and
912 	 * we don't use it.
913 	 */
914 	if (try0 != ATH_TXMAXTRY)
915 		ATH_HAL_SETUPXTXDESC(ah, ds,
916 		    an->an_tx_rate1sp, 2,	/* series 1 */
917 		    an->an_tx_rate2sp, 2,	/* series 2 */
918 		    an->an_tx_rate3sp, 2);	/* series 3 */
919 
920 	ds->ds_link = 0;
921 	ds->ds_data = bf->bf_dma.cookie.dmac_address;
922 	ATH_HAL_FILLTXDESC(ah, ds,
923 	    mbslen,		/* segment length */
924 	    AH_TRUE,		/* first segment */
925 	    AH_TRUE,		/* last segment */
926 	    ds);		/* first descriptor */
927 
928 	ATH_DMA_SYNC(bf->bf_dma, DDI_DMA_SYNC_FORDEV);
929 
930 	mutex_enter(&txq->axq_lock);
931 	list_insert_tail(&txq->axq_list, bf);
932 	if (txq->axq_link == NULL) {
933 		ATH_HAL_PUTTXBUF(ah, txq->axq_qnum, bf->bf_daddr);
934 	} else {
935 		*txq->axq_link = bf->bf_daddr;
936 	}
937 	txq->axq_link = &ds->ds_link;
938 	mutex_exit(&txq->axq_lock);
939 
940 	ATH_HAL_TXSTART(ah, txq->axq_qnum);
941 
942 	ic->ic_stats.is_tx_frags++;
943 	ic->ic_stats.is_tx_bytes += pktlen;
944 
945 	return (0);
946 }
947 
948 /*
949  * Transmit a management frame.  On failure we reclaim the skbuff.
950  * Note that management frames come directly from the 802.11 layer
951  * and do not honor the send queue flow control.  Need to investigate
952  * using priority queueing so management frames can bypass data.
953  */
954 static int
ath_xmit(ieee80211com_t * ic,mblk_t * mp,uint8_t type)955 ath_xmit(ieee80211com_t *ic, mblk_t *mp, uint8_t type)
956 {
957 	ath_t *asc = (ath_t *)ic;
958 	struct ath_hal *ah = asc->asc_ah;
959 	struct ieee80211_node *in = NULL;
960 	struct ath_buf *bf = NULL;
961 	struct ieee80211_frame *wh;
962 	int error = 0;
963 
964 	ASSERT(mp->b_next == NULL);
965 
966 	if (!ATH_IS_RUNNING(asc)) {
967 		if ((type & IEEE80211_FC0_TYPE_MASK) !=
968 		    IEEE80211_FC0_TYPE_DATA) {
969 			freemsg(mp);
970 		}
971 		return (ENXIO);
972 	}
973 
974 	/* Grab a TX buffer */
975 	mutex_enter(&asc->asc_txbuflock);
976 	bf = list_head(&asc->asc_txbuf_list);
977 	if (bf != NULL)
978 		list_remove(&asc->asc_txbuf_list, bf);
979 	if (list_empty(&asc->asc_txbuf_list)) {
980 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_mgmt_send(): "
981 		    "stop queue\n"));
982 		asc->asc_stats.ast_tx_qstop++;
983 	}
984 	mutex_exit(&asc->asc_txbuflock);
985 	if (bf == NULL) {
986 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_mgmt_send(): discard, "
987 		    "no xmit buf\n"));
988 		ic->ic_stats.is_tx_nobuf++;
989 		if ((type & IEEE80211_FC0_TYPE_MASK) ==
990 		    IEEE80211_FC0_TYPE_DATA) {
991 			asc->asc_stats.ast_tx_nobuf++;
992 			mutex_enter(&asc->asc_resched_lock);
993 			asc->asc_resched_needed = B_TRUE;
994 			mutex_exit(&asc->asc_resched_lock);
995 		} else {
996 			asc->asc_stats.ast_tx_nobufmgt++;
997 			freemsg(mp);
998 		}
999 		return (ENOMEM);
1000 	}
1001 
1002 	wh = (struct ieee80211_frame *)mp->b_rptr;
1003 
1004 	/* Locate node */
1005 	in = ieee80211_find_txnode(ic,  wh->i_addr1);
1006 	if (in == NULL) {
1007 		error = EIO;
1008 		goto bad;
1009 	}
1010 
1011 	in->in_inact = 0;
1012 	switch (type & IEEE80211_FC0_TYPE_MASK) {
1013 	case IEEE80211_FC0_TYPE_DATA:
1014 		(void) ieee80211_encap(ic, mp, in);
1015 		break;
1016 	default:
1017 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1018 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1019 			/* fill time stamp */
1020 			uint64_t tsf;
1021 			uint32_t *tstamp;
1022 
1023 			tsf = ATH_HAL_GETTSF64(ah);
1024 			/* adjust 100us delay to xmit */
1025 			tsf += 100;
1026 			/* LINTED E_BAD_PTR_CAST_ALIGN */
1027 			tstamp = (uint32_t *)&wh[1];
1028 			tstamp[0] = LE_32(tsf & 0xffffffff);
1029 			tstamp[1] = LE_32(tsf >> 32);
1030 		}
1031 		asc->asc_stats.ast_tx_mgmt++;
1032 		break;
1033 	}
1034 
1035 	error = ath_tx_start(asc, in, bf, mp);
1036 	if (error != 0) {
1037 bad:
1038 		ic->ic_stats.is_tx_failed++;
1039 		if (bf != NULL) {
1040 			mutex_enter(&asc->asc_txbuflock);
1041 			list_insert_tail(&asc->asc_txbuf_list, bf);
1042 			mutex_exit(&asc->asc_txbuflock);
1043 		}
1044 	}
1045 	if (in != NULL)
1046 		ieee80211_free_node(in);
1047 	if ((type & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA ||
1048 	    error == 0) {
1049 		freemsg(mp);
1050 	}
1051 
1052 	return (error);
1053 }
1054 
1055 static mblk_t *
ath_m_tx(void * arg,mblk_t * mp)1056 ath_m_tx(void *arg, mblk_t *mp)
1057 {
1058 	ath_t *asc = arg;
1059 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1060 	mblk_t *next;
1061 	int error = 0;
1062 
1063 	/*
1064 	 * No data frames go out unless we're associated; this
1065 	 * should not happen as the 802.11 layer does not enable
1066 	 * the xmit queue until we enter the RUN state.
1067 	 */
1068 	if (ic->ic_state != IEEE80211_S_RUN) {
1069 		ATH_DEBUG((ATH_DBG_SEND, "ath: ath_m_tx(): "
1070 		    "discard, state %u\n", ic->ic_state));
1071 		asc->asc_stats.ast_tx_discard++;
1072 		freemsgchain(mp);
1073 		return (NULL);
1074 	}
1075 
1076 	while (mp != NULL) {
1077 		next = mp->b_next;
1078 		mp->b_next = NULL;
1079 		error = ath_xmit(ic, mp, IEEE80211_FC0_TYPE_DATA);
1080 		if (error != 0) {
1081 			mp->b_next = next;
1082 			if (error == ENOMEM) {
1083 				break;
1084 			} else {
1085 				freemsgchain(mp);	/* CR6501759 issues */
1086 				return (NULL);
1087 			}
1088 		}
1089 		mp = next;
1090 	}
1091 
1092 	return (mp);
1093 }
1094 
1095 static int
ath_tx_processq(ath_t * asc,struct ath_txq * txq)1096 ath_tx_processq(ath_t *asc, struct ath_txq *txq)
1097 {
1098 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1099 	struct ath_hal *ah = asc->asc_ah;
1100 	struct ath_buf *bf;
1101 	struct ath_desc *ds;
1102 	struct ieee80211_node *in;
1103 	int32_t sr, lr, nacked = 0;
1104 	struct ath_tx_status *ts;
1105 	HAL_STATUS status;
1106 	struct ath_node *an;
1107 
1108 	for (;;) {
1109 		mutex_enter(&txq->axq_lock);
1110 		bf = list_head(&txq->axq_list);
1111 		if (bf == NULL) {
1112 			txq->axq_link = NULL;
1113 			mutex_exit(&txq->axq_lock);
1114 			break;
1115 		}
1116 		ds = bf->bf_desc;	/* last decriptor */
1117 		ts = &bf->bf_status.ds_txstat;
1118 		status = ATH_HAL_TXPROCDESC(ah, ds, ts);
1119 #ifdef DEBUG
1120 		ath_printtxbuf(bf, status == HAL_OK);
1121 #endif
1122 		if (status == HAL_EINPROGRESS) {
1123 			mutex_exit(&txq->axq_lock);
1124 			break;
1125 		}
1126 		list_remove(&txq->axq_list, bf);
1127 		mutex_exit(&txq->axq_lock);
1128 		in = bf->bf_in;
1129 		if (in != NULL) {
1130 			an = ATH_NODE(in);
1131 			/* Successful transmition */
1132 			if (ts->ts_status == 0) {
1133 				an->an_tx_ok++;
1134 				an->an_tx_antenna = ts->ts_antenna;
1135 				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
1136 					asc->asc_stats.ast_tx_altrate++;
1137 				asc->asc_stats.ast_tx_rssidelta =
1138 				    ts->ts_rssi - asc->asc_stats.ast_tx_rssi;
1139 				asc->asc_stats.ast_tx_rssi = ts->ts_rssi;
1140 			} else {
1141 				an->an_tx_err++;
1142 				if (ts->ts_status & HAL_TXERR_XRETRY)
1143 					asc->asc_stats.ast_tx_xretries++;
1144 				if (ts->ts_status & HAL_TXERR_FIFO)
1145 					asc->asc_stats.ast_tx_fifoerr++;
1146 				if (ts->ts_status & HAL_TXERR_FILT)
1147 					asc->asc_stats.ast_tx_filtered++;
1148 				an->an_tx_antenna = 0;	/* invalidate */
1149 			}
1150 			sr = ts->ts_shortretry;
1151 			lr = ts->ts_longretry;
1152 			asc->asc_stats.ast_tx_shortretry += sr;
1153 			asc->asc_stats.ast_tx_longretry += lr;
1154 			/*
1155 			 * Hand the descriptor to the rate control algorithm.
