1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 /*
38 * External virtual filesystem routines
39 */
40
41 #include "opt_ddb.h"
42 #include "opt_watchdog.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/asan.h>
47 #include <sys/bio.h>
48 #include <sys/buf.h>
49 #include <sys/capsicum.h>
50 #include <sys/condvar.h>
51 #include <sys/conf.h>
52 #include <sys/counter.h>
53 #include <sys/dirent.h>
54 #include <sys/event.h>
55 #include <sys/eventhandler.h>
56 #include <sys/extattr.h>
57 #include <sys/file.h>
58 #include <sys/fcntl.h>
59 #include <sys/inotify.h>
60 #include <sys/jail.h>
61 #include <sys/kdb.h>
62 #include <sys/kernel.h>
63 #include <sys/kthread.h>
64 #include <sys/ktr.h>
65 #include <sys/limits.h>
66 #include <sys/lockf.h>
67 #include <sys/malloc.h>
68 #include <sys/mount.h>
69 #include <sys/namei.h>
70 #include <sys/pctrie.h>
71 #include <sys/priv.h>
72 #include <sys/reboot.h>
73 #include <sys/refcount.h>
74 #include <sys/rwlock.h>
75 #include <sys/sched.h>
76 #include <sys/sleepqueue.h>
77 #include <sys/smr.h>
78 #include <sys/smp.h>
79 #include <sys/stat.h>
80 #include <sys/stdarg.h>
81 #include <sys/sysctl.h>
82 #include <sys/syslog.h>
83 #include <sys/user.h>
84 #include <sys/vmmeter.h>
85 #include <sys/vnode.h>
86 #include <sys/watchdog.h>
87
88 #include <security/mac/mac_framework.h>
89
90 #include <vm/vm.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_extern.h>
93 #include <vm/pmap.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_page.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/uma.h>
99
100 #ifdef DDB
101 #include <ddb/ddb.h>
102 #endif
103
104 static void delmntque(struct vnode *vp);
105 static int flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
106 int slpflag, int slptimeo);
107 static void syncer_shutdown(void *arg, int howto);
108 static int vtryrecycle(struct vnode *vp, bool isvnlru);
109 static void v_init_counters(struct vnode *);
110 static void vn_seqc_init(struct vnode *);
111 static void vn_seqc_write_end_free(struct vnode *vp);
112 static void vgonel(struct vnode *);
113 static bool vhold_recycle_free(struct vnode *);
114 static void vdropl_recycle(struct vnode *vp);
115 static void vdrop_recycle(struct vnode *vp);
116 static void vfs_knllock(void *arg);
117 static void vfs_knlunlock(void *arg);
118 static void vfs_knl_assert_lock(void *arg, int what);
119 static void destroy_vpollinfo(struct vpollinfo *vi);
120 static int v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
121 daddr_t startlbn, daddr_t endlbn);
122 static void vnlru_recalc(void);
123
124 static SYSCTL_NODE(_vfs, OID_AUTO, vnode, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
125 "vnode configuration and statistics");
126 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
127 "vnode configuration");
128 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
129 "vnode statistics");
130 static SYSCTL_NODE(_vfs_vnode, OID_AUTO, vnlru, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
131 "vnode recycling");
132
133 /*
134 * Number of vnodes in existence. Increased whenever getnewvnode()
135 * allocates a new vnode, decreased in vdropl() for VIRF_DOOMED vnode.
136 */
137 static u_long __exclusive_cache_line numvnodes;
138
139 SYSCTL_ULONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0,
140 "Number of vnodes in existence (legacy)");
141 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, count, CTLFLAG_RD, &numvnodes, 0,
142 "Number of vnodes in existence");
143
144 static counter_u64_t vnodes_created;
145 SYSCTL_COUNTER_U64(_vfs, OID_AUTO, vnodes_created, CTLFLAG_RD, &vnodes_created,
146 "Number of vnodes created by getnewvnode (legacy)");
147 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, created, CTLFLAG_RD, &vnodes_created,
148 "Number of vnodes created by getnewvnode");
149
150 /*
151 * Conversion tables for conversion from vnode types to inode formats
152 * and back.
153 */
154 __enum_uint8(vtype) iftovt_tab[16] = {
155 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
156 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VNON
157 };
158 int vttoif_tab[10] = {
159 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
160 S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
161 };
162
163 /*
164 * List of allocates vnodes in the system.
165 */
166 static TAILQ_HEAD(freelst, vnode) vnode_list;
167 static struct vnode *vnode_list_free_marker;
168 static struct vnode *vnode_list_reclaim_marker;
169
170 /*
171 * "Free" vnode target. Free vnodes are rarely completely free, but are
172 * just ones that are cheap to recycle. Usually they are for files which
173 * have been stat'd but not read; these usually have inode and namecache
174 * data attached to them. This target is the preferred minimum size of a
175 * sub-cache consisting mostly of such files. The system balances the size
176 * of this sub-cache with its complement to try to prevent either from
177 * thrashing while the other is relatively inactive. The targets express
178 * a preference for the best balance.
179 *
180 * "Above" this target there are 2 further targets (watermarks) related
181 * to recyling of free vnodes. In the best-operating case, the cache is
182 * exactly full, the free list has size between vlowat and vhiwat above the
183 * free target, and recycling from it and normal use maintains this state.
184 * Sometimes the free list is below vlowat or even empty, but this state
185 * is even better for immediate use provided the cache is not full.
186 * Otherwise, vnlru_proc() runs to reclaim enough vnodes (usually non-free
187 * ones) to reach one of these states. The watermarks are currently hard-
188 * coded as 4% and 9% of the available space higher. These and the default
189 * of 25% for wantfreevnodes are too large if the memory size is large.
190 * E.g., 9% of 75% of MAXVNODES is more than 566000 vnodes to reclaim
191 * whenever vnlru_proc() becomes active.
192 */
193 static long wantfreevnodes;
194 static long __exclusive_cache_line freevnodes;
195 static long freevnodes_old;
196
197 static u_long recycles_count;
198 SYSCTL_ULONG(_vfs, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS, &recycles_count, 0,
199 "Number of vnodes recycled to meet vnode cache targets (legacy)");
200 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles, CTLFLAG_RD | CTLFLAG_STATS,
201 &recycles_count, 0,
202 "Number of vnodes recycled to meet vnode cache targets");
203
204 static u_long recycles_free_count;
205 SYSCTL_ULONG(_vfs, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
206 &recycles_free_count, 0,
207 "Number of free vnodes recycled to meet vnode cache targets (legacy)");
208 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, recycles_free, CTLFLAG_RD | CTLFLAG_STATS,
209 &recycles_free_count, 0,
210 "Number of free vnodes recycled to meet vnode cache targets");
211
212 static counter_u64_t direct_recycles_free_count;
213 SYSCTL_COUNTER_U64(_vfs_vnode_vnlru, OID_AUTO, direct_recycles_free, CTLFLAG_RD,
214 &direct_recycles_free_count,
215 "Number of free vnodes recycled by vn_alloc callers to meet vnode cache targets");
216
217 static counter_u64_t vnode_skipped_requeues;
218 SYSCTL_COUNTER_U64(_vfs_vnode_stats, OID_AUTO, skipped_requeues, CTLFLAG_RD, &vnode_skipped_requeues,
219 "Number of times LRU requeue was skipped due to lock contention");
220
221 static __read_mostly bool vnode_can_skip_requeue;
222 SYSCTL_BOOL(_vfs_vnode_param, OID_AUTO, can_skip_requeue, CTLFLAG_RW,
223 &vnode_can_skip_requeue, 0, "Is LRU requeue skippable");
224
225 static u_long deferred_inact;
226 SYSCTL_ULONG(_vfs, OID_AUTO, deferred_inact, CTLFLAG_RD,
227 &deferred_inact, 0, "Number of times inactive processing was deferred");
228
229 /* To keep more than one thread at a time from running vfs_getnewfsid */
230 static struct mtx mntid_mtx;
231
232 /*
233 * Lock for any access to the following:
234 * vnode_list
235 * numvnodes
236 * freevnodes
237 */
238 static struct mtx __exclusive_cache_line vnode_list_mtx;
239
240 /* Publicly exported FS */
241 struct nfs_public nfs_pub;
242
243 static uma_zone_t buf_trie_zone;
244 static smr_t buf_trie_smr;
245
246 /* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
247 static uma_zone_t vnode_zone;
248 MALLOC_DEFINE(M_VNODEPOLL, "VN POLL", "vnode poll");
249
250 __read_frequently smr_t vfs_smr;
251
252 /*
253 * The workitem queue.
254 *
255 * It is useful to delay writes of file data and filesystem metadata
256 * for tens of seconds so that quickly created and deleted files need
257 * not waste disk bandwidth being created and removed. To realize this,
258 * we append vnodes to a "workitem" queue. When running with a soft
259 * updates implementation, most pending metadata dependencies should
260 * not wait for more than a few seconds. Thus, mounted on block devices
261 * are delayed only about a half the time that file data is delayed.
262 * Similarly, directory updates are more critical, so are only delayed
263 * about a third the time that file data is delayed. Thus, there are
264 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
265 * one each second (driven off the filesystem syncer process). The
266 * syncer_delayno variable indicates the next queue that is to be processed.
267 * Items that need to be processed soon are placed in this queue:
268 *
269 * syncer_workitem_pending[syncer_delayno]
270 *
271 * A delay of fifteen seconds is done by placing the request fifteen
272 * entries later in the queue:
273 *
274 * syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
275 *
276 */
277 static int syncer_delayno;
278 static long syncer_mask;
279 LIST_HEAD(synclist, bufobj);
280 static struct synclist *syncer_workitem_pending;
281 /*
282 * The sync_mtx protects:
283 * bo->bo_synclist
284 * sync_vnode_count
285 * syncer_delayno
286 * syncer_state
287 * syncer_workitem_pending
288 * syncer_worklist_len
289 * rushjob
290 */
291 static struct mtx sync_mtx;
292 static struct cv sync_wakeup;
293
294 #define SYNCER_MAXDELAY 32
295 static int syncer_maxdelay = SYNCER_MAXDELAY; /* maximum delay time */
296 static int syncdelay = 30; /* max time to delay syncing data */
297 static int filedelay = 30; /* time to delay syncing files */
298 SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0,
299 "Time to delay syncing files (in seconds)");
300 static int dirdelay = 29; /* time to delay syncing directories */
301 SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0,
302 "Time to delay syncing directories (in seconds)");
303 static int metadelay = 28; /* time to delay syncing metadata */
304 SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0,
305 "Time to delay syncing metadata (in seconds)");
306 static int rushjob; /* number of slots to run ASAP */
307 static int stat_rush_requests; /* number of times I/O speeded up */
308 SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0,
309 "Number of times I/O speeded up (rush requests)");
310
311 #define VDBATCH_SIZE 8
312 struct vdbatch {
313 u_int index;
314 struct mtx lock;
315 struct vnode *tab[VDBATCH_SIZE];
316 };
317 DPCPU_DEFINE_STATIC(struct vdbatch, vd);
318
319 static void vdbatch_dequeue(struct vnode *vp);
320
321 /*
322 * The syncer will require at least SYNCER_MAXDELAY iterations to shutdown;
323 * we probably don't want to pause for the whole second each time.
324 */
325 #define SYNCER_SHUTDOWN_SPEEDUP 32
326 static int sync_vnode_count;
327 static int syncer_worklist_len;
328 static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
329 syncer_state;
330
331 /* Target for maximum number of vnodes. */
332 u_long desiredvnodes;
333 static u_long gapvnodes; /* gap between wanted and desired */
334 static u_long vhiwat; /* enough extras after expansion */
335 static u_long vlowat; /* minimal extras before expansion */
336 static bool vstir; /* nonzero to stir non-free vnodes */
337 static volatile int vsmalltrigger = 8; /* pref to keep if > this many pages */
338
339 static u_long vnlru_read_freevnodes(void);
340
341 /*
342 * Note that no attempt is made to sanitize these parameters.
343 */
344 static int
sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)345 sysctl_maxvnodes(SYSCTL_HANDLER_ARGS)
346 {
347 u_long val;
348 int error;
349
350 val = desiredvnodes;
351 error = sysctl_handle_long(oidp, &val, 0, req);
352 if (error != 0 || req->newptr == NULL)
353 return (error);
354
355 if (val == desiredvnodes)
356 return (0);
357 mtx_lock(&vnode_list_mtx);
358 desiredvnodes = val;
359 wantfreevnodes = desiredvnodes / 4;
360 vnlru_recalc();
361 mtx_unlock(&vnode_list_mtx);
362 /*
363 * XXX There is no protection against multiple threads changing
364 * desiredvnodes at the same time. Locking above only helps vnlru and
365 * getnewvnode.
366 */
367 vfs_hash_changesize(desiredvnodes);
368 cache_changesize(desiredvnodes);
369 return (0);
370 }
371
372 SYSCTL_PROC(_kern, KERN_MAXVNODES, maxvnodes,
373 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
374 "LU", "Target for maximum number of vnodes (legacy)");
375 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, limit,
376 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_maxvnodes,
377 "LU", "Target for maximum number of vnodes");
378
379 static int
sysctl_freevnodes(SYSCTL_HANDLER_ARGS)380 sysctl_freevnodes(SYSCTL_HANDLER_ARGS)
381 {
382 u_long rfreevnodes;
383
384 rfreevnodes = vnlru_read_freevnodes();
385 return (sysctl_handle_long(oidp, &rfreevnodes, 0, req));
386 }
387
388 SYSCTL_PROC(_vfs, OID_AUTO, freevnodes,
389 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
390 "LU", "Number of \"free\" vnodes (legacy)");
391 SYSCTL_PROC(_vfs_vnode_stats, OID_AUTO, free,
392 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_freevnodes,
393 "LU", "Number of \"free\" vnodes");
394
395 static int
sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)396 sysctl_wantfreevnodes(SYSCTL_HANDLER_ARGS)
397 {
398 u_long val;
399 int error;
400
401 val = wantfreevnodes;
402 error = sysctl_handle_long(oidp, &val, 0, req);
403 if (error != 0 || req->newptr == NULL)
404 return (error);
405
406 if (val == wantfreevnodes)
407 return (0);
408 mtx_lock(&vnode_list_mtx);
409 wantfreevnodes = val;
410 vnlru_recalc();
411 mtx_unlock(&vnode_list_mtx);
412 return (0);
413 }
414
415 SYSCTL_PROC(_vfs, OID_AUTO, wantfreevnodes,
416 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
417 "LU", "Target for minimum number of \"free\" vnodes (legacy)");
418 SYSCTL_PROC(_vfs_vnode_param, OID_AUTO, wantfree,
419 CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_wantfreevnodes,
420 "LU", "Target for minimum number of \"free\" vnodes");
421
422 static int vnlru_nowhere;
423 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, failed_runs, CTLFLAG_RD | CTLFLAG_STATS,
424 &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");
425
426 static int
sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)427 sysctl_try_reclaim_vnode(SYSCTL_HANDLER_ARGS)
428 {
429 struct vnode *vp;
430 struct nameidata nd;
431 char *buf;
432 unsigned long ndflags;
433 int error;
434
435 if (req->newptr == NULL)
436 return (EINVAL);
437 if (req->newlen >= PATH_MAX)
438 return (E2BIG);
439
440 buf = malloc(PATH_MAX, M_TEMP, M_WAITOK);
441 error = SYSCTL_IN(req, buf, req->newlen);
442 if (error != 0)
443 goto out;
444
445 buf[req->newlen] = '\0';
446
447 ndflags = LOCKLEAF | NOFOLLOW | AUDITVNODE1;
448 NDINIT(&nd, LOOKUP, ndflags, UIO_SYSSPACE, buf);
449 if ((error = namei(&nd)) != 0)
450 goto out;
451 vp = nd.ni_vp;
452
453 if (VN_IS_DOOMED(vp)) {
454 /*
455 * This vnode is being recycled. Return != 0 to let the caller
456 * know that the sysctl had no effect. Return EAGAIN because a
457 * subsequent call will likely succeed (since namei will create
458 * a new vnode if necessary)
459 */
460 error = EAGAIN;
461 goto putvnode;
462 }
463
464 vgone(vp);
465 putvnode:
466 vput(vp);
467 NDFREE_PNBUF(&nd);
468 out:
469 free(buf, M_TEMP);
470 return (error);
471 }
472
473 static int
sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)474 sysctl_ftry_reclaim_vnode(SYSCTL_HANDLER_ARGS)
475 {
476 struct thread *td = curthread;
477 struct vnode *vp;
478 struct file *fp;
479 int error;
480 int fd;
481
482 if (req->newptr == NULL)
483 return (EBADF);
484
485 error = sysctl_handle_int(oidp, &fd, 0, req);
486 if (error != 0)
487 return (error);
488 error = getvnode(curthread, fd, &cap_fcntl_rights, &fp);
489 if (error != 0)
490 return (error);
491 vp = fp->f_vnode;
492
493 error = vn_lock(vp, LK_EXCLUSIVE);
494 if (error != 0)
495 goto drop;
496
497 vgone(vp);
498 VOP_UNLOCK(vp);
499 drop:
500 fdrop(fp, td);
501 return (error);
502 }
503
504 SYSCTL_PROC(_debug, OID_AUTO, try_reclaim_vnode,
505 CTLTYPE_STRING | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
506 sysctl_try_reclaim_vnode, "A", "Try to reclaim a vnode by its pathname");
507 SYSCTL_PROC(_debug, OID_AUTO, ftry_reclaim_vnode,
508 CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_WR, NULL, 0,
509 sysctl_ftry_reclaim_vnode, "I",
510 "Try to reclaim a vnode by its file descriptor");
511
512 /* Shift count for (uintptr_t)vp to initialize vp->v_hash. */
513 #define vnsz2log 8
514 #ifndef DEBUG_LOCKS
515 _Static_assert(sizeof(struct vnode) >= 1UL << vnsz2log &&
516 sizeof(struct vnode) < 1UL << (vnsz2log + 1),
517 "vnsz2log needs to be updated");
518 #endif
519
520 /*
521 * Support for the bufobj clean & dirty pctrie.
522 */
523 static void *
buf_trie_alloc(struct pctrie * ptree)524 buf_trie_alloc(struct pctrie *ptree)
525 {
526 return (uma_zalloc_smr(buf_trie_zone, M_NOWAIT));
527 }
528
529 static void
buf_trie_free(struct pctrie * ptree,void * node)530 buf_trie_free(struct pctrie *ptree, void *node)
531 {
532 uma_zfree_smr(buf_trie_zone, node);
533 }
534 PCTRIE_DEFINE_SMR(BUF, buf, b_lblkno, buf_trie_alloc, buf_trie_free,
535 buf_trie_smr);
536
537 /*
538 * Lookup the next element greater than or equal to lblkno, accounting for the
539 * fact that, for pctries, negative values are greater than nonnegative ones.
540 */
541 static struct buf *
buf_lookup_ge(struct bufv * bv,daddr_t lblkno)542 buf_lookup_ge(struct bufv *bv, daddr_t lblkno)
543 {
544 struct buf *bp;
545
546 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, lblkno);
547 if (bp == NULL && lblkno < 0)
548 bp = BUF_PCTRIE_LOOKUP_GE(&bv->bv_root, 0);
549 if (bp != NULL && bp->b_lblkno < lblkno)
550 bp = NULL;
551 return (bp);
552 }
553
554 /*
555 * Insert bp, and find the next element smaller than bp, accounting for the fact
556 * that, for pctries, negative values are greater than nonnegative ones.
557 */
558 static int
buf_insert_lookup_le(struct bufv * bv,struct buf * bp,struct buf ** n)559 buf_insert_lookup_le(struct bufv *bv, struct buf *bp, struct buf **n)
560 {
561 int error;
562
563 error = BUF_PCTRIE_INSERT_LOOKUP_LE(&bv->bv_root, bp, n);
564 if (error != EEXIST) {
565 if (*n == NULL && bp->b_lblkno >= 0)
566 *n = BUF_PCTRIE_LOOKUP_LE(&bv->bv_root, ~0L);
567 if (*n != NULL && (*n)->b_lblkno >= bp->b_lblkno)
568 *n = NULL;
569 }
570 return (error);
571 }
572
573 /*
574 * Initialize the vnode management data structures.
575 *
576 * Reevaluate the following cap on the number of vnodes after the physical
577 * memory size exceeds 512GB. In the limit, as the physical memory size
578 * grows, the ratio of the memory size in KB to vnodes approaches 64:1.
579 */
580 #ifndef MAXVNODES_MAX
581 #define MAXVNODES_MAX (512UL * 1024 * 1024 / 64) /* 8M */
582 #endif
583
584 static MALLOC_DEFINE(M_VNODE_MARKER, "vnodemarker", "vnode marker");
585
586 static struct vnode *
vn_alloc_marker(struct mount * mp)587 vn_alloc_marker(struct mount *mp)
588 {
589 struct vnode *vp;
590
591 vp = malloc(sizeof(struct vnode), M_VNODE_MARKER, M_WAITOK | M_ZERO);
592 vp->v_type = VMARKER;
593 vp->v_mount = mp;
594
595 return (vp);
596 }
597
598 static void
vn_free_marker(struct vnode * vp)599 vn_free_marker(struct vnode *vp)
600 {
601
602 MPASS(vp->v_type == VMARKER);
603 free(vp, M_VNODE_MARKER);
604 }
605
606 #ifdef KASAN
607 static int
vnode_ctor(void * mem,int size,void * arg __unused,int flags __unused)608 vnode_ctor(void *mem, int size, void *arg __unused, int flags __unused)
609 {
610 kasan_mark(mem, size, roundup2(size, UMA_ALIGN_PTR + 1), 0);
611 return (0);
612 }
613
614 static void
vnode_dtor(void * mem,int size,void * arg __unused)615 vnode_dtor(void *mem, int size, void *arg __unused)
616 {
617 size_t end1, end2, off1, off2;
618
619 _Static_assert(offsetof(struct vnode, v_vnodelist) <
620 offsetof(struct vnode, v_dbatchcpu),
621 "KASAN marks require updating");
622
623 off1 = offsetof(struct vnode, v_vnodelist);
624 off2 = offsetof(struct vnode, v_dbatchcpu);
625 end1 = off1 + sizeof(((struct vnode *)NULL)->v_vnodelist);
626 end2 = off2 + sizeof(((struct vnode *)NULL)->v_dbatchcpu);
627
628 /*
629 * Access to the v_vnodelist and v_dbatchcpu fields are permitted even
630 * after the vnode has been freed. Try to get some KASAN coverage by
631 * marking everything except those two fields as invalid. Because
632 * KASAN's tracking is not byte-granular, any preceding fields sharing
633 * the same 8-byte aligned word must also be marked valid.
634 */
635
636 /* Handle the area from the start until v_vnodelist... */
637 off1 = rounddown2(off1, KASAN_SHADOW_SCALE);
638 kasan_mark(mem, off1, off1, KASAN_UMA_FREED);
639
640 /* ... then the area between v_vnodelist and v_dbatchcpu ... */
641 off1 = roundup2(end1, KASAN_SHADOW_SCALE);
642 off2 = rounddown2(off2, KASAN_SHADOW_SCALE);
643 if (off2 > off1)
644 kasan_mark((void *)((char *)mem + off1), off2 - off1,
645 off2 - off1, KASAN_UMA_FREED);
646
647 /* ... and finally the area from v_dbatchcpu to the end. */
648 off2 = roundup2(end2, KASAN_SHADOW_SCALE);
649 kasan_mark((void *)((char *)mem + off2), size - off2, size - off2,
650 KASAN_UMA_FREED);
651 }
652 #endif /* KASAN */
653
654 /*
655 * Initialize a vnode as it first enters the zone.
656 */
657 static int
vnode_init(void * mem,int size,int flags)658 vnode_init(void *mem, int size, int flags)
659 {
660 struct vnode *vp;
661
662 vp = mem;
663 bzero(vp, size);
664 /*
665 * Setup locks.
666 */
667 vp->v_vnlock = &vp->v_lock;
668 mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
669 /*
670 * By default, don't allow shared locks unless filesystems opt-in.
671 */
672 lockinit(vp->v_vnlock, PVFS, "vnode", VLKTIMEOUT,
673 LK_NOSHARE | LK_IS_VNODE);
674 /*
675 * Initialize bufobj.
676 */
677 bufobj_init(&vp->v_bufobj, vp);
678 /*
679 * Initialize namecache.
680 */
681 cache_vnode_init(vp);
682 /*
683 * Initialize rangelocks.
684 */
685 rangelock_init(&vp->v_rl);
686
687 vp->v_dbatchcpu = NOCPU;
688
689 vp->v_state = VSTATE_DEAD;
690
691 /*
692 * Check vhold_recycle_free for an explanation.
693 */
694 vp->v_holdcnt = VHOLD_NO_SMR;
695 vp->v_type = VNON;
696 mtx_lock(&vnode_list_mtx);
697 TAILQ_INSERT_BEFORE(vnode_list_free_marker, vp, v_vnodelist);
698 mtx_unlock(&vnode_list_mtx);
699 return (0);
700 }
701
702 /*
703 * Free a vnode when it is cleared from the zone.
704 */
705 static void
vnode_fini(void * mem,int size)706 vnode_fini(void *mem, int size)
707 {
708 struct vnode *vp;
709 struct bufobj *bo;
710
711 vp = mem;
712 vdbatch_dequeue(vp);
713 mtx_lock(&vnode_list_mtx);
714 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
715 mtx_unlock(&vnode_list_mtx);
716 rangelock_destroy(&vp->v_rl);
717 lockdestroy(vp->v_vnlock);
718 mtx_destroy(&vp->v_interlock);
719 bo = &vp->v_bufobj;
720 rw_destroy(BO_LOCKPTR(bo));
721
722 kasan_mark(mem, size, size, 0);
723 }
724
725 /*
726 * Provide the size of NFS nclnode and NFS fh for calculation of the
727 * vnode memory consumption. The size is specified directly to
728 * eliminate dependency on NFS-private header.
729 *
730 * Other filesystems may use bigger or smaller (like UFS and ZFS)
731 * private inode data, but the NFS-based estimation is ample enough.
732 * Still, we care about differences in the size between 64- and 32-bit
733 * platforms.
734 *
735 * Namecache structure size is heuristically
736 * sizeof(struct namecache_ts) + CACHE_PATH_CUTOFF + 1.
737 */
738 #ifdef _LP64
739 #define NFS_NCLNODE_SZ (528 + 64)
740 #define NC_SZ 148
741 #else
742 #define NFS_NCLNODE_SZ (360 + 32)
743 #define NC_SZ 92
744 #endif
745
746 static void
vntblinit(void * dummy __unused)747 vntblinit(void *dummy __unused)
748 {
749 struct vdbatch *vd;
750 uma_ctor ctor;
751 uma_dtor dtor;
752 int cpu, physvnodes, virtvnodes;
753
754 /*
755 * 'desiredvnodes' is the minimum of a function of the physical memory
756 * size and another of the kernel heap size (UMA limit, a portion of the
757 * KVA).
758 *
759 * Currently, on 64-bit platforms, 'desiredvnodes' is set to
760 * 'virtvnodes' up to a physical memory cutoff of ~1722MB, after which
761 * 'physvnodes' applies instead. With the current automatic tuning for
762 * 'maxfiles' (32 files/MB), 'desiredvnodes' is always greater than it.
763 */
764 physvnodes = maxproc + pgtok(vm_cnt.v_page_count) / 32 +
765 min(98304 * 16, pgtok(vm_cnt.v_page_count)) / 32;
766 virtvnodes = vm_kmem_size / (10 * (sizeof(struct vm_object) +
767 sizeof(struct vnode) + NC_SZ * ncsizefactor + NFS_NCLNODE_SZ));
768 desiredvnodes = min(physvnodes, virtvnodes);
769 if (desiredvnodes > MAXVNODES_MAX) {
770 if (bootverbose)
771 printf("Reducing kern.maxvnodes %lu -> %lu\n",
772 desiredvnodes, MAXVNODES_MAX);
773 desiredvnodes = MAXVNODES_MAX;
774 }
775 wantfreevnodes = desiredvnodes / 4;
776 mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
777 TAILQ_INIT(&vnode_list);
778 mtx_init(&vnode_list_mtx, "vnode_list", NULL, MTX_DEF);
779 /*
780 * The lock is taken to appease WITNESS.
781 */
782 mtx_lock(&vnode_list_mtx);
783 vnlru_recalc();
784 mtx_unlock(&vnode_list_mtx);
785 vnode_list_free_marker = vn_alloc_marker(NULL);
786 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_free_marker, v_vnodelist);
787 vnode_list_reclaim_marker = vn_alloc_marker(NULL);
788 TAILQ_INSERT_HEAD(&vnode_list, vnode_list_reclaim_marker, v_vnodelist);
789
790 #ifdef KASAN
791 ctor = vnode_ctor;
792 dtor = vnode_dtor;
793 #else
794 ctor = NULL;
795 dtor = NULL;
796 #endif
797 vnode_zone = uma_zcreate("VNODE", sizeof(struct vnode), ctor, dtor,
798 vnode_init, vnode_fini, UMA_ALIGN_PTR, UMA_ZONE_NOKASAN);
799 uma_zone_set_smr(vnode_zone, vfs_smr);
800
801 /*
802 * Preallocate enough nodes to support one-per buf so that
803 * we can not fail an insert. reassignbuf() callers can not
804 * tolerate the insertion failure.
805 */
806 buf_trie_zone = uma_zcreate("BUF TRIE", pctrie_node_size(),
807 NULL, NULL, pctrie_zone_init, NULL, UMA_ALIGN_PTR,
808 UMA_ZONE_NOFREE | UMA_ZONE_SMR);
809 buf_trie_smr = uma_zone_get_smr(buf_trie_zone);
810 uma_prealloc(buf_trie_zone, nbuf);
811
812 vnodes_created = counter_u64_alloc(M_WAITOK);
813 direct_recycles_free_count = counter_u64_alloc(M_WAITOK);
814 vnode_skipped_requeues = counter_u64_alloc(M_WAITOK);
815
816 /*
817 * Initialize the filesystem syncer.
818 */
819 syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
820 &syncer_mask);
821 syncer_maxdelay = syncer_mask + 1;
822 mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
823 cv_init(&sync_wakeup, "syncer");
824
825 CPU_FOREACH(cpu) {
826 vd = DPCPU_ID_PTR((cpu), vd);
827 bzero(vd, sizeof(*vd));
828 mtx_init(&vd->lock, "vdbatch", NULL, MTX_DEF);
829 }
830 }
831 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL);
832
833 /*
834 * Mark a mount point as busy. Used to synchronize access and to delay
835 * unmounting. Eventually, mountlist_mtx is not released on failure.
836 *
837 * vfs_busy() is a custom lock, it can block the caller.
838 * vfs_busy() only sleeps if the unmount is active on the mount point.
839 * For a mountpoint mp, vfs_busy-enforced lock is before lock of any
840 * vnode belonging to mp.
841 *
842 * Lookup uses vfs_busy() to traverse mount points.
843 * root fs var fs
844 * / vnode lock A / vnode lock (/var) D
845 * /var vnode lock B /log vnode lock(/var/log) E
846 * vfs_busy lock C vfs_busy lock F
847 *
848 * Within each file system, the lock order is C->A->B and F->D->E.
849 *
850 * When traversing across mounts, the system follows that lock order:
851 *
852 * C->A->B
853 * |
854 * +->F->D->E
855 *
856 * The lookup() process for namei("/var") illustrates the process:
857 * 1. VOP_LOOKUP() obtains B while A is held
858 * 2. vfs_busy() obtains a shared lock on F while A and B are held
859 * 3. vput() releases lock on B
860 * 4. vput() releases lock on A
861 * 5. VFS_ROOT() obtains lock on D while shared lock on F is held
862 * 6. vfs_unbusy() releases shared lock on F
863 * 7. vn_lock() obtains lock on deadfs vnode vp_crossmp instead of A.
864 * Attempt to lock A (instead of vp_crossmp) while D is held would
865 * violate the global order, causing deadlocks.
866 *
867 * dounmount() locks B while F is drained. Note that for stacked
868 * filesystems, D and B in the example above may be the same lock,
869 * which introdues potential lock order reversal deadlock between
870 * dounmount() and step 5 above. These filesystems may avoid the LOR
871 * by setting VV_CROSSLOCK on the covered vnode so that lock B will
872 * remain held until after step 5.
873 */
874 int
vfs_busy(struct mount * mp,int flags)875 vfs_busy(struct mount *mp, int flags)
876 {
877 struct mount_pcpu *mpcpu;
878
879 MPASS((flags & ~MBF_MASK) == 0);
880 CTR3(KTR_VFS, "%s: mp %p with flags %d", __func__, mp, flags);
881
882 if (vfs_op_thread_enter(mp, mpcpu)) {
883 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
884 MPASS((mp->mnt_kern_flag & MNTK_UNMOUNT) == 0);
885 MPASS((mp->mnt_kern_flag & MNTK_REFEXPIRE) == 0);
886 vfs_mp_count_add_pcpu(mpcpu, ref, 1);
887 vfs_mp_count_add_pcpu(mpcpu, lockref, 1);
888 vfs_op_thread_exit(mp, mpcpu);
889 if (flags & MBF_MNTLSTLOCK)
890 mtx_unlock(&mountlist_mtx);
891 return (0);
892 }
893
894 MNT_ILOCK(mp);
895 vfs_assert_mount_counters(mp);
896 MNT_REF(mp);
897 /*
898 * If mount point is currently being unmounted, sleep until the
899 * mount point fate is decided. If thread doing the unmounting fails,
900 * it will clear MNTK_UNMOUNT flag before waking us up, indicating
901 * that this mount point has survived the unmount attempt and vfs_busy
902 * should retry. Otherwise the unmounter thread will set MNTK_REFEXPIRE
903 * flag in addition to MNTK_UNMOUNT, indicating that mount point is
904 * about to be really destroyed. vfs_busy needs to release its
905 * reference on the mount point in this case and return with ENOENT,
906 * telling the caller the mount it tried to busy is no longer valid.
907 */
908 while (mp->mnt_kern_flag & MNTK_UNMOUNT) {
909 KASSERT(TAILQ_EMPTY(&mp->mnt_uppers),
910 ("%s: non-empty upper mount list with pending unmount",
911 __func__));
912 if (flags & MBF_NOWAIT || mp->mnt_kern_flag & MNTK_REFEXPIRE) {
913 MNT_REL(mp);
914 MNT_IUNLOCK(mp);
915 CTR1(KTR_VFS, "%s: failed busying before sleeping",
916 __func__);
917 return (ENOENT);
918 }
919 if (flags & MBF_MNTLSTLOCK)
920 mtx_unlock(&mountlist_mtx);
921 mp->mnt_kern_flag |= MNTK_MWAIT;
922 msleep(mp, MNT_MTX(mp), PVFS | PDROP, "vfs_busy", 0);
923 if (flags & MBF_MNTLSTLOCK)
924 mtx_lock(&mountlist_mtx);
925 MNT_ILOCK(mp);
926 }
927 if (flags & MBF_MNTLSTLOCK)
928 mtx_unlock(&mountlist_mtx);
929 mp->mnt_lockref++;
930 MNT_IUNLOCK(mp);
931 return (0);
932 }
933
934 /*
935 * Free a busy filesystem.
