xref: /freebsd/sys/arm64/vmm/vmm_arm64.c (revision fddf48eb012c8c7dd640c1fea5c0766f8d85f0c4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2015 Mihai Carabas <mihai.carabas@gmail.com>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/smp.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mman.h>
36 #include <sys/pcpu.h>
37 #include <sys/proc.h>
38 #include <sys/sysctl.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/vmem.h>
42 
43 #include <vm/vm.h>
44 #include <vm/pmap.h>
45 #include <vm/vm_extern.h>
46 #include <vm/vm_map.h>
47 #include <vm/vm_page.h>
48 #include <vm/vm_param.h>
49 
50 #include <machine/vm.h>
51 #include <machine/cpufunc.h>
52 #include <machine/cpu.h>
53 #include <machine/machdep.h>
54 #include <machine/vmm.h>
55 #include <machine/vmm_dev.h>
56 #include <machine/atomic.h>
57 #include <machine/hypervisor.h>
58 #include <machine/pmap.h>
59 
60 #include <dev/vmm/vmm_mem.h>
61 
62 #include "mmu.h"
63 #include "arm64.h"
64 #include "hyp.h"
65 #include "reset.h"
66 #include "io/vgic.h"
67 #include "io/vgic_v3.h"
68 #include "io/vtimer.h"
69 #include "vmm_handlers.h"
70 #include "vmm_stat.h"
71 
72 #define	HANDLED		1
73 #define	UNHANDLED	0
74 
75 /* Number of bits in an EL2 virtual address */
76 #define	EL2_VIRT_BITS	48
77 CTASSERT((1ul << EL2_VIRT_BITS) >= HYP_VM_MAX_ADDRESS);
78 
79 /* TODO: Move the host hypctx off the stack */
80 #define	VMM_STACK_PAGES	4
81 #define	VMM_STACK_SIZE	(VMM_STACK_PAGES * PAGE_SIZE)
82 
83 static int vmm_pmap_levels, vmm_virt_bits, vmm_max_ipa_bits;
84 
85 /* Register values passed to arm_setup_vectors to set in the hypervisor */
86 struct vmm_init_regs {
87 	uint64_t tcr_el2;
88 	uint64_t vtcr_el2;
89 };
90 
91 MALLOC_DEFINE(M_HYP, "ARM VMM HYP", "ARM VMM HYP");
92 
93 extern char hyp_init_vectors[];
94 extern char hyp_vectors[];
95 extern char hyp_stub_vectors[];
96 
97 static vm_paddr_t hyp_code_base;
98 static size_t hyp_code_len;
99 
100 static char *stack[MAXCPU];
101 static vm_offset_t stack_hyp_va[MAXCPU];
102 
103 static vmem_t *el2_mem_alloc;
104 
105 static void arm_setup_vectors(void *arg);
106 
107 DPCPU_DEFINE_STATIC(struct hypctx *, vcpu);
108 
109 static inline void
arm64_set_active_vcpu(struct hypctx * hypctx)110 arm64_set_active_vcpu(struct hypctx *hypctx)
111 {
112 	DPCPU_SET(vcpu, hypctx);
113 }
114 
115 struct hypctx *
arm64_get_active_vcpu(void)116 arm64_get_active_vcpu(void)
117 {
118 	return (DPCPU_GET(vcpu));
119 }
120 
121 static void
arm_setup_vectors(void * arg)122 arm_setup_vectors(void *arg)
123 {
124 	struct vmm_init_regs *el2_regs;
125 	uintptr_t stack_top;
126 	uint32_t sctlr_el2;
127 	register_t daif;
128 
129 	el2_regs = arg;
130 	arm64_set_active_vcpu(NULL);
131 
132 	/*
133 	 * Configure the system control register for EL2:
134 	 *
135 	 * SCTLR_EL2_M: MMU on
136 	 * SCTLR_EL2_C: Data cacheability not affected
137 	 * SCTLR_EL2_I: Instruction cacheability not affected
138 	 * SCTLR_EL2_A: Instruction alignment check
139 	 * SCTLR_EL2_SA: Stack pointer alignment check
140 	 * SCTLR_EL2_WXN: Treat writable memory as execute never
141 	 * ~SCTLR_EL2_EE: Data accesses are little-endian
142 	 */
143 	sctlr_el2 = SCTLR_EL2_RES1;
144 	sctlr_el2 |= SCTLR_EL2_M | SCTLR_EL2_C | SCTLR_EL2_I;
145 	sctlr_el2 |= SCTLR_EL2_A | SCTLR_EL2_SA;
146 	sctlr_el2 |= SCTLR_EL2_WXN;
147 	sctlr_el2 &= ~SCTLR_EL2_EE;
148 
149 	daif = intr_disable();
150 
151 	if (in_vhe()) {
152 		WRITE_SPECIALREG(vtcr_el2, el2_regs->vtcr_el2);
153 	} else {
154 		/*
155 		 * Install the temporary vectors which will be responsible for
156 		 * initializing the VMM when we next trap into EL2.