1156 			 */
1157 			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
1158 			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
1159 				/*
1160 				 * If frame was ack'd update the last rx time
1161 				 * used to workaround phantom bmiss interrupts.
1162 				 */
1163 				if (ts->ts_status == 0) {
1164 					nacked++;
1165 					an->an_tx_ok++;
1166 				} else {
1167 					an->an_tx_err++;
1168 				}
1169 				an->an_tx_retr += sr + lr;
1170 			}
1171 		}
1172 		bf->bf_in = NULL;
1173 		mutex_enter(&asc->asc_txbuflock);
1174 		list_insert_tail(&asc->asc_txbuf_list, bf);
1175 		mutex_exit(&asc->asc_txbuflock);
1176 		/*
1177 		 * Reschedule stalled outbound packets
1178 		 */
1179 		mutex_enter(&asc->asc_resched_lock);
1180 		if (asc->asc_resched_needed) {
1181 			asc->asc_resched_needed = B_FALSE;
1182 			mac_tx_update(ic->ic_mach);
1183 		}
1184 		mutex_exit(&asc->asc_resched_lock);
1185 	}
1186 	return (nacked);
1187 }
1188 
1189 
1190 static void
ath_tx_handler(ath_t * asc)1191 ath_tx_handler(ath_t *asc)
1192 {
1193 	int i;
1194 
1195 	/*
1196 	 * Process each active queue.
1197 	 */
1198 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
1199 		if (ATH_TXQ_SETUP(asc, i)) {
1200 			(void) ath_tx_processq(asc, &asc->asc_txq[i]);
1201 		}
1202 	}
1203 }
1204 
1205 static struct ieee80211_node *
ath_node_alloc(ieee80211com_t * ic)1206 ath_node_alloc(ieee80211com_t *ic)
1207 {
1208 	struct ath_node *an;
1209 	ath_t *asc = (ath_t *)ic;
1210 
1211 	an = kmem_zalloc(sizeof (struct ath_node), KM_SLEEP);
1212 	ath_rate_update(asc, &an->an_node, 0);
1213 	return (&an->an_node);
1214 }
1215 
1216 static void
ath_node_free(struct ieee80211_node * in)1217 ath_node_free(struct ieee80211_node *in)
1218 {
1219 	ieee80211com_t *ic = in->in_ic;
1220 	ath_t *asc = (ath_t *)ic;
1221 	struct ath_buf *bf;
1222 	struct ath_txq *txq;
1223 	int32_t i;
1224 
1225 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
1226 		if (ATH_TXQ_SETUP(asc, i)) {
1227 			txq = &asc->asc_txq[i];
1228 			mutex_enter(&txq->axq_lock);
1229 			bf = list_head(&txq->axq_list);
1230 			while (bf != NULL) {
1231 				if (bf->bf_in == in) {
1232 					bf->bf_in = NULL;
1233 				}
1234 				bf = list_next(&txq->axq_list, bf);
1235 			}
1236 			mutex_exit(&txq->axq_lock);
1237 		}
1238 	}
1239 	ic->ic_node_cleanup(in);
1240 	if (in->in_wpa_ie != NULL)
1241 		ieee80211_free(in->in_wpa_ie);
1242 	kmem_free(in, sizeof (struct ath_node));
1243 }
1244 
1245 static void
ath_next_scan(void * arg)1246 ath_next_scan(void *arg)
1247 {
1248 	ieee80211com_t *ic = arg;
1249 	ath_t *asc = (ath_t *)ic;
1250 
1251 	asc->asc_scan_timer = 0;
1252 	if (ic->ic_state == IEEE80211_S_SCAN) {
1253 		asc->asc_scan_timer = timeout(ath_next_scan, (void *)asc,
1254 		    drv_usectohz(ath_dwelltime * 1000));
1255 		ieee80211_next_scan(ic);
1256 	}
1257 }
1258 
1259 static void
ath_stop_scantimer(ath_t * asc)1260 ath_stop_scantimer(ath_t *asc)
1261 {
1262 	timeout_id_t tmp_id = 0;
1263 
1264 	while ((asc->asc_scan_timer != 0) && (tmp_id != asc->asc_scan_timer)) {
1265 		tmp_id = asc->asc_scan_timer;
1266 		(void) untimeout(tmp_id);
1267 	}
1268 	asc->asc_scan_timer = 0;
1269 }
1270 
1271 static int32_t
ath_newstate(ieee80211com_t * ic,enum ieee80211_state nstate,int arg)1272 ath_newstate(ieee80211com_t *ic, enum ieee80211_state nstate, int arg)
1273 {
1274 	ath_t *asc = (ath_t *)ic;
1275 	struct ath_hal *ah = asc->asc_ah;
1276 	struct ieee80211_node *in;
1277 	int32_t i, error;
1278 	uint8_t *bssid;
1279 	uint32_t rfilt;
1280 	enum ieee80211_state ostate;
1281 
1282 	static const HAL_LED_STATE leds[] = {
1283 	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
1284 	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
1285 	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
1286 	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
1287 	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
1288 	};
1289 	if (!ATH_IS_RUNNING(asc))
1290 		return (0);
1291 
1292 	ostate = ic->ic_state;
1293 	if (nstate != IEEE80211_S_SCAN)
1294 		ath_stop_scantimer(asc);
1295 
1296 	ATH_LOCK(asc);
1297 	ATH_HAL_SETLEDSTATE(ah, leds[nstate]);	/* set LED */
1298 
1299 	if (nstate == IEEE80211_S_INIT) {
1300 		asc->asc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
1301 		/*
1302 		 * Disable interrupts.
1303 		 */
1304 		ATH_HAL_INTRSET(ah, asc->asc_imask &~ HAL_INT_GLOBAL);
1305 		ATH_UNLOCK(asc);
1306 		goto done;
1307 	}
1308 	in = ic->ic_bss;
1309 	error = ath_chan_set(asc, ic->ic_curchan);
1310 	if (error != 0) {
1311 		if (nstate != IEEE80211_S_SCAN) {
1312 			ATH_UNLOCK(asc);
1313 			ieee80211_reset_chan(ic);
1314 			goto bad;
1315 		}
1316 	}
1317 
1318 	rfilt = ath_calcrxfilter(asc);
1319 
1320 	if (nstate == IEEE80211_S_SCAN)
1321 		bssid = ic->ic_macaddr;
1322 	else
1323 		bssid = in->in_bssid;
1324 	ATH_HAL_SETRXFILTER(ah, rfilt);
1325 
1326 	if (nstate == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS)
1327 		ATH_HAL_SETASSOCID(ah, bssid, in->in_associd);
1328 	else
1329 		ATH_HAL_SETASSOCID(ah, bssid, 0);
1330 	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
1331 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1332 			if (ATH_HAL_KEYISVALID(ah, i))
1333 				ATH_HAL_KEYSETMAC(ah, i, bssid);
1334 		}
1335 	}
1336 
1337 	if ((nstate == IEEE80211_S_RUN) &&
1338 	    (ostate != IEEE80211_S_RUN)) {
1339 		/* Configure the beacon and sleep timers. */
1340 		ath_beacon_config(asc);
1341 	} else {
1342 		asc->asc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
1343 		ATH_HAL_INTRSET(ah, asc->asc_imask);
1344 	}
1345 	/*
1346 	 * Reset the rate control state.