936 */
937 void
vfs_unbusy(struct mount * mp)938 vfs_unbusy(struct mount *mp)
939 {
940 struct mount_pcpu *mpcpu;
941 int c;
942
943 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
944
945 if (vfs_op_thread_enter(mp, mpcpu)) {
946 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
947 vfs_mp_count_sub_pcpu(mpcpu, lockref, 1);
948 vfs_mp_count_sub_pcpu(mpcpu, ref, 1);
949 vfs_op_thread_exit(mp, mpcpu);
950 return;
951 }
952
953 MNT_ILOCK(mp);
954 vfs_assert_mount_counters(mp);
955 MNT_REL(mp);
956 c = --mp->mnt_lockref;
957 if (mp->mnt_vfs_ops == 0) {
958 MPASS((mp->mnt_kern_flag & MNTK_DRAINING) == 0);
959 MNT_IUNLOCK(mp);
960 return;
961 }
962 if (c < 0)
963 vfs_dump_mount_counters(mp);
964 if (c == 0 && (mp->mnt_kern_flag & MNTK_DRAINING) != 0) {
965 MPASS(mp->mnt_kern_flag & MNTK_UNMOUNT);
966 CTR1(KTR_VFS, "%s: waking up waiters", __func__);
967 mp->mnt_kern_flag &= ~MNTK_DRAINING;
968 wakeup(&mp->mnt_lockref);
969 }
970 MNT_IUNLOCK(mp);
971 }
972
973 /*
974 * Lookup a mount point by filesystem identifier.
975 */
976 struct mount *
vfs_getvfs(fsid_t * fsid)977 vfs_getvfs(fsid_t *fsid)
978 {
979 struct mount *mp;
980
981 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
982 mtx_lock(&mountlist_mtx);
983 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
984 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
985 vfs_ref(mp);
986 mtx_unlock(&mountlist_mtx);
987 return (mp);
988 }
989 }
990 mtx_unlock(&mountlist_mtx);
991 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
992 return ((struct mount *) 0);
993 }
994
995 /*
996 * Lookup a mount point by filesystem identifier, busying it before
997 * returning.
998 *
999 * To avoid congestion on mountlist_mtx, implement simple direct-mapped
1000 * cache for popular filesystem identifiers. The cache is lockess, using
1001 * the fact that struct mount's are never freed. In worst case we may
1002 * get pointer to unmounted or even different filesystem, so we have to
1003 * check what we got, and go slow way if so.
1004 */
1005 struct mount *
vfs_busyfs(fsid_t * fsid)1006 vfs_busyfs(fsid_t *fsid)
1007 {
1008 #define FSID_CACHE_SIZE 256
1009 typedef struct mount * volatile vmp_t;
1010 static vmp_t cache[FSID_CACHE_SIZE];
1011 struct mount *mp;
1012 int error;
1013 uint32_t hash;
1014
1015 CTR2(KTR_VFS, "%s: fsid %p", __func__, fsid);
1016 hash = fsid->val[0] ^ fsid->val[1];
1017 hash = (hash >> 16 ^ hash) & (FSID_CACHE_SIZE - 1);
1018 mp = cache[hash];
1019 if (mp == NULL || fsidcmp(&mp->mnt_stat.f_fsid, fsid) != 0)
1020 goto slow;
1021 if (vfs_busy(mp, 0) != 0) {
1022 cache[hash] = NULL;
1023 goto slow;
1024 }
1025 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0)
1026 return (mp);
1027 else
1028 vfs_unbusy(mp);
1029
1030 slow:
1031 mtx_lock(&mountlist_mtx);
1032 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1033 if (fsidcmp(&mp->mnt_stat.f_fsid, fsid) == 0) {
1034 error = vfs_busy(mp, MBF_MNTLSTLOCK);
1035 if (error) {
1036 cache[hash] = NULL;
1037 mtx_unlock(&mountlist_mtx);
1038 return (NULL);
1039 }
1040 cache[hash] = mp;
1041 return (mp);
1042 }
1043 }
1044 CTR2(KTR_VFS, "%s: lookup failed for %p id", __func__, fsid);
1045 mtx_unlock(&mountlist_mtx);
1046 return ((struct mount *) 0);
1047 }
1048
1049 /*
1050 * Check if a user can access privileged mount options.
1051 */
1052 int
vfs_suser(struct mount * mp,struct thread * td)1053 vfs_suser(struct mount *mp, struct thread *td)
1054 {
1055 int error;
1056
1057 if (jailed(td->td_ucred)) {
1058 /*
1059 * If the jail of the calling thread lacks permission for
1060 * this type of file system, deny immediately.
1061 */
1062 if (!prison_allow(td->td_ucred, mp->mnt_vfc->vfc_prison_flag))
1063 return (EPERM);
1064
1065 /*
1066 * If the file system was mounted outside the jail of the
1067 * calling thread, deny immediately.
1068 */
1069 if (prison_check(td->td_ucred, mp->mnt_cred) != 0)
1070 return (EPERM);
1071 }
1072
1073 /*
1074 * If file system supports delegated administration, we don't check
1075 * for the PRIV_VFS_MOUNT_OWNER privilege - it will be better verified
1076 * by the file system itself.
1077 * If this is not the user that did original mount, we check for
1078 * the PRIV_VFS_MOUNT_OWNER privilege.
1079 */
1080 if (!(mp->mnt_vfc->vfc_flags & VFCF_DELEGADMIN) &&
1081 mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
1082 if ((error = priv_check(td, PRIV_VFS_MOUNT_OWNER)) != 0)
1083 return (error);
1084 }
1085 return (0);
1086 }
1087
1088 /*
1089 * Get a new unique fsid. Try to make its val[0] unique, since this value
1090 * will be used to create fake device numbers for stat(). Also try (but
1091 * not so hard) make its val[0] unique mod 2^16, since some emulators only
1092 * support 16-bit device numbers. We end up with unique val[0]'s for the
1093 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
1094 *
1095 * Keep in mind that several mounts may be running in parallel. Starting
1096 * the search one past where the previous search terminated is both a
1097 * micro-optimization and a defense against returning the same fsid to
1098 * different mounts.
1099 */
1100 void
vfs_getnewfsid(struct mount * mp)1101 vfs_getnewfsid(struct mount *mp)
1102 {
1103 static uint16_t mntid_base;
1104 struct mount *nmp;
1105 fsid_t tfsid;
1106 int mtype;
1107
1108 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
1109 mtx_lock(&mntid_mtx);
1110 mtype = mp->mnt_vfc->vfc_typenum;
1111 tfsid.val[1] = mtype;
1112 mtype = (mtype & 0xFF) << 24;
1113 for (;;) {
1114 tfsid.val[0] = makedev(255,
1115 mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
1116 mntid_base++;
1117 if ((nmp = vfs_getvfs(&tfsid)) == NULL)
1118 break;
1119 vfs_rel(nmp);
1120 }
1121 mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
1122 mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
1123 mtx_unlock(&mntid_mtx);
1124 }
1125
1126 /*
1127 * Knob to control the precision of file timestamps:
1128 *
1129 * 0 = seconds only; nanoseconds zeroed.
1130 * 1 = seconds and nanoseconds, accurate within 1/HZ.
1131 * 2 = seconds and nanoseconds, truncated to microseconds.
1132 * >=3 = seconds and nanoseconds, maximum precision.
1133 */
1134 enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
1135
1136 static int timestamp_precision = TSP_USEC;
1137 SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
1138 ×tamp_precision, 0, "File timestamp precision (0: seconds, "
1139 "1: sec + ns accurate to 1/HZ, 2: sec + ns truncated to us, "
1140 "3+: sec + ns (max. precision))");
1141
1142 /*
1143 * Get a current timestamp.
1144 */
1145 void
vfs_timestamp(struct timespec * tsp)1146 vfs_timestamp(struct timespec *tsp)
1147 {
1148 struct timeval tv;
1149
1150 switch (timestamp_precision) {
1151 case TSP_SEC:
1152 tsp->tv_sec = time_second;
1153 tsp->tv_nsec = 0;
1154 break;
1155 case TSP_HZ:
1156 getnanotime(tsp);
1157 break;
1158 case TSP_USEC:
1159 microtime(&tv);
1160 TIMEVAL_TO_TIMESPEC(&tv, tsp);
1161 break;
1162 case TSP_NSEC:
1163 default:
1164 nanotime(tsp);
1165 break;
1166 }
1167 }
1168
1169 /*
1170 * Set vnode attributes to VNOVAL
1171 */
1172 void
vattr_null(struct vattr * vap)1173 vattr_null(struct vattr *vap)
1174 {
1175
1176 vap->va_type = VNON;
1177 vap->va_size = VNOVAL;
1178 vap->va_bytes = VNOVAL;
1179 vap->va_mode = VNOVAL;
1180 vap->va_nlink = VNOVAL;
1181 vap->va_uid = VNOVAL;
1182 vap->va_gid = VNOVAL;
1183 vap->va_fsid = VNOVAL;
1184 vap->va_fileid = VNOVAL;
1185 vap->va_blocksize = VNOVAL;
1186 vap->va_rdev = VNOVAL;
1187 vap->va_atime.tv_sec = VNOVAL;
1188 vap->va_atime.tv_nsec = VNOVAL;
1189 vap->va_mtime.tv_sec = VNOVAL;
1190 vap->va_mtime.tv_nsec = VNOVAL;
1191 vap->va_ctime.tv_sec = VNOVAL;
1192 vap->va_ctime.tv_nsec = VNOVAL;
1193 vap->va_birthtime.tv_sec = VNOVAL;
1194 vap->va_birthtime.tv_nsec = VNOVAL;
1195 vap->va_flags = VNOVAL;
1196 vap->va_gen = VNOVAL;
1197 vap->va_vaflags = 0;
1198 vap->va_filerev = VNOVAL;
1199 vap->va_bsdflags = 0;
1200 }
1201
1202 /*
1203 * Try to reduce the total number of vnodes.
1204 *
1205 * This routine (and its user) are buggy in at least the following ways:
1206 * - all parameters were picked years ago when RAM sizes were significantly
1207 * smaller
1208 * - it can pick vnodes based on pages used by the vm object, but filesystems
1209 * like ZFS don't use it making the pick broken
1210 * - since ZFS has its own aging policy it gets partially combated by this one
1211 * - a dedicated method should be provided for filesystems to let them decide
1212 * whether the vnode should be recycled
1213 *
1214 * This routine is called when we have too many vnodes. It attempts
1215 * to free <count> vnodes and will potentially free vnodes that still
1216 * have VM backing store (VM backing store is typically the cause
1217 * of a vnode blowout so we want to do this). Therefore, this operation
1218 * is not considered cheap.
1219 *
1220 * A number of conditions may prevent a vnode from being reclaimed.
1221 * the buffer cache may have references on the vnode, a directory
1222 * vnode may still have references due to the namei cache representing
1223 * underlying files, or the vnode may be in active use. It is not
1224 * desirable to reuse such vnodes. These conditions may cause the
1225 * number of vnodes to reach some minimum value regardless of what
1226 * you set kern.maxvnodes to. Do not set kern.maxvnodes too low.
1227 *
1228 * @param reclaim_nc_src Only reclaim directories with outgoing namecache
1229 * entries if this argument is strue
1230 * @param trigger Only reclaim vnodes with fewer than this many resident
1231 * pages.
1232 * @param target How many vnodes to reclaim.
1233 * @return The number of vnodes that were reclaimed.
1234 */
1235 static int
vlrureclaim(bool reclaim_nc_src,int trigger,u_long target)1236 vlrureclaim(bool reclaim_nc_src, int trigger, u_long target)
1237 {
1238 struct vnode *vp, *mvp;
1239 struct mount *mp;
1240 struct vm_object *object;
1241 u_long done;
1242 bool retried;
1243
1244 mtx_assert(&vnode_list_mtx, MA_OWNED);
1245
1246 retried = false;
1247 done = 0;
1248
1249 mvp = vnode_list_reclaim_marker;
1250 restart:
1251 vp = mvp;
1252 while (done < target) {
1253 vp = TAILQ_NEXT(vp, v_vnodelist);
1254 if (__predict_false(vp == NULL))
1255 break;
1256
1257 if (__predict_false(vp->v_type == VMARKER))
1258 continue;
1259
1260 /*
1261 * If it's been deconstructed already, it's still
1262 * referenced, or it exceeds the trigger, skip it.
1263 * Also skip free vnodes. We are trying to make space
1264 * for more free vnodes, not reduce their count.
1265 */
1266 if (vp->v_usecount > 0 || vp->v_holdcnt == 0 ||
1267 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)))
1268 goto next_iter;
1269
1270 if (vp->v_type == VBAD || vp->v_type == VNON)
1271 goto next_iter;
1272
1273 object = atomic_load_ptr(&vp->v_object);
1274 if (object == NULL || object->resident_page_count > trigger) {
1275 goto next_iter;
1276 }
1277
1278 /*
1279 * Handle races against vnode allocation. Filesystems lock the
1280 * vnode some time after it gets returned from getnewvnode,
1281 * despite type and hold count being manipulated earlier.
1282 * Resorting to checking v_mount restores guarantees present
1283 * before the global list was reworked to contain all vnodes.
1284 */
1285 if (!VI_TRYLOCK(vp))
1286 goto next_iter;
1287 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1288 VI_UNLOCK(vp);
1289 goto next_iter;
1290 }
1291 if (vp->v_mount == NULL) {
1292 VI_UNLOCK(vp);
1293 goto next_iter;
1294 }
1295 vholdl(vp);
1296 VI_UNLOCK(vp);
1297 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1298 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1299 mtx_unlock(&vnode_list_mtx);
1300
1301 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
1302 vdrop_recycle(vp);
1303 goto next_iter_unlocked;
1304 }
1305 if (VOP_LOCK(vp, LK_EXCLUSIVE|LK_NOWAIT) != 0) {
1306 vdrop_recycle(vp);
1307 vn_finished_write(mp);
1308 goto next_iter_unlocked;
1309 }
1310
1311 VI_LOCK(vp);
1312 if (vp->v_usecount > 0 ||
1313 (!reclaim_nc_src && !LIST_EMPTY(&vp->v_cache_src)) ||
1314 (vp->v_object != NULL && vp->v_object->handle == vp &&
1315 vp->v_object->resident_page_count > trigger)) {
1316 VOP_UNLOCK(vp);
1317 vdropl_recycle(vp);
1318 vn_finished_write(mp);
1319 goto next_iter_unlocked;
1320 }
1321 recycles_count++;
1322 vgonel(vp);
1323 VOP_UNLOCK(vp);
1324 vdropl_recycle(vp);
1325 vn_finished_write(mp);
1326 done++;
1327 next_iter_unlocked:
1328 maybe_yield();
1329 mtx_lock(&vnode_list_mtx);
1330 goto restart;
1331 next_iter:
1332 MPASS(vp->v_type != VMARKER);
1333 if (!should_yield())
1334 continue;
1335 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1336 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1337 mtx_unlock(&vnode_list_mtx);
1338 kern_yield(PRI_USER);
1339 mtx_lock(&vnode_list_mtx);
1340 goto restart;
1341 }
1342 if (done == 0 && !retried) {
1343 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1344 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1345 retried = true;
1346 goto restart;
1347 }
1348 return (done);
1349 }
1350
1351 static int max_free_per_call = 10000;
1352 SYSCTL_INT(_debug, OID_AUTO, max_vnlru_free, CTLFLAG_RW, &max_free_per_call, 0,
1353 "limit on vnode free requests per call to the vnlru_free routine (legacy)");
1354 SYSCTL_INT(_vfs_vnode_vnlru, OID_AUTO, max_free_per_call, CTLFLAG_RW,
1355 &max_free_per_call, 0,
1356 "limit on vnode free requests per call to the vnlru_free routine");
1357
1358 /*
1359 * Attempt to recycle requested amount of free vnodes.
1360 */
1361 static int
vnlru_free_impl(int count,struct vfsops * mnt_op,struct vnode * mvp,bool isvnlru)1362 vnlru_free_impl(int count, struct vfsops *mnt_op, struct vnode *mvp, bool isvnlru)
1363 {
1364 struct vnode *vp;
1365 struct mount *mp;
1366 int ocount;
1367 bool retried;
1368
1369 mtx_assert(&vnode_list_mtx, MA_OWNED);
1370 if (count > max_free_per_call)
1371 count = max_free_per_call;
1372 if (count == 0) {
1373 mtx_unlock(&vnode_list_mtx);
1374 return (0);
1375 }
1376 ocount = count;
1377 retried = false;
1378 vp = mvp;
1379 for (;;) {
1380 vp = TAILQ_NEXT(vp, v_vnodelist);
1381 if (__predict_false(vp == NULL)) {
1382 /*
1383 * The free vnode marker can be past eligible vnodes:
1384 * 1. if vdbatch_process trylock failed
1385 * 2. if vtryrecycle failed
1386 *
1387 * If so, start the scan from scratch.
1388 */
1389 if (!retried && vnlru_read_freevnodes() > 0) {
1390 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1391 TAILQ_INSERT_HEAD(&vnode_list, mvp, v_vnodelist);
1392 vp = mvp;
1393 retried = true;
1394 continue;
1395 }
1396
1397 /*
1398 * Give up
1399 */
1400 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1401 TAILQ_INSERT_TAIL(&vnode_list, mvp, v_vnodelist);
1402 mtx_unlock(&vnode_list_mtx);
1403 break;
1404 }
1405 if (__predict_false(vp->v_type == VMARKER))
1406 continue;
1407 if (vp->v_holdcnt > 0)
1408 continue;
1409 /*
1410 * Don't recycle if our vnode is from different type
1411 * of mount point. Note that mp is type-safe, the
1412 * check does not reach unmapped address even if
1413 * vnode is reclaimed.
1414 */
1415 if (mnt_op != NULL && (mp = vp->v_mount) != NULL &&
1416 mp->mnt_op != mnt_op) {
1417 continue;
1418 }
1419 if (__predict_false(vp->v_type == VBAD || vp->v_type == VNON)) {
1420 continue;
1421 }
1422 if (!vhold_recycle_free(vp))
1423 continue;
1424 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1425 TAILQ_INSERT_AFTER(&vnode_list, vp, mvp, v_vnodelist);
1426 mtx_unlock(&vnode_list_mtx);
1427 /*
1428 * FIXME: ignores the return value, meaning it may be nothing
1429 * got recycled but it claims otherwise to the caller.
1430 *
1431 * Originally the value started being ignored in 2005 with
1432 * 114a1006a8204aa156e1f9ad6476cdff89cada7f .
1433 *
1434 * Respecting the value can run into significant stalls if most
1435 * vnodes belong to one file system and it has writes
1436 * suspended. In presence of many threads and millions of
1437 * vnodes they keep contending on the vnode_list_mtx lock only
1438 * to find vnodes they can't recycle.
1439 *
1440 * The solution would be to pre-check if the vnode is likely to
1441 * be recycle-able, but it needs to happen with the
1442 * vnode_list_mtx lock held. This runs into a problem where
1443 * VOP_GETWRITEMOUNT (currently needed to find out about if
1444 * writes are frozen) can take locks which LOR against it.
1445 *
1446 * Check nullfs for one example (null_getwritemount).
1447 */
1448 vtryrecycle(vp, isvnlru);
1449 count--;
1450 if (count == 0) {
1451 break;
1452 }
1453 mtx_lock(&vnode_list_mtx);
1454 vp = mvp;
1455 }
1456 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1457 return (ocount - count);
1458 }
1459
1460 /*
1461 * XXX: returns without vnode_list_mtx locked!
1462 */
1463 static int
vnlru_free_locked_direct(int count)1464 vnlru_free_locked_direct(int count)
1465 {
1466 int ret;
1467
1468 mtx_assert(&vnode_list_mtx, MA_OWNED);
1469 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, false);
1470 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1471 return (ret);
1472 }
1473
1474 static int
vnlru_free_locked_vnlru(int count)1475 vnlru_free_locked_vnlru(int count)
1476 {
1477 int ret;
1478
1479 mtx_assert(&vnode_list_mtx, MA_OWNED);
1480 ret = vnlru_free_impl(count, NULL, vnode_list_free_marker, true);
1481 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1482 return (ret);
1483 }
1484
1485 static int
vnlru_free_vnlru(int count)1486 vnlru_free_vnlru(int count)
1487 {
1488
1489 mtx_lock(&vnode_list_mtx);
1490 return (vnlru_free_locked_vnlru(count));
1491 }
1492
1493 void
vnlru_free_vfsops(int count,struct vfsops * mnt_op,struct vnode * mvp)1494 vnlru_free_vfsops(int count, struct vfsops *mnt_op, struct vnode *mvp)
1495 {
1496
1497 MPASS(mnt_op != NULL);
1498 MPASS(mvp != NULL);
1499 VNPASS(mvp->v_type == VMARKER, mvp);
1500 mtx_lock(&vnode_list_mtx);
1501 vnlru_free_impl(count, mnt_op, mvp, true);
1502 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1503 }
1504
1505 struct vnode *
vnlru_alloc_marker(void)1506 vnlru_alloc_marker(void)
1507 {
1508 struct vnode *mvp;
1509
1510 mvp = vn_alloc_marker(NULL);
1511 mtx_lock(&vnode_list_mtx);
1512 TAILQ_INSERT_BEFORE(vnode_list_free_marker, mvp, v_vnodelist);
1513 mtx_unlock(&vnode_list_mtx);
1514 return (mvp);
1515 }
1516
1517 void
vnlru_free_marker(struct vnode * mvp)1518 vnlru_free_marker(struct vnode *mvp)
1519 {
1520 mtx_lock(&vnode_list_mtx);
1521 TAILQ_REMOVE(&vnode_list, mvp, v_vnodelist);
1522 mtx_unlock(&vnode_list_mtx);
1523 vn_free_marker(mvp);
1524 }
1525
1526 static void
vnlru_recalc(void)1527 vnlru_recalc(void)
1528 {
1529
1530 mtx_assert(&vnode_list_mtx, MA_OWNED);
1531 gapvnodes = imax(desiredvnodes - wantfreevnodes, 100);
1532 vhiwat = gapvnodes / 11; /* 9% -- just under the 10% in vlrureclaim() */
1533 vlowat = vhiwat / 2;
1534 }
1535
1536 /*
1537 * Attempt to recycle vnodes in a context that is always safe to block.
1538 * Calling vlrurecycle() from the bowels of filesystem code has some
1539 * interesting deadlock problems.
1540 */
1541 static struct proc *vnlruproc;
1542 static int vnlruproc_sig;
1543 static u_long vnlruproc_kicks;
1544
1545 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, kicks, CTLFLAG_RD, &vnlruproc_kicks, 0,
1546 "Number of times vnlru awakened due to vnode shortage");
1547
1548 #define VNLRU_COUNT_SLOP 100
1549
1550 /*
1551 * The main freevnodes counter is only updated when a counter local to CPU
1552 * diverges from 0 by more than VNLRU_FREEVNODES_SLOP. CPUs are conditionally
1553 * walked to compute a more accurate total.
1554 *
1555 * Note: the actual value at any given moment can still exceed slop, but it
1556 * should not be by significant margin in practice.
1557 */
1558 #define VNLRU_FREEVNODES_SLOP 126
1559
1560 static void __noinline
vfs_freevnodes_rollup(int8_t * lfreevnodes)1561 vfs_freevnodes_rollup(int8_t *lfreevnodes)
1562 {
1563
1564 atomic_add_long(&freevnodes, *lfreevnodes);
1565 *lfreevnodes = 0;
1566 critical_exit();
1567 }
1568
1569 static __inline void
vfs_freevnodes_inc(void)1570 vfs_freevnodes_inc(void)
1571 {
1572 int8_t *lfreevnodes;
1573
1574 critical_enter();
1575 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1576 (*lfreevnodes)++;
1577 if (__predict_false(*lfreevnodes == VNLRU_FREEVNODES_SLOP))
1578 vfs_freevnodes_rollup(lfreevnodes);
1579 else
1580 critical_exit();
1581 }
1582
1583 static __inline void
vfs_freevnodes_dec(void)1584 vfs_freevnodes_dec(void)
1585 {
1586 int8_t *lfreevnodes;
1587
1588 critical_enter();
1589 lfreevnodes = PCPU_PTR(vfs_freevnodes);
1590 (*lfreevnodes)--;
1591 if (__predict_false(*lfreevnodes == -VNLRU_FREEVNODES_SLOP))
1592 vfs_freevnodes_rollup(lfreevnodes);
1593 else
1594 critical_exit();
1595 }
1596
1597 static u_long
vnlru_read_freevnodes(void)1598 vnlru_read_freevnodes(void)
1599 {
1600 long slop, rfreevnodes, rfreevnodes_old;
1601 int cpu;
1602
1603 rfreevnodes = atomic_load_long(&freevnodes);
1604 rfreevnodes_old = atomic_load_long(&freevnodes_old);
1605
1606 if (rfreevnodes > rfreevnodes_old)
1607 slop = rfreevnodes - rfreevnodes_old;
1608 else
1609 slop = rfreevnodes_old - rfreevnodes;
1610 if (slop < VNLRU_FREEVNODES_SLOP)
1611 return (rfreevnodes >= 0 ? rfreevnodes : 0);
1612 CPU_FOREACH(cpu) {
1613 rfreevnodes += cpuid_to_pcpu[cpu]->pc_vfs_freevnodes;
1614 }
1615 atomic_store_long(&freevnodes_old, rfreevnodes);
1616 return (freevnodes_old >= 0 ? freevnodes_old : 0);
1617 }
1618
1619 static bool
vnlru_under(u_long rnumvnodes,u_long limit)1620 vnlru_under(u_long rnumvnodes, u_long limit)
1621 {
1622 u_long rfreevnodes, space;
1623
1624 if (__predict_false(rnumvnodes > desiredvnodes))
1625 return (true);
1626
1627 space = desiredvnodes - rnumvnodes;
1628 if (space < limit) {
1629 rfreevnodes = vnlru_read_freevnodes();
1630 if (rfreevnodes > wantfreevnodes)
1631 space += rfreevnodes - wantfreevnodes;
1632 }
1633 return (space < limit);
1634 }
1635
1636 static void
vnlru_kick_locked(void)1637 vnlru_kick_locked(void)
1638 {
1639
1640 mtx_assert(&vnode_list_mtx, MA_OWNED);
1641 if (vnlruproc_sig == 0) {
1642 vnlruproc_sig = 1;
1643 vnlruproc_kicks++;
1644 wakeup(vnlruproc);
1645 }
1646 }
1647
1648 static void
vnlru_kick_cond(void)1649 vnlru_kick_cond(void)
1650 {
1651
1652 if (vnlru_read_freevnodes() > wantfreevnodes)
1653 return;
1654
1655 if (vnlruproc_sig)
1656 return;
1657 mtx_lock(&vnode_list_mtx);
1658 vnlru_kick_locked();
1659 mtx_unlock(&vnode_list_mtx);
1660 }
1661
1662 static void
vnlru_proc_sleep(void)1663 vnlru_proc_sleep(void)
1664 {
1665
1666 if (vnlruproc_sig) {
1667 vnlruproc_sig = 0;
1668 wakeup(&vnlruproc_sig);
1669 }
1670 msleep(vnlruproc, &vnode_list_mtx, PVFS|PDROP, "vlruwt", hz);
1671 }
1672
1673 /*
1674 * A lighter version of the machinery below.
1675 *
1676 * Tries to reach goals only by recycling free vnodes and does not invoke
1677 * uma_reclaim(UMA_RECLAIM_DRAIN).
1678 *
1679 * This works around pathological behavior in vnlru in presence of tons of free
1680 * vnodes, but without having to rewrite the machinery at this time. Said
1681 * behavior boils down to continuously trying to reclaim all kinds of vnodes
1682 * (cycling through all levels of "force") when the count is transiently above
1683 * limit. This happens a lot when all vnodes are used up and vn_alloc
1684 * speculatively increments the counter.
1685 *
1686 * Sample testcase: vnode limit 8388608, 20 separate directory trees each with
1687 * 1 million files in total and 20 find(1) processes stating them in parallel
1688 * (one per each tree).
1689 *
1690 * On a kernel with only stock machinery this needs anywhere between 60 and 120
1691 * seconds to execute (time varies *wildly* between runs). With the workaround
1692 * it consistently stays around 20 seconds [it got further down with later
1693 * changes].
1694 *
1695 * That is to say the entire thing needs a fundamental redesign (most notably
1696 * to accommodate faster recycling), the above only tries to get it ouf the way.
1697 *
1698 * Return values are:
1699 * -1 -- fallback to regular vnlru loop
1700 * 0 -- do nothing, go to sleep
1701 * >0 -- recycle this many vnodes
1702 */
1703 static long
vnlru_proc_light_pick(void)1704 vnlru_proc_light_pick(void)
1705 {
1706 u_long rnumvnodes, rfreevnodes;
1707
1708 if (vstir || vnlruproc_sig == 1)
1709 return (-1);
1710
1711 rnumvnodes = atomic_load_long(&numvnodes);
1712 rfreevnodes = vnlru_read_freevnodes();
1713
1714 /*
1715 * vnode limit might have changed and now we may be at a significant
1716 * excess. Bail if we can't sort it out with free vnodes.
1717 *
1718 * Due to atomic updates the count can legitimately go above
1719 * the limit for a short period, don't bother doing anything in
1720 * that case.
1721 */
1722 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP + 10) {
1723 if (rnumvnodes - rfreevnodes >= desiredvnodes ||
1724 rfreevnodes <= wantfreevnodes) {
1725 return (-1);
1726 }
1727
1728 return (rnumvnodes - desiredvnodes);
1729 }
1730
1731 /*
1732 * Don't try to reach wantfreevnodes target if there are too few vnodes
1733 * to begin with.
1734 */
1735 if (rnumvnodes < wantfreevnodes) {
1736 return (0);
1737 }
1738
1739 if (rfreevnodes < wantfreevnodes) {
1740 return (-1);
1741 }
1742
1743 return (0);
1744 }
1745
1746 static bool
vnlru_proc_light(void)1747 vnlru_proc_light(void)
1748 {
1749 long freecount;
1750
1751 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1752
1753 freecount = vnlru_proc_light_pick();
1754 if (freecount == -1)
1755 return (false);
1756
1757 if (freecount != 0) {
1758 vnlru_free_vnlru(freecount);
1759 }
1760
1761 mtx_lock(&vnode_list_mtx);
1762 vnlru_proc_sleep();
1763 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
1764 return (true);
1765 }
1766
1767 static u_long uma_reclaim_calls;
1768 SYSCTL_ULONG(_vfs_vnode_vnlru, OID_AUTO, uma_reclaim_calls, CTLFLAG_RD | CTLFLAG_STATS,
1769 &uma_reclaim_calls, 0, "Number of calls to uma_reclaim");
1770
1771 static void
vnlru_proc(void)1772 vnlru_proc(void)
1773 {
1774 u_long rnumvnodes, rfreevnodes, target;
1775 unsigned long onumvnodes;
1776 int done, force, trigger, usevnodes;
1777 bool reclaim_nc_src, want_reread;
1778
1779 EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, vnlruproc,
1780 SHUTDOWN_PRI_FIRST);
1781
1782 force = 0;
1783 want_reread = false;
1784 for (;;) {
1785 kproc_suspend_check(vnlruproc);
1786
1787 if (force == 0 && vnlru_proc_light())
1788 continue;
1789
1790 mtx_lock(&vnode_list_mtx);
1791 rnumvnodes = atomic_load_long(&numvnodes);
1792
1793 if (want_reread) {
1794 force = vnlru_under(numvnodes, vhiwat) ? 1 : 0;
1795 want_reread = false;
1796 }
1797
1798 /*
1799 * If numvnodes is too large (due to desiredvnodes being
1800 * adjusted using its sysctl, or emergency growth), first
1801 * try to reduce it by discarding free vnodes.
1802 */
1803 if (rnumvnodes > desiredvnodes + 10) {
1804 vnlru_free_locked_vnlru(rnumvnodes - desiredvnodes);
1805 mtx_lock(&vnode_list_mtx);
1806 rnumvnodes = atomic_load_long(&numvnodes);
1807 }
1808 /*
1809 * Sleep if the vnode cache is in a good state. This is
1810 * when it is not over-full and has space for about a 4%
1811 * or 9% expansion (by growing its size or inexcessively
1812 * reducing free vnode count). Otherwise, try to reclaim
1813 * space for a 10% expansion.
1814 */
1815 if (vstir && force == 0) {
1816 force = 1;
1817 vstir = false;
1818 }
1819 if (force == 0 && !vnlru_under(rnumvnodes, vlowat)) {
1820 vnlru_proc_sleep();
1821 continue;
1822 }
1823 rfreevnodes = vnlru_read_freevnodes();
1824
1825 onumvnodes = rnumvnodes;
1826 /*
1827 * Calculate parameters for recycling. These are the same
1828 * throughout the loop to give some semblance of fairness.
1829 * The trigger point is to avoid recycling vnodes with lots
1830 * of resident pages. We aren't trying to free memory; we
1831 * are trying to recycle or at least free vnodes.
1832 */
1833 if (rnumvnodes <= desiredvnodes)
1834 usevnodes = rnumvnodes - rfreevnodes;
1835 else
1836 usevnodes = rnumvnodes;
1837 if (usevnodes <= 0)
1838 usevnodes = 1;
1839 /*
1840 * The trigger value is chosen to give a conservatively
1841 * large value to ensure that it alone doesn't prevent
1842 * making progress. The value can easily be so large that
1843 * it is effectively infinite in some congested and
1844 * misconfigured cases, and this is necessary. Normally
1845 * it is about 8 to 100 (pages), which is quite large.
1846 */
1847 trigger = vm_cnt.v_page_count * 2 / usevnodes;
1848 if (force < 2)
1849 trigger = vsmalltrigger;
1850 reclaim_nc_src = force >= 3;
1851 target = rnumvnodes * (int64_t)gapvnodes / imax(desiredvnodes, 1);
1852 target = target / 10 + 1;
1853 done = vlrureclaim(reclaim_nc_src, trigger, target);
1854 mtx_unlock(&vnode_list_mtx);
1855 /*
1856 * Total number of vnodes can transiently go slightly above the
1857 * limit (see vn_alloc_hard), no need to call uma_reclaim if
1858 * this happens.