157 		 *
158 		 * x0: the exception vector table responsible for hypervisor
159 		 * initialization on the next call.
160 		 */
161 		vmm_call_hyp(vtophys(&vmm_hyp_code));
162 
163 		/* Create and map the hypervisor stack */
164 		stack_top = stack_hyp_va[PCPU_GET(cpuid)] + VMM_STACK_SIZE;
165 
166 		/* Special call to initialize EL2 */
167 		vmm_call_hyp(vmmpmap_to_ttbr0(), stack_top, el2_regs->tcr_el2,
168 		    sctlr_el2, el2_regs->vtcr_el2);
169 	}
170 
171 	intr_restore(daif);
172 }
173 
174 static void
arm_teardown_vectors(void * arg)175 arm_teardown_vectors(void *arg)
176 {
177 	register_t daif;
178 
179 	/*
180 	 * vmm_cleanup() will disable the MMU. For the next few instructions,
181 	 * before the hardware disables the MMU, one of the following is
182 	 * possible:
183 	 *
184 	 * a. The instruction addresses are fetched with the MMU disabled,
185 	 * and they must represent the actual physical addresses. This will work
186 	 * because we call the vmm_cleanup() function by its physical address.
187 	 *
188 	 * b. The instruction addresses are fetched using the old translation
189 	 * tables. This will work because we have an identity mapping in place
190 	 * in the translation tables and vmm_cleanup() is called by its physical
191 	 * address.
192 	 */
193 	daif = intr_disable();
194 	/* TODO: Invalidate the cache */
195 	vmm_call_hyp(HYP_CLEANUP, vtophys(hyp_stub_vectors));
196 	intr_restore(daif);
197 
198 	arm64_set_active_vcpu(NULL);
199 }
200 
201 static uint64_t
vmm_vtcr_el2_sl(u_int levels)202 vmm_vtcr_el2_sl(u_int levels)
203 {
204 #if PAGE_SIZE == PAGE_SIZE_4K
205 	switch (levels) {
206 	case 2:
207 		return (VTCR_EL2_SL0_4K_LVL2);
208 	case 3:
209 		return (VTCR_EL2_SL0_4K_LVL1);
210 	case 4:
211 		return (VTCR_EL2_SL0_4K_LVL0);
212 	default:
213 		panic("%s: Invalid number of page table levels %u", __func__,
214 		    levels);
215 	}
216 #elif PAGE_SIZE == PAGE_SIZE_16K
217 	switch (levels) {
218 	case 2:
219 		return (VTCR_EL2_SL0_16K_LVL2);
220 	case 3:
221 		return (VTCR_EL2_SL0_16K_LVL1);
222 	case 4:
223 		return (VTCR_EL2_SL0_16K_LVL0);
224 	default:
225 		panic("%s: Invalid number of page table levels %u", __func__,
226 		    levels);
227 	}
228 #else
229 #error Unsupported page size
230 #endif
231 }
232 
233 int
vmmops_modinit(int ipinum)234 vmmops_modinit(int ipinum)
235 {
236 	struct vmm_init_regs el2_regs;
237 	vm_offset_t next_hyp_va;
238 	vm_paddr_t vmm_base;
239 	uint64_t id_aa64mmfr0_el1, pa_range_bits, pa_range_field;
240 	int cpu, i;
241 	bool rv __diagused;
242 
243 	if (!has_hyp()) {
244 		printf(
245 		    "vmm: Processor doesn't have support for virtualization\n");
246 		return (ENXIO);
247 	}
248 
249 	if (!vgic_present()) {
250 		printf("vmm: No vgic found\n");
251 		return (ENODEV);
252 	}
253 
254 	if (!get_kernel_reg(ID_AA64MMFR0_EL1, &id_aa64mmfr0_el1)) {
255 		printf("vmm: Unable to read ID_AA64MMFR0_EL1\n");
256 		return (ENXIO);
257 	}
258 	pa_range_field = ID_AA64MMFR0_PARange_VAL(id_aa64mmfr0_el1);
259 	/*
260 	 * Use 3 levels to give us up to 39 bits with 4k pages, or
261 	 * 47 bits with 16k pages.
