xref: /illumos-gate/usr/src/uts/common/io/asy.c (revision 4af8c7103e018a1852733825f3b7de1ddfc10b73)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc.	*/
23 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T	*/
24 /*	  All Rights Reserved					*/
25 
26 /*
27  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Copyright 2012 Milan Jurik. All rights reserved.
29  * Copyright (c) 2016 by Delphix. All rights reserved.
30  * Copyright 2023 Oxide Computer Company
31  * Copyright 2024 Hans Rosenfeld
32  */
33 
34 
35 /*
36  * Serial I/O driver for 8250/16450/16550A/16650/16750/16950 chips.
37  */
38 
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/signal.h>
42 #include <sys/stream.h>
43 #include <sys/termio.h>
44 #include <sys/errno.h>
45 #include <sys/file.h>
46 #include <sys/cmn_err.h>
47 #include <sys/stropts.h>
48 #include <sys/strsubr.h>
49 #include <sys/strtty.h>
50 #include <sys/debug.h>
51 #include <sys/kbio.h>
52 #include <sys/cred.h>
53 #include <sys/stat.h>
54 #include <sys/consdev.h>
55 #include <sys/mkdev.h>
56 #include <sys/kmem.h>
57 #include <sys/cred.h>
58 #include <sys/strsun.h>
59 #ifdef DEBUG
60 #include <sys/promif.h>
61 #endif
62 #include <sys/modctl.h>
63 #include <sys/ddi.h>
64 #include <sys/sunddi.h>
65 #include <sys/pci.h>
66 #include <sys/asy.h>
67 #include <sys/policy.h>
68 #include <sys/sysmacros.h>
69 
70 /*
71  * set the RX FIFO trigger_level to half the RX FIFO size for now
72  * we may want to make this configurable later.
73  */
74 static	int asy_trig_level = ASY_FCR_RHR_TRIG_8;
75 
76 int asy_drain_check = 15000000;		/* tunable: exit drain check time */
77 int asy_min_dtr_low = 500000;		/* tunable: minimum DTR down time */
78 int asy_min_utbrk = 100000;		/* tunable: minumum untimed brk time */
79 
80 int asymaxchip = ASY_MAXCHIP;	/* tunable: limit chip support we look for */
81 
82 /*
83  * Just in case someone has a chip with broken loopback mode, we provide a
84  * means to disable the loopback test. By default, we only loopback test
85  * UARTs which look like they have FIFOs bigger than 16 bytes.
86  * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
87  */
88 int asy_fifo_test = 1;		/* tunable: set to 0, 1, or 2 */
89 
90 /*
91  * Allow ability to switch off testing of the scratch register.
92  * Some UART emulators might not have it. This will also disable the test
93  * for Exar/Startech ST16C650, as that requires use of the SCR register.
94  */
95 int asy_scr_test = 1;		/* tunable: set to 0 to disable SCR reg test */
96 
97 /*
98  * As we don't yet support on-chip flow control, it's a bad idea to put a
99  * large number of characters in the TX FIFO, since if other end tells us
100  * to stop transmitting, we can only stop filling the TX FIFO, but it will
101  * still carry on draining by itself, so remote end still gets what's left
102  * in the FIFO.
103  */
104 int asy_max_tx_fifo = 16;	/* tunable: max fill of TX FIFO */
105 
106 #define	async_stopc	async_ttycommon.t_stopc
107 #define	async_startc	async_ttycommon.t_startc
108 
109 #define	ASY_INIT	1
110 #define	ASY_NOINIT	0
111 
112 /* enum value for sw and hw flow control action */
113 typedef enum {
114 	FLOW_CHECK,
115 	FLOW_STOP,
116 	FLOW_START
117 } async_flowc_action;
118 
119 #ifdef DEBUG
120 #define	ASY_DEBUG_INIT	0x0001	/* Output msgs during driver initialization. */
121 #define	ASY_DEBUG_INPUT	0x0002	/* Report characters received during int. */
122 #define	ASY_DEBUG_EOT	0x0004	/* Output msgs when wait for xmit to finish. */
123 #define	ASY_DEBUG_CLOSE	0x0008	/* Output msgs when driver open/close called */
124 #define	ASY_DEBUG_HFLOW	0x0010	/* Output msgs when H/W flowcontrol is active */
125 #define	ASY_DEBUG_PROCS	0x0020	/* Output each proc name as it is entered. */
126 #define	ASY_DEBUG_STATE	0x0040	/* Output value of Interrupt Service Reg. */
127 #define	ASY_DEBUG_INTR	0x0080	/* Output value of Interrupt Service Reg. */
128 #define	ASY_DEBUG_OUT	0x0100	/* Output msgs about output events. */
129 #define	ASY_DEBUG_BUSY	0x0200	/* Output msgs when xmit is enabled/disabled */
130 #define	ASY_DEBUG_MODEM	0x0400	/* Output msgs about modem status & control. */
131 #define	ASY_DEBUG_MODM2	0x0800	/* Output msgs about modem status & control. */
132 #define	ASY_DEBUG_IOCTL	0x1000	/* Output msgs about ioctl messages. */
133 #define	ASY_DEBUG_CHIP	0x2000	/* Output msgs about chip identification. */
134 #define	ASY_DEBUG_SFLOW	0x4000	/* Output msgs when S/W flowcontrol is active */
135 
136 static	int debug  = 0;
137 
138 #define	ASY_DEBUG(asy, x) (asy->asy_debug & (x))
139 #define	ASY_DPRINTF(asy, fac, format, ...) \
140 	if (ASY_DEBUG(asy, fac)) \
141 		asyerror(asy, CE_CONT, "!%s: " format, __func__, ##__VA_ARGS__)
142 #else
143 #define	ASY_DEBUG(asy, x) B_FALSE
144 #define	ASY_DPRINTF(asy, fac, format, ...)
145 #endif
146 
147 /*
148  * PPS (Pulse Per Second) support.
149  */
150 void ddi_hardpps(struct timeval *, int);
151 /*
152  * This is protected by the asy_excl_hi of the port on which PPS event
153  * handling is enabled.  Note that only one port should have this enabled at
154  * any one time.  Enabling PPS handling on multiple ports will result in
155  * unpredictable (but benign) results.
156  */
157 static struct ppsclockev asy_ppsev;
158 
159 #ifdef PPSCLOCKLED
160 /* XXX Use these to observe PPS latencies and jitter on a scope */
161 #define	LED_ON
162 #define	LED_OFF
163 #else
164 #define	LED_ON
165 #define	LED_OFF
166 #endif
167 
168 static void	asy_put_idx(const struct asycom *, asy_reg_t, uint8_t);
169 static uint8_t	asy_get_idx(const struct asycom *, asy_reg_t);
170 
171 static void	asy_put_add(const struct asycom *, asy_reg_t, uint8_t);
172 static uint8_t	asy_get_add(const struct asycom *, asy_reg_t);
173 
174 static void	asy_put_ext(const struct asycom *, asy_reg_t, uint8_t);
175 static uint8_t	asy_get_ext(const struct asycom *, asy_reg_t);
176 
177 static void	asy_put_reg(const struct asycom *, asy_reg_t, uint8_t);
178 static uint8_t	asy_get_reg(const struct asycom *, asy_reg_t);
179 
180 static void	asy_put(const struct asycom *, asy_reg_t, uint8_t);
181 static uint8_t	asy_get(const struct asycom *, asy_reg_t);
182 
183 static void	asy_set(const struct asycom *, asy_reg_t, uint8_t);
184 static void	asy_clr(const struct asycom *, asy_reg_t, uint8_t);
185 
186 static void	asy_enable_interrupts(const struct asycom *, uint8_t);
187 static void	asy_disable_interrupts(const struct asycom *, uint8_t);
188 static void	asy_set_baudrate(const struct asycom *, int);
189 static void	asy_wait_baudrate(struct asycom *);
190 
191 #define	BAUDINDEX(cflg)	(((cflg) & CBAUDEXT) ? \
192 	    (((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
193 
194 static void	asysetsoft(struct asycom *);
195 static uint_t	asysoftintr(caddr_t, caddr_t);
196 static uint_t	asyintr(caddr_t, caddr_t);
197 
198 static boolean_t abort_charseq_recognize(uchar_t ch);
199 
200 /* The async interrupt entry points */
201 static void	async_txint(struct asycom *asy);
202 static void	async_rxint(struct asycom *asy, uchar_t lsr);
203 static void	async_msint(struct asycom *asy);
204 static void	async_softint(struct asycom *asy);
205 
206 static void	async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
207 static void	async_reioctl(void *unit);
208 static void	async_iocdata(queue_t *q, mblk_t *mp);
209 static void	async_restart(void *arg);
210 static void	async_start(struct asyncline *async);
211 static void	async_resume(struct asyncline *async);
212 static void	asy_program(struct asycom *asy, int mode);
213 static void	asyinit(struct asycom *asy);
214 static void	asy_waiteot(struct asycom *asy);
215 static void	asyputchar(cons_polledio_arg_t, uchar_t c);
216 static int	asygetchar(cons_polledio_arg_t);
217 static boolean_t	asyischar(cons_polledio_arg_t);
218 
219 static int	asymctl(struct asycom *, int, int);
220 static int	asytodm(int, int);
221 static int	dmtoasy(struct asycom *, int);
222 static void	asyerror(const struct asycom *, int, const char *, ...)
223 	__KPRINTFLIKE(3);
224 static void	asy_parse_mode(dev_info_t *devi, struct asycom *asy);
225 static void	asy_soft_state_free(struct asycom *);
226 static char	*asy_hw_name(struct asycom *asy);
227 static void	async_hold_utbrk(void *arg);
228 static void	async_resume_utbrk(struct asyncline *async);
229 static void	async_dtr_free(struct asyncline *async);
230 static int	asy_identify_chip(dev_info_t *devi, struct asycom *asy);
231 static void	asy_reset_fifo(struct asycom *asy, uchar_t flags);
232 static void	asy_carrier_check(struct asycom *);
233 static int	asy_getproperty(dev_info_t *devi, struct asycom *asy,
234 		    const char *property);
235 static boolean_t	async_flowcontrol_sw_input(struct asycom *asy,
236 			    async_flowc_action onoff, int type);
237 static void	async_flowcontrol_sw_output(struct asycom *asy,
238 		    async_flowc_action onoff);
239 static void	async_flowcontrol_hw_input(struct asycom *asy,
240 		    async_flowc_action onoff, int type);
241 static void	async_flowcontrol_hw_output(struct asycom *asy,
242 		    async_flowc_action onoff);
243 
244 #define	GET_PROP(devi, pname, pflag, pval, plen) \
245 		(ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
246 		(pflag), (pname), (caddr_t)(pval), (plen)))
247 
248 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
249 void *asy_soft_state;
250 
251 /* Standard COM port I/O addresses */
252 static const int standard_com_ports[] = {
253 	COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
254 };
255 
256 static int *com_ports;
257 static uint_t num_com_ports;
258 
259 #ifdef	DEBUG
260 /*
261  * Set this to true to make the driver pretend to do a suspend.  Useful
262  * for debugging suspend/resume code with a serial debugger.
263  */
264 boolean_t	asy_nosuspend = B_FALSE;
265 #endif
266 
267 
268 /*
269  * Baud rate table. Indexed by #defines found in sys/termios.h
270  *
271  * The default crystal frequency is 1.8432 MHz. The 8250A used a fixed /16
272  * prescaler and a 16bit divisor, split in two registers (DLH and DLL).
273  *
274  * The 16950 adds TCR and CKS registers. The TCR can be used to set the
275  * prescaler from /4 to /16. The CKS can be used, among other things, to
276  * select a isochronous 1x mode, effectively disabling the prescaler.
277  * This would theoretically allow a baud rate of 1843200 driven directly
278  * by the default crystal frequency, although the highest termios.h-defined
279  * baud rate we can support is half of that, 921600 baud.
280  */
281 #define	UNSUPPORTED	0x00, 0x00, 0x00
282 static struct {
283 	uint8_t asy_dlh;
284 	uint8_t asy_dll;
285 	uint8_t asy_tcr;
286 } asy_baud_tab[] = {
287 	[B0] =		{ UNSUPPORTED },	/* 0 baud */
288 	[B50] =		{ 0x09, 0x00, 0x00 },	/* 50 baud */
289 	[B75] =		{ 0x06, 0x00, 0x00 },	/* 75 baud */
290 	[B110] =	{ 0x04, 0x17, 0x00 },	/* 110 baud (0.026% error) */
291 	[B134] =	{ 0x03, 0x59, 0x00 },	/* 134 baud (0.058% error) */
292 	[B150] =	{ 0x03, 0x00, 0x00 },	/* 150 baud */
293 	[B200] =	{ 0x02, 0x40, 0x00 },	/* 200 baud */
294 	[B300] =	{ 0x01, 0x80, 0x00 },	/* 300 baud */
295 	[B600] =	{ 0x00, 0xc0, 0x00 },	/* 600 baud */
296 	[B1200] =	{ 0x00, 0x60, 0x00 },	/* 1200 baud */
297 	[B1800] =	{ 0x00, 0x40, 0x00 },	/* 1800 baud */
298 	[B2400] =	{ 0x00, 0x30, 0x00 },	/* 2400 baud */
299 	[B4800] =	{ 0x00, 0x18, 0x00 },	/* 4800 baud */
300 	[B9600] =	{ 0x00, 0x0c, 0x00 },	/* 9600 baud */
301 	[B19200] =	{ 0x00, 0x06, 0x00 },	/* 19200 baud */
302 	[B38400] =	{ 0x00, 0x03, 0x00 },	/* 38400 baud */
303 	[B57600] =	{ 0x00, 0x02, 0x00 },	/* 57600 baud */
304 	[B76800] =	{ 0x00, 0x06, 0x04 },	/* 76800 baud (16950) */
305 	[B115200] =	{ 0x00, 0x01, 0x00 },	/* 115200 baud */
306 	[B153600] =	{ 0x00, 0x03, 0x04 },	/* 153600 baud (16950) */
307 	[B230400] =	{ 0x00, 0x02, 0x04 },	/* 230400 baud (16950) */
308 	[B307200] =	{ 0x00, 0x01, 0x06 },	/* 307200 baud (16950) */
309 	[B460800] =	{ 0x00, 0x01, 0x04 },	/* 460800 baud (16950) */
310 	[B921600] =	{ 0x00, 0x02, 0x01 },	/* 921600 baud (16950) */
311 	[B1000000] =	{ UNSUPPORTED },	/* 1000000 baud */
312 	[B1152000] =	{ UNSUPPORTED },	/* 1152000 baud */
313 	[B1500000] =	{ UNSUPPORTED },	/* 1500000 baud */
314 	[B2000000] =	{ UNSUPPORTED },	/* 2000000 baud */
315 	[B2500000] =	{ UNSUPPORTED },	/* 2500000 baud */
316 	[B3000000] =	{ UNSUPPORTED },	/* 3000000 baud */
317 	[B3500000] =	{ UNSUPPORTED },	/* 3500000 baud */
318 	[B4000000] =	{ UNSUPPORTED },	/* 4000000 baud */
319 };
320 
321 /*
322  * Register table. For each logical register, we define the minimum hwtype, the
323  * register offset, and function pointers for reading and writing the register.
324  * A NULL pointer indicates the register cannot be read from or written to,
325  * respectively.
326  */
327 static struct {
328 	int asy_min_hwtype;
329 	int8_t asy_reg_off;
330 	uint8_t (*asy_get_reg)(const struct asycom *, asy_reg_t);
331 	void (*asy_put_reg)(const struct asycom *, asy_reg_t, uint8_t);
332 } asy_reg_table[] = {
333 	[ASY_ILLEGAL] = { 0, -1, NULL, NULL },
334 	/* 8250 / 16450 / 16550 registers */
335 	[ASY_THR] =   { ASY_8250A,  0, NULL,	    asy_put_reg },
336 	[ASY_RHR] =   { ASY_8250A,  0, asy_get_reg, NULL },
337 	[ASY_IER] =   { ASY_8250A,  1, asy_get_reg, asy_put_reg },
338 	[ASY_FCR] =   { ASY_16550,  2, NULL,	    asy_put_reg },
339 	[ASY_ISR] =   { ASY_8250A,  2, asy_get_reg, NULL },
340 	[ASY_LCR] =   { ASY_8250A,  3, asy_get_reg, asy_put_reg },
341 	[ASY_MCR] =   { ASY_8250A,  4, asy_get_reg, asy_put_reg },
342 	[ASY_LSR] =   { ASY_8250A,  5, asy_get_reg, NULL },
343 	[ASY_MSR] =   { ASY_8250A,  6, asy_get_reg, NULL },
344 	[ASY_SPR] =   { ASY_8250A,  7, asy_get_reg, asy_put_reg },
345 	[ASY_DLL] =   { ASY_8250A,  0, asy_get_reg, asy_put_reg },
346 	[ASY_DLH] =   { ASY_8250A,  1, asy_get_reg, asy_put_reg },
347 	/* 16750 extended register */
348 	[ASY_EFR] =   { ASY_16750,  2, asy_get_ext, asy_put_ext },
349 	/* 16650 extended registers */
350 	[ASY_XON1] =  { ASY_16650,  4, asy_get_ext, asy_put_ext },
351 	[ASY_XON2] =  { ASY_16650,  5, asy_get_ext, asy_put_ext },
352 	[ASY_XOFF1] = { ASY_16650,  6, asy_get_ext, asy_put_ext },
353 	[ASY_XOFF2] = { ASY_16650,  7, asy_get_ext, asy_put_ext },
354 	/* 16950 additional registers */
355 	[ASY_ASR] =   { ASY_16950,  1, asy_get_add, asy_put_add },
356 	[ASY_RFL] =   { ASY_16950,  3, asy_get_add, NULL },
357 	[ASY_TFL] =   { ASY_16950,  4, asy_get_add, NULL },
358 	[ASY_ICR] =   { ASY_16950,  5, asy_get_reg, asy_put_reg },
359 	/* 16950 indexed registers */
360 	[ASY_ACR] =   { ASY_16950,  0, asy_get_idx, asy_put_idx },
361 	[ASY_CPR] =   { ASY_16950,  1, asy_get_idx, asy_put_idx },
362 	[ASY_TCR] =   { ASY_16950,  2, asy_get_idx, asy_put_idx },
363 	[ASY_CKS] =   { ASY_16950,  3, asy_get_idx, asy_put_idx },
364 	[ASY_TTL] =   { ASY_16950,  4, asy_get_idx, asy_put_idx },
365 	[ASY_RTL] =   { ASY_16950,  5, asy_get_idx, asy_put_idx },
366 	[ASY_FCL] =   { ASY_16950,  6, asy_get_idx, asy_put_idx },
367 	[ASY_FCH] =   { ASY_16950,  7, asy_get_idx, asy_put_idx },
368 	[ASY_ID1] =   { ASY_16950,  8, asy_get_idx, NULL },
369 	[ASY_ID2] =   { ASY_16950,  9, asy_get_idx, NULL },
370 	[ASY_ID3] =   { ASY_16950, 10, asy_get_idx, NULL },
371 	[ASY_REV] =   { ASY_16950, 11, asy_get_idx, NULL },
372 	[ASY_CSR] =   { ASY_16950, 12, NULL,	    asy_put_idx },
373 	[ASY_NMR] =   { ASY_16950, 13, asy_get_idx, asy_put_idx },
374 };
375 
376 
377 static int asyrsrv(queue_t *q);
378 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
379 static int asyclose(queue_t *q, int flag, cred_t *credp);
380 static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
381 static int asywput(queue_t *q, mblk_t *mp);
382 
383 struct module_info asy_info = {
384 	0,
385 	"asy",
386 	0,
387 	INFPSZ,
388 	4096,
389 	128
390 };
391 
392 static struct qinit asy_rint = {
393 	putq,
394 	asyrsrv,
395 	asyopen,
396 	asyclose,
397 	NULL,
398 	&asy_info,
399 	NULL
400 };
401 
402 static struct qinit asy_wint = {
403 	asywput,
404 	NULL,
405 	NULL,
406 	NULL,
407 	NULL,
408 	&asy_info,
409 	NULL
410 };
411 
412 struct streamtab asy_str_info = {
413 	&asy_rint,
414 	&asy_wint,
415 	NULL,
416 	NULL
417 };
418 
419 static void asy_intr_free(struct asycom *);
420 static int asy_intr_setup(struct asycom *, int);
421 
422 static void asy_softintr_free(struct asycom *);
423 static int asy_softintr_setup(struct asycom *);
424 
425 static int asy_suspend(struct asycom *);
426 static int asy_resume(dev_info_t *);
427 
428 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
429 		void **result);
430 static int asyprobe(dev_info_t *);
431 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
432 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
433 static int asyquiesce(dev_info_t *);
434 
435 static struct cb_ops cb_asy_ops = {
436 	nodev,			/* cb_open */
437 	nodev,			/* cb_close */
438 	nodev,			/* cb_strategy */
439 	nodev,			/* cb_print */
440 	nodev,			/* cb_dump */
441 	nodev,			/* cb_read */
442 	nodev,			/* cb_write */
443 	nodev,			/* cb_ioctl */
444 	nodev,			/* cb_devmap */
445 	nodev,			/* cb_mmap */
446 	nodev,			/* cb_segmap */
447 	nochpoll,		/* cb_chpoll */
448 	ddi_prop_op,		/* cb_prop_op */
449 	&asy_str_info,		/* cb_stream */
450 	D_MP			/* cb_flag */
451 };
452 
453 struct dev_ops asy_ops = {
454 	DEVO_REV,		/* devo_rev */
455 	0,			/* devo_refcnt */
456 	asyinfo,		/* devo_getinfo */
457 	nulldev,		/* devo_identify */
458 	asyprobe,		/* devo_probe */
459 	asyattach,		/* devo_attach */
460 	asydetach,		/* devo_detach */
461 	nodev,			/* devo_reset */
462 	&cb_asy_ops,		/* devo_cb_ops */
463 	NULL,			/* devo_bus_ops */
464 	NULL,			/* power */
465 	asyquiesce,		/* quiesce */
466 };
467 
468 static struct modldrv modldrv = {
469 	&mod_driverops, /* Type of module.  This one is a driver */
470 	"ASY driver",
471 	&asy_ops,	/* driver ops */
472 };
473 
474 static struct modlinkage modlinkage = {
475 	MODREV_1,
476 	(void *)&modldrv,
477 	NULL
478 };
479 
480 int
_init(void)481 _init(void)
482 {
483 	int i;
484 
485 	i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
486 	if (i == 0) {
487 		mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
488 		if ((i = mod_install(&modlinkage)) != 0) {
489 			mutex_destroy(&asy_glob_lock);
490 			ddi_soft_state_fini(&asy_soft_state);
491 #ifdef DEBUG
492 		} else {
493 			if (debug & ASY_DEBUG_INIT)
494 				cmn_err(CE_NOTE, "!%s, debug = %x",
495 				    modldrv.drv_linkinfo, debug);
496 #endif
497 		}
498 	}
499 	return (i);
500 }
501 
502 int
_fini(void)503 _fini(void)
504 {
505 	int i;
506 
507 	if ((i = mod_remove(&modlinkage)) == 0) {
508 #ifdef DEBUG
509 		if (debug & ASY_DEBUG_INIT)
510 			cmn_err(CE_NOTE, "!%s unloading",
511 			    modldrv.drv_linkinfo);
512 #endif
513 		mutex_destroy(&asy_glob_lock);
514 		/* free "motherboard-serial-ports" property if allocated */
515 		if (com_ports != NULL && com_ports != (int *)standard_com_ports)
516 			ddi_prop_free(com_ports);
517 		com_ports = NULL;
518 		ddi_soft_state_fini(&asy_soft_state);
519 	}
520 	return (i);
521 }
522 
523 int
_info(struct modinfo * modinfop)524 _info(struct modinfo *modinfop)
525 {
526 	return (mod_info(&modlinkage, modinfop));
527 }
528 
529 static void
asy_put_idx(const struct asycom * asy,asy_reg_t reg,uint8_t val)530 asy_put_idx(const struct asycom *asy, asy_reg_t reg, uint8_t val)
531 {
532 	ASSERT(asy->asy_hwtype >= ASY_16950);
533 
534 	ASSERT(reg >= ASY_ACR);
535 	ASSERT(reg <= ASY_NREG);
536 
537 	/*
538 	 * The last value written to LCR must not have been the magic value for
539 	 * EFR access. Every time the driver writes that magic value to access
540 	 * EFR, XON1, XON2, XOFF1, and XOFF2, the driver restores the original
541 	 * value of LCR, so we should be good here.
542 	 *
543 	 * I'd prefer to ASSERT this, but I'm not sure it's worth the hassle.
544 	 */
545 
546 	/* Write indexed register offset to SPR. */
547 	asy_put(asy, ASY_SPR, asy_reg_table[reg].asy_reg_off);
548 
549 	/* Write value to ICR. */
550 	asy_put(asy, ASY_ICR, val);
551 }
552 
553 static uint8_t
asy_get_idx(const struct asycom * asy,asy_reg_t reg)554 asy_get_idx(const struct asycom *asy, asy_reg_t reg)
555 {
556 	uint8_t val;
557 
558 	ASSERT(asy->asy_hwtype >= ASY_16950);
559 
560 	ASSERT(reg >= ASY_ACR);
561 	ASSERT(reg <= ASY_NREG);
562 
563 	/* Enable access to ICR in ACR. */
564 	asy_put(asy, ASY_ACR, ASY_ACR_ICR | asy->asy_acr);
565 
566 	/* Write indexed register offset to SPR. */
567 	asy_put(asy, ASY_SPR, asy_reg_table[reg].asy_reg_off);
568 
569 	/* Read value from ICR. */
570 	val = asy_get(asy, ASY_ICR);
571 
572 	/* Restore ACR. */
573 	asy_put(asy, ASY_ACR, asy->asy_acr);
574 
575 	return (val);
576 }
577 
578 static void
asy_put_add(const struct asycom * asy,asy_reg_t reg,uint8_t val)579 asy_put_add(const struct asycom *asy, asy_reg_t reg, uint8_t val)
580 {
581 	ASSERT(asy->asy_hwtype >= ASY_16950);
582 
583 	/* Only ASR is writable, RFL and TFL are read-only. */
584 	ASSERT(reg == ASY_ASR);
585 
586 	/*
587 	 * Only ASR[0] (Transmitter Disabled) and ASR[1] (Remote Transmitter
588 	 * Disabled) are writable.