1347 	 */
1348 	ath_rate_ctl_reset(asc, nstate);
1349 
1350 	ATH_UNLOCK(asc);
1351 done:
1352 	/*
1353 	 * Invoke the parent method to complete the work.
1354 	 */
1355 	error = asc->asc_newstate(ic, nstate, arg);
1356 	/*
1357 	 * Finally, start any timers.
1358 	 */
1359 	if (nstate == IEEE80211_S_RUN) {
1360 		ieee80211_start_watchdog(ic, 1);
1361 	} else if ((nstate == IEEE80211_S_SCAN) && (ostate != nstate)) {
1362 		/* start ap/neighbor scan timer */
1363 		ASSERT(asc->asc_scan_timer == 0);
1364 		asc->asc_scan_timer = timeout(ath_next_scan, (void *)asc,
1365 		    drv_usectohz(ath_dwelltime * 1000));
1366 	}
1367 bad:
1368 	return (error);
1369 }
1370 
1371 /*
1372  * Periodically recalibrate the PHY to account
1373  * for temperature/environment changes.
1374  */
1375 static void
ath_calibrate(ath_t * asc)1376 ath_calibrate(ath_t *asc)
1377 {
1378 	struct ath_hal *ah = asc->asc_ah;
1379 	HAL_BOOL iqcaldone;
1380 
1381 	asc->asc_stats.ast_per_cal++;
1382 
1383 	if (ATH_HAL_GETRFGAIN(ah) == HAL_RFGAIN_NEED_CHANGE) {
1384 		/*
1385 		 * Rfgain is out of bounds, reset the chip
1386 		 * to load new gain values.
1387 		 */
1388 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_calibrate(): "
1389 		    "Need change RFgain\n"));
1390 		asc->asc_stats.ast_per_rfgain++;
1391 		(void) ath_reset(&asc->asc_isc);
1392 	}
1393 	if (!ATH_HAL_CALIBRATE(ah, &asc->asc_curchan, &iqcaldone)) {
1394 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_calibrate(): "
1395 		    "calibration of channel %u failed\n",
1396 		    asc->asc_curchan.channel));
1397 		asc->asc_stats.ast_per_calfail++;
1398 	}
1399 }
1400 
1401 static void
ath_watchdog(void * arg)1402 ath_watchdog(void *arg)
1403 {
1404 	ath_t *asc = arg;
1405 	ieee80211com_t *ic = &asc->asc_isc;
1406 	int ntimer = 0;
1407 
1408 	ATH_LOCK(asc);
1409 	ic->ic_watchdog_timer = 0;
1410 	if (!ATH_IS_RUNNING(asc)) {
1411 		ATH_UNLOCK(asc);
1412 		return;
1413 	}
1414 
1415 	if (ic->ic_state == IEEE80211_S_RUN) {
1416 		/* periodic recalibration */
1417 		ath_calibrate(asc);
1418 
1419 		/*
1420 		 * Start the background rate control thread if we
1421 		 * are not configured to use a fixed xmit rate.
1422 		 */
1423 		if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1424 			asc->asc_stats.ast_rate_calls ++;
1425 			if (ic->ic_opmode == IEEE80211_M_STA)
1426 				ath_rate_ctl(ic, ic->ic_bss);
1427 			else
1428 				ieee80211_iterate_nodes(&ic->ic_sta,
1429 				    ath_rate_ctl, asc);
1430 		}
1431 
1432 		ntimer = 1;
1433 	}
1434 	ATH_UNLOCK(asc);
1435 
1436 	ieee80211_watchdog(ic);
1437 	if (ntimer != 0)
1438 		ieee80211_start_watchdog(ic, ntimer);
1439 }
1440 
1441 static void
ath_tx_proc(void * arg)1442 ath_tx_proc(void *arg)
1443 {
1444 	ath_t *asc = arg;
1445 	ath_tx_handler(asc);
1446 }
1447 
1448 
1449 static uint_t
ath_intr(caddr_t arg)1450 ath_intr(caddr_t arg)
1451 {
1452 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1453 	ath_t *asc = (ath_t *)arg;
1454 	struct ath_hal *ah = asc->asc_ah;
1455 	HAL_INT status;
1456 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1457 
1458 	ATH_LOCK(asc);
1459 
1460 	if (!ATH_IS_RUNNING(asc)) {
1461 		/*
1462 		 * The hardware is not ready/present, don't touch anything.
1463 		 * Note this can happen early on if the IRQ is shared.
1464 		 */
1465 		ATH_UNLOCK(asc);
1466 		return (DDI_INTR_UNCLAIMED);
1467 	}
1468 
1469 	if (!ATH_HAL_INTRPEND(ah)) {	/* shared irq, not for us */
1470 		ATH_UNLOCK(asc);
1471 		return (DDI_INTR_UNCLAIMED);
1472 	}
1473 
1474 	ATH_HAL_GETISR(ah, &status);
1475 	status &= asc->asc_imask;
1476 	if (status & HAL_INT_FATAL) {
1477 		asc->asc_stats.ast_hardware++;
1478 		goto reset;
1479 	} else if (status & HAL_INT_RXORN) {
1480 		asc->asc_stats.ast_rxorn++;
1481 		goto reset;
1482 	} else {
1483 		if (status & HAL_INT_RXEOL) {
1484 			asc->asc_stats.ast_rxeol++;
1485 			asc->asc_rxlink = NULL;
1486 		}
1487 		if (status & HAL_INT_TXURN) {
1488 			asc->asc_stats.ast_txurn++;
1489 			ATH_HAL_UPDATETXTRIGLEVEL(ah, AH_TRUE);
1490 		}
1491 
1492 		if (status & HAL_INT_RX) {
1493 			asc->asc_rx_pend = 1;
1494 			ddi_trigger_softintr(asc->asc_softint_id);
1495 		}
1496 		if (status & HAL_INT_TX) {
1497 			if (ddi_taskq_dispatch(asc->asc_tq, ath_tx_proc,
1498 			    asc, DDI_NOSLEEP) != DDI_SUCCESS) {
1499 				ath_problem("ath: ath_intr(): "
1500 				    "No memory available for tx taskq\n");
1501 			}
1502 		}
1503 		ATH_UNLOCK(asc);
1504 
1505 		if (status & HAL_INT_SWBA) {
1506 			/* This will occur only in Host-AP or Ad-Hoc mode */
1507 			return (DDI_INTR_CLAIMED);
1508 		}
1509 
1510 		if (status & HAL_INT_BMISS) {
1511 			if (ic->ic_state == IEEE80211_S_RUN) {
1512 				(void) ieee80211_new_state(ic,
1513 				    IEEE80211_S_ASSOC, -1);
1514 			}
1515 		}
1516 
1517 	}
1518 
1519 	return (DDI_INTR_CLAIMED);
1520 reset:
1521 	(void) ath_reset(ic);
1522 	ATH_UNLOCK(asc);
1523 	return (DDI_INTR_CLAIMED);
1524 }
1525 
1526 static uint_t
ath_softint_handler(caddr_t data)1527 ath_softint_handler(caddr_t data)
1528 {
1529 	/* LINTED E_BAD_PTR_CAST_ALIGN */
1530 	ath_t *asc = (ath_t *)data;
1531 
1532 	/*
1533 	 * Check if the soft interrupt is triggered by another
1534 	 * driver at the same level.
1535 	 */
1536 	ATH_LOCK(asc);
1537 	if (asc->asc_rx_pend) { /* Soft interrupt for this driver */
1538 		asc->asc_rx_pend = 0;
1539 		ATH_UNLOCK(asc);
1540 		ath_rx_handler(asc);
1541 		return (DDI_INTR_CLAIMED);
1542 	}
1543 	ATH_UNLOCK(asc);
1544 	return (DDI_INTR_UNCLAIMED);
1545 }
1546 
1547 /*
1548  * following are gld callback routine
1549  * ath_gld_send, ath_gld_ioctl, ath_gld_gstat
1550  * are listed in other corresponding sections.