262 	 */
263 	/* TODO: Check the number of levels for 64k pages */
264 	vmm_pmap_levels = 3;
265 	switch (pa_range_field) {
266 	case ID_AA64MMFR0_PARange_4G:
267 		printf("vmm: Not enough physical address bits\n");
268 		return (ENXIO);
269 	case ID_AA64MMFR0_PARange_64G:
270 		vmm_virt_bits = 36;
271 #if PAGE_SIZE == PAGE_SIZE_16K
272 		vmm_pmap_levels = 2;
273 #endif
274 		break;
275 	default:
276 		vmm_virt_bits = 39;
277 		break;
278 	}
279 	pa_range_bits = pa_range_field >> ID_AA64MMFR0_PARange_SHIFT;
280 
281 	if (!in_vhe()) {
282 		/* Initialise the EL2 MMU */
283 		if (!vmmpmap_init()) {
284 			printf("vmm: Failed to init the EL2 MMU\n");
285 			return (ENOMEM);
286 		}
287 	}
288 
289 	/* Set up the stage 2 pmap callbacks */
290 	MPASS(pmap_clean_stage2_tlbi == NULL);
291 	pmap_clean_stage2_tlbi = vmm_clean_s2_tlbi;
292 	pmap_stage2_invalidate_range = vmm_s2_tlbi_range;
293 	pmap_stage2_invalidate_all = vmm_s2_tlbi_all;
294 
295 	if (!in_vhe()) {
296 		/*
297 		 * Create an allocator for the virtual address space used by
298 		 * EL2. EL2 code is identity-mapped; the allocator is used to
299 		 * find space for VM structures.
300 		 */
301 		el2_mem_alloc = vmem_create("VMM EL2", 0, 0, PAGE_SIZE, 0,
302 		    M_WAITOK);
303 
304 		/* Create the mappings for the hypervisor translation table. */
305 		hyp_code_len = round_page(&vmm_hyp_code_end - &vmm_hyp_code);
306 
307 		/* We need an physical identity mapping for when we activate the MMU */
308 		hyp_code_base = vmm_base = vtophys(&vmm_hyp_code);
309 		rv = vmmpmap_enter(vmm_base, hyp_code_len, vmm_base,
310 		    VM_PROT_READ | VM_PROT_EXECUTE);
311 		MPASS(rv);
312 
313 		next_hyp_va = roundup2(vmm_base + hyp_code_len, L2_SIZE);
314 
315 		/* Create a per-CPU hypervisor stack */
316 		CPU_FOREACH(cpu) {
317 			stack[cpu] = malloc(VMM_STACK_SIZE, M_HYP, M_WAITOK | M_ZERO);
318 			stack_hyp_va[cpu] = next_hyp_va;
319 
320 			for (i = 0; i < VMM_STACK_PAGES; i++) {
321 				rv = vmmpmap_enter(stack_hyp_va[cpu] + ptoa(i),
322 				    PAGE_SIZE, vtophys(stack[cpu] + ptoa(i)),
323 				    VM_PROT_READ | VM_PROT_WRITE);
324 				MPASS(rv);
325 			}
326 			next_hyp_va += L2_SIZE;
327 		}
328 
329 		el2_regs.tcr_el2 = TCR_EL2_RES1;
330 		el2_regs.tcr_el2 |= min(pa_range_bits << TCR_EL2_PS_SHIFT,
331 		    TCR_EL2_PS_52BITS);
332 		el2_regs.tcr_el2 |= TCR_EL2_T0SZ(64 - EL2_VIRT_BITS);
333 		el2_regs.tcr_el2 |= TCR_EL2_IRGN0_WBWA | TCR_EL2_ORGN0_WBWA;
334 #if PAGE_SIZE == PAGE_SIZE_4K
335 		el2_regs.tcr_el2 |= TCR_EL2_TG0_4K;
336 #elif PAGE_SIZE == PAGE_SIZE_16K
337 		el2_regs.tcr_el2 |= TCR_EL2_TG0_16K;
338 #else
339 #error Unsupported page size
340 #endif
341 #ifdef SMP
342 		el2_regs.tcr_el2 |= TCR_EL2_SH0_IS;
343 #endif
344 	}
345 
346 	switch (pa_range_bits << TCR_EL2_PS_SHIFT) {
347 	case TCR_EL2_PS_32BITS:
348 		vmm_max_ipa_bits = 32;
349 		break;
350 	case TCR_EL2_PS_36BITS:
351 		vmm_max_ipa_bits = 36;
352 		break;
353 	case TCR_EL2_PS_40BITS:
354 		vmm_max_ipa_bits = 40;
355 		break;
356 	case TCR_EL2_PS_42BITS:
357 		vmm_max_ipa_bits = 42;
358 		break;
359 	case TCR_EL2_PS_44BITS:
360 		vmm_max_ipa_bits = 44;
361 		break;
362 	case TCR_EL2_PS_48BITS:
363 		vmm_max_ipa_bits = 48;
364 		break;
365 	case TCR_EL2_PS_52BITS:
366 	default:
367 		vmm_max_ipa_bits = 52;
368 		break;
369 	}
370 
371 	/*
372 	 * Configure the Stage 2 translation control register:
373 	 *
374 	 * VTCR_IRGN0_WBWA: Translation table walks access inner cacheable
375 	 * normal memory
376 	 * VTCR_ORGN0_WBWA: Translation table walks access outer cacheable
377 	 * normal memory
378 	 * VTCR_EL2_TG0_4K/16K: Stage 2 uses the same page size as the kernel
379 	 * VTCR_EL2_SL0_4K_LVL1: Stage 2 uses concatenated level 1 tables
380 	 * VTCR_EL2_SH0_IS: Memory associated with Stage 2 walks is inner
381 	 * shareable
382 	 */
383 	el2_regs.vtcr_el2 = VTCR_EL2_RES1;
384 	el2_regs.vtcr_el2 |= VTCR_EL2_IRGN0_WBWA | VTCR_EL2_ORGN0_WBWA;
385 	el2_regs.vtcr_el2 |= VTCR_EL2_T0SZ(64 - vmm_virt_bits);
386 	el2_regs.vtcr_el2 |= vmm_vtcr_el2_sl(vmm_pmap_levels);
387 #if PAGE_SIZE == PAGE_SIZE_4K
388 	el2_regs.vtcr_el2 |= VTCR_EL2_TG0_4K;
389 #elif PAGE_SIZE == PAGE_SIZE_16K
390 	el2_regs.vtcr_el2 |= VTCR_EL2_TG0_16K;
391 #else
392 #error Unsupported page size
393 #endif
394 #ifdef SMP
395 	el2_regs.vtcr_el2 |= VTCR_EL2_SH0_IS;
396 #endif
397 	/*
398 	 * If FEAT_LPA2 is enabled in the host then we need to enable it here
399 	 * so the page tables created by pmap.c are correct. The meaning of
400 	 * the shareability field changes to become address bits when this
401 	 * is set.
402 	 */
403 	if ((READ_SPECIALREG(tcr_el1) & TCR_DS) != 0) {
404 		el2_regs.vtcr_el2 |= VTCR_EL2_DS;
405 		el2_regs.vtcr_el2 |=
406 		    min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_52BIT);
407 	} else {
408 		el2_regs.vtcr_el2 |=
409 		    min(pa_range_bits << VTCR_EL2_PS_SHIFT, VTCR_EL2_PS_48BIT);
410 	}
411 
412 	smp_rendezvous(NULL, arm_setup_vectors, NULL, &el2_regs);
413 
414 	if (!in_vhe()) {
415 		/* Add memory to the vmem allocator (checking there is space) */
416 		if (vmm_base > (L2_SIZE + PAGE_SIZE)) {
417 			/*
418 			 * Ensure there is an L2 block before the vmm code to check
419 			 * for buffer overflows on earlier data. Include the PAGE_SIZE
420 			 * of the minimum we can allocate.
421 			 */
422 			vmm_base -= L2_SIZE + PAGE_SIZE;
423 			vmm_base = rounddown2(vmm_base, L2_SIZE);
424 
425 			/*
426 			 * Check there is memory before the vmm code to add.
427 			 *
428 			 * Reserve the L2 block at address 0 so NULL dereference will
429 			 * raise an exception.
430 			 */
431 			if (vmm_base > L2_SIZE)
432 				vmem_add(el2_mem_alloc, L2_SIZE, vmm_base - L2_SIZE,
433 				    M_WAITOK);
434 		}
435 
436 		/*
437 		 * Add the memory after the stacks. There is most of an L2 block
438 		 * between the last stack and the first allocation so this should
439 		 * be safe without adding more padding.