589 	 */
590 	ASSERT((val & ~(ASY_ASR_TD | ASY_ASR_RTD)) == 0);
591 
592 	/* Enable access to ASR in ACR. */
593 	asy_put(asy, ASY_ACR, ASY_ACR_ASR | asy->asy_acr);
594 
595 	/* Write value to ASR. */
596 	asy_put_reg(asy, reg, val);
597 
598 	/* Restore ACR. */
599 	asy_put(asy, ASY_ACR, asy->asy_acr);
600 }
601 
602 static uint8_t
asy_get_add(const struct asycom * asy,asy_reg_t reg)603 asy_get_add(const struct asycom *asy, asy_reg_t reg)
604 {
605 	uint8_t val;
606 
607 	ASSERT(asy->asy_hwtype >= ASY_16950);
608 
609 	ASSERT(reg >= ASY_ASR);
610 	ASSERT(reg <= ASY_TFL);
611 
612 	/*
613 	 * The last value written to LCR must not have been the magic value for
614 	 * EFR access. Every time the driver writes that magic value to access
615 	 * EFR, XON1, XON2, XOFF1, and XOFF2, the driver restores the original
616 	 * value of LCR, so we should be good here.
617 	 *
618 	 * I'd prefer to ASSERT this, but I'm not sure it's worth the hassle.
619 	 */
620 
621 	/* Enable access to ASR in ACR. */
622 	asy_put(asy, ASY_ACR, ASY_ACR_ASR | asy->asy_acr);
623 
624 	/* Read value from register. */
625 	val = asy_get_reg(asy, reg);
626 
627 	/* Restore ACR. */
628 	asy_put(asy, ASY_ACR, 0 | asy->asy_acr);
629 
630 	return (val);
631 }
632 
633 static void
asy_put_ext(const struct asycom * asy,asy_reg_t reg,uint8_t val)634 asy_put_ext(const struct asycom *asy, asy_reg_t reg, uint8_t val)
635 {
636 	uint8_t lcr;
637 
638 	/*
639 	 * On the 16750, EFR can be accessed when LCR[7]=1 (DLAB).
640 	 * Only two bits are assigned for auto RTS/CTS, which we don't support
641 	 * yet.
642 	 *
643 	 * So insist we have a 16650 or up.
644 	 */
645 	ASSERT(asy->asy_hwtype >= ASY_16650);
646 
647 	ASSERT(reg >= ASY_EFR);
648 	ASSERT(reg <= ASY_XOFF2);
649 
650 	/* Save LCR contents. */
651 	lcr = asy_get(asy, ASY_LCR);
652 
653 	/* Enable extended register access. */
654 	asy_put(asy, ASY_LCR, ASY_LCR_EFRACCESS);
655 
656 	/* Write extended register */
657 	asy_put_reg(asy, reg, val);
658 
659 	/* Restore previous LCR contents, disabling extended register access. */
660 	asy_put(asy, ASY_LCR, lcr);
661 }
662 
663 static uint8_t
asy_get_ext(const struct asycom * asy,asy_reg_t reg)664 asy_get_ext(const struct asycom *asy, asy_reg_t reg)
665 {
666 	uint8_t lcr, val;
667 
668 	/*
669 	 * On the 16750, EFR can be accessed when LCR[7]=1 (DLAB).
670 	 * Only two bits are assigned for auto RTS/CTS, which we don't support
671 	 * yet.
672 	 *
673 	 * So insist we have a 16650 or up.
674 	 */
675 	ASSERT(asy->asy_hwtype >= ASY_16650);
676 
677 	ASSERT(reg >= ASY_EFR);
678 	ASSERT(reg <= ASY_XOFF2);
679 
680 	/* Save LCR contents. */
681 	lcr = asy_get(asy, ASY_LCR);
682 
683 	/* Enable extended register access. */
684 	asy_put(asy, ASY_LCR, ASY_LCR_EFRACCESS);
685 
686 	/* Read extended register */
687 	val = asy_get_reg(asy, reg);
688 
689 	/* Restore previous LCR contents, disabling extended register access. */
690 	asy_put(asy, ASY_LCR, lcr);
691 
692 	return (val);
693 }
694 
695 static void
asy_put_reg(const struct asycom * asy,asy_reg_t reg,uint8_t val)696 asy_put_reg(const struct asycom *asy, asy_reg_t reg, uint8_t val)
697 {
698 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
699 
700 	ddi_put8(asy->asy_iohandle,
701 	    asy->asy_ioaddr + asy_reg_table[reg].asy_reg_off, val);
702 }
703 
704 static uint8_t
asy_get_reg(const struct asycom * asy,asy_reg_t reg)705 asy_get_reg(const struct asycom *asy, asy_reg_t reg)
706 {
707 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
708 
709 	return (ddi_get8(asy->asy_iohandle,
710 	    asy->asy_ioaddr + asy_reg_table[reg].asy_reg_off));
711 }
712 
713 static void
asy_put(const struct asycom * asy,asy_reg_t reg,uint8_t val)714 asy_put(const struct asycom *asy, asy_reg_t reg, uint8_t val)
715 {
716 	ASSERT(mutex_owned(&asy->asy_excl_hi));
717 
718 	ASSERT(reg > ASY_ILLEGAL);
719 	ASSERT(reg < ASY_NREG);
720 
721 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
722 	ASSERT(asy_reg_table[reg].asy_put_reg != NULL);
723 
724 	asy_reg_table[reg].asy_put_reg(asy, reg, val);
725 }
726 
727 static uint8_t
asy_get(const struct asycom * asy,asy_reg_t reg)728 asy_get(const struct asycom *asy, asy_reg_t reg)
729 {
730 	uint8_t val;
731 
732 	ASSERT(mutex_owned(&asy->asy_excl_hi));
733 
734 	ASSERT(reg > ASY_ILLEGAL);
735 	ASSERT(reg < ASY_NREG);
736 
737 	ASSERT(asy->asy_hwtype >= asy_reg_table[reg].asy_min_hwtype);
738 	ASSERT(asy_reg_table[reg].asy_get_reg != NULL);
739 
740 	val = asy_reg_table[reg].asy_get_reg(asy, reg);
741 
742 	return (val);
743 }
744 
745 static void
asy_set(const struct asycom * asy,asy_reg_t reg,uint8_t bits)746 asy_set(const struct asycom *asy, asy_reg_t reg, uint8_t bits)
747 {
748 	uint8_t val = asy_get(asy, reg);
749 
750 	asy_put(asy, reg, val | bits);
751 }
752 
753 static void
asy_clr(const struct asycom * asy,asy_reg_t reg,uint8_t bits)754 asy_clr(const struct asycom *asy, asy_reg_t reg, uint8_t bits)
755 {
756 	uint8_t val = asy_get(asy, reg);
757 
758 	asy_put(asy, reg, val & ~bits);
759 }
760 
761 static void
asy_enable_interrupts(const struct asycom * asy,uint8_t intr)762 asy_enable_interrupts(const struct asycom *asy, uint8_t intr)
763 {
764 	/* Don't touch any IER bits we don't support. */
765 	intr &= ASY_IER_ALL;
766 
767 	asy_set(asy, ASY_IER, intr);
768 }
769 
770 static void
asy_disable_interrupts(const struct asycom * asy,uint8_t intr)771 asy_disable_interrupts(const struct asycom *asy, uint8_t intr)
772 {
773 	/* Don't touch any IER bits we don't support. */
774 	intr &= ASY_IER_ALL;
775 
776 	asy_clr(asy, ASY_IER, intr);
777 }
778 
779 static void
asy_set_baudrate(const struct asycom * asy,int baudrate)780 asy_set_baudrate(const struct asycom *asy, int baudrate)
781 {
782 	uint8_t tcr;
783 
784 	if (baudrate == 0)
785 		return;
786 
787 	if (baudrate >= ARRAY_SIZE(asy_baud_tab))
788 		return;
789 
790 	tcr = asy_baud_tab[baudrate].asy_tcr;
791 
792 	if (tcr != 0 && asy->asy_hwtype < ASY_16950)
793 		return;
794 
795 	if (asy->asy_hwtype >= ASY_16950) {
796 		if (tcr == 0x01) {
797 			/* Isochronous 1x mode is selected in CKS, not TCR. */
798 			asy_put(asy, ASY_CKS,
799 			    ASY_CKS_RCLK_1X | ASY_CKS_TCLK_1X);
800 			asy_put(asy, ASY_TCR, 0);
801 		} else {
802 			/* Reset CKS in case it was set to 1x mode. */
803 			asy_put(asy, ASY_CKS, 0);
804 
805 			ASSERT(tcr == 0x00 || tcr >= 0x04 || tcr <= 0x0f);
806 			asy_put(asy, ASY_TCR, tcr);
807 		}
808 		ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
809 		    "setting baudrate %d, CKS 0x%02x, TCR 0x%02x",
810 		    baudrate, asy_get(asy, ASY_CKS), asy_get(asy, ASY_TCR));
811 	}
812 
813 	ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
814 	    "setting baudrate %d, divisor 0x%02x%02x",
815 	    baudrate, asy_baud_tab[baudrate].asy_dlh,
816 	    asy_baud_tab[baudrate].asy_dll);
817 
818 	asy_set(asy, ASY_LCR, ASY_LCR_DLAB);
819 
820 	asy_put(asy, ASY_DLL, asy_baud_tab[baudrate].asy_dll);
821 	asy_put(asy, ASY_DLH, asy_baud_tab[baudrate].asy_dlh);
822 
823 	asy_clr(asy, ASY_LCR, ASY_LCR_DLAB);
824 }
825 
826 /*
827  * Loop until the TSR is empty.
828  *
829  * The wait period is clock / (baud * 16) * 16 * 2.
830  */
831 static void
asy_wait_baudrate(struct asycom * asy)832 asy_wait_baudrate(struct asycom *asy)
833 {
834 	struct asyncline *async = asy->asy_priv;
835 	int rate = BAUDINDEX(async->async_ttycommon.t_cflag);
836 	clock_t usec =
837 	    ((((clock_t)asy_baud_tab[rate].asy_dlh) << 8) |
838 	    ((clock_t)asy_baud_tab[rate].asy_dll)) * 16 * 2;
839 
840 	ASSERT(mutex_owned(&asy->asy_excl));
841 	ASSERT(mutex_owned(&asy->asy_excl_hi));
842 
843 	while ((asy_get(asy, ASY_LSR) & ASY_LSR_TEMT) == 0) {
844 		mutex_exit(&asy->asy_excl_hi);
845 		mutex_exit(&asy->asy_excl);
846 		drv_usecwait(usec);
847 		mutex_enter(&asy->asy_excl);
848 		mutex_enter(&asy->asy_excl_hi);
849 	}
850 	asy_set(asy, ASY_LCR, ASY_LCR_SETBRK);
851 }
852 
853 void
async_put_suspq(struct asycom * asy,mblk_t * mp)854 async_put_suspq(struct asycom *asy, mblk_t *mp)
855 {
856 	struct asyncline *async = asy->asy_priv;
857 
858 	ASSERT(mutex_owned(&asy->asy_excl));
859 
860 	if (async->async_suspqf == NULL)
861 		async->async_suspqf = mp;
862 	else
863 		async->async_suspqb->b_next = mp;
864 
865 	async->async_suspqb = mp;
866 }
867 
868 static mblk_t *
async_get_suspq(struct asycom * asy)869 async_get_suspq(struct asycom *asy)
870 {
871 	struct asyncline *async = asy->asy_priv;
872 	mblk_t *mp;
873 
874 	ASSERT(mutex_owned(&asy->asy_excl));
875 
876 	if ((mp = async->async_suspqf) != NULL) {
877 		async->async_suspqf = mp->b_next;
878 		mp->b_next = NULL;
879 	} else {
880 		async->async_suspqb = NULL;
881 	}
882 	return (mp);
883 }
884 
885 static void
async_process_suspq(struct asycom * asy)886 async_process_suspq(struct asycom *asy)
887 {
888 	struct asyncline *async = asy->asy_priv;
889 	mblk_t *mp;
890 
891 	ASSERT(mutex_owned(&asy->asy_excl));
892 
893 	while ((mp = async_get_suspq(asy)) != NULL) {
894 		queue_t *q;
895 
896 		q = async->async_ttycommon.t_writeq;
897 		ASSERT(q != NULL);
898 		mutex_exit(&asy->asy_excl);
899 		(void) asywputdo(q, mp, B_FALSE);
900 		mutex_enter(&asy->asy_excl);
901 	}
902 	async->async_flags &= ~ASYNC_DDI_SUSPENDED;
903 	cv_broadcast(&async->async_flags_cv);
904 }
905 
906 static int
asy_get_bus_type(dev_info_t * devinfo)907 asy_get_bus_type(dev_info_t *devinfo)
908 {
909 	char *prop;
910 	int bustype;
911 
912 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, devinfo, 0, "device_type",
913 	    &prop) != DDI_PROP_SUCCESS &&
914 	    ddi_prop_lookup_string(DDI_DEV_T_ANY, devinfo, 0, "bus-type",
915 	    &prop) != DDI_PROP_SUCCESS) {
916 		dev_err(devinfo, CE_WARN,
917 		    "!%s: can't figure out device type for parent \"%s\"",
918 		    __func__, ddi_get_name(ddi_get_parent(devinfo)));
919 		return (ASY_BUS_UNKNOWN);
920 	}
921 
922 	if (strcmp(prop, "isa") == 0)
923 		bustype = ASY_BUS_ISA;
924 	else if (strcmp(prop, "pci") == 0)
925 		bustype = ASY_BUS_PCI;
926 	else if (strcmp(prop, "pciex") == 0)
927 		return (ASY_BUS_PCI);
928 	else
929 		bustype = ASY_BUS_UNKNOWN;
930 
931 	ddi_prop_free(prop);
932 	return (bustype);
933 }
934 
935 static int
asy_get_io_regnum_pci(dev_info_t * devi,struct asycom * asy)936 asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
937 {
938 	int reglen, nregs;
939 	int regnum, i;
940 	uint64_t size;
941 	struct pci_phys_spec *reglist;
942 
943 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
944 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
945 		dev_err(devi, CE_WARN, "!%s: reg property"
946 		    " not found in devices property list", __func__);
947 		return (-1);
948 	}
949 
950 	regnum = -1;
951 	nregs = reglen / sizeof (*reglist);
952 	for (i = 0; i < nregs; i++) {
953 		switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
954 		case PCI_ADDR_IO:		/* I/O bus reg property */
955 			if (regnum == -1) /* use only the first one */
956 				regnum = i;
957 			break;
958 
959 		default:
960 			break;
961 		}
962 	}
963 
964 	/* check for valid count of registers */
965 	if (regnum >= 0) {
966 		size = ((uint64_t)reglist[regnum].pci_size_low) |
967 		    ((uint64_t)reglist[regnum].pci_size_hi) << 32;
968 		if (size < 8)
969 			regnum = -1;
970 	}
971 	kmem_free(reglist, reglen);
972 	return (regnum);
973 }
974 
975 static int
asy_get_io_regnum_isa(dev_info_t * devi,struct asycom * asy)976 asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
977 {
978 	int regnum = -1;
979 	int reglen, nregs;
980 	struct {
981 		uint_t bustype;
982 		int base;
983 		int size;
984 	} *reglist;
985 
986 	if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
987 	    "reg", (caddr_t)&reglist, &reglen) != DDI_PROP_SUCCESS) {
988 		dev_err(devi, CE_WARN, "!%s: reg property not found "
989 		    "in devices property list", __func__);
990 		return (-1);
991 	}
992 
993 	nregs = reglen / sizeof (*reglist);
994 
995 	/*
996 	 * Find the first I/O bus in the "reg" property.
997 	 */
998 	for (int i = 0; i < nregs && regnum == -1; i++) {
999 		if (reglist[i].bustype == 1) {
1000 			regnum = i;
1001 			break;
1002 		}
1003 	}
1004 
1005 	/* check for valid count of registers */
1006 	if ((regnum < 0) || (reglist[regnum].size < 8))
1007 		regnum = -1;
1008 
1009 	kmem_free(reglist, reglen);
1010 
1011 	return (regnum);
1012 }
1013 
1014 static int
asy_get_io_regnum(dev_info_t * devinfo,struct asycom * asy)1015 asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
1016 {
1017 	switch (asy_get_bus_type(devinfo)) {
1018 	case ASY_BUS_ISA:
1019 		return (asy_get_io_regnum_isa(devinfo, asy));
1020 	case ASY_BUS_PCI:
1021 		return (asy_get_io_regnum_pci(devinfo, asy));
1022 	default:
1023 		return (-1);
1024 	}
1025 }
1026 
1027 static void
asy_intr_free(struct asycom * asy)1028 asy_intr_free(struct asycom *asy)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < asy->asy_intr_cnt; i++) {
1033 		if (asy->asy_inth[i] == NULL)
1034 			break;
1035 
1036 		if ((asy->asy_intr_cap & DDI_INTR_FLAG_BLOCK) != 0)
1037 			(void) ddi_intr_block_disable(&asy->asy_inth[i], 1);
1038 		else
1039 			(void) ddi_intr_disable(asy->asy_inth[i]);
1040 
1041 		(void) ddi_intr_remove_handler(asy->asy_inth[i]);
1042 		(void) ddi_intr_free(asy->asy_inth[i]);
1043 	}
1044 
1045 	kmem_free(asy->asy_inth, asy->asy_inth_sz);
1046 	asy->asy_inth = NULL;
1047 	asy->asy_inth_sz = 0;
1048 }
1049 
1050 static int
asy_intr_setup(struct asycom * asy,int intr_type)1051 asy_intr_setup(struct asycom *asy, int intr_type)
1052 {
1053 	int nintrs, navail, count;
1054 	int ret;
1055 	int i;
1056 
1057 	if (asy->asy_intr_types == 0) {
1058 		ret = ddi_intr_get_supported_types(asy->asy_dip,
1059 		    &asy->asy_intr_types);
1060 		if (ret != DDI_SUCCESS) {
1061 			asyerror(asy, CE_WARN,
1062 			    "ddi_intr_get_supported_types failed");
1063 			return (ret);
1064 		}
1065 	}
1066 
1067 	if ((asy->asy_intr_types & intr_type) == 0)
1068 		return (DDI_FAILURE);
1069 
1070 	ret = ddi_intr_get_nintrs(asy->asy_dip, intr_type, &nintrs);
1071 	if (ret != DDI_SUCCESS) {
1072 		asyerror(asy, CE_WARN, "ddi_intr_get_nintrs failed, type %d",
1073 		    intr_type);
1074 		return (ret);
1075 	}
1076 
1077 	if (nintrs < 1) {
1078 		asyerror(asy, CE_WARN, "no interrupts of type %d", intr_type);
1079 		return (DDI_FAILURE);
1080 	}
1081 
1082 	ret = ddi_intr_get_navail(asy->asy_dip, intr_type, &navail);
1083 	if (ret != DDI_SUCCESS) {
1084 		asyerror(asy, CE_WARN, "ddi_intr_get_navail failed, type %d",
1085 		    intr_type);
1086 		return (ret);
1087 	}
1088 
1089 	if (navail < 1) {
1090 		asyerror(asy, CE_WARN, "no available interrupts, type %d",
1091 		    intr_type);
1092 		return (DDI_FAILURE);
1093 	}
1094 
1095 	/*
1096 	 * Some PCI(e) RS232 adapters seem to support more than one interrupt,
1097 	 * but the asy driver really doesn't.
1098 	 */
1099 	asy->asy_inth_sz = sizeof (ddi_intr_handle_t);
1100 	asy->asy_inth = kmem_zalloc(asy->asy_inth_sz, KM_SLEEP);
1101 	ret = ddi_intr_alloc(asy->asy_dip, asy->asy_inth, intr_type, 0, 1,
1102 	    &count, 0);
1103 	if (ret != DDI_SUCCESS) {
1104 		asyerror(asy, CE_WARN, "ddi_intr_alloc failed, count %d, "
1105 		    "type %d", navail, intr_type);
1106 		goto fail;
1107 	}
1108 
1109 	if (count != 1) {
1110 		asyerror(asy, CE_WARN, "ddi_intr_alloc returned not 1 but %d "
1111 		    "interrupts of type %d", count, intr_type);
1112 		goto fail;
1113 	}
1114 
1115 	asy->asy_intr_cnt = count;
1116 
1117 	ret = ddi_intr_get_pri(asy->asy_inth[0], &asy->asy_intr_pri);
1118 	if (ret != DDI_SUCCESS) {
1119 		asyerror(asy, CE_WARN, "ddi_intr_get_pri failed, type %d",
1120 		    intr_type);
1121 		goto fail;
1122 	}
1123 
1124 	for (i = 0; i < count; i++) {
1125 		ret = ddi_intr_add_handler(asy->asy_inth[i], asyintr,
1126 		    (void *)asy, (void *)(uintptr_t)i);
1127 		if (ret != DDI_SUCCESS) {
1128 			asyerror(asy, CE_WARN, "ddi_intr_add_handler failed, "
1129 			    "int %d, type %d", i, intr_type);
1130 			goto fail;
1131 		}
1132 	}
1133 
1134 	(void) ddi_intr_get_cap(asy->asy_inth[0], &asy->asy_intr_cap);
1135 
1136 	for (i = 0; i < count; i++) {
1137 		if (asy->asy_intr_cap & DDI_INTR_FLAG_BLOCK)
1138 			ret = ddi_intr_block_enable(&asy->asy_inth[i], 1);
1139 		else
1140 			ret = ddi_intr_enable(asy->asy_inth[i]);
1141 
1142 		if (ret != DDI_SUCCESS) {
1143 			asyerror(asy, CE_WARN,
1144 			    "enabling interrupt %d failed, type %d",
1145 			    i, intr_type);
1146 			goto fail;
1147 		}
1148 	}
1149 
1150 	asy->asy_intr_type = intr_type;
1151 	return (DDI_SUCCESS);
1152 
1153 fail:
1154 	asy_intr_free(asy);
1155 	return (ret);
1156 }
1157 
1158 static void
asy_softintr_free(struct asycom * asy)1159 asy_softintr_free(struct asycom *asy)
1160 {
1161 	(void) ddi_intr_remove_softint(asy->asy_soft_inth);
1162 }
1163 
1164 static int
asy_softintr_setup(struct asycom * asy)1165 asy_softintr_setup(struct asycom *asy)
1166 {
1167 	int ret;
1168 
1169 	ret = ddi_intr_add_softint(asy->asy_dip, &asy->asy_soft_inth,
1170 	    ASY_SOFT_INT_PRI, asysoftintr, asy);
1171 	if (ret != DDI_SUCCESS) {
1172 		asyerror(asy, CE_WARN, "ddi_intr_add_softint failed");
1173 		return (ret);
1174 	}
1175 
1176 	/*
1177 	 * This may seem pointless since we specified ASY_SOFT_INT_PRI above,
1178 	 * but then it's probably a good idea to consider the soft interrupt
1179 	 * priority an opaque value and don't hardcode any assumptions about
1180 	 * its actual value here.
1181 	 */
1182 	ret = ddi_intr_get_softint_pri(asy->asy_soft_inth,
1183 	    &asy->asy_soft_intr_pri);
1184 	if (ret != DDI_SUCCESS) {
1185 		asyerror(asy, CE_WARN, "ddi_intr_get_softint_pri failed");
1186 		return (ret);
1187 	}
1188 
1189 	return (DDI_SUCCESS);
1190 }
1191 
1192 
1193 static int
asy_resume(dev_info_t * devi)1194 asy_resume(dev_info_t *devi)
1195 {
1196 	struct asyncline *async;
1197 	struct asycom *asy;
1198 	int instance = ddi_get_instance(devi);	/* find out which unit */
1199 
1200 #ifdef	DEBUG
1201 	if (asy_nosuspend)
1202 		return (DDI_SUCCESS);
1203 #endif
1204 	asy = ddi_get_soft_state(asy_soft_state, instance);
1205 	if (asy == NULL)
1206 		return (DDI_FAILURE);
1207 
1208 	mutex_enter(&asy->asy_soft_sr);
1209 	mutex_enter(&asy->asy_excl);
1210 	mutex_enter(&asy->asy_excl_hi);
1211 
1212 	async = asy->asy_priv;
1213 	asy_disable_interrupts(asy, ASY_IER_ALL);
1214 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
1215 		mutex_exit(&asy->asy_excl_hi);
1216 		mutex_exit(&asy->asy_excl);
1217 		mutex_exit(&asy->asy_soft_sr);
1218 		asyerror(asy, CE_WARN, "Cannot identify UART chip at %p",
1219 		    (void *)asy->asy_ioaddr);
1220 		return (DDI_FAILURE);
1221 	}
1222 	asy->asy_flags &= ~ASY_DDI_SUSPENDED;
1223 	if (async->async_flags & ASYNC_ISOPEN) {
1224 		asy_program(asy, ASY_INIT);
1225 		/* Kick off output */
1226 		if (async->async_ocnt > 0) {
1227 			async_resume(async);
1228 		} else {
1229 			mutex_exit(&asy->asy_excl_hi);
1230 			if (async->async_xmitblk)
1231 				freeb(async->async_xmitblk);
1232 			async->async_xmitblk = NULL;
1233 			async_start(async);
1234 			mutex_enter(&asy->asy_excl_hi);
1235 		}
1236 		asysetsoft(asy);
1237 	}
1238 	mutex_exit(&asy->asy_excl_hi);
1239 	mutex_exit(&asy->asy_excl);
1240 	mutex_exit(&asy->asy_soft_sr);
1241 
1242 	mutex_enter(&asy->asy_excl);
1243 	if (async->async_flags & ASYNC_RESUME_BUFCALL) {
1244 		async->async_wbufcid = bufcall(async->async_wbufcds,
1245 		    BPRI_HI, (void (*)(void *)) async_reioctl,
1246 		    (void *)(intptr_t)async->async_common->asy_unit);
1247 		async->async_flags &= ~ASYNC_RESUME_BUFCALL;
1248 	}
1249 	async_process_suspq(asy);
1250 	mutex_exit(&asy->asy_excl);
1251 	return (DDI_SUCCESS);
1252 }
1253 
1254 static int
asy_suspend(struct asycom * asy)1255 asy_suspend(struct asycom *asy)
1256 {
1257 	struct asyncline *async = asy->asy_priv;
1258 	unsigned i;
1259 	uchar_t lsr;
1260 
1261 #ifdef	DEBUG
1262 	if (asy_nosuspend)
1263 		return (DDI_SUCCESS);
1264 #endif
1265 	mutex_enter(&asy->asy_excl);
1266 
1267 	ASSERT(async->async_ops >= 0);
1268 	while (async->async_ops > 0)
1269 		cv_wait(&async->async_ops_cv, &asy->asy_excl);
1270 
1271 	async->async_flags |= ASYNC_DDI_SUSPENDED;
1272 
1273 	/* Wait for timed break and delay to complete */
1274 	while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
1275 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0) {
1276 			async_process_suspq(asy);
1277 			mutex_exit(&asy->asy_excl);
1278 			return (DDI_FAILURE);
1279 		}
1280 	}
1281 
1282 	/* Clear untimed break */
1283 	if (async->async_flags & ASYNC_OUT_SUSPEND)
1284 		async_resume_utbrk(async);
1285 
1286 	mutex_exit(&asy->asy_excl);
1287 
1288 	mutex_enter(&asy->asy_soft_sr);
1289 	mutex_enter(&asy->asy_excl);
1290 	if (async->async_wbufcid != 0) {
1291 		bufcall_id_t bcid = async->async_wbufcid;
1292 		async->async_wbufcid = 0;
1293 		async->async_flags |= ASYNC_RESUME_BUFCALL;
1294 		mutex_exit(&asy->asy_excl);
1295 		unbufcall(bcid);
1296 		mutex_enter(&asy->asy_excl);
1297 	}
1298 	mutex_enter(&asy->asy_excl_hi);
1299 
1300 	asy_disable_interrupts(asy, ASY_IER_ALL);
1301 	asy->asy_flags |= ASY_DDI_SUSPENDED;
1302 
1303 	/*
1304 	 * Hardware interrupts are disabled we can drop our high level
1305 	 * lock and proceed.