1551  * reset the hardware w/o losing operational state.  this is
1552  * basically a more efficient way of doing ath_gld_stop, ath_gld_start,
1553  * followed by state transitions to the current 802.11
1554  * operational state.  used to recover from errors rx overrun
1555  * and to reset the hardware when rf gain settings must be reset.
1556  */
1557 
1558 static void
ath_stop_locked(ath_t * asc)1559 ath_stop_locked(ath_t *asc)
1560 {
1561 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1562 	struct ath_hal *ah = asc->asc_ah;
1563 
1564 	ATH_LOCK_ASSERT(asc);
1565 	if (!asc->asc_isrunning)
1566 		return;
1567 
1568 	/*
1569 	 * Shutdown the hardware and driver:
1570 	 *    reset 802.11 state machine
1571 	 *    turn off timers
1572 	 *    disable interrupts
1573 	 *    turn off the radio
1574 	 *    clear transmit machinery
1575 	 *    clear receive machinery
1576 	 *    drain and release tx queues
1577 	 *    reclaim beacon resources
1578 	 *    power down hardware
1579 	 *
1580 	 * Note that some of this work is not possible if the
1581 	 * hardware is gone (invalid).
1582 	 */
1583 	ATH_UNLOCK(asc);
1584 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1585 	ieee80211_stop_watchdog(ic);
1586 	ATH_LOCK(asc);
1587 	ATH_HAL_INTRSET(ah, 0);
1588 	ath_draintxq(asc);
1589 	if (!asc->asc_invalid) {
1590 		ath_stoprecv(asc);
1591 		ATH_HAL_PHYDISABLE(ah);
1592 	} else {
1593 		asc->asc_rxlink = NULL;
1594 	}
1595 	asc->asc_isrunning = 0;
1596 }
1597 
1598 static void
ath_m_stop(void * arg)1599 ath_m_stop(void *arg)
1600 {
1601 	ath_t *asc = arg;
1602 	struct ath_hal *ah = asc->asc_ah;
1603 
1604 	ATH_LOCK(asc);
1605 	ath_stop_locked(asc);
1606 	ATH_HAL_SETPOWER(ah, HAL_PM_AWAKE);
1607 	asc->asc_invalid = 1;
1608 	ATH_UNLOCK(asc);
1609 }
1610 
1611 static int
ath_start_locked(ath_t * asc)1612 ath_start_locked(ath_t *asc)
1613 {
1614 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1615 	struct ath_hal *ah = asc->asc_ah;
1616 	HAL_STATUS status;
1617 
1618 	ATH_LOCK_ASSERT(asc);
1619 
1620 	/*
1621 	 * The basic interface to setting the hardware in a good
1622 	 * state is ``reset''.  On return the hardware is known to
1623 	 * be powered up and with interrupts disabled.  This must
1624 	 * be followed by initialization of the appropriate bits
1625 	 * and then setup of the interrupt mask.
1626 	 */
1627 	asc->asc_curchan.channel = ic->ic_curchan->ich_freq;
1628 	asc->asc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
1629 	if (!ATH_HAL_RESET(ah, (HAL_OPMODE)ic->ic_opmode,
1630 	    &asc->asc_curchan, AH_FALSE, &status)) {
1631 		ATH_DEBUG((ATH_DBG_HAL, "ath: ath_m_start(): "
1632 		    "reset hardware failed: '%s' (HAL status %u)\n",
1633 		    ath_get_hal_status_desc(status), status));
1634 		return (ENOTACTIVE);
1635 	}
1636 
1637 	(void) ath_startrecv(asc);
1638 
1639 	/*
1640 	 * Enable interrupts.
1641 	 */
1642 	asc->asc_imask = HAL_INT_RX | HAL_INT_TX
1643 	    | HAL_INT_RXEOL | HAL_INT_RXORN
1644 	    | HAL_INT_FATAL | HAL_INT_GLOBAL;
1645 	ATH_HAL_INTRSET(ah, asc->asc_imask);
1646 
1647 	/*
1648 	 * The hardware should be ready to go now so it's safe
1649 	 * to kick the 802.11 state machine as it's likely to
1650 	 * immediately call back to us to send mgmt frames.
1651 	 */
1652 	ath_chan_change(asc, ic->ic_curchan);
1653 
1654 	asc->asc_isrunning = 1;
1655 
1656 	return (0);
1657 }
1658 
1659 int
ath_m_start(void * arg)1660 ath_m_start(void *arg)
1661 {
1662 	ath_t *asc = arg;
1663 	int err;
1664 
1665 	ATH_LOCK(asc);
1666 	/*
1667 	 * Stop anything previously setup.  This is safe
1668 	 * whether this is the first time through or not.
1669 	 */
1670 	ath_stop_locked(asc);
1671 
1672 	if ((err = ath_start_locked(asc)) != 0) {
1673 		ATH_UNLOCK(asc);
1674 		return (err);
1675 	}
1676 
1677 	asc->asc_invalid = 0;
1678 	ATH_UNLOCK(asc);
1679 
1680 	return (0);
1681 }
1682 
1683 
1684 static int
ath_m_unicst(void * arg,const uint8_t * macaddr)1685 ath_m_unicst(void *arg, const uint8_t *macaddr)
1686 {
1687 	ath_t *asc = arg;
1688 	struct ath_hal *ah = asc->asc_ah;
1689 
1690 	ATH_DEBUG((ATH_DBG_GLD, "ath: ath_gld_saddr(): "
1691 	    "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x\n",
1692 	    macaddr[0], macaddr[1], macaddr[2],
1693 	    macaddr[3], macaddr[4], macaddr[5]));
1694 
1695 	ATH_LOCK(asc);
1696 	IEEE80211_ADDR_COPY(asc->asc_isc.ic_macaddr, macaddr);
1697 	ATH_HAL_SETMAC(ah, asc->asc_isc.ic_macaddr);
1698 
1699 	(void) ath_reset(&asc->asc_isc);
1700 	ATH_UNLOCK(asc);
1701 	return (0);
1702 }
1703 
1704 static int
ath_m_promisc(void * arg,boolean_t on)1705 ath_m_promisc(void *arg, boolean_t on)
1706 {
1707 	ath_t *asc = arg;
1708 	struct ath_hal *ah = asc->asc_ah;
1709 	uint32_t rfilt;
1710 
1711 	ATH_LOCK(asc);
1712 	rfilt = ATH_HAL_GETRXFILTER(ah);
1713 	if (on)
1714 		rfilt |= HAL_RX_FILTER_PROM;
1715 	else
1716 		rfilt &= ~HAL_RX_FILTER_PROM;
1717 	asc->asc_promisc = on;
1718 	ATH_HAL_SETRXFILTER(ah, rfilt);
1719 	ATH_UNLOCK(asc);
1720 
1721 	return (0);
1722 }
1723 
1724 static int
ath_m_multicst(void * arg,boolean_t add,const uint8_t * mca)1725 ath_m_multicst(void *arg, boolean_t add, const uint8_t *mca)
1726 {
1727 	ath_t *asc = arg;
1728 	struct ath_hal *ah = asc->asc_ah;
1729 	uint32_t val, index, bit;
1730 	uint8_t pos;
1731 	uint32_t *mfilt = asc->asc_mcast_hash;
1732 
1733 	ATH_LOCK(asc);
1734 
1735 	/* calculate XOR of eight 6bit values */
1736 	val = ATH_LE_READ_4(mca + 0);
1737 	pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1738 	val = ATH_LE_READ_4(mca + 3);
1739 	pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1740 	pos &= 0x3f;
1741 	index = pos / 32;
1742 	bit = 1 << (pos % 32);
1743 
1744 	if (add) {	/* enable multicast */
1745 		asc->asc_mcast_refs[pos]++;
1746 		mfilt[index] |= bit;