440 		 */
441 		if (next_hyp_va < HYP_VM_MAX_ADDRESS - PAGE_SIZE)
442 			vmem_add(el2_mem_alloc, next_hyp_va,
443 			    HYP_VM_MAX_ADDRESS - next_hyp_va, M_WAITOK);
444 	}
445 
446 	vgic_init();
447 	vtimer_init();
448 
449 	return (0);
450 }
451 
452 int
vmmops_modcleanup(void)453 vmmops_modcleanup(void)
454 {
455 	int cpu;
456 
457 	if (!in_vhe()) {
458 		smp_rendezvous(NULL, arm_teardown_vectors, NULL, NULL);
459 
460 		CPU_FOREACH(cpu) {
461 			vmmpmap_remove(stack_hyp_va[cpu],
462 			    VMM_STACK_PAGES * PAGE_SIZE, false);
463 		}
464 
465 		vmmpmap_remove(hyp_code_base, hyp_code_len, false);
466 	}
467 
468 	vtimer_cleanup();
469 
470 	if (!in_vhe()) {
471 		vmmpmap_fini();
472 
473 		CPU_FOREACH(cpu)
474 			free(stack[cpu], M_HYP);
475 	}
476 
477 	pmap_clean_stage2_tlbi = NULL;
478 	pmap_stage2_invalidate_range = NULL;
479 	pmap_stage2_invalidate_all = NULL;
480 
481 	return (0);
482 }
483 
484 static vm_size_t
el2_hyp_size(struct vm * vm)485 el2_hyp_size(struct vm *vm)
486 {
487 	return (round_page(sizeof(struct hyp) +
488 	    sizeof(struct hypctx *) * vm_get_maxcpus(vm)));
489 }
490 
491 static vm_size_t
el2_hypctx_size(void)492 el2_hypctx_size(void)
493 {
494 	return (round_page(sizeof(struct hypctx)));
495 }
496 
497 static vm_offset_t
el2_map_enter(vm_offset_t data,vm_size_t size,vm_prot_t prot)498 el2_map_enter(vm_offset_t data, vm_size_t size, vm_prot_t prot)
499 {
500 	vmem_addr_t addr;
501 	int err __diagused;
502 	bool rv __diagused;
503 
504 	err = vmem_alloc(el2_mem_alloc, size, M_NEXTFIT | M_WAITOK, &addr);
505 	MPASS(err == 0);
506 	rv = vmmpmap_enter(addr, size, vtophys(data), prot);
507 	MPASS(rv);
508 
509 	return (addr);
510 }
511 
512 void *
vmmops_init(struct vm * vm,pmap_t pmap)513 vmmops_init(struct vm *vm, pmap_t pmap)
514 {
515 	struct hyp *hyp;
516 	vm_size_t size;
517 	uint64_t idreg;
518 
519 	size = el2_hyp_size(vm);
520 	hyp = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
521 
522 	hyp->vm = vm;
523 	hyp->vgic_attached = false;
524 
525 	if (get_kernel_reg(ID_AA64MMFR0_EL1, &idreg)) {
526 		if (ID_AA64MMFR0_ECV_VAL(idreg) >= ID_AA64MMFR0_ECV_POFF)
527 			hyp->feats |= HYP_FEAT_ECV_POFF;
528 	}
529 
530 	if (get_kernel_reg(ID_AA64MMFR1_EL1, &idreg)) {
531 		if (ID_AA64MMFR1_HCX_VAL(idreg) >= ID_AA64MMFR1_HCX_IMPL)
532 			hyp->feats |= HYP_FEAT_HCX;
533 	}
534 
535 	vtimer_vminit(hyp);
536 	vgic_vminit(hyp);
537 
538 	if (!in_vhe())
539 		hyp->el2_addr = el2_map_enter((vm_offset_t)hyp, size,
540 		    VM_PROT_READ | VM_PROT_WRITE);
541 
542 	return (hyp);
543 }
544 
545 void *
vmmops_vcpu_init(void * vmi,struct vcpu * vcpu1,int vcpuid)546 vmmops_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
547 {
548 	struct hyp *hyp = vmi;
549 	struct hypctx *hypctx;
550 	vm_size_t size;
551 
552 	size = el2_hypctx_size();
553 	hypctx = malloc_aligned(size, PAGE_SIZE, M_HYP, M_WAITOK | M_ZERO);