1306 	 */
1307 	mutex_exit(&asy->asy_excl_hi);
1308 
1309 	/* Process remaining RX characters and RX errors, if any */
1310 	lsr = asy_get(asy, ASY_LSR);
1311 	async_rxint(asy, lsr);
1312 
1313 	/* Wait for TX to drain */
1314 	for (i = 1000; i > 0; i--) {
1315 		lsr = asy_get(asy, ASY_LSR);
1316 		if ((lsr & (ASY_LSR_TEMT | ASY_LSR_THRE)) ==
1317 		    (ASY_LSR_TEMT | ASY_LSR_THRE))
1318 			break;
1319 		delay(drv_usectohz(10000));
1320 	}
1321 	if (i == 0)
1322 		asyerror(asy, CE_WARN, "transmitter wasn't drained before "
1323 		    "driver was suspended");
1324 
1325 	mutex_exit(&asy->asy_excl);
1326 	mutex_exit(&asy->asy_soft_sr);
1327 
1328 	return (DDI_SUCCESS);
1329 }
1330 
1331 static int
asydetach(dev_info_t * devi,ddi_detach_cmd_t cmd)1332 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
1333 {
1334 	int instance;
1335 	struct asycom *asy;
1336 
1337 	instance = ddi_get_instance(devi);	/* find out which unit */
1338 
1339 	asy = ddi_get_soft_state(asy_soft_state, instance);
1340 	if (asy == NULL)
1341 		return (DDI_FAILURE);
1342 
1343 	switch (cmd) {
1344 	case DDI_DETACH:
1345 		break;
1346 
1347 	case DDI_SUSPEND:
1348 		return (asy_suspend(asy));
1349 
1350 	default:
1351 		return (DDI_FAILURE);
1352 	}
1353 
1354 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "%s shutdown", asy_hw_name(asy));
1355 
1356 	if ((asy->asy_progress & ASY_PROGRESS_ASYNC) != 0) {
1357 		struct asyncline *async = asy->asy_priv;
1358 
1359 		/* cancel DTR hold timeout */
1360 		if (async->async_dtrtid != 0) {
1361 			(void) untimeout(async->async_dtrtid);
1362 			async->async_dtrtid = 0;
1363 		}
1364 		cv_destroy(&async->async_flags_cv);
1365 		kmem_free(async, sizeof (struct asyncline));
1366 		asy->asy_priv = NULL;
1367 	}
1368 
1369 	if ((asy->asy_progress & ASY_PROGRESS_MINOR) != 0)
1370 		ddi_remove_minor_node(devi, NULL);
1371 
1372 	if ((asy->asy_progress & ASY_PROGRESS_MUTEX) != 0) {
1373 		mutex_destroy(&asy->asy_excl);
1374 		mutex_destroy(&asy->asy_excl_hi);
1375 		mutex_destroy(&asy->asy_soft_lock);
1376 	}
1377 
1378 	if ((asy->asy_progress & ASY_PROGRESS_INT) != 0)
1379 		asy_intr_free(asy);
1380 
1381 	if ((asy->asy_progress & ASY_PROGRESS_SOFTINT) != 0)
1382 		asy_softintr_free(asy);
1383 
1384 	if ((asy->asy_progress & ASY_PROGRESS_REGS) != 0)
1385 		ddi_regs_map_free(&asy->asy_iohandle);
1386 
1387 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "shutdown complete");
1388 	asy_soft_state_free(asy);
1389 
1390 	return (DDI_SUCCESS);
1391 }
1392 
1393 /*
1394  * asyprobe
1395  * We don't bother probing for the hardware, as since Solaris 2.6, device
1396  * nodes are only created for auto-detected hardware or nodes explicitly
1397  * created by the user, e.g. via the DCA. However, we should check the
1398  * device node is at least vaguely usable, i.e. we have a block of 8 i/o
1399  * ports. This prevents attempting to attach to bogus serial ports which
1400  * some BIOSs still partially report when they are disabled in the BIOS.
1401  */
1402 static int
asyprobe(dev_info_t * devi)1403 asyprobe(dev_info_t *devi)
1404 {
1405 	return ((asy_get_io_regnum(devi, NULL) < 0) ?
1406 	    DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
1407 }
1408 
1409 static int
asyattach(dev_info_t * devi,ddi_attach_cmd_t cmd)1410 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
1411 {
1412 	int instance;
1413 	int mcr;
1414 	int ret;
1415 	int regnum = 0;
1416 	int i;
1417 	struct asycom *asy;
1418 	char name[ASY_MINOR_LEN];
1419 	int status;
1420 	static ddi_device_acc_attr_t ioattr = {
1421 		DDI_DEVICE_ATTR_V0,
1422 		DDI_NEVERSWAP_ACC,
1423 		DDI_STRICTORDER_ACC,
1424 	};
1425 
1426 	switch (cmd) {
1427 	case DDI_ATTACH:
1428 		break;
1429 
1430 	case DDI_RESUME:
1431 		return (asy_resume(devi));
1432 
1433 	default:
1434 		return (DDI_FAILURE);
1435 	}
1436 
1437 	mutex_enter(&asy_glob_lock);
1438 	if (com_ports == NULL) {	/* need to initialize com_ports */
1439 		if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
1440 		    "motherboard-serial-ports", &com_ports, &num_com_ports) !=
1441 		    DDI_PROP_SUCCESS) {
1442 			/* Use our built-in COM[1234] values */
1443 			com_ports = (int *)standard_com_ports;
1444 			num_com_ports = sizeof (standard_com_ports) /
1445 			    sizeof (standard_com_ports[0]);
1446 		}
1447 		if (num_com_ports > 10) {
1448 			/* We run out of single digits for device properties */
1449 			num_com_ports = 10;
1450 			cmn_err(CE_WARN,
1451 			    "%s: more than %d motherboard-serial-ports",
1452 			    asy_info.mi_idname, num_com_ports);
1453 		}
1454 	}
1455 	mutex_exit(&asy_glob_lock);
1456 
1457 	instance = ddi_get_instance(devi);	/* find out which unit */
1458 	ret = ddi_soft_state_zalloc(asy_soft_state, instance);
1459 	if (ret != DDI_SUCCESS)
1460 		return (DDI_FAILURE);
1461 	asy = ddi_get_soft_state(asy_soft_state, instance);
1462 
1463 	asy->asy_dip = devi;
1464 #ifdef DEBUG
1465 	asy->asy_debug = debug;
1466 #endif
1467 	asy->asy_unit = instance;
1468 
1469 	regnum = asy_get_io_regnum(devi, asy);
1470 
1471 	if (regnum < 0 ||
1472 	    ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
1473 	    (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
1474 	    != DDI_SUCCESS) {
1475 		asyerror(asy, CE_WARN, "could not map UART registers @ %p",
1476 		    (void *)asy->asy_ioaddr);
1477 		goto fail;
1478 	}
1479 
1480 	asy->asy_progress |= ASY_PROGRESS_REGS;
1481 
1482 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "UART @ %p", (void *)asy->asy_ioaddr);
1483 
1484 	/*
1485 	 * Lookup the i/o address to see if this is a standard COM port
1486 	 * in which case we assign it the correct tty[a-d] to match the
1487 	 * COM port number, or some other i/o address in which case it
1488 	 * will be assigned /dev/term/[0123...] in some rather arbitrary
1489 	 * fashion.
1490 	 */
1491 	for (i = 0; i < num_com_ports; i++) {
1492 		if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
1493 			asy->asy_com_port = i + 1;
1494 			break;
1495 		}
1496 	}
1497 
1498 	/*
1499 	 * It appears that there was async hardware that on reset did not clear
1500 	 * IER.  Hence when we enable interrupts, this hardware would cause the
1501 	 * system to hang if there was input available.
1502 	 *
1503 	 * Don't use asy_disable_interrupts() as the mutexes haven't been
1504 	 * initialized yet.
1505 	 */
1506 	ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ASY_IER, 0);
1507 
1508 
1509 	/*
1510 	 * Establish default settings:
1511 	 * - use RTS/DTR after open
1512 	 * - 8N1 data format
1513 	 * - 9600 baud
1514 	 */
1515 	asy->asy_mcr |= ASY_MCR_RTS | ASY_MCR_DTR;
1516 	asy->asy_lcr = ASY_LCR_STOP1 | ASY_LCR_BITS8;
1517 	asy->asy_bidx = B9600;
1518 	asy->asy_fifo_buf = 1;
1519 	asy->asy_use_fifo = ASY_FCR_FIFO_OFF;
1520 
1521 #ifdef DEBUG
1522 	asy->asy_msint_cnt = 0;			/* # of times in async_msint */
1523 #endif
1524 	mcr = 0;				/* don't enable until open */
1525 
1526 	if (asy->asy_com_port != 0) {
1527 		/*
1528 		 * For motherboard ports, emulate tty eeprom properties.
1529 		 * Actually, we can't tell if a port is motherboard or not,
1530 		 * so for "motherboard ports", read standard DOS COM ports.
1531 		 */
1532 		switch (asy_getproperty(devi, asy, "ignore-cd")) {
1533 		case 0:				/* *-ignore-cd=False */
1534 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1535 			    "clear ASY_IGNORE_CD");
1536 			asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
1537 			break;
1538 		case 1:				/* *-ignore-cd=True */
1539 			/*FALLTHRU*/
1540 		default:			/* *-ignore-cd not defined */
1541 			/*
1542 			 * We set rather silly defaults of soft carrier on
1543 			 * and DTR/RTS raised here because it might be that
1544 			 * one of the motherboard ports is the system console.
1545 			 */
1546 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1547 			    "set ASY_IGNORE_CD, set RTS & DTR");
1548 			mcr = asy->asy_mcr;		/* rts/dtr on */
1549 			asy->asy_flags |= ASY_IGNORE_CD;	/* ignore cd */
1550 			break;
1551 		}
1552 
1553 		/* Property for not raising DTR/RTS */
1554 		switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
1555 		case 0:				/* *-rts-dtr-off=False */
1556 			asy->asy_flags |= ASY_RTS_DTR_OFF;	/* OFF */
1557 			mcr = asy->asy_mcr;		/* rts/dtr on */
1558 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1559 			    "ASY_RTS_DTR_OFF set and DTR & RTS set");
1560 			break;
1561 		case 1:				/* *-rts-dtr-off=True */
1562 			/*FALLTHRU*/
1563 		default:			/* *-rts-dtr-off undefined */
1564 			break;
1565 		}
1566 
1567 		/* Parse property for tty modes */
1568 		asy_parse_mode(devi, asy);
1569 	} else {
1570 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
1571 		    "clear ASY_IGNORE_CD, clear RTS & DTR");
1572 		asy->asy_flags &= ~ASY_IGNORE_CD;	/* wait for cd */
1573 	}
1574 
1575 	/*
1576 	 * Install per instance software interrupt handler.
1577 	 */
1578 	if (asy_softintr_setup(asy) != DDI_SUCCESS) {
1579 		asyerror(asy, CE_WARN, "Cannot set soft interrupt");
1580 		goto fail;
1581 	}
1582 
1583 	asy->asy_progress |= ASY_PROGRESS_SOFTINT;
1584 
1585 	/*
1586 	 * Install interrupt handler for this device.
1587 	 */
1588 	if ((asy_intr_setup(asy, DDI_INTR_TYPE_MSIX) != DDI_SUCCESS) &&
1589 	    (asy_intr_setup(asy, DDI_INTR_TYPE_MSI) != DDI_SUCCESS) &&
1590 	    (asy_intr_setup(asy, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS)) {
1591 		asyerror(asy, CE_WARN, "Cannot set device interrupt");
1592 		goto fail;
1593 	}
1594 
1595 	asy->asy_progress |= ASY_PROGRESS_INT;
1596 
1597 	/*
1598 	 * Initialize mutexes before accessing the hardware
1599 	 */
1600 	mutex_init(&asy->asy_soft_lock, NULL, MUTEX_DRIVER,
1601 	    DDI_INTR_PRI(asy->asy_soft_intr_pri));
1602 	mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER,
1603 	    DDI_INTR_PRI(asy->asy_soft_intr_pri));
1604 
1605 	mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
1606 	mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
1607 	    DDI_INTR_PRI(asy->asy_intr_pri));
1608 
1609 	asy->asy_progress |= ASY_PROGRESS_MUTEX;
1610 
1611 	mutex_enter(&asy->asy_excl);
1612 	mutex_enter(&asy->asy_excl_hi);
1613 
1614 	if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
1615 		asyerror(asy, CE_WARN, "Cannot identify UART chip at %p",
1616 		    (void *)asy->asy_ioaddr);
1617 		goto fail;
1618 	}
1619 
1620 	asy_disable_interrupts(asy, ASY_IER_ALL);
1621 	asy_put(asy, ASY_LCR, asy->asy_lcr);
1622 	asy_set_baudrate(asy, asy->asy_bidx);
1623 	asy_put(asy, ASY_MCR, mcr);
1624 
1625 	mutex_exit(&asy->asy_excl_hi);
1626 	mutex_exit(&asy->asy_excl);
1627 
1628 	asyinit(asy);	/* initialize the asyncline structure */
1629 	asy->asy_progress |= ASY_PROGRESS_ASYNC;
1630 
1631 	/* create minor device nodes for this device */
1632 	if (asy->asy_com_port != 0) {
1633 		/*
1634 		 * For DOS COM ports, add letter suffix so
1635 		 * devfsadm can create correct link names.
1636 		 */
1637 		name[0] = asy->asy_com_port + 'a' - 1;
1638 		name[1] = '\0';
1639 	} else {
1640 		/*
1641 		 * asy port which isn't a standard DOS COM
1642 		 * port gets a numeric name based on instance
1643 		 */
1644 		(void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
1645 	}
1646 	status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
1647 	    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, 0);
1648 	if (status == DDI_SUCCESS) {
1649 		(void) strcat(name, ",cu");
1650 		status = ddi_create_minor_node(devi, name, S_IFCHR,
1651 		    OUTLINE | instance,
1652 		    asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
1653 		    DDI_NT_SERIAL_DO, 0);
1654 	}
1655 
1656 	if (status != DDI_SUCCESS)
1657 		goto fail;
1658 
1659 	asy->asy_progress |= ASY_PROGRESS_MINOR;
1660 
1661 	/*
1662 	 * Fill in the polled I/O structure.
1663 	 */
1664 	asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
1665 	asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
1666 	asy->polledio.cons_polledio_putchar = asyputchar;
1667 	asy->polledio.cons_polledio_getchar = asygetchar;
1668 	asy->polledio.cons_polledio_ischar = asyischar;
1669 	asy->polledio.cons_polledio_enter = NULL;
1670 	asy->polledio.cons_polledio_exit = NULL;
1671 
1672 	ddi_report_dev(devi);
1673 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "done");
1674 	return (DDI_SUCCESS);
1675 
1676 fail:
1677 	(void) asydetach(devi, DDI_DETACH);
1678 	return (DDI_FAILURE);
1679 }
1680 
1681 static int
asyinfo(dev_info_t * dip __unused,ddi_info_cmd_t infocmd,void * arg,void ** result)1682 asyinfo(dev_info_t *dip __unused, ddi_info_cmd_t infocmd, void *arg,
1683     void **result)
1684 {
1685 	dev_t dev = (dev_t)arg;
1686 	int instance, error;
1687 	struct asycom *asy;
1688 
1689 	instance = UNIT(dev);
1690 
1691 	switch (infocmd) {
1692 	case DDI_INFO_DEVT2DEVINFO:
1693 		asy = ddi_get_soft_state(asy_soft_state, instance);
1694 		if ((asy == NULL) || (asy->asy_dip == NULL))
1695 			error = DDI_FAILURE;
1696 		else {
1697 			*result = (void *) asy->asy_dip;
1698 			error = DDI_SUCCESS;
1699 		}
1700 		break;
1701 	case DDI_INFO_DEVT2INSTANCE:
1702 		*result = (void *)(intptr_t)instance;
1703 		error = DDI_SUCCESS;
1704 		break;
1705 	default:
1706 		error = DDI_FAILURE;
1707 	}
1708 	return (error);
1709 }
1710 
1711 /* asy_getproperty -- walk through all name variants until we find a match */
1712 
1713 static int
asy_getproperty(dev_info_t * devi,struct asycom * asy,const char * property)1714 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
1715 {
1716 	int len;
1717 	int ret;
1718 	char letter = asy->asy_com_port + 'a' - 1;	/* for ttya */
1719 	char number = asy->asy_com_port + '0';		/* for COM1 */
1720 	char val[40];
1721 	char name[40];
1722 
1723 	/* Property for ignoring DCD */
1724 	(void) sprintf(name, "tty%c-%s", letter, property);
1725 	len = sizeof (val);
1726 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1727 	if (ret != DDI_PROP_SUCCESS) {
1728 		(void) sprintf(name, "com%c-%s", number, property);
1729 		len = sizeof (val);
1730 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1731 	}
1732 	if (ret != DDI_PROP_SUCCESS) {
1733 		(void) sprintf(name, "tty0%c-%s", number, property);
1734 		len = sizeof (val);
1735 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1736 	}
1737 	if (ret != DDI_PROP_SUCCESS) {
1738 		(void) sprintf(name, "port-%c-%s", letter, property);
1739 		len = sizeof (val);
1740 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1741 	}
1742 	if (ret != DDI_PROP_SUCCESS)
1743 		return (-1);		/* property non-existant */
1744 	if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
1745 		return (0);		/* property false/0 */
1746 	return (1);			/* property true/!0 */
1747 }
1748 
1749 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
1750 
1751 static void
asy_soft_state_free(struct asycom * asy)1752 asy_soft_state_free(struct asycom *asy)
1753 {
1754 	if (asy->asy_priv != NULL) {
1755 		kmem_free(asy->asy_priv, sizeof (struct asyncline));
1756 		asy->asy_priv = NULL;
1757 	}
1758 	ddi_soft_state_free(asy_soft_state, asy->asy_unit);
1759 }
1760 
1761 static char *
asy_hw_name(struct asycom * asy)1762 asy_hw_name(struct asycom *asy)
1763 {
1764 	switch (asy->asy_hwtype) {
1765 	case ASY_8250A:
1766 		return ("8250A/16450");
1767 	case ASY_16550:
1768 		return ("16550");
1769 	case ASY_16550A:
1770 		return ("16550A");
1771 	case ASY_16650:
1772 		return ("16650");
1773 	case ASY_16750:
1774 		return ("16750");
1775 	case ASY_16950:
1776 		return ("16950");
1777 	}
1778 
1779 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "unknown asy_hwtype: %d",
1780 	    asy->asy_hwtype);
1781 	return ("?");
1782 }
1783 
1784 static boolean_t
asy_is_devid(struct asycom * asy,char * venprop,char * devprop,int venid,int devid)1785 asy_is_devid(struct asycom *asy, char *venprop, char *devprop,
1786     int venid, int devid)
1787 {
1788 	if (ddi_prop_get_int(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1789 	    venprop, 0) != venid) {
1790 		return (B_FALSE);
1791 	}
1792 
1793 	if (ddi_prop_get_int(DDI_DEV_T_ANY, asy->asy_dip, DDI_PROP_DONTPASS,
1794 	    devprop, 0) != devid) {
1795 		return (B_FALSE);
1796 	}
1797 
1798 	return (B_FALSE);
1799 }
1800 
1801 static void
asy_check_loopback(struct asycom * asy)1802 asy_check_loopback(struct asycom *asy)
1803 {
1804 	if (asy_get_bus_type(asy->asy_dip) != ASY_BUS_PCI)
1805 		return;
1806 
1807 	/* Check if this is a Agere/Lucent Venus PCI modem chipset. */
1808 	if (asy_is_devid(asy, "vendor-id", "device-id", 0x11c1, 0x0480) ||
1809 	    asy_is_devid(asy, "subsystem-vendor-id", "subsystem-id", 0x11c1,
1810 	    0x0480))
1811 		asy->asy_flags2 |= ASY2_NO_LOOPBACK;
1812 }
1813 
1814 static int
asy_identify_chip(dev_info_t * devi,struct asycom * asy)1815 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
1816 {
1817 	int isr, lsr, mcr, spr;
1818 	dev_t dev;
1819 	uint_t hwtype;
1820 
1821 	/*
1822 	 * Initially, we'll assume we have the highest supported chip model
1823 	 * until we find out what we actually have.
1824 	 */
1825 	asy->asy_hwtype = ASY_MAXCHIP;
1826 
1827 	/*
1828 	 * First, see if we can even do the loopback check, which may not work
1829 	 * on certain hardware.
1830 	 */
1831 	asy_check_loopback(asy);
1832 
1833 	if (asy_scr_test) {
1834 		/* Check that the scratch register works. */
1835 
1836 		/* write to scratch register */
1837 		asy_put(asy, ASY_SPR, ASY_SPR_TEST);
1838 		/* make sure that pattern doesn't just linger on the bus */
1839 		asy_put(asy, ASY_FCR, 0x00);
1840 		/* read data back from scratch register */
1841 		spr = asy_get(asy, ASY_SPR);
1842 		if (spr != ASY_SPR_TEST) {
1843 			/*
1844 			 * Scratch register not working.
1845 			 * Probably not an async chip.
1846 			 * 8250 and 8250B don't have scratch registers,
1847 			 * but only worked in ancient PC XT's anyway.
1848 			 */
1849 			asyerror(asy, CE_WARN, "UART @ %p "
1850 			    "scratch register: expected 0x5a, got 0x%02x",
1851 			    (void *)asy->asy_ioaddr, spr);
1852 			return (DDI_FAILURE);
1853 		}
1854 	}
1855 	/*
1856 	 * Use 16550 fifo reset sequence specified in NS application
1857 	 * note. Disable fifos until chip is initialized.
1858 	 */
1859 	asy_put(asy, ASY_FCR, 0x00);				 /* disable */
1860 	asy_put(asy, ASY_FCR, ASY_FCR_FIFO_EN);			 /* enable */
1861 	asy_put(asy, ASY_FCR, ASY_FCR_FIFO_EN | ASY_FCR_RHR_FL); /* reset */
1862 	if (asymaxchip >= ASY_16650 && asy_scr_test) {
1863 		/*
1864 		 * Reset 16650 enhanced regs also, in case we have one of these
1865 		 */
1866 		asy_put(asy, ASY_EFR, 0);
1867 	}
1868 
1869 	/*
1870 	 * See what sort of FIFO we have.
1871 	 * Try enabling it and see what chip makes of this.
1872 	 */
1873 
1874 	asy->asy_fifor = 0;
1875 	if (asymaxchip >= ASY_16550A)
1876 		asy->asy_fifor |=
1877 		    ASY_FCR_FIFO_EN | ASY_FCR_DMA | (asy_trig_level & 0xff);
1878 
1879 	/*
1880 	 * On the 16750, FCR[5] enables the 64 byte FIFO. FCR[5] can only be set
1881 	 * while LCR[7] = 1 (DLAB), which is taken care of by asy_reset_fifo().
1882 	 */
1883 	if (asymaxchip >= ASY_16750)
1884 		asy->asy_fifor |= ASY_FCR_FIFO64;
1885 
1886 	asy_reset_fifo(asy, ASY_FCR_THR_FL | ASY_FCR_RHR_FL);
1887 
1888 	mcr = asy_get(asy, ASY_MCR);
1889 	isr = asy_get(asy, ASY_ISR);
1890 
1891 	/*
1892 	 * Note we get 0xff if chip didn't return us anything,
1893 	 * e.g. if there's no chip there.
1894 	 */
1895 	if (isr == 0xff) {
1896 		asyerror(asy, CE_WARN, "UART @ %p interrupt register: got 0xff",
1897 		    (void *)asy->asy_ioaddr);
1898 		return (DDI_FAILURE);
1899 	}
1900 
1901 	ASY_DPRINTF(asy, ASY_DEBUG_CHIP,
1902 	    "probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x",
1903 	    asy->asy_fifor | ASY_FCR_THR_FL | ASY_FCR_RHR_FL, isr, mcr);
1904 
1905 	/*
1906 	 * Detect the chip type by comparing ISR[7,6] and ISR[5].
1907 	 *
1908 	 * When the FIFOs are enabled by setting FCR[0], ISR[7,6] read as 1.
1909 	 * Additionally on a 16750, the 64 byte FIFOs are enabled by setting
1910 	 * FCR[5], and ISR[5] will read as 1, too.
1911 	 *
1912 	 * We will check later whether we have a 16650, which requires EFR[4]=1
1913 	 * to enable its deeper FIFOs and extra features. It does not use FCR[5]
1914 	 * and ISR[5] to enable deeper FIFOs like the 16750 does.
1915 	 */
1916 	switch (isr & (ASY_ISR_FIFOEN | ASY_ISR_FIFO64)) {
1917 	case 0x40:				/* 16550 with broken FIFOs */
1918 		hwtype = ASY_16550;
1919 		asy->asy_fifor = 0;
1920 		break;
1921 
1922 	case ASY_ISR_FIFOEN:			/* 16550A with working FIFOs */
1923 		hwtype = ASY_16550A;
1924 		asy->asy_fifo_buf = 16;
1925 		asy->asy_use_fifo = ASY_FCR_FIFO_EN;
1926 		asy->asy_fifor &= ~ASY_FCR_FIFO64;
1927 		break;
1928 
1929 	case ASY_ISR_FIFOEN | ASY_ISR_FIFO64:	/* 16750 with 64byte FIFOs */
1930 		hwtype = ASY_16750;
1931 		asy->asy_fifo_buf = 64;
1932 		asy->asy_use_fifo = ASY_FCR_FIFO_EN;
1933 		break;
1934 
1935 	default:				/* 8250A/16450 without FIFOs */
1936 		hwtype = ASY_8250A;
1937 		asy->asy_fifor = 0;
1938 	}
1939 
1940 	if (hwtype > asymaxchip) {
1941 		asyerror(asy, CE_WARN, "UART @ %p "
1942 		    "unexpected probe result: "
1943 		    "FCR=0x%02x ISR=0x%02x MCR=0x%02x",
1944 		    (void *)asy->asy_ioaddr,
1945 		    asy->asy_fifor | ASY_FCR_THR_FL | ASY_FCR_RHR_FL, isr, mcr);
1946 		return (DDI_FAILURE);
1947 	}
1948 
1949 	/*
1950 	 * Now reset the FIFO operation appropriate for the chip type.