1747 	} else {	/* disable multicast */
1748 		if (--asc->asc_mcast_refs[pos] == 0)
1749 			mfilt[index] &= ~bit;
1750 	}
1751 	ATH_HAL_SETMCASTFILTER(ah, mfilt[0], mfilt[1]);
1752 
1753 	ATH_UNLOCK(asc);
1754 	return (0);
1755 }
1756 /*
1757  * callback functions for /get/set properties
1758  */
1759 static int
ath_m_setprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,const void * wldp_buf)1760 ath_m_setprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
1761     uint_t wldp_length, const void *wldp_buf)
1762 {
1763 	ath_t	*asc = arg;
1764 	int	err;
1765 
1766 	err = ieee80211_setprop(&asc->asc_isc, pr_name, wldp_pr_num,
1767 	    wldp_length, wldp_buf);
1768 
1769 	ATH_LOCK(asc);
1770 
1771 	if (err == ENETRESET) {
1772 		if (ATH_IS_RUNNING(asc)) {
1773 			ATH_UNLOCK(asc);
1774 			(void) ath_m_start(asc);
1775 			(void) ieee80211_new_state(&asc->asc_isc,
1776 			    IEEE80211_S_SCAN, -1);
1777 			ATH_LOCK(asc);
1778 		}
1779 		err = 0;
1780 	}
1781 
1782 	ATH_UNLOCK(asc);
1783 
1784 	return (err);
1785 }
1786 
1787 static int
ath_m_getprop(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,uint_t wldp_length,void * wldp_buf)1788 ath_m_getprop(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
1789     uint_t wldp_length, void *wldp_buf)
1790 {
1791 	ath_t	*asc = arg;
1792 	int	err = 0;
1793 
1794 	err = ieee80211_getprop(&asc->asc_isc, pr_name, wldp_pr_num,
1795 	    wldp_length, wldp_buf);
1796 
1797 	return (err);
1798 }
1799 
1800 static void
ath_m_propinfo(void * arg,const char * pr_name,mac_prop_id_t wldp_pr_num,mac_prop_info_handle_t mph)1801 ath_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t wldp_pr_num,
1802     mac_prop_info_handle_t mph)
1803 {
1804 	ath_t	*asc = arg;
1805 
1806 	ieee80211_propinfo(&asc->asc_isc, pr_name, wldp_pr_num, mph);
1807 }
1808 
1809 static void
ath_m_ioctl(void * arg,queue_t * wq,mblk_t * mp)1810 ath_m_ioctl(void *arg, queue_t *wq, mblk_t *mp)
1811 {
1812 	ath_t *asc = arg;
1813 	int32_t err;
1814 
1815 	err = ieee80211_ioctl(&asc->asc_isc, wq, mp);
1816 	ATH_LOCK(asc);
1817 	if (err == ENETRESET) {
1818 		if (ATH_IS_RUNNING(asc)) {
1819 			ATH_UNLOCK(asc);
1820 			(void) ath_m_start(asc);
1821 			(void) ieee80211_new_state(&asc->asc_isc,
1822 			    IEEE80211_S_SCAN, -1);
1823 			ATH_LOCK(asc);
1824 		}
1825 	}
1826 	ATH_UNLOCK(asc);
1827 }
1828 
1829 static int
ath_m_stat(void * arg,uint_t stat,uint64_t * val)1830 ath_m_stat(void *arg, uint_t stat, uint64_t *val)
1831 {
1832 	ath_t *asc = arg;
1833 	ieee80211com_t *ic = (ieee80211com_t *)asc;
1834 	struct ieee80211_node *in = ic->ic_bss;
1835 	struct ieee80211_rateset *rs = &in->in_rates;
1836 
1837 	ATH_LOCK(asc);
1838 	switch (stat) {
1839 	case MAC_STAT_IFSPEED:
1840 		*val = (rs->ir_rates[in->in_txrate] & IEEE80211_RATE_VAL) / 2 *
1841 		    1000000ull;
1842 		break;
1843 	case MAC_STAT_NOXMTBUF:
1844 		*val = asc->asc_stats.ast_tx_nobuf +
1845 		    asc->asc_stats.ast_tx_nobufmgt;
1846 		break;
1847 	case MAC_STAT_IERRORS:
1848 		*val = asc->asc_stats.ast_rx_tooshort;
1849 		break;
1850 	case MAC_STAT_RBYTES:
1851 		*val = ic->ic_stats.is_rx_bytes;
1852 		break;
1853 	case MAC_STAT_IPACKETS:
1854 		*val = ic->ic_stats.is_rx_frags;
1855 		break;
1856 	case MAC_STAT_OBYTES:
1857 		*val = ic->ic_stats.is_tx_bytes;
1858 		break;
1859 	case MAC_STAT_OPACKETS:
1860 		*val = ic->ic_stats.is_tx_frags;
1861 		break;
1862 	case MAC_STAT_OERRORS:
1863 	case WIFI_STAT_TX_FAILED:
1864 		*val = asc->asc_stats.ast_tx_fifoerr +
1865 		    asc->asc_stats.ast_tx_xretries +
1866 		    asc->asc_stats.ast_tx_discard;
1867 		break;
1868 	case WIFI_STAT_TX_RETRANS:
1869 		*val = asc->asc_stats.ast_tx_xretries;
1870 		break;
1871 	case WIFI_STAT_FCS_ERRORS:
1872 		*val = asc->asc_stats.ast_rx_crcerr;
1873 		break;
1874 	case WIFI_STAT_WEP_ERRORS:
1875 		*val = asc->asc_stats.ast_rx_badcrypt;
1876 		break;
1877 	case WIFI_STAT_TX_FRAGS:
1878 	case WIFI_STAT_MCAST_TX:
1879 	case WIFI_STAT_RTS_SUCCESS:
1880 	case WIFI_STAT_RTS_FAILURE:
1881 	case WIFI_STAT_ACK_FAILURE:
1882 	case WIFI_STAT_RX_FRAGS:
1883 	case WIFI_STAT_MCAST_RX:
1884 	case WIFI_STAT_RX_DUPS:
1885 		ATH_UNLOCK(asc);
1886 		return (ieee80211_stat(ic, stat, val));
1887 	default:
1888 		ATH_UNLOCK(asc);
1889 		return (ENOTSUP);
1890 	}
1891 	ATH_UNLOCK(asc);
1892 
1893 	return (0);
1894 }
1895 
1896 static int
ath_pci_setup(ath_t * asc)1897 ath_pci_setup(ath_t *asc)
1898 {
1899 	uint16_t command;
1900 
1901 	/*
1902 	 * Enable memory mapping and bus mastering
1903 	 */
1904 	ASSERT(asc != NULL);
1905 	command = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_COMM);
1906 	command |= PCI_COMM_MAE | PCI_COMM_ME;
1907 	pci_config_put16(asc->asc_cfg_handle, PCI_CONF_COMM, command);
1908 	command = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_COMM);
1909 	if ((command & PCI_COMM_MAE) == 0) {
1910 		ath_problem("ath: ath_pci_setup(): "
1911 		    "failed to enable memory mapping\n");
1912 		return (EIO);
1913 	}
1914 	if ((command & PCI_COMM_ME) == 0) {
1915 		ath_problem("ath: ath_pci_setup(): "
1916 		    "failed to enable bus mastering\n");
1917 		return (EIO);
1918 	}
1919 	ATH_DEBUG((ATH_DBG_INIT, "ath: ath_pci_setup(): "
1920 	    "set command reg to 0x%x \n", command));
1921 
1922 	return (0);
1923 }
1924 
1925 static int
ath_resume(dev_info_t * devinfo)1926 ath_resume(dev_info_t *devinfo)
1927 {
1928 	ath_t *asc;
1929 	int ret = DDI_SUCCESS;
1930 
1931 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
1932 	if (asc == NULL) {
1933 		ATH_DEBUG((ATH_DBG_SUSPEND, "ath: ath_resume(): "
1934 		    "failed to get soft state\n"));
1935 		return (DDI_FAILURE);
1936 	}
1937 
1938 	ATH_LOCK(asc);
1939 	/*
1940 	 * Set up config space command register(s). Refuse
1941 	 * to resume on failure.