1859 */
1860 if (onumvnodes + VNLRU_COUNT_SLOP + 1000 > desiredvnodes &&
1861 numvnodes <= desiredvnodes) {
1862 uma_reclaim_calls++;
1863 uma_reclaim(UMA_RECLAIM_DRAIN);
1864 }
1865 if (done == 0) {
1866 if (force == 0 || force == 1) {
1867 force = 2;
1868 continue;
1869 }
1870 if (force == 2) {
1871 force = 3;
1872 continue;
1873 }
1874 want_reread = true;
1875 force = 0;
1876 vnlru_nowhere++;
1877 tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
1878 } else {
1879 want_reread = true;
1880 kern_yield(PRI_USER);
1881 }
1882 }
1883 }
1884
1885 static struct kproc_desc vnlru_kp = {
1886 "vnlru",
1887 vnlru_proc,
1888 &vnlruproc
1889 };
1890 SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start,
1891 &vnlru_kp);
1892
1893 /*
1894 * Routines having to do with the management of the vnode table.
1895 */
1896
1897 /*
1898 * Try to recycle a freed vnode.
1899 */
1900 static int
vtryrecycle(struct vnode * vp,bool isvnlru)1901 vtryrecycle(struct vnode *vp, bool isvnlru)
1902 {
1903 struct mount *vnmp;
1904
1905 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
1906 VNPASS(vp->v_holdcnt > 0, vp);
1907 /*
1908 * This vnode may found and locked via some other list, if so we
1909 * can't recycle it yet.
1910 */
1911 if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) {
1912 CTR2(KTR_VFS,
1913 "%s: impossible to recycle, vp %p lock is already held",
1914 __func__, vp);
1915 vdrop_recycle(vp);
1916 return (EWOULDBLOCK);
1917 }
1918 /*
1919 * Don't recycle if its filesystem is being suspended.
1920 */
1921 if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
1922 VOP_UNLOCK(vp);
1923 CTR2(KTR_VFS,
1924 "%s: impossible to recycle, cannot start the write for %p",
1925 __func__, vp);
1926 vdrop_recycle(vp);
1927 return (EBUSY);
1928 }
1929 /*
1930 * If we got this far, we need to acquire the interlock and see if
1931 * anyone picked up this vnode from another list. If not, we will
1932 * mark it with DOOMED via vgonel() so that anyone who does find it
1933 * will skip over it.
1934 */
1935 VI_LOCK(vp);
1936 if (vp->v_usecount) {
1937 VOP_UNLOCK(vp);
1938 vdropl_recycle(vp);
1939 vn_finished_write(vnmp);
1940 CTR2(KTR_VFS,
1941 "%s: impossible to recycle, %p is already referenced",
1942 __func__, vp);
1943 return (EBUSY);
1944 }
1945 if (!VN_IS_DOOMED(vp)) {
1946 if (isvnlru)
1947 recycles_free_count++;
1948 else
1949 counter_u64_add(direct_recycles_free_count, 1);
1950 vgonel(vp);
1951 }
1952 VOP_UNLOCK(vp);
1953 vdropl_recycle(vp);
1954 vn_finished_write(vnmp);
1955 return (0);
1956 }
1957
1958 /*
1959 * Allocate a new vnode.
1960 *
1961 * The operation never returns an error. Returning an error was disabled
1962 * in r145385 (dated 2005) with the following comment:
1963 *
1964 * XXX Not all VFS_VGET/ffs_vget callers check returns.
1965 *
1966 * Given the age of this commit (almost 15 years at the time of writing this
1967 * comment) restoring the ability to fail requires a significant audit of
1968 * all codepaths.
1969 *
1970 * The routine can try to free a vnode or stall for up to 1 second waiting for
1971 * vnlru to clear things up, but ultimately always performs a M_WAITOK allocation.
1972 */
1973 static u_long vn_alloc_cyclecount;
1974 static u_long vn_alloc_sleeps;
1975
1976 SYSCTL_ULONG(_vfs_vnode_stats, OID_AUTO, alloc_sleeps, CTLFLAG_RD, &vn_alloc_sleeps, 0,
1977 "Number of times vnode allocation blocked waiting on vnlru");
1978
1979 static struct vnode * __noinline
vn_alloc_hard(struct mount * mp,u_long rnumvnodes,bool bumped)1980 vn_alloc_hard(struct mount *mp, u_long rnumvnodes, bool bumped)
1981 {
1982 u_long rfreevnodes;
1983
1984 if (bumped) {
1985 if (rnumvnodes > desiredvnodes + VNLRU_COUNT_SLOP) {
1986 atomic_subtract_long(&numvnodes, 1);
1987 bumped = false;
1988 }
1989 }
1990
1991 mtx_lock(&vnode_list_mtx);
1992
1993 /*
1994 * Reload 'numvnodes', as since we acquired the lock, it may have
1995 * changed significantly if we waited, and 'rnumvnodes' above was only
1996 * actually passed if 'bumped' is true (else it is 0).
1997 */
1998 rnumvnodes = atomic_load_long(&numvnodes);
1999 if (rnumvnodes + !bumped < desiredvnodes) {
2000 vn_alloc_cyclecount = 0;
2001 mtx_unlock(&vnode_list_mtx);
2002 goto alloc;
2003 }
2004
2005 rfreevnodes = vnlru_read_freevnodes();
2006 if (vn_alloc_cyclecount++ >= rfreevnodes) {
2007 vn_alloc_cyclecount = 0;
2008 vstir = true;
2009 }
2010
2011 /*
2012 * Grow the vnode cache if it will not be above its target max after
2013 * growing. Otherwise, if there is at least one free vnode, try to
2014 * reclaim 1 item from it before growing the cache (possibly above its
2015 * target max if the reclamation failed or is delayed).
2016 */
2017 if (vnlru_free_locked_direct(1) > 0)
2018 goto alloc;
2019 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2020 if (mp == NULL || (mp->mnt_kern_flag & MNTK_SUSPEND) == 0) {
2021 /*
2022 * Wait for space for a new vnode.
2023 */
2024 if (bumped) {
2025 atomic_subtract_long(&numvnodes, 1);
2026 bumped = false;
2027 }
2028 mtx_lock(&vnode_list_mtx);
2029 vnlru_kick_locked();
2030 vn_alloc_sleeps++;
2031 msleep(&vnlruproc_sig, &vnode_list_mtx, PVFS, "vlruwk", hz);
2032 if (atomic_load_long(&numvnodes) + 1 > desiredvnodes &&
2033 vnlru_read_freevnodes() > 1)
2034 vnlru_free_locked_direct(1);
2035 else
2036 mtx_unlock(&vnode_list_mtx);
2037 }
2038 alloc:
2039 mtx_assert(&vnode_list_mtx, MA_NOTOWNED);
2040 if (!bumped)
2041 atomic_add_long(&numvnodes, 1);
2042 vnlru_kick_cond();
2043 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2044 }
2045
2046 static struct vnode *
vn_alloc(struct mount * mp)2047 vn_alloc(struct mount *mp)
2048 {
2049 u_long rnumvnodes;
2050
2051 if (__predict_false(vn_alloc_cyclecount != 0))
2052 return (vn_alloc_hard(mp, 0, false));
2053 rnumvnodes = atomic_fetchadd_long(&numvnodes, 1) + 1;
2054 if (__predict_false(vnlru_under(rnumvnodes, vlowat))) {
2055 return (vn_alloc_hard(mp, rnumvnodes, true));
2056 }
2057
2058 return (uma_zalloc_smr(vnode_zone, M_WAITOK));
2059 }
2060
2061 static void
vn_free(struct vnode * vp)2062 vn_free(struct vnode *vp)
2063 {
2064
2065 atomic_subtract_long(&numvnodes, 1);
2066 uma_zfree_smr(vnode_zone, vp);
2067 }
2068
2069 /*
2070 * Allocate a new vnode.
2071 */
2072 int
getnewvnode(const char * tag,struct mount * mp,struct vop_vector * vops,struct vnode ** vpp)2073 getnewvnode(const char *tag, struct mount *mp, struct vop_vector *vops,
2074 struct vnode **vpp)
2075 {
2076 struct vnode *vp;
2077 struct thread *td;
2078 struct lock_object *lo;
2079
2080 CTR3(KTR_VFS, "%s: mp %p with tag %s", __func__, mp, tag);
2081
2082 KASSERT(vops->registered,
2083 ("%s: not registered vector op %p\n", __func__, vops));
2084 cache_validate_vop_vector(mp, vops);
2085
2086 td = curthread;
2087 if (td->td_vp_reserved != NULL) {
2088 vp = td->td_vp_reserved;
2089 td->td_vp_reserved = NULL;
2090 } else {
2091 vp = vn_alloc(mp);
2092 }
2093 counter_u64_add(vnodes_created, 1);
2094
2095 vn_set_state(vp, VSTATE_UNINITIALIZED);
2096
2097 /*
2098 * Locks are given the generic name "vnode" when created.
2099 * Follow the historic practice of using the filesystem
2100 * name when they allocated, e.g., "zfs", "ufs", "nfs, etc.
2101 *
2102 * Locks live in a witness group keyed on their name. Thus,
2103 * when a lock is renamed, it must also move from the witness
2104 * group of its old name to the witness group of its new name.
2105 *
2106 * The change only needs to be made when the vnode moves
2107 * from one filesystem type to another. We ensure that each
2108 * filesystem use a single static name pointer for its tag so
2109 * that we can compare pointers rather than doing a strcmp().
2110 */
2111 lo = &vp->v_vnlock->lock_object;
2112 #ifdef WITNESS
2113 if (lo->lo_name != tag) {
2114 #endif
2115 lo->lo_name = tag;
2116 #ifdef WITNESS
2117 WITNESS_DESTROY(lo);
2118 WITNESS_INIT(lo, tag);
2119 }
2120 #endif
2121 /*
2122 * By default, don't allow shared locks unless filesystems opt-in.
2123 */
2124 vp->v_vnlock->lock_object.lo_flags |= LK_NOSHARE;
2125 /*
2126 * Finalize various vnode identity bits.
2127 */
2128 KASSERT(vp->v_object == NULL, ("stale v_object %p", vp));
2129 KASSERT(vp->v_lockf == NULL, ("stale v_lockf %p", vp));
2130 KASSERT(vp->v_pollinfo == NULL, ("stale v_pollinfo %p", vp));
2131 vp->v_type = VNON;
2132 vp->v_op = vops;
2133 vp->v_irflag = 0;
2134 v_init_counters(vp);
2135 vn_seqc_init(vp);
2136 vp->v_bufobj.bo_ops = &buf_ops_bio;
2137 #ifdef DIAGNOSTIC
2138 if (mp == NULL && vops != &dead_vnodeops)
2139 printf("NULL mp in getnewvnode(9), tag %s\n", tag);
2140 #endif
2141 #ifdef MAC
2142 mac_vnode_init(vp);
2143 if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
2144 mac_vnode_associate_singlelabel(mp, vp);
2145 #endif
2146 if (mp != NULL) {
2147 vp->v_bufobj.bo_bsize = mp->mnt_stat.f_iosize;
2148 }
2149
2150 /*
2151 * For the filesystems which do not use vfs_hash_insert(),
2152 * still initialize v_hash to have vfs_hash_index() useful.
2153 * E.g., nullfs uses vfs_hash_index() on the lower vnode for
2154 * its own hashing.
2155 */
2156 vp->v_hash = (uintptr_t)vp >> vnsz2log;
2157
2158 *vpp = vp;
2159 return (0);
2160 }
2161
2162 void
getnewvnode_reserve(void)2163 getnewvnode_reserve(void)
2164 {
2165 struct thread *td;
2166
2167 td = curthread;
2168 MPASS(td->td_vp_reserved == NULL);
2169 td->td_vp_reserved = vn_alloc(NULL);
2170 }
2171
2172 void
getnewvnode_drop_reserve(void)2173 getnewvnode_drop_reserve(void)
2174 {
2175 struct thread *td;
2176
2177 td = curthread;
2178 if (td->td_vp_reserved != NULL) {
2179 vn_free(td->td_vp_reserved);
2180 td->td_vp_reserved = NULL;
2181 }
2182 }
2183
2184 static void __noinline
freevnode(struct vnode * vp)2185 freevnode(struct vnode *vp)
2186 {
2187 struct bufobj *bo;
2188
2189 ASSERT_VOP_UNLOCKED(vp, __func__);
2190
2191 /*
2192 * The vnode has been marked for destruction, so free it.
2193 *
2194 * The vnode will be returned to the zone where it will
2195 * normally remain until it is needed for another vnode. We
2196 * need to cleanup (or verify that the cleanup has already
2197 * been done) any residual data left from its current use
2198 * so as not to contaminate the freshly allocated vnode.
2199 */
2200 CTR2(KTR_VFS, "%s: destroying the vnode %p", __func__, vp);
2201 /*
2202 * Paired with vgone.
2203 */
2204 vn_seqc_write_end_free(vp);
2205
2206 bo = &vp->v_bufobj;
2207 VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
2208 VNPASS(vp->v_holdcnt == VHOLD_NO_SMR, vp);
2209 VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
2210 VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
2211 VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
2212 VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
2213 VNASSERT(pctrie_is_empty(&bo->bo_clean.bv_root), vp,
2214 ("clean blk trie not empty"));
2215 VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
2216 VNASSERT(pctrie_is_empty(&bo->bo_dirty.bv_root), vp,
2217 ("dirty blk trie not empty"));
2218 VNASSERT((vp->v_iflag & (VI_DOINGINACT | VI_OWEINACT)) == 0, vp,
2219 ("Leaked inactivation"));
2220 VI_UNLOCK(vp);
2221 cache_assert_no_entries(vp);
2222
2223 #ifdef MAC
2224 mac_vnode_destroy(vp);
2225 #endif
2226 if (vp->v_pollinfo != NULL) {
2227 int error __diagused;
2228
2229 /*
2230 * Use LK_NOWAIT to shut up witness about the lock. We may get
2231 * here while having another vnode locked when trying to
2232 * satisfy a lookup and needing to recycle.
2233 */
2234 error = VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT);
2235 VNASSERT(error == 0, vp,
2236 ("freevnode: cannot lock vp %p for pollinfo destroy", vp));
2237 destroy_vpollinfo(vp->v_pollinfo);
2238 VOP_UNLOCK(vp);
2239 vp->v_pollinfo = NULL;
2240 }
2241 vp->v_mountedhere = NULL;
2242 vp->v_unpcb = NULL;
2243 vp->v_rdev = NULL;
2244 vp->v_fifoinfo = NULL;
2245 vp->v_iflag = 0;
2246 vp->v_vflag = 0;
2247 bo->bo_flag = 0;
2248 vn_free(vp);
2249 }
2250
2251 /*
2252 * Delete from old mount point vnode list, if on one.
2253 */
2254 static void
delmntque(struct vnode * vp)2255 delmntque(struct vnode *vp)
2256 {
2257 struct mount *mp;
2258
2259 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
2260
2261 mp = vp->v_mount;
2262 MNT_ILOCK(mp);
2263 VI_LOCK(vp);
2264 vp->v_mount = NULL;
2265 VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
2266 ("bad mount point vnode list size"));
2267 TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2268 mp->mnt_nvnodelistsize--;
2269 MNT_REL(mp);
2270 MNT_IUNLOCK(mp);
2271 /*
2272 * The caller expects the interlock to be still held.
2273 */
2274 ASSERT_VI_LOCKED(vp, __func__);
2275 }
2276
2277 static int
insmntque1_int(struct vnode * vp,struct mount * mp,bool dtr)2278 insmntque1_int(struct vnode *vp, struct mount *mp, bool dtr)
2279 {
2280
2281 KASSERT(vp->v_mount == NULL,
2282 ("insmntque: vnode already on per mount vnode list"));
2283 VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
2284 if ((mp->mnt_kern_flag & MNTK_UNLOCKED_INSMNTQUE) == 0) {
2285 ASSERT_VOP_ELOCKED(vp, "insmntque: non-locked vp");
2286 } else {
2287 KASSERT(!dtr,
2288 ("%s: can't have MNTK_UNLOCKED_INSMNTQUE and cleanup",
2289 __func__));
2290 }
2291
2292 /*
2293 * We acquire the vnode interlock early to ensure that the
2294 * vnode cannot be recycled by another process releasing a
2295 * holdcnt on it before we get it on both the vnode list
2296 * and the active vnode list. The mount mutex protects only
2297 * manipulation of the vnode list and the vnode freelist
2298 * mutex protects only manipulation of the active vnode list.
2299 * Hence the need to hold the vnode interlock throughout.
2300 */
2301 MNT_ILOCK(mp);
2302 VI_LOCK(vp);
2303 if (((mp->mnt_kern_flag & MNTK_UNMOUNT) != 0 &&
2304 ((mp->mnt_kern_flag & MNTK_UNMOUNTF) != 0 ||
2305 mp->mnt_nvnodelistsize == 0)) &&
2306 (vp->v_vflag & VV_FORCEINSMQ) == 0) {
2307 VI_UNLOCK(vp);
2308 MNT_IUNLOCK(mp);
2309 if (dtr) {
2310 vp->v_data = NULL;
2311 vp->v_op = &dead_vnodeops;
2312 vgone(vp);
2313 vput(vp);
2314 }
2315 return (EBUSY);
2316 }
2317 vp->v_mount = mp;
2318 MNT_REF(mp);
2319 TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
2320 VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
2321 ("neg mount point vnode list size"));
2322 mp->mnt_nvnodelistsize++;
2323 VI_UNLOCK(vp);
2324 MNT_IUNLOCK(mp);
2325 return (0);
2326 }
2327
2328 /*
2329 * Insert into list of vnodes for the new mount point, if available.
2330 * insmntque() reclaims the vnode on insertion failure, insmntque1()
2331 * leaves handling of the vnode to the caller.
2332 */
2333 int
insmntque(struct vnode * vp,struct mount * mp)2334 insmntque(struct vnode *vp, struct mount *mp)
2335 {
2336 return (insmntque1_int(vp, mp, true));
2337 }
2338
2339 int
insmntque1(struct vnode * vp,struct mount * mp)2340 insmntque1(struct vnode *vp, struct mount *mp)
2341 {
2342 return (insmntque1_int(vp, mp, false));
2343 }
2344
2345 /*
2346 * Flush out and invalidate all buffers associated with a bufobj
2347 * Called with the underlying object locked.
2348 */
2349 int
bufobj_invalbuf(struct bufobj * bo,int flags,int slpflag,int slptimeo)2350 bufobj_invalbuf(struct bufobj *bo, int flags, int slpflag, int slptimeo)
2351 {
2352 int error;
2353
2354 BO_LOCK(bo);
2355 if (flags & V_SAVE) {
2356 error = bufobj_wwait(bo, slpflag, slptimeo);
2357 if (error) {
2358 BO_UNLOCK(bo);
2359 return (error);
2360 }
2361 if (bo->bo_dirty.bv_cnt > 0) {
2362 BO_UNLOCK(bo);
2363 do {
2364 error = BO_SYNC(bo, MNT_WAIT);
2365 } while (error == ERELOOKUP);
2366 if (error != 0)
2367 return (error);
2368 BO_LOCK(bo);
2369 if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0) {
2370 BO_UNLOCK(bo);
2371 return (EBUSY);
2372 }
2373 }
2374 }
2375 /*
2376 * If you alter this loop please notice that interlock is dropped and
2377 * reacquired in flushbuflist. Special care is needed to ensure that
2378 * no race conditions occur from this.
2379 */
2380 do {
2381 error = flushbuflist(&bo->bo_clean,
2382 flags, bo, slpflag, slptimeo);
2383 if (error == 0 && !(flags & V_CLEANONLY))
2384 error = flushbuflist(&bo->bo_dirty,
2385 flags, bo, slpflag, slptimeo);
2386 if (error != 0 && error != EAGAIN) {
2387 BO_UNLOCK(bo);
2388 return (error);
2389 }
2390 } while (error != 0);
2391
2392 /*
2393 * Wait for I/O to complete. XXX needs cleaning up. The vnode can
2394 * have write I/O in-progress but if there is a VM object then the
2395 * VM object can also have read-I/O in-progress.
2396 */
2397 do {
2398 bufobj_wwait(bo, 0, 0);
2399 if ((flags & V_VMIO) == 0 && bo->bo_object != NULL) {
2400 BO_UNLOCK(bo);
2401 vm_object_pip_wait_unlocked(bo->bo_object, "bovlbx");
2402 BO_LOCK(bo);
2403 }
2404 } while (bo->bo_numoutput > 0);
2405 BO_UNLOCK(bo);
2406
2407 /*
2408 * Destroy the copy in the VM cache, too.
2409 */
2410 if (bo->bo_object != NULL &&
2411 (flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0) {
2412 VM_OBJECT_WLOCK(bo->bo_object);
2413 vm_object_page_remove(bo->bo_object, 0, 0, (flags & V_SAVE) ?
2414 OBJPR_CLEANONLY : 0);
2415 VM_OBJECT_WUNLOCK(bo->bo_object);
2416 }
2417
2418 #ifdef INVARIANTS
2419 BO_LOCK(bo);
2420 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO |
2421 V_ALLOWCLEAN)) == 0 && (bo->bo_dirty.bv_cnt > 0 ||
2422 bo->bo_clean.bv_cnt > 0))
2423 panic("vinvalbuf: flush failed");
2424 if ((flags & (V_ALT | V_NORMAL | V_CLEANONLY | V_VMIO)) == 0 &&
2425 bo->bo_dirty.bv_cnt > 0)
2426 panic("vinvalbuf: flush dirty failed");
2427 BO_UNLOCK(bo);
2428 #endif
2429 return (0);
2430 }
2431
2432 /*
2433 * Flush out and invalidate all buffers associated with a vnode.
2434 * Called with the underlying object locked.
2435 */
2436 int
vinvalbuf(struct vnode * vp,int flags,int slpflag,int slptimeo)2437 vinvalbuf(struct vnode *vp, int flags, int slpflag, int slptimeo)
2438 {
2439
2440 CTR3(KTR_VFS, "%s: vp %p with flags %d", __func__, vp, flags);
2441 ASSERT_VOP_LOCKED(vp, "vinvalbuf");
2442 if (vp->v_object != NULL && vp->v_object->handle != vp)
2443 return (0);
2444 return (bufobj_invalbuf(&vp->v_bufobj, flags, slpflag, slptimeo));
2445 }
2446
2447 /*
2448 * Flush out buffers on the specified list.
2449 *
2450 */
2451 static int
flushbuflist(struct bufv * bufv,int flags,struct bufobj * bo,int slpflag,int slptimeo)2452 flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo, int slpflag,
2453 int slptimeo)
2454 {
2455 struct buf *bp, *nbp;
2456 int retval, error;
2457 daddr_t lblkno;
2458 b_xflags_t xflags;
2459
2460 ASSERT_BO_WLOCKED(bo);
2461
2462 retval = 0;
2463 TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
2464 /*
2465 * If we are flushing both V_NORMAL and V_ALT buffers then
2466 * do not skip any buffers. If we are flushing only V_NORMAL
2467 * buffers then skip buffers marked as BX_ALTDATA. If we are
2468 * flushing only V_ALT buffers then skip buffers not marked
2469 * as BX_ALTDATA.
2470 */
2471 if (((flags & (V_NORMAL | V_ALT)) != (V_NORMAL | V_ALT)) &&
2472 (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA) != 0) ||
2473 ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0))) {
2474 continue;
2475 }
2476 if (nbp != NULL) {
2477 lblkno = nbp->b_lblkno;
2478 xflags = nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN);
2479 }
2480 retval = EAGAIN;
2481 error = BUF_TIMELOCK(bp,
2482 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_LOCKPTR(bo),
2483 "flushbuf", slpflag, slptimeo);
2484 if (error) {
2485 BO_LOCK(bo);
2486 return (error != ENOLCK ? error : EAGAIN);
2487 }
2488 KASSERT(bp->b_bufobj == bo,
2489 ("bp %p wrong b_bufobj %p should be %p",
2490 bp, bp->b_bufobj, bo));
2491 /*
2492 * XXX Since there are no node locks for NFS, I
2493 * believe there is a slight chance that a delayed
2494 * write will occur while sleeping just above, so
2495 * check for it.
2496 */
2497 if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
2498 (flags & V_SAVE)) {
2499 bremfree(bp);
2500 bp->b_flags |= B_ASYNC;
2501 bwrite(bp);
2502 BO_LOCK(bo);
2503 return (EAGAIN); /* XXX: why not loop ? */
2504 }
2505 bremfree(bp);
2506 bp->b_flags |= (B_INVAL | B_RELBUF);
2507 bp->b_flags &= ~B_ASYNC;
2508 brelse(bp);
2509 BO_LOCK(bo);
2510 if (nbp == NULL)
2511 break;
2512 nbp = gbincore(bo, lblkno);
2513 if (nbp == NULL || (nbp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
2514 != xflags)
2515 break; /* nbp invalid */
2516 }
2517 return (retval);
2518 }
2519
2520 int
bnoreuselist(struct bufv * bufv,struct bufobj * bo,daddr_t startn,daddr_t endn)2521 bnoreuselist(struct bufv *bufv, struct bufobj *bo, daddr_t startn, daddr_t endn)
2522 {
2523 struct buf *bp;
2524 int error;
2525 daddr_t lblkno;
2526
2527 ASSERT_BO_LOCKED(bo);
2528
2529 for (lblkno = startn;;) {
2530 again:
2531 bp = buf_lookup_ge(bufv, lblkno);
2532 if (bp == NULL || bp->b_lblkno >= endn)
2533 break;
2534 error = BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL |
2535 LK_INTERLOCK, BO_LOCKPTR(bo), "brlsfl", 0, 0);
2536 if (error != 0) {
2537 BO_RLOCK(bo);
2538 if (error == ENOLCK)
2539 goto again;
2540 return (error);
2541 }
2542 KASSERT(bp->b_bufobj == bo,
2543 ("bp %p wrong b_bufobj %p should be %p",
2544 bp, bp->b_bufobj, bo));
2545 lblkno = bp->b_lblkno + 1;
2546 if ((bp->b_flags & B_MANAGED) == 0)
2547 bremfree(bp);
2548 bp->b_flags |= B_RELBUF;
2549 /*
2550 * In the VMIO case, use the B_NOREUSE flag to hint that the
2551 * pages backing each buffer in the range are unlikely to be
2552 * reused. Dirty buffers will have the hint applied once
2553 * they've been written.
2554 */
2555 if ((bp->b_flags & B_VMIO) != 0)
2556 bp->b_flags |= B_NOREUSE;
2557 brelse(bp);
2558 BO_RLOCK(bo);
2559 }
2560 return (0);
2561 }
2562
2563 /*
2564 * Truncate a file's buffer and pages to a specified length. This
2565 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
2566 * sync activity.
2567 */
2568 int
vtruncbuf(struct vnode * vp,off_t length,int blksize)2569 vtruncbuf(struct vnode *vp, off_t length, int blksize)
2570 {
2571 struct buf *bp, *nbp;
2572 struct bufobj *bo;
2573 daddr_t startlbn;
2574
2575 CTR4(KTR_VFS, "%s: vp %p with block %d:%ju", __func__,
2576 vp, blksize, (uintmax_t)length);
2577
2578 /*
2579 * Round up to the *next* lbn.
2580 */
2581 startlbn = howmany(length, blksize);
2582
2583 ASSERT_VOP_LOCKED(vp, "vtruncbuf");
2584
2585 bo = &vp->v_bufobj;
2586 restart_unlocked:
2587 BO_LOCK(bo);
2588
2589 while (v_inval_buf_range_locked(vp, bo, startlbn, INT64_MAX) == EAGAIN)
2590 ;
2591
2592 if (length > 0) {
2593 /*
2594 * Write out vnode metadata, e.g. indirect blocks.
2595 */
2596 restartsync:
2597 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
2598 if (bp->b_lblkno >= 0)
2599 continue;
2600 /*
2601 * Since we hold the vnode lock this should only
2602 * fail if we're racing with the buf daemon.
2603 */
2604 if (BUF_LOCK(bp,
2605 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2606 BO_LOCKPTR(bo)) == ENOLCK)
2607 goto restart_unlocked;
2608
2609 VNASSERT((bp->b_flags & B_DELWRI), vp,
2610 ("buf(%p) on dirty queue without DELWRI", bp));
2611
2612 bremfree(bp);
2613 bawrite(bp);
2614 BO_LOCK(bo);
2615 goto restartsync;
2616 }
2617 }
2618
2619 bufobj_wwait(bo, 0, 0);
2620 BO_UNLOCK(bo);
2621 vnode_pager_setsize(vp, length);
2622
2623 return (0);
2624 }
2625
2626 /*
2627 * Invalidate the cached pages of a file's buffer within the range of block
2628 * numbers [startlbn, endlbn).
2629 */
2630 void
v_inval_buf_range(struct vnode * vp,daddr_t startlbn,daddr_t endlbn,int blksize)2631 v_inval_buf_range(struct vnode *vp, daddr_t startlbn, daddr_t endlbn,
2632 int blksize)
2633 {
2634 struct bufobj *bo;
2635 off_t start, end;
2636
2637 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range");
2638
2639 start = blksize * startlbn;
2640 end = blksize * endlbn;
2641
2642 bo = &vp->v_bufobj;
2643 BO_LOCK(bo);
2644 MPASS(blksize == bo->bo_bsize);
2645
2646 while (v_inval_buf_range_locked(vp, bo, startlbn, endlbn) == EAGAIN)
2647 ;
2648
2649 BO_UNLOCK(bo);
2650 vn_pages_remove(vp, OFF_TO_IDX(start), OFF_TO_IDX(end + PAGE_SIZE - 1));
2651 }
2652
2653 static int
v_inval_buf_range_locked(struct vnode * vp,struct bufobj * bo,daddr_t startlbn,daddr_t endlbn)2654 v_inval_buf_range_locked(struct vnode *vp, struct bufobj *bo,
2655 daddr_t startlbn, daddr_t endlbn)
2656 {
2657 struct bufv *bv;
2658 struct buf *bp, *nbp;
2659 uint8_t anyfreed;
2660 bool clean;
2661
2662 ASSERT_VOP_LOCKED(vp, "v_inval_buf_range_locked");
2663 ASSERT_BO_LOCKED(bo);
2664
2665 anyfreed = 1;
2666 clean = true;
2667 do {
2668 bv = clean ? &bo->bo_clean : &bo->bo_dirty;
2669 bp = buf_lookup_ge(bv, startlbn);
2670 if (bp == NULL)
2671 continue;
2672 TAILQ_FOREACH_FROM_SAFE(bp, &bv->bv_hd, b_bobufs, nbp) {
2673 if (bp->b_lblkno >= endlbn)
2674 break;
2675 if (BUF_LOCK(bp,
2676 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
2677 BO_LOCKPTR(bo)) == ENOLCK) {
2678 BO_LOCK(bo);
2679 return (EAGAIN);
2680 }
2681
2682 bremfree(bp);
2683 bp->b_flags |= B_INVAL | B_RELBUF;
2684 bp->b_flags &= ~B_ASYNC;
2685 brelse(bp);
2686 anyfreed = 2;
2687
2688 BO_LOCK(bo);
2689 if (nbp != NULL &&
2690 (((nbp->b_xflags &
2691 (clean ? BX_VNCLEAN : BX_VNDIRTY)) == 0) ||
2692 nbp->b_vp != vp ||
2693 (nbp->b_flags & B_DELWRI) == (clean? B_DELWRI: 0)))
2694 return (EAGAIN);
2695 }
2696 } while (clean = !clean, anyfreed-- > 0);
2697 return (0);
2698 }
2699
2700 static void
buf_vlist_remove(struct buf * bp)2701 buf_vlist_remove(struct buf *bp)
2702 {
2703 struct bufv *bv;
2704 b_xflags_t flags;
2705
2706 flags = bp->b_xflags;
2707
2708 KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
2709 ASSERT_BO_WLOCKED(bp->b_bufobj);
2710 KASSERT((flags & (BX_VNDIRTY | BX_VNCLEAN)) != 0 &&
2711 (flags & (BX_VNDIRTY | BX_VNCLEAN)) != (BX_VNDIRTY | BX_VNCLEAN),
2712 ("%s: buffer %p has invalid queue state", __func__, bp));
2713
2714 if ((flags & BX_VNDIRTY) != 0)
2715 bv = &bp->b_bufobj->bo_dirty;
2716 else
2717 bv = &bp->b_bufobj->bo_clean;
2718 BUF_PCTRIE_REMOVE(&bv->bv_root, bp->b_lblkno);
2719 TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
2720 bv->bv_cnt--;
2721 bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
2722 }
2723
2724 /*
2725 * Add the buffer to the sorted clean or dirty block list. Return zero on
2726 * success, EEXIST if a buffer with this identity already exists, or another
2727 * error on allocation failure.
2728 */
2729 static inline int
buf_vlist_find_or_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2730 buf_vlist_find_or_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2731 {
2732 struct bufv *bv;
2733 struct buf *n;
2734 int error;
2735
2736 ASSERT_BO_WLOCKED(bo);
2737 KASSERT((bo->bo_flag & BO_NOBUFS) == 0,
2738 ("buf_vlist_add: bo %p does not allow bufs", bo));
2739 KASSERT((xflags & BX_VNDIRTY) == 0 || (bo->bo_flag & BO_DEAD) == 0,
2740 ("dead bo %p", bo));
2741 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == xflags,
2742 ("buf_vlist_add: b_xflags %#x not set on bp %p", xflags, bp));
2743
2744 if (xflags & BX_VNDIRTY)
2745 bv = &bo->bo_dirty;
2746 else
2747 bv = &bo->bo_clean;
2748
2749 error = buf_insert_lookup_le(bv, bp, &n);
2750 if (n == NULL) {
2751 KASSERT(error != EEXIST,
2752 ("buf_vlist_add: EEXIST but no existing buf found: bp %p",
2753 bp));
2754 } else {
2755 KASSERT(n->b_lblkno <= bp->b_lblkno,
2756 ("buf_vlist_add: out of order insert/lookup: bp %p n %p",
2757 bp, n));
2758 KASSERT((n->b_lblkno == bp->b_lblkno) == (error == EEXIST),
2759 ("buf_vlist_add: inconsistent result for existing buf: "
2760 "error %d bp %p n %p", error, bp, n));
2761 }
2762 if (error != 0)
2763 return (error);
2764
2765 /* Keep the list ordered. */
2766 if (n == NULL) {
2767 KASSERT(TAILQ_EMPTY(&bv->bv_hd) ||
2768 bp->b_lblkno < TAILQ_FIRST(&bv->bv_hd)->b_lblkno,
2769 ("buf_vlist_add: queue order: "
2770 "%p should be before first %p",
2771 bp, TAILQ_FIRST(&bv->bv_hd)));
2772 TAILQ_INSERT_HEAD(&bv->bv_hd, bp, b_bobufs);
2773 } else {
2774 KASSERT(TAILQ_NEXT(n, b_bobufs) == NULL ||
2775 bp->b_lblkno < TAILQ_NEXT(n, b_bobufs)->b_lblkno,
2776 ("buf_vlist_add: queue order: "
2777 "%p should be before next %p",
2778 bp, TAILQ_NEXT(n, b_bobufs)));
2779 TAILQ_INSERT_AFTER(&bv->bv_hd, n, bp, b_bobufs);
2780 }
2781
2782 bv->bv_cnt++;
2783 return (0);
2784 }
2785
2786 /*
2787 * Add the buffer to the sorted clean or dirty block list.