554 
555 	KASSERT(vcpuid >= 0 && vcpuid < vm_get_maxcpus(hyp->vm),
556 	    ("%s: Invalid vcpuid %d", __func__, vcpuid));
557 	hyp->ctx[vcpuid] = hypctx;
558 
559 	hypctx->hyp = hyp;
560 	hypctx->vcpu = vcpu1;
561 
562 	reset_vm_el01_regs(hypctx);
563 	reset_vm_el2_regs(hypctx);
564 
565 	vtimer_cpuinit(hypctx);
566 	vgic_cpuinit(hypctx);
567 
568 	if (!in_vhe())
569 		hypctx->el2_addr = el2_map_enter((vm_offset_t)hypctx, size,
570 		    VM_PROT_READ | VM_PROT_WRITE);
571 
572 	return (hypctx);
573 }
574 
575 static int
arm_vmm_pinit(pmap_t pmap)576 arm_vmm_pinit(pmap_t pmap)
577 {
578 
579 	pmap_pinit_stage(pmap, PM_STAGE2, vmm_pmap_levels);
580 	return (1);
581 }
582 
583 struct vmspace *
vmmops_vmspace_alloc(vm_offset_t min,vm_offset_t max)584 vmmops_vmspace_alloc(vm_offset_t min, vm_offset_t max)
585 {
586 	return (vmspace_alloc(min, max, arm_vmm_pinit));
587 }
588 
589 void
vmmops_vmspace_free(struct vmspace * vmspace)590 vmmops_vmspace_free(struct vmspace *vmspace)
591 {
592 
593 	pmap_remove_pages(vmspace_pmap(vmspace));
594 	vmspace_free(vmspace);
595 }
596 
597 static inline void
arm64_print_hyp_regs(struct vm_exit * vme)598 arm64_print_hyp_regs(struct vm_exit *vme)
599 {
600 	printf("esr_el2:   0x%016lx\n", vme->u.hyp.esr_el2);
601 	printf("far_el2:   0x%016lx\n", vme->u.hyp.far_el2);
602 	printf("hpfar_el2: 0x%016lx\n", vme->u.hyp.hpfar_el2);
603 	printf("elr_el2:   0x%016lx\n", vme->pc);
604 }
605 
606 static void
arm64_gen_inst_emul_data(struct hypctx * hypctx,uint32_t esr_iss,struct vm_exit * vme_ret)607 arm64_gen_inst_emul_data(struct hypctx *hypctx, uint32_t esr_iss,
608     struct vm_exit *vme_ret)
609 {
610 	struct vm_guest_paging *paging;
611 	struct vie *vie;
612 	uint32_t esr_sas, reg_num;
613 
614 	/*
615 	 * Get the page address from HPFAR_EL2.
616 	 */
617 	vme_ret->u.inst_emul.gpa =
618 	    HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
619 	/* Bits [11:0] are the same as bits [11:0] from the virtual address. */
620 	vme_ret->u.inst_emul.gpa += hypctx->exit_info.far_el2 &
621 	    FAR_EL2_HPFAR_PAGE_MASK;
622 
623 	esr_sas = (esr_iss & ISS_DATA_SAS_MASK) >> ISS_DATA_SAS_SHIFT;
624 	reg_num = (esr_iss & ISS_DATA_SRT_MASK) >> ISS_DATA_SRT_SHIFT;
625 
626 	vie = &vme_ret->u.inst_emul.vie;
627 	vie->access_size = 1 << esr_sas;
628 	vie->sign_extend = (esr_iss & ISS_DATA_SSE) ? 1 : 0;
629 	vie->dir = (esr_iss & ISS_DATA_WnR) ? VM_DIR_WRITE : VM_DIR_READ;
630 	vie->reg = reg_num;
631 
632 	paging = &vme_ret->u.inst_emul.paging;
633 	paging->ttbr0_addr = hypctx->ttbr0_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
634 	paging->ttbr1_addr = hypctx->ttbr1_el1 & ~(TTBR_ASID_MASK | TTBR_CnP);
635 	paging->tcr_el1 = hypctx->tcr_el1;
636 	paging->tcr2_el1 = hypctx->tcr2_el1;
637 	paging->flags = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