1942 	 */
1943 	if (ath_pci_setup(asc) != 0) {
1944 		ATH_DEBUG((ATH_DBG_SUSPEND, "ath: ath_resume(): "
1945 		    "ath_pci_setup() failed\n"));
1946 		ATH_UNLOCK(asc);
1947 		return (DDI_FAILURE);
1948 	}
1949 
1950 	if (!asc->asc_invalid)
1951 		ret = ath_start_locked(asc);
1952 	ATH_UNLOCK(asc);
1953 
1954 	return (ret);
1955 }
1956 
1957 static int
ath_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)1958 ath_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
1959 {
1960 	ath_t *asc;
1961 	ieee80211com_t *ic;
1962 	struct ath_hal *ah;
1963 	uint8_t csz;
1964 	HAL_STATUS status;
1965 	caddr_t regs;
1966 	uint32_t i, val;
1967 	uint16_t vendor_id, device_id;
1968 	const char *athname;
1969 	int32_t ath_countrycode = CTRY_DEFAULT;	/* country code */
1970 	int32_t err, ath_regdomain = 0; /* regulatory domain */
1971 	char strbuf[32];
1972 	int instance;
1973 	wifi_data_t wd = { 0 };
1974 	mac_register_t *macp;
1975 
1976 	switch (cmd) {
1977 	case DDI_ATTACH:
1978 		break;
1979 
1980 	case DDI_RESUME:
1981 		return (ath_resume(devinfo));
1982 
1983 	default:
1984 		return (DDI_FAILURE);
1985 	}
1986 
1987 	instance = ddi_get_instance(devinfo);
1988 	if (ddi_soft_state_zalloc(ath_soft_state_p, instance) != DDI_SUCCESS) {
1989 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
1990 		    "Unable to alloc softstate\n"));
1991 		return (DDI_FAILURE);
1992 	}
1993 
1994 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
1995 	ic = (ieee80211com_t *)asc;
1996 	asc->asc_dev = devinfo;
1997 
1998 	mutex_init(&asc->asc_genlock, NULL, MUTEX_DRIVER, NULL);
1999 	mutex_init(&asc->asc_txbuflock, NULL, MUTEX_DRIVER, NULL);
2000 	mutex_init(&asc->asc_rxbuflock, NULL, MUTEX_DRIVER, NULL);
2001 	mutex_init(&asc->asc_resched_lock, NULL, MUTEX_DRIVER, NULL);
2002 
2003 	err = pci_config_setup(devinfo, &asc->asc_cfg_handle);
2004 	if (err != DDI_SUCCESS) {
2005 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2006 		    "pci_config_setup() failed"));
2007 		goto attach_fail0;
2008 	}
2009 
2010 	if (ath_pci_setup(asc) != 0)
2011 		goto attach_fail1;
2012 
2013 	/*
2014 	 * Cache line size is used to size and align various
2015 	 * structures used to communicate with the hardware.
2016 	 */
2017 	csz = pci_config_get8(asc->asc_cfg_handle, PCI_CONF_CACHE_LINESZ);
2018 	if (csz == 0) {
2019 		/*
2020 		 * We must have this setup properly for rx buffer
2021 		 * DMA to work so force a reasonable value here if it
2022 		 * comes up zero.
2023 		 */
2024 		csz = ATH_DEF_CACHE_BYTES / sizeof (uint32_t);
2025 		pci_config_put8(asc->asc_cfg_handle, PCI_CONF_CACHE_LINESZ,
2026 		    csz);
2027 	}
2028 	asc->asc_cachelsz = csz << 2;
2029 	vendor_id = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_VENID);
2030 	device_id = pci_config_get16(asc->asc_cfg_handle, PCI_CONF_DEVID);
2031 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): vendor 0x%x, "
2032 	    "device id 0x%x, cache size %d\n", vendor_id, device_id, csz));
2033 
2034 	athname = ath_hal_probe(vendor_id, device_id);
2035 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): athname: %s\n",
2036 	    athname ? athname : "Atheros ???"));
2037 
2038 	pci_config_put8(asc->asc_cfg_handle, PCI_CONF_LATENCY_TIMER, 0xa8);
2039 	val = pci_config_get32(asc->asc_cfg_handle, 0x40);
2040 	if ((val & 0x0000ff00) != 0)
2041 		pci_config_put32(asc->asc_cfg_handle, 0x40, val & 0xffff00ff);
2042 
2043 	err = ddi_regs_map_setup(devinfo, 1,
2044 	    &regs, 0, 0, &ath_reg_accattr, &asc->asc_io_handle);
2045 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2046 	    "regs map1 = %x err=%d\n", regs, err));
2047 	if (err != DDI_SUCCESS) {
2048 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2049 		    "ddi_regs_map_setup() failed"));
2050 		goto attach_fail1;
2051 	}
2052 
2053 	ah = ath_hal_attach(device_id, asc, 0, regs, &status);
2054 	if (ah == NULL) {
2055 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2056 		    "unable to attach hw: '%s' (HAL status %u)\n",
2057 		    ath_get_hal_status_desc(status), status));
2058 		goto attach_fail2;
2059 	}
2060 	ATH_DEBUG((ATH_DBG_ATTACH, "mac %d.%d phy %d.%d",
2061 	    ah->ah_macVersion, ah->ah_macRev,
2062 	    ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf));
2063 	ATH_HAL_INTRSET(ah, 0);
2064 	asc->asc_ah = ah;
2065 
2066 	if (ah->ah_abi != HAL_ABI_VERSION) {
2067 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2068 		    "HAL ABI mismatch detected (0x%x != 0x%x)\n",
2069 		    ah->ah_abi, HAL_ABI_VERSION));
2070 		goto attach_fail3;
2071 	}
2072 
2073 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2074 	    "HAL ABI version 0x%x\n", ah->ah_abi));
2075 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2076 	    "HAL mac version %d.%d, phy version %d.%d\n",
2077 	    ah->ah_macVersion, ah->ah_macRev,
2078 	    ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf));
2079 	if (ah->ah_analog5GhzRev)
2080 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2081 		    "HAL 5ghz radio version %d.%d\n",
2082 		    ah->ah_analog5GhzRev >> 4,
2083 		    ah->ah_analog5GhzRev & 0xf));
2084 	if (ah->ah_analog2GhzRev)
2085 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2086 		    "HAL 2ghz radio version %d.%d\n",
2087 		    ah->ah_analog2GhzRev >> 4,
2088 		    ah->ah_analog2GhzRev & 0xf));
2089 
2090 	/*
2091 	 * Check if the MAC has multi-rate retry support.
2092 	 * We do this by trying to setup a fake extended
2093 	 * descriptor.  MAC's that don't have support will
2094 	 * return false w/o doing anything.  MAC's that do
2095 	 * support it will return true w/o doing anything.
2096 	 */
2097 	asc->asc_mrretry = ATH_HAL_SETUPXTXDESC(ah, NULL, 0, 0, 0, 0, 0, 0);
2098 	ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2099 	    "multi rate retry support=%x\n",
2100 	    asc->asc_mrretry));
2101 
2102 	/*
2103 	 * Get the hardware key cache size.
2104 	 */
2105 	asc->asc_keymax = ATH_HAL_KEYCACHESIZE(ah);
2106 	if (asc->asc_keymax > sizeof (asc->asc_keymap) * NBBY) {
2107 		ATH_DEBUG((ATH_DBG_ATTACH, "ath_attach:"
2108 		    " Warning, using only %u entries in %u key cache\n",
2109 		    sizeof (asc->asc_keymap) * NBBY, asc->asc_keymax));
2110 		asc->asc_keymax = sizeof (asc->asc_keymap) * NBBY;
2111 	}
2112 	/*
2113 	 * Reset the key cache since some parts do not
2114 	 * reset the contents on initial power up.
2115 	 */
2116 	for (i = 0; i < asc->asc_keymax; i++)
2117 		ATH_HAL_KEYRESET(ah, i);
2118 
2119 	ATH_HAL_GETREGDOMAIN(ah, (uint32_t *)&ath_regdomain);
2120 	ATH_HAL_GETCOUNTRYCODE(ah, &ath_countrycode);
2121 	/*
2122 	 * Collect the channel list using the default country
2123 	 * code and including outdoor channels.  The 802.11 layer
2124 	 * is resposible for filtering this list to a set of
2125 	 * channels that it considers ok to use.
2126 	 */
2127 	asc->asc_have11g = 0;
2128 
2129 	/* enable outdoor use, enable extended channels */
2130 	err = ath_getchannels(asc, ath_countrycode, AH_FALSE, AH_TRUE);
2131 	if (err != 0)
2132 		goto attach_fail3;
2133 
2134 	/*
2135 	 * Setup rate tables for all potential media types.