2788 *
2789 * NOTE: xflags is passed as a constant, optimizing this inline function!
2790 */
2791 static void
buf_vlist_add(struct buf * bp,struct bufobj * bo,b_xflags_t xflags)2792 buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
2793 {
2794 int error;
2795
2796 KASSERT((bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) == 0,
2797 ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
2798 bp->b_xflags |= xflags;
2799 error = buf_vlist_find_or_add(bp, bo, xflags);
2800 if (error)
2801 panic("buf_vlist_add: error=%d", error);
2802 }
2803
2804 /*
2805 * Look up a buffer using the buffer tries.
2806 */
2807 struct buf *
gbincore(struct bufobj * bo,daddr_t lblkno)2808 gbincore(struct bufobj *bo, daddr_t lblkno)
2809 {
2810 struct buf *bp;
2811
2812 ASSERT_BO_LOCKED(bo);
2813 bp = BUF_PCTRIE_LOOKUP(&bo->bo_clean.bv_root, lblkno);
2814 if (bp != NULL)
2815 return (bp);
2816 return (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, lblkno));
2817 }
2818
2819 /*
2820 * Look up a buf using the buffer tries, without the bufobj lock. This relies
2821 * on SMR for safe lookup, and bufs being in a no-free zone to provide type
2822 * stability of the result. Like other lockless lookups, the found buf may
2823 * already be invalid by the time this function returns.
2824 */
2825 struct buf *
gbincore_unlocked(struct bufobj * bo,daddr_t lblkno)2826 gbincore_unlocked(struct bufobj *bo, daddr_t lblkno)
2827 {
2828 struct buf *bp;
2829
2830 ASSERT_BO_UNLOCKED(bo);
2831 bp = BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_clean.bv_root, lblkno);
2832 if (bp != NULL)
2833 return (bp);
2834 return (BUF_PCTRIE_LOOKUP_UNLOCKED(&bo->bo_dirty.bv_root, lblkno));
2835 }
2836
2837 /*
2838 * Associate a buffer with a vnode.
2839 */
2840 int
bgetvp(struct vnode * vp,struct buf * bp)2841 bgetvp(struct vnode *vp, struct buf *bp)
2842 {
2843 struct bufobj *bo;
2844 int error;
2845
2846 bo = &vp->v_bufobj;
2847 ASSERT_BO_UNLOCKED(bo);
2848 VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));
2849
2850 CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
2851 VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
2852 ("bgetvp: bp already attached! %p", bp));
2853
2854 /*
2855 * Add the buf to the vnode's clean list unless we lost a race and find
2856 * an existing buf in either dirty or clean.
2857 */
2858 bp->b_vp = vp;
2859 bp->b_bufobj = bo;
2860 bp->b_xflags |= BX_VNCLEAN;
2861 error = EEXIST;
2862 BO_LOCK(bo);
2863 if (BUF_PCTRIE_LOOKUP(&bo->bo_dirty.bv_root, bp->b_lblkno) == NULL)
2864 error = buf_vlist_find_or_add(bp, bo, BX_VNCLEAN);
2865 BO_UNLOCK(bo);
2866 if (__predict_true(error == 0)) {
2867 vhold(vp);
2868 return (0);
2869 }
2870 if (error != EEXIST)
2871 panic("bgetvp: buf_vlist_add error: %d", error);
2872 bp->b_vp = NULL;
2873 bp->b_bufobj = NULL;
2874 bp->b_xflags &= ~BX_VNCLEAN;
2875 return (error);
2876 }
2877
2878 /*
2879 * Disassociate a buffer from a vnode.
2880 */
2881 void
brelvp(struct buf * bp)2882 brelvp(struct buf *bp)
2883 {
2884 struct bufobj *bo;
2885 struct vnode *vp;
2886
2887 CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
2888 KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
2889
2890 /*
2891 * Delete from old vnode list, if on one.
2892 */
2893 vp = bp->b_vp; /* XXX */
2894 bo = bp->b_bufobj;
2895 BO_LOCK(bo);
2896 buf_vlist_remove(bp);
2897 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
2898 bo->bo_flag &= ~BO_ONWORKLST;
2899 mtx_lock(&sync_mtx);
2900 LIST_REMOVE(bo, bo_synclist);
2901 syncer_worklist_len--;
2902 mtx_unlock(&sync_mtx);
2903 }
2904 bp->b_vp = NULL;
2905 bp->b_bufobj = NULL;
2906 BO_UNLOCK(bo);
2907 vdrop(vp);
2908 }
2909
2910 /*
2911 * Add an item to the syncer work queue.
2912 */
2913 static void
vn_syncer_add_to_worklist(struct bufobj * bo,int delay)2914 vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
2915 {
2916 int slot;
2917
2918 ASSERT_BO_WLOCKED(bo);
2919
2920 mtx_lock(&sync_mtx);
2921 if (bo->bo_flag & BO_ONWORKLST)
2922 LIST_REMOVE(bo, bo_synclist);
2923 else {
2924 bo->bo_flag |= BO_ONWORKLST;
2925 syncer_worklist_len++;
2926 }
2927
2928 if (delay > syncer_maxdelay - 2)
2929 delay = syncer_maxdelay - 2;
2930 slot = (syncer_delayno + delay) & syncer_mask;
2931
2932 LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
2933 mtx_unlock(&sync_mtx);
2934 }
2935
2936 static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)2937 sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
2938 {
2939 int error, len;
2940
2941 mtx_lock(&sync_mtx);
2942 len = syncer_worklist_len - sync_vnode_count;
2943 mtx_unlock(&sync_mtx);
2944 error = SYSCTL_OUT(req, &len, sizeof(len));
2945 return (error);
2946 }
2947
2948 SYSCTL_PROC(_vfs, OID_AUTO, worklist_len,
2949 CTLTYPE_INT | CTLFLAG_MPSAFE| CTLFLAG_RD, NULL, 0,
2950 sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");
2951
2952 static struct proc *updateproc;
2953 static void sched_sync(void);
2954 static struct kproc_desc up_kp = {
2955 "syncer",
2956 sched_sync,
2957 &updateproc
2958 };
2959 SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp);
2960
2961 static int
sync_vnode(struct synclist * slp,struct bufobj ** bo,struct thread * td)2962 sync_vnode(struct synclist *slp, struct bufobj **bo, struct thread *td)
2963 {
2964 struct vnode *vp;
2965 struct mount *mp;
2966
2967 *bo = LIST_FIRST(slp);
2968 if (*bo == NULL)
2969 return (0);
2970 vp = bo2vnode(*bo);
2971 if (VOP_ISLOCKED(vp) != 0 || VI_TRYLOCK(vp) == 0)
2972 return (1);
2973 /*
2974 * We use vhold in case the vnode does not
2975 * successfully sync. vhold prevents the vnode from
2976 * going away when we unlock the sync_mtx so that
2977 * we can acquire the vnode interlock.
2978 */
2979 vholdl(vp);
2980 mtx_unlock(&sync_mtx);
2981 VI_UNLOCK(vp);
2982 if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2983 vdrop(vp);
2984 mtx_lock(&sync_mtx);
2985 return (*bo == LIST_FIRST(slp));
2986 }
2987 MPASSERT(mp == NULL || (curthread->td_pflags & TDP_IGNSUSP) != 0 ||
2988 (mp->mnt_kern_flag & MNTK_SUSPENDED) == 0, mp,
2989 ("suspended mp syncing vp %p", vp));
2990 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2991 (void) VOP_FSYNC(vp, MNT_LAZY, td);
2992 VOP_UNLOCK(vp);
2993 vn_finished_write(mp);
2994 BO_LOCK(*bo);
2995 if (((*bo)->bo_flag & BO_ONWORKLST) != 0) {
2996 /*
2997 * Put us back on the worklist. The worklist
2998 * routine will remove us from our current
2999 * position and then add us back in at a later
3000 * position.
3001 */
3002 vn_syncer_add_to_worklist(*bo, syncdelay);
3003 }
3004 BO_UNLOCK(*bo);
3005 vdrop(vp);
3006 mtx_lock(&sync_mtx);
3007 return (0);
3008 }
3009
3010 static int first_printf = 1;
3011
3012 /*
3013 * System filesystem synchronizer daemon.
3014 */
3015 static void
sched_sync(void)3016 sched_sync(void)
3017 {
3018 struct synclist *next, *slp;
3019 struct bufobj *bo;
3020 long starttime;
3021 struct thread *td = curthread;
3022 int last_work_seen;
3023 int net_worklist_len;
3024 int syncer_final_iter;
3025 int error;
3026
3027 last_work_seen = 0;
3028 syncer_final_iter = 0;
3029 syncer_state = SYNCER_RUNNING;
3030 starttime = time_uptime;
3031 td->td_pflags |= TDP_NORUNNINGBUF;
3032
3033 EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
3034 SHUTDOWN_PRI_LAST);
3035
3036 mtx_lock(&sync_mtx);
3037 for (;;) {
3038 if (syncer_state == SYNCER_FINAL_DELAY &&
3039 syncer_final_iter == 0) {
3040 mtx_unlock(&sync_mtx);
3041 kproc_suspend_check(td->td_proc);
3042 mtx_lock(&sync_mtx);
3043 }
3044 net_worklist_len = syncer_worklist_len - sync_vnode_count;
3045 if (syncer_state != SYNCER_RUNNING &&
3046 starttime != time_uptime) {
3047 if (first_printf) {
3048 printf("\nSyncing disks, vnodes remaining... ");
3049 first_printf = 0;
3050 }
3051 printf("%d ", net_worklist_len);
3052 }
3053 starttime = time_uptime;
3054
3055 /*
3056 * Push files whose dirty time has expired. Be careful
3057 * of interrupt race on slp queue.
3058 *
3059 * Skip over empty worklist slots when shutting down.
3060 */
3061 do {
3062 slp = &syncer_workitem_pending[syncer_delayno];
3063 syncer_delayno += 1;
3064 if (syncer_delayno == syncer_maxdelay)
3065 syncer_delayno = 0;
3066 next = &syncer_workitem_pending[syncer_delayno];
3067 /*
3068 * If the worklist has wrapped since the
3069 * it was emptied of all but syncer vnodes,
3070 * switch to the FINAL_DELAY state and run
3071 * for one more second.
3072 */
3073 if (syncer_state == SYNCER_SHUTTING_DOWN &&
3074 net_worklist_len == 0 &&
3075 last_work_seen == syncer_delayno) {
3076 syncer_state = SYNCER_FINAL_DELAY;
3077 syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
3078 }
3079 } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
3080 syncer_worklist_len > 0);
3081
3082 /*
3083 * Keep track of the last time there was anything
3084 * on the worklist other than syncer vnodes.
3085 * Return to the SHUTTING_DOWN state if any
3086 * new work appears.
3087 */
3088 if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
3089 last_work_seen = syncer_delayno;
3090 if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
3091 syncer_state = SYNCER_SHUTTING_DOWN;
3092 while (!LIST_EMPTY(slp)) {
3093 error = sync_vnode(slp, &bo, td);
3094 if (error == 1) {
3095 LIST_REMOVE(bo, bo_synclist);
3096 LIST_INSERT_HEAD(next, bo, bo_synclist);
3097 continue;
3098 }
3099
3100 if (first_printf == 0) {
3101 /*
3102 * Drop the sync mutex, because some watchdog
3103 * drivers need to sleep while patting
3104 */
3105 mtx_unlock(&sync_mtx);
3106 wdog_kern_pat(WD_LASTVAL);
3107 mtx_lock(&sync_mtx);
3108 }
3109 }
3110 if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
3111 syncer_final_iter--;
3112 /*
3113 * The variable rushjob allows the kernel to speed up the
3114 * processing of the filesystem syncer process. A rushjob
3115 * value of N tells the filesystem syncer to process the next
3116 * N seconds worth of work on its queue ASAP. Currently rushjob
3117 * is used by the soft update code to speed up the filesystem
3118 * syncer process when the incore state is getting so far
3119 * ahead of the disk that the kernel memory pool is being
3120 * threatened with exhaustion.
3121 */
3122 if (rushjob > 0) {
3123 rushjob -= 1;
3124 continue;
3125 }
3126 /*
3127 * Just sleep for a short period of time between
3128 * iterations when shutting down to allow some I/O
3129 * to happen.
3130 *
3131 * If it has taken us less than a second to process the
3132 * current work, then wait. Otherwise start right over
3133 * again. We can still lose time if any single round
3134 * takes more than two seconds, but it does not really
3135 * matter as we are just trying to generally pace the
3136 * filesystem activity.
3137 */
3138 if (syncer_state != SYNCER_RUNNING ||
3139 time_uptime == starttime) {
3140 thread_lock(td);
3141 sched_prio(td, PPAUSE);
3142 thread_unlock(td);
3143 }
3144 if (syncer_state != SYNCER_RUNNING)
3145 cv_timedwait(&sync_wakeup, &sync_mtx,
3146 hz / SYNCER_SHUTDOWN_SPEEDUP);
3147 else if (time_uptime == starttime)
3148 cv_timedwait(&sync_wakeup, &sync_mtx, hz);
3149 }
3150 }
3151
3152 /*
3153 * Request the syncer daemon to speed up its work.
3154 * We never push it to speed up more than half of its
3155 * normal turn time, otherwise it could take over the cpu.
3156 */
3157 int
speedup_syncer(void)3158 speedup_syncer(void)
3159 {
3160 int ret = 0;
3161
3162 mtx_lock(&sync_mtx);
3163 if (rushjob < syncdelay / 2) {
3164 rushjob += 1;
3165 stat_rush_requests += 1;
3166 ret = 1;
3167 }
3168 mtx_unlock(&sync_mtx);
3169 cv_broadcast(&sync_wakeup);
3170 return (ret);
3171 }
3172
3173 /*
3174 * Tell the syncer to speed up its work and run though its work
3175 * list several times, then tell it to shut down.
3176 */
3177 static void
syncer_shutdown(void * arg,int howto)3178 syncer_shutdown(void *arg, int howto)
3179 {
3180
3181 if (howto & RB_NOSYNC)
3182 return;
3183 mtx_lock(&sync_mtx);
3184 syncer_state = SYNCER_SHUTTING_DOWN;
3185 rushjob = 0;
3186 mtx_unlock(&sync_mtx);
3187 cv_broadcast(&sync_wakeup);
3188 kproc_shutdown(arg, howto);
3189 }
3190
3191 void
syncer_suspend(void)3192 syncer_suspend(void)
3193 {
3194
3195 syncer_shutdown(updateproc, 0);
3196 }
3197
3198 void
syncer_resume(void)3199 syncer_resume(void)
3200 {
3201
3202 mtx_lock(&sync_mtx);
3203 first_printf = 1;
3204 syncer_state = SYNCER_RUNNING;
3205 mtx_unlock(&sync_mtx);
3206 cv_broadcast(&sync_wakeup);
3207 kproc_resume(updateproc);
3208 }
3209
3210 /*
3211 * Move the buffer between the clean and dirty lists of its vnode.
3212 */
3213 void
reassignbuf(struct buf * bp)3214 reassignbuf(struct buf *bp)
3215 {
3216 struct vnode *vp;
3217 struct bufobj *bo;
3218 int delay;
3219 #ifdef INVARIANTS
3220 struct bufv *bv;
3221 #endif
3222
3223 vp = bp->b_vp;
3224 bo = bp->b_bufobj;
3225
3226 KASSERT((bp->b_flags & B_PAGING) == 0,
3227 ("%s: cannot reassign paging buffer %p", __func__, bp));
3228
3229 CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
3230 bp, bp->b_vp, bp->b_flags);
3231
3232 BO_LOCK(bo);
3233 if ((bo->bo_flag & BO_NONSTERILE) == 0) {
3234 /*
3235 * Coordinate with getblk's unlocked lookup. Make
3236 * BO_NONSTERILE visible before the first reassignbuf produces
3237 * any side effect. This could be outside the bo lock if we
3238 * used a separate atomic flag field.
3239 */
3240 bo->bo_flag |= BO_NONSTERILE;
3241 atomic_thread_fence_rel();
3242 }
3243 buf_vlist_remove(bp);
3244
3245 /*
3246 * If dirty, put on list of dirty buffers; otherwise insert onto list
3247 * of clean buffers.
3248 */
3249 if (bp->b_flags & B_DELWRI) {
3250 if ((bo->bo_flag & BO_ONWORKLST) == 0) {
3251 switch (vp->v_type) {
3252 case VDIR:
3253 delay = dirdelay;
3254 break;
3255 case VCHR:
3256 delay = metadelay;
3257 break;
3258 default:
3259 delay = filedelay;
3260 }
3261 vn_syncer_add_to_worklist(bo, delay);
3262 }
3263 buf_vlist_add(bp, bo, BX_VNDIRTY);
3264 } else {
3265 buf_vlist_add(bp, bo, BX_VNCLEAN);
3266
3267 if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
3268 mtx_lock(&sync_mtx);
3269 LIST_REMOVE(bo, bo_synclist);
3270 syncer_worklist_len--;
3271 mtx_unlock(&sync_mtx);
3272 bo->bo_flag &= ~BO_ONWORKLST;
3273 }
3274 }
3275 #ifdef INVARIANTS
3276 bv = &bo->bo_clean;
3277 bp = TAILQ_FIRST(&bv->bv_hd);
3278 KASSERT(bp == NULL || bp->b_bufobj == bo,
3279 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3280 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3281 KASSERT(bp == NULL || bp->b_bufobj == bo,
3282 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3283 bv = &bo->bo_dirty;
3284 bp = TAILQ_FIRST(&bv->bv_hd);
3285 KASSERT(bp == NULL || bp->b_bufobj == bo,
3286 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3287 bp = TAILQ_LAST(&bv->bv_hd, buflists);
3288 KASSERT(bp == NULL || bp->b_bufobj == bo,
3289 ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3290 #endif
3291 BO_UNLOCK(bo);
3292 }
3293
3294 static void
v_init_counters(struct vnode * vp)3295 v_init_counters(struct vnode *vp)
3296 {
3297
3298 VNASSERT(vp->v_type == VNON && vp->v_data == NULL && vp->v_iflag == 0,
3299 vp, ("%s called for an initialized vnode", __FUNCTION__));
3300 ASSERT_VI_UNLOCKED(vp, __FUNCTION__);
3301
3302 refcount_init(&vp->v_holdcnt, 1);
3303 refcount_init(&vp->v_usecount, 1);
3304 }
3305
3306 /*
3307 * Get a usecount on a vnode.
3308 *
3309 * vget and vget_finish may fail to lock the vnode if they lose a race against
3310 * it being doomed. LK_RETRY can be passed in flags to lock it anyway.
3311 *
3312 * Consumers which don't guarantee liveness of the vnode can use SMR to
3313 * try to get a reference. Note this operation can fail since the vnode
3314 * may be awaiting getting freed by the time they get to it.
3315 */
3316 enum vgetstate
vget_prep_smr(struct vnode * vp)3317 vget_prep_smr(struct vnode *vp)
3318 {
3319 enum vgetstate vs;
3320
3321 VFS_SMR_ASSERT_ENTERED();
3322
3323 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3324 vs = VGET_USECOUNT;
3325 } else {
3326 if (vhold_smr(vp))
3327 vs = VGET_HOLDCNT;
3328 else
3329 vs = VGET_NONE;
3330 }
3331 return (vs);
3332 }
3333
3334 enum vgetstate
vget_prep(struct vnode * vp)3335 vget_prep(struct vnode *vp)
3336 {
3337 enum vgetstate vs;
3338
3339 if (refcount_acquire_if_not_zero(&vp->v_usecount)) {
3340 vs = VGET_USECOUNT;
3341 } else {
3342 vhold(vp);
3343 vs = VGET_HOLDCNT;
3344 }
3345 return (vs);
3346 }
3347
3348 void
vget_abort(struct vnode * vp,enum vgetstate vs)3349 vget_abort(struct vnode *vp, enum vgetstate vs)
3350 {
3351
3352 switch (vs) {
3353 case VGET_USECOUNT:
3354 vrele(vp);
3355 goto out_ok;
3356 case VGET_HOLDCNT:
3357 vdrop(vp);
3358 goto out_ok;
3359 case VGET_NONE:
3360 break;
3361 }
3362
3363 __assert_unreachable();
3364
3365 /*
3366 * This is a goto label should the cases above have more in common than
3367 * just the 'return' statement.
3368 */
3369 out_ok:
3370 return;
3371 }
3372
3373 int
vget(struct vnode * vp,int flags)3374 vget(struct vnode *vp, int flags)
3375 {
3376 enum vgetstate vs;
3377
3378 vs = vget_prep(vp);
3379 return (vget_finish(vp, flags, vs));
3380 }
3381
3382 int
vget_finish(struct vnode * vp,int flags,enum vgetstate vs)3383 vget_finish(struct vnode *vp, int flags, enum vgetstate vs)
3384 {
3385 int error;
3386
3387 if ((flags & LK_INTERLOCK) != 0)
3388 ASSERT_VI_LOCKED(vp, __func__);
3389 else
3390 ASSERT_VI_UNLOCKED(vp, __func__);
3391 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3392 VNPASS(vp->v_holdcnt > 0, vp);
3393 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3394
3395 error = vn_lock(vp, flags);
3396 if (__predict_false(error != 0)) {
3397 vget_abort(vp, vs);
3398 CTR2(KTR_VFS, "%s: impossible to lock vnode %p", __func__,
3399 vp);
3400 return (error);
3401 }
3402
3403 vget_finish_ref(vp, vs);
3404 return (0);
3405 }
3406
3407 void
vget_finish_ref(struct vnode * vp,enum vgetstate vs)3408 vget_finish_ref(struct vnode *vp, enum vgetstate vs)
3409 {
3410 int old;
3411
3412 VNPASS(vs == VGET_HOLDCNT || vs == VGET_USECOUNT, vp);
3413 VNPASS(vp->v_holdcnt > 0, vp);
3414 VNPASS(vs == VGET_HOLDCNT || vp->v_usecount > 0, vp);
3415
3416 if (vs == VGET_USECOUNT)
3417 return;
3418
3419 /*
3420 * We hold the vnode. If the usecount is 0 it will be utilized to keep
3421 * the vnode around. Otherwise someone else lended their hold count and
3422 * we have to drop ours.
3423 */
3424 old = atomic_fetchadd_int(&vp->v_usecount, 1);
3425 VNASSERT(old >= 0, vp, ("%s: wrong use count %d", __func__, old));
3426 if (old != 0) {
3427 #ifdef INVARIANTS
3428 old = atomic_fetchadd_int(&vp->v_holdcnt, -1);
3429 VNASSERT(old > 1, vp, ("%s: wrong hold count %d", __func__, old));
3430 #else
3431 refcount_release(&vp->v_holdcnt);
3432 #endif
3433 }
3434 }
3435
3436 void
vref(struct vnode * vp)3437 vref(struct vnode *vp)
3438 {
3439 enum vgetstate vs;
3440
3441 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3442 vs = vget_prep(vp);
3443 vget_finish_ref(vp, vs);
3444 }
3445
3446 void
vrefact(struct vnode * vp)3447 vrefact(struct vnode *vp)
3448 {
3449 int old __diagused;
3450
3451 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3452 old = refcount_acquire(&vp->v_usecount);
3453 VNASSERT(old > 0, vp, ("%s: wrong use count %d", __func__, old));
3454 }
3455
3456 void
vlazy(struct vnode * vp)3457 vlazy(struct vnode *vp)
3458 {
3459 struct mount *mp;
3460
3461 VNASSERT(vp->v_holdcnt > 0, vp, ("%s: vnode not held", __func__));
3462
3463 if ((vp->v_mflag & VMP_LAZYLIST) != 0)
3464 return;
3465 /*
3466 * We may get here for inactive routines after the vnode got doomed.
3467 */
3468 if (VN_IS_DOOMED(vp))
3469 return;
3470 mp = vp->v_mount;
3471 mtx_lock(&mp->mnt_listmtx);
3472 if ((vp->v_mflag & VMP_LAZYLIST) == 0) {
3473 vp->v_mflag |= VMP_LAZYLIST;
3474 TAILQ_INSERT_TAIL(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3475 mp->mnt_lazyvnodelistsize++;
3476 }
3477 mtx_unlock(&mp->mnt_listmtx);
3478 }
3479
3480 static void
vunlazy(struct vnode * vp)3481 vunlazy(struct vnode *vp)
3482 {
3483 struct mount *mp;
3484
3485 ASSERT_VI_LOCKED(vp, __func__);
3486 VNPASS(!VN_IS_DOOMED(vp), vp);
3487
3488 mp = vp->v_mount;
3489 mtx_lock(&mp->mnt_listmtx);
3490 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3491 /*
3492 * Don't remove the vnode from the lazy list if another thread
3493 * has increased the hold count. It may have re-enqueued the
3494 * vnode to the lazy list and is now responsible for its
3495 * removal.
3496 */
3497 if (vp->v_holdcnt == 0) {
3498 vp->v_mflag &= ~VMP_LAZYLIST;
3499 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3500 mp->mnt_lazyvnodelistsize--;
3501 }
3502 mtx_unlock(&mp->mnt_listmtx);
3503 }
3504
3505 /*
3506 * This routine is only meant to be called from vgonel prior to dooming
3507 * the vnode.
3508 */
3509 static void
vunlazy_gone(struct vnode * vp)3510 vunlazy_gone(struct vnode *vp)
3511 {
3512 struct mount *mp;
3513
3514 ASSERT_VOP_ELOCKED(vp, __func__);
3515 ASSERT_VI_LOCKED(vp, __func__);
3516 VNPASS(!VN_IS_DOOMED(vp), vp);
3517
3518 if (vp->v_mflag & VMP_LAZYLIST) {
3519 mp = vp->v_mount;
3520 mtx_lock(&mp->mnt_listmtx);
3521 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
3522 vp->v_mflag &= ~VMP_LAZYLIST;
3523 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, vp, v_lazylist);
3524 mp->mnt_lazyvnodelistsize--;
3525 mtx_unlock(&mp->mnt_listmtx);
3526 }
3527 }
3528
3529 static void
vdefer_inactive(struct vnode * vp)3530 vdefer_inactive(struct vnode *vp)
3531 {
3532
3533 ASSERT_VI_LOCKED(vp, __func__);
3534 VNPASS(vp->v_holdcnt > 0, vp);
3535 if (VN_IS_DOOMED(vp)) {
3536 vdropl(vp);
3537 return;
3538 }
3539 if (vp->v_iflag & VI_DEFINACT) {
3540 VNPASS(vp->v_holdcnt > 1, vp);
3541 vdropl(vp);
3542 return;
3543 }
3544 if (vp->v_usecount > 0) {
3545 vp->v_iflag &= ~VI_OWEINACT;
3546 vdropl(vp);
3547 return;
3548 }
3549 vlazy(vp);
3550 vp->v_iflag |= VI_DEFINACT;
3551 VI_UNLOCK(vp);
3552 atomic_add_long(&deferred_inact, 1);
3553 }
3554
3555 static void
vdefer_inactive_unlocked(struct vnode * vp)3556 vdefer_inactive_unlocked(struct vnode *vp)
3557 {
3558
3559 VI_LOCK(vp);
3560 if ((vp->v_iflag & VI_OWEINACT) == 0) {
3561 vdropl(vp);
3562 return;
3563 }
3564 vdefer_inactive(vp);
3565 }
3566
3567 enum vput_op { VRELE, VPUT, VUNREF };
3568
3569 /*
3570 * Handle ->v_usecount transitioning to 0.
3571 *
3572 * By releasing the last usecount we take ownership of the hold count which
3573 * provides liveness of the vnode, meaning we have to vdrop.
3574 *
3575 * For all vnodes we may need to perform inactive processing. It requires an
3576 * exclusive lock on the vnode, while it is legal to call here with only a
3577 * shared lock (or no locks). If locking the vnode in an expected manner fails,
3578 * inactive processing gets deferred to the syncer.
3579 */
3580 static void
vput_final(struct vnode * vp,enum vput_op func)3581 vput_final(struct vnode *vp, enum vput_op func)
3582 {
3583 int error;
3584 bool want_unlock;
3585
3586 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3587 VNPASS(vp->v_holdcnt > 0, vp);
3588
3589 VI_LOCK(vp);
3590
3591 /*
3592 * By the time we got here someone else might have transitioned
3593 * the count back to > 0.
3594 */
3595 if (vp->v_usecount > 0)
3596 goto out;
3597
3598 /*
3599 * If the vnode is doomed vgone already performed inactive processing
3600 * (if needed).
3601 */
3602 if (VN_IS_DOOMED(vp))
3603 goto out;
3604
3605 if (__predict_true(VOP_NEED_INACTIVE(vp) == 0))
3606 goto out;
3607
3608 if (vp->v_iflag & VI_DOINGINACT)
3609 goto out;
3610
3611 /*
3612 * Locking operations here will drop the interlock and possibly the
3613 * vnode lock, opening a window where the vnode can get doomed all the
3614 * while ->v_usecount is 0. Set VI_OWEINACT to let vgone know to
3615 * perform inactive.
3616 */
3617 vp->v_iflag |= VI_OWEINACT;
3618 want_unlock = false;
3619 error = 0;
3620 switch (func) {
3621 case VRELE:
3622 switch (VOP_ISLOCKED(vp)) {
3623 case LK_EXCLUSIVE:
3624 break;
3625 case LK_EXCLOTHER:
3626 case 0:
3627 want_unlock = true;
3628 error = vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK);
3629 VI_LOCK(vp);
3630 break;
3631 default:
3632 /*
3633 * The lock has at least one sharer, but we have no way
3634 * to conclude whether this is us. Play it safe and
3635 * defer processing.
3636 */
3637 error = EAGAIN;
3638 break;
3639 }
3640 break;
3641 case VPUT:
3642 want_unlock = true;
3643 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3644 error = VOP_LOCK(vp, LK_UPGRADE | LK_INTERLOCK |
3645 LK_NOWAIT);
3646 VI_LOCK(vp);
3647 }
3648 break;
3649 case VUNREF:
3650 if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE) {
3651 error = VOP_LOCK(vp, LK_TRYUPGRADE | LK_INTERLOCK);
3652 VI_LOCK(vp);
3653 }
3654 break;
3655 }
3656 if (error != 0) {
3657 vdefer_inactive(vp);
3658 return;
3659 }
3660 if (func == VUNREF) {
3661 VNASSERT((vp->v_vflag & VV_UNREF) == 0, vp,
3662 ("recursive vunref"));
3663 vp->v_vflag |= VV_UNREF;
3664 }
3665 for (;;) {
3666 error = vinactive(vp);
3667 if (want_unlock)
3668 VOP_UNLOCK(vp);
3669 if (error != ERELOOKUP || !want_unlock)
3670 break;
3671 VOP_LOCK(vp, LK_EXCLUSIVE);
3672 }
3673 if (func == VUNREF)
3674 vp->v_vflag &= ~VV_UNREF;
3675 vdropl(vp);
3676 return;
3677 out:
3678 if (func == VPUT)
3679 VOP_UNLOCK(vp);
3680 vdropl(vp);
3681 }
3682
3683 /*
3684 * Decrement ->v_usecount for a vnode.
3685 *
3686 * Releasing the last use count requires additional processing, see vput_final
3687 * above for details.
3688 *
3689 * Comment above each variant denotes lock state on entry and exit.
3690 */
3691
3692 /*
3693 * in: any
3694 * out: same as passed in
3695 */
3696 void
vrele(struct vnode * vp)3697 vrele(struct vnode *vp)
3698 {
3699
3700 ASSERT_VI_UNLOCKED(vp, __func__);
3701 if (!refcount_release(&vp->v_usecount))
3702 return;
3703 vput_final(vp, VRELE);
3704 }
3705
3706 /*
3707 * in: locked
3708 * out: unlocked
3709 */
3710 void
vput(struct vnode * vp)3711 vput(struct vnode *vp)
3712 {
3713
3714 ASSERT_VOP_LOCKED(vp, __func__);
3715 ASSERT_VI_UNLOCKED(vp, __func__);
3716 if (!refcount_release(&vp->v_usecount)) {
3717 VOP_UNLOCK(vp);
3718 return;
3719 }
3720 vput_final(vp, VPUT);
3721 }
3722
3723 /*
3724 * in: locked
3725 * out: locked
3726 */
3727 void
vunref(struct vnode * vp)3728 vunref(struct vnode *vp)
3729 {
3730
3731 ASSERT_VOP_LOCKED(vp, __func__);
3732 ASSERT_VI_UNLOCKED(vp, __func__);
3733 if (!refcount_release(&vp->v_usecount))
3734 return;
3735 vput_final(vp, VUNREF);
3736 }
3737
3738 void
vhold(struct vnode * vp)3739 vhold(struct vnode *vp)
3740 {
3741 int old;
3742
3743 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3744 old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3745 VNASSERT(old >= 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3746 ("%s: wrong hold count %d", __func__, old));
3747 if (old == 0)
3748 vfs_freevnodes_dec();
3749 }
3750
3751 void
vholdnz(struct vnode * vp)3752 vholdnz(struct vnode *vp)
3753 {
3754
3755 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
3756 #ifdef INVARIANTS
3757 int old = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3758 VNASSERT(old > 0 && (old & VHOLD_ALL_FLAGS) == 0, vp,
3759 ("%s: wrong hold count %d", __func__, old));
3760 #else
3761 atomic_add_int(&vp->v_holdcnt, 1);
3762 #endif
3763 }
3764
3765 /*
3766 * Grab a hold count unless the vnode is freed.
3767 *
3768 * Only use this routine if vfs smr is the only protection you have against
3769 * freeing the vnode.
3770 *
3771 * The code loops trying to add a hold count as long as the VHOLD_NO_SMR flag
3772 * is not set. After the flag is set the vnode becomes immutable to anyone but
3773 * the thread which managed to set the flag.
3774 *
3775 * It may be tempting to replace the loop with:
3776 * count = atomic_fetchadd_int(&vp->v_holdcnt, 1);
3777 * if (count & VHOLD_NO_SMR) {
3778 * backpedal and error out;
3779 * }
3780 *
3781 * However, while this is more performant, it hinders debugging by eliminating
3782 * the previously mentioned invariant.