1951 	 * Note we must call asy_reset_fifo() before any possible
1952 	 * downgrade of the asy->asy_hwtype, or it may not disable
1953 	 * the more advanced features we specifically want downgraded.
1954 	 */
1955 	asy_reset_fifo(asy, 0);
1956 
1957 	/*
1958 	 * Check for Exar/Startech ST16C650 or newer, which will still look like
1959 	 * a 16550A until we enable its enhanced mode.
1960 	 */
1961 	if (hwtype >= ASY_16550A && asymaxchip >= ASY_16650 &&
1962 	    asy_scr_test) {
1963 		/*
1964 		 * Write the XOFF2 register, which shadows SPR on the 16650.
1965 		 * On other chips, SPR will be overwritten.
1966 		 */
1967 		asy_put(asy, ASY_XOFF2, 0);
1968 
1969 		/* read back scratch register */
1970 		spr = asy_get(asy, ASY_SPR);
1971 
1972 		if (spr == ASY_SPR_TEST) {
1973 			/* looks like we have an ST16650 -- enable it */
1974 			hwtype = ASY_16650;
1975 			asy_put(asy, ASY_EFR, ASY_EFR_ENH_EN);
1976 
1977 			/*
1978 			 * Some 16650-compatible chips are also compatible with
1979 			 * the 16750 and have deeper FIFOs, which we may have
1980 			 * detected above. Don't downgrade the FIFO size.
1981 			 */
1982 			if (asy->asy_fifo_buf < 32)
1983 				asy->asy_fifo_buf = 32;
1984 
1985 			/*
1986 			 * Use a 24 byte transmit FIFO trigger only if were
1987 			 * allowed to use >16 transmit FIFO depth by the
1988 			 * global tunable.
1989 			 */
1990 			if (asy_max_tx_fifo >= asy->asy_fifo_buf)
1991 				asy->asy_fifor |= ASY_FCR_THR_TRIG_24;
1992 			asy_reset_fifo(asy, 0);
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * If we think we got a 16650, we may actually have a 16950, so check
1998 	 * for that.
1999 	 */
2000 	if (hwtype >= ASY_16650 && asymaxchip >= ASY_16950) {
2001 		uint8_t ier, asr;
2002 
2003 		/*
2004 		 * First, clear IER and read it back. That should be a no-op as
2005 		 * either asyattach() or asy_resume() disabled all interrupts
2006 		 * before we were called.
2007 		 */
2008 		asy_put(asy, ASY_IER, 0);
2009 		ier = asy_get(asy, ASY_IER);
2010 		if (ier != 0) {
2011 			dev_err(asy->asy_dip, CE_WARN, "!%s: UART @ %p "
2012 			    "interrupt enable register: got 0x%02x", __func__,
2013 			    (void *)asy->asy_ioaddr, ier);
2014 			return (DDI_FAILURE);
2015 		}
2016 
2017 		/*
2018 		 * Next, try to read ASR, which shares the register offset with
2019 		 * IER. ASR can only be read if the ASR enable bit is set in
2020 		 * ACR, which itself is an indexed registers. This is taken care
2021 		 * of by asy_get().
2022 		 *
2023 		 * There are a few bits in ASR which should be 1 at this point,
2024 		 * definitely the TX idle bit (ASR[7]) and also the FIFO size
2025 		 * bit (ASR[6]) since we've done everything we can to enable any
2026 		 * deeper FIFO support.
2027 		 *
2028 		 * Thus if we read back ASR as 0, we failed to read it, and this
2029 		 * isn't the chip we're looking for.
2030 		 */
2031 		asr = asy_get(asy, ASY_ASR);
2032 
2033 		if (asr != ier) {
2034 			hwtype = ASY_16950;
2035 
2036 			if ((asr & ASY_ASR_FIFOSZ) != 0)
2037 				asy->asy_fifo_buf = 128;
2038 			else
2039 				asy->asy_fifo_buf = 16;
2040 
2041 			asy_reset_fifo(asy, 0);
2042 
2043 			/*
2044 			 * Enable 16950 specific trigger level registers. Set
2045 			 * DTR pin to be compatible to 16450, 16550, and 16750.
2046 			 */
2047 			asy->asy_acr = ASY_ACR_TRIG | ASY_ACR_DTR_NORM;
2048 			asy_put(asy, ASY_ACR, asy->asy_acr);
2049 
2050 			/* Set half the FIFO size as receive trigger level. */
2051 			asy_put(asy, ASY_RTL, asy->asy_fifo_buf/2);
2052 
2053 			/*
2054 			 * Set the transmit trigger level to 1.
2055 			 *
2056 			 * While one would expect that any transmit trigger
2057 			 * level would work (the 16550 uses a hardwired level
2058 			 * of 16), in my tests with a 16950 compatible chip
2059 			 * (MosChip 9912) I would never see a TX interrupt
2060 			 * on any transmit trigger level > 1.
2061 			 */
2062 			asy_put(asy, ASY_TTL, 1);
2063 
2064 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "ASR 0x%02x", asr);
2065 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "RFL 0x%02x",
2066 			    asy_get(asy, ASY_RFL));
2067 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "TFL 0x%02x",
2068 			    asy_get(asy, ASY_TFL));
2069 
2070 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "ACR 0x%02x",
2071 			    asy_get(asy, ASY_ACR));
2072 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "CPR 0x%02x",
2073 			    asy_get(asy, ASY_CPR));
2074 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "TCR 0x%02x",
2075 			    asy_get(asy, ASY_TCR));
2076 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "CKS 0x%02x",
2077 			    asy_get(asy, ASY_CKS));
2078 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "TTL 0x%02x",
2079 			    asy_get(asy, ASY_TTL));
2080 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "RTL 0x%02x",
2081 			    asy_get(asy, ASY_RTL));
2082 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "FCL 0x%02x",
2083 			    asy_get(asy, ASY_FCL));
2084 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "FCH 0x%02x",
2085 			    asy_get(asy, ASY_FCH));
2086 
2087 			ASY_DPRINTF(asy, ASY_DEBUG_CHIP,
2088 			    "Chip ID: %02x%02x%02x,%02x",
2089 			    asy_get(asy, ASY_ID1), asy_get(asy, ASY_ID2),
2090 			    asy_get(asy, ASY_ID3), asy_get(asy, ASY_REV));
2091 
2092 		}
2093 	}
2094 
2095 	asy->asy_hwtype = hwtype;
2096 
2097 	/*
2098 	 * If we think we might have a FIFO larger than 16 characters,
2099 	 * measure FIFO size and check it against expected.
2100 	 */
2101 	if (asy_fifo_test > 0 &&
2102 	    !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
2103 	    (asy->asy_fifo_buf > 16 ||
2104 	    (asy_fifo_test > 1 && asy->asy_use_fifo == ASY_FCR_FIFO_EN) ||
2105 	    ASY_DEBUG(asy, ASY_DEBUG_CHIP))) {
2106 		int i;
2107 
2108 		/* Set baud rate to 57600 (fairly arbitrary choice) */
2109 		asy_set_baudrate(asy, B57600);
2110 		/* Set 8 bits, 1 stop bit */
2111 		asy_put(asy, ASY_LCR, ASY_LCR_STOP1 | ASY_LCR_BITS8);
2112 		/* Set loopback mode */
2113 		asy_put(asy, ASY_MCR, ASY_MCR_LOOPBACK);
2114 
2115 		/* Overfill fifo */
2116 		for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
2117 			asy_put(asy, ASY_THR, i);
2118 		}
2119 		/*
2120 		 * Now there's an interesting question here about which
2121 		 * FIFO we're testing the size of, RX or TX. We just
2122 		 * filled the TX FIFO much faster than it can empty,
2123 		 * although it is possible one or two characters may
2124 		 * have gone from it to the TX shift register.
2125 		 * We wait for enough time for all the characters to
2126 		 * move into the RX FIFO and any excess characters to
2127 		 * have been lost, and then read all the RX FIFO. So
2128 		 * the answer we finally get will be the size which is
2129 		 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
2130 		 * one is actually the TX FIFO, because if we overfill
2131 		 * it in normal operation, the excess characters are
2132 		 * lost with no warning.
2133 		 */
2134 		/*
2135 		 * Wait for characters to move into RX FIFO.
2136 		 * In theory, 200 * asy->asy_fifo_buf * 2 should be
2137 		 * enough. However, in practice it isn't always, so we
2138 		 * increase to 400 so some slow 16550A's finish, and we
2139 		 * increase to 3 so we spot more characters coming back
2140 		 * than we sent, in case that should ever happen.
2141 		 */
2142 		delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
2143 
2144 		/* Now see how many characters we can read back */
2145 		for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
2146 			lsr = asy_get(asy, ASY_LSR);
2147 			if (!(lsr & ASY_LSR_DR))
2148 				break;	/* FIFO emptied */
2149 			(void) asy_get(asy, ASY_RHR); /* lose another */
2150 		}
2151 
2152 		ASY_DPRINTF(asy, ASY_DEBUG_CHIP,
2153 		    "FIFO size: expected=%d, measured=%d",
2154 		    asy->asy_fifo_buf, i);
2155 
2156 		hwtype = asy->asy_hwtype;
2157 		if (i < asy->asy_fifo_buf) {
2158 			/*
2159 			 * FIFO is somewhat smaller than we anticipated.
2160 			 * If we have 16 characters usable, then this
2161 			 * UART will probably work well enough in
2162 			 * 16550A mode. If less than 16 characters,
2163 			 * then we'd better not use it at all.
2164 			 * UARTs with busted FIFOs do crop up.
2165 			 */
2166 			if (i >= 16 && asy->asy_fifo_buf >= 16) {
2167 				/* fall back to a 16550A */
2168 				hwtype = ASY_16550A;
2169 				asy->asy_fifo_buf = 16;
2170 				asy->asy_fifor &=
2171 				    ~(ASY_FCR_THR_TR0 | ASY_FCR_THR_TR1);
2172 			} else {
2173 				/* fall back to no FIFO at all */
2174 				hwtype = ASY_16550;
2175 				asy->asy_fifo_buf = 1;
2176 				asy->asy_use_fifo = ASY_FCR_FIFO_OFF;
2177 				asy->asy_fifor = 0;
2178 			}
2179 		} else if (i > asy->asy_fifo_buf) {
2180 			/*
2181 			 * The FIFO is larger than expected. Use it if it is
2182 			 * a power of 2.
2183 			 */
2184 			if (ISP2(i))
2185 				asy->asy_fifo_buf = i;
2186 		}
2187 
2188 		/*
2189 		 * We will need to reprogram the FIFO if we changed
2190 		 * our mind about how to drive it above, and in any
2191 		 * case, it would be a good idea to flush any garbage
2192 		 * out incase the loopback test left anything behind.
2193 		 * Again as earlier above, we must call asy_reset_fifo()
2194 		 * before any possible downgrade of asy->asy_hwtype.
2195 		 */
2196 		if (asy->asy_hwtype >= ASY_16650 && hwtype < ASY_16650) {
2197 			/* Disable 16650 enhanced mode */
2198 			asy_put(asy, ASY_EFR, 0);
2199 		}
2200 		asy_reset_fifo(asy, ASY_FCR_THR_FL | ASY_FCR_RHR_FL);
2201 		asy->asy_hwtype = hwtype;
2202 
2203 		/* Clear loopback mode and restore DTR/RTS */
2204 		asy_put(asy, ASY_MCR, mcr);
2205 	}
2206 
2207 	ASY_DPRINTF(asy, ASY_DEBUG_CHIP, "%s @ %p",
2208 	    asy_hw_name(asy), (void *)asy->asy_ioaddr);
2209 
2210 	/* Make UART type visible in device tree for prtconf, etc */
2211 	dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
2212 	(void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
2213 
2214 	if (asy->asy_hwtype == ASY_16550)	/* for broken 16550's, */
2215 		asy->asy_hwtype = ASY_8250A;	/* drive them as 8250A */
2216 
2217 	return (DDI_SUCCESS);
2218 }
2219 
2220 /*
2221  * asyinit() initializes the TTY protocol-private data for this channel
2222  * before enabling the interrupts.
2223  */
2224 static void
asyinit(struct asycom * asy)2225 asyinit(struct asycom *asy)
2226 {
2227 	struct asyncline *async;
2228 
2229 	asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
2230 	async = asy->asy_priv;
2231 	mutex_enter(&asy->asy_excl);
2232 	async->async_common = asy;
2233 	cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
2234 	mutex_exit(&asy->asy_excl);
2235 }
2236 
2237 static int
asyopen(queue_t * rq,dev_t * dev,int flag,int sflag __unused,cred_t * cr)2238 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag __unused, cred_t *cr)
2239 {
2240 	struct asycom	*asy;
2241 	struct asyncline *async;
2242 	int		unit;
2243 	int		len;
2244 	struct termios	*termiosp;
2245 
2246 	unit = UNIT(*dev);
2247 	asy = ddi_get_soft_state(asy_soft_state, unit);
2248 	if (asy == NULL)
2249 		return (ENXIO);		/* unit not configured */
2250 	ASY_DPRINTF(asy, ASY_DEBUG_CLOSE, "enter");
2251 	async = asy->asy_priv;
2252 	mutex_enter(&asy->asy_excl);
2253 
2254 again:
2255 	mutex_enter(&asy->asy_excl_hi);
2256 
2257 	/*
2258 	 * Block waiting for carrier to come up, unless this is a no-delay open.
2259 	 */
2260 	if (!(async->async_flags & ASYNC_ISOPEN)) {
2261 		/*
2262 		 * Set the default termios settings (cflag).
2263 		 * Others are set in ldterm.
2264 		 */
2265 		mutex_exit(&asy->asy_excl_hi);
2266 
2267 		if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
2268 		    0, "ttymodes",
2269 		    (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
2270 		    len == sizeof (struct termios)) {
2271 			async->async_ttycommon.t_cflag = termiosp->c_cflag;
2272 			kmem_free(termiosp, len);
2273 		} else {
2274 			asyerror(asy, CE_WARN,
2275 			    "couldn't get ttymodes property");
2276 		}
2277 		mutex_enter(&asy->asy_excl_hi);
2278 
2279 		/* eeprom mode support - respect properties */
2280 		if (asy->asy_cflag)
2281 			async->async_ttycommon.t_cflag = asy->asy_cflag;
2282 
2283 		async->async_ttycommon.t_iflag = 0;
2284 		async->async_ttycommon.t_iocpending = NULL;
2285 		async->async_ttycommon.t_size.ws_row = 0;
2286 		async->async_ttycommon.t_size.ws_col = 0;
2287 		async->async_ttycommon.t_size.ws_xpixel = 0;
2288 		async->async_ttycommon.t_size.ws_ypixel = 0;
2289 		async->async_dev = *dev;
2290 		async->async_wbufcid = 0;
2291 
2292 		async->async_startc = CSTART;
2293 		async->async_stopc = CSTOP;
2294 		asy_program(asy, ASY_INIT);
2295 	} else if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
2296 	    secpolicy_excl_open(cr) != 0) {
2297 		mutex_exit(&asy->asy_excl_hi);
2298 		mutex_exit(&asy->asy_excl);
2299 		return (EBUSY);
2300 	} else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
2301 		mutex_exit(&asy->asy_excl_hi);
2302 		mutex_exit(&asy->asy_excl);
2303 		return (EBUSY);
2304 	}
2305 
2306 	if (*dev & OUTLINE)
2307 		async->async_flags |= ASYNC_OUT;
2308 
2309 	/* Raise DTR on every open, but delay if it was just lowered. */
2310 	while (async->async_flags & ASYNC_DTR_DELAY) {
2311 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2312 		    "waiting for the ASYNC_DTR_DELAY to be clear");
2313 		mutex_exit(&asy->asy_excl_hi);
2314 		if (cv_wait_sig(&async->async_flags_cv,
2315 		    &asy->asy_excl) == 0) {
2316 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2317 			    "interrupted by signal, exiting");
2318 			mutex_exit(&asy->asy_excl);
2319 			return (EINTR);
2320 		}
2321 		mutex_enter(&asy->asy_excl_hi);
2322 	}
2323 
2324 	asy_set(asy, ASY_MCR, asy->asy_mcr & ASY_MCR_DTR);
2325 
2326 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "\"Raise DTR on every open\": "
2327 	    "make mcr = %x, make TS_SOFTCAR = %s", asy_get(asy, ASY_MCR),
2328 	    (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
2329 
2330 	if (asy->asy_flags & ASY_IGNORE_CD) {
2331 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2332 		    "ASY_IGNORE_CD set, set TS_SOFTCAR");
2333 		async->async_ttycommon.t_flags |= TS_SOFTCAR;
2334 	}
2335 	else
2336 		async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
2337 
2338 	/*
2339 	 * Check carrier.
2340 	 */
2341 	asy->asy_msr = asy_get(asy, ASY_MSR);
2342 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "TS_SOFTCAR is %s, MSR & DCD is %s",
2343 	    (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
2344 	    (asy->asy_msr & ASY_MSR_DCD) ? "set" : "clear");
2345 
2346 	if (asy->asy_msr & ASY_MSR_DCD)
2347 		async->async_flags |= ASYNC_CARR_ON;
2348 	else
2349 		async->async_flags &= ~ASYNC_CARR_ON;
2350 	mutex_exit(&asy->asy_excl_hi);
2351 
2352 	/*
2353 	 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
2354 	 * Quit on interrupt.
2355 	 */
2356 	if (!(flag & (FNDELAY|FNONBLOCK)) &&
2357 	    !(async->async_ttycommon.t_cflag & CLOCAL)) {
2358 		if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
2359 		    !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
2360 		    ((async->async_flags & ASYNC_OUT) &&
2361 		    !(*dev & OUTLINE))) {
2362 			async->async_flags |= ASYNC_WOPEN;
2363 			if (cv_wait_sig(&async->async_flags_cv,
2364 			    &asy->asy_excl) == B_FALSE) {
2365 				async->async_flags &= ~ASYNC_WOPEN;
2366 				mutex_exit(&asy->asy_excl);
2367 				return (EINTR);
2368 			}
2369 			async->async_flags &= ~ASYNC_WOPEN;
2370 			goto again;
2371 		}
2372 	} else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
2373 		mutex_exit(&asy->asy_excl);
2374 		return (EBUSY);
2375 	}
2376 
2377 	async->async_ttycommon.t_readq = rq;
2378 	async->async_ttycommon.t_writeq = WR(rq);
2379 	rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
2380 	mutex_exit(&asy->asy_excl);
2381 	/*
2382 	 * Caution here -- qprocson sets the pointers that are used by canput
2383 	 * called by async_softint.  ASYNC_ISOPEN must *not* be set until those
2384 	 * pointers are valid.
2385 	 */
2386 	qprocson(rq);
2387 	async->async_flags |= ASYNC_ISOPEN;
2388 	async->async_polltid = 0;
2389 	ASY_DPRINTF(asy, ASY_DEBUG_INIT, "done");
2390 	return (0);
2391 }
2392 
2393 static void
async_progress_check(void * arg)2394 async_progress_check(void *arg)
2395 {
2396 	struct asyncline *async = arg;
2397 	struct asycom	 *asy = async->async_common;
2398 	mblk_t *bp;
2399 
2400 	/*
2401 	 * We define "progress" as either waiting on a timed break or delay, or
2402 	 * having had at least one transmitter interrupt.  If none of these are
2403 	 * true, then just terminate the output and wake up that close thread.
2404 	 */
2405 	mutex_enter(&asy->asy_excl);
2406 	mutex_enter(&asy->asy_excl_hi);
2407 	if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
2408 		async->async_ocnt = 0;
2409 		async->async_flags &= ~ASYNC_BUSY;
2410 		async->async_timer = 0;
2411 		bp = async->async_xmitblk;
2412 		async->async_xmitblk = NULL;
2413 		mutex_exit(&asy->asy_excl_hi);
2414 		if (bp != NULL)
2415 			freeb(bp);
2416 		/*
2417 		 * Since this timer is running, we know that we're in exit(2).
2418 		 * That means that the user can't possibly be waiting on any
2419 		 * valid ioctl(2) completion anymore, and we should just flush
2420 		 * everything.
2421 		 */
2422 		flushq(async->async_ttycommon.t_writeq, FLUSHALL);
2423 		cv_broadcast(&async->async_flags_cv);
2424 	} else {
2425 		async->async_flags &= ~ASYNC_PROGRESS;
2426 		async->async_timer = timeout(async_progress_check, async,
2427 		    drv_usectohz(asy_drain_check));
2428 		mutex_exit(&asy->asy_excl_hi);
2429 	}
2430 	mutex_exit(&asy->asy_excl);
2431 }
2432 
2433 /*
2434  * Release DTR so that asyopen() can raise it.
2435  */
2436 static void
async_dtr_free(struct asyncline * async)2437 async_dtr_free(struct asyncline *async)
2438 {
2439 	struct asycom *asy = async->async_common;
2440 
2441 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2442 	    "async_dtr_free, clearing ASYNC_DTR_DELAY");
2443 	mutex_enter(&asy->asy_excl);
2444 	async->async_flags &= ~ASYNC_DTR_DELAY;
2445 	async->async_dtrtid = 0;
2446 	cv_broadcast(&async->async_flags_cv);
2447 	mutex_exit(&asy->asy_excl);
2448 }
2449 
2450 /*
2451  * Close routine.
2452  */
2453 static int
asyclose(queue_t * q,int flag,cred_t * credp __unused)2454 asyclose(queue_t *q, int flag, cred_t *credp __unused)
2455 {
2456 	struct asyncline *async;
2457 	struct asycom	 *asy;
2458 
2459 	async = (struct asyncline *)q->q_ptr;
2460 	ASSERT(async != NULL);
2461 
2462 	asy = async->async_common;
2463 
2464 	ASY_DPRINTF(asy, ASY_DEBUG_CLOSE, "enter");
2465 
2466 	mutex_enter(&asy->asy_excl);
2467 	async->async_flags |= ASYNC_CLOSING;
2468 
2469 	/*
2470 	 * Turn off PPS handling early to avoid events occuring during
2471 	 * close.  Also reset the DCD edge monitoring bit.
2472 	 */
2473 	mutex_enter(&asy->asy_excl_hi);
2474 	asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
2475 	mutex_exit(&asy->asy_excl_hi);
2476 
2477 	/*
2478 	 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
2479 	 * untimed (TIOCSBRK).  For the timed case, these are enqueued on our
2480 	 * write queue and there's a timer running, so we don't have to worry
2481 	 * about them.  For the untimed case, though, the user obviously made a
2482 	 * mistake, because these are handled immediately.  We'll terminate the
2483 	 * break now and honor their implicit request by discarding the rest of
2484 	 * the data.
2485 	 */
2486 	if (async->async_flags & ASYNC_OUT_SUSPEND) {
2487 		if (async->async_utbrktid != 0) {
2488 			(void) untimeout(async->async_utbrktid);
2489 			async->async_utbrktid = 0;
2490 		}
2491 		mutex_enter(&asy->asy_excl_hi);
2492 		(void) asy_clr(asy, ASY_LCR, ASY_LCR_SETBRK);
2493 		mutex_exit(&asy->asy_excl_hi);
2494 		async->async_flags &= ~ASYNC_OUT_SUSPEND;
2495 		goto nodrain;
2496 	}
2497 
2498 	/*
2499 	 * If the user told us not to delay the close ("non-blocking"), then
2500 	 * don't bother trying to drain.
2501 	 *
2502 	 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
2503 	 * getting an M_START (since these messages aren't enqueued), and the
2504 	 * only other way to clear the stop condition is by loss of DCD, which
2505 	 * would discard the queue data.  Thus, we drop the output data if
2506 	 * ASYNC_STOPPED is set.
2507 	 */
2508 	if ((flag & (FNDELAY|FNONBLOCK)) ||
2509 	    (async->async_flags & ASYNC_STOPPED)) {
2510 		goto nodrain;
2511 	}
2512 
2513 	/*
2514 	 * If there's any pending output, then we have to try to drain it.
2515 	 * There are two main cases to be handled:
2516 	 *	- called by close(2): need to drain until done or until
2517 	 *	  a signal is received.  No timeout.
2518 	 *	- called by exit(2): need to drain while making progress
2519 	 *	  or until a timeout occurs.  No signals.
2520 	 *
2521 	 * If we can't rely on receiving a signal to get us out of a hung
2522 	 * session, then we have to use a timer.  In this case, we set a timer
2523 	 * to check for progress in sending the output data -- all that we ask
2524 	 * (at each interval) is that there's been some progress made.  Since
2525 	 * the interrupt routine grabs buffers from the write queue, we can't
2526 	 * trust changes in async_ocnt.  Instead, we use a progress flag.
2527 	 *
2528 	 * Note that loss of carrier will cause the output queue to be flushed,
2529 	 * and we'll wake up again and finish normally.
2530 	 */
2531 	if (!ddi_can_receive_sig() && asy_drain_check != 0) {
2532 		async->async_flags &= ~ASYNC_PROGRESS;
2533 		async->async_timer = timeout(async_progress_check, async,
2534 		    drv_usectohz(asy_drain_check));
2535 	}
2536 	while (async->async_ocnt > 0 ||
2537 	    async->async_ttycommon.t_writeq->q_first != NULL ||
2538 	    (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
2539 		if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
2540 			break;
2541 	}
2542 	if (async->async_timer != 0) {
2543 		(void) untimeout(async->async_timer);
2544 		async->async_timer = 0;
2545 	}
2546 
2547 nodrain:
2548 	async->async_ocnt = 0;
2549 	if (async->async_xmitblk != NULL)
2550 		freeb(async->async_xmitblk);
2551 	async->async_xmitblk = NULL;
2552 
2553 	/*
2554 	 * If line has HUPCL set or is incompletely opened fix up the modem
2555 	 * lines.
2556 	 */
2557 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "next check HUPCL flag");
2558 	mutex_enter(&asy->asy_excl_hi);
2559 	if ((async->async_ttycommon.t_cflag & HUPCL) ||
2560 	    (async->async_flags & ASYNC_WOPEN)) {
2561 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2562 		    "HUPCL flag = %x, ASYNC_WOPEN flag = %x",
2563 		    async->async_ttycommon.t_cflag & HUPCL,
2564 		    async->async_ttycommon.t_cflag & ASYNC_WOPEN);
2565 		async->async_flags |= ASYNC_DTR_DELAY;
2566 
2567 		/* turn off DTR, RTS but NOT interrupt to 386 */
2568 		if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
2569 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2570 			    "ASY_IGNORE_CD flag = %x, "
2571 			    "ASY_RTS_DTR_OFF flag = %x",
2572 			    asy->asy_flags & ASY_IGNORE_CD,
2573 			    asy->asy_flags & ASY_RTS_DTR_OFF);
2574 
2575 			asy_put(asy, ASY_MCR, asy->asy_mcr | ASY_MCR_OUT2);
2576 		} else {
2577 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
2578 			    "Dropping DTR and RTS");
2579 			asy_put(asy, ASY_MCR, ASY_MCR_OUT2);
2580 		}
2581 		async->async_dtrtid =
2582 		    timeout((void (*)())async_dtr_free,
2583 		    (caddr_t)async, drv_usectohz(asy_min_dtr_low));
2584 	}
2585 	/*
2586 	 * If nobody's using it now, turn off receiver interrupts.
