1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARM CoreSight Architecture PMU driver.
4 *
5 * This driver adds support for uncore PMU based on ARM CoreSight Performance
6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7 * like other uncore PMUs, it does not support process specific events and
8 * cannot be used in sampling mode.
9 *
10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11 * generic implementation to operate the PMU according to CoreSight PMU
12 * architecture and ACPI ARM PMU table (APMT) documents below:
13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14 * - APMT document number: ARM DEN0117.
15 *
16 * The user should refer to the vendor technical documentation to get details
17 * about the supported events.
18 *
19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20 *
21 */
22
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/of.h>
31 #include <linux/perf_event.h>
32 #include <linux/platform_device.h>
33
34 #include "arm_cspmu.h"
35
36 #define PMUNAME "arm_cspmu"
37 #define DRVNAME "arm-cs-arch-pmu"
38
39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \
40 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \
41 (unsigned long)_config)
42
43 /*
44 * CoreSight PMU Arch register offsets.
45 */
46 #define PMEVCNTR_LO 0x0
47 #define PMEVCNTR_HI 0x4
48 #define PMEVTYPER 0x400
49 #define PMCCFILTR 0x47C
50 #define PMEVFILTR 0xA00
51 #define PMCNTENSET 0xC00
52 #define PMCNTENCLR 0xC20
53 #define PMINTENSET 0xC40
54 #define PMINTENCLR 0xC60
55 #define PMOVSCLR 0xC80
56 #define PMOVSSET 0xCC0
57 #define PMCFGR 0xE00
58 #define PMCR 0xE04
59 #define PMIIDR 0xE08
60
61 /* PMCFGR register field */
62 #define PMCFGR_NCG GENMASK(31, 28)
63 #define PMCFGR_HDBG BIT(24)
64 #define PMCFGR_TRO BIT(23)
65 #define PMCFGR_SS BIT(22)
66 #define PMCFGR_FZO BIT(21)
67 #define PMCFGR_MSI BIT(20)
68 #define PMCFGR_UEN BIT(19)
69 #define PMCFGR_NA BIT(17)
70 #define PMCFGR_EX BIT(16)
71 #define PMCFGR_CCD BIT(15)
72 #define PMCFGR_CC BIT(14)
73 #define PMCFGR_SIZE GENMASK(13, 8)
74 #define PMCFGR_N GENMASK(7, 0)
75
76 /* PMCR register field */
77 #define PMCR_TRO BIT(11)
78 #define PMCR_HDBG BIT(10)
79 #define PMCR_FZO BIT(9)
80 #define PMCR_NA BIT(8)
81 #define PMCR_DP BIT(5)
82 #define PMCR_X BIT(4)
83 #define PMCR_D BIT(3)
84 #define PMCR_C BIT(2)
85 #define PMCR_P BIT(1)
86 #define PMCR_E BIT(0)
87
88 /* Each SET/CLR register supports up to 32 counters. */
89 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5
90 #define ARM_CSPMU_SET_CLR_COUNTER_NUM \
91 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
92
93 /* Convert counter idx into SET/CLR register number. */
94 #define COUNTER_TO_SET_CLR_ID(idx) \
95 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
96
97 /* Convert counter idx into SET/CLR register bit. */
98 #define COUNTER_TO_SET_CLR_BIT(idx) \
99 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
100
101 #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0
102 #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1
103
104 /*
105 * Maximum poll count for reading counter value using high-low-high sequence.
106 */
107 #define HILOHI_MAX_POLL 1000
108
109 static unsigned long arm_cspmu_cpuhp_state;
110
111 static DEFINE_MUTEX(arm_cspmu_lock);
112
113 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
114 struct hw_perf_event *hwc, u32 filter);
115
arm_cspmu_apmt_node(struct device * dev)116 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
117 {
118 struct acpi_apmt_node **ptr = dev_get_platdata(dev);
119
120 return ptr ? *ptr : NULL;
121 }
122
123 /*
124 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
125 * counter register. The counter register can be implemented as 32-bit or 64-bit
126 * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
127 * single-copy 64-bit atomic support is implementation defined. APMT node flag
128 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
129 * single copy atomic is not supported, the driver treats the register as a pair
130 * of 32-bit register.