2136 	 */
2137 	ath_rate_setup(asc, IEEE80211_MODE_11A);
2138 	ath_rate_setup(asc, IEEE80211_MODE_11B);
2139 	ath_rate_setup(asc, IEEE80211_MODE_11G);
2140 	ath_rate_setup(asc, IEEE80211_MODE_TURBO_A);
2141 
2142 	/* Setup here so ath_rate_update is happy */
2143 	ath_setcurmode(asc, IEEE80211_MODE_11A);
2144 
2145 	err = ath_desc_alloc(devinfo, asc);
2146 	if (err != DDI_SUCCESS) {
2147 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2148 		    "failed to allocate descriptors: %d\n", err));
2149 		goto attach_fail3;
2150 	}
2151 
2152 	if ((asc->asc_tq = ddi_taskq_create(devinfo, "ath_taskq", 1,
2153 	    TASKQ_DEFAULTPRI, 0)) == NULL) {
2154 		goto attach_fail4;
2155 	}
2156 	/* Setup transmit queues in the HAL */
2157 	if (ath_txq_setup(asc))
2158 		goto attach_fail4;
2159 
2160 	ATH_HAL_GETMAC(ah, ic->ic_macaddr);
2161 
2162 	/*
2163 	 * Initialize pointers to device specific functions which
2164 	 * will be used by the generic layer.
2165 	 */
2166 	/* 11g support is identified when we fetch the channel set */
2167 	if (asc->asc_have11g)
2168 		ic->ic_caps |= IEEE80211_C_SHPREAMBLE |
2169 		    IEEE80211_C_SHSLOT;		/* short slot time */
2170 	/*
2171 	 * Query the hal to figure out h/w crypto support.
2172 	 */
2173 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_WEP))
2174 		ic->ic_caps |= IEEE80211_C_WEP;
2175 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_AES_OCB))
2176 		ic->ic_caps |= IEEE80211_C_AES;
2177 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_AES_CCM)) {
2178 		ATH_DEBUG((ATH_DBG_ATTACH, "Atheros support H/W CCMP\n"));
2179 		ic->ic_caps |= IEEE80211_C_AES_CCM;
2180 	}
2181 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_CKIP))
2182 		ic->ic_caps |= IEEE80211_C_CKIP;
2183 	if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_TKIP)) {
2184 		ATH_DEBUG((ATH_DBG_ATTACH, "Atheros support H/W TKIP\n"));
2185 		ic->ic_caps |= IEEE80211_C_TKIP;
2186 		/*
2187 		 * Check if h/w does the MIC and/or whether the
2188 		 * separate key cache entries are required to
2189 		 * handle both tx+rx MIC keys.
2190 		 */
2191 		if (ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_MIC)) {
2192 			ATH_DEBUG((ATH_DBG_ATTACH, "Support H/W TKIP MIC\n"));
2193 			ic->ic_caps |= IEEE80211_C_TKIPMIC;
2194 		}
2195 
2196 		/*
2197 		 * If the h/w supports storing tx+rx MIC keys
2198 		 * in one cache slot automatically enable use.
2199 		 */
2200 		if (ATH_HAL_HASTKIPSPLIT(ah) ||
2201 		    !ATH_HAL_SETTKIPSPLIT(ah, AH_FALSE)) {
2202 			asc->asc_splitmic = 1;
2203 		}
2204 	}
2205 	ic->ic_caps |= IEEE80211_C_WPA;	/* Support WPA/WPA2 */
2206 
2207 	asc->asc_hasclrkey = ATH_HAL_CIPHERSUPPORTED(ah, HAL_CIPHER_CLR);
2208 	/*
2209 	 * Mark key cache slots associated with global keys
2210 	 * as in use.  If we knew TKIP was not to be used we
2211 	 * could leave the +32, +64, and +32+64 slots free.
2212 	 */
2213 	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2214 		setbit(asc->asc_keymap, i);
2215 		setbit(asc->asc_keymap, i+64);
2216 		if (asc->asc_splitmic) {
2217 			setbit(asc->asc_keymap, i+32);
2218 			setbit(asc->asc_keymap, i+32+64);
2219 		}
2220 	}
2221 
2222 	ic->ic_phytype = IEEE80211_T_OFDM;
2223 	ic->ic_opmode = IEEE80211_M_STA;
2224 	ic->ic_state = IEEE80211_S_INIT;
2225 	ic->ic_maxrssi = ATH_MAX_RSSI;
2226 	ic->ic_set_shortslot = ath_set_shortslot;
2227 	ic->ic_xmit = ath_xmit;
2228 	ieee80211_attach(ic);
2229 
2230 	/* different instance has different WPA door */
2231 	(void) snprintf(ic->ic_wpadoor, MAX_IEEE80211STR, "%s_%s%d", WPA_DOOR,
2232 	    ddi_driver_name(devinfo),
2233 	    ddi_get_instance(devinfo));
2234 
2235 	/* Override 80211 default routines */
2236 	ic->ic_reset = ath_reset;
2237 	asc->asc_newstate = ic->ic_newstate;
2238 	ic->ic_newstate = ath_newstate;
2239 	ic->ic_watchdog = ath_watchdog;
2240 	ic->ic_node_alloc = ath_node_alloc;
2241 	ic->ic_node_free = ath_node_free;
2242 	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
2243 	ic->ic_crypto.cs_key_delete = ath_key_delete;
2244 	ic->ic_crypto.cs_key_set = ath_key_set;
2245 	ieee80211_media_init(ic);
2246 	/*
2247 	 * initialize default tx key
2248 	 */
2249 	ic->ic_def_txkey = 0;
2250 
2251 	asc->asc_rx_pend = 0;
2252 	ATH_HAL_INTRSET(ah, 0);
2253 	err = ddi_add_softintr(devinfo, DDI_SOFTINT_LOW,
2254 	    &asc->asc_softint_id, NULL, 0, ath_softint_handler, (caddr_t)asc);
2255 	if (err != DDI_SUCCESS) {
2256 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2257 		    "ddi_add_softintr() failed\n"));
2258 		goto attach_fail5;
2259 	}
2260 
2261 	if (ddi_get_iblock_cookie(devinfo, 0, &asc->asc_iblock)
2262 	    != DDI_SUCCESS) {
2263 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2264 		    "Can not get iblock cookie for INT\n"));
2265 		goto attach_fail6;
2266 	}
2267 
2268 	if (ddi_add_intr(devinfo, 0, NULL, NULL, ath_intr,
2269 	    (caddr_t)asc) != DDI_SUCCESS) {
2270 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2271 		    "Can not set intr for ATH driver\n"));
2272 		goto attach_fail6;
2273 	}
2274 
2275 	/*
2276 	 * Provide initial settings for the WiFi plugin; whenever this
2277 	 * information changes, we need to call mac_plugindata_update()
2278 	 */
2279 	wd.wd_opmode = ic->ic_opmode;
2280 	wd.wd_secalloc = WIFI_SEC_NONE;
2281 	IEEE80211_ADDR_COPY(wd.wd_bssid, ic->ic_bss->in_bssid);
2282 
2283 	if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
2284 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2285 		    "MAC version mismatch\n"));
2286 		goto attach_fail7;
2287 	}
2288 
2289 	macp->m_type_ident	= MAC_PLUGIN_IDENT_WIFI;
2290 	macp->m_driver		= asc;
2291 	macp->m_dip		= devinfo;
2292 	macp->m_src_addr	= ic->ic_macaddr;
2293 	macp->m_callbacks	= &ath_m_callbacks;
2294 	macp->m_min_sdu		= 0;
2295 	macp->m_max_sdu		= IEEE80211_MTU;
2296 	macp->m_pdata		= &wd;
2297 	macp->m_pdata_size	= sizeof (wd);
2298 
2299 	err = mac_register(macp, &ic->ic_mach);
2300 	mac_free(macp);
2301 	if (err != 0) {
2302 		ATH_DEBUG((ATH_DBG_ATTACH, "ath: ath_attach(): "
2303 		    "mac_register err %x\n", err));
2304 		goto attach_fail7;
2305 	}
2306 
2307 	/* Create minor node of type DDI_NT_NET_WIFI */
2308 	(void) snprintf(strbuf, sizeof (strbuf), "%s%d",
2309 	    ATH_NODENAME, instance);
2310 	err = ddi_create_minor_node(devinfo, strbuf, S_IFCHR,
2311 	    instance + 1, DDI_NT_NET_WIFI, 0);
2312 	if (err != DDI_SUCCESS)
2313 		ATH_DEBUG((ATH_DBG_ATTACH, "WARN: ath: ath_attach(): "
2314 		    "Create minor node failed - %d\n", err));