3783 */
3784 bool
vhold_smr(struct vnode * vp)3785 vhold_smr(struct vnode *vp)
3786 {
3787 int count;
3788
3789 VFS_SMR_ASSERT_ENTERED();
3790
3791 count = atomic_load_int(&vp->v_holdcnt);
3792 for (;;) {
3793 if (count & VHOLD_NO_SMR) {
3794 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3795 ("non-zero hold count with flags %d\n", count));
3796 return (false);
3797 }
3798 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3799 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3800 if (count == 0)
3801 vfs_freevnodes_dec();
3802 return (true);
3803 }
3804 }
3805 }
3806
3807 /*
3808 * Hold a free vnode for recycling.
3809 *
3810 * Note: vnode_init references this comment.
3811 *
3812 * Attempts to recycle only need the global vnode list lock and have no use for
3813 * SMR.
3814 *
3815 * However, vnodes get inserted into the global list before they get fully
3816 * initialized and stay there until UMA decides to free the memory. This in
3817 * particular means the target can be found before it becomes usable and after
3818 * it becomes recycled. Picking up such vnodes is guarded with v_holdcnt set to
3819 * VHOLD_NO_SMR.
3820 *
3821 * Note: the vnode may gain more references after we transition the count 0->1.
3822 */
3823 static bool
vhold_recycle_free(struct vnode * vp)3824 vhold_recycle_free(struct vnode *vp)
3825 {
3826 int count;
3827
3828 mtx_assert(&vnode_list_mtx, MA_OWNED);
3829
3830 count = atomic_load_int(&vp->v_holdcnt);
3831 for (;;) {
3832 if (count & VHOLD_NO_SMR) {
3833 VNASSERT((count & ~VHOLD_NO_SMR) == 0, vp,
3834 ("non-zero hold count with flags %d\n", count));
3835 return (false);
3836 }
3837 VNASSERT(count >= 0, vp, ("invalid hold count %d\n", count));
3838 if (count > 0) {
3839 return (false);
3840 }
3841 if (atomic_fcmpset_int(&vp->v_holdcnt, &count, count + 1)) {
3842 vfs_freevnodes_dec();
3843 return (true);
3844 }
3845 }
3846 }
3847
3848 static void __noinline
vdbatch_process(struct vdbatch * vd)3849 vdbatch_process(struct vdbatch *vd)
3850 {
3851 struct vnode *vp;
3852 int i;
3853
3854 mtx_assert(&vd->lock, MA_OWNED);
3855 MPASS(curthread->td_pinned > 0);
3856 MPASS(vd->index == VDBATCH_SIZE);
3857
3858 /*
3859 * Attempt to requeue the passed batch, but give up easily.
3860 *
3861 * Despite batching the mechanism is prone to transient *significant*
3862 * lock contention, where vnode_list_mtx becomes the primary bottleneck
3863 * if multiple CPUs get here (one real-world example is highly parallel
3864 * do-nothing make , which will stat *tons* of vnodes). Since it is
3865 * quasi-LRU (read: not that great even if fully honoured) provide an
3866 * option to just dodge the problem. Parties which don't like it are
3867 * welcome to implement something better.
3868 */
3869 if (vnode_can_skip_requeue) {
3870 if (!mtx_trylock(&vnode_list_mtx)) {
3871 counter_u64_add(vnode_skipped_requeues, 1);
3872 critical_enter();
3873 for (i = 0; i < VDBATCH_SIZE; i++) {
3874 vp = vd->tab[i];
3875 vd->tab[i] = NULL;
3876 MPASS(vp->v_dbatchcpu != NOCPU);
3877 vp->v_dbatchcpu = NOCPU;
3878 }
3879 vd->index = 0;
3880 critical_exit();
3881 return;
3882
3883 }
3884 /* fallthrough to locked processing */
3885 } else {
3886 mtx_lock(&vnode_list_mtx);
3887 }
3888
3889 mtx_assert(&vnode_list_mtx, MA_OWNED);
3890 critical_enter();
3891 for (i = 0; i < VDBATCH_SIZE; i++) {
3892 vp = vd->tab[i];
3893 vd->tab[i] = NULL;
3894 TAILQ_REMOVE(&vnode_list, vp, v_vnodelist);
3895 TAILQ_INSERT_TAIL(&vnode_list, vp, v_vnodelist);
3896 MPASS(vp->v_dbatchcpu != NOCPU);
3897 vp->v_dbatchcpu = NOCPU;
3898 }
3899 mtx_unlock(&vnode_list_mtx);
3900 vd->index = 0;
3901 critical_exit();
3902 }
3903
3904 static void
vdbatch_enqueue(struct vnode * vp)3905 vdbatch_enqueue(struct vnode *vp)
3906 {
3907 struct vdbatch *vd;
3908
3909 ASSERT_VI_LOCKED(vp, __func__);
3910 VNPASS(!VN_IS_DOOMED(vp), vp);
3911
3912 if (vp->v_dbatchcpu != NOCPU) {
3913 VI_UNLOCK(vp);
3914 return;
3915 }
3916
3917 sched_pin();
3918 vd = DPCPU_PTR(vd);
3919 mtx_lock(&vd->lock);
3920 MPASS(vd->index < VDBATCH_SIZE);
3921 MPASS(vd->tab[vd->index] == NULL);
3922 /*
3923 * A hack: we depend on being pinned so that we know what to put in
3924 * ->v_dbatchcpu.
3925 */
3926 vp->v_dbatchcpu = curcpu;
3927 vd->tab[vd->index] = vp;
3928 vd->index++;
3929 VI_UNLOCK(vp);
3930 if (vd->index == VDBATCH_SIZE)
3931 vdbatch_process(vd);
3932 mtx_unlock(&vd->lock);
3933 sched_unpin();
3934 }
3935
3936 /*
3937 * This routine must only be called for vnodes which are about to be
3938 * deallocated. Supporting dequeue for arbitrary vndoes would require
3939 * validating that the locked batch matches.
3940 */
3941 static void
vdbatch_dequeue(struct vnode * vp)3942 vdbatch_dequeue(struct vnode *vp)
3943 {
3944 struct vdbatch *vd;
3945 int i;
3946 short cpu;
3947
3948 VNPASS(vp->v_type == VBAD || vp->v_type == VNON, vp);
3949
3950 cpu = vp->v_dbatchcpu;
3951 if (cpu == NOCPU)
3952 return;
3953
3954 vd = DPCPU_ID_PTR(cpu, vd);
3955 mtx_lock(&vd->lock);
3956 for (i = 0; i < vd->index; i++) {
3957 if (vd->tab[i] != vp)
3958 continue;
3959 vp->v_dbatchcpu = NOCPU;
3960 vd->index--;
3961 vd->tab[i] = vd->tab[vd->index];
3962 vd->tab[vd->index] = NULL;
3963 break;
3964 }
3965 mtx_unlock(&vd->lock);
3966 /*
3967 * Either we dequeued the vnode above or the target CPU beat us to it.
3968 */
3969 MPASS(vp->v_dbatchcpu == NOCPU);
3970 }
3971
3972 /*
3973 * Drop the hold count of the vnode.
3974 *
3975 * It will only get freed if this is the last hold *and* it has been vgone'd.
3976 *
3977 * Because the vnode vm object keeps a hold reference on the vnode if
3978 * there is at least one resident non-cached page, the vnode cannot
3979 * leave the active list without the page cleanup done.
3980 */
3981 static void __noinline
vdropl_final(struct vnode * vp)3982 vdropl_final(struct vnode *vp)
3983 {
3984
3985 ASSERT_VI_LOCKED(vp, __func__);
3986 VNPASS(VN_IS_DOOMED(vp), vp);
3987 /*
3988 * Set the VHOLD_NO_SMR flag.
3989 *
3990 * We may be racing against vhold_smr. If they win we can just pretend
3991 * we never got this far, they will vdrop later.
3992 */
3993 if (__predict_false(!atomic_cmpset_int(&vp->v_holdcnt, 0, VHOLD_NO_SMR))) {
3994 vfs_freevnodes_inc();
3995 VI_UNLOCK(vp);
3996 /*
3997 * We lost the aforementioned race. Any subsequent access is
3998 * invalid as they might have managed to vdropl on their own.
3999 */
4000 return;
4001 }
4002 /*
4003 * Don't bump freevnodes as this one is going away.
4004 */
4005 freevnode(vp);
4006 }
4007
4008 void
vdrop(struct vnode * vp)4009 vdrop(struct vnode *vp)
4010 {
4011
4012 ASSERT_VI_UNLOCKED(vp, __func__);
4013 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4014 if (refcount_release_if_not_last(&vp->v_holdcnt))
4015 return;
4016 VI_LOCK(vp);
4017 vdropl(vp);
4018 }
4019
4020 static __always_inline void
vdropl_impl(struct vnode * vp,bool enqueue)4021 vdropl_impl(struct vnode *vp, bool enqueue)
4022 {
4023
4024 ASSERT_VI_LOCKED(vp, __func__);
4025 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4026 if (!refcount_release(&vp->v_holdcnt)) {
4027 VI_UNLOCK(vp);
4028 return;
4029 }
4030 VNPASS((vp->v_iflag & VI_OWEINACT) == 0, vp);
4031 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
4032 if (VN_IS_DOOMED(vp)) {
4033 vdropl_final(vp);
4034 return;
4035 }
4036
4037 vfs_freevnodes_inc();
4038 if (vp->v_mflag & VMP_LAZYLIST) {
4039 vunlazy(vp);
4040 }
4041
4042 if (!enqueue) {
4043 VI_UNLOCK(vp);
4044 return;
4045 }
4046
4047 /*
4048 * Also unlocks the interlock. We can't assert on it as we
4049 * released our hold and by now the vnode might have been
4050 * freed.
4051 */
4052 vdbatch_enqueue(vp);
4053 }
4054
4055 void
vdropl(struct vnode * vp)4056 vdropl(struct vnode *vp)
4057 {
4058
4059 vdropl_impl(vp, true);
4060 }
4061
4062 /*
4063 * vdrop a vnode when recycling
4064 *
4065 * This is a special case routine only to be used when recycling, differs from
4066 * regular vdrop by not requeieing the vnode on LRU.
4067 *
4068 * Consider a case where vtryrecycle continuously fails with all vnodes (due to
4069 * e.g., frozen writes on the filesystem), filling the batch and causing it to
4070 * be requeued. Then vnlru will end up revisiting the same vnodes. This is a
4071 * loop which can last for as long as writes are frozen.
4072 */
4073 static void
vdropl_recycle(struct vnode * vp)4074 vdropl_recycle(struct vnode *vp)
4075 {
4076
4077 vdropl_impl(vp, false);
4078 }
4079
4080 static void
vdrop_recycle(struct vnode * vp)4081 vdrop_recycle(struct vnode *vp)
4082 {
4083
4084 VI_LOCK(vp);
4085 vdropl_recycle(vp);
4086 }
4087
4088 /*
4089 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
4090 * flags. DOINGINACT prevents us from recursing in calls to vinactive.
4091 */
4092 static int
vinactivef(struct vnode * vp)4093 vinactivef(struct vnode *vp)
4094 {
4095 int error;
4096
4097 ASSERT_VOP_ELOCKED(vp, "vinactive");
4098 ASSERT_VI_LOCKED(vp, "vinactive");
4099 VNPASS((vp->v_iflag & VI_DOINGINACT) == 0, vp);
4100 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4101 vp->v_iflag |= VI_DOINGINACT;
4102 vp->v_iflag &= ~VI_OWEINACT;
4103 VI_UNLOCK(vp);
4104
4105 /*
4106 * Before moving off the active list, we must be sure that any
4107 * modified pages are converted into the vnode's dirty
4108 * buffers, since these will no longer be checked once the
4109 * vnode is on the inactive list.
4110 *
4111 * The write-out of the dirty pages is asynchronous. At the
4112 * point that VOP_INACTIVE() is called, there could still be
4113 * pending I/O and dirty pages in the object.
4114 */
4115 if ((vp->v_vflag & VV_NOSYNC) == 0)
4116 vnode_pager_clean_async(vp);
4117
4118 error = VOP_INACTIVE(vp);
4119 VI_LOCK(vp);
4120 VNPASS(vp->v_iflag & VI_DOINGINACT, vp);
4121 vp->v_iflag &= ~VI_DOINGINACT;
4122 return (error);
4123 }
4124
4125 int
vinactive(struct vnode * vp)4126 vinactive(struct vnode *vp)
4127 {
4128
4129 ASSERT_VOP_ELOCKED(vp, "vinactive");
4130 ASSERT_VI_LOCKED(vp, "vinactive");
4131 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4132
4133 if ((vp->v_iflag & VI_OWEINACT) == 0)
4134 return (0);
4135 if (vp->v_iflag & VI_DOINGINACT)
4136 return (0);
4137 if (vp->v_usecount > 0) {
4138 vp->v_iflag &= ~VI_OWEINACT;
4139 return (0);
4140 }
4141 return (vinactivef(vp));
4142 }
4143
4144 /*
4145 * Remove any vnodes in the vnode table belonging to mount point mp.
4146 *
4147 * If FORCECLOSE is not specified, there should not be any active ones,
4148 * return error if any are found (nb: this is a user error, not a
4149 * system error). If FORCECLOSE is specified, detach any active vnodes
4150 * that are found.
4151 *
4152 * If WRITECLOSE is set, only flush out regular file vnodes open for
4153 * writing.
4154 *
4155 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
4156 *
4157 * `rootrefs' specifies the base reference count for the root vnode
4158 * of this filesystem. The root vnode is considered busy if its
4159 * v_usecount exceeds this value. On a successful return, vflush(, td)
4160 * will call vrele() on the root vnode exactly rootrefs times.
4161 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
4162 * be zero.
4163 */
4164 #ifdef DIAGNOSTIC
4165 static int busyprt = 0; /* print out busy vnodes */
4166 SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "Print out busy vnodes");
4167 #endif
4168
4169 int
vflush(struct mount * mp,int rootrefs,int flags,struct thread * td)4170 vflush(struct mount *mp, int rootrefs, int flags, struct thread *td)
4171 {
4172 struct vnode *vp, *mvp, *rootvp = NULL;
4173 struct vattr vattr;
4174 int busy = 0, error;
4175
4176 CTR4(KTR_VFS, "%s: mp %p with rootrefs %d and flags %d", __func__, mp,
4177 rootrefs, flags);
4178 if (rootrefs > 0) {
4179 KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
4180 ("vflush: bad args"));
4181 /*
4182 * Get the filesystem root vnode. We can vput() it
4183 * immediately, since with rootrefs > 0, it won't go away.
4184 */
4185 if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp)) != 0) {
4186 CTR2(KTR_VFS, "%s: vfs_root lookup failed with %d",
4187 __func__, error);
4188 return (error);
4189 }
4190 vput(rootvp);
4191 }
4192 loop:
4193 MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
4194 vholdl(vp);
4195 error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE);
4196 if (error) {
4197 vdrop(vp);
4198 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4199 goto loop;
4200 }
4201 /*
4202 * Skip over a vnodes marked VV_SYSTEM.
4203 */
4204 if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
4205 VOP_UNLOCK(vp);
4206 vdrop(vp);
4207 continue;
4208 }
4209 /*
4210 * If WRITECLOSE is set, flush out unlinked but still open
4211 * files (even if open only for reading) and regular file
4212 * vnodes open for writing.
4213 */
4214 if (flags & WRITECLOSE) {
4215 vnode_pager_clean_async(vp);
4216 do {
4217 error = VOP_FSYNC(vp, MNT_WAIT, td);
4218 } while (error == ERELOOKUP);
4219 if (error != 0) {
4220 VOP_UNLOCK(vp);
4221 vdrop(vp);
4222 MNT_VNODE_FOREACH_ALL_ABORT(mp, mvp);
4223 return (error);
4224 }
4225 error = VOP_GETATTR(vp, &vattr, td->td_ucred);
4226 VI_LOCK(vp);
4227
4228 if ((vp->v_type == VNON ||
4229 (error == 0 && vattr.va_nlink > 0)) &&
4230 (vp->v_writecount <= 0 || vp->v_type != VREG)) {
4231 VOP_UNLOCK(vp);
4232 vdropl(vp);
4233 continue;
4234 }
4235 } else
4236 VI_LOCK(vp);
4237 /*
4238 * With v_usecount == 0, all we need to do is clear out the
4239 * vnode data structures and we are done.
4240 *
4241 * If FORCECLOSE is set, forcibly close the vnode.
4242 */
4243 if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
4244 vgonel(vp);
4245 } else {
4246 busy++;
4247 #ifdef DIAGNOSTIC
4248 if (busyprt)
4249 vn_printf(vp, "vflush: busy vnode ");
4250 #endif
4251 }
4252 VOP_UNLOCK(vp);
4253 vdropl(vp);
4254 }
4255 if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
4256 /*
4257 * If just the root vnode is busy, and if its refcount
4258 * is equal to `rootrefs', then go ahead and kill it.
4259 */
4260 VI_LOCK(rootvp);
4261 KASSERT(busy > 0, ("vflush: not busy"));
4262 VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
4263 ("vflush: usecount %d < rootrefs %d",
4264 rootvp->v_usecount, rootrefs));
4265 if (busy == 1 && rootvp->v_usecount == rootrefs) {
4266 VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK);
4267 vgone(rootvp);
4268 VOP_UNLOCK(rootvp);
4269 busy = 0;
4270 } else
4271 VI_UNLOCK(rootvp);
4272 }
4273 if (busy) {
4274 CTR2(KTR_VFS, "%s: failing as %d vnodes are busy", __func__,
4275 busy);
4276 return (EBUSY);
4277 }
4278 for (; rootrefs > 0; rootrefs--)
4279 vrele(rootvp);
4280 return (0);
4281 }
4282
4283 /*
4284 * Recycle an unused vnode.
4285 */
4286 int
vrecycle(struct vnode * vp)4287 vrecycle(struct vnode *vp)
4288 {
4289 int recycled;
4290
4291 VI_LOCK(vp);
4292 recycled = vrecyclel(vp);
4293 VI_UNLOCK(vp);
4294 return (recycled);
4295 }
4296
4297 /*
4298 * vrecycle, with the vp interlock held.
4299 */
4300 int
vrecyclel(struct vnode * vp)4301 vrecyclel(struct vnode *vp)
4302 {
4303 int recycled;
4304
4305 ASSERT_VOP_ELOCKED(vp, __func__);
4306 ASSERT_VI_LOCKED(vp, __func__);
4307 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4308 recycled = 0;
4309 if (vp->v_usecount == 0) {
4310 recycled = 1;
4311 vgonel(vp);
4312 }
4313 return (recycled);
4314 }
4315
4316 /*
4317 * Eliminate all activity associated with a vnode
4318 * in preparation for reuse.
4319 */
4320 void
vgone(struct vnode * vp)4321 vgone(struct vnode *vp)
4322 {
4323 VI_LOCK(vp);
4324 vgonel(vp);
4325 VI_UNLOCK(vp);
4326 }
4327
4328 /*
4329 * Notify upper mounts about reclaimed or unlinked vnode.
4330 */
4331 void
vfs_notify_upper(struct vnode * vp,enum vfs_notify_upper_type event)4332 vfs_notify_upper(struct vnode *vp, enum vfs_notify_upper_type event)
4333 {
4334 struct mount *mp;
4335 struct mount_upper_node *ump;
4336
4337 mp = atomic_load_ptr(&vp->v_mount);
4338 if (mp == NULL)
4339 return;
4340 if (TAILQ_EMPTY(&mp->mnt_notify))
4341 return;
4342
4343 MNT_ILOCK(mp);
4344 mp->mnt_upper_pending++;
4345 KASSERT(mp->mnt_upper_pending > 0,
4346 ("%s: mnt_upper_pending %d", __func__, mp->mnt_upper_pending));
4347 TAILQ_FOREACH(ump, &mp->mnt_notify, mnt_upper_link) {
4348 MNT_IUNLOCK(mp);
4349 switch (event) {
4350 case VFS_NOTIFY_UPPER_RECLAIM:
4351 VFS_RECLAIM_LOWERVP(ump->mp, vp);
4352 break;
4353 case VFS_NOTIFY_UPPER_UNLINK:
4354 VFS_UNLINK_LOWERVP(ump->mp, vp);
4355 break;
4356 }
4357 MNT_ILOCK(mp);
4358 }
4359 mp->mnt_upper_pending--;
4360 if ((mp->mnt_kern_flag & MNTK_UPPER_WAITER) != 0 &&
4361 mp->mnt_upper_pending == 0) {
4362 mp->mnt_kern_flag &= ~MNTK_UPPER_WAITER;
4363 wakeup(&mp->mnt_uppers);
4364 }
4365 MNT_IUNLOCK(mp);
4366 }
4367
4368 /*
4369 * vgone, with the vp interlock held.
4370 */
4371 static void
vgonel(struct vnode * vp)4372 vgonel(struct vnode *vp)
4373 {
4374 struct thread *td;
4375 struct mount *mp;
4376 vm_object_t object;
4377 bool active, doinginact, oweinact;
4378
4379 ASSERT_VOP_ELOCKED(vp, "vgonel");
4380 ASSERT_VI_LOCKED(vp, "vgonel");
4381 VNASSERT(vp->v_holdcnt, vp,
4382 ("vgonel: vp %p has no reference.", vp));
4383 CTR2(KTR_VFS, "%s: vp %p", __func__, vp);
4384 td = curthread;
4385
4386 /*
4387 * Don't vgonel if we're already doomed.
4388 */
4389 if (VN_IS_DOOMED(vp)) {
4390 VNPASS(vn_get_state(vp) == VSTATE_DESTROYING || \
4391 vn_get_state(vp) == VSTATE_DEAD, vp);
4392 return;
4393 }
4394 /*
4395 * Paired with freevnode.
4396 */
4397 vn_seqc_write_begin_locked(vp);
4398 vunlazy_gone(vp);
4399 vn_irflag_set_locked(vp, VIRF_DOOMED);
4400 vn_set_state(vp, VSTATE_DESTROYING);
4401
4402 /*
4403 * Check to see if the vnode is in use. If so, we have to
4404 * call VOP_CLOSE() and VOP_INACTIVE().
4405 *
4406 * It could be that VOP_INACTIVE() requested reclamation, in
4407 * which case we should avoid recursion, so check
4408 * VI_DOINGINACT. This is not precise but good enough.
4409 */
4410 active = vp->v_usecount > 0;
4411 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4412 doinginact = (vp->v_iflag & VI_DOINGINACT) != 0;
4413
4414 /*
4415 * If we need to do inactive VI_OWEINACT will be set.
4416 */
4417 if (vp->v_iflag & VI_DEFINACT) {
4418 VNASSERT(vp->v_holdcnt > 1, vp, ("lost hold count"));
4419 vp->v_iflag &= ~VI_DEFINACT;
4420 vdropl(vp);
4421 } else {
4422 VNASSERT(vp->v_holdcnt > 0, vp, ("vnode without hold count"));
4423 VI_UNLOCK(vp);
4424 }
4425 cache_purge_vgone(vp);
4426 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_RECLAIM);
4427
4428 /*
4429 * If purging an active vnode, it must be closed and
4430 * deactivated before being reclaimed.
4431 */
4432 if (active)
4433 VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
4434 if (!doinginact) {
4435 do {
4436 if (oweinact || active) {
4437 VI_LOCK(vp);
4438 vinactivef(vp);
4439 oweinact = (vp->v_iflag & VI_OWEINACT) != 0;
4440 VI_UNLOCK(vp);
4441 }
4442 } while (oweinact);
4443 }
4444 if (vp->v_type == VSOCK)
4445 vfs_unp_reclaim(vp);
4446
4447 /*
4448 * Clean out any buffers associated with the vnode.
4449 * If the flush fails, just toss the buffers.
4450 */
4451 mp = NULL;
4452 if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
4453 (void) vn_start_secondary_write(vp, &mp, V_WAIT);
4454 if (vinvalbuf(vp, V_SAVE, 0, 0) != 0) {
4455 while (vinvalbuf(vp, 0, 0, 0) != 0)
4456 ;
4457 }
4458
4459 BO_LOCK(&vp->v_bufobj);
4460 KASSERT(TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd) &&
4461 vp->v_bufobj.bo_dirty.bv_cnt == 0 &&
4462 TAILQ_EMPTY(&vp->v_bufobj.bo_clean.bv_hd) &&
4463 vp->v_bufobj.bo_clean.bv_cnt == 0,
4464 ("vp %p bufobj not invalidated", vp));
4465
4466 /*
4467 * For VMIO bufobj, BO_DEAD is set later, or in
4468 * vm_object_terminate() after the object's page queue is
4469 * flushed.
4470 */
4471 object = vp->v_bufobj.bo_object;
4472 if (object == NULL)
4473 vp->v_bufobj.bo_flag |= BO_DEAD;
4474 BO_UNLOCK(&vp->v_bufobj);
4475
4476 /*
4477 * Handle the VM part. Tmpfs handles v_object on its own (the
4478 * OBJT_VNODE check). Nullfs or other bypassing filesystems
4479 * should not touch the object borrowed from the lower vnode
4480 * (the handle check).
4481 */
4482 if (object != NULL && object->type == OBJT_VNODE &&
4483 object->handle == vp)
4484 vnode_destroy_vobject(vp);
4485
4486 /*
4487 * Reclaim the vnode.
4488 */
4489 if (VOP_RECLAIM(vp))
4490 panic("vgone: cannot reclaim");
4491 if (mp != NULL)
4492 vn_finished_secondary_write(mp);
4493 VNASSERT(vp->v_object == NULL, vp,
4494 ("vop_reclaim left v_object vp=%p", vp));
4495 /*
4496 * Clear the advisory locks and wake up waiting threads.
4497 */
4498 if (vp->v_lockf != NULL) {
4499 (void)VOP_ADVLOCKPURGE(vp);
4500 vp->v_lockf = NULL;
4501 }
4502 /*
4503 * Delete from old mount point vnode list.
4504 */
4505 if (vp->v_mount == NULL) {
4506 VI_LOCK(vp);
4507 } else {
4508 delmntque(vp);
4509 ASSERT_VI_LOCKED(vp, "vgonel 2");
4510 }
4511 /*
4512 * Done with purge, reset to the standard lock and invalidate
4513 * the vnode.
4514 *
4515 * FIXME: this is buggy for vnode ops with custom locking primitives.
4516 *
4517 * vget used to be gated with a special flag serializing it against vgone,
4518 * which got lost in the process of SMP-ifying the VFS layer.
4519 *
4520 * Suppose a custom locking routine references ->v_data.
4521 *
4522 * Since now it is possible to start executing it as vgone is
4523 * progressing, this very well may crash as ->v_data gets invalidated
4524 * and memory used to back it is freed.
4525 */
4526 vp->v_vnlock = &vp->v_lock;
4527 vp->v_op = &dead_vnodeops;
4528 vp->v_type = VBAD;
4529 vn_set_state(vp, VSTATE_DEAD);
4530 }
4531
4532 /*
4533 * Print out a description of a vnode.
4534 */
4535 static const char *const vtypename[] = {
4536 [VNON] = "VNON",
4537 [VREG] = "VREG",
4538 [VDIR] = "VDIR",
4539 [VBLK] = "VBLK",
4540 [VCHR] = "VCHR",
4541 [VLNK] = "VLNK",
4542 [VSOCK] = "VSOCK",
4543 [VFIFO] = "VFIFO",
4544 [VBAD] = "VBAD",
4545 [VMARKER] = "VMARKER",
4546 };
4547 _Static_assert(nitems(vtypename) == VLASTTYPE + 1,
4548 "vnode type name not added to vtypename");
4549
4550 static const char *const vstatename[] = {
4551 [VSTATE_UNINITIALIZED] = "VSTATE_UNINITIALIZED",
4552 [VSTATE_CONSTRUCTED] = "VSTATE_CONSTRUCTED",
4553 [VSTATE_DESTROYING] = "VSTATE_DESTROYING",
4554 [VSTATE_DEAD] = "VSTATE_DEAD",
4555 };
4556 _Static_assert(nitems(vstatename) == VLASTSTATE + 1,
4557 "vnode state name not added to vstatename");
4558
4559 _Static_assert((VHOLD_ALL_FLAGS & ~VHOLD_NO_SMR) == 0,
4560 "new hold count flag not added to vn_printf");
4561
4562 void
vn_printf(struct vnode * vp,const char * fmt,...)4563 vn_printf(struct vnode *vp, const char *fmt, ...)
4564 {
4565 va_list ap;
4566 char buf[256], buf2[16];
4567 u_long flags;
4568 u_int holdcnt;
4569 short irflag;
4570
4571 va_start(ap, fmt);
4572 vprintf(fmt, ap);
4573 va_end(ap);
4574 printf("%p: ", (void *)vp);
4575 printf("type %s state %s op %p\n", vtypename[vp->v_type],
4576 vstatename[vp->v_state], vp->v_op);
4577 holdcnt = atomic_load_int(&vp->v_holdcnt);
4578 printf(" usecount %d, writecount %d, refcount %d seqc users %d",
4579 vp->v_usecount, vp->v_writecount, holdcnt & ~VHOLD_ALL_FLAGS,
4580 vp->v_seqc_users);
4581 switch (vp->v_type) {
4582 case VDIR:
4583 printf(" mountedhere %p\n", vp->v_mountedhere);
4584 break;
4585 case VCHR:
4586 printf(" rdev %p\n", vp->v_rdev);
4587 break;
4588 case VSOCK:
4589 printf(" socket %p\n", vp->v_unpcb);
4590 break;
4591 case VFIFO:
4592 printf(" fifoinfo %p\n", vp->v_fifoinfo);
4593 break;
4594 default:
4595 printf("\n");
4596 break;
4597 }
4598 buf[0] = '\0';
4599 buf[1] = '\0';
4600 if (holdcnt & VHOLD_NO_SMR)
4601 strlcat(buf, "|VHOLD_NO_SMR", sizeof(buf));
4602 printf(" hold count flags (%s)\n", buf + 1);
4603
4604 buf[0] = '\0';
4605 buf[1] = '\0';
4606 irflag = vn_irflag_read(vp);
4607 if (irflag & VIRF_DOOMED)
4608 strlcat(buf, "|VIRF_DOOMED", sizeof(buf));
4609 if (irflag & VIRF_PGREAD)
4610 strlcat(buf, "|VIRF_PGREAD", sizeof(buf));
4611 if (irflag & VIRF_MOUNTPOINT)
4612 strlcat(buf, "|VIRF_MOUNTPOINT", sizeof(buf));
4613 if (irflag & VIRF_TEXT_REF)
4614 strlcat(buf, "|VIRF_TEXT_REF", sizeof(buf));
4615 flags = irflag & ~(VIRF_DOOMED | VIRF_PGREAD | VIRF_MOUNTPOINT | VIRF_TEXT_REF);
4616 if (flags != 0) {
4617 snprintf(buf2, sizeof(buf2), "|VIRF(0x%lx)", flags);
4618 strlcat(buf, buf2, sizeof(buf));
4619 }
4620 if (vp->v_vflag & VV_ROOT)
4621 strlcat(buf, "|VV_ROOT", sizeof(buf));
4622 if (vp->v_vflag & VV_ISTTY)
4623 strlcat(buf, "|VV_ISTTY", sizeof(buf));
4624 if (vp->v_vflag & VV_NOSYNC)
4625 strlcat(buf, "|VV_NOSYNC", sizeof(buf));
4626 if (vp->v_vflag & VV_ETERNALDEV)
4627 strlcat(buf, "|VV_ETERNALDEV", sizeof(buf));
4628 if (vp->v_vflag & VV_CACHEDLABEL)
4629 strlcat(buf, "|VV_CACHEDLABEL", sizeof(buf));
4630 if (vp->v_vflag & VV_VMSIZEVNLOCK)
4631 strlcat(buf, "|VV_VMSIZEVNLOCK", sizeof(buf));
4632 if (vp->v_vflag & VV_COPYONWRITE)
4633 strlcat(buf, "|VV_COPYONWRITE", sizeof(buf));
4634 if (vp->v_vflag & VV_SYSTEM)
4635 strlcat(buf, "|VV_SYSTEM", sizeof(buf));
4636 if (vp->v_vflag & VV_PROCDEP)
4637 strlcat(buf, "|VV_PROCDEP", sizeof(buf));
4638 if (vp->v_vflag & VV_DELETED)
4639 strlcat(buf, "|VV_DELETED", sizeof(buf));
4640 if (vp->v_vflag & VV_MD)
4641 strlcat(buf, "|VV_MD", sizeof(buf));
4642 if (vp->v_vflag & VV_FORCEINSMQ)
4643 strlcat(buf, "|VV_FORCEINSMQ", sizeof(buf));
4644 if (vp->v_vflag & VV_READLINK)
4645 strlcat(buf, "|VV_READLINK", sizeof(buf));
4646 flags = vp->v_vflag & ~(VV_ROOT | VV_ISTTY | VV_NOSYNC | VV_ETERNALDEV |
4647 VV_CACHEDLABEL | VV_VMSIZEVNLOCK | VV_COPYONWRITE | VV_SYSTEM |
4648 VV_PROCDEP | VV_DELETED | VV_MD | VV_FORCEINSMQ | VV_READLINK);
4649 if (flags != 0) {
4650 snprintf(buf2, sizeof(buf2), "|VV(0x%lx)", flags);
4651 strlcat(buf, buf2, sizeof(buf));
4652 }
4653 if (vp->v_iflag & VI_MOUNT)
4654 strlcat(buf, "|VI_MOUNT", sizeof(buf));
4655 if (vp->v_iflag & VI_DOINGINACT)
4656 strlcat(buf, "|VI_DOINGINACT", sizeof(buf));
4657 if (vp->v_iflag & VI_OWEINACT)
4658 strlcat(buf, "|VI_OWEINACT", sizeof(buf));
4659 if (vp->v_iflag & VI_DEFINACT)
4660 strlcat(buf, "|VI_DEFINACT", sizeof(buf));
4661 if (vp->v_iflag & VI_FOPENING)
4662 strlcat(buf, "|VI_FOPENING", sizeof(buf));
4663 flags = vp->v_iflag & ~(VI_MOUNT | VI_DOINGINACT |
4664 VI_OWEINACT | VI_DEFINACT | VI_FOPENING);
4665 if (flags != 0) {
4666 snprintf(buf2, sizeof(buf2), "|VI(0x%lx)", flags);
4667 strlcat(buf, buf2, sizeof(buf));
4668 }
4669 if (vp->v_mflag & VMP_LAZYLIST)
4670 strlcat(buf, "|VMP_LAZYLIST", sizeof(buf));
4671 flags = vp->v_mflag & ~(VMP_LAZYLIST);
4672 if (flags != 0) {
4673 snprintf(buf2, sizeof(buf2), "|VMP(0x%lx)", flags);
4674 strlcat(buf, buf2, sizeof(buf));
4675 }
4676 printf(" flags (%s)", buf + 1);
4677 if (mtx_owned(VI_MTX(vp)))
4678 printf(" VI_LOCKed");
4679 printf("\n");
4680 if (vp->v_object != NULL)
4681 printf(" v_object %p ref %d pages %d "
4682 "cleanbuf %d dirtybuf %d\n",
4683 vp->v_object, vp->v_object->ref_count,
4684 vp->v_object->resident_page_count,
4685 vp->v_bufobj.bo_clean.bv_cnt,
4686 vp->v_bufobj.bo_dirty.bv_cnt);
4687 printf(" ");
4688 lockmgr_printinfo(vp->v_vnlock);
4689 if (vp->v_data != NULL)
4690 VOP_PRINT(vp);
4691 }
4692
4693 #ifdef DDB
4694 /*
4695 * List all of the locked vnodes in the system.