131 */
132
133 /*
134 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
135 */
read_reg64_hilohi(const void __iomem * addr,u32 max_poll_count)136 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
137 {
138 u32 val_lo, val_hi;
139 u64 val;
140
141 /* Use high-low-high sequence to avoid tearing */
142 do {
143 if (max_poll_count-- == 0) {
144 pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
145 return 0;
146 }
147
148 val_hi = readl(addr + 4);
149 val_lo = readl(addr);
150 } while (val_hi != readl(addr + 4));
151
152 val = (((u64)val_hi << 32) | val_lo);
153
154 return val;
155 }
156
157 /* Check if cycle counter is supported. */
supports_cycle_counter(const struct arm_cspmu * cspmu)158 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
159 {
160 return (cspmu->pmcfgr & PMCFGR_CC);
161 }
162
163 /* Get counter size, which is (PMCFGR_SIZE + 1). */
counter_size(const struct arm_cspmu * cspmu)164 static inline u32 counter_size(const struct arm_cspmu *cspmu)
165 {
166 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
167 }
168
169 /* Get counter mask. */
counter_mask(const struct arm_cspmu * cspmu)170 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
171 {
172 return GENMASK_ULL(counter_size(cspmu) - 1, 0);
173 }
174
175 /* Check if counter is implemented as 64-bit register. */
use_64b_counter_reg(const struct arm_cspmu * cspmu)176 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
177 {
178 return (counter_size(cspmu) > 32);
179 }
180
arm_cspmu_sysfs_event_show(struct device * dev,struct device_attribute * attr,char * buf)181 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
182 struct device_attribute *attr, char *buf)
183 {
184 struct perf_pmu_events_attr *pmu_attr;
185
186 pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
187 return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
188 }
189 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
190
191 /* Default event list. */
192 static struct attribute *arm_cspmu_event_attrs[] = {
193 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
194 NULL,
195 };
196
197 static struct attribute **
arm_cspmu_get_event_attrs(const struct arm_cspmu * cspmu)198 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
199 {
200 struct attribute **attrs;
201
202 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
203 sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
204
205 return attrs;
206 }
207
208 static umode_t
arm_cspmu_event_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)209 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
210 struct attribute *attr, int unused)
211 {
212 struct device *dev = kobj_to_dev(kobj);
213 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
214 struct perf_pmu_events_attr *eattr;
215
216 eattr = container_of(attr, typeof(*eattr), attr.attr);
217
218 /* Hide cycle event if not supported */
219 if (!supports_cycle_counter(cspmu) &&
220 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
221 return 0;
222
223 return attr->mode;
224 }
225
226 static struct attribute *arm_cspmu_format_attrs[] = {
227 ARM_CSPMU_FORMAT_EVENT_ATTR,
228 ARM_CSPMU_FORMAT_FILTER_ATTR,
229 NULL,
230 };
231
232 static struct attribute **
arm_cspmu_get_format_attrs(const struct arm_cspmu * cspmu)233 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
234 {
235 struct attribute **attrs;
236
237 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
238 sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
239
240 return attrs;
241 }
242
arm_cspmu_event_type(const struct perf_event * event)243 static u32 arm_cspmu_event_type(const struct perf_event *event)
244 {
245 return event->attr.config & ARM_CSPMU_EVENT_MASK;
246 }
247
arm_cspmu_is_cycle_counter_event(const struct perf_event * event)248 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
249 {
250 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
251 }
252
arm_cspmu_event_filter(const struct perf_event * event)253 static u32 arm_cspmu_event_filter(const struct perf_event *event)
254 {
255 return event->attr.config1 & ARM_CSPMU_FILTER_MASK;
256 }
257
arm_cspmu_identifier_show(struct device * dev,struct device_attribute * attr,char * page)258 static ssize_t arm_cspmu_identifier_show(struct device *dev,
259 struct device_attribute *attr,
260 char *page)
261 {
262 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
263
264 return sysfs_emit(page, "%s\n", cspmu->identifier);
265 }
266
267 static struct device_attribute arm_cspmu_identifier_attr =
268 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
269
270 static struct attribute *arm_cspmu_identifier_attrs[] = {
271 &arm_cspmu_identifier_attr.attr,
272 NULL,
273 };
274
275 static struct attribute_group arm_cspmu_identifier_attr_group = {
276 .attrs = arm_cspmu_identifier_attrs,
277 };
278
arm_cspmu_get_identifier(const struct arm_cspmu * cspmu)279 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
280 {
281 const char *identifier =
282 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
283 cspmu->impl.pmiidr);
284 return identifier;
285 }
286
287 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
288 "mc",
289 "smmu",
290 "pcie",
291 "acpi",
292 "cache",
293 };
294
arm_cspmu_get_name(const struct arm_cspmu * cspmu)295 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
296 {
297 struct device *dev;
298 struct acpi_apmt_node *apmt_node;
299 u8 pmu_type;
300 char *name;
301 char acpi_hid_string[ACPI_ID_LEN] = { 0 };
302 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
303
304 dev = cspmu->dev;
305 apmt_node = arm_cspmu_apmt_node(dev);
306 if (!apmt_node)
307 return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
308 atomic_fetch_inc(&pmu_idx[0]));
309
310 pmu_type = apmt_node->type;
311
312 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
313 dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
314 return NULL;
315 }
316
317 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
318 memcpy(acpi_hid_string,
319 &apmt_node->inst_primary,
320 sizeof(apmt_node->inst_primary));
321 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
322 arm_cspmu_type_str[pmu_type],
323 acpi_hid_string,
324 apmt_node->inst_secondary);
325 } else {
326 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
327 arm_cspmu_type_str[pmu_type],
328 atomic_fetch_inc(&pmu_idx[pmu_type]));
329 }
330
331 return name;
332 }
333
arm_cspmu_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)334 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
335 struct device_attribute *attr,
336 char *buf)
337 {
338 struct pmu *pmu = dev_get_drvdata(dev);
339 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
340 struct dev_ext_attribute *eattr =
341 container_of(attr, struct dev_ext_attribute, attr);
342 unsigned long mask_id = (unsigned long)eattr->var;
343 const cpumask_t *cpumask;
344
345 switch (mask_id) {
346 case ARM_CSPMU_ACTIVE_CPU_MASK:
347 cpumask = &cspmu->active_cpu;
348 break;
349 case ARM_CSPMU_ASSOCIATED_CPU_MASK:
350 cpumask = &cspmu->associated_cpus;
351 break;
352 default:
353 return 0;
354 }
355 return cpumap_print_to_pagebuf(true, buf, cpumask);
356 }
357
358 static struct attribute *arm_cspmu_cpumask_attrs[] = {
359 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
360 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
361 NULL,
362 };
363
364 static struct attribute_group arm_cspmu_cpumask_attr_group = {
365 .attrs = arm_cspmu_cpumask_attrs,
366 };
367
368 static struct arm_cspmu_impl_match impl_match[] = {
369 {
370 .module_name = "nvidia_cspmu",
371 .pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA,
372 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
373 .module = NULL,
374 .impl_init_ops = NULL,
375 },
376 {
377 .module_name = "ampere_cspmu",
378 .pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE,
379 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
380 .module = NULL,
381 .impl_init_ops = NULL,
382 },
383
384 {0}
385 };
386
arm_cspmu_impl_match_get(u32 pmiidr)387 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
388 {
389 struct arm_cspmu_impl_match *match = impl_match;
390
391 for (; match->pmiidr_val; match++) {
392 u32 mask = match->pmiidr_mask;
393
394 if ((match->pmiidr_val & mask) == (pmiidr & mask))
395 return match;
396 }
397
398 return NULL;
399 }
400
401 #define DEFAULT_IMPL_OP(name) .name = arm_cspmu_##name
402
arm_cspmu_init_impl_ops(struct arm_cspmu * cspmu)403 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
404 {
405 int ret = 0;
406 struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
407 struct arm_cspmu_impl_match *match;
408
409 /* Start with a default PMU implementation */
410 cspmu->impl.module = THIS_MODULE;
411 cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
412 cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
413 DEFAULT_IMPL_OP(get_event_attrs),
414 DEFAULT_IMPL_OP(get_format_attrs),
415 DEFAULT_IMPL_OP(get_identifier),
416 DEFAULT_IMPL_OP(get_name),
417 DEFAULT_IMPL_OP(is_cycle_counter_event),
418 DEFAULT_IMPL_OP(event_type),
419 DEFAULT_IMPL_OP(event_filter),
420 DEFAULT_IMPL_OP(set_ev_filter),
421 DEFAULT_IMPL_OP(event_attr_is_visible),
422 };
423
424 /* Firmware may override implementer/product ID from PMIIDR */
425 if (apmt_node && apmt_node->impl_id)
426 cspmu->impl.pmiidr = apmt_node->impl_id;
427
428 /* Find implementer specific attribute ops. */
429 match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
430
431 /* Load implementer module and initialize the callbacks. */
432 if (match) {
433 mutex_lock(&arm_cspmu_lock);
434
435 if (match->impl_init_ops) {
436 /* Prevent unload until PMU registration is done. */
437 if (try_module_get(match->module)) {
438 cspmu->impl.module = match->module;
439 cspmu->impl.match = match;
440 ret = match->impl_init_ops(cspmu);
441 if (ret)
442 module_put(match->module);
443 } else {
444 WARN(1, "arm_cspmu failed to get module: %s\n",
445 match->module_name);
446 ret = -EINVAL;
447 }
448 } else {
449 request_module_nowait(match->module_name);
450 ret = -EPROBE_DEFER;
451 }
452
453 mutex_unlock(&arm_cspmu_lock);
454 }
455
456 return ret;
457 }
458
459 static struct attribute_group *
arm_cspmu_alloc_event_attr_group(struct arm_cspmu * cspmu)460 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
461 {
462 struct attribute_group *event_group;
463 struct device *dev = cspmu->dev;
464 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
465
466 event_group =
467 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
468 if (!event_group)
469 return NULL;
470
471 event_group->name = "events";
472 event_group->is_visible = impl_ops->event_attr_is_visible;
473 event_group->attrs = impl_ops->get_event_attrs(cspmu);
474
475 if (!event_group->attrs)
476 return NULL;
477
478 return event_group;
479 }
480
481 static struct attribute_group *
arm_cspmu_alloc_format_attr_group(struct arm_cspmu * cspmu)482 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
483 {
484 struct attribute_group *format_group;
485 struct device *dev = cspmu->dev;
486
487 format_group =
488 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
489 if (!format_group)
490 return NULL;
491
492 format_group->name = "format";
493 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
494
495 if (!format_group->attrs)
496 return NULL;
497
498 return format_group;
499 }
500
arm_cspmu_alloc_attr_groups(struct arm_cspmu * cspmu)501 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
502 {
503 const struct attribute_group **attr_groups = cspmu->attr_groups;
504 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
505
506 cspmu->identifier = impl_ops->get_identifier(cspmu);
507 cspmu->name = impl_ops->get_name(cspmu);
508
509 if (!cspmu->identifier || !cspmu->name)
510 return -ENOMEM;
511
512 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
513 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
514 attr_groups[2] = &arm_cspmu_identifier_attr_group;
515 attr_groups[3] = &arm_cspmu_cpumask_attr_group;
516
517 if (!attr_groups[0] || !attr_groups[1])
518 return -ENOMEM;
519
520 return 0;
521 }
522
arm_cspmu_reset_counters(struct arm_cspmu * cspmu)523 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
524 {
525 writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
526 }
527
arm_cspmu_start_counters(struct arm_cspmu * cspmu)528 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
529 {
530 writel(PMCR_E, cspmu->base0 + PMCR);
531 }
532
arm_cspmu_stop_counters(struct arm_cspmu * cspmu)533 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
534 {
535 writel(0, cspmu->base0 + PMCR);
536 }
537
arm_cspmu_enable(struct pmu * pmu)538 static void arm_cspmu_enable(struct pmu *pmu)
539 {
540 bool disabled;
541 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
542
543 disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
544 cspmu->num_logical_ctrs);
545
546 if (disabled)
547 return;
548
549 arm_cspmu_start_counters(cspmu);
550 }
551
arm_cspmu_disable(struct pmu * pmu)552 static void arm_cspmu_disable(struct pmu *pmu)
553 {
554 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
555
556 arm_cspmu_stop_counters(cspmu);
557 }
558
arm_cspmu_get_event_idx(struct arm_cspmu_hw_events * hw_events,struct perf_event * event)559 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
560 struct perf_event *event)
561 {
562 int idx, ret;
563 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
564
565 if (supports_cycle_counter(cspmu)) {
566 if (cspmu->impl.ops.is_cycle_counter_event(event)) {
567 /* Search for available cycle counter. */
568 if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
569 hw_events->used_ctrs))
570 return -EAGAIN;
571
572 return cspmu->cycle_counter_logical_idx;
573 }
574
575 /*
576 * Search a regular counter from the used counter bitmap.