2587 	 */
2588 	if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0)
2589 		asy_disable_interrupts(asy, ASY_IER_RIEN);
2590 
2591 	mutex_exit(&asy->asy_excl_hi);
2592 
2593 	ttycommon_close(&async->async_ttycommon);
2594 
2595 	/*
2596 	 * Cancel outstanding "bufcall" request.
2597 	 */
2598 	if (async->async_wbufcid != 0) {
2599 		unbufcall(async->async_wbufcid);
2600 		async->async_wbufcid = 0;
2601 	}
2602 
2603 	/* Note that qprocsoff can't be done until after interrupts are off */
2604 	qprocsoff(q);
2605 	q->q_ptr = WR(q)->q_ptr = NULL;
2606 	async->async_ttycommon.t_readq = NULL;
2607 	async->async_ttycommon.t_writeq = NULL;
2608 
2609 	/*
2610 	 * Clear out device state, except persistant device property flags.
2611 	 */
2612 	async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
2613 	cv_broadcast(&async->async_flags_cv);
2614 	mutex_exit(&asy->asy_excl);
2615 
2616 	ASY_DPRINTF(asy, ASY_DEBUG_CLOSE, "done");
2617 	return (0);
2618 }
2619 
2620 static boolean_t
asy_isbusy(struct asycom * asy)2621 asy_isbusy(struct asycom *asy)
2622 {
2623 	struct asyncline *async;
2624 
2625 	ASY_DPRINTF(asy, ASY_DEBUG_EOT, "enter");
2626 	async = asy->asy_priv;
2627 	ASSERT(mutex_owned(&asy->asy_excl));
2628 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2629 /*
2630  * XXXX this should be recoded
2631  */
2632 	return ((async->async_ocnt > 0) ||
2633 	    ((asy_get(asy, ASY_LSR) & (ASY_LSR_TEMT | ASY_LSR_THRE)) == 0));
2634 }
2635 
2636 static void
asy_waiteot(struct asycom * asy)2637 asy_waiteot(struct asycom *asy)
2638 {
2639 	/*
2640 	 * Wait for the current transmission block and the
2641 	 * current fifo data to transmit. Once this is done
2642 	 * we may go on.
2643 	 */
2644 	ASY_DPRINTF(asy, ASY_DEBUG_EOT, "enter");
2645 	ASSERT(mutex_owned(&asy->asy_excl));
2646 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2647 	while (asy_isbusy(asy)) {
2648 		mutex_exit(&asy->asy_excl_hi);
2649 		mutex_exit(&asy->asy_excl);
2650 		drv_usecwait(10000);		/* wait .01 */
2651 		mutex_enter(&asy->asy_excl);
2652 		mutex_enter(&asy->asy_excl_hi);
2653 	}
2654 }
2655 
2656 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
2657 static void
asy_reset_fifo(struct asycom * asy,uchar_t flush)2658 asy_reset_fifo(struct asycom *asy, uchar_t flush)
2659 {
2660 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2661 
2662 	/* On a 16750, we have to set DLAB in order to set ASY_FCR_FIFO64. */
2663 	if (asy->asy_hwtype >= ASY_16750)
2664 		asy_set(asy, ASY_LCR, ASY_LCR_DLAB);
2665 
2666 	asy_put(asy, ASY_FCR, asy->asy_fifor | flush);
2667 
2668 	/* Clear DLAB */
2669 	if (asy->asy_hwtype >= ASY_16750)
2670 		asy_clr(asy, ASY_LCR, ASY_LCR_DLAB);
2671 }
2672 
2673 /*
2674  * Program the ASY port. Most of the async operation is based on the values
2675  * of 'c_iflag' and 'c_cflag'.
2676  */
2677 static void
asy_program(struct asycom * asy,int mode)2678 asy_program(struct asycom *asy, int mode)
2679 {
2680 	struct asyncline *async;
2681 	int baudrate, c_flag;
2682 	uint8_t ier;
2683 	int flush_reg;
2684 	int ocflags;
2685 
2686 	ASSERT(mutex_owned(&asy->asy_excl));
2687 	ASSERT(mutex_owned(&asy->asy_excl_hi));
2688 
2689 	async = asy->asy_priv;
2690 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "mode = 0x%08X, enter", mode);
2691 
2692 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2693 
2694 	async->async_ttycommon.t_cflag &= ~(CIBAUD);
2695 
2696 	if (baudrate > CBAUD) {
2697 		async->async_ttycommon.t_cflag |= CIBAUDEXT;
2698 		async->async_ttycommon.t_cflag |=
2699 		    (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
2700 	} else {
2701 		async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
2702 		async->async_ttycommon.t_cflag |=
2703 		    ((baudrate << IBSHIFT) & CIBAUD);
2704 	}
2705 
2706 	c_flag = async->async_ttycommon.t_cflag &
2707 	    (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
2708 
2709 	asy_disable_interrupts(asy, ASY_IER_ALL);
2710 
2711 	ocflags = asy->asy_ocflag;
2712 
2713 	/* flush/reset the status registers */
2714 	(void) asy_get(asy, ASY_ISR);
2715 	(void) asy_get(asy, ASY_LSR);
2716 	asy->asy_msr = flush_reg = asy_get(asy, ASY_MSR);
2717 	/*
2718 	 * The device is programmed in the open sequence, if we
2719 	 * have to hardware handshake, then this is a good time
2720 	 * to check if the device can receive any data.
2721 	 */
2722 
2723 	if ((CRTSCTS & async->async_ttycommon.t_cflag) &&
2724 	    !(flush_reg & ASY_MSR_CTS)) {
2725 		async_flowcontrol_hw_output(asy, FLOW_STOP);
2726 	} else {
2727 		/*
2728 		 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
2729 		 * here, because if CRTSCTS is clear, we need clear
2730 		 * ASYNC_HW_OUT_FLW bit.
2731 		 */
2732 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
2733 	}
2734 
2735 	/*
2736 	 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
2737 	 * If IXON is set, no matter what IXON flag is before this
2738 	 * function call to asy_program,
2739 	 * we will use the old ASYNC_SW_OUT_FLW status.
2740 	 * Because of handling IXON in the driver, we also should re-calculate
2741 	 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
2742 	 * the TCSET* commands which call asy_program
2743 	 * are put into the write queue, so there is no output needed to
2744 	 * be resumed at this point.
2745 	 */
2746 	if (!(IXON & async->async_ttycommon.t_iflag))
2747 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
2748 
2749 	/* manually flush receive buffer or fifo (workaround for buggy fifos) */
2750 	if (mode == ASY_INIT) {
2751 		if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
2752 			for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
2753 				(void) asy_get(asy, ASY_RHR);
2754 			}
2755 		} else {
2756 			flush_reg = asy_get(asy, ASY_RHR);
2757 		}
2758 	}
2759 
2760 	if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
2761 		/* Set line control */
2762 		uint8_t lcr = 0;
2763 
2764 		if (c_flag & CSTOPB)
2765 			lcr |= ASY_LCR_STOP2;	/* 2 stop bits */
2766 
2767 		if (c_flag & PARENB)
2768 			lcr |= ASY_LCR_PEN;
2769 
2770 		if ((c_flag & PARODD) == 0)
2771 			lcr |= ASY_LCR_EPS;
2772 
2773 		switch (c_flag & CSIZE) {
2774 		case CS5:
2775 			lcr |= ASY_LCR_BITS5;
2776 			break;
2777 		case CS6:
2778 			lcr |= ASY_LCR_BITS6;
2779 			break;
2780 		case CS7:
2781 			lcr |= ASY_LCR_BITS7;
2782 			break;
2783 		case CS8:
2784 			lcr |= ASY_LCR_BITS8;
2785 			break;
2786 		}
2787 
2788 		asy_clr(asy, ASY_LCR, ASY_LCR_WLS0 | ASY_LCR_WLS1 |
2789 		    ASY_LCR_STB | ASY_LCR_PEN | ASY_LCR_EPS);
2790 		asy_set(asy, ASY_LCR, lcr);
2791 		asy_set_baudrate(asy, baudrate);
2792 
2793 		/*
2794 		 * If we have a FIFO buffer, enable/flush
2795 		 * at intialize time, flush if transitioning from
2796 		 * CREAD off to CREAD on.
2797 		 */
2798 		if (((ocflags & CREAD) == 0 && (c_flag & CREAD)) ||
2799 		    mode == ASY_INIT) {
2800 			if (asy->asy_use_fifo == ASY_FCR_FIFO_EN)
2801 				asy_reset_fifo(asy, ASY_FCR_RHR_FL);
2802 		}
2803 
2804 		/* remember the new cflags */
2805 		asy->asy_ocflag = c_flag & ~CLOCAL;
2806 	}
2807 
2808 	if (baudrate == 0)
2809 		asy_put(asy, ASY_MCR,
2810 		    (asy->asy_mcr & ASY_MCR_RTS) | ASY_MCR_OUT2);
2811 	else
2812 		asy_put(asy, ASY_MCR, asy->asy_mcr | ASY_MCR_OUT2);
2813 
2814 	/*
2815 	 * Call the modem status interrupt handler to check for the carrier
2816 	 * in case CLOCAL was turned off after the carrier came on.
2817 	 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
2818 	 */
2819 	async_msint(asy);
2820 
2821 	/* Set interrupt control */
2822 	ASY_DPRINTF(asy, ASY_DEBUG_MODM2,
2823 	    "c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x",
2824 	    c_flag & CLOCAL, async->async_ttycommon.t_cflag & CRTSCTS);
2825 
2826 
2827 	/* Always enable transmit and line status interrupts. */
2828 	ier = ASY_IER_TIEN | ASY_IER_SIEN;
2829 
2830 	/*
2831 	 * Enable Modem status interrupt if hardware flow control is enabled or
2832 	 * this isn't a direct-wired (local) line, which ignores DCD.
2833 	 */
2834 	if (((c_flag & CLOCAL) == 0) ||
2835 	    (async->async_ttycommon.t_cflag & CRTSCTS))
2836 		ier |= ASY_IER_MIEN;
2837 
2838 	if (c_flag & CREAD)
2839 		ier |= ASY_IER_RIEN;
2840 
2841 	asy_enable_interrupts(asy, ier);
2842 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "done");
2843 }
2844 
2845 static boolean_t
asy_baudok(struct asycom * asy)2846 asy_baudok(struct asycom *asy)
2847 {
2848 	struct asyncline *async = asy->asy_priv;
2849 	int baudrate;
2850 
2851 
2852 	baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2853 
2854 	if (baudrate >= ARRAY_SIZE(asy_baud_tab))
2855 		return (0);
2856 
2857 	return (baudrate == 0 ||
2858 	    asy_baud_tab[baudrate].asy_dll != 0 ||
2859 	    asy_baud_tab[baudrate].asy_dlh != 0);
2860 }
2861 
2862 /*
2863  * asyintr() is the High Level Interrupt Handler.
2864  *
2865  * There are four different interrupt types indexed by ISR register values:
2866  *		0: modem
2867  *		1: Tx holding register is empty, ready for next char
2868  *		2: Rx register now holds a char to be picked up
2869  *		3: error or break on line
2870  * This routine checks the Bit 0 (interrupt-not-pending) to determine if
2871  * the interrupt is from this port.
2872  */
2873 uint_t
asyintr(caddr_t argasy,caddr_t argunused __unused)2874 asyintr(caddr_t argasy, caddr_t argunused __unused)
2875 {
2876 	struct asycom		*asy = (struct asycom *)argasy;
2877 	struct asyncline	*async = asy->asy_priv;
2878 	int			ret_status = DDI_INTR_UNCLAIMED;
2879 
2880 	mutex_enter(&asy->asy_excl_hi);
2881 	if ((async == NULL) ||
2882 	    !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
2883 		const uint8_t intr_id = asy_get(asy, ASY_ISR);
2884 
2885 		if ((intr_id & ASY_ISR_NOINTR) == 0) {
2886 			/*
2887 			 * reset the device by:
2888 			 *	reading line status
2889 			 *	reading any data from data status register
2890 			 *	reading modem status
2891 			 */
2892 			(void) asy_get(asy, ASY_LSR);
2893 			(void) asy_get(asy, ASY_RHR);
2894 			asy->asy_msr = asy_get(asy, ASY_MSR);
2895 			ret_status = DDI_INTR_CLAIMED;
2896 		}
2897 		mutex_exit(&asy->asy_excl_hi);
2898 		return (ret_status);
2899 	}
2900 
2901 	/* By this point we're sure this is for us. */
2902 	ret_status = DDI_INTR_CLAIMED;
2903 
2904 	/*
2905 	 * Before this flag was set, interrupts were disabled. We may still get
2906 	 * here if asyintr() waited on the mutex.
2907 	 */
2908 	if (asy->asy_flags & ASY_DDI_SUSPENDED) {
2909 		mutex_exit(&asy->asy_excl_hi);
2910 		return (ret_status);
2911 	}
2912 
2913 	/*
2914 	 * We will loop until the interrupt line is pulled low. asy
2915 	 * interrupt is edge triggered.
2916 	 */
2917 	for (;;) {
2918 		const uint8_t intr_id = asy_get(asy, ASY_ISR);
2919 
2920 		if (intr_id & ASY_ISR_NOINTR)
2921 			break;
2922 
2923 		ASY_DPRINTF(asy, ASY_DEBUG_INTR, "interrupt_id = 0x%x",
2924 		    intr_id);
2925 
2926 		const uint8_t lsr = asy_get(asy, ASY_LSR);
2927 
2928 		switch (intr_id & ASY_ISR_MASK) {
2929 		case ASY_ISR_ID_RLST:
2930 		case ASY_ISR_ID_RDA:
2931 		case ASY_ISR_ID_TMO:
2932 			/* receiver interrupt or receiver errors */
2933 			async_rxint(asy, lsr);
2934 			break;
2935 
2936 		case ASY_ISR_ID_THRE:
2937 			/*
2938 			 * The transmit-ready interrupt implies an empty
2939 			 * transmit-hold register (or FIFO).  Check that it is
2940 			 * present before attempting to transmit more data.
2941 			 */
2942 			if ((lsr & ASY_LSR_THRE) == 0) {
2943 				/*
2944 				 * Taking a THRE interrupt only to find THRE
2945 				 * absent would be a surprise, except for a
2946 				 * racing asyputchar(), which ignores the
2947 				 * excl_hi mutex when writing to the device.
2948 				 */
2949 				continue;
2950 			}
2951 			async_txint(asy);
2952 			/*
2953 			 * Unlike the other interrupts which fall through to
2954 			 * attempting to fill the output register/FIFO, THRE
2955 			 * has no need having just done so.
2956 			 */
2957 			continue;
2958 
2959 		case ASY_ISR_ID_MST:
2960 			/* modem status interrupt */
2961 			async_msint(asy);
2962 			break;
2963 		}
2964 
2965 		/* Refill the output FIFO if it has gone empty */
2966 		if ((lsr & ASY_LSR_THRE) && (async->async_flags & ASYNC_BUSY) &&
2967 		    (async->async_ocnt > 0))
2968 			async_txint(asy);
2969 	}
2970 
2971 	mutex_exit(&asy->asy_excl_hi);
2972 	return (ret_status);
2973 }
2974 
2975 /*
2976  * Transmitter interrupt service routine.
2977  * If there is more data to transmit in the current pseudo-DMA block,
2978  * send the next character if output is not stopped or draining.
2979  * Otherwise, queue up a soft interrupt.
2980  *
2981  * XXX -  Needs review for HW FIFOs.
2982  */
2983 static void
async_txint(struct asycom * asy)2984 async_txint(struct asycom *asy)
2985 {
2986 	struct asyncline *async = asy->asy_priv;
2987 	int		fifo_len;
2988 
2989 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
2990 
2991 	/*
2992 	 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
2993 	 * asyintr()'s context to claim the interrupt without performing
2994 	 * any action. No character will be loaded into FIFO/THR until
2995 	 * timed or untimed break is removed
2996 	 */
2997 	if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
2998 		return;
2999 
3000 	fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3001 	if (fifo_len > asy_max_tx_fifo)
3002 		fifo_len = asy_max_tx_fifo;
3003 
3004 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3005 		fifo_len--;
3006 
3007 	if (async->async_ocnt > 0 && fifo_len > 0 &&
3008 	    !(async->async_flags &
3009 	    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
3010 		while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
3011 			asy_put(asy, ASY_THR, *async->async_optr++);
3012 		}
3013 		async->async_flags |= ASYNC_PROGRESS;
3014 	}
3015 
3016 	if (fifo_len <= 0)
3017 		return;
3018 
3019 	asysetsoft(asy);
3020 }
3021 
3022 /*
3023  * Interrupt on port: handle PPS event.  This function is only called
3024  * for a port on which PPS event handling has been enabled.
3025  */
3026 static void
asy_ppsevent(struct asycom * asy,int msr)3027 asy_ppsevent(struct asycom *asy, int msr)
3028 {
3029 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3030 
3031 	if (asy->asy_flags & ASY_PPS_EDGE) {
3032 		/* Have seen leading edge, now look for and record drop */
3033 		if ((msr & ASY_MSR_DCD) == 0)
3034 			asy->asy_flags &= ~ASY_PPS_EDGE;
3035 		/*
3036 		 * Waiting for leading edge, look for rise; stamp event and
3037 		 * calibrate kernel clock.
3038 		 */
3039 	} else if (msr & ASY_MSR_DCD) {
3040 			/*
3041 			 * This code captures a timestamp at the designated
3042 			 * transition of the PPS signal (DCD asserted).  The
3043 			 * code provides a pointer to the timestamp, as well
3044 			 * as the hardware counter value at the capture.
3045 			 *
3046 			 * Note: the kernel has nano based time values while
3047 			 * NTP requires micro based, an in-line fast algorithm
3048 			 * to convert nsec to usec is used here -- see hrt2ts()
3049 			 * in common/os/timers.c for a full description.
3050 			 */
3051 			struct timeval *tvp = &asy_ppsev.tv;
3052 			timestruc_t ts;
3053 			long nsec, usec;
3054 
3055 			asy->asy_flags |= ASY_PPS_EDGE;
3056 			LED_OFF;
3057 			gethrestime(&ts);
3058 			LED_ON;
3059 			nsec = ts.tv_nsec;
3060 			usec = nsec + (nsec >> 2);
3061 			usec = nsec + (usec >> 1);
3062 			usec = nsec + (usec >> 2);
3063 			usec = nsec + (usec >> 4);
3064 			usec = nsec - (usec >> 3);
3065 			usec = nsec + (usec >> 2);
3066 			usec = nsec + (usec >> 3);
3067 			usec = nsec + (usec >> 4);
3068 			usec = nsec + (usec >> 1);
3069 			usec = nsec + (usec >> 6);
3070 			tvp->tv_usec = usec >> 10;
3071 			tvp->tv_sec = ts.tv_sec;
3072 
3073 			++asy_ppsev.serial;
3074 
3075 			/*
3076 			 * Because the kernel keeps a high-resolution time,
3077 			 * pass the current highres timestamp in tvp and zero
3078 			 * in usec.
3079 			 */
3080 			ddi_hardpps(tvp, 0);
3081 	}
3082 }
3083 
3084 /*
3085  * Receiver interrupt: RDA interrupt, FIFO timeout interrupt or receive
3086  * error interrupt.
3087  * Try to put the character into the circular buffer for this line; if it
3088  * overflows, indicate a circular buffer overrun. If this port is always
3089  * to be serviced immediately, or the character is a STOP character, or
3090  * more than 15 characters have arrived, queue up a soft interrupt to
3091  * drain the circular buffer.
3092  * XXX - needs review for hw FIFOs support.
3093  */
3094 
3095 static void
async_rxint(struct asycom * asy,uchar_t lsr)3096 async_rxint(struct asycom *asy, uchar_t lsr)
3097 {
3098 	struct asyncline *async = asy->asy_priv;
3099 	uchar_t c;
3100 	uint_t s, needsoft = 0;
3101 	tty_common_t *tp;
3102 	int looplim = asy->asy_fifo_buf * 2;
3103 
3104 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3105 
3106 	tp = &async->async_ttycommon;
3107 	if (!(tp->t_cflag & CREAD)) {
3108 		/* Line is not open for reading. Flush receiver FIFO. */
3109 		while ((lsr & (ASY_LSR_DR | ASY_LSR_ERRORS)) != 0) {
3110 			(void) asy_get(asy, ASY_RHR);
3111 			lsr = asy_get(asy, ASY_LSR);
3112 			if (looplim-- < 0)		/* limit loop */
3113 				break;
3114 		}
3115 		return;
3116 	}
3117 
3118 	while ((lsr & (ASY_LSR_DR | ASY_LSR_ERRORS)) != 0) {
3119 		c = 0;
3120 		s = 0;				/* reset error status */
3121 		if (lsr & ASY_LSR_DR) {
3122 			c = asy_get(asy, ASY_RHR);
3123 
3124 			/*
3125 			 * We handle XON/XOFF char if IXON is set,
3126 			 * but if received char is _POSIX_VDISABLE,
3127 			 * we left it to the up level module.
3128 			 */
3129 			if (tp->t_iflag & IXON) {
3130 				if ((c == async->async_stopc) &&
3131 				    (c != _POSIX_VDISABLE)) {
3132 					async_flowcontrol_sw_output(asy,
3133 					    FLOW_STOP);
3134 					goto check_looplim;
3135 				} else if ((c == async->async_startc) &&
3136 				    (c != _POSIX_VDISABLE)) {
3137 					async_flowcontrol_sw_output(asy,
3138 					    FLOW_START);
3139 					needsoft = 1;
3140 					goto check_looplim;
3141 				}
3142 				if ((tp->t_iflag & IXANY) &&
3143 				    (async->async_flags & ASYNC_SW_OUT_FLW)) {
3144 					async_flowcontrol_sw_output(asy,
3145 					    FLOW_START);
3146 					needsoft = 1;
3147 				}
3148 			}
3149 		}
3150 
3151 		/*
3152 		 * Check for character break sequence
3153 		 */
3154 		if ((abort_enable == KIOCABORTALTERNATE) &&
3155 		    (asy->asy_flags & ASY_CONSOLE)) {
3156 			if (abort_charseq_recognize(c))
3157 				abort_sequence_enter((char *)NULL);
3158 		}
3159 
3160 		/* Handle framing errors */
3161 		if (lsr & ASY_LSR_ERRORS) {
3162 			if (lsr & ASY_LSR_PE) {
3163 				if (tp->t_iflag & INPCK) /* parity enabled */
3164 					s |= PERROR;
3165 			}
3166 
3167 			if (lsr & (ASY_LSR_FE | ASY_LSR_BI))
3168 				s |= FRERROR;
3169 			if (lsr & ASY_LSR_OE) {
3170 				async->async_hw_overrun = 1;
3171 				s |= OVERRUN;
3172 			}
3173 		}
3174 
3175 		if (s == 0)
3176 			if ((tp->t_iflag & PARMRK) &&
3177 			    !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
3178 			    (c == 0377))
3179 				if (RING_POK(async, 2)) {
3180 					RING_PUT(async, 0377);
3181 					RING_PUT(async, c);
3182 				} else
3183 					async->async_sw_overrun = 1;
3184 			else
3185 				if (RING_POK(async, 1))
3186 					RING_PUT(async, c);
3187 				else
3188 					async->async_sw_overrun = 1;
3189 		else
3190 			if (s & FRERROR) /* Handle framing errors */
3191 				if (c == 0)
3192 					if ((asy->asy_flags & ASY_CONSOLE) &&
3193 					    (abort_enable !=
3194 					    KIOCABORTALTERNATE))
3195 						abort_sequence_enter((char *)0);
3196 					else
3197 						async->async_break++;
3198 				else
3199 					if (RING_POK(async, 1))
3200 						RING_MARK(async, c, s);
3201 					else
3202 						async->async_sw_overrun = 1;
3203 			else /* Parity errors are handled by ldterm */
3204 				if (RING_POK(async, 1))
3205 					RING_MARK(async, c, s);
3206 				else
3207 					async->async_sw_overrun = 1;
3208 check_looplim:
3209 		lsr = asy_get(asy, ASY_LSR);
3210 		if (looplim-- < 0)		/* limit loop */
3211 			break;
3212 	}
3213 	if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
3214 	    !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
3215 		async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
3216 		(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
3217 		    IN_FLOW_RINGBUFF);
3218 	}
3219 
3220 	if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
3221 	    (RING_FRAC(async)) || (async->async_polltid == 0)) {
3222 		asysetsoft(asy);	/* need a soft interrupt */
3223 	}
3224 }
3225 
3226 /*
3227  * Modem status interrupt.
3228  *
3229  * (Note: It is assumed that the MSR hasn't been read by asyintr().)
3230  */
3231 
3232 static void
async_msint(struct asycom * asy)3233 async_msint(struct asycom *asy)
3234 {
3235 	struct asyncline *async = asy->asy_priv;
3236 	int msr, t_cflag = async->async_ttycommon.t_cflag;
3237 
3238 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3239 
3240 async_msint_retry:
3241 	/* this resets the interrupt */
3242 	msr = asy_get(asy, ASY_MSR);
3243 	ASY_DPRINTF(asy, ASY_DEBUG_STATE, "call #%d:",
3244 	    ++(asy->asy_msint_cnt));
3245 	ASY_DPRINTF(asy, ASY_DEBUG_STATE, "   transition: %3s %3s %3s %3s",
3246 	    (msr & ASY_MSR_DCTS) ? "DCTS" : "    ",
3247 	    (msr & ASY_MSR_DDSR) ? "DDSR" : "    ",
3248 	    (msr & ASY_MSR_TERI) ? "TERI" : "    ",
3249 	    (msr & ASY_MSR_DDCD) ? "DDCD" : "    ");
3250 	ASY_DPRINTF(asy, ASY_DEBUG_STATE, "current state: %3s %3s %3s %3s",
3251 	    (msr & ASY_MSR_CTS)  ? "CTS " : "    ",
3252 	    (msr & ASY_MSR_DSR)  ? "DSR " : "    ",
3253 	    (msr & ASY_MSR_RI)   ? "RI  " : "    ",
3254 	    (msr & ASY_MSR_DCD)  ? "DCD " : "    ");
3255 
3256 	/* If CTS status is changed, do H/W output flow control */
3257 	if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & ASY_MSR_CTS) != 0))
3258 		async_flowcontrol_hw_output(asy,
3259 		    msr & ASY_MSR_CTS ? FLOW_START : FLOW_STOP);
3260 	/*
3261 	 * Reading MSR resets the interrupt, we save the
3262 	 * value of msr so that other functions could examine MSR by
3263 	 * looking at asy_msr.