4696 * Called when debugging the kernel.
4697 */
DB_SHOW_COMMAND_FLAGS(lockedvnods,lockedvnodes,DB_CMD_MEMSAFE)4698 DB_SHOW_COMMAND_FLAGS(lockedvnods, lockedvnodes, DB_CMD_MEMSAFE)
4699 {
4700 struct mount *mp;
4701 struct vnode *vp;
4702
4703 /*
4704 * Note: because this is DDB, we can't obey the locking semantics
4705 * for these structures, which means we could catch an inconsistent
4706 * state and dereference a nasty pointer. Not much to be done
4707 * about that.
4708 */
4709 db_printf("Locked vnodes\n");
4710 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4711 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4712 if (vp->v_type != VMARKER && VOP_ISLOCKED(vp))
4713 vn_printf(vp, "vnode ");
4714 }
4715 }
4716 }
4717
4718 /*
4719 * Show details about the given vnode.
4720 */
DB_SHOW_COMMAND(vnode,db_show_vnode)4721 DB_SHOW_COMMAND(vnode, db_show_vnode)
4722 {
4723 struct vnode *vp;
4724
4725 if (!have_addr)
4726 return;
4727 vp = (struct vnode *)addr;
4728 vn_printf(vp, "vnode ");
4729 }
4730
4731 /*
4732 * Show details about the given mount point.
4733 */
DB_SHOW_COMMAND(mount,db_show_mount)4734 DB_SHOW_COMMAND(mount, db_show_mount)
4735 {
4736 struct mount *mp;
4737 struct vfsopt *opt;
4738 struct statfs *sp;
4739 struct vnode *vp;
4740 char buf[512];
4741 uint64_t mflags;
4742 u_int flags;
4743
4744 if (!have_addr) {
4745 /* No address given, print short info about all mount points. */
4746 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
4747 db_printf("%p %s on %s (%s)\n", mp,
4748 mp->mnt_stat.f_mntfromname,
4749 mp->mnt_stat.f_mntonname,
4750 mp->mnt_stat.f_fstypename);
4751 if (db_pager_quit)
4752 break;
4753 }
4754 db_printf("\nMore info: show mount <addr>\n");
4755 return;
4756 }
4757
4758 mp = (struct mount *)addr;
4759 db_printf("%p %s on %s (%s)\n", mp, mp->mnt_stat.f_mntfromname,
4760 mp->mnt_stat.f_mntonname, mp->mnt_stat.f_fstypename);
4761
4762 buf[0] = '\0';
4763 mflags = mp->mnt_flag;
4764 #define MNT_FLAG(flag) do { \
4765 if (mflags & (flag)) { \
4766 if (buf[0] != '\0') \
4767 strlcat(buf, ", ", sizeof(buf)); \
4768 strlcat(buf, (#flag) + 4, sizeof(buf)); \
4769 mflags &= ~(flag); \
4770 } \
4771 } while (0)
4772 MNT_FLAG(MNT_RDONLY);
4773 MNT_FLAG(MNT_SYNCHRONOUS);
4774 MNT_FLAG(MNT_NOEXEC);
4775 MNT_FLAG(MNT_NOSUID);
4776 MNT_FLAG(MNT_NFS4ACLS);
4777 MNT_FLAG(MNT_UNION);
4778 MNT_FLAG(MNT_ASYNC);
4779 MNT_FLAG(MNT_SUIDDIR);
4780 MNT_FLAG(MNT_SOFTDEP);
4781 MNT_FLAG(MNT_NOSYMFOLLOW);
4782 MNT_FLAG(MNT_GJOURNAL);
4783 MNT_FLAG(MNT_MULTILABEL);
4784 MNT_FLAG(MNT_ACLS);
4785 MNT_FLAG(MNT_NOATIME);
4786 MNT_FLAG(MNT_NOCLUSTERR);
4787 MNT_FLAG(MNT_NOCLUSTERW);
4788 MNT_FLAG(MNT_SUJ);
4789 MNT_FLAG(MNT_EXRDONLY);
4790 MNT_FLAG(MNT_EXPORTED);
4791 MNT_FLAG(MNT_DEFEXPORTED);
4792 MNT_FLAG(MNT_EXPORTANON);
4793 MNT_FLAG(MNT_EXKERB);
4794 MNT_FLAG(MNT_EXPUBLIC);
4795 MNT_FLAG(MNT_LOCAL);
4796 MNT_FLAG(MNT_QUOTA);
4797 MNT_FLAG(MNT_ROOTFS);
4798 MNT_FLAG(MNT_USER);
4799 MNT_FLAG(MNT_IGNORE);
4800 MNT_FLAG(MNT_UPDATE);
4801 MNT_FLAG(MNT_DELEXPORT);
4802 MNT_FLAG(MNT_RELOAD);
4803 MNT_FLAG(MNT_FORCE);
4804 MNT_FLAG(MNT_SNAPSHOT);
4805 MNT_FLAG(MNT_BYFSID);
4806 MNT_FLAG(MNT_NAMEDATTR);
4807 #undef MNT_FLAG
4808 if (mflags != 0) {
4809 if (buf[0] != '\0')
4810 strlcat(buf, ", ", sizeof(buf));
4811 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4812 "0x%016jx", mflags);
4813 }
4814 db_printf(" mnt_flag = %s\n", buf);
4815
4816 buf[0] = '\0';
4817 flags = mp->mnt_kern_flag;
4818 #define MNT_KERN_FLAG(flag) do { \
4819 if (flags & (flag)) { \
4820 if (buf[0] != '\0') \
4821 strlcat(buf, ", ", sizeof(buf)); \
4822 strlcat(buf, (#flag) + 5, sizeof(buf)); \
4823 flags &= ~(flag); \
4824 } \
4825 } while (0)
4826 MNT_KERN_FLAG(MNTK_UNMOUNTF);
4827 MNT_KERN_FLAG(MNTK_ASYNC);
4828 MNT_KERN_FLAG(MNTK_SOFTDEP);
4829 MNT_KERN_FLAG(MNTK_NOMSYNC);
4830 MNT_KERN_FLAG(MNTK_DRAINING);
4831 MNT_KERN_FLAG(MNTK_REFEXPIRE);
4832 MNT_KERN_FLAG(MNTK_EXTENDED_SHARED);
4833 MNT_KERN_FLAG(MNTK_SHARED_WRITES);
4834 MNT_KERN_FLAG(MNTK_NO_IOPF);
4835 MNT_KERN_FLAG(MNTK_RECURSE);
4836 MNT_KERN_FLAG(MNTK_UPPER_WAITER);
4837 MNT_KERN_FLAG(MNTK_UNLOCKED_INSMNTQUE);
4838 MNT_KERN_FLAG(MNTK_USES_BCACHE);
4839 MNT_KERN_FLAG(MNTK_VMSETSIZE_BUG);
4840 MNT_KERN_FLAG(MNTK_FPLOOKUP);
4841 MNT_KERN_FLAG(MNTK_TASKQUEUE_WAITER);
4842 MNT_KERN_FLAG(MNTK_NOASYNC);
4843 MNT_KERN_FLAG(MNTK_UNMOUNT);
4844 MNT_KERN_FLAG(MNTK_MWAIT);
4845 MNT_KERN_FLAG(MNTK_SUSPEND);
4846 MNT_KERN_FLAG(MNTK_SUSPEND2);
4847 MNT_KERN_FLAG(MNTK_SUSPENDED);
4848 MNT_KERN_FLAG(MNTK_NULL_NOCACHE);
4849 MNT_KERN_FLAG(MNTK_LOOKUP_SHARED);
4850 #undef MNT_KERN_FLAG
4851 if (flags != 0) {
4852 if (buf[0] != '\0')
4853 strlcat(buf, ", ", sizeof(buf));
4854 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
4855 "0x%08x", flags);
4856 }
4857 db_printf(" mnt_kern_flag = %s\n", buf);
4858
4859 db_printf(" mnt_opt = ");
4860 opt = TAILQ_FIRST(mp->mnt_opt);
4861 if (opt != NULL) {
4862 db_printf("%s", opt->name);
4863 opt = TAILQ_NEXT(opt, link);
4864 while (opt != NULL) {
4865 db_printf(", %s", opt->name);
4866 opt = TAILQ_NEXT(opt, link);
4867 }
4868 }
4869 db_printf("\n");
4870
4871 sp = &mp->mnt_stat;
4872 db_printf(" mnt_stat = { version=%u type=%u flags=0x%016jx "
4873 "bsize=%ju iosize=%ju blocks=%ju bfree=%ju bavail=%jd files=%ju "
4874 "ffree=%jd syncwrites=%ju asyncwrites=%ju syncreads=%ju "
4875 "asyncreads=%ju namemax=%u owner=%u fsid=[%d, %d] }\n",
4876 (u_int)sp->f_version, (u_int)sp->f_type, (uintmax_t)sp->f_flags,
4877 (uintmax_t)sp->f_bsize, (uintmax_t)sp->f_iosize,
4878 (uintmax_t)sp->f_blocks, (uintmax_t)sp->f_bfree,
4879 (intmax_t)sp->f_bavail, (uintmax_t)sp->f_files,
4880 (intmax_t)sp->f_ffree, (uintmax_t)sp->f_syncwrites,
4881 (uintmax_t)sp->f_asyncwrites, (uintmax_t)sp->f_syncreads,
4882 (uintmax_t)sp->f_asyncreads, (u_int)sp->f_namemax,
4883 (u_int)sp->f_owner, (int)sp->f_fsid.val[0], (int)sp->f_fsid.val[1]);
4884
4885 db_printf(" mnt_cred = { uid=%u ruid=%u",
4886 (u_int)mp->mnt_cred->cr_uid, (u_int)mp->mnt_cred->cr_ruid);
4887 if (jailed(mp->mnt_cred))
4888 db_printf(", jail=%d", mp->mnt_cred->cr_prison->pr_id);
4889 db_printf(" }\n");
4890 db_printf(" mnt_ref = %d (with %d in the struct)\n",
4891 vfs_mount_fetch_counter(mp, MNT_COUNT_REF), mp->mnt_ref);
4892 db_printf(" mnt_gen = %d\n", mp->mnt_gen);
4893 db_printf(" mnt_nvnodelistsize = %d\n", mp->mnt_nvnodelistsize);
4894 db_printf(" mnt_lazyvnodelistsize = %d\n",
4895 mp->mnt_lazyvnodelistsize);
4896 db_printf(" mnt_writeopcount = %d (with %d in the struct)\n",
4897 vfs_mount_fetch_counter(mp, MNT_COUNT_WRITEOPCOUNT), mp->mnt_writeopcount);
4898 db_printf(" mnt_iosize_max = %d\n", mp->mnt_iosize_max);
4899 db_printf(" mnt_hashseed = %u\n", mp->mnt_hashseed);
4900 db_printf(" mnt_lockref = %d (with %d in the struct)\n",
4901 vfs_mount_fetch_counter(mp, MNT_COUNT_LOCKREF), mp->mnt_lockref);
4902 db_printf(" mnt_secondary_writes = %d\n", mp->mnt_secondary_writes);
4903 db_printf(" mnt_secondary_accwrites = %d\n",
4904 mp->mnt_secondary_accwrites);
4905 db_printf(" mnt_gjprovider = %s\n",
4906 mp->mnt_gjprovider != NULL ? mp->mnt_gjprovider : "NULL");
4907 db_printf(" mnt_vfs_ops = %d\n", mp->mnt_vfs_ops);
4908
4909 db_printf("\n\nList of active vnodes\n");
4910 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4911 if (vp->v_type != VMARKER && vp->v_holdcnt > 0) {
4912 vn_printf(vp, "vnode ");
4913 if (db_pager_quit)
4914 break;
4915 }
4916 }
4917 db_printf("\n\nList of inactive vnodes\n");
4918 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
4919 if (vp->v_type != VMARKER && vp->v_holdcnt == 0) {
4920 vn_printf(vp, "vnode ");
4921 if (db_pager_quit)
4922 break;
4923 }
4924 }
4925 }
4926 #endif /* DDB */
4927
4928 /*
4929 * Fill in a struct xvfsconf based on a struct vfsconf.
4930 */
4931 static int
vfsconf2x(struct sysctl_req * req,struct vfsconf * vfsp)4932 vfsconf2x(struct sysctl_req *req, struct vfsconf *vfsp)
4933 {
4934 struct xvfsconf xvfsp;
4935
4936 bzero(&xvfsp, sizeof(xvfsp));
4937 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4938 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4939 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4940 xvfsp.vfc_flags = vfsp->vfc_flags;
4941 /*
4942 * These are unused in userland, we keep them
4943 * to not break binary compatibility.
4944 */
4945 xvfsp.vfc_vfsops = NULL;
4946 xvfsp.vfc_next = NULL;
4947 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4948 }
4949
4950 #ifdef COMPAT_FREEBSD32
4951 struct xvfsconf32 {
4952 uint32_t vfc_vfsops;
4953 char vfc_name[MFSNAMELEN];
4954 int32_t vfc_typenum;
4955 int32_t vfc_refcount;
4956 int32_t vfc_flags;
4957 uint32_t vfc_next;
4958 };
4959
4960 static int
vfsconf2x32(struct sysctl_req * req,struct vfsconf * vfsp)4961 vfsconf2x32(struct sysctl_req *req, struct vfsconf *vfsp)
4962 {
4963 struct xvfsconf32 xvfsp;
4964
4965 bzero(&xvfsp, sizeof(xvfsp));
4966 strcpy(xvfsp.vfc_name, vfsp->vfc_name);
4967 xvfsp.vfc_typenum = vfsp->vfc_typenum;
4968 xvfsp.vfc_refcount = vfsp->vfc_refcount;
4969 xvfsp.vfc_flags = vfsp->vfc_flags;
4970 return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
4971 }
4972 #endif
4973
4974 /*
4975 * Top level filesystem related information gathering.
4976 */
4977 static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)4978 sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
4979 {
4980 struct vfsconf *vfsp;
4981 int error;
4982
4983 error = 0;
4984 vfsconf_slock();
4985 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
4986 #ifdef COMPAT_FREEBSD32
4987 if (req->flags & SCTL_MASK32)
4988 error = vfsconf2x32(req, vfsp);
4989 else
4990 #endif
4991 error = vfsconf2x(req, vfsp);
4992 if (error)
4993 break;
4994 }
4995 vfsconf_sunlock();
4996 return (error);
4997 }
4998
4999 SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLTYPE_OPAQUE | CTLFLAG_RD |
5000 CTLFLAG_MPSAFE, NULL, 0, sysctl_vfs_conflist,
5001 "S,xvfsconf", "List of all configured filesystems");
5002
5003 #ifndef BURN_BRIDGES
5004 static int sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);
5005
5006 static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)5007 vfs_sysctl(SYSCTL_HANDLER_ARGS)
5008 {
5009 int *name = (int *)arg1 - 1; /* XXX */
5010 u_int namelen = arg2 + 1; /* XXX */
5011 struct vfsconf *vfsp;
5012
5013 log(LOG_WARNING, "userland calling deprecated sysctl, "
5014 "please rebuild world\n");
5015
5016 #if 1 || defined(COMPAT_PRELITE2)
5017 /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
5018 if (namelen == 1)
5019 return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
5020 #endif
5021
5022 switch (name[1]) {
5023 case VFS_MAXTYPENUM:
5024 if (namelen != 2)
5025 return (ENOTDIR);
5026 return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
5027 case VFS_CONF:
5028 if (namelen != 3)
5029 return (ENOTDIR); /* overloaded */
5030 vfsconf_slock();
5031 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5032 if (vfsp->vfc_typenum == name[2])
5033 break;
5034 }
5035 vfsconf_sunlock();
5036 if (vfsp == NULL)
5037 return (EOPNOTSUPP);
5038 #ifdef COMPAT_FREEBSD32
5039 if (req->flags & SCTL_MASK32)
5040 return (vfsconf2x32(req, vfsp));
5041 else
5042 #endif
5043 return (vfsconf2x(req, vfsp));
5044 }
5045 return (EOPNOTSUPP);
5046 }
5047
5048 static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP |
5049 CTLFLAG_MPSAFE, vfs_sysctl,
5050 "Generic filesystem");
5051
5052 #if 1 || defined(COMPAT_PRELITE2)
5053
5054 static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)5055 sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
5056 {
5057 int error;
5058 struct vfsconf *vfsp;
5059 struct ovfsconf ovfs;
5060
5061 vfsconf_slock();
5062 TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
5063 bzero(&ovfs, sizeof(ovfs));
5064 ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
5065 strcpy(ovfs.vfc_name, vfsp->vfc_name);
5066 ovfs.vfc_index = vfsp->vfc_typenum;
5067 ovfs.vfc_refcount = vfsp->vfc_refcount;
5068 ovfs.vfc_flags = vfsp->vfc_flags;
5069 error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
5070 if (error != 0) {
5071 vfsconf_sunlock();
5072 return (error);
5073 }
5074 }
5075 vfsconf_sunlock();
5076 return (0);
5077 }
5078
5079 #endif /* 1 || COMPAT_PRELITE2 */
5080 #endif /* !BURN_BRIDGES */
5081
5082 static void
unmount_or_warn(struct mount * mp)5083 unmount_or_warn(struct mount *mp)
5084 {
5085 int error;
5086
5087 error = dounmount(mp, MNT_FORCE, curthread);
5088 if (error != 0) {
5089 printf("unmount of %s failed (", mp->mnt_stat.f_mntonname);
5090 if (error == EBUSY)
5091 printf("BUSY)\n");
5092 else
5093 printf("%d)\n", error);
5094 }
5095 }
5096
5097 /*
5098 * Unmount all filesystems. The list is traversed in reverse order
5099 * of mounting to avoid dependencies.
5100 */
5101 void
vfs_unmountall(void)5102 vfs_unmountall(void)
5103 {
5104 struct mount *mp, *tmp;
5105
5106 CTR1(KTR_VFS, "%s: unmounting all filesystems", __func__);
5107
5108 /*
5109 * Since this only runs when rebooting, it is not interlocked.
5110 */
5111 TAILQ_FOREACH_REVERSE_SAFE(mp, &mountlist, mntlist, mnt_list, tmp) {
5112 vfs_ref(mp);
5113
5114 /*
5115 * Forcibly unmounting "/dev" before "/" would prevent clean
5116 * unmount of the latter.
5117 */
5118 if (mp == rootdevmp)
5119 continue;
5120
5121 unmount_or_warn(mp);
5122 }
5123
5124 if (rootdevmp != NULL)
5125 unmount_or_warn(rootdevmp);
5126 }
5127
5128 static void
vfs_deferred_inactive(struct vnode * vp,int lkflags)5129 vfs_deferred_inactive(struct vnode *vp, int lkflags)
5130 {
5131
5132 ASSERT_VI_LOCKED(vp, __func__);
5133 VNPASS((vp->v_iflag & VI_DEFINACT) == 0, vp);
5134 if ((vp->v_iflag & VI_OWEINACT) == 0) {
5135 vdropl(vp);
5136 return;
5137 }
5138 if (vn_lock(vp, lkflags) == 0) {
5139 VI_LOCK(vp);
5140 vinactive(vp);
5141 VOP_UNLOCK(vp);
5142 vdropl(vp);
5143 return;
5144 }
5145 vdefer_inactive_unlocked(vp);
5146 }
5147
5148 static int
vfs_periodic_inactive_filter(struct vnode * vp,void * arg)5149 vfs_periodic_inactive_filter(struct vnode *vp, void *arg)
5150 {
5151
5152 return (vp->v_iflag & VI_DEFINACT);
5153 }
5154
5155 static void __noinline
vfs_periodic_inactive(struct mount * mp,int flags)5156 vfs_periodic_inactive(struct mount *mp, int flags)
5157 {
5158 struct vnode *vp, *mvp;
5159 int lkflags;
5160
5161 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5162 if (flags != MNT_WAIT)
5163 lkflags |= LK_NOWAIT;
5164
5165 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_inactive_filter, NULL) {
5166 if ((vp->v_iflag & VI_DEFINACT) == 0) {
5167 VI_UNLOCK(vp);
5168 continue;
5169 }
5170 vp->v_iflag &= ~VI_DEFINACT;
5171 vfs_deferred_inactive(vp, lkflags);
5172 }
5173 }
5174
5175 static inline bool
vfs_want_msync(struct vnode * vp)5176 vfs_want_msync(struct vnode *vp)
5177 {
5178 struct vm_object *obj;
5179
5180 /*
5181 * This test may be performed without any locks held.
5182 * We rely on vm_object's type stability.
5183 */
5184 if (vp->v_vflag & VV_NOSYNC)
5185 return (false);
5186 obj = vp->v_object;
5187 return (obj != NULL && vm_object_mightbedirty(obj));
5188 }
5189
5190 static int
vfs_periodic_msync_inactive_filter(struct vnode * vp,void * arg __unused)5191 vfs_periodic_msync_inactive_filter(struct vnode *vp, void *arg __unused)
5192 {
5193
5194 if (vp->v_vflag & VV_NOSYNC)
5195 return (false);
5196 if (vp->v_iflag & VI_DEFINACT)
5197 return (true);
5198 return (vfs_want_msync(vp));
5199 }
5200
5201 static void __noinline
vfs_periodic_msync_inactive(struct mount * mp,int flags)5202 vfs_periodic_msync_inactive(struct mount *mp, int flags)
5203 {
5204 struct vnode *vp, *mvp;
5205 int lkflags;
5206 bool seen_defer;
5207
5208 lkflags = LK_EXCLUSIVE | LK_INTERLOCK;
5209 if (flags != MNT_WAIT)
5210 lkflags |= LK_NOWAIT;
5211
5212 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, vfs_periodic_msync_inactive_filter, NULL) {
5213 seen_defer = false;
5214 if (vp->v_iflag & VI_DEFINACT) {
5215 vp->v_iflag &= ~VI_DEFINACT;
5216 seen_defer = true;
5217 }
5218 if (!vfs_want_msync(vp)) {
5219 if (seen_defer)
5220 vfs_deferred_inactive(vp, lkflags);
5221 else
5222 VI_UNLOCK(vp);
5223 continue;
5224 }
5225 if (vget(vp, lkflags) == 0) {
5226 if ((vp->v_vflag & VV_NOSYNC) == 0) {
5227 if (flags == MNT_WAIT)
5228 vnode_pager_clean_sync(vp);
5229 else
5230 vnode_pager_clean_async(vp);
5231 }
5232 vput(vp);
5233 if (seen_defer)
5234 vdrop(vp);
5235 } else {
5236 if (seen_defer)
5237 vdefer_inactive_unlocked(vp);
5238 }
5239 }
5240 }
5241
5242 void
vfs_periodic(struct mount * mp,int flags)5243 vfs_periodic(struct mount *mp, int flags)
5244 {
5245
5246 CTR2(KTR_VFS, "%s: mp %p", __func__, mp);
5247
5248 if ((mp->mnt_kern_flag & MNTK_NOMSYNC) != 0)
5249 vfs_periodic_inactive(mp, flags);
5250 else
5251 vfs_periodic_msync_inactive(mp, flags);
5252 }
5253
5254 static void
destroy_vpollinfo_free(struct vpollinfo * vi)5255 destroy_vpollinfo_free(struct vpollinfo *vi)
5256 {
5257
5258 knlist_destroy(&vi->vpi_selinfo.si_note);
5259 mtx_destroy(&vi->vpi_lock);
5260 free(vi, M_VNODEPOLL);
5261 }
5262
5263 static void
destroy_vpollinfo(struct vpollinfo * vi)5264 destroy_vpollinfo(struct vpollinfo *vi)
5265 {
5266 KASSERT(TAILQ_EMPTY(&vi->vpi_inotify),
5267 ("%s: pollinfo %p has lingering watches", __func__, vi));
5268 knlist_clear(&vi->vpi_selinfo.si_note, 1);
5269 seldrain(&vi->vpi_selinfo);
5270 destroy_vpollinfo_free(vi);
5271 }
5272
5273 /*
5274 * Initialize per-vnode helper structure to hold poll-related state.
5275 */
5276 void
v_addpollinfo(struct vnode * vp)5277 v_addpollinfo(struct vnode *vp)
5278 {
5279 struct vpollinfo *vi;
5280
5281 if (atomic_load_ptr(&vp->v_pollinfo) != NULL)
5282 return;
5283 vi = malloc(sizeof(*vi), M_VNODEPOLL, M_WAITOK | M_ZERO);
5284 mtx_init(&vi->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
5285 knlist_init(&vi->vpi_selinfo.si_note, vp, vfs_knllock,
5286 vfs_knlunlock, vfs_knl_assert_lock);
5287 TAILQ_INIT(&vi->vpi_inotify);
5288 VI_LOCK(vp);
5289 if (vp->v_pollinfo != NULL) {
5290 VI_UNLOCK(vp);
5291 destroy_vpollinfo_free(vi);
5292 return;
5293 }
5294 vp->v_pollinfo = vi;
5295 VI_UNLOCK(vp);
5296 }
5297
5298 /*
5299 * Record a process's interest in events which might happen to
5300 * a vnode. Because poll uses the historic select-style interface
5301 * internally, this routine serves as both the ``check for any
5302 * pending events'' and the ``record my interest in future events''
5303 * functions. (These are done together, while the lock is held,
5304 * to avoid race conditions.)
5305 */
5306 int
vn_pollrecord(struct vnode * vp,struct thread * td,int events)5307 vn_pollrecord(struct vnode *vp, struct thread *td, int events)
5308 {
5309
5310 v_addpollinfo(vp);
5311 mtx_lock(&vp->v_pollinfo->vpi_lock);
5312 if (vp->v_pollinfo->vpi_revents & events) {
5313 /*
5314 * This leaves events we are not interested
5315 * in available for the other process which
5316 * which presumably had requested them
5317 * (otherwise they would never have been
5318 * recorded).
5319 */
5320 events &= vp->v_pollinfo->vpi_revents;
5321 vp->v_pollinfo->vpi_revents &= ~events;
5322
5323 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5324 return (events);
5325 }
5326 vp->v_pollinfo->vpi_events |= events;
5327 selrecord(td, &vp->v_pollinfo->vpi_selinfo);
5328 mtx_unlock(&vp->v_pollinfo->vpi_lock);
5329 return (0);
5330 }
5331
5332 /*
5333 * Routine to create and manage a filesystem syncer vnode.
5334 */
5335 #define sync_close ((int (*)(struct vop_close_args *))nullop)
5336 static int sync_fsync(struct vop_fsync_args *);
5337 static int sync_inactive(struct vop_inactive_args *);
5338 static int sync_reclaim(struct vop_reclaim_args *);
5339
5340 static struct vop_vector sync_vnodeops = {
5341 .vop_bypass = VOP_EOPNOTSUPP,
5342 .vop_close = sync_close,
5343 .vop_fsync = sync_fsync,
5344 .vop_getwritemount = vop_stdgetwritemount,
5345 .vop_inactive = sync_inactive,
5346 .vop_need_inactive = vop_stdneed_inactive,
5347 .vop_reclaim = sync_reclaim,
5348 .vop_lock1 = vop_stdlock,
5349 .vop_unlock = vop_stdunlock,
5350 .vop_islocked = vop_stdislocked,
5351 .vop_fplookup_vexec = VOP_EAGAIN,
5352 .vop_fplookup_symlink = VOP_EAGAIN,
5353 };
5354 VFS_VOP_VECTOR_REGISTER(sync_vnodeops);
5355
5356 /*
5357 * Create a new filesystem syncer vnode for the specified mount point.
5358 */
5359 void
vfs_allocate_syncvnode(struct mount * mp)5360 vfs_allocate_syncvnode(struct mount *mp)
5361 {
5362 struct vnode *vp;
5363 struct bufobj *bo;
5364 static long start, incr, next;
5365 int error;
5366
5367 /* Allocate a new vnode */
5368 error = getnewvnode("syncer", mp, &sync_vnodeops, &vp);
5369 if (error != 0)
5370 panic("vfs_allocate_syncvnode: getnewvnode() failed");
5371 vp->v_type = VNON;
5372 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5373 vp->v_vflag |= VV_FORCEINSMQ;
5374 error = insmntque1(vp, mp);
5375 if (error != 0)
5376 panic("vfs_allocate_syncvnode: insmntque() failed");
5377 vp->v_vflag &= ~VV_FORCEINSMQ;
5378 vn_set_state(vp, VSTATE_CONSTRUCTED);
5379 VOP_UNLOCK(vp);
5380 /*
5381 * Place the vnode onto the syncer worklist. We attempt to
5382 * scatter them about on the list so that they will go off
5383 * at evenly distributed times even if all the filesystems
5384 * are mounted at once.
5385 */
5386 next += incr;
5387 if (next == 0 || next > syncer_maxdelay) {
5388 start /= 2;
5389 incr /= 2;
5390 if (start == 0) {
5391 start = syncer_maxdelay / 2;
5392 incr = syncer_maxdelay;
5393 }
5394 next = start;
5395 }
5396 bo = &vp->v_bufobj;
5397 BO_LOCK(bo);
5398 vn_syncer_add_to_worklist(bo, syncdelay > 0 ? next % syncdelay : 0);
5399 /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
5400 mtx_lock(&sync_mtx);
5401 sync_vnode_count++;
5402 if (mp->mnt_syncer == NULL) {
5403 mp->mnt_syncer = vp;
5404 vp = NULL;
5405 }
5406 mtx_unlock(&sync_mtx);
5407 BO_UNLOCK(bo);
5408 if (vp != NULL) {
5409 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
5410 vgone(vp);
5411 vput(vp);
5412 }
5413 }
5414
5415 void
vfs_deallocate_syncvnode(struct mount * mp)5416 vfs_deallocate_syncvnode(struct mount *mp)
5417 {
5418 struct vnode *vp;
5419
5420 mtx_lock(&sync_mtx);
5421 vp = mp->mnt_syncer;
5422 if (vp != NULL)
5423 mp->mnt_syncer = NULL;
5424 mtx_unlock(&sync_mtx);
5425 if (vp != NULL)
5426 vrele(vp);
5427 }
5428
5429 /*
5430 * Do a lazy sync of the filesystem.
5431 */
5432 static int
sync_fsync(struct vop_fsync_args * ap)5433 sync_fsync(struct vop_fsync_args *ap)
5434 {
5435 struct vnode *syncvp = ap->a_vp;
5436 struct mount *mp = syncvp->v_mount;
5437 int error, save;
5438 struct bufobj *bo;
5439
5440 /*
5441 * We only need to do something if this is a lazy evaluation.
5442 */
5443 if (ap->a_waitfor != MNT_LAZY)
5444 return (0);
5445
5446 /*
5447 * Move ourselves to the back of the sync list.
5448 */
5449 bo = &syncvp->v_bufobj;
5450 BO_LOCK(bo);
5451 vn_syncer_add_to_worklist(bo, syncdelay);
5452 BO_UNLOCK(bo);
5453
5454 /*
5455 * Walk the list of vnodes pushing all that are dirty and
5456 * not already on the sync list.
5457 */
5458 if (vfs_busy(mp, MBF_NOWAIT) != 0)
5459 return (0);
5460 VOP_UNLOCK(syncvp);
5461 save = curthread_pflags_set(TDP_SYNCIO);
5462 /*
5463 * The filesystem at hand may be idle with free vnodes stored in the
5464 * batch. Return them instead of letting them stay there indefinitely.
5465 */
5466 vfs_periodic(mp, MNT_NOWAIT);
5467 error = VFS_SYNC(mp, MNT_LAZY);
5468 curthread_pflags_restore(save);
5469 vn_lock(syncvp, LK_EXCLUSIVE | LK_RETRY);
5470 vfs_unbusy(mp);
5471 return (error);
5472 }
5473
5474 /*
5475 * The syncer vnode is no referenced.
5476 */
5477 static int
sync_inactive(struct vop_inactive_args * ap)5478 sync_inactive(struct vop_inactive_args *ap)
5479 {
5480
5481 vgone(ap->a_vp);
5482 return (0);
5483 }
5484
5485 /*
5486 * The syncer vnode is no longer needed and is being decommissioned.
5487 *
5488 * Modifications to the worklist must be protected by sync_mtx.
5489 */
5490 static int
sync_reclaim(struct vop_reclaim_args * ap)5491 sync_reclaim(struct vop_reclaim_args *ap)
5492 {
5493 struct vnode *vp = ap->a_vp;
5494 struct bufobj *bo;
5495
5496 bo = &vp->v_bufobj;
5497 BO_LOCK(bo);
5498 mtx_lock(&sync_mtx);
5499 if (vp->v_mount->mnt_syncer == vp)
5500 vp->v_mount->mnt_syncer = NULL;
5501 if (bo->bo_flag & BO_ONWORKLST) {
5502 LIST_REMOVE(bo, bo_synclist);
5503 syncer_worklist_len--;
5504 sync_vnode_count--;
5505 bo->bo_flag &= ~BO_ONWORKLST;
5506 }
5507 mtx_unlock(&sync_mtx);
5508 BO_UNLOCK(bo);
5509
5510 return (0);
5511 }
5512
5513 int
vn_need_pageq_flush(struct vnode * vp)5514 vn_need_pageq_flush(struct vnode *vp)
5515 {
5516 struct vm_object *obj;
5517
5518 obj = vp->v_object;
5519 return (obj != NULL && (vp->v_vflag & VV_NOSYNC) == 0 &&
5520 vm_object_mightbedirty(obj));
5521 }
5522
5523 /*
5524 * Check if vnode represents a disk device
5525 */
5526 bool
vn_isdisk_error(struct vnode * vp,int * errp)5527 vn_isdisk_error(struct vnode *vp, int *errp)
5528 {
5529 int error;
5530
5531 if (vp->v_type != VCHR) {
5532 error = ENOTBLK;
5533 goto out;
5534 }
5535 error = 0;
5536 dev_lock();
5537 if (vp->v_rdev == NULL)
5538 error = ENXIO;
5539 else if (vp->v_rdev->si_devsw == NULL)
5540 error = ENXIO;
5541 else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
5542 error = ENOTBLK;
5543 dev_unlock();
5544 out:
5545 *errp = error;
5546 return (error == 0);
5547 }
5548
5549 bool
vn_isdisk(struct vnode * vp)5550 vn_isdisk(struct vnode *vp)
5551 {
5552 int error;
5553
5554 return (vn_isdisk_error(vp, &error));
5555 }
5556
5557 /*
5558 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see
5559 * the comment above cache_fplookup for details.