577 * The cycle counter divides the bitmap into two parts. Search
578 * the first then second half to exclude the cycle counter bit.
579 */
580 idx = find_first_zero_bit(hw_events->used_ctrs,
581 cspmu->cycle_counter_logical_idx);
582 if (idx >= cspmu->cycle_counter_logical_idx) {
583 idx = find_next_zero_bit(
584 hw_events->used_ctrs,
585 cspmu->num_logical_ctrs,
586 cspmu->cycle_counter_logical_idx + 1);
587 }
588 } else {
589 idx = find_first_zero_bit(hw_events->used_ctrs,
590 cspmu->num_logical_ctrs);
591 }
592
593 if (idx >= cspmu->num_logical_ctrs)
594 return -EAGAIN;
595
596 if (cspmu->impl.ops.validate_event) {
597 ret = cspmu->impl.ops.validate_event(cspmu, event);
598 if (ret)
599 return ret;
600 }
601
602 set_bit(idx, hw_events->used_ctrs);
603
604 return idx;
605 }
606
arm_cspmu_validate_event(struct pmu * pmu,struct arm_cspmu_hw_events * hw_events,struct perf_event * event)607 static bool arm_cspmu_validate_event(struct pmu *pmu,
608 struct arm_cspmu_hw_events *hw_events,
609 struct perf_event *event)
610 {
611 if (is_software_event(event))
612 return true;
613
614 /* Reject groups spanning multiple HW PMUs. */
615 if (event->pmu != pmu)
616 return false;
617
618 return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
619 }
620
621 /*
622 * Make sure the group of events can be scheduled at once
623 * on the PMU.
624 */
arm_cspmu_validate_group(struct perf_event * event)625 static bool arm_cspmu_validate_group(struct perf_event *event)
626 {
627 struct perf_event *sibling, *leader = event->group_leader;
628 struct arm_cspmu_hw_events fake_hw_events;
629
630 if (event->group_leader == event)
631 return true;
632
633 memset(&fake_hw_events, 0, sizeof(fake_hw_events));
634
635 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
636 return false;
637
638 for_each_sibling_event(sibling, leader) {
639 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
640 sibling))
641 return false;
642 }
643
644 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
645 }
646
arm_cspmu_event_init(struct perf_event * event)647 static int arm_cspmu_event_init(struct perf_event *event)
648 {
649 struct arm_cspmu *cspmu;
650 struct hw_perf_event *hwc = &event->hw;
651
652 cspmu = to_arm_cspmu(event->pmu);
653
654 if (event->attr.type != event->pmu->type)
655 return -ENOENT;
656
657 /*
658 * Following other "uncore" PMUs, we do not support sampling mode or
659 * attach to a task (per-process mode).
660 */
661 if (is_sampling_event(event)) {
662 dev_dbg(cspmu->pmu.dev,
663 "Can't support sampling events\n");
664 return -EOPNOTSUPP;
665 }
666
667 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
668 dev_dbg(cspmu->pmu.dev,
669 "Can't support per-task counters\n");
670 return -EINVAL;
671 }
672
673 /*
674 * Make sure the CPU assignment is on one of the CPUs associated with
675 * this PMU.
676 */
677 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
678 dev_dbg(cspmu->pmu.dev,
679 "Requested cpu is not associated with the PMU\n");
680 return -EINVAL;
681 }
682
683 /* Enforce the current active CPU to handle the events in this PMU. */
684 event->cpu = cpumask_first(&cspmu->active_cpu);
685 if (event->cpu >= nr_cpu_ids)
686 return -EINVAL;
687
688 if (!arm_cspmu_validate_group(event))
689 return -EINVAL;
690
691 /*
692 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
693 * The physical counter id is tracked with hw_perf_event.idx.
694 * We don't assign an index until we actually place the event onto
695 * hardware. Use -1 to signify that we haven't decided where to put it
696 * yet.
697 */
698 hwc->idx = -1;
699 hwc->extra_reg.idx = -1;
700 hwc->config = cspmu->impl.ops.event_type(event);
701
702 return 0;
703 }
704
counter_offset(u32 reg_sz,u32 ctr_idx)705 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
706 {
707 return (PMEVCNTR_LO + (reg_sz * ctr_idx));
708 }
709
arm_cspmu_write_counter(struct perf_event * event,u64 val)710 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
711 {
712 u32 offset;
713 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
714
715 if (use_64b_counter_reg(cspmu)) {
716 offset = counter_offset(sizeof(u64), event->hw.idx);
717
718 if (cspmu->has_atomic_dword)
719 writeq(val, cspmu->base1 + offset);
720 else
721 lo_hi_writeq(val, cspmu->base1 + offset);
722 } else {
723 offset = counter_offset(sizeof(u32), event->hw.idx);
724
725 writel(lower_32_bits(val), cspmu->base1 + offset);
726 }
727 }
728
arm_cspmu_read_counter(struct perf_event * event)729 static u64 arm_cspmu_read_counter(struct perf_event *event)
730 {
731 u32 offset;
732 const void __iomem *counter_addr;
733 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
734
735 if (use_64b_counter_reg(cspmu)) {
736 offset = counter_offset(sizeof(u64), event->hw.idx);
737 counter_addr = cspmu->base1 + offset;
738
739 return cspmu->has_atomic_dword ?