3264 	 */
3265 	asy->asy_msr = (uchar_t)msr;
3266 
3267 	/* Handle PPS event */
3268 	if (asy->asy_flags & ASY_PPS)
3269 		asy_ppsevent(asy, msr);
3270 
3271 	async->async_ext++;
3272 	asysetsoft(asy);
3273 	/*
3274 	 * We will make sure that the modem status presented to us
3275 	 * during the previous read has not changed. If the chip samples
3276 	 * the modem status on the falling edge of the interrupt line,
3277 	 * and uses this state as the base for detecting change of modem
3278 	 * status, we would miss a change of modem status event that occured
3279 	 * after we initiated a read MSR operation.
3280 	 */
3281 	msr = asy_get(asy, ASY_MSR);
3282 	if (ASY_MSR_STATES(msr) != ASY_MSR_STATES(asy->asy_msr))
3283 		goto	async_msint_retry;
3284 }
3285 
3286 /*
3287  * Pend a soft interrupt if one isn't already pending.
3288  */
3289 static void
asysetsoft(struct asycom * asy)3290 asysetsoft(struct asycom *asy)
3291 {
3292 	ASSERT(MUTEX_HELD(&asy->asy_excl_hi));
3293 
3294 	if (mutex_tryenter(&asy->asy_soft_lock) == 0)
3295 		return;
3296 
3297 	asy->asy_flags |= ASY_NEEDSOFT;
3298 	if (!asy->asysoftpend) {
3299 		asy->asysoftpend = 1;
3300 		mutex_exit(&asy->asy_soft_lock);
3301 		(void) ddi_intr_trigger_softint(asy->asy_soft_inth, NULL);
3302 	} else {
3303 		mutex_exit(&asy->asy_soft_lock);
3304 	}
3305 }
3306 
3307 /*
3308  * Check the carrier signal DCD and handle carrier coming up or
3309  * going down, cleaning up as needed and signalling waiters.
3310  */
3311 static void
asy_carrier_check(struct asycom * asy)3312 asy_carrier_check(struct asycom *asy)
3313 {
3314 	struct asyncline *async = asy->asy_priv;
3315 	tty_common_t *tp = &async->async_ttycommon;
3316 	queue_t *q = tp->t_readq;
3317 	mblk_t	*bp;
3318 	int flushflag;
3319 
3320 	ASY_DPRINTF(asy, ASY_DEBUG_MODM2,
3321 	    "asy_msr & DCD = %x, tp->t_flags & TS_SOFTCAR = %x",
3322 	    asy->asy_msr & ASY_MSR_DCD, tp->t_flags & TS_SOFTCAR);
3323 
3324 	if (asy->asy_msr & ASY_MSR_DCD) {
3325 		/*
3326 		 * The DCD line is on. If we already had a carrier,
3327 		 * nothing changed and there's nothing to do.
3328 		 */
3329 		if ((async->async_flags & ASYNC_CARR_ON) != 0)
3330 			return;
3331 
3332 		ASY_DPRINTF(asy, ASY_DEBUG_MODM2, "set ASYNC_CARR_ON");
3333 		async->async_flags |= ASYNC_CARR_ON;
3334 		if (async->async_flags & ASYNC_ISOPEN) {
3335 			mutex_exit(&asy->asy_excl_hi);
3336 			mutex_exit(&asy->asy_excl);
3337 			(void) putctl(q, M_UNHANGUP);
3338 			mutex_enter(&asy->asy_excl);
3339 			mutex_enter(&asy->asy_excl_hi);
3340 		}
3341 		cv_broadcast(&async->async_flags_cv);
3342 
3343 		return;
3344 	}
3345 
3346 	/*
3347 	 * The DCD line is off. If we had no carrier, nothing changed
3348 	 * and there's nothing to do.
3349 	 */
3350 	if ((async->async_flags & ASYNC_CARR_ON) == 0)
3351 		return;
3352 
3353 	/*
3354 	 * The DCD line is off, but we had a carrier. If we're on a local line,
3355 	 * where carrier is ignored, or we're using a soft carrier, we're done
3356 	 * here.
3357 	 */
3358 	if ((tp->t_cflag & CLOCAL) != 0 || (tp->t_flags & TS_SOFTCAR) != 0)
3359 		goto out;
3360 
3361 	/*
3362 	 * Else, drop DTR, abort any output in progress, indicate that output
3363 	 * is not stopped.
3364 	 */
3365 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "carrier dropped, so drop DTR");
3366 	asy_clr(asy, ASY_MCR, ASY_MCR_DTR);
3367 
3368 	if (async->async_flags & ASYNC_BUSY) {
3369 		ASY_DPRINTF(asy, ASY_DEBUG_BUSY,
3370 		    "Carrier dropped. Clearing async_ocnt");
3371 		async->async_ocnt = 0;
3372 	}
3373 
3374 	async->async_flags &= ~ASYNC_STOPPED;
3375 
3376 	/* If nobody had the device open, we're done here. */
3377 	if ((async->async_flags & ASYNC_ISOPEN) == 0)
3378 		goto out;
3379 
3380 	/* Else, send a hangup notification upstream and clean up. */
3381 	mutex_exit(&asy->asy_excl_hi);
3382 	mutex_exit(&asy->asy_excl);
3383 	(void) putctl(q, M_HANGUP);
3384 	mutex_enter(&asy->asy_excl);
3385 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "putctl(q, M_HANGUP)");
3386 
3387 	/*
3388 	 * Flush the transmit FIFO. Any data left in there is invalid now.
3389 	 */
3390 	if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
3391 		mutex_enter(&asy->asy_excl_hi);
3392 		asy_reset_fifo(asy, ASY_FCR_THR_FL);
3393 		mutex_exit(&asy->asy_excl_hi);
3394 	}
3395 
3396 	/*
3397 	 * Flush our write queue if we have one. If we're in the midst of close,
3398 	 * then flush everything. Don't leave stale ioctls lying about.
3399 	 */
3400 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
3401 	    "Flushing to prevent HUPCL hanging");
3402 	flushflag = (async->async_flags & ASYNC_CLOSING) ? FLUSHALL : FLUSHDATA;
3403 	flushq(tp->t_writeq, flushflag);
3404 
3405 	/* Free the last active msg. */
3406 	bp = async->async_xmitblk;
3407 	if (bp != NULL) {
3408 		freeb(bp);
3409 		async->async_xmitblk = NULL;
3410 	}
3411 
3412 	mutex_enter(&asy->asy_excl_hi);
3413 	async->async_flags &= ~ASYNC_BUSY;
3414 
3415 
3416 out:
3417 	/* Clear our carrier flag and signal anyone waiting. */
3418 	async->async_flags &= ~ASYNC_CARR_ON;
3419 	cv_broadcast(&async->async_flags_cv);
3420 }
3421 
3422 /*
3423  * Handle a second-stage interrupt.
3424  */
3425 uint_t
asysoftintr(caddr_t intarg,caddr_t unusedarg __unused)3426 asysoftintr(caddr_t intarg, caddr_t unusedarg __unused)
3427 {
3428 	struct asycom *asy = (struct asycom *)intarg;
3429 	struct asyncline *async;
3430 	int rv;
3431 	uint_t cc;
3432 
3433 	/*
3434 	 * Test and clear soft interrupt.
3435 	 */
3436 	mutex_enter(&asy->asy_soft_lock);
3437 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3438 	rv = asy->asysoftpend;
3439 	if (rv != 0)
3440 		asy->asysoftpend = 0;
3441 	mutex_exit(&asy->asy_soft_lock);
3442 
3443 	if (rv) {
3444 		if (asy->asy_priv == NULL)
3445 			return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3446 		async = (struct asyncline *)asy->asy_priv;
3447 		mutex_enter(&asy->asy_excl_hi);
3448 		if (asy->asy_flags & ASY_NEEDSOFT) {
3449 			asy->asy_flags &= ~ASY_NEEDSOFT;
3450 			mutex_exit(&asy->asy_excl_hi);
3451 			async_softint(asy);
3452 			mutex_enter(&asy->asy_excl_hi);
3453 		}
3454 
3455 		/*
3456 		 * There are some instances where the softintr is not
3457 		 * scheduled and hence not called. It so happens that
3458 		 * causes the last few characters to be stuck in the
3459 		 * ringbuffer. Hence, call the handler once again so
3460 		 * the last few characters are cleared.
3461 		 */
3462 		cc = RING_CNT(async);
3463 		mutex_exit(&asy->asy_excl_hi);
3464 		if (cc > 0)
3465 			(void) async_softint(asy);
3466 	}
3467 	return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
3468 }
3469 
3470 /*
3471  * Handle a software interrupt.
3472  */
3473 static void
async_softint(struct asycom * asy)3474 async_softint(struct asycom *asy)
3475 {
3476 	struct asyncline *async = asy->asy_priv;
3477 	uint_t	cc;
3478 	mblk_t	*bp;
3479 	queue_t	*q;
3480 	uchar_t	c;
3481 	tty_common_t	*tp;
3482 	int nb;
3483 
3484 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3485 	mutex_enter(&asy->asy_excl_hi);
3486 	if (asy->asy_flags & ASY_DOINGSOFT) {
3487 		asy->asy_flags |= ASY_DOINGSOFT_RETRY;
3488 		mutex_exit(&asy->asy_excl_hi);
3489 		return;
3490 	}
3491 	asy->asy_flags |= ASY_DOINGSOFT;
3492 begin:
3493 	asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
3494 	mutex_exit(&asy->asy_excl_hi);
3495 	mutex_enter(&asy->asy_excl);
3496 	tp = &async->async_ttycommon;
3497 	q = tp->t_readq;
3498 
3499 	if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
3500 		if (async->async_ocnt > 0) {
3501 			mutex_enter(&asy->asy_excl_hi);
3502 			async_resume(async);
3503 			mutex_exit(&asy->asy_excl_hi);
3504 		} else {
3505 			if (async->async_xmitblk)
3506 				freeb(async->async_xmitblk);
3507 			async->async_xmitblk = NULL;
3508 			async_start(async);
3509 		}
3510 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
3511 	}
3512 
3513 	mutex_enter(&asy->asy_excl_hi);
3514 	if (async->async_ext) {
3515 		async->async_ext = 0;
3516 		asy_carrier_check(asy);
3517 	}
3518 	mutex_exit(&asy->asy_excl_hi);
3519 
3520 	/*
3521 	 * If data has been added to the circular buffer, remove
3522 	 * it from the buffer, and send it up the stream if there's
3523 	 * somebody listening. Try to do it 16 bytes at a time. If we
3524 	 * have more than 16 bytes to move, move 16 byte chunks and
3525 	 * leave the rest for next time around (maybe it will grow).
3526 	 */
3527 	mutex_enter(&asy->asy_excl_hi);
3528 	if (!(async->async_flags & ASYNC_ISOPEN)) {
3529 		RING_INIT(async);
3530 		goto rv;
3531 	}
3532 	if ((cc = RING_CNT(async)) == 0)
3533 		goto rv;
3534 	mutex_exit(&asy->asy_excl_hi);
3535 
3536 	if (!canput(q)) {
3537 		mutex_enter(&asy->asy_excl_hi);
3538 		if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
3539 			async_flowcontrol_hw_input(asy, FLOW_STOP,
3540 			    IN_FLOW_STREAMS);
3541 			(void) async_flowcontrol_sw_input(asy, FLOW_STOP,
3542 			    IN_FLOW_STREAMS);
3543 		}
3544 		goto rv;
3545 	}
3546 	if (async->async_inflow_source & IN_FLOW_STREAMS) {
3547 		mutex_enter(&asy->asy_excl_hi);
3548 		async_flowcontrol_hw_input(asy, FLOW_START,
3549 		    IN_FLOW_STREAMS);
3550 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
3551 		    IN_FLOW_STREAMS);
3552 		mutex_exit(&asy->asy_excl_hi);
3553 	}
3554 
3555 	ASY_DPRINTF(asy, ASY_DEBUG_INPUT, "%d char(s) in queue", cc);
3556 
3557 	if (!(bp = allocb(cc, BPRI_MED))) {
3558 		mutex_exit(&asy->asy_excl);
3559 		ttycommon_qfull(&async->async_ttycommon, q);
3560 		mutex_enter(&asy->asy_excl);
3561 		mutex_enter(&asy->asy_excl_hi);
3562 		goto rv;
3563 	}
3564 	mutex_enter(&asy->asy_excl_hi);
3565 	do {
3566 		if (RING_ERR(async, S_ERRORS)) {
3567 			RING_UNMARK(async);
3568 			c = RING_GET(async);
3569 			break;
3570 		} else {
3571 			*bp->b_wptr++ = RING_GET(async);
3572 		}
3573 	} while (--cc);
3574 	mutex_exit(&asy->asy_excl_hi);
3575 	mutex_exit(&asy->asy_excl);
3576 	if (bp->b_wptr > bp->b_rptr) {
3577 		if (!canput(q)) {
3578 			asyerror(asy, CE_WARN, "local queue full");
3579 			freemsg(bp);
3580 		} else {
3581 			(void) putq(q, bp);
3582 		}
3583 	} else {
3584 		freemsg(bp);
3585 	}
3586 	/*
3587 	 * If we have a parity error, then send
3588 	 * up an M_BREAK with the "bad"
3589 	 * character as an argument. Let ldterm
3590 	 * figure out what to do with the error.
3591 	 */
3592 	if (cc)
3593 		(void) putctl1(q, M_BREAK, c);
3594 	mutex_enter(&asy->asy_excl);
3595 	mutex_enter(&asy->asy_excl_hi);
3596 	if (cc) {
3597 		asysetsoft(asy);	/* finish cc chars */
3598 	}
3599 rv:
3600 	if ((RING_CNT(async) < (RINGSIZE/4)) &&
3601 	    (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
3602 		async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
3603 		(void) async_flowcontrol_sw_input(asy, FLOW_START,
3604 		    IN_FLOW_RINGBUFF);
3605 	}
3606 
3607 	/*
3608 	 * If a transmission has finished, indicate that it's finished,
3609 	 * and start that line up again.
3610 	 */
3611 	if (async->async_break > 0) {
3612 		nb = async->async_break;
3613 		async->async_break = 0;
3614 		if (async->async_flags & ASYNC_ISOPEN) {
3615 			mutex_exit(&asy->asy_excl_hi);
3616 			mutex_exit(&asy->asy_excl);
3617 			for (; nb > 0; nb--)
3618 				(void) putctl(q, M_BREAK);
3619 			mutex_enter(&asy->asy_excl);
3620 			mutex_enter(&asy->asy_excl_hi);
3621 		}
3622 	}
3623 	if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
3624 		ASY_DPRINTF(asy, ASY_DEBUG_BUSY,
3625 		    "Clearing ASYNC_BUSY, async_ocnt=%d", async->async_ocnt);
3626 		async->async_flags &= ~ASYNC_BUSY;
3627 		mutex_exit(&asy->asy_excl_hi);
3628 		if (async->async_xmitblk)
3629 			freeb(async->async_xmitblk);
3630 		async->async_xmitblk = NULL;
3631 		async_start(async);
3632 		/*
3633 		 * If the flag isn't set after doing the async_start above, we
3634 		 * may have finished all the queued output.  Signal any thread
3635 		 * stuck in close.
3636 		 */
3637 		if (!(async->async_flags & ASYNC_BUSY))
3638 			cv_broadcast(&async->async_flags_cv);
3639 		mutex_enter(&asy->asy_excl_hi);
3640 	}
3641 	/*
3642 	 * A note about these overrun bits: all they do is *tell* someone
3643 	 * about an error- They do not track multiple errors. In fact,
3644 	 * you could consider them latched register bits if you like.
3645 	 * We are only interested in printing the error message once for
3646 	 * any cluster of overrun errors.
3647 	 */
3648 	if (async->async_hw_overrun) {
3649 		if (async->async_flags & ASYNC_ISOPEN) {
3650 			mutex_exit(&asy->asy_excl_hi);
3651 			mutex_exit(&asy->asy_excl);
3652 			asyerror(asy, CE_WARN, "silo overflow");
3653 			mutex_enter(&asy->asy_excl);
3654 			mutex_enter(&asy->asy_excl_hi);
3655 		}
3656 		async->async_hw_overrun = 0;
3657 	}
3658 	if (async->async_sw_overrun) {
3659 		if (async->async_flags & ASYNC_ISOPEN) {
3660 			mutex_exit(&asy->asy_excl_hi);
3661 			mutex_exit(&asy->asy_excl);
3662 			asyerror(asy, CE_WARN, "ring buffer overflow");
3663 			mutex_enter(&asy->asy_excl);
3664 			mutex_enter(&asy->asy_excl_hi);
3665 		}
3666 		async->async_sw_overrun = 0;
3667 	}
3668 	if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
3669 		mutex_exit(&asy->asy_excl);
3670 		goto begin;
3671 	}
3672 	asy->asy_flags &= ~ASY_DOINGSOFT;
3673 	mutex_exit(&asy->asy_excl_hi);
3674 	mutex_exit(&asy->asy_excl);
3675 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "done");
3676 }
3677 
3678 /*
3679  * Restart output on a line after a delay or break timer expired.
3680  */
3681 static void
async_restart(void * arg)3682 async_restart(void *arg)
3683 {
3684 	struct asyncline *async = (struct asyncline *)arg;
3685 	struct asycom *asy = async->async_common;
3686 
3687 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3688 
3689 	/*
3690 	 * If break timer expired, turn off the break bit.
3691 	 */
3692 
3693 	mutex_enter(&asy->asy_excl);
3694 	/*
3695 	 * If ASYNC_OUT_SUSPEND is also set, we don't really
3696 	 * clean the HW break, TIOCCBRK is responsible for this.
3697 	 */
3698 	if ((async->async_flags & ASYNC_BREAK) &&
3699 	    !(async->async_flags & ASYNC_OUT_SUSPEND)) {
3700 		mutex_enter(&asy->asy_excl_hi);
3701 		asy_clr(asy, ASY_LCR, ASY_LCR_SETBRK);
3702 		mutex_exit(&asy->asy_excl_hi);
3703 	}
3704 	async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
3705 	cv_broadcast(&async->async_flags_cv);
3706 	async_start(async);
3707 
3708 	mutex_exit(&asy->asy_excl);
3709 }
3710 
3711 /*
3712  * Start output on a line, unless it's busy, frozen, or otherwise.
3713  */
3714 static void
async_start(struct asyncline * async)3715 async_start(struct asyncline *async)
3716 {
3717 	struct asycom *asy = async->async_common;
3718 	int cc;
3719 	queue_t *q;
3720 	mblk_t *bp;
3721 	uchar_t *xmit_addr;
3722 	int	fifo_len = 1;
3723 	boolean_t didsome;
3724 	mblk_t *nbp;
3725 
3726 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3727 
3728 	if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
3729 		fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3730 		if (fifo_len > asy_max_tx_fifo)
3731 			fifo_len = asy_max_tx_fifo;
3732 	}
3733 
3734 	ASSERT(mutex_owned(&asy->asy_excl));
3735 
3736 	/*
3737 	 * If the chip is busy (i.e., we're waiting for a break timeout
3738 	 * to expire, or for the current transmission to finish, or for
3739 	 * output to finish draining from chip), don't grab anything new.
3740 	 */
3741 	if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
3742 		ASY_DPRINTF(asy, ASY_DEBUG_OUT, "%s",
3743 		    async->async_flags & ASYNC_BREAK ? "break" : "busy");
3744 		return;
3745 	}
3746 
3747 	/*
3748 	 * Check only pended sw input flow control.
3749 	 */
3750 	mutex_enter(&asy->asy_excl_hi);
3751 	if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3752 		fifo_len--;
3753 	mutex_exit(&asy->asy_excl_hi);
3754 
3755 	/*
3756 	 * If we're waiting for a delay timeout to expire, don't grab
3757 	 * anything new.
3758 	 */
3759 	if (async->async_flags & ASYNC_DELAY) {
3760 		ASY_DPRINTF(asy, ASY_DEBUG_OUT, "start ASYNC_DELAY");
3761 		return;
3762 	}
3763 
3764 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
3765 		ASY_DPRINTF(asy, ASY_DEBUG_OUT, "start writeq is null");
3766 		return;	/* not attached to a stream */
3767 	}
3768 
3769 	for (;;) {
3770 		if ((bp = getq(q)) == NULL)
3771 			return;	/* no data to transmit */
3772 
3773 		/*
3774 		 * We have a message block to work on.
3775 		 * Check whether it's a break, a delay, or an ioctl (the latter
3776 		 * occurs if the ioctl in question was waiting for the output
3777 		 * to drain).  If it's one of those, process it immediately.
3778 		 */
3779 		switch (bp->b_datap->db_type) {
3780 
3781 		case M_BREAK:
3782 			/*
3783 			 * Set the break bit, and arrange for "async_restart"
3784 			 * to be called in 1/4 second; it will turn the
3785 			 * break bit off, and call "async_start" to grab
3786 			 * the next message.
3787 			 */
3788 			mutex_enter(&asy->asy_excl_hi);
3789 			asy_set(asy, ASY_LCR, ASY_LCR_SETBRK);
3790 			mutex_exit(&asy->asy_excl_hi);
3791 			async->async_flags |= ASYNC_BREAK;
3792 			(void) timeout(async_restart, (caddr_t)async,
3793 			    drv_usectohz(1000000)/4);
3794 			freemsg(bp);
3795 			return;	/* wait for this to finish */
3796 
3797 		case M_DELAY:
3798 			/*
3799 			 * Arrange for "async_restart" to be called when the
3800 			 * delay expires; it will turn ASYNC_DELAY off,
3801 			 * and call "async_start" to grab the next message.
3802 			 */
3803 			(void) timeout(async_restart, (caddr_t)async,
3804 			    (int)(*(unsigned char *)bp->b_rptr + 6));
3805 			async->async_flags |= ASYNC_DELAY;
3806 			freemsg(bp);
3807 			return;	/* wait for this to finish */
3808 
3809 		case M_IOCTL:
3810 			/*
3811 			 * This ioctl was waiting for the output ahead of
3812 			 * it to drain; obviously, it has.  Do it, and
3813 			 * then grab the next message after it.
3814 			 */
3815 			mutex_exit(&asy->asy_excl);
3816 			async_ioctl(async, q, bp);
3817 			mutex_enter(&asy->asy_excl);
3818 			continue;
3819 		}
3820 
3821 		while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
3822 			nbp = bp->b_cont;
3823 			freeb(bp);
3824 			bp = nbp;
3825 		}
3826 		if (bp != NULL)
3827 			break;
3828 	}
3829 
3830 	/*
3831 	 * We have data to transmit.  If output is stopped, put
3832 	 * it back and try again later.
3833 	 */
3834 	if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
3835 	    ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
3836 		(void) putbq(q, bp);
3837 		return;
3838 	}
3839 
3840 	async->async_xmitblk = bp;
3841 	xmit_addr = bp->b_rptr;
3842 	bp = bp->b_cont;
3843 	if (bp != NULL)
3844 		(void) putbq(q, bp);	/* not done with this message yet */
3845 
3846 	/*
3847 	 * In 5-bit mode, the high order bits are used
3848 	 * to indicate character sizes less than five,
3849 	 * so we need to explicitly mask before transmitting
3850 	 */
3851 	if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
3852 		unsigned char *p = xmit_addr;
3853 		int cnt = cc;
3854 
3855 		while (cnt--)
3856 			*p++ &= (unsigned char) 0x1f;
3857 	}
3858 
3859 	/*
3860 	 * Set up this block for pseudo-DMA.
3861 	 */
3862 	mutex_enter(&asy->asy_excl_hi);
3863 	/*
3864 	 * If the transmitter is ready, shove the first
3865 	 * character out.
3866 	 */
3867 	didsome = B_FALSE;
3868 	while (--fifo_len >= 0 && cc > 0) {
3869 		if (!(asy_get(asy, ASY_LSR) & ASY_LSR_THRE))
3870 			break;
3871 		asy_put(asy, ASY_THR, *xmit_addr++);
3872 		cc--;
3873 		didsome = B_TRUE;
3874 	}
3875 	async->async_optr = xmit_addr;
3876 	async->async_ocnt = cc;
3877 	if (didsome)
3878 		async->async_flags |= ASYNC_PROGRESS;
3879 	ASY_DPRINTF(asy, ASY_DEBUG_BUSY, "Set ASYNC_BUSY, async_ocnt=%d",
3880 	    async->async_ocnt);
3881 	async->async_flags |= ASYNC_BUSY;
3882 	mutex_exit(&asy->asy_excl_hi);
3883 }
3884 
3885 /*
3886  * Resume output by poking the transmitter.
3887  */
3888 static void
async_resume(struct asyncline * async)3889 async_resume(struct asyncline *async)
3890 {
3891 	struct asycom *asy = async->async_common;
3892 
3893 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3894 	ASSERT(mutex_owned(&asy->asy_excl_hi));
3895 
3896 	if (asy_get(asy, ASY_LSR) & ASY_LSR_THRE) {
3897 		if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3898 			return;
3899 		if (async->async_ocnt > 0 &&
3900 		    !(async->async_flags &
3901 		    (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
3902 			asy_put(asy, ASY_THR, *async->async_optr++);
3903 			async->async_ocnt--;
3904 			async->async_flags |= ASYNC_PROGRESS;
3905 		}
3906 	}
3907 }
3908 
3909 /*
3910  * Hold the untimed break to last the minimum time.
3911  */
3912 static void
async_hold_utbrk(void * arg)3913 async_hold_utbrk(void *arg)
3914 {
3915 	struct asyncline *async = arg;
3916 	struct asycom *asy = async->async_common;
3917 
3918 	mutex_enter(&asy->asy_excl);
3919 	async->async_flags &= ~ASYNC_HOLD_UTBRK;
3920 	cv_broadcast(&async->async_flags_cv);
3921 	async->async_utbrktid = 0;
3922 	mutex_exit(&asy->asy_excl);
3923 }
3924 
3925 /*
3926  * Resume the untimed break.
3927  */
3928 static void
async_resume_utbrk(struct asyncline * async)3929 async_resume_utbrk(struct asyncline *async)
3930 {
3931 	struct asycom *asy = async->async_common;
3932 	ASSERT(mutex_owned(&asy->asy_excl));
3933 
3934 	/*
3935 	 * Because the wait time is very short,
3936 	 * so we use uninterruptably wait.