2315 
2316 	mac_link_update(ic->ic_mach, LINK_STATE_DOWN);
2317 	asc->asc_invalid = 1;
2318 	asc->asc_isrunning = 0;
2319 	asc->asc_promisc = B_FALSE;
2320 	bzero(asc->asc_mcast_refs, sizeof (asc->asc_mcast_refs));
2321 	bzero(asc->asc_mcast_hash, sizeof (asc->asc_mcast_hash));
2322 	return (DDI_SUCCESS);
2323 attach_fail7:
2324 	ddi_remove_intr(devinfo, 0, asc->asc_iblock);
2325 attach_fail6:
2326 	ddi_remove_softintr(asc->asc_softint_id);
2327 attach_fail5:
2328 	(void) ieee80211_detach(ic);
2329 attach_fail4:
2330 	ath_desc_free(asc);
2331 	if (asc->asc_tq)
2332 		ddi_taskq_destroy(asc->asc_tq);
2333 attach_fail3:
2334 	ah->ah_detach(asc->asc_ah);
2335 attach_fail2:
2336 	ddi_regs_map_free(&asc->asc_io_handle);
2337 attach_fail1:
2338 	pci_config_teardown(&asc->asc_cfg_handle);
2339 attach_fail0:
2340 	asc->asc_invalid = 1;
2341 	mutex_destroy(&asc->asc_txbuflock);
2342 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2343 		if (ATH_TXQ_SETUP(asc, i)) {
2344 			struct ath_txq *txq = &asc->asc_txq[i];
2345 			mutex_destroy(&txq->axq_lock);
2346 		}
2347 	}
2348 	mutex_destroy(&asc->asc_rxbuflock);
2349 	mutex_destroy(&asc->asc_genlock);
2350 	mutex_destroy(&asc->asc_resched_lock);
2351 	ddi_soft_state_free(ath_soft_state_p, instance);
2352 
2353 	return (DDI_FAILURE);
2354 }
2355 
2356 /*
2357  * Suspend transmit/receive for powerdown
2358  */
2359 static int
ath_suspend(ath_t * asc)2360 ath_suspend(ath_t *asc)
2361 {
2362 	ATH_LOCK(asc);
2363 	ath_stop_locked(asc);
2364 	ATH_UNLOCK(asc);
2365 	ATH_DEBUG((ATH_DBG_SUSPEND, "ath: suspended.\n"));
2366 
2367 	return (DDI_SUCCESS);
2368 }
2369 
2370 static int32_t
ath_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)2371 ath_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
2372 {
2373 	ath_t *asc;
2374 
2375 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
2376 	ASSERT(asc != NULL);
2377 
2378 	switch (cmd) {
2379 	case DDI_DETACH:
2380 		break;
2381 
2382 	case DDI_SUSPEND:
2383 		return (ath_suspend(asc));
2384 
2385 	default:
2386 		return (DDI_FAILURE);
2387 	}
2388 
2389 	if (mac_disable(asc->asc_isc.ic_mach) != 0)
2390 		return (DDI_FAILURE);
2391 
2392 	ath_stop_scantimer(asc);
2393 
2394 	/* disable interrupts */
2395 	ATH_HAL_INTRSET(asc->asc_ah, 0);
2396 
2397 	/*
2398 	 * Unregister from the MAC layer subsystem
2399 	 */
2400 	(void) mac_unregister(asc->asc_isc.ic_mach);
2401 
2402 	/* free intterrupt resources */
2403 	ddi_remove_intr(devinfo, 0, asc->asc_iblock);
2404 	ddi_remove_softintr(asc->asc_softint_id);
2405 
2406 	/*
2407 	 * NB: the order of these is important:
2408 	 * o call the 802.11 layer before detaching the hal to
2409 	 *   insure callbacks into the driver to delete global
2410 	 *   key cache entries can be handled
2411 	 * o reclaim the tx queue data structures after calling
2412 	 *   the 802.11 layer as we'll get called back to reclaim
2413 	 *   node state and potentially want to use them
2414 	 * o to cleanup the tx queues the hal is called, so detach
2415 	 *   it last
2416 	 */
2417 	ieee80211_detach(&asc->asc_isc);
2418 	ath_desc_free(asc);
2419 	ddi_taskq_destroy(asc->asc_tq);
2420 	ath_txq_cleanup(asc);
2421 	asc->asc_ah->ah_detach(asc->asc_ah);
2422 
2423 	/* free io handle */
2424 	ddi_regs_map_free(&asc->asc_io_handle);
2425 	pci_config_teardown(&asc->asc_cfg_handle);
2426 
2427 	/* destroy locks */
2428 	mutex_destroy(&asc->asc_rxbuflock);
2429 	mutex_destroy(&asc->asc_genlock);
2430 	mutex_destroy(&asc->asc_resched_lock);
2431 
2432 	ddi_remove_minor_node(devinfo, NULL);
2433 	ddi_soft_state_free(ath_soft_state_p, ddi_get_instance(devinfo));
2434 
2435 	return (DDI_SUCCESS);
2436 }
2437 
2438 /*
2439  * quiesce(9E) entry point.
2440  *
2441  * This function is called when the system is single-threaded at high
2442  * PIL with preemption disabled. Therefore, this function must not be
2443  * blocked.
2444  *
2445  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
2446  * DDI_FAILURE indicates an error condition and should almost never happen.
2447  */
2448 static int32_t
ath_quiesce(dev_info_t * devinfo)2449 ath_quiesce(dev_info_t *devinfo)
2450 {
2451 	ath_t 		*asc;
2452 	struct ath_hal	*ah;
2453 	int		i;
2454 
2455 	asc = ddi_get_soft_state(ath_soft_state_p, ddi_get_instance(devinfo));
2456 
2457 	if (asc == NULL || (ah = asc->asc_ah) == NULL)
2458 		return (DDI_FAILURE);
2459 
2460 	/*
2461 	 * Disable interrupts
2462 	 */
2463 	ATH_HAL_INTRSET(ah, 0);
2464 
2465 	/*
2466 	 * Disable TX HW
2467 	 */
2468 	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2469 		if (ATH_TXQ_SETUP(asc, i)) {
2470 			ATH_HAL_STOPTXDMA(ah, asc->asc_txq[i].axq_qnum);
2471 		}
2472 	}
2473 
2474 	/*
2475 	 * Disable RX HW
2476 	 */
2477 	ATH_HAL_STOPPCURECV(ah);
2478 	ATH_HAL_SETRXFILTER(ah, 0);
2479 	ATH_HAL_STOPDMARECV(ah);
2480 	drv_usecwait(3000);
2481 
2482 	/*
2483 	 * Power down HW
2484 	 */
2485 	ATH_HAL_PHYDISABLE(ah);
2486 
2487 	return (DDI_SUCCESS);
2488 }
2489 
2490 DDI_DEFINE_STREAM_OPS(ath_dev_ops, nulldev, nulldev, ath_attach, ath_detach,
2491     nodev, NULL, D_MP, NULL, ath_quiesce);
2492 
2493 static struct modldrv ath_modldrv = {
2494 	&mod_driverops,		/* Type of module.  This one is a driver */
2495 	"ath driver 1.4/HAL 0.10.5.6",		/* short description */
2496 	&ath_dev_ops		/* driver specific ops */
2497 };
2498 
2499 static struct modlinkage modlinkage = {
2500 	MODREV_1, (void *)&ath_modldrv, NULL
2501 };
2502 
2503 
2504 int
_info(struct modinfo * modinfop)2505 _info(struct modinfo *modinfop)
2506 {
2507 	return (mod_info(&modlinkage, modinfop));
2508 }
2509 
2510 int
_init(void)2511 _init(void)
2512 {
2513 	int status;
2514 
2515 	status = ddi_soft_state_init(&ath_soft_state_p, sizeof (ath_t), 1);
2516 	if (status != 0)
2517 		return (status);
2518 
2519 	mutex_init(&ath_loglock, NULL, MUTEX_DRIVER, NULL);
2520 	ath_halfix_init();
2521 	mac_init_ops(&ath_dev_ops, "ath");
2522 	status = mod_install(&modlinkage);
2523 	if (status != 0) {
2524 		mac_fini_ops(&ath_dev_ops);
2525 		ath_halfix_finit();
2526 		mutex_destroy(&ath_loglock);
2527 		ddi_soft_state_fini(&ath_soft_state_p);
2528 	}
2529 
2530 	return (status);
2531 }
2532 
2533 int
_fini(void)2534 _fini(void)
2535 {
2536 	int status;
2537 
2538 	status = mod_remove(&modlinkage);
2539 	if (status == 0) {
2540 		mac_fini_ops(&ath_dev_ops);
2541 		ath_halfix_finit();
2542 		mutex_destroy(&ath_loglock);
2543 		ddi_soft_state_fini(&ath_soft_state_p);
2544 	}
2545 	return (status);
2546 }
2547