638 	if ((hypctx->sctlr_el1 & SCTLR_M) != 0)
639 		paging->flags |= VM_GP_MMU_ENABLED;
640 }
641 
642 static void
arm64_gen_reg_emul_data(uint32_t esr_iss,struct vm_exit * vme_ret)643 arm64_gen_reg_emul_data(uint32_t esr_iss, struct vm_exit *vme_ret)
644 {
645 	uint32_t reg_num;
646 	struct vre *vre;
647 
648 	/* u.hyp member will be replaced by u.reg_emul */
649 	vre = &vme_ret->u.reg_emul.vre;
650 
651 	vre->inst_syndrome = esr_iss;
652 	/* ARMv8 Architecture Manual, p. D7-2273: 1 means read */
653 	vre->dir = (esr_iss & ISS_MSR_DIR) ? VM_DIR_READ : VM_DIR_WRITE;
654 	reg_num = ISS_MSR_Rt(esr_iss);
655 	vre->reg = reg_num;
656 }
657 
658 void
raise_data_insn_abort(struct hypctx * hypctx,uint64_t far,bool dabort,int fsc)659 raise_data_insn_abort(struct hypctx *hypctx, uint64_t far, bool dabort, int fsc)
660 {
661 	uint64_t esr;
662 
663 	if ((hypctx->tf.tf_spsr & PSR_M_MASK) == PSR_M_EL0t)
664 		esr = EXCP_INSN_ABORT_L << ESR_ELx_EC_SHIFT;
665 	else
666 		esr = EXCP_INSN_ABORT << ESR_ELx_EC_SHIFT;
667 	/* Set the bit that changes from insn -> data abort */
668 	if (dabort)
669 		esr |= EXCP_DATA_ABORT_L << ESR_ELx_EC_SHIFT;
670 	/* Set the IL bit if set by hardware */
671 	esr |= hypctx->tf.tf_esr & ESR_ELx_IL;
672 
673 	vmmops_exception(hypctx, esr | fsc, far);
674 }
675 
676 static int
handle_el1_sync_excp(struct hypctx * hypctx,struct vm_exit * vme_ret,pmap_t pmap)677 handle_el1_sync_excp(struct hypctx *hypctx, struct vm_exit *vme_ret,
678     pmap_t pmap)
679 {
680 	uint64_t gpa;
681 	uint32_t esr_ec, esr_iss;
682 
683 	esr_ec = ESR_ELx_EXCEPTION(hypctx->tf.tf_esr);
684 	esr_iss = hypctx->tf.tf_esr & ESR_ELx_ISS_MASK;
685 
686 	switch (esr_ec) {
687 	case EXCP_UNKNOWN:
688 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNKNOWN, 1);
689 		arm64_print_hyp_regs(vme_ret);
690 		vme_ret->exitcode = VM_EXITCODE_HYP;
691 		break;
692 	case EXCP_TRAP_WFI_WFE:
693 		if ((hypctx->tf.tf_esr & 0x3) == 0) { /* WFI */
694 			vmm_stat_incr(hypctx->vcpu, VMEXIT_WFI, 1);
695 			vme_ret->exitcode = VM_EXITCODE_WFI;
696 		} else {
697 			vmm_stat_incr(hypctx->vcpu, VMEXIT_WFE, 1);
698 			vme_ret->exitcode = VM_EXITCODE_HYP;
699 		}
700 		break;
701 	case EXCP_HVC:
702 		vmm_stat_incr(hypctx->vcpu, VMEXIT_HVC, 1);
703 		vme_ret->exitcode = VM_EXITCODE_HVC;
704 		break;
705 	case EXCP_MSR:
706 		vmm_stat_incr(hypctx->vcpu, VMEXIT_MSR, 1);
707 		arm64_gen_reg_emul_data(esr_iss, vme_ret);
708 		vme_ret->exitcode = VM_EXITCODE_REG_EMUL;
709 		break;
710 	case EXCP_BRK:
711 		vmm_stat_incr(hypctx->vcpu, VMEXIT_BRK, 1);
712 		vme_ret->exitcode = VM_EXITCODE_BRK;
713 		break;
714 	case EXCP_SOFTSTP_EL0:
715 		vmm_stat_incr(hypctx->vcpu, VMEXIT_SS, 1);
716 		vme_ret->exitcode = VM_EXITCODE_SS;
717 		break;
718 	case EXCP_INSN_ABORT_L:
719 	case EXCP_DATA_ABORT_L:
720 		vmm_stat_incr(hypctx->vcpu, esr_ec == EXCP_DATA_ABORT_L ?