5560 */
5561 int
vaccess_vexec_smr(mode_t file_mode,uid_t file_uid,gid_t file_gid,struct ucred * cred)5562 vaccess_vexec_smr(mode_t file_mode, uid_t file_uid, gid_t file_gid, struct ucred *cred)
5563 {
5564 int error;
5565
5566 VFS_SMR_ASSERT_ENTERED();
5567
5568 /* Check the owner. */
5569 if (cred->cr_uid == file_uid) {
5570 if (file_mode & S_IXUSR)
5571 return (0);
5572 goto out_error;
5573 }
5574
5575 /* Otherwise, check the groups (first match) */
5576 if (groupmember(file_gid, cred)) {
5577 if (file_mode & S_IXGRP)
5578 return (0);
5579 goto out_error;
5580 }
5581
5582 /* Otherwise, check everyone else. */
5583 if (file_mode & S_IXOTH)
5584 return (0);
5585 out_error:
5586 /*
5587 * Permission check failed, but it is possible denial will get overwritten
5588 * (e.g., when root is traversing through a 700 directory owned by someone
5589 * else).
5590 *
5591 * vaccess() calls priv_check_cred which in turn can descent into MAC
5592 * modules overriding this result. It's quite unclear what semantics
5593 * are allowed for them to operate, thus for safety we don't call them
5594 * from within the SMR section. This also means if any such modules
5595 * are present, we have to let the regular lookup decide.
5596 */
5597 error = priv_check_cred_vfs_lookup_nomac(cred);
5598 switch (error) {
5599 case 0:
5600 return (0);
5601 case EAGAIN:
5602 /*
5603 * MAC modules present.
5604 */
5605 return (EAGAIN);
5606 case EPERM:
5607 return (EACCES);
5608 default:
5609 return (error);
5610 }
5611 }
5612
5613 /*
5614 * Common filesystem object access control check routine. Accepts a
5615 * vnode's type, "mode", uid and gid, requested access mode, and credentials.
5616 * Returns 0 on success, or an errno on failure.
5617 */
5618 int
vaccess(__enum_uint8 (vtype)type,mode_t file_mode,uid_t file_uid,gid_t file_gid,accmode_t accmode,struct ucred * cred)5619 vaccess(__enum_uint8(vtype) type, mode_t file_mode, uid_t file_uid, gid_t file_gid,
5620 accmode_t accmode, struct ucred *cred)
5621 {
5622 accmode_t dac_granted;
5623 accmode_t priv_granted;
5624
5625 KASSERT((accmode & ~(VEXEC | VWRITE | VREAD | VADMIN | VAPPEND)) == 0,
5626 ("invalid bit in accmode"));
5627 KASSERT((accmode & VAPPEND) == 0 || (accmode & VWRITE),
5628 ("VAPPEND without VWRITE"));
5629
5630 /*
5631 * Look for a normal, non-privileged way to access the file/directory
5632 * as requested. If it exists, go with that.
5633 */
5634
5635 dac_granted = 0;
5636
5637 /* Check the owner. */
5638 if (cred->cr_uid == file_uid) {
5639 dac_granted |= VADMIN;
5640 if (file_mode & S_IXUSR)
5641 dac_granted |= VEXEC;
5642 if (file_mode & S_IRUSR)
5643 dac_granted |= VREAD;
5644 if (file_mode & S_IWUSR)
5645 dac_granted |= (VWRITE | VAPPEND);
5646
5647 if ((accmode & dac_granted) == accmode)
5648 return (0);
5649
5650 goto privcheck;
5651 }
5652
5653 /* Otherwise, check the groups (first match) */
5654 if (groupmember(file_gid, cred)) {
5655 if (file_mode & S_IXGRP)
5656 dac_granted |= VEXEC;
5657 if (file_mode & S_IRGRP)
5658 dac_granted |= VREAD;
5659 if (file_mode & S_IWGRP)
5660 dac_granted |= (VWRITE | VAPPEND);
5661
5662 if ((accmode & dac_granted) == accmode)
5663 return (0);
5664
5665 goto privcheck;
5666 }
5667
5668 /* Otherwise, check everyone else. */
5669 if (file_mode & S_IXOTH)
5670 dac_granted |= VEXEC;
5671 if (file_mode & S_IROTH)
5672 dac_granted |= VREAD;
5673 if (file_mode & S_IWOTH)
5674 dac_granted |= (VWRITE | VAPPEND);
5675 if ((accmode & dac_granted) == accmode)
5676 return (0);
5677
5678 privcheck:
5679 /*
5680 * Build a privilege mask to determine if the set of privileges
5681 * satisfies the requirements when combined with the granted mask
5682 * from above. For each privilege, if the privilege is required,
5683 * bitwise or the request type onto the priv_granted mask.
5684 */
5685 priv_granted = 0;
5686
5687 if (type == VDIR) {
5688 /*
5689 * For directories, use PRIV_VFS_LOOKUP to satisfy VEXEC
5690 * requests, instead of PRIV_VFS_EXEC.
5691 */
5692 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5693 !priv_check_cred(cred, PRIV_VFS_LOOKUP))
5694 priv_granted |= VEXEC;
5695 } else {
5696 /*
5697 * Ensure that at least one execute bit is on. Otherwise,
5698 * a privileged user will always succeed, and we don't want
5699 * this to happen unless the file really is executable.
5700 */
5701 if ((accmode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
5702 (file_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0 &&
5703 !priv_check_cred(cred, PRIV_VFS_EXEC))
5704 priv_granted |= VEXEC;
5705 }
5706
5707 if ((accmode & VREAD) && ((dac_granted & VREAD) == 0) &&
5708 !priv_check_cred(cred, PRIV_VFS_READ))
5709 priv_granted |= VREAD;
5710
5711 if ((accmode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
5712 !priv_check_cred(cred, PRIV_VFS_WRITE))
5713 priv_granted |= (VWRITE | VAPPEND);
5714
5715 if ((accmode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
5716 !priv_check_cred(cred, PRIV_VFS_ADMIN))
5717 priv_granted |= VADMIN;
5718
5719 if ((accmode & (priv_granted | dac_granted)) == accmode) {
5720 return (0);
5721 }
5722
5723 return ((accmode & VADMIN) ? EPERM : EACCES);
5724 }
5725
5726 /*
5727 * Credential check based on process requesting service, and per-attribute
5728 * permissions.
5729 */
5730 int
extattr_check_cred(struct vnode * vp,int attrnamespace,struct ucred * cred,struct thread * td,accmode_t accmode)5731 extattr_check_cred(struct vnode *vp, int attrnamespace, struct ucred *cred,
5732 struct thread *td, accmode_t accmode)
5733 {
5734
5735 /*
5736 * Kernel-invoked always succeeds.
5737 */
5738 if (cred == NOCRED)
5739 return (0);
5740
5741 /*
5742 * Do not allow privileged processes in jail to directly manipulate
5743 * system attributes.
5744 */
5745 switch (attrnamespace) {
5746 case EXTATTR_NAMESPACE_SYSTEM:
5747 /* Potentially should be: return (EPERM); */
5748 return (priv_check_cred(cred, PRIV_VFS_EXTATTR_SYSTEM));
5749 case EXTATTR_NAMESPACE_USER:
5750 return (VOP_ACCESS(vp, accmode, cred, td));
5751 default:
5752 return (EPERM);
5753 }
5754 }
5755
5756 #ifdef INVARIANTS
5757 void
assert_vi_locked(struct vnode * vp,const char * str)5758 assert_vi_locked(struct vnode *vp, const char *str)
5759 {
5760 VNASSERT(mtx_owned(VI_MTX(vp)), vp,
5761 ("%s: vnode interlock is not locked but should be", str));
5762 }
5763
5764 void
assert_vi_unlocked(struct vnode * vp,const char * str)5765 assert_vi_unlocked(struct vnode *vp, const char *str)
5766 {
5767 VNASSERT(!mtx_owned(VI_MTX(vp)), vp,
5768 ("%s: vnode interlock is locked but should not be", str));
5769 }
5770
5771 void
assert_vop_locked(struct vnode * vp,const char * str)5772 assert_vop_locked(struct vnode *vp, const char *str)
5773 {
5774 bool locked;
5775
5776 if (KERNEL_PANICKED() || vp == NULL)
5777 return;
5778
5779 #ifdef WITNESS
5780 locked = !((vp->v_irflag & VIRF_CROSSMP) == 0 &&
5781 witness_is_owned(&vp->v_vnlock->lock_object) == -1);
5782 #else
5783 int state = VOP_ISLOCKED(vp);
5784 locked = state != 0 && state != LK_EXCLOTHER;
5785 #endif
5786 VNASSERT(locked, vp, ("%s: vnode is not locked but should be", str));
5787 }
5788
5789 void
assert_vop_unlocked(struct vnode * vp,const char * str)5790 assert_vop_unlocked(struct vnode *vp, const char *str)
5791 {
5792 bool locked;
5793
5794 if (KERNEL_PANICKED() || vp == NULL)
5795 return;
5796
5797 #ifdef WITNESS
5798 locked = (vp->v_irflag & VIRF_CROSSMP) == 0 &&
5799 witness_is_owned(&vp->v_vnlock->lock_object) == 1;
5800 #else
5801 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5802 #endif
5803 VNASSERT(!locked, vp, ("%s: vnode is locked but should not be", str));
5804 }
5805
5806 void
assert_vop_elocked(struct vnode * vp,const char * str)5807 assert_vop_elocked(struct vnode *vp, const char *str)
5808 {
5809 bool locked;
5810
5811 if (KERNEL_PANICKED() || vp == NULL)
5812 return;
5813
5814 locked = VOP_ISLOCKED(vp) == LK_EXCLUSIVE;
5815 VNASSERT(locked, vp,
5816 ("%s: vnode is not exclusive locked but should be", str));
5817 }
5818 #endif /* INVARIANTS */
5819
5820 void
vop_rename_fail(struct vop_rename_args * ap)5821 vop_rename_fail(struct vop_rename_args *ap)
5822 {
5823
5824 if (ap->a_tvp != NULL)
5825 vput(ap->a_tvp);
5826 if (ap->a_tdvp == ap->a_tvp)
5827 vrele(ap->a_tdvp);
5828 else
5829 vput(ap->a_tdvp);
5830 vrele(ap->a_fdvp);
5831 vrele(ap->a_fvp);
5832 }
5833
5834 void
vop_rename_pre(void * ap)5835 vop_rename_pre(void *ap)
5836 {
5837 struct vop_rename_args *a = ap;
5838
5839 #ifdef INVARIANTS
5840 struct mount *tmp;
5841
5842 if (a->a_tvp)
5843 ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
5844 ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
5845 ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
5846 ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");
5847
5848 /* Check the source (from). */
5849 if (a->a_tdvp->v_vnlock != a->a_fdvp->v_vnlock &&
5850 (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fdvp->v_vnlock))
5851 ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
5852 if (a->a_tvp == NULL || a->a_tvp->v_vnlock != a->a_fvp->v_vnlock)
5853 ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: fvp locked");
5854
5855 /* Check the target. */
5856 if (a->a_tvp)
5857 ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
5858 ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
5859
5860 tmp = NULL;
5861 VOP_GETWRITEMOUNT(a->a_tdvp, &tmp);
5862 lockmgr_assert(&tmp->mnt_renamelock, KA_XLOCKED);
5863 vfs_rel(tmp);
5864 #endif
5865 /*
5866 * It may be tempting to add vn_seqc_write_begin/end calls here and
5867 * in vop_rename_post but that's not going to work out since some
5868 * filesystems relookup vnodes mid-rename. This is probably a bug.
5869 *
5870 * For now filesystems are expected to do the relevant calls after they
5871 * decide what vnodes to operate on.
5872 */
5873 if (a->a_tdvp != a->a_fdvp)
5874 vhold(a->a_fdvp);
5875 if (a->a_tvp != a->a_fvp)
5876 vhold(a->a_fvp);
5877 vhold(a->a_tdvp);
5878 if (a->a_tvp)
5879 vhold(a->a_tvp);
5880 }
5881
5882 #ifdef INVARIANTS
5883 void
vop_fplookup_vexec_debugpre(void * ap __unused)5884 vop_fplookup_vexec_debugpre(void *ap __unused)
5885 {
5886
5887 VFS_SMR_ASSERT_ENTERED();
5888 }
5889
5890 void
vop_fplookup_vexec_debugpost(void * ap,int rc)5891 vop_fplookup_vexec_debugpost(void *ap, int rc)
5892 {
5893 struct vop_fplookup_vexec_args *a;
5894 struct vnode *vp;
5895
5896 a = ap;
5897 vp = a->a_vp;
5898
5899 VFS_SMR_ASSERT_ENTERED();
5900 if (rc == EOPNOTSUPP)
5901 VNPASS(VN_IS_DOOMED(vp), vp);
5902 }
5903
5904 void
vop_fplookup_symlink_debugpre(void * ap __unused)5905 vop_fplookup_symlink_debugpre(void *ap __unused)
5906 {
5907
5908 VFS_SMR_ASSERT_ENTERED();
5909 }
5910
5911 void
vop_fplookup_symlink_debugpost(void * ap __unused,int rc __unused)5912 vop_fplookup_symlink_debugpost(void *ap __unused, int rc __unused)
5913 {
5914
5915 VFS_SMR_ASSERT_ENTERED();
5916 }
5917
5918 static void
vop_fsync_debugprepost(struct vnode * vp,const char * name)5919 vop_fsync_debugprepost(struct vnode *vp, const char *name)
5920 {
5921 struct mount *mp;
5922
5923 if (vp->v_type == VCHR)
5924 ;
5925 /*
5926 * The shared vs. exclusive locking policy for fsync()
5927 * is actually determined by vp's write mount as indicated
5928 * by VOP_GETWRITEMOUNT(), which for stacked filesystems
5929 * may not be the same as vp->v_mount. However, if the
5930 * underlying filesystem which really handles the fsync()
5931 * supports shared locking, the stacked filesystem must also
5932 * be prepared for its VOP_FSYNC() operation to be called
5933 * with only a shared lock. On the other hand, if the
5934 * stacked filesystem claims support for shared write
5935 * locking but the underlying filesystem does not, and the
5936 * caller incorrectly uses a shared lock, this condition
5937 * should still be caught when the stacked filesystem
5938 * invokes VOP_FSYNC() on the underlying filesystem.
5939 */
5940 else {
5941 mp = NULL;
5942 VOP_GETWRITEMOUNT(vp, &mp);
5943 if (vn_lktype_write(mp, vp) == LK_SHARED)
5944 ASSERT_VOP_LOCKED(vp, name);
5945 else
5946 ASSERT_VOP_ELOCKED(vp, name);
5947 if (mp != NULL)
5948 vfs_rel(mp);
5949 }
5950 }
5951
5952 void
vop_fsync_debugpre(void * a)5953 vop_fsync_debugpre(void *a)
5954 {
5955 struct vop_fsync_args *ap;
5956
5957 ap = a;
5958 vop_fsync_debugprepost(ap->a_vp, "fsync");
5959 }
5960
5961 void
vop_fsync_debugpost(void * a,int rc __unused)5962 vop_fsync_debugpost(void *a, int rc __unused)
5963 {
5964 struct vop_fsync_args *ap;
5965
5966 ap = a;
5967 vop_fsync_debugprepost(ap->a_vp, "fsync");
5968 }
5969
5970 void
vop_fdatasync_debugpre(void * a)5971 vop_fdatasync_debugpre(void *a)
5972 {
5973 struct vop_fdatasync_args *ap;
5974
5975 ap = a;
5976 vop_fsync_debugprepost(ap->a_vp, "fsync");
5977 }
5978
5979 void
vop_fdatasync_debugpost(void * a,int rc __unused)5980 vop_fdatasync_debugpost(void *a, int rc __unused)
5981 {
5982 struct vop_fdatasync_args *ap;
5983
5984 ap = a;
5985 vop_fsync_debugprepost(ap->a_vp, "fsync");
5986 }
5987
5988 void
vop_strategy_debugpre(void * ap)5989 vop_strategy_debugpre(void *ap)
5990 {
5991 struct vop_strategy_args *a;
5992 struct buf *bp;
5993
5994 a = ap;
5995 bp = a->a_bp;
5996
5997 /*
5998 * Cluster ops lock their component buffers but not the IO container.
5999 */
6000 if ((bp->b_flags & B_CLUSTER) != 0)
6001 return;
6002
6003 BUF_ASSERT_LOCKED(bp);
6004 }
6005
6006 void
vop_lock_debugpre(void * ap)6007 vop_lock_debugpre(void *ap)
6008 {
6009 struct vop_lock1_args *a = ap;
6010
6011 if ((a->a_flags & LK_INTERLOCK) == 0)
6012 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6013 else
6014 ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
6015 }
6016
6017 void
vop_lock_debugpost(void * ap,int rc)6018 vop_lock_debugpost(void *ap, int rc)
6019 {
6020 struct vop_lock1_args *a = ap;
6021
6022 ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
6023 if (rc == 0 && (a->a_flags & LK_EXCLOTHER) == 0)
6024 ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
6025 }
6026
6027 void
vop_unlock_debugpre(void * ap)6028 vop_unlock_debugpre(void *ap)
6029 {
6030 struct vop_unlock_args *a = ap;
6031 struct vnode *vp = a->a_vp;
6032
6033 VNPASS(vn_get_state(vp) != VSTATE_UNINITIALIZED, vp);
6034 ASSERT_VOP_LOCKED(vp, "VOP_UNLOCK");
6035 }
6036
6037 void
vop_need_inactive_debugpre(void * ap)6038 vop_need_inactive_debugpre(void *ap)
6039 {
6040 struct vop_need_inactive_args *a = ap;
6041
6042 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6043 }
6044
6045 void
vop_need_inactive_debugpost(void * ap,int rc)6046 vop_need_inactive_debugpost(void *ap, int rc)
6047 {
6048 struct vop_need_inactive_args *a = ap;
6049
6050 ASSERT_VI_LOCKED(a->a_vp, "VOP_NEED_INACTIVE");
6051 }
6052 #endif /* INVARIANTS */
6053
6054 void
vop_allocate_post(void * ap,int rc)6055 vop_allocate_post(void *ap, int rc)
6056 {
6057 struct vop_allocate_args *a;
6058
6059 a = ap;
6060 if (rc == 0)
6061 INOTIFY(a->a_vp, IN_MODIFY);
6062 }
6063
6064 void
vop_copy_file_range_post(void * ap,int rc)6065 vop_copy_file_range_post(void *ap, int rc)
6066 {
6067 struct vop_copy_file_range_args *a;
6068
6069 a = ap;
6070 if (rc == 0) {
6071 INOTIFY(a->a_invp, IN_ACCESS);
6072 INOTIFY(a->a_outvp, IN_MODIFY);
6073 }
6074 }
6075
6076 void
vop_create_pre(void * ap)6077 vop_create_pre(void *ap)
6078 {
6079 struct vop_create_args *a;
6080 struct vnode *dvp;
6081
6082 a = ap;
6083 dvp = a->a_dvp;
6084 vn_seqc_write_begin(dvp);
6085 }
6086
6087 void
vop_create_post(void * ap,int rc)6088 vop_create_post(void *ap, int rc)
6089 {
6090 struct vop_create_args *a;
6091 struct vnode *dvp;
6092
6093 a = ap;
6094 dvp = a->a_dvp;
6095 vn_seqc_write_end(dvp);
6096 if (!rc) {
6097 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6098 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6099 }
6100 }
6101
6102 void
vop_deallocate_post(void * ap,int rc)6103 vop_deallocate_post(void *ap, int rc)
6104 {
6105 struct vop_deallocate_args *a;
6106
6107 a = ap;
6108 if (rc == 0)
6109 INOTIFY(a->a_vp, IN_MODIFY);
6110 }
6111
6112 void
vop_whiteout_pre(void * ap)6113 vop_whiteout_pre(void *ap)
6114 {
6115 struct vop_whiteout_args *a;
6116 struct vnode *dvp;
6117
6118 a = ap;
6119 dvp = a->a_dvp;
6120 vn_seqc_write_begin(dvp);
6121 }
6122
6123 void
vop_whiteout_post(void * ap,int rc)6124 vop_whiteout_post(void *ap, int rc)
6125 {
6126 struct vop_whiteout_args *a;
6127 struct vnode *dvp;
6128
6129 a = ap;
6130 dvp = a->a_dvp;
6131 vn_seqc_write_end(dvp);
6132 }
6133
6134 void
vop_deleteextattr_pre(void * ap)6135 vop_deleteextattr_pre(void *ap)
6136 {
6137 struct vop_deleteextattr_args *a;
6138 struct vnode *vp;
6139
6140 a = ap;
6141 vp = a->a_vp;
6142 vn_seqc_write_begin(vp);
6143 }
6144
6145 void
vop_deleteextattr_post(void * ap,int rc)6146 vop_deleteextattr_post(void *ap, int rc)
6147 {
6148 struct vop_deleteextattr_args *a;
6149 struct vnode *vp;
6150
6151 a = ap;
6152 vp = a->a_vp;
6153 vn_seqc_write_end(vp);
6154 if (!rc) {
6155 VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
6156 INOTIFY(vp, IN_ATTRIB);
6157 }
6158 }
6159
6160 void
vop_link_pre(void * ap)6161 vop_link_pre(void *ap)
6162 {
6163 struct vop_link_args *a;
6164 struct vnode *vp, *tdvp;
6165
6166 a = ap;
6167 vp = a->a_vp;
6168 tdvp = a->a_tdvp;
6169 vn_seqc_write_begin(vp);
6170 vn_seqc_write_begin(tdvp);
6171 }
6172
6173 void
vop_link_post(void * ap,int rc)6174 vop_link_post(void *ap, int rc)
6175 {
6176 struct vop_link_args *a;
6177 struct vnode *vp, *tdvp;
6178
6179 a = ap;
6180 vp = a->a_vp;
6181 tdvp = a->a_tdvp;
6182 vn_seqc_write_end(vp);
6183 vn_seqc_write_end(tdvp);
6184 if (!rc) {
6185 VFS_KNOTE_LOCKED(vp, NOTE_LINK);
6186 VFS_KNOTE_LOCKED(tdvp, NOTE_WRITE);
6187 INOTIFY_NAME(vp, tdvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6188 INOTIFY_NAME(vp, tdvp, a->a_cnp, IN_CREATE);
6189 }
6190 }
6191
6192 void
vop_mkdir_pre(void * ap)6193 vop_mkdir_pre(void *ap)
6194 {
6195 struct vop_mkdir_args *a;
6196 struct vnode *dvp;
6197
6198 a = ap;
6199 dvp = a->a_dvp;
6200 vn_seqc_write_begin(dvp);
6201 }
6202
6203 void
vop_mkdir_post(void * ap,int rc)6204 vop_mkdir_post(void *ap, int rc)
6205 {
6206 struct vop_mkdir_args *a;
6207 struct vnode *dvp;
6208
6209 a = ap;
6210 dvp = a->a_dvp;
6211 vn_seqc_write_end(dvp);
6212 if (!rc) {
6213 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6214 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6215 }
6216 }
6217
6218 #ifdef INVARIANTS
6219 void
vop_mkdir_debugpost(void * ap,int rc)6220 vop_mkdir_debugpost(void *ap, int rc)
6221 {
6222 struct vop_mkdir_args *a;
6223
6224 a = ap;
6225 if (!rc)
6226 cache_validate(a->a_dvp, *a->a_vpp, a->a_cnp);
6227 }
6228 #endif
6229
6230 void
vop_mknod_pre(void * ap)6231 vop_mknod_pre(void *ap)
6232 {
6233 struct vop_mknod_args *a;
6234 struct vnode *dvp;
6235
6236 a = ap;
6237 dvp = a->a_dvp;
6238 vn_seqc_write_begin(dvp);
6239 }
6240
6241 void
vop_mknod_post(void * ap,int rc)6242 vop_mknod_post(void *ap, int rc)
6243 {
6244 struct vop_mknod_args *a;
6245 struct vnode *dvp;
6246
6247 a = ap;
6248 dvp = a->a_dvp;
6249 vn_seqc_write_end(dvp);
6250 if (!rc) {
6251 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6252 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6253 }
6254 }
6255
6256 void
vop_reclaim_post(void * ap,int rc)6257 vop_reclaim_post(void *ap, int rc)
6258 {
6259 struct vop_reclaim_args *a;
6260 struct vnode *vp;
6261
6262 a = ap;
6263 vp = a->a_vp;
6264 ASSERT_VOP_IN_SEQC(vp);
6265 if (!rc) {
6266 VFS_KNOTE_LOCKED(vp, NOTE_REVOKE);
6267 INOTIFY_REVOKE(vp);
6268 }
6269 }
6270
6271 void
vop_remove_pre(void * ap)6272 vop_remove_pre(void *ap)
6273 {
6274 struct vop_remove_args *a;
6275 struct vnode *dvp, *vp;
6276
6277 a = ap;
6278 dvp = a->a_dvp;
6279 vp = a->a_vp;
6280 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6281 vn_seqc_write_begin(dvp);
6282 vn_seqc_write_begin(vp);
6283 }
6284
6285 void
vop_remove_post(void * ap,int rc)6286 vop_remove_post(void *ap, int rc)
6287 {
6288 struct vop_remove_args *a;
6289 struct vnode *dvp, *vp;
6290
6291 a = ap;
6292 dvp = a->a_dvp;
6293 vp = a->a_vp;
6294 vn_seqc_write_end(dvp);
6295 vn_seqc_write_end(vp);
6296 if (!rc) {
6297 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6298 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6299 INOTIFY_NAME(vp, dvp, a->a_cnp, _IN_ATTRIB_LINKCOUNT);
6300 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6301 }
6302 }
6303
6304 void
vop_rename_post(void * ap,int rc)6305 vop_rename_post(void *ap, int rc)
6306 {
6307 struct vop_rename_args *a = ap;
6308 long hint;
6309
6310 if (!rc) {
6311 hint = NOTE_WRITE;
6312 if (a->a_fdvp == a->a_tdvp) {
6313 if (a->a_tvp != NULL && a->a_tvp->v_type == VDIR)
6314 hint |= NOTE_LINK;
6315 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6316 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6317 } else {
6318 hint |= NOTE_EXTEND;
6319 if (a->a_fvp->v_type == VDIR)
6320 hint |= NOTE_LINK;
6321 VFS_KNOTE_UNLOCKED(a->a_fdvp, hint);
6322
6323 if (a->a_fvp->v_type == VDIR && a->a_tvp != NULL &&
6324 a->a_tvp->v_type == VDIR)
6325 hint &= ~NOTE_LINK;
6326 VFS_KNOTE_UNLOCKED(a->a_tdvp, hint);
6327 }
6328
6329 VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
6330 if (a->a_tvp)
6331 VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
6332 INOTIFY_MOVE(a->a_fvp, a->a_fdvp, a->a_fcnp, a->a_tvp,
6333 a->a_tdvp, a->a_tcnp);
6334 }
6335 if (a->a_tdvp != a->a_fdvp)
6336 vdrop(a->a_fdvp);
6337 if (a->a_tvp != a->a_fvp)
6338 vdrop(a->a_fvp);
6339 vdrop(a->a_tdvp);
6340 if (a->a_tvp)
6341 vdrop(a->a_tvp);
6342 }
6343
6344 void
vop_rmdir_pre(void * ap)6345 vop_rmdir_pre(void *ap)
6346 {
6347 struct vop_rmdir_args *a;
6348 struct vnode *dvp, *vp;
6349
6350 a = ap;
6351 dvp = a->a_dvp;
6352 vp = a->a_vp;
6353 vfs_notify_upper(vp, VFS_NOTIFY_UPPER_UNLINK);
6354 vn_seqc_write_begin(dvp);
6355 vn_seqc_write_begin(vp);
6356 }
6357
6358 void
vop_rmdir_post(void * ap,int rc)6359 vop_rmdir_post(void *ap, int rc)
6360 {
6361 struct vop_rmdir_args *a;
6362 struct vnode *dvp, *vp;
6363
6364 a = ap;
6365 dvp = a->a_dvp;
6366 vp = a->a_vp;
6367 vn_seqc_write_end(dvp);
6368 vn_seqc_write_end(vp);
6369 if (!rc) {
6370 vp->v_vflag |= VV_UNLINKED;
6371 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE | NOTE_LINK);
6372 VFS_KNOTE_LOCKED(vp, NOTE_DELETE);
6373 INOTIFY_NAME(vp, dvp, a->a_cnp, IN_DELETE);
6374 }
6375 }
6376
6377 void
vop_setattr_pre(void * ap)6378 vop_setattr_pre(void *ap)
6379 {
6380 struct vop_setattr_args *a;
6381 struct vnode *vp;
6382
6383 a = ap;
6384 vp = a->a_vp;
6385 vn_seqc_write_begin(vp);
6386 }
6387
6388 void
vop_setattr_post(void * ap,int rc)6389 vop_setattr_post(void *ap, int rc)
6390 {
6391 struct vop_setattr_args *a;
6392 struct vnode *vp;
6393
6394 a = ap;
6395 vp = a->a_vp;
6396 vn_seqc_write_end(vp);
6397 if (!rc) {
6398 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6399 INOTIFY(vp, IN_ATTRIB);
6400 }
6401 }
6402
6403 void
vop_setacl_pre(void * ap)6404 vop_setacl_pre(void *ap)
6405 {
6406 struct vop_setacl_args *a;
6407 struct vnode *vp;
6408
6409 a = ap;
6410 vp = a->a_vp;
6411 vn_seqc_write_begin(vp);
6412 }
6413
6414 void
vop_setacl_post(void * ap,int rc __unused)6415 vop_setacl_post(void *ap, int rc __unused)
6416 {
6417 struct vop_setacl_args *a;
6418 struct vnode *vp;
6419
6420 a = ap;
6421 vp = a->a_vp;
6422 vn_seqc_write_end(vp);
6423 }
6424
6425 void
vop_setextattr_pre(void * ap)6426 vop_setextattr_pre(void *ap)
6427 {
6428 struct vop_setextattr_args *a;
6429 struct vnode *vp;
6430
6431 a = ap;
6432 vp = a->a_vp;
6433 vn_seqc_write_begin(vp);
6434 }
6435
6436 void
vop_setextattr_post(void * ap,int rc)6437 vop_setextattr_post(void *ap, int rc)
6438 {
6439 struct vop_setextattr_args *a;
6440 struct vnode *vp;
6441
6442 a = ap;
6443 vp = a->a_vp;
6444 vn_seqc_write_end(vp);
6445 if (!rc) {
6446 VFS_KNOTE_LOCKED(vp, NOTE_ATTRIB);
6447 INOTIFY(vp, IN_ATTRIB);
6448 }
6449 }
6450
6451 void
vop_symlink_pre(void * ap)6452 vop_symlink_pre(void *ap)
6453 {
6454 struct vop_symlink_args *a;
6455 struct vnode *dvp;
6456
6457 a = ap;
6458 dvp = a->a_dvp;
6459 vn_seqc_write_begin(dvp);
6460 }
6461
6462 void
vop_symlink_post(void * ap,int rc)6463 vop_symlink_post(void *ap, int rc)
6464 {
6465 struct vop_symlink_args *a;
6466 struct vnode *dvp;
6467
6468 a = ap;
6469 dvp = a->a_dvp;
6470 vn_seqc_write_end(dvp);
6471 if (!rc) {
6472 VFS_KNOTE_LOCKED(dvp, NOTE_WRITE);
6473 INOTIFY_NAME(*a->a_vpp, dvp, a->a_cnp, IN_CREATE);
6474 }
6475 }
6476
6477 void
vop_open_post(void * ap,int rc)6478 vop_open_post(void *ap, int rc)
6479 {
6480 struct vop_open_args *a = ap;
6481
6482 if (!rc) {
6483 VFS_KNOTE_LOCKED(a->a_vp, NOTE_OPEN);
6484 INOTIFY(a->a_vp, IN_OPEN);
6485 }
6486 }
6487
6488 void
vop_close_post(void * ap,int rc)6489 vop_close_post(void *ap, int rc)
6490 {
6491 struct vop_close_args *a = ap;
6492
6493 if (!rc && (a->a_cred != NOCRED || /* filter out revokes */
6494 !VN_IS_DOOMED(a->a_vp))) {
6495 VFS_KNOTE_LOCKED(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6496 NOTE_CLOSE_WRITE : NOTE_CLOSE);
6497 INOTIFY(a->a_vp, (a->a_fflag & FWRITE) != 0 ?
6498 IN_CLOSE_WRITE : IN_CLOSE_NOWRITE);
6499 }
6500 }
6501
6502 void
vop_read_post(void * ap,int rc)6503 vop_read_post(void *ap, int rc)
6504 {
6505 struct vop_read_args *a = ap;
6506
6507 if (!rc) {
6508 VFS_KNOTE_LOCKED(a->a_vp, NOTE_READ);
6509 INOTIFY(a->a_vp, IN_ACCESS);
6510 }
6511 }
6512
6513 void
vop_read_pgcache_post(void * ap,int rc)6514 vop_read_pgcache_post(void *ap, int rc)
6515 {
6516 struct vop_read_pgcache_args *a = ap;
6517
6518 if (!rc)
6519 VFS_KNOTE_UNLOCKED(a->a_vp, NOTE_READ);
6520 }
6521
6522 static struct knlist fs_knlist;
6523
6524 static void
vfs_event_init(void * arg)6525 vfs_event_init(void *arg)
6526 {
6527 knlist_init_mtx(&fs_knlist, NULL);
6528 }
6529 /* XXX - correct order? */
6530 SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);
6531
6532 void
vfs_event_signal(fsid_t * fsid,uint32_t event,intptr_t data __unused)6533 vfs_event_signal(fsid_t *fsid, uint32_t event, intptr_t data __unused)
6534 {
6535
6536 KNOTE_UNLOCKED(&fs_knlist, event);
6537 }
6538
6539 static int filt_fsattach(struct knote *kn);
6540 static void filt_fsdetach(struct knote *kn);
6541 static int filt_fsevent(struct knote *kn, long hint);
6542
6543 const struct filterops fs_filtops = {
6544 .f_isfd = 0,
6545 .f_attach = filt_fsattach,
6546 .f_detach = filt_fsdetach,
6547 .f_event = filt_fsevent,
6548 };
6549
6550 static int
filt_fsattach(struct knote * kn)6551 filt_fsattach(struct knote *kn)
6552 {
6553
6554 kn->kn_flags |= EV_CLEAR;
6555 knlist_add(&fs_knlist, kn, 0);
6556 return (0);
6557 }
6558
6559 static void
filt_fsdetach(struct knote * kn)6560 filt_fsdetach(struct knote *kn)
6561 {
6562
6563 knlist_remove(&fs_knlist, kn, 0);
6564 }
6565
6566 static int
filt_fsevent(struct knote * kn,long hint)6567 filt_fsevent(struct knote *kn, long hint)
6568 {
6569
6570 kn->kn_fflags |= kn->kn_sfflags & hint;
6571
6572 return (kn->kn_fflags != 0);
6573 }
6574
6575 static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)6576 sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
6577 {
6578 struct vfsidctl vc;
6579 int error;
6580 struct mount *mp;
6581
6582 if (req->newptr == NULL)
6583 return (EINVAL);
6584 error = SYSCTL_IN(req, &vc, sizeof(vc));
6585 if (error)
6586 return (error);
6587 if (vc.vc_vers != VFS_CTL_VERS1)
6588 return (EINVAL);
6589 mp = vfs_getvfs(&vc.vc_fsid);
6590 if (mp == NULL)
6591 return (ENOENT);
6592 /* ensure that a specific sysctl goes to the right filesystem. */
6593 if (strcmp(vc.vc_fstypename, "*") != 0 &&
6594 strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
6595 vfs_rel(mp);
6596 return (EINVAL);
6597 }
6598 VCTLTOREQ(&vc, req);
6599 error = VFS_SYSCTL(mp, vc.vc_op, req);
6600 vfs_rel(mp);
6601 return (error);
6602 }
6603
6604 SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLTYPE_OPAQUE | CTLFLAG_MPSAFE | CTLFLAG_WR,
6605 NULL, 0, sysctl_vfs_ctl, "",
6606 "Sysctl by fsid");
6607
6608 /*
6609 * Function to initialize a va_filerev field sensibly.