3937 	 */
3938 	while (async->async_flags & ASYNC_HOLD_UTBRK) {
3939 		cv_wait(&async->async_flags_cv, &asy->asy_excl);
3940 	}
3941 	mutex_enter(&asy->asy_excl_hi);
3942 	/*
3943 	 * Timed break and untimed break can exist simultaneously,
3944 	 * if ASYNC_BREAK is also set at here, we don't
3945 	 * really clean the HW break.
3946 	 */
3947 	if (!(async->async_flags & ASYNC_BREAK))
3948 		asy_clr(asy, ASY_LCR, ASY_LCR_SETBRK);
3949 
3950 	async->async_flags &= ~ASYNC_OUT_SUSPEND;
3951 	cv_broadcast(&async->async_flags_cv);
3952 	if (async->async_ocnt > 0) {
3953 		async_resume(async);
3954 		mutex_exit(&asy->asy_excl_hi);
3955 	} else {
3956 		async->async_flags &= ~ASYNC_BUSY;
3957 		mutex_exit(&asy->asy_excl_hi);
3958 		if (async->async_xmitblk != NULL) {
3959 			freeb(async->async_xmitblk);
3960 			async->async_xmitblk = NULL;
3961 		}
3962 		async_start(async);
3963 	}
3964 }
3965 
3966 /*
3967  * Process an "ioctl" message sent down to us.
3968  * Note that we don't need to get any locks until we are ready to access
3969  * the hardware.  Nothing we access until then is going to be altered
3970  * outside of the STREAMS framework, so we should be safe.
3971  */
3972 int asydelay = 10000;
3973 static void
async_ioctl(struct asyncline * async,queue_t * wq,mblk_t * mp)3974 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3975 {
3976 	struct asycom *asy = async->async_common;
3977 	tty_common_t  *tp = &async->async_ttycommon;
3978 	struct iocblk *iocp;
3979 	unsigned datasize;
3980 	int error = 0;
3981 	mblk_t *datamp;
3982 
3983 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "enter");
3984 
3985 	if (tp->t_iocpending != NULL) {
3986 		/*
3987 		 * We were holding an "ioctl" response pending the
3988 		 * availability of an "mblk" to hold data to be passed up;
3989 		 * another "ioctl" came through, which means that "ioctl"
3990 		 * must have timed out or been aborted.
3991 		 */
3992 		freemsg(async->async_ttycommon.t_iocpending);
3993 		async->async_ttycommon.t_iocpending = NULL;
3994 	}
3995 
3996 	iocp = (struct iocblk *)mp->b_rptr;
3997 
3998 	/*
3999 	 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
4000 	 * because this function frees up the message block (mp->b_cont) that
4001 	 * contains the user location where we pass back the results.
4002 	 *
4003 	 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
4004 	 * zaps.  We know that ttycommon_ioctl doesn't know any CONS*
4005 	 * ioctls, so keep the others safe too.
4006 	 */
4007 	ASY_DPRINTF(asy, ASY_DEBUG_IOCTL, "%s",
4008 	    iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
4009 	    iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
4010 	    iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
4011 	    iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
4012 	    "other");
4013 
4014 	switch (iocp->ioc_cmd) {
4015 	case TIOCMGET:
4016 	case TIOCGPPS:
4017 	case TIOCSPPS:
4018 	case TIOCGPPSEV:
4019 	case CONSOPENPOLLEDIO:
4020 	case CONSCLOSEPOLLEDIO:
4021 	case CONSSETABORTENABLE:
4022 	case CONSGETABORTENABLE:
4023 		error = -1; /* Do Nothing */
4024 		break;
4025 	default:
4026 
4027 		/*
4028 		 * The only way in which "ttycommon_ioctl" can fail is if the
4029 		 * "ioctl" requires a response containing data to be returned
4030 		 * to the user, and no mblk could be allocated for the data.
4031 		 * No such "ioctl" alters our state.  Thus, we always go ahead
4032 		 * and do any state-changes the "ioctl" calls for.  If we
4033 		 * couldn't allocate the data, "ttycommon_ioctl" has stashed
4034 		 * the "ioctl" away safely, so we just call "bufcall" to
4035 		 * request that we be called back when we stand a better
4036 		 * chance of allocating the data.
4037 		 */
4038 		if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
4039 			if (async->async_wbufcid)
4040 				unbufcall(async->async_wbufcid);
4041 			async->async_wbufcid = bufcall(datasize, BPRI_HI,
4042 			    (void (*)(void *)) async_reioctl,
4043 			    (void *)(intptr_t)async->async_common->asy_unit);
4044 			return;
4045 		}
4046 	}
4047 
4048 	mutex_enter(&asy->asy_excl);
4049 
4050 	if (error == 0) {
4051 		/*
4052 		 * "ttycommon_ioctl" did most of the work; we just use the
4053 		 * data it set up.
4054 		 */
4055 		switch (iocp->ioc_cmd) {
4056 
4057 		case TCSETS:
4058 			mutex_enter(&asy->asy_excl_hi);
4059 			if (asy_baudok(asy))
4060 				asy_program(asy, ASY_NOINIT);
4061 			else
4062 				error = EINVAL;
4063 			mutex_exit(&asy->asy_excl_hi);
4064 			break;
4065 		case TCSETSF:
4066 		case TCSETSW:
4067 		case TCSETA:
4068 		case TCSETAW:
4069 		case TCSETAF:
4070 			mutex_enter(&asy->asy_excl_hi);
4071 			if (!asy_baudok(asy))
4072 				error = EINVAL;
4073 			else {
4074 				if (asy_isbusy(asy))
4075 					asy_waiteot(asy);
4076 				asy_program(asy, ASY_NOINIT);
4077 			}
4078 			mutex_exit(&asy->asy_excl_hi);
4079 			break;
4080 		}
4081 	} else if (error < 0) {
4082 		/*
4083 		 * "ttycommon_ioctl" didn't do anything; we process it here.
4084 		 */
4085 		error = 0;
4086 		switch (iocp->ioc_cmd) {
4087 
4088 		case TIOCGPPS:
4089 			/*
4090 			 * Get PPS on/off.
4091 			 */
4092 			if (mp->b_cont != NULL)
4093 				freemsg(mp->b_cont);
4094 
4095 			mp->b_cont = allocb(sizeof (int), BPRI_HI);
4096 			if (mp->b_cont == NULL) {
4097 				error = ENOMEM;
4098 				break;
4099 			}
4100 			if (asy->asy_flags & ASY_PPS)
4101 				*(int *)mp->b_cont->b_wptr = 1;
4102 			else
4103 				*(int *)mp->b_cont->b_wptr = 0;
4104 			mp->b_cont->b_wptr += sizeof (int);
4105 			mp->b_datap->db_type = M_IOCACK;
4106 			iocp->ioc_count = sizeof (int);
4107 			break;
4108 
4109 		case TIOCSPPS:
4110 			/*
4111 			 * Set PPS on/off.
4112 			 */
4113 			error = miocpullup(mp, sizeof (int));
4114 			if (error != 0)
4115 				break;
4116 
4117 			mutex_enter(&asy->asy_excl_hi);
4118 			if (*(int *)mp->b_cont->b_rptr)
4119 				asy->asy_flags |= ASY_PPS;
4120 			else
4121 				asy->asy_flags &= ~ASY_PPS;
4122 			/* Reset edge sense */
4123 			asy->asy_flags &= ~ASY_PPS_EDGE;
4124 			mutex_exit(&asy->asy_excl_hi);
4125 			mp->b_datap->db_type = M_IOCACK;
4126 			break;
4127 
4128 		case TIOCGPPSEV:
4129 		{
4130 			/*
4131 			 * Get PPS event data.
4132 			 */
4133 			mblk_t *bp;
4134 			void *buf;
4135 #ifdef _SYSCALL32_IMPL
4136 			struct ppsclockev32 p32;
4137 #endif
4138 			struct ppsclockev ppsclockev;
4139 
4140 			if (mp->b_cont != NULL) {
4141 				freemsg(mp->b_cont);
4142 				mp->b_cont = NULL;
4143 			}
4144 
4145 			if ((asy->asy_flags & ASY_PPS) == 0) {
4146 				error = ENXIO;
4147 				break;
4148 			}
4149 
4150 			/* Protect from incomplete asy_ppsev */
4151 			mutex_enter(&asy->asy_excl_hi);
4152 			ppsclockev = asy_ppsev;
4153 			mutex_exit(&asy->asy_excl_hi);
4154 
4155 #ifdef _SYSCALL32_IMPL
4156 			if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
4157 				TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
4158 				p32.serial = ppsclockev.serial;
4159 				buf = &p32;
4160 				iocp->ioc_count = sizeof (struct ppsclockev32);
4161 			} else
4162 #endif
4163 			{
4164 				buf = &ppsclockev;
4165 				iocp->ioc_count = sizeof (struct ppsclockev);
4166 			}
4167 
4168 			if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
4169 				error = ENOMEM;
4170 				break;
4171 			}
4172 			mp->b_cont = bp;
4173 
4174 			bcopy(buf, bp->b_wptr, iocp->ioc_count);
4175 			bp->b_wptr += iocp->ioc_count;
4176 			mp->b_datap->db_type = M_IOCACK;
4177 			break;
4178 		}
4179 
4180 		case TCSBRK:
4181 			error = miocpullup(mp, sizeof (int));
4182 			if (error != 0)
4183 				break;
4184 
4185 			if (*(int *)mp->b_cont->b_rptr == 0) {
4186 
4187 				/*
4188 				 * XXX Arrangements to ensure that a break
4189 				 * isn't in progress should be sufficient.
4190 				 * This ugly delay() is the only thing
4191 				 * that seems to work on the NCR Worldmark.
4192 				 * It should be replaced. Note that an
4193 				 * asy_waiteot() also does not work.
4194 				 */
4195 				if (asydelay)
4196 					delay(drv_usectohz(asydelay));
4197 
4198 				while (async->async_flags & ASYNC_BREAK) {
4199 					cv_wait(&async->async_flags_cv,
4200 					    &asy->asy_excl);
4201 				}
4202 				mutex_enter(&asy->asy_excl_hi);
4203 				/*
4204 				 * Wait until TSR is empty and then set the
4205 				 * break. ASYNC_BREAK has been set to ensure
4206 				 * that no characters are transmitted while the
4207 				 * TSR is being flushed and SOUT is being used
4208 				 * for the break signal.
4209 				 */
4210 				async->async_flags |= ASYNC_BREAK;
4211 				asy_wait_baudrate(asy);
4212 				/*
4213 				 * Arrange for "async_restart"
4214 				 * to be called in 1/4 second;
4215 				 * it will turn the break bit off, and call
4216 				 * "async_start" to grab the next message.
4217 				 */
4218 				asy_set(asy, ASY_LCR, ASY_LCR_SETBRK);
4219 				mutex_exit(&asy->asy_excl_hi);
4220 				(void) timeout(async_restart, (caddr_t)async,
4221 				    drv_usectohz(1000000)/4);
4222 			} else {
4223 				ASY_DPRINTF(asy, ASY_DEBUG_OUT,
4224 				    "wait for flush");
4225 				mutex_enter(&asy->asy_excl_hi);
4226 				asy_waiteot(asy);
4227 				mutex_exit(&asy->asy_excl_hi);
4228 				ASY_DPRINTF(asy, ASY_DEBUG_OUT,
4229 				    "ldterm satisfied");
4230 			}
4231 			break;
4232 
4233 		case TIOCSBRK:
4234 			if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
4235 				mutex_enter(&asy->asy_excl_hi);
4236 				async->async_flags |= ASYNC_OUT_SUSPEND;
4237 				async->async_flags |= ASYNC_HOLD_UTBRK;
4238 				asy_wait_baudrate(asy);
4239 				mutex_exit(&asy->asy_excl_hi);
4240 				/* wait for 100ms to hold BREAK */
4241 				async->async_utbrktid =
4242 				    timeout((void (*)())async_hold_utbrk,
4243 				    (caddr_t)async,
4244 				    drv_usectohz(asy_min_utbrk));
4245 			}
4246 			mioc2ack(mp, NULL, 0, 0);
4247 			break;
4248 
4249 		case TIOCCBRK:
4250 			if (async->async_flags & ASYNC_OUT_SUSPEND)
4251 				async_resume_utbrk(async);
4252 			mioc2ack(mp, NULL, 0, 0);
4253 			break;
4254 
4255 		case TIOCMSET:
4256 		case TIOCMBIS:
4257 		case TIOCMBIC:
4258 			if (iocp->ioc_count != TRANSPARENT) {
4259 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4260 				    "non-transparent");
4261 
4262 				error = miocpullup(mp, sizeof (int));
4263 				if (error != 0)
4264 					break;
4265 
4266 				mutex_enter(&asy->asy_excl_hi);
4267 				(void) asymctl(asy,
4268 				    dmtoasy(asy, *(int *)mp->b_cont->b_rptr),
4269 				    iocp->ioc_cmd);
4270 				mutex_exit(&asy->asy_excl_hi);
4271 				iocp->ioc_error = 0;
4272 				mp->b_datap->db_type = M_IOCACK;
4273 			} else {
4274 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4275 				    "transparent");
4276 				mcopyin(mp, NULL, sizeof (int), NULL);
4277 			}
4278 			break;
4279 
4280 		case TIOCMGET:
4281 			datamp = allocb(sizeof (int), BPRI_MED);
4282 			if (datamp == NULL) {
4283 				error = EAGAIN;
4284 				break;
4285 			}
4286 
4287 			mutex_enter(&asy->asy_excl_hi);
4288 			*(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
4289 			mutex_exit(&asy->asy_excl_hi);
4290 
4291 			if (iocp->ioc_count == TRANSPARENT) {
4292 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4293 				    "transparent");
4294 				mcopyout(mp, NULL, sizeof (int), NULL, datamp);
4295 			} else {
4296 				ASY_DPRINTF(asy, ASY_DEBUG_IOCTL,
4297 				    "non-transparent");
4298 				mioc2ack(mp, datamp, sizeof (int), 0);
4299 			}
4300 			break;
4301 
4302 		case CONSOPENPOLLEDIO:
4303 			error = miocpullup(mp, sizeof (struct cons_polledio *));
4304 			if (error != 0)
4305 				break;
4306 
4307 			*(struct cons_polledio **)mp->b_cont->b_rptr =
4308 			    &asy->polledio;
4309 
4310 			mp->b_datap->db_type = M_IOCACK;
4311 			break;
4312 
4313 		case CONSCLOSEPOLLEDIO:
4314 			mp->b_datap->db_type = M_IOCACK;
4315 			iocp->ioc_error = 0;
4316 			iocp->ioc_rval = 0;
4317 			break;
4318 
4319 		case CONSSETABORTENABLE:
4320 			error = secpolicy_console(iocp->ioc_cr);
4321 			if (error != 0)
4322 				break;
4323 
4324 			if (iocp->ioc_count != TRANSPARENT) {
4325 				error = EINVAL;
4326 				break;
4327 			}
4328 
4329 			mutex_enter(&asy->asy_excl_hi);
4330 			if (*(intptr_t *)mp->b_cont->b_rptr)
4331 				asy->asy_flags |= ASY_CONSOLE;
4332 			else
4333 				asy->asy_flags &= ~ASY_CONSOLE;
4334 			mutex_exit(&asy->asy_excl_hi);
4335 
4336 			mp->b_datap->db_type = M_IOCACK;
4337 			iocp->ioc_error = 0;
4338 			iocp->ioc_rval = 0;
4339 			break;
4340 
4341 		case CONSGETABORTENABLE:
4342 			/*CONSTANTCONDITION*/
4343 			ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
4344 			/*
4345 			 * Store the return value right in the payload
4346 			 * we were passed.  Crude.
4347 			 */
4348 			mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
4349 			*(boolean_t *)mp->b_cont->b_rptr =
4350 			    (asy->asy_flags & ASY_CONSOLE) != 0;
4351 			break;
4352 
4353 		default:
4354 			/*
4355 			 * If we don't understand it, it's an error.  NAK it.
4356 			 */
4357 			error = EINVAL;
4358 			break;
4359 		}
4360 	}
4361 	if (error != 0) {
4362 		iocp->ioc_error = error;
4363 		mp->b_datap->db_type = M_IOCNAK;
4364 	}
4365 	mutex_exit(&asy->asy_excl);
4366 	qreply(wq, mp);
4367 	ASY_DPRINTF(asy, ASY_DEBUG_PROCS, "done");
4368 }
4369 
4370 static int
asyrsrv(queue_t * q)4371 asyrsrv(queue_t *q)
4372 {
4373 	mblk_t *bp;
4374 	struct asyncline *async;
4375 	struct asycom *asy;
4376 
4377 	async = (struct asyncline *)q->q_ptr;
4378 	asy = (struct asycom *)async->async_common;
4379 
4380 	while (canputnext(q) && (bp = getq(q)))
4381 		putnext(q, bp);
4382 	mutex_enter(&asy->asy_excl_hi);
4383 	asysetsoft(asy);
4384 	mutex_exit(&asy->asy_excl_hi);
4385 	async->async_polltid = 0;
4386 	return (0);
4387 }
4388 
4389 /*
4390  * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
4391  * handle messages as though the driver is operating normally or is
4392  * suspended.  In the suspended case, some or all of the processing may have
4393  * to be delayed until the driver is resumed.
4394  */
4395 #define	ASYWPUTDO_NOT_SUSP(async, wput) \
4396 	!((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
4397 
4398 /*
4399  * Processing for write queue put procedure.
4400  * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
4401  * set the flow control character for M_STOPI and M_STARTI messages;
4402  * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
4403  * by the start routine, and then call the start routine; discard
4404  * everything else.  Note that this driver does not incorporate any
4405  * mechanism to negotiate to handle the canonicalization process.
4406  * It expects that these functions are handled in upper module(s),
4407  * as we do in ldterm.
4408  */
4409 static int
asywputdo(queue_t * q,mblk_t * mp,boolean_t wput)4410 asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
4411 {
4412 	struct asyncline *async;
4413 	struct asycom *asy;
4414 	int error;
4415 
4416 	async = (struct asyncline *)q->q_ptr;
4417 	asy = async->async_common;
4418 
4419 	switch (mp->b_datap->db_type) {
4420 
4421 	case M_STOP:
4422 		/*
4423 		 * Since we don't do real DMA, we can just let the
4424 		 * chip coast to a stop after applying the brakes.
4425 		 */
4426 		mutex_enter(&asy->asy_excl);
4427 		async->async_flags |= ASYNC_STOPPED;
4428 		mutex_exit(&asy->asy_excl);
4429 		freemsg(mp);
4430 		break;
4431 
4432 	case M_START:
4433 		mutex_enter(&asy->asy_excl);
4434 		if (async->async_flags & ASYNC_STOPPED) {
4435 			async->async_flags &= ~ASYNC_STOPPED;
4436 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4437 				/*
4438 				 * If an output operation is in progress,
4439 				 * resume it.  Otherwise, prod the start
4440 				 * routine.
4441 				 */
4442 				if (async->async_ocnt > 0) {
4443 					mutex_enter(&asy->asy_excl_hi);
4444 					async_resume(async);
4445 					mutex_exit(&asy->asy_excl_hi);
4446 				} else {
4447 					async_start(async);
4448 				}
4449 			}
4450 		}
4451 		mutex_exit(&asy->asy_excl);
4452 		freemsg(mp);
4453 		break;
4454 
4455 	case M_IOCTL:
4456 		switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
4457 
4458 		case TCSBRK:
4459 			error = miocpullup(mp, sizeof (int));
4460 			if (error != 0) {
4461 				miocnak(q, mp, 0, error);
4462 				return (0);
4463 			}
4464 
4465 			if (*(int *)mp->b_cont->b_rptr != 0) {
4466 				ASY_DPRINTF(asy, ASY_DEBUG_OUT,
4467 				    "flush request");
4468 				(void) putq(q, mp);
4469 
4470 				mutex_enter(&asy->asy_excl);
4471 				if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4472 					/*
4473 					 * If an TIOCSBRK is in progress,
4474 					 * clean it as TIOCCBRK does,
4475 					 * then kick off output.
4476 					 * If TIOCSBRK is not in progress,
4477 					 * just kick off output.
4478 					 */
4479 					async_resume_utbrk(async);
4480 				}
4481 				mutex_exit(&asy->asy_excl);
4482 				break;
4483 			}
4484 			/*FALLTHROUGH*/
4485 		case TCSETSW:
4486 		case TCSETSF:
4487 		case TCSETAW:
4488 		case TCSETAF:
4489 			/*
4490 			 * The changes do not take effect until all
4491 			 * output queued before them is drained.
4492 			 * Put this message on the queue, so that
4493 			 * "async_start" will see it when it's done
4494 			 * with the output before it.  Poke the
4495 			 * start routine, just in case.
4496 			 */
4497 			(void) putq(q, mp);
4498 
4499 			mutex_enter(&asy->asy_excl);
4500 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4501 				/*
4502 				 * If an TIOCSBRK is in progress,
4503 				 * clean it as TIOCCBRK does.
4504 				 * then kick off output.
4505 				 * If TIOCSBRK is not in progress,
4506 				 * just kick off output.
4507 				 */
4508 				async_resume_utbrk(async);
4509 			}
4510 			mutex_exit(&asy->asy_excl);
4511 			break;
4512 
4513 		default:
4514 			/*
4515 			 * Do it now.
4516 			 */
4517 			mutex_enter(&asy->asy_excl);
4518 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4519 				mutex_exit(&asy->asy_excl);
4520 				async_ioctl(async, q, mp);
4521 				break;
4522 			}
4523 			async_put_suspq(asy, mp);
4524 			mutex_exit(&asy->asy_excl);
4525 			break;
4526 		}
4527 		break;
4528 
4529 	case M_FLUSH:
4530 		if (*mp->b_rptr & FLUSHW) {
4531 			mutex_enter(&asy->asy_excl);
4532 
4533 			/*
4534 			 * Abort any output in progress.
4535 			 */
4536 			mutex_enter(&asy->asy_excl_hi);
4537 			if (async->async_flags & ASYNC_BUSY) {
4538 				ASY_DPRINTF(asy, ASY_DEBUG_BUSY,
4539 				    "Clearing async_ocnt, "
4540 				    "leaving ASYNC_BUSY set");
4541 				async->async_ocnt = 0;
4542 				async->async_flags &= ~ASYNC_BUSY;
4543 			} /* if */
4544 
4545 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4546 				/* Flush FIFO buffers */
4547 				if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
4548 					asy_reset_fifo(asy, ASY_FCR_THR_FL);
4549 				}
4550 			}
4551 			mutex_exit(&asy->asy_excl_hi);
4552 
4553 			/*
4554 			 * Flush our write queue.
4555 			 */
4556 			flushq(q, FLUSHDATA);	/* XXX doesn't flush M_DELAY */
4557 			if (async->async_xmitblk != NULL) {
4558 				freeb(async->async_xmitblk);
4559 				async->async_xmitblk = NULL;
4560 			}
4561 			mutex_exit(&asy->asy_excl);
4562 			*mp->b_rptr &= ~FLUSHW;	/* it has been flushed */
4563 		}
4564 		if (*mp->b_rptr & FLUSHR) {
4565 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4566 				mutex_enter(&asy->asy_excl);
4567 				mutex_enter(&asy->asy_excl_hi);
4568 				/* Flush FIFO buffers */
4569 				if (asy->asy_use_fifo == ASY_FCR_FIFO_EN) {
4570 					asy_reset_fifo(asy, ASY_FCR_RHR_FL);
4571 				}
4572 				mutex_exit(&asy->asy_excl_hi);
4573 				mutex_exit(&asy->asy_excl);
4574 			}
4575 			flushq(RD(q), FLUSHDATA);
4576 			qreply(q, mp);	/* give the read queues a crack at it */
4577 		} else {
4578 			freemsg(mp);
4579 		}
4580 
4581 		/*
4582 		 * We must make sure we process messages that survive the
4583 		 * write-side flush.
4584 		 */
4585 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4586 			mutex_enter(&asy->asy_excl);
4587 			async_start(async);
4588 			mutex_exit(&asy->asy_excl);
4589 		}
4590 		break;
4591 
4592 	case M_BREAK:
4593 	case M_DELAY:
4594 	case M_DATA:
4595 		/*
4596 		 * Queue the message up to be transmitted,
4597 		 * and poke the start routine.
4598 		 */
4599 		(void) putq(q, mp);
4600 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4601 			mutex_enter(&asy->asy_excl);
4602 			async_start(async);
4603 			mutex_exit(&asy->asy_excl);
4604 		}
4605 		break;
4606 
4607 	case M_STOPI:
4608 		mutex_enter(&asy->asy_excl);
4609 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4610 			mutex_enter(&asy->asy_excl_hi);
4611 			if (!(async->async_inflow_source & IN_FLOW_USER)) {
4612 				async_flowcontrol_hw_input(asy, FLOW_STOP,
4613 				    IN_FLOW_USER);
4614 				(void) async_flowcontrol_sw_input(asy,
4615 				    FLOW_STOP, IN_FLOW_USER);
4616 			}
4617 			mutex_exit(&asy->asy_excl_hi);
4618 			mutex_exit(&asy->asy_excl);
4619 			freemsg(mp);
4620 			break;
4621 		}
4622 		async_put_suspq(asy, mp);
4623 		mutex_exit(&asy->asy_excl);
4624 		break;
4625 
4626 	case M_STARTI:
4627 		mutex_enter(&asy->asy_excl);
4628 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4629 			mutex_enter(&asy->asy_excl_hi);
4630 			if (async->async_inflow_source & IN_FLOW_USER) {
4631 				async_flowcontrol_hw_input(asy, FLOW_START,
4632 				    IN_FLOW_USER);
4633 				(void) async_flowcontrol_sw_input(asy,
4634 				    FLOW_START, IN_FLOW_USER);
4635 			}
4636 			mutex_exit(&asy->asy_excl_hi);
4637 			mutex_exit(&asy->asy_excl);
4638 			freemsg(mp);
4639 			break;
4640 		}
4641 		async_put_suspq(asy, mp);
4642 		mutex_exit(&asy->asy_excl);
4643 		break;
4644 
4645 	case M_CTL:
4646 		if (MBLKL(mp) >= sizeof (struct iocblk) &&
4647 		    ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
4648 			mutex_enter(&asy->asy_excl);
4649 			if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4650 				((struct iocblk *)mp->b_rptr)->ioc_cmd =
4651 				    MC_HAS_POSIX;
4652 				mutex_exit(&asy->asy_excl);
4653 				qreply(q, mp);
4654 				break;
4655 			} else {
4656 				async_put_suspq(asy, mp);
4657 			}
4658 		} else {
4659 			/*
4660 			 * These MC_SERVICE type messages are used by upper
4661 			 * modules to tell this driver to send input up
4662 			 * immediately, or that it can wait for normal
4663 			 * processing that may or may not be done.  Sun
4664 			 * requires these for the mouse module.
4665 			 * (XXX - for x86?)