740 readq(counter_addr) :
741 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
742 }
743
744 offset = counter_offset(sizeof(u32), event->hw.idx);
745 return readl(cspmu->base1 + offset);
746 }
747
748 /*
749 * arm_cspmu_set_event_period: Set the period for the counter.
750 *
751 * To handle cases of extreme interrupt latency, we program
752 * the counter with half of the max count for the counters.
753 */
arm_cspmu_set_event_period(struct perf_event * event)754 static void arm_cspmu_set_event_period(struct perf_event *event)
755 {
756 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
757 u64 val = counter_mask(cspmu) >> 1ULL;
758
759 local64_set(&event->hw.prev_count, val);
760 arm_cspmu_write_counter(event, val);
761 }
762
arm_cspmu_enable_counter(struct arm_cspmu * cspmu,int idx)763 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
764 {
765 u32 reg_id, reg_bit, inten_off, cnten_off;
766
767 reg_id = COUNTER_TO_SET_CLR_ID(idx);
768 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
769
770 inten_off = PMINTENSET + (4 * reg_id);
771 cnten_off = PMCNTENSET + (4 * reg_id);
772
773 writel(BIT(reg_bit), cspmu->base0 + inten_off);
774 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
775 }
776
arm_cspmu_disable_counter(struct arm_cspmu * cspmu,int idx)777 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
778 {
779 u32 reg_id, reg_bit, inten_off, cnten_off;
780
781 reg_id = COUNTER_TO_SET_CLR_ID(idx);
782 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
783
784 inten_off = PMINTENCLR + (4 * reg_id);
785 cnten_off = PMCNTENCLR + (4 * reg_id);
786
787 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
788 writel(BIT(reg_bit), cspmu->base0 + inten_off);
789 }
790
arm_cspmu_event_update(struct perf_event * event)791 static void arm_cspmu_event_update(struct perf_event *event)
792 {
793 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
794 struct hw_perf_event *hwc = &event->hw;
795 u64 delta, prev, now;
796
797 do {
798 prev = local64_read(&hwc->prev_count);
799 now = arm_cspmu_read_counter(event);
800 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
801
802 delta = (now - prev) & counter_mask(cspmu);
803 local64_add(delta, &event->count);
804 }
805
arm_cspmu_set_event(struct arm_cspmu * cspmu,struct hw_perf_event * hwc)806 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
807 struct hw_perf_event *hwc)
808 {
809 u32 offset = PMEVTYPER + (4 * hwc->idx);
810
811 writel(hwc->config, cspmu->base0 + offset);
812 }
813
arm_cspmu_set_ev_filter(struct arm_cspmu * cspmu,struct hw_perf_event * hwc,u32 filter)814 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
815 struct hw_perf_event *hwc,
816 u32 filter)
817 {
818 u32 offset = PMEVFILTR + (4 * hwc->idx);
819
820 writel(filter, cspmu->base0 + offset);
821 }
822
arm_cspmu_set_cc_filter(struct arm_cspmu * cspmu,u32 filter)823 static inline void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu, u32 filter)
824 {
825 u32 offset = PMCCFILTR;
826
827 writel(filter, cspmu->base0 + offset);
828 }
829
arm_cspmu_start(struct perf_event * event,int pmu_flags)830 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
831 {
832 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
833 struct hw_perf_event *hwc = &event->hw;
834 u32 filter;
835
836 /* We always reprogram the counter */
837 if (pmu_flags & PERF_EF_RELOAD)
838 WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
839
840 arm_cspmu_set_event_period(event);
841
842 filter = cspmu->impl.ops.event_filter(event);
843
844 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
845 arm_cspmu_set_cc_filter(cspmu, filter);
846 } else {
847 arm_cspmu_set_event(cspmu, hwc);
848 cspmu->impl.ops.set_ev_filter(cspmu, hwc, filter);
849 }
850
851 hwc->state = 0;
852
853 arm_cspmu_enable_counter(cspmu, hwc->idx);
854 }
855
arm_cspmu_stop(struct perf_event * event,int pmu_flags)856 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
857 {
858 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
859 struct hw_perf_event *hwc = &event->hw;
860
861 if (hwc->state & PERF_HES_STOPPED)
862 return;
863
864 arm_cspmu_disable_counter(cspmu, hwc->idx);
865 arm_cspmu_event_update(event);
866
867 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
868 }
869
to_phys_idx(struct arm_cspmu * cspmu,u32 idx)870 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
871 {
872 return (idx == cspmu->cycle_counter_logical_idx) ?