6610 * XXX: Wouldn't a random number make a lot more sense ??
6611 */
6612 u_quad_t
init_va_filerev(void)6613 init_va_filerev(void)
6614 {
6615 struct bintime bt;
6616
6617 getbinuptime(&bt);
6618 return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
6619 }
6620
6621 static int filt_vfsread(struct knote *kn, long hint);
6622 static int filt_vfswrite(struct knote *kn, long hint);
6623 static int filt_vfsvnode(struct knote *kn, long hint);
6624 static void filt_vfsdetach(struct knote *kn);
6625 static int filt_vfsdump(struct proc *p, struct knote *kn,
6626 struct kinfo_knote *kin);
6627
6628 static const struct filterops vfsread_filtops = {
6629 .f_isfd = 1,
6630 .f_detach = filt_vfsdetach,
6631 .f_event = filt_vfsread,
6632 .f_userdump = filt_vfsdump,
6633 };
6634 static const struct filterops vfswrite_filtops = {
6635 .f_isfd = 1,
6636 .f_detach = filt_vfsdetach,
6637 .f_event = filt_vfswrite,
6638 .f_userdump = filt_vfsdump,
6639 };
6640 static const struct filterops vfsvnode_filtops = {
6641 .f_isfd = 1,
6642 .f_detach = filt_vfsdetach,
6643 .f_event = filt_vfsvnode,
6644 .f_userdump = filt_vfsdump,
6645 };
6646
6647 static void
vfs_knllock(void * arg)6648 vfs_knllock(void *arg)
6649 {
6650 struct vnode *vp = arg;
6651
6652 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
6653 }
6654
6655 static void
vfs_knlunlock(void * arg)6656 vfs_knlunlock(void *arg)
6657 {
6658 struct vnode *vp = arg;
6659
6660 VOP_UNLOCK(vp);
6661 }
6662
6663 static void
vfs_knl_assert_lock(void * arg,int what)6664 vfs_knl_assert_lock(void *arg, int what)
6665 {
6666 #ifdef INVARIANTS
6667 struct vnode *vp = arg;
6668
6669 if (what == LA_LOCKED)
6670 ASSERT_VOP_LOCKED(vp, "vfs_knl_assert_locked");
6671 else
6672 ASSERT_VOP_UNLOCKED(vp, "vfs_knl_assert_unlocked");
6673 #endif
6674 }
6675
6676 int
vfs_kqfilter(struct vop_kqfilter_args * ap)6677 vfs_kqfilter(struct vop_kqfilter_args *ap)
6678 {
6679 struct vnode *vp = ap->a_vp;
6680 struct knote *kn = ap->a_kn;
6681 struct knlist *knl;
6682
6683 KASSERT(vp->v_type != VFIFO || (kn->kn_filter != EVFILT_READ &&
6684 kn->kn_filter != EVFILT_WRITE),
6685 ("READ/WRITE filter on a FIFO leaked through"));
6686 switch (kn->kn_filter) {
6687 case EVFILT_READ:
6688 kn->kn_fop = &vfsread_filtops;
6689 break;
6690 case EVFILT_WRITE:
6691 kn->kn_fop = &vfswrite_filtops;
6692 break;
6693 case EVFILT_VNODE:
6694 kn->kn_fop = &vfsvnode_filtops;
6695 break;
6696 default:
6697 return (EINVAL);
6698 }
6699
6700 kn->kn_hook = (caddr_t)vp;
6701
6702 v_addpollinfo(vp);
6703 if (vp->v_pollinfo == NULL)
6704 return (ENOMEM);
6705 knl = &vp->v_pollinfo->vpi_selinfo.si_note;
6706 vhold(vp);
6707 knlist_add(knl, kn, 0);
6708
6709 return (0);
6710 }
6711
6712 /*
6713 * Detach knote from vnode
6714 */
6715 static void
filt_vfsdetach(struct knote * kn)6716 filt_vfsdetach(struct knote *kn)
6717 {
6718 struct vnode *vp = (struct vnode *)kn->kn_hook;
6719
6720 KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
6721 knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
6722 vdrop(vp);
6723 }
6724
6725 /*ARGSUSED*/
6726 static int
filt_vfsread(struct knote * kn,long hint)6727 filt_vfsread(struct knote *kn, long hint)
6728 {
6729 struct vnode *vp = (struct vnode *)kn->kn_hook;
6730 off_t size;
6731 int res;
6732
6733 /*
6734 * filesystem is gone, so set the EOF flag and schedule
6735 * the knote for deletion.
6736 */
6737 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6738 VI_LOCK(vp);
6739 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6740 VI_UNLOCK(vp);
6741 return (1);
6742 }
6743
6744 if (vn_getsize_locked(vp, &size, curthread->td_ucred) != 0)
6745 return (0);
6746
6747 VI_LOCK(vp);
6748 kn->kn_data = size - kn->kn_fp->f_offset;
6749 res = (kn->kn_sfflags & NOTE_FILE_POLL) != 0 || kn->kn_data != 0;
6750 VI_UNLOCK(vp);
6751 return (res);
6752 }
6753
6754 /*ARGSUSED*/
6755 static int
filt_vfswrite(struct knote * kn,long hint)6756 filt_vfswrite(struct knote *kn, long hint)
6757 {
6758 struct vnode *vp = (struct vnode *)kn->kn_hook;
6759
6760 VI_LOCK(vp);
6761
6762 /*
6763 * filesystem is gone, so set the EOF flag and schedule
6764 * the knote for deletion.
6765 */
6766 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD))
6767 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
6768
6769 kn->kn_data = 0;
6770 VI_UNLOCK(vp);
6771 return (1);
6772 }
6773
6774 static int
filt_vfsvnode(struct knote * kn,long hint)6775 filt_vfsvnode(struct knote *kn, long hint)
6776 {
6777 struct vnode *vp = (struct vnode *)kn->kn_hook;
6778 int res;
6779
6780 VI_LOCK(vp);
6781 if (kn->kn_sfflags & hint)
6782 kn->kn_fflags |= hint;
6783 if (hint == NOTE_REVOKE || (hint == 0 && vp->v_type == VBAD)) {
6784 kn->kn_flags |= EV_EOF;
6785 VI_UNLOCK(vp);
6786 return (1);
6787 }
6788 res = (kn->kn_fflags != 0);
6789 VI_UNLOCK(vp);
6790 return (res);
6791 }
6792
6793 static int
filt_vfsdump(struct proc * p,struct knote * kn,struct kinfo_knote * kin)6794 filt_vfsdump(struct proc *p, struct knote *kn, struct kinfo_knote *kin)
6795 {
6796 struct vattr va;
6797 struct vnode *vp;
6798 char *fullpath, *freepath;
6799 int error;
6800
6801 kin->knt_extdata = KNOTE_EXTDATA_VNODE;
6802
6803 vp = kn->kn_fp->f_vnode;
6804 kin->knt_vnode.knt_vnode_type = vntype_to_kinfo(vp->v_type);
6805
6806 va.va_fsid = VNOVAL;
6807 vn_lock(vp, LK_SHARED | LK_RETRY);
6808 error = VOP_GETATTR(vp, &va, curthread->td_ucred);
6809 VOP_UNLOCK(vp);
6810 if (error != 0)
6811 return (error);
6812 kin->knt_vnode.knt_vnode_fsid = va.va_fsid;
6813 kin->knt_vnode.knt_vnode_fileid = va.va_fileid;
6814
6815 freepath = NULL;
6816 fullpath = "-";
6817 error = vn_fullpath(vp, &fullpath, &freepath);
6818 if (error == 0) {
6819 strlcpy(kin->knt_vnode.knt_vnode_fullpath, fullpath,
6820 sizeof(kin->knt_vnode.knt_vnode_fullpath));
6821 }
6822 if (freepath != NULL)
6823 free(freepath, M_TEMP);
6824
6825 return (0);
6826 }
6827
6828 int
vfs_read_dirent(struct vop_readdir_args * ap,struct dirent * dp,off_t off)6829 vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
6830 {
6831 int error;
6832
6833 if (dp->d_reclen > ap->a_uio->uio_resid)
6834 return (ENAMETOOLONG);
6835 error = uiomove(dp, dp->d_reclen, ap->a_uio);
6836 if (error) {
6837 if (ap->a_ncookies != NULL) {
6838 if (ap->a_cookies != NULL)
6839 free(ap->a_cookies, M_TEMP);
6840 ap->a_cookies = NULL;
6841 *ap->a_ncookies = 0;
6842 }
6843 return (error);
6844 }
6845 if (ap->a_ncookies == NULL)
6846 return (0);
6847
6848 KASSERT(ap->a_cookies,
6849 ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));
6850
6851 *ap->a_cookies = realloc(*ap->a_cookies,
6852 (*ap->a_ncookies + 1) * sizeof(uint64_t), M_TEMP, M_WAITOK | M_ZERO);
6853 (*ap->a_cookies)[*ap->a_ncookies] = off;
6854 *ap->a_ncookies += 1;
6855 return (0);
6856 }
6857
6858 /*
6859 * The purpose of this routine is to remove granularity from accmode_t,
6860 * reducing it into standard unix access bits - VEXEC, VREAD, VWRITE,
6861 * VADMIN and VAPPEND.
6862 *
6863 * If it returns 0, the caller is supposed to continue with the usual
6864 * access checks using 'accmode' as modified by this routine. If it
6865 * returns nonzero value, the caller is supposed to return that value
6866 * as errno.
6867 *
6868 * Note that after this routine runs, accmode may be zero.
6869 */
6870 int
vfs_unixify_accmode(accmode_t * accmode)6871 vfs_unixify_accmode(accmode_t *accmode)
6872 {
6873 /*
6874 * There is no way to specify explicit "deny" rule using
6875 * file mode or POSIX.1e ACLs.
6876 */
6877 if (*accmode & VEXPLICIT_DENY) {
6878 *accmode = 0;
6879 return (0);
6880 }
6881
6882 /*
6883 * None of these can be translated into usual access bits.
6884 * Also, the common case for NFSv4 ACLs is to not contain
6885 * either of these bits. Caller should check for VWRITE
6886 * on the containing directory instead.
6887 */
6888 if (*accmode & (VDELETE_CHILD | VDELETE))
6889 return (EPERM);
6890
6891 if (*accmode & VADMIN_PERMS) {
6892 *accmode &= ~VADMIN_PERMS;
6893 *accmode |= VADMIN;
6894 }
6895
6896 /*
6897 * There is no way to deny VREAD_ATTRIBUTES, VREAD_ACL
6898 * or VSYNCHRONIZE using file mode or POSIX.1e ACL.
6899 */
6900 *accmode &= ~(VSTAT_PERMS | VSYNCHRONIZE);
6901
6902 return (0);
6903 }
6904
6905 /*
6906 * Clear out a doomed vnode (if any) and replace it with a new one as long
6907 * as the fs is not being unmounted. Return the root vnode to the caller.
6908 */
6909 static int __noinline
vfs_cache_root_fallback(struct mount * mp,int flags,struct vnode ** vpp)6910 vfs_cache_root_fallback(struct mount *mp, int flags, struct vnode **vpp)
6911 {
6912 struct vnode *vp;
6913 int error;
6914
6915 restart:
6916 if (mp->mnt_rootvnode != NULL) {
6917 MNT_ILOCK(mp);
6918 vp = mp->mnt_rootvnode;
6919 if (vp != NULL) {
6920 if (!VN_IS_DOOMED(vp)) {
6921 vrefact(vp);
6922 MNT_IUNLOCK(mp);
6923 error = vn_lock(vp, flags);
6924 if (error == 0) {
6925 *vpp = vp;
6926 return (0);
6927 }
6928 vrele(vp);
6929 goto restart;
6930 }
6931 /*
6932 * Clear the old one.
6933 */
6934 mp->mnt_rootvnode = NULL;
6935 }
6936 MNT_IUNLOCK(mp);
6937 if (vp != NULL) {
6938 vfs_op_barrier_wait(mp);
6939 vrele(vp);
6940 }
6941 }
6942 error = VFS_CACHEDROOT(mp, flags, vpp);
6943 if (error != 0)
6944 return (error);
6945 if (mp->mnt_vfs_ops == 0) {
6946 MNT_ILOCK(mp);
6947 if (mp->mnt_vfs_ops != 0) {
6948 MNT_IUNLOCK(mp);
6949 return (0);
6950 }
6951 if (mp->mnt_rootvnode == NULL) {
6952 vrefact(*vpp);
6953 mp->mnt_rootvnode = *vpp;
6954 } else {
6955 if (mp->mnt_rootvnode != *vpp) {
6956 if (!VN_IS_DOOMED(mp->mnt_rootvnode)) {
6957 panic("%s: mismatch between vnode returned "
6958 " by VFS_CACHEDROOT and the one cached "
6959 " (%p != %p)",
6960 __func__, *vpp, mp->mnt_rootvnode);
6961 }
6962 }
6963 }
6964 MNT_IUNLOCK(mp);
6965 }
6966 return (0);
6967 }
6968
6969 int
vfs_cache_root(struct mount * mp,int flags,struct vnode ** vpp)6970 vfs_cache_root(struct mount *mp, int flags, struct vnode **vpp)
6971 {
6972 struct mount_pcpu *mpcpu;
6973 struct vnode *vp;
6974 int error;
6975
6976 if (!vfs_op_thread_enter(mp, mpcpu))
6977 return (vfs_cache_root_fallback(mp, flags, vpp));
6978 vp = atomic_load_ptr(&mp->mnt_rootvnode);
6979 if (vp == NULL || VN_IS_DOOMED(vp)) {
6980 vfs_op_thread_exit(mp, mpcpu);
6981 return (vfs_cache_root_fallback(mp, flags, vpp));
6982 }
6983 vrefact(vp);
6984 vfs_op_thread_exit(mp, mpcpu);
6985 error = vn_lock(vp, flags);
6986 if (error != 0) {
6987 vrele(vp);
6988 return (vfs_cache_root_fallback(mp, flags, vpp));
6989 }
6990 *vpp = vp;
6991 return (0);
6992 }
6993
6994 struct vnode *
vfs_cache_root_clear(struct mount * mp)6995 vfs_cache_root_clear(struct mount *mp)
6996 {
6997 struct vnode *vp;
6998
6999 /*
7000 * ops > 0 guarantees there is nobody who can see this vnode
7001 */
7002 MPASS(mp->mnt_vfs_ops > 0);
7003 vp = mp->mnt_rootvnode;
7004 if (vp != NULL)
7005 vn_seqc_write_begin(vp);
7006 mp->mnt_rootvnode = NULL;
7007 return (vp);
7008 }
7009
7010 void
vfs_cache_root_set(struct mount * mp,struct vnode * vp)7011 vfs_cache_root_set(struct mount *mp, struct vnode *vp)
7012 {
7013
7014 MPASS(mp->mnt_vfs_ops > 0);
7015 vrefact(vp);
7016 mp->mnt_rootvnode = vp;
7017 }
7018
7019 /*
7020 * These are helper functions for filesystems to traverse all
7021 * their vnodes. See MNT_VNODE_FOREACH_ALL() in sys/mount.h.
7022 *
7023 * This interface replaces MNT_VNODE_FOREACH.
7024 */
7025
7026 struct vnode *
__mnt_vnode_next_all(struct vnode ** mvp,struct mount * mp)7027 __mnt_vnode_next_all(struct vnode **mvp, struct mount *mp)
7028 {
7029 struct vnode *vp;
7030
7031 maybe_yield();
7032 MNT_ILOCK(mp);
7033 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7034 for (vp = TAILQ_NEXT(*mvp, v_nmntvnodes); vp != NULL;
7035 vp = TAILQ_NEXT(vp, v_nmntvnodes)) {
7036 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7037 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7038 continue;
7039 VI_LOCK(vp);
7040 if (VN_IS_DOOMED(vp)) {
7041 VI_UNLOCK(vp);
7042 continue;
7043 }
7044 break;
7045 }
7046 if (vp == NULL) {
7047 __mnt_vnode_markerfree_all(mvp, mp);
7048 /* MNT_IUNLOCK(mp); -- done in above function */
7049 mtx_assert(MNT_MTX(mp), MA_NOTOWNED);
7050 return (NULL);
7051 }
7052 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7053 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7054 MNT_IUNLOCK(mp);
7055 return (vp);
7056 }
7057
7058 struct vnode *
__mnt_vnode_first_all(struct vnode ** mvp,struct mount * mp)7059 __mnt_vnode_first_all(struct vnode **mvp, struct mount *mp)
7060 {
7061 struct vnode *vp;
7062
7063 *mvp = vn_alloc_marker(mp);
7064 MNT_ILOCK(mp);
7065 MNT_REF(mp);
7066
7067 TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
7068 /* Allow a racy peek at VIRF_DOOMED to save a lock acquisition. */
7069 if (vp->v_type == VMARKER || VN_IS_DOOMED(vp))
7070 continue;
7071 VI_LOCK(vp);
7072 if (VN_IS_DOOMED(vp)) {
7073 VI_UNLOCK(vp);
7074 continue;
7075 }
7076 break;
7077 }
7078 if (vp == NULL) {
7079 MNT_REL(mp);
7080 MNT_IUNLOCK(mp);
7081 vn_free_marker(*mvp);
7082 *mvp = NULL;
7083 return (NULL);
7084 }
7085 TAILQ_INSERT_AFTER(&mp->mnt_nvnodelist, vp, *mvp, v_nmntvnodes);
7086 MNT_IUNLOCK(mp);
7087 return (vp);
7088 }
7089
7090 void
__mnt_vnode_markerfree_all(struct vnode ** mvp,struct mount * mp)7091 __mnt_vnode_markerfree_all(struct vnode **mvp, struct mount *mp)
7092 {
7093
7094 if (*mvp == NULL) {
7095 MNT_IUNLOCK(mp);
7096 return;
7097 }
7098
7099 mtx_assert(MNT_MTX(mp), MA_OWNED);
7100
7101 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7102 TAILQ_REMOVE(&mp->mnt_nvnodelist, *mvp, v_nmntvnodes);
7103 MNT_REL(mp);
7104 MNT_IUNLOCK(mp);
7105 vn_free_marker(*mvp);
7106 *mvp = NULL;
7107 }
7108
7109 /*
7110 * These are helper functions for filesystems to traverse their
7111 * lazy vnodes. See MNT_VNODE_FOREACH_LAZY() in sys/mount.h
7112 */
7113 static void
mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7114 mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7115 {
7116
7117 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7118
7119 MNT_ILOCK(mp);
7120 MNT_REL(mp);
7121 MNT_IUNLOCK(mp);
7122 vn_free_marker(*mvp);
7123 *mvp = NULL;
7124 }
7125
7126 /*
7127 * Relock the mp mount vnode list lock with the vp vnode interlock in the
7128 * conventional lock order during mnt_vnode_next_lazy iteration.
7129 *
7130 * On entry, the mount vnode list lock is held and the vnode interlock is not.
7131 * The list lock is dropped and reacquired. On success, both locks are held.
7132 * On failure, the mount vnode list lock is held but the vnode interlock is
7133 * not, and the procedure may have yielded.
7134 */
7135 static bool
mnt_vnode_next_lazy_relock(struct vnode * mvp,struct mount * mp,struct vnode * vp)7136 mnt_vnode_next_lazy_relock(struct vnode *mvp, struct mount *mp,
7137 struct vnode *vp)
7138 {
7139
7140 VNASSERT(mvp->v_mount == mp && mvp->v_type == VMARKER &&
7141 TAILQ_NEXT(mvp, v_lazylist) != NULL, mvp,
7142 ("%s: bad marker", __func__));
7143 VNASSERT(vp->v_mount == mp && vp->v_type != VMARKER, vp,
7144 ("%s: inappropriate vnode", __func__));
7145 ASSERT_VI_UNLOCKED(vp, __func__);
7146 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7147
7148 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, mvp, v_lazylist);
7149 TAILQ_INSERT_BEFORE(vp, mvp, v_lazylist);
7150
7151 /*
7152 * Note we may be racing against vdrop which transitioned the hold
7153 * count to 0 and now waits for the ->mnt_listmtx lock. This is fine,
7154 * if we are the only user after we get the interlock we will just
7155 * vdrop.
7156 */
7157 vhold(vp);
7158 mtx_unlock(&mp->mnt_listmtx);
7159 VI_LOCK(vp);
7160 if (VN_IS_DOOMED(vp)) {
7161 VNPASS((vp->v_mflag & VMP_LAZYLIST) == 0, vp);
7162 goto out_lost;
7163 }
7164 VNPASS(vp->v_mflag & VMP_LAZYLIST, vp);
7165 /*
7166 * There is nothing to do if we are the last user.
7167 */
7168 if (!refcount_release_if_not_last(&vp->v_holdcnt))
7169 goto out_lost;
7170 mtx_lock(&mp->mnt_listmtx);
7171 return (true);
7172 out_lost:
7173 vdropl(vp);
7174 maybe_yield();
7175 mtx_lock(&mp->mnt_listmtx);
7176 return (false);
7177 }
7178
7179 static struct vnode *
mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7180 mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7181 void *cbarg)
7182 {
7183 struct vnode *vp;
7184
7185 mtx_assert(&mp->mnt_listmtx, MA_OWNED);
7186 KASSERT((*mvp)->v_mount == mp, ("marker vnode mount list mismatch"));
7187 restart:
7188 vp = TAILQ_NEXT(*mvp, v_lazylist);
7189 while (vp != NULL) {
7190 if (vp->v_type == VMARKER) {
7191 vp = TAILQ_NEXT(vp, v_lazylist);
7192 continue;
7193 }
7194 /*
7195 * See if we want to process the vnode. Note we may encounter a
7196 * long string of vnodes we don't care about and hog the list
7197 * as a result. Check for it and requeue the marker.
7198 */
7199 VNPASS(!VN_IS_DOOMED(vp), vp);
7200 if (!cb(vp, cbarg)) {
7201 if (!should_yield()) {
7202 vp = TAILQ_NEXT(vp, v_lazylist);
7203 continue;
7204 }
7205 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp,
7206 v_lazylist);
7207 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp,
7208 v_lazylist);
7209 mtx_unlock(&mp->mnt_listmtx);
7210 kern_yield(PRI_USER);
7211 mtx_lock(&mp->mnt_listmtx);
7212 goto restart;
7213 }
7214 /*
7215 * Try-lock because this is the wrong lock order.
7216 */
7217 if (!VI_TRYLOCK(vp) &&
7218 !mnt_vnode_next_lazy_relock(*mvp, mp, vp))
7219 goto restart;
7220 KASSERT(vp->v_type != VMARKER, ("locked marker %p", vp));
7221 KASSERT(vp->v_mount == mp || vp->v_mount == NULL,
7222 ("alien vnode on the lazy list %p %p", vp, mp));
7223 VNPASS(vp->v_mount == mp, vp);
7224 VNPASS(!VN_IS_DOOMED(vp), vp);
7225 break;
7226 }
7227 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7228
7229 /* Check if we are done */
7230 if (vp == NULL) {
7231 mtx_unlock(&mp->mnt_listmtx);
7232 mnt_vnode_markerfree_lazy(mvp, mp);
7233 return (NULL);
7234 }
7235 TAILQ_INSERT_AFTER(&mp->mnt_lazyvnodelist, vp, *mvp, v_lazylist);
7236 mtx_unlock(&mp->mnt_listmtx);
7237 ASSERT_VI_LOCKED(vp, "lazy iter");
7238 return (vp);
7239 }
7240
7241 struct vnode *
__mnt_vnode_next_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7242 __mnt_vnode_next_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7243 void *cbarg)
7244 {
7245
7246 maybe_yield();
7247 mtx_lock(&mp->mnt_listmtx);
7248 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7249 }
7250
7251 struct vnode *
__mnt_vnode_first_lazy(struct vnode ** mvp,struct mount * mp,mnt_lazy_cb_t * cb,void * cbarg)7252 __mnt_vnode_first_lazy(struct vnode **mvp, struct mount *mp, mnt_lazy_cb_t *cb,
7253 void *cbarg)
7254 {
7255 struct vnode *vp;
7256
7257 if (TAILQ_EMPTY(&mp->mnt_lazyvnodelist))
7258 return (NULL);
7259
7260 *mvp = vn_alloc_marker(mp);
7261 MNT_ILOCK(mp);
7262 MNT_REF(mp);
7263 MNT_IUNLOCK(mp);
7264
7265 mtx_lock(&mp->mnt_listmtx);
7266 vp = TAILQ_FIRST(&mp->mnt_lazyvnodelist);
7267 if (vp == NULL) {
7268 mtx_unlock(&mp->mnt_listmtx);
7269 mnt_vnode_markerfree_lazy(mvp, mp);
7270 return (NULL);
7271 }
7272 TAILQ_INSERT_BEFORE(vp, *mvp, v_lazylist);
7273 return (mnt_vnode_next_lazy(mvp, mp, cb, cbarg));
7274 }
7275
7276 void
__mnt_vnode_markerfree_lazy(struct vnode ** mvp,struct mount * mp)7277 __mnt_vnode_markerfree_lazy(struct vnode **mvp, struct mount *mp)
7278 {
7279
7280 if (*mvp == NULL)
7281 return;
7282
7283 mtx_lock(&mp->mnt_listmtx);
7284 TAILQ_REMOVE(&mp->mnt_lazyvnodelist, *mvp, v_lazylist);
7285 mtx_unlock(&mp->mnt_listmtx);
7286 mnt_vnode_markerfree_lazy(mvp, mp);
7287 }
7288
7289 int
vn_dir_check_exec(struct vnode * vp,struct componentname * cnp)7290 vn_dir_check_exec(struct vnode *vp, struct componentname *cnp)
7291 {
7292
7293 if ((cnp->cn_flags & NOEXECCHECK) != 0) {
7294 cnp->cn_flags &= ~NOEXECCHECK;
7295 return (0);
7296 }
7297
7298 return (VOP_ACCESS(vp, VEXEC, cnp->cn_cred, curthread));
7299 }
7300
7301 /*
7302 * Do not use this variant unless you have means other than the hold count
7303 * to prevent the vnode from getting freed.
7304 */
7305 void
vn_seqc_write_begin_locked(struct vnode * vp)7306 vn_seqc_write_begin_locked(struct vnode *vp)
7307 {
7308
7309 ASSERT_VI_LOCKED(vp, __func__);
7310 VNPASS(vp->v_holdcnt > 0, vp);
7311 VNPASS(vp->v_seqc_users >= 0, vp);
7312 vp->v_seqc_users++;
7313 if (vp->v_seqc_users == 1)
7314 seqc_sleepable_write_begin(&vp->v_seqc);
7315 }
7316
7317 void
vn_seqc_write_begin(struct vnode * vp)7318 vn_seqc_write_begin(struct vnode *vp)
7319 {
7320
7321 VI_LOCK(vp);
7322 vn_seqc_write_begin_locked(vp);
7323 VI_UNLOCK(vp);
7324 }
7325
7326 void
vn_seqc_write_end_locked(struct vnode * vp)7327 vn_seqc_write_end_locked(struct vnode *vp)
7328 {
7329
7330 ASSERT_VI_LOCKED(vp, __func__);
7331 VNPASS(vp->v_seqc_users > 0, vp);
7332 vp->v_seqc_users--;
7333 if (vp->v_seqc_users == 0)
7334 seqc_sleepable_write_end(&vp->v_seqc);
7335 }
7336
7337 void
vn_seqc_write_end(struct vnode * vp)7338 vn_seqc_write_end(struct vnode *vp)
7339 {
7340
7341 VI_LOCK(vp);
7342 vn_seqc_write_end_locked(vp);
7343 VI_UNLOCK(vp);
7344 }
7345
7346 /*
7347 * Special case handling for allocating and freeing vnodes.
7348 *
7349 * The counter remains unchanged on free so that a doomed vnode will
7350 * keep testing as in modify as long as it is accessible with SMR.
7351 */
7352 static void
vn_seqc_init(struct vnode * vp)7353 vn_seqc_init(struct vnode *vp)
7354 {
7355
7356 vp->v_seqc = 0;
7357 vp->v_seqc_users = 0;
7358 }
7359
7360 static void
vn_seqc_write_end_free(struct vnode * vp)7361 vn_seqc_write_end_free(struct vnode *vp)
7362 {
7363
7364 VNPASS(seqc_in_modify(vp->v_seqc), vp);
7365 VNPASS(vp->v_seqc_users == 1, vp);
7366 }
7367
7368 void
vn_irflag_set_locked(struct vnode * vp,short toset)7369 vn_irflag_set_locked(struct vnode *vp, short toset)
7370 {
7371 short flags;
7372
7373 ASSERT_VI_LOCKED(vp, __func__);
7374 flags = vn_irflag_read(vp);
7375 VNASSERT((flags & toset) == 0, vp,
7376 ("%s: some of the passed flags already set (have %d, passed %d)\n",
7377 __func__, flags, toset));
7378 atomic_store_short(&vp->v_irflag, flags | toset);
7379 }
7380
7381 void
vn_irflag_set(struct vnode * vp,short toset)7382 vn_irflag_set(struct vnode *vp, short toset)
7383 {
7384
7385 VI_LOCK(vp);
7386 vn_irflag_set_locked(vp, toset);
7387 VI_UNLOCK(vp);
7388 }
7389
7390 void
vn_irflag_set_cond_locked(struct vnode * vp,short toset)7391 vn_irflag_set_cond_locked(struct vnode *vp, short toset)
7392 {
7393 short flags;
7394
7395 ASSERT_VI_LOCKED(vp, __func__);
7396 flags = vn_irflag_read(vp);
7397 atomic_store_short(&vp->v_irflag, flags | toset);
7398 }
7399
7400 void
vn_irflag_set_cond(struct vnode * vp,short toset)7401 vn_irflag_set_cond(struct vnode *vp, short toset)
7402 {
7403
7404 VI_LOCK(vp);
7405 vn_irflag_set_cond_locked(vp, toset);
7406 VI_UNLOCK(vp);
7407 }
7408
7409 void
vn_irflag_unset_locked(struct vnode * vp,short tounset)7410 vn_irflag_unset_locked(struct vnode *vp, short tounset)
7411 {
7412 short flags;
7413
7414 ASSERT_VI_LOCKED(vp, __func__);
7415 flags = vn_irflag_read(vp);
7416 VNASSERT((flags & tounset) == tounset, vp,
7417 ("%s: some of the passed flags not set (have %d, passed %d)\n",
7418 __func__, flags, tounset));
7419 atomic_store_short(&vp->v_irflag, flags & ~tounset);
7420 }
7421
7422 void
vn_irflag_unset(struct vnode * vp,short tounset)7423 vn_irflag_unset(struct vnode *vp, short tounset)
7424 {
7425
7426 VI_LOCK(vp);
7427 vn_irflag_unset_locked(vp, tounset);
7428 VI_UNLOCK(vp);
7429 }
7430
7431 int
vn_getsize_locked(struct vnode * vp,off_t * size,struct ucred * cred)7432 vn_getsize_locked(struct vnode *vp, off_t *size, struct ucred *cred)
7433 {
7434 struct vattr vattr;
7435 int error;
7436
7437 ASSERT_VOP_LOCKED(vp, __func__);
7438 error = VOP_GETATTR(vp, &vattr, cred);
7439 if (__predict_true(error == 0)) {
7440 if (vattr.va_size <= OFF_MAX)
7441 *size = vattr.va_size;
7442 else
7443 error = EFBIG;
7444 }
7445 return (error);
7446 }
7447
7448 int
vn_getsize(struct vnode * vp,off_t * size,struct ucred * cred)7449 vn_getsize(struct vnode *vp, off_t *size, struct ucred *cred)
7450 {
7451 int error;
7452
7453 VOP_LOCK(vp, LK_SHARED);
7454 error = vn_getsize_locked(vp, size, cred);
7455 VOP_UNLOCK(vp);
7456 return (error);
7457 }
7458
7459 #ifdef INVARIANTS
7460 void
vn_set_state_validate(struct vnode * vp,__enum_uint8 (vstate)state)7461 vn_set_state_validate(struct vnode *vp, __enum_uint8(vstate) state)
7462 {
7463
7464 switch (vp->v_state) {
7465 case VSTATE_UNINITIALIZED:
7466 switch (state) {
7467 case VSTATE_CONSTRUCTED:
7468 case VSTATE_DESTROYING:
7469 return;
7470 default:
7471 break;
7472 }
7473 break;
7474 case VSTATE_CONSTRUCTED:
7475 ASSERT_VOP_ELOCKED(vp, __func__);
7476 switch (state) {
7477 case VSTATE_DESTROYING:
7478 return;
7479 default:
7480 break;
7481 }
7482 break;
7483 case VSTATE_DESTROYING:
7484 ASSERT_VOP_ELOCKED(vp, __func__);
7485 switch (state) {
7486 case VSTATE_DEAD:
7487 return;
7488 default:
7489 break;
7490 }
7491 break;
7492 case VSTATE_DEAD:
7493 switch (state) {
7494 case VSTATE_UNINITIALIZED:
7495 return;
7496 default:
7497 break;
7498 }
7499 break;
7500 }
7501
7502 vn_printf(vp, "invalid state transition %d -> %d\n", vp->v_state, state);
7503 panic("invalid state transition %d -> %d\n", vp->v_state, state);
7504 }
7505 #endif
7506