4666 			 */
4667 			mutex_enter(&asy->asy_excl);
4668 			switch (*mp->b_rptr) {
4669 
4670 			case MC_SERVICEIMM:
4671 				async->async_flags |= ASYNC_SERVICEIMM;
4672 				break;
4673 
4674 			case MC_SERVICEDEF:
4675 				async->async_flags &= ~ASYNC_SERVICEIMM;
4676 				break;
4677 			}
4678 			mutex_exit(&asy->asy_excl);
4679 			freemsg(mp);
4680 		}
4681 		break;
4682 
4683 	case M_IOCDATA:
4684 		mutex_enter(&asy->asy_excl);
4685 		if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4686 			mutex_exit(&asy->asy_excl);
4687 			async_iocdata(q, mp);
4688 			break;
4689 		}
4690 		async_put_suspq(asy, mp);
4691 		mutex_exit(&asy->asy_excl);
4692 		break;
4693 
4694 	default:
4695 		freemsg(mp);
4696 		break;
4697 	}
4698 	return (0);
4699 }
4700 
4701 static int
asywput(queue_t * q,mblk_t * mp)4702 asywput(queue_t *q, mblk_t *mp)
4703 {
4704 	return (asywputdo(q, mp, B_TRUE));
4705 }
4706 
4707 /*
4708  * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
4709  * the buffer we need.
4710  */
4711 static void
async_reioctl(void * unit)4712 async_reioctl(void *unit)
4713 {
4714 	int instance = (uintptr_t)unit;
4715 	struct asyncline *async;
4716 	struct asycom *asy;
4717 	queue_t	*q;
4718 	mblk_t	*mp;
4719 
4720 	asy = ddi_get_soft_state(asy_soft_state, instance);
4721 	ASSERT(asy != NULL);
4722 	async = asy->asy_priv;
4723 
4724 	/*
4725 	 * The bufcall is no longer pending.
4726 	 */
4727 	mutex_enter(&asy->asy_excl);
4728 	async->async_wbufcid = 0;
4729 	if ((q = async->async_ttycommon.t_writeq) == NULL) {
4730 		mutex_exit(&asy->asy_excl);
4731 		return;
4732 	}
4733 	if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
4734 		/* not pending any more */
4735 		async->async_ttycommon.t_iocpending = NULL;
4736 		mutex_exit(&asy->asy_excl);
4737 		async_ioctl(async, q, mp);
4738 	} else
4739 		mutex_exit(&asy->asy_excl);
4740 }
4741 
4742 static void
async_iocdata(queue_t * q,mblk_t * mp)4743 async_iocdata(queue_t *q, mblk_t *mp)
4744 {
4745 	struct asyncline	*async = (struct asyncline *)q->q_ptr;
4746 	struct asycom		*asy;
4747 	struct iocblk *ip;
4748 	struct copyresp *csp;
4749 
4750 	asy = async->async_common;
4751 	ip = (struct iocblk *)mp->b_rptr;
4752 	csp = (struct copyresp *)mp->b_rptr;
4753 
4754 	if (csp->cp_rval != 0) {
4755 		if (csp->cp_private)
4756 			freemsg(csp->cp_private);
4757 		freemsg(mp);
4758 		return;
4759 	}
4760 
4761 	mutex_enter(&asy->asy_excl);
4762 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "case %s",
4763 	    csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
4764 	    csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
4765 	    csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
4766 	    "TIOCMBIC");
4767 	switch (csp->cp_cmd) {
4768 
4769 	case TIOCMGET:
4770 		if (mp->b_cont) {
4771 			freemsg(mp->b_cont);
4772 			mp->b_cont = NULL;
4773 		}
4774 		mp->b_datap->db_type = M_IOCACK;
4775 		ip->ioc_error = 0;
4776 		ip->ioc_count = 0;
4777 		ip->ioc_rval = 0;
4778 		mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
4779 		break;
4780 
4781 	case TIOCMSET:
4782 	case TIOCMBIS:
4783 	case TIOCMBIC:
4784 		mutex_enter(&asy->asy_excl_hi);
4785 		(void) asymctl(asy, dmtoasy(asy, *(int *)mp->b_cont->b_rptr),
4786 		    csp->cp_cmd);
4787 		mutex_exit(&asy->asy_excl_hi);
4788 		mioc2ack(mp, NULL, 0, 0);
4789 		break;
4790 
4791 	default:
4792 		mp->b_datap->db_type = M_IOCNAK;
4793 		ip->ioc_error = EINVAL;
4794 		break;
4795 	}
4796 	qreply(q, mp);
4797 	mutex_exit(&asy->asy_excl);
4798 }
4799 
4800 /*
4801  * debugger/console support routines.
4802  */
4803 
4804 /*
4805  * put a character out
4806  * Do not use interrupts.  If char is LF, put out CR, LF.
4807  */
4808 static void
asyputchar(cons_polledio_arg_t arg,uchar_t c)4809 asyputchar(cons_polledio_arg_t arg, uchar_t c)
4810 {
4811 	struct asycom *asy = (struct asycom *)arg;
4812 
4813 	if (c == '\n')
4814 		asyputchar(arg, '\r');
4815 
4816 	while ((asy_get_reg(asy, ASY_LSR) & ASY_LSR_THRE) == 0) {
4817 		/* wait for xmit to finish */
4818 		drv_usecwait(10);
4819 	}
4820 
4821 	/* put the character out */
4822 	asy_put_reg(asy, ASY_THR, c);
4823 }
4824 
4825 /*
4826  * See if there's a character available. If no character is
4827  * available, return 0. Run in polled mode, no interrupts.
4828  */
4829 static boolean_t
asyischar(cons_polledio_arg_t arg)4830 asyischar(cons_polledio_arg_t arg)
4831 {
4832 	struct asycom *asy = (struct asycom *)arg;
4833 
4834 	return ((asy_get_reg(asy, ASY_LSR) & ASY_LSR_DR) != 0);
4835 }
4836 
4837 /*
4838  * Get a character. Run in polled mode, no interrupts.
4839  */
4840 static int
asygetchar(cons_polledio_arg_t arg)4841 asygetchar(cons_polledio_arg_t arg)
4842 {
4843 	struct asycom *asy = (struct asycom *)arg;
4844 
4845 	while (!asyischar(arg))
4846 		drv_usecwait(10);
4847 	return (asy_get_reg(asy, ASY_RHR));
4848 }
4849 
4850 /*
4851  * Set or get the modem control status.
4852  */
4853 static int
asymctl(struct asycom * asy,int bits,int how)4854 asymctl(struct asycom *asy, int bits, int how)
4855 {
4856 	int mcr_r, msr_r;
4857 
4858 	ASSERT(mutex_owned(&asy->asy_excl_hi));
4859 	ASSERT(mutex_owned(&asy->asy_excl));
4860 
4861 	/* Read Modem Control Registers */
4862 	mcr_r = asy_get(asy, ASY_MCR);
4863 
4864 	switch (how) {
4865 
4866 	case TIOCMSET:
4867 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "TIOCMSET, bits = %x", bits);
4868 		mcr_r = bits;		/* Set bits	*/
4869 		break;
4870 
4871 	case TIOCMBIS:
4872 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "TIOCMBIS, bits = %x", bits);
4873 		mcr_r |= bits;		/* Mask in bits	*/
4874 		break;
4875 
4876 	case TIOCMBIC:
4877 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "TIOCMBIC, bits = %x", bits);
4878 		mcr_r &= ~bits;		/* Mask out bits */
4879 		break;
4880 
4881 	case TIOCMGET:
4882 		/* Read Modem Status Registers */
4883 		/*
4884 		 * If modem interrupts are enabled, we return the
4885 		 * saved value of msr. We read MSR only in async_msint()
4886 		 */
4887 		if (asy_get(asy, ASY_IER) & ASY_IER_MIEN) {
4888 			msr_r = asy->asy_msr;
4889 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
4890 			    "TIOCMGET, read msr_r = %x", msr_r);
4891 		} else {
4892 			msr_r = asy_get(asy, ASY_MSR);
4893 			ASY_DPRINTF(asy, ASY_DEBUG_MODEM,
4894 			    "TIOCMGET, read MSR = %x", msr_r);
4895 		}
4896 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "modem_lines = %x",
4897 		    asytodm(mcr_r, msr_r));
4898 		return (asytodm(mcr_r, msr_r));
4899 	}
4900 
4901 	asy_put(asy, ASY_MCR, mcr_r);
4902 
4903 	return (mcr_r);
4904 }
4905 
4906 static int
asytodm(int mcr_r,int msr_r)4907 asytodm(int mcr_r, int msr_r)
4908 {
4909 	int b = 0;
4910 
4911 	/* MCR registers */
4912 	if (mcr_r & ASY_MCR_RTS)
4913 		b |= TIOCM_RTS;
4914 
4915 	if (mcr_r & ASY_MCR_DTR)
4916 		b |= TIOCM_DTR;
4917 
4918 	/* MSR registers */
4919 	if (msr_r & ASY_MSR_DCD)
4920 		b |= TIOCM_CAR;
4921 
4922 	if (msr_r & ASY_MSR_CTS)
4923 		b |= TIOCM_CTS;
4924 
4925 	if (msr_r & ASY_MSR_DSR)
4926 		b |= TIOCM_DSR;
4927 
4928 	if (msr_r & ASY_MSR_RI)
4929 		b |= TIOCM_RNG;
4930 	return (b);
4931 }
4932 
4933 static int
dmtoasy(struct asycom * asy,int bits)4934 dmtoasy(struct asycom *asy, int bits)
4935 {
4936 	int b = 0;
4937 
4938 	ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "bits = %x", bits);
4939 #ifdef	CAN_NOT_SET	/* only DTR and RTS can be set */
4940 	if (bits & TIOCM_CAR)
4941 		b |= ASY_MSR_DCD;
4942 	if (bits & TIOCM_CTS)
4943 		b |= ASY_MSR_CTS;
4944 	if (bits & TIOCM_DSR)
4945 		b |= ASY_MSR_DSR;
4946 	if (bits & TIOCM_RNG)
4947 		b |= ASY_MSR_RI;
4948 #endif
4949 
4950 	if (bits & TIOCM_RTS) {
4951 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "set b & RTS");
4952 		b |= ASY_MCR_RTS;
4953 	}
4954 	if (bits & TIOCM_DTR) {
4955 		ASY_DPRINTF(asy, ASY_DEBUG_MODEM, "set b & DTR");
4956 		b |= ASY_MCR_DTR;
4957 	}
4958 
4959 	return (b);
4960 }
4961 
4962 static void
asyerror(const struct asycom * asy,int level,const char * fmt,...)4963 asyerror(const struct asycom *asy, int level, const char *fmt, ...)
4964 {
4965 	va_list adx;
4966 	static	time_t	last;
4967 	static	const char *lastfmt;
4968 	time_t	now;
4969 
4970 	/*
4971 	 * Don't print the same error message too often.
4972 	 * Print the message only if we have not printed the
4973 	 * message within the last second.
4974 	 * Note: that fmt cannot be a pointer to a string
4975 	 * stored on the stack. The fmt pointer
4976 	 * must be in the data segment otherwise lastfmt would point
4977 	 * to non-sense.
4978 	 */
4979 	now = gethrestime_sec();
4980 	if (last == now && lastfmt == fmt)
4981 		return;
4982 
4983 	last = now;
4984 	lastfmt = fmt;
4985 
4986 	va_start(adx, fmt);
4987 	vdev_err(asy->asy_dip, level, fmt, adx);
4988 	va_end(adx);
4989 }
4990 
4991 /*
4992  * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4993  * The value of this property is in the form of "9600,8,n,1,-"
4994  * 1) speed: 9600, 4800, ...
4995  * 2) data bits
4996  * 3) parity: n(none), e(even), o(odd)
4997  * 4) stop bits
4998  * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
4999  *
5000  * This parsing came from a SPARCstation eeprom.
5001  */
5002 static void
asy_parse_mode(dev_info_t * devi,struct asycom * asy)5003 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
5004 {
5005 	char		name[40];
5006 	char		val[40];
5007 	int		len;
5008 	int		ret;
5009 	char		*p;
5010 	char		*p1;
5011 
5012 	ASSERT(asy->asy_com_port != 0);
5013 
5014 	/*
5015 	 * Parse the ttyx-mode property
5016 	 */
5017 	(void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
5018 	len = sizeof (val);
5019 	ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
5020 	if (ret != DDI_PROP_SUCCESS) {
5021 		(void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
5022 		len = sizeof (val);
5023 		ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
5024 	}
5025 
5026 	/* no property to parse */
5027 	asy->asy_cflag = 0;
5028 	if (ret != DDI_PROP_SUCCESS)
5029 		return;
5030 
5031 	p = val;
5032 	/* ---- baud rate ---- */
5033 	asy->asy_cflag = CREAD|B9600;		/* initial default */
5034 	if (p && (p1 = strchr(p, ',')) != 0) {
5035 		*p1++ = '\0';
5036 	} else {
5037 		asy->asy_cflag |= ASY_LCR_BITS8;	/* add default bits */
5038 		return;
5039 	}
5040 
5041 	if (strcmp(p, "110") == 0)
5042 		asy->asy_bidx = B110;
5043 	else if (strcmp(p, "150") == 0)
5044 		asy->asy_bidx = B150;
5045 	else if (strcmp(p, "300") == 0)
5046 		asy->asy_bidx = B300;
5047 	else if (strcmp(p, "600") == 0)
5048 		asy->asy_bidx = B600;
5049 	else if (strcmp(p, "1200") == 0)
5050 		asy->asy_bidx = B1200;
5051 	else if (strcmp(p, "2400") == 0)
5052 		asy->asy_bidx = B2400;
5053 	else if (strcmp(p, "4800") == 0)
5054 		asy->asy_bidx = B4800;
5055 	else if (strcmp(p, "9600") == 0)
5056 		asy->asy_bidx = B9600;
5057 	else if (strcmp(p, "19200") == 0)
5058 		asy->asy_bidx = B19200;
5059 	else if (strcmp(p, "38400") == 0)
5060 		asy->asy_bidx = B38400;
5061 	else if (strcmp(p, "57600") == 0)
5062 		asy->asy_bidx = B57600;
5063 	else if (strcmp(p, "115200") == 0)
5064 		asy->asy_bidx = B115200;
5065 	else
5066 		asy->asy_bidx = B9600;
5067 
5068 	asy->asy_cflag &= ~CBAUD;
5069 	if (asy->asy_bidx > CBAUD) {	/* > 38400 uses the CBAUDEXT bit */
5070 		asy->asy_cflag |= CBAUDEXT;
5071 		asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
5072 	} else {
5073 		asy->asy_cflag |= asy->asy_bidx;
5074 	}
5075 
5076 	ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
5077 
5078 	/* ---- Next item is data bits ---- */
5079 	p = p1;
5080 	if (p && (p1 = strchr(p, ',')) != 0)  {
5081 		*p1++ = '\0';
5082 	} else {
5083 		asy->asy_cflag |= ASY_LCR_BITS8;	/* add default bits */
5084 		return;
5085 	}
5086 	switch (*p) {
5087 		default:
5088 		case '8':
5089 			asy->asy_cflag |= CS8;
5090 			asy->asy_lcr = ASY_LCR_BITS8;
5091 			break;
5092 		case '7':
5093 			asy->asy_cflag |= CS7;
5094 			asy->asy_lcr = ASY_LCR_BITS7;
5095 			break;
5096 		case '6':
5097 			asy->asy_cflag |= CS6;
5098 			asy->asy_lcr = ASY_LCR_BITS6;
5099 			break;
5100 		case '5':
5101 			/* LINTED: CS5 is currently zero (but might change) */
5102 			asy->asy_cflag |= CS5;
5103 			asy->asy_lcr = ASY_LCR_BITS5;
5104 			break;
5105 	}
5106 
5107 	/* ---- Parity info ---- */
5108 	p = p1;
5109 	if (p && (p1 = strchr(p, ',')) != 0)  {
5110 		*p1++ = '\0';
5111 	} else {
5112 		return;
5113 	}
5114 	switch (*p)  {
5115 		default:
5116 		case 'n':
5117 			break;
5118 		case 'e':
5119 			asy->asy_cflag |= PARENB;
5120 			asy->asy_lcr |= ASY_LCR_PEN;
5121 			break;
5122 		case 'o':
5123 			asy->asy_cflag |= PARENB|PARODD;
5124 			asy->asy_lcr |= ASY_LCR_PEN | ASY_LCR_EPS;
5125 			break;
5126 	}
5127 
5128 	/* ---- Find stop bits ---- */
5129 	p = p1;
5130 	if (p && (p1 = strchr(p, ',')) != 0)  {
5131 		*p1++ = '\0';
5132 	} else {
5133 		return;
5134 	}
5135 	if (*p == '2') {
5136 		asy->asy_cflag |= CSTOPB;
5137 		asy->asy_lcr |= ASY_LCR_STB;
5138 	}
5139 
5140 	/* ---- handshake is next ---- */
5141 	p = p1;
5142 	if (p) {
5143 		if ((p1 = strchr(p, ',')) != 0)
5144 			*p1++ = '\0';
5145 
5146 		if (*p == 'h')
5147 			asy->asy_cflag |= CRTSCTS;
5148 		else if (*p == 's')
5149 			asy->asy_cflag |= CRTSXOFF;
5150 	}
5151 }
5152 
5153 /*
5154  * Check for abort character sequence
5155  */
5156 static boolean_t
abort_charseq_recognize(uchar_t ch)5157 abort_charseq_recognize(uchar_t ch)
5158 {
5159 	static int state = 0;
5160 #define	CNTRL(c) ((c)&037)
5161 	static char sequence[] = { '\r', '~', CNTRL('b') };
5162 
5163 	if (ch == sequence[state]) {
5164 		if (++state >= sizeof (sequence)) {
5165 			state = 0;
5166 			return (B_TRUE);
5167 		}
5168 	} else {
5169 		state = (ch == sequence[0]) ? 1 : 0;
5170 	}
5171 	return (B_FALSE);
5172 }
5173 
5174 /*
5175  * Flow control functions
5176  */
5177 /*
5178  * Software input flow control
5179  * This function can execute software input flow control sucessfully
5180  * at most of situations except that the line is in BREAK status
5181  * (timed and untimed break).
5182  * INPUT VALUE of onoff:
5183  *               FLOW_START means to send out a XON char
5184  *                          and clear SW input flow control flag.
5185  *               FLOW_STOP means to send out a XOFF char
5186  *                          and set SW input flow control flag.
5187  *               FLOW_CHECK means to check whether there is pending XON/XOFF
5188  *                          if it is true, send it out.
5189  * INPUT VALUE of type:
5190  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
5191  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
5192  *		 IN_FLOW_USER means flow control is due to user's commands
5193  * RETURN VALUE: B_FALSE means no flow control char is sent
5194  *               B_TRUE means one flow control char is sent
5195  */
5196 static boolean_t
async_flowcontrol_sw_input(struct asycom * asy,async_flowc_action onoff,int type)5197 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
5198     int type)
5199 {
5200 	struct asyncline *async = asy->asy_priv;
5201 	int rval = B_FALSE;
5202 
5203 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5204 
5205 	if (!(async->async_ttycommon.t_iflag & IXOFF))
5206 		return (rval);
5207 
5208 	/*
5209 	 * If we get this far, then we know IXOFF is set.
5210 	 */
5211 	switch (onoff) {
5212 	case FLOW_STOP:
5213 		async->async_inflow_source |= type;
5214 
5215 		/*
5216 		 * We'll send an XOFF character for each of up to
5217 		 * three different input flow control attempts to stop input.
5218 		 * If we already send out one XOFF, but FLOW_STOP comes again,
5219 		 * it seems that input flow control becomes more serious,
5220 		 * then send XOFF again.
5221 		 */
5222 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
5223 		    IN_FLOW_STREAMS | IN_FLOW_USER))
5224 			async->async_flags |= ASYNC_SW_IN_FLOW |
5225 			    ASYNC_SW_IN_NEEDED;
5226 		ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "input sflow stop, type = %x",
5227 		    async->async_inflow_source);
5228 		break;
5229 	case FLOW_START:
5230 		async->async_inflow_source &= ~type;
5231 		if (async->async_inflow_source == 0) {
5232 			async->async_flags = (async->async_flags &
5233 			    ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
5234 			ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "input sflow start");
5235 		}
5236 		break;
5237 	default:
5238 		break;
5239 	}
5240 
5241 	if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
5242 	    ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
5243 	    (asy_get(asy, ASY_LSR) & ASY_LSR_THRE)) {
5244 		/*
5245 		 * If we get this far, then we know we need to send out
5246 		 * XON or XOFF char.
5247 		 */
5248 		async->async_flags = (async->async_flags &
5249 		    ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
5250 		asy_put(asy, ASY_THR,
5251 		    async->async_flags & ASYNC_SW_IN_FLOW ?
5252 		    async->async_stopc : async->async_startc);
5253 		rval = B_TRUE;
5254 	}
5255 	return (rval);
5256 }
5257 
5258 /*
5259  * Software output flow control
5260  * This function can be executed sucessfully at any situation.
5261  * It does not handle HW, and just change the SW output flow control flag.
5262  * INPUT VALUE of onoff:
5263  *                 FLOW_START means to clear SW output flow control flag,
5264  *			also combine with HW output flow control status to
5265  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
5266  *                 FLOW_STOP means to set SW output flow control flag,
5267  *			also clear ASYNC_OUT_FLW_RESUME.
5268  */
5269 static void
async_flowcontrol_sw_output(struct asycom * asy,async_flowc_action onoff)5270 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
5271 {
5272 	struct asyncline *async = asy->asy_priv;
5273 
5274 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5275 
5276 	if (!(async->async_ttycommon.t_iflag & IXON))
5277 		return;
5278 
5279 	switch (onoff) {
5280 	case FLOW_STOP:
5281 		async->async_flags |= ASYNC_SW_OUT_FLW;
5282 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
5283 		ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "output sflow stop");
5284 		break;
5285 	case FLOW_START:
5286 		async->async_flags &= ~ASYNC_SW_OUT_FLW;
5287 		if (!(async->async_flags & ASYNC_HW_OUT_FLW))
5288 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
5289 		ASY_DPRINTF(asy, ASY_DEBUG_SFLOW, "output sflow start");
5290 		break;
5291 	default:
5292 		break;
5293 	}
5294 }
5295 
5296 /*
5297  * Hardware input flow control
5298  * This function can be executed sucessfully at any situation.
5299  * It directly changes RTS depending on input parameter onoff.
5300  * INPUT VALUE of onoff:
5301  *       FLOW_START means to clear HW input flow control flag,
5302  *                  and pull up RTS if it is low.
5303  *       FLOW_STOP means to set HW input flow control flag,
5304  *                  and low RTS if it is high.
5305  * INPUT VALUE of type:
5306  *		 IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
5307  *		 IN_FLOW_STREAMS means flow control is due to STREAMS
5308  *		 IN_FLOW_USER means flow control is due to user's commands
5309  */
5310 static void
async_flowcontrol_hw_input(struct asycom * asy,async_flowc_action onoff,int type)5311 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
5312     int type)
5313 {
5314 	uchar_t	mcr;
5315 	uchar_t	flag;
5316 	struct asyncline *async = asy->asy_priv;
5317 
5318 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5319 
5320 	if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
5321 		return;
5322 
5323 	switch (onoff) {
5324 	case FLOW_STOP:
5325 		async->async_inflow_source |= type;
5326 		if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
5327 		    IN_FLOW_STREAMS | IN_FLOW_USER))
5328 			async->async_flags |= ASYNC_HW_IN_FLOW;
5329 		ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "input hflow stop, type = %x",
5330 		    async->async_inflow_source);
5331 		break;
5332 	case FLOW_START:
5333 		async->async_inflow_source &= ~type;
5334 		if (async->async_inflow_source == 0) {
5335 			async->async_flags &= ~ASYNC_HW_IN_FLOW;
5336 			ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "input hflow start");
5337 		}
5338 		break;
5339 	default:
5340 		break;
5341 	}
5342 	mcr = asy_get(asy, ASY_MCR);
5343 	flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : ASY_MCR_RTS;
5344 
5345 	if (((mcr ^ flag) & ASY_MCR_RTS) != 0) {
5346 		asy_put(asy, ASY_MCR, (mcr ^ ASY_MCR_RTS));
5347 	}
5348 }
5349 
5350 /*
5351  * Hardware output flow control
5352  * This function can execute HW output flow control sucessfully
5353  * at any situation.
5354  * It doesn't really change RTS, and just change
5355  * HW output flow control flag depending on CTS status.
5356  * INPUT VALUE of onoff:
5357  *                FLOW_START means to clear HW output flow control flag.
5358  *			also combine with SW output flow control status to
5359  *			determine if we need to set ASYNC_OUT_FLW_RESUME.
5360  *                FLOW_STOP means to set HW output flow control flag.
5361  *			also clear ASYNC_OUT_FLW_RESUME.
5362  */
5363 static void
async_flowcontrol_hw_output(struct asycom * asy,async_flowc_action onoff)5364 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
5365 {
5366 	struct asyncline *async = asy->asy_priv;
5367 
5368 	ASSERT(mutex_owned(&asy->asy_excl_hi));
5369 
5370 	if (!(async->async_ttycommon.t_cflag & CRTSCTS))
5371 		return;
5372 
5373 	switch (onoff) {
5374 	case FLOW_STOP:
5375 		async->async_flags |= ASYNC_HW_OUT_FLW;
5376 		async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
5377 		ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "output hflow stop");
5378 		break;
5379 	case FLOW_START:
5380 		async->async_flags &= ~ASYNC_HW_OUT_FLW;
5381 		if (!(async->async_flags & ASYNC_SW_OUT_FLW))
5382 			async->async_flags |= ASYNC_OUT_FLW_RESUME;
5383 		ASY_DPRINTF(asy, ASY_DEBUG_HFLOW, "output hflow start");
5384 		break;
5385 	default:
5386 		break;
5387 	}
5388 }
5389 
5390 /*
5391  * quiesce(9E) entry point.
5392  *
5393  * This function is called when the system is single-threaded at high
5394  * PIL with preemption disabled. Therefore, this function must not be
5395  * blocked.
5396  *
5397  * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
5398  * DDI_FAILURE indicates an error condition and should almost never happen.
5399  */
5400 static int
asyquiesce(dev_info_t * devi)5401 asyquiesce(dev_info_t *devi)
5402 {
5403 	int instance;
5404 	struct asycom *asy;
5405 
5406 	instance = ddi_get_instance(devi);	/* find out which unit */
5407 
5408 	asy = ddi_get_soft_state(asy_soft_state, instance);
5409 	if (asy == NULL)
5410 		return (DDI_FAILURE);
5411 
5412 	asy_disable_interrupts(asy, ASY_IER_ALL);
5413 
5414 	/* Flush the FIFOs */
5415 	asy_reset_fifo(asy, ASY_FCR_THR_FL | ASY_FCR_RHR_FL);
5416 
5417 	return (DDI_SUCCESS);
5418 }
5419