873 ARM_CSPMU_CYCLE_CNTR_IDX : idx;
874 }
875
arm_cspmu_add(struct perf_event * event,int flags)876 static int arm_cspmu_add(struct perf_event *event, int flags)
877 {
878 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
879 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
880 struct hw_perf_event *hwc = &event->hw;
881 int idx;
882
883 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
884 &cspmu->associated_cpus)))
885 return -ENOENT;
886
887 idx = arm_cspmu_get_event_idx(hw_events, event);
888 if (idx < 0)
889 return idx;
890
891 hw_events->events[idx] = event;
892 hwc->idx = to_phys_idx(cspmu, idx);
893 hwc->extra_reg.idx = idx;
894 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
895
896 if (flags & PERF_EF_START)
897 arm_cspmu_start(event, PERF_EF_RELOAD);
898
899 /* Propagate changes to the userspace mapping. */
900 perf_event_update_userpage(event);
901
902 return 0;
903 }
904
arm_cspmu_del(struct perf_event * event,int flags)905 static void arm_cspmu_del(struct perf_event *event, int flags)
906 {
907 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
908 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
909 struct hw_perf_event *hwc = &event->hw;
910 int idx = hwc->extra_reg.idx;
911
912 arm_cspmu_stop(event, PERF_EF_UPDATE);
913
914 hw_events->events[idx] = NULL;
915
916 clear_bit(idx, hw_events->used_ctrs);
917
918 perf_event_update_userpage(event);
919 }
920
arm_cspmu_read(struct perf_event * event)921 static void arm_cspmu_read(struct perf_event *event)
922 {
923 arm_cspmu_event_update(event);
924 }
925
arm_cspmu_alloc(struct platform_device * pdev)926 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
927 {
928 struct acpi_apmt_node *apmt_node;
929 struct arm_cspmu *cspmu;
930 struct device *dev = &pdev->dev;
931
932 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
933 if (!cspmu)
934 return NULL;
935
936 cspmu->dev = dev;
937 platform_set_drvdata(pdev, cspmu);
938
939 apmt_node = arm_cspmu_apmt_node(dev);
940 if (apmt_node) {
941 cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
942 } else {
943 u32 width = 0;
944
945 device_property_read_u32(dev, "reg-io-width", &width);
946 cspmu->has_atomic_dword = (width == 8);
947 }
948
949 return cspmu;
950 }
951
arm_cspmu_init_mmio(struct arm_cspmu * cspmu)952 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
953 {
954 struct device *dev;
955 struct platform_device *pdev;
956
957 dev = cspmu->dev;
958 pdev = to_platform_device(dev);
959
960 /* Base address for page 0. */
961 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
962 if (IS_ERR(cspmu->base0)) {
963 dev_err(dev, "ioremap failed for page-0 resource\n");
964 return PTR_ERR(cspmu->base0);
965 }
966
967 /* Base address for page 1 if supported. Otherwise point to page 0. */
968 cspmu->base1 = cspmu->base0;
969 if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
970 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
971 if (IS_ERR(cspmu->base1)) {
972 dev_err(dev, "ioremap failed for page-1 resource\n");
973 return PTR_ERR(cspmu->base1);
974 }
975 }
976
977 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
978
979 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
980
981 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
982
983 if (supports_cycle_counter(cspmu)) {
984 /*
985 * The last logical counter is mapped to cycle counter if
986 * there is a gap between regular and cycle counter. Otherwise,
987 * logical and physical have 1-to-1 mapping.
988 */
989 cspmu->cycle_counter_logical_idx =
990 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
991 cspmu->num_logical_ctrs - 1 :
992 ARM_CSPMU_CYCLE_CNTR_IDX;
993 }
994
995 cspmu->num_set_clr_reg =
996 DIV_ROUND_UP(cspmu->num_logical_ctrs,
997 ARM_CSPMU_SET_CLR_COUNTER_NUM);
998
999 cspmu->hw_events.events =
1000 devm_kcalloc(dev, cspmu->num_logical_ctrs,
1001 sizeof(*cspmu->hw_events.events), GFP_KERNEL);
1002
1003 if (!cspmu->hw_events.events)
1004 return -ENOMEM;
1005
1006 return 0;
1007 }
1008
arm_cspmu_get_reset_overflow(struct arm_cspmu * cspmu,u32 * pmovs)1009 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
1010 u32 *pmovs)
1011 {
1012 int i;
1013 u32 pmovclr_offset = PMOVSCLR;
1014 u32 has_overflowed = 0;
1015
1016 for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
1017 pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
1018 has_overflowed |= pmovs[i];
1019 writel(pmovs[i], cspmu->base1 + pmovclr_offset);
1020 pmovclr_offset += sizeof(u32);
1021 }
1022
1023 return has_overflowed != 0;
1024 }
1025
arm_cspmu_handle_irq(int irq_num,void * dev)1026 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
1027 {
1028 int idx, has_overflowed;
1029 struct perf_event *event;
1030 struct arm_cspmu *cspmu = dev;
1031 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
1032 bool handled = false;
1033
1034 arm_cspmu_stop_counters(cspmu);
1035
1036 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
1037 if (!has_overflowed)
1038 goto done;
1039
1040 for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
1041 cspmu->num_logical_ctrs) {
1042 event = cspmu->hw_events.events[idx];
1043
1044 if (!event)
1045 continue;
1046
1047 if (!test_bit(event->hw.idx, pmovs))
1048 continue;
1049
1050 arm_cspmu_event_update(event);
1051 arm_cspmu_set_event_period(event);
1052
1053 handled = true;
1054 }
1055
1056 done:
1057 arm_cspmu_start_counters(cspmu);
1058 return IRQ_RETVAL(handled);
1059 }
1060
arm_cspmu_request_irq(struct arm_cspmu * cspmu)1061 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1062 {
1063 int irq, ret;
1064 struct device *dev;
1065 struct platform_device *pdev;
1066
1067 dev = cspmu->dev;
1068 pdev = to_platform_device(dev);
1069
1070 /* Skip IRQ request if the PMU does not support overflow interrupt. */
1071 irq = platform_get_irq_optional(pdev, 0);
1072 if (irq < 0)
1073 return irq == -ENXIO ? 0 : irq;
1074
1075 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1076 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1077 cspmu);
1078 if (ret) {
1079 dev_err(dev, "Could not request IRQ %d\n", irq);
1080 return ret;
1081 }
1082
1083 cspmu->irq = irq;
1084
1085 return 0;
1086 }
1087
1088 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1089 #include <acpi/processor.h>
1090
arm_cspmu_find_cpu_container(int cpu,u32 container_uid)1091 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1092 {
1093 struct device *cpu_dev;
1094 struct acpi_device *acpi_dev;
1095
1096 cpu_dev = get_cpu_device(cpu);
1097 if (!cpu_dev)
1098 return -ENODEV;
1099
1100 acpi_dev = ACPI_COMPANION(cpu_dev);
1101 while (acpi_dev) {
1102 if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1103 return 0;
1104
1105 acpi_dev = acpi_dev_parent(acpi_dev);
1106 }
1107
1108 return -ENODEV;
1109 }
1110
arm_cspmu_acpi_get_cpus(struct arm_cspmu * cspmu)1111 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1112 {
1113 struct acpi_apmt_node *apmt_node;
1114 int affinity_flag;
1115 int cpu;
1116
1117 apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1118 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1119
1120 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1121 for_each_possible_cpu(cpu) {
1122 if (apmt_node->proc_affinity ==
1123 get_acpi_id_for_cpu(cpu)) {
1124 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1125 break;
1126 }
1127 }
1128 } else {
1129 for_each_possible_cpu(cpu) {
1130 if (arm_cspmu_find_cpu_container(
1131 cpu, apmt_node->proc_affinity))
1132 continue;
1133
1134 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1135 }
1136 }
1137
1138 return 0;
1139 }
1140 #else
arm_cspmu_acpi_get_cpus(struct arm_cspmu * cspmu)1141 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1142 {
1143 return -ENODEV;
1144 }
1145 #endif
1146
arm_cspmu_of_get_cpus(struct arm_cspmu * cspmu)1147 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1148 {
1149 struct of_phandle_iterator it;
1150 int ret, cpu;
1151
1152 of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1153 cpu = of_cpu_node_to_id(it.node);
1154 if (cpu < 0)
1155 continue;
1156 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1157 }
1158 return ret == -ENOENT ? 0 : ret;
1159 }
1160
arm_cspmu_get_cpus(struct arm_cspmu * cspmu)1161 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1162 {
1163 int ret = 0;
1164
1165 if (arm_cspmu_apmt_node(cspmu->dev))
1166 ret = arm_cspmu_acpi_get_cpus(cspmu);
1167 else if (device_property_present(cspmu->dev, "cpus"))
1168 ret = arm_cspmu_of_get_cpus(cspmu);
1169 else
1170 cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1171
1172 if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1173 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1174 ret = -ENODEV;
1175 }
1176 return ret;
1177 }
1178
arm_cspmu_register_pmu(struct arm_cspmu * cspmu)1179 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1180 {
1181 int ret, capabilities;
1182
1183 ret = arm_cspmu_alloc_attr_groups(cspmu);
1184 if (ret)
1185 return ret;
1186
1187 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1188 &cspmu->cpuhp_node);
1189 if (ret)
1190 return ret;
1191
1192 capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1193 if (cspmu->irq == 0)
1194 capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1195
1196 cspmu->pmu = (struct pmu){
1197 .task_ctx_nr = perf_invalid_context,
1198 .module = cspmu->impl.module,
1199 .parent = cspmu->dev,
1200 .pmu_enable = arm_cspmu_enable,
1201 .pmu_disable = arm_cspmu_disable,
1202 .event_init = arm_cspmu_event_init,
1203 .add = arm_cspmu_add,
1204 .del = arm_cspmu_del,
1205 .start = arm_cspmu_start,
1206 .stop = arm_cspmu_stop,
1207 .read = arm_cspmu_read,
1208 .attr_groups = cspmu->attr_groups,
1209 .capabilities = capabilities,
1210 };
1211
1212 /* Hardware counter init */
1213 arm_cspmu_reset_counters(cspmu);
1214
1215 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1216 if (ret) {
1217 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1218 &cspmu->cpuhp_node);
1219 }
1220
1221 return ret;
1222 }
1223
arm_cspmu_device_probe(struct platform_device * pdev)1224 static int arm_cspmu_device_probe(struct platform_device *pdev)
1225 {
1226 int ret;
1227 struct arm_cspmu *cspmu;
1228
1229 cspmu = arm_cspmu_alloc(pdev);
1230 if (!cspmu)
1231 return -ENOMEM;
1232
1233 ret = arm_cspmu_init_mmio(cspmu);
1234 if (ret)
1235 return ret;
1236
1237 ret = arm_cspmu_request_irq(cspmu);
1238 if (ret)
1239 return ret;
1240
1241 ret = arm_cspmu_get_cpus(cspmu);
1242 if (ret)
1243 return ret;
1244
1245 ret = arm_cspmu_init_impl_ops(cspmu);
1246 if (ret)
1247 return ret;
1248
1249 ret = arm_cspmu_register_pmu(cspmu);
1250
1251 /* Matches arm_cspmu_init_impl_ops() above. */
1252 if (cspmu->impl.module != THIS_MODULE)
1253 module_put(cspmu->impl.module);
1254
1255 return ret;
1256 }
1257
arm_cspmu_device_remove(struct platform_device * pdev)1258 static void arm_cspmu_device_remove(struct platform_device *pdev)
1259 {
1260 struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1261
1262 perf_pmu_unregister(&cspmu->pmu);
1263 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1264 }
1265
1266 static const struct platform_device_id arm_cspmu_id[] = {
1267 {DRVNAME, 0},
1268 { },
1269 };
1270 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1271
1272 static const struct of_device_id arm_cspmu_of_match[] = {
1273 { .compatible = "arm,coresight-pmu" },
1274 {}
1275 };
1276 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1277
1278 static struct platform_driver arm_cspmu_driver = {
1279 .driver = {
1280 .name = DRVNAME,
1281 .of_match_table = arm_cspmu_of_match,
1282 .suppress_bind_attrs = true,
1283 },
1284 .probe = arm_cspmu_device_probe,
1285 .remove_new = arm_cspmu_device_remove,
1286 .id_table = arm_cspmu_id,
1287 };
1288
arm_cspmu_set_active_cpu(int cpu,struct arm_cspmu * cspmu)1289 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1290 {
1291 cpumask_set_cpu(cpu, &cspmu->active_cpu);
1292 if (cspmu->irq)
1293 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1294 }
1295
arm_cspmu_cpu_online(unsigned int cpu,struct hlist_node * node)1296 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1297 {
1298 struct arm_cspmu *cspmu =
1299 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1300
1301 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1302 return 0;
1303
1304 /* If the PMU is already managed, there is nothing to do */
1305 if (!cpumask_empty(&cspmu->active_cpu))
1306 return 0;
1307
1308 /* Use this CPU for event counting */
1309 arm_cspmu_set_active_cpu(cpu, cspmu);
1310
1311 return 0;
1312 }
1313
arm_cspmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1314 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1315 {
1316 unsigned int dst;
1317
1318 struct arm_cspmu *cspmu =
1319 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1320
1321 /* Nothing to do if this CPU doesn't own the PMU */
1322 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1323 return 0;
1324
1325 /* Choose a new CPU to migrate ownership of the PMU to */
1326 dst = cpumask_any_and_but(&cspmu->associated_cpus,
1327 cpu_online_mask, cpu);
1328 if (dst >= nr_cpu_ids)
1329 return 0;
1330
1331 /* Use this CPU for event counting */
1332 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1333 arm_cspmu_set_active_cpu(dst, cspmu);
1334
1335 return 0;
1336 }
1337
arm_cspmu_init(void)1338 static int __init arm_cspmu_init(void)
1339 {
1340 int ret;
1341
1342 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1343 "perf/arm/cspmu:online",
1344 arm_cspmu_cpu_online,
1345 arm_cspmu_cpu_teardown);
1346 if (ret < 0)
1347 return ret;
1348 arm_cspmu_cpuhp_state = ret;
1349 return platform_driver_register(&arm_cspmu_driver);
1350 }
1351
arm_cspmu_exit(void)1352 static void __exit arm_cspmu_exit(void)
1353 {
1354 platform_driver_unregister(&arm_cspmu_driver);
1355 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1356 }
1357
arm_cspmu_impl_register(const struct arm_cspmu_impl_match * impl_match)1358 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1359 {
1360 struct arm_cspmu_impl_match *match;
1361 int ret = 0;
1362
1363 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1364
1365 if (match) {
1366 mutex_lock(&arm_cspmu_lock);
1367
1368 if (!match->impl_init_ops) {
1369 match->module = impl_match->module;
1370 match->impl_init_ops = impl_match->impl_init_ops;
1371 } else {
1372 /* Broken match table may contain non-unique entries */
1373 WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1374 match->module_name,
1375 match->pmiidr_val,
1376 match->pmiidr_mask);
1377
1378 ret = -EINVAL;
1379 }
1380
1381 mutex_unlock(&arm_cspmu_lock);
1382
1383 if (!ret)
1384 ret = driver_attach(&arm_cspmu_driver.driver);
1385 } else {
1386 pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1387 impl_match->pmiidr_val);
1388
1389 ret = -EINVAL;
1390 }
1391
1392 return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1395
arm_cspmu_match_device(struct device * dev,const void * match)1396 static int arm_cspmu_match_device(struct device *dev, const void *match)
1397 {
1398 struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1399
1400 return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1401 }
1402
arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match * impl_match)1403 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1404 {
1405 struct device *dev;
1406 struct arm_cspmu_impl_match *match;
1407
1408 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1409
1410 if (WARN_ON(!match))
1411 return;
1412
1413 /* Unbind the driver from all matching backend devices. */
1414 while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1415 match, arm_cspmu_match_device)))
1416 device_release_driver(dev);
1417
1418 mutex_lock(&arm_cspmu_lock);
1419
1420 match->module = NULL;
1421 match->impl_init_ops = NULL;
1422
1423 mutex_unlock(&arm_cspmu_lock);
1424 }
1425 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1426
1427 module_init(arm_cspmu_init);
1428 module_exit(arm_cspmu_exit);
1429
1430 MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1431 MODULE_LICENSE("GPL v2");
1432