721 		    VMEXIT_DATA_ABORT : VMEXIT_INSN_ABORT, 1);
722 		switch (hypctx->tf.tf_esr & ISS_DATA_DFSC_MASK) {
723 		case ISS_DATA_DFSC_TF_L0:
724 		case ISS_DATA_DFSC_TF_L1:
725 		case ISS_DATA_DFSC_TF_L2:
726 		case ISS_DATA_DFSC_TF_L3:
727 		case ISS_DATA_DFSC_AFF_L1:
728 		case ISS_DATA_DFSC_AFF_L2:
729 		case ISS_DATA_DFSC_AFF_L3:
730 		case ISS_DATA_DFSC_PF_L1:
731 		case ISS_DATA_DFSC_PF_L2:
732 		case ISS_DATA_DFSC_PF_L3:
733 			gpa = HPFAR_EL2_FIPA_ADDR(hypctx->exit_info.hpfar_el2);
734 			/* Check the IPA is valid */
735 			if (gpa >= (1ul << vmm_max_ipa_bits)) {
736 				raise_data_insn_abort(hypctx,
737 				    hypctx->exit_info.far_el2,
738 				    esr_ec == EXCP_DATA_ABORT_L,
739 				    ISS_DATA_DFSC_ASF_L0);
740 				vme_ret->inst_length = 0;
741 				return (HANDLED);
742 			}
743 
744 			if (vm_mem_allocated(hypctx->vcpu, gpa)) {
745 				vme_ret->exitcode = VM_EXITCODE_PAGING;
746 				vme_ret->inst_length = 0;
747 				vme_ret->u.paging.esr = hypctx->tf.tf_esr;
748 				vme_ret->u.paging.gpa = gpa;
749 			} else if (esr_ec == EXCP_INSN_ABORT_L) {
750 				/*
751 				 * Raise an external abort. Device memory is
752 				 * not executable
753 				 */
754 				raise_data_insn_abort(hypctx,
755 				    hypctx->exit_info.far_el2, false,
756 				    ISS_DATA_DFSC_EXT);
757 				vme_ret->inst_length = 0;
758 				return (HANDLED);
759 			} else {
760 				arm64_gen_inst_emul_data(hypctx, esr_iss,
761 				    vme_ret);
762 				vme_ret->exitcode = VM_EXITCODE_INST_EMUL;
763 			}
764 			break;
765 		default:
766 			arm64_print_hyp_regs(vme_ret);
767 			vme_ret->exitcode = VM_EXITCODE_HYP;
768 			break;
769 		}
770 
771 		break;
772 
773 	default:
774 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_SYNC, 1);
775 		arm64_print_hyp_regs(vme_ret);
776 		vme_ret->exitcode = VM_EXITCODE_HYP;
777 		break;
778 	}
779 
780 	/* We don't don't do any instruction emulation here */
781 	return (UNHANDLED);
782 }
783 
784 static int
arm64_handle_world_switch(struct hypctx * hypctx,int excp_type,struct vm_exit * vme,pmap_t pmap)785 arm64_handle_world_switch(struct hypctx *hypctx, int excp_type,
786     struct vm_exit *vme, pmap_t pmap)
787 {
788 	int handled;
789 
790 	switch (excp_type) {
791 	case EXCP_TYPE_EL1_SYNC:
792 		/* The exit code will be set by handle_el1_sync_excp(). */
793 		handled = handle_el1_sync_excp(hypctx, vme, pmap);
794 		break;
795 
796 	case EXCP_TYPE_EL1_IRQ:
797 	case EXCP_TYPE_EL1_FIQ:
798 		/* The host kernel will handle IRQs and FIQs. */
799 		vmm_stat_incr(hypctx->vcpu,
800 		    excp_type == EXCP_TYPE_EL1_IRQ ? VMEXIT_IRQ : VMEXIT_FIQ,1);
801 		vme->exitcode = VM_EXITCODE_BOGUS;
802 		handled = UNHANDLED;
803 		break;
804 
805 	case EXCP_TYPE_EL1_ERROR:
806 	case EXCP_TYPE_EL2_SYNC:
807 	case EXCP_TYPE_EL2_IRQ:
808 	case EXCP_TYPE_EL2_FIQ:
809 	case EXCP_TYPE_EL2_ERROR:
810 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED_EL2, 1);
811 		vme->exitcode = VM_EXITCODE_BOGUS;
812 		handled = UNHANDLED;
813 		break;
814 
815 	default:
816 		vmm_stat_incr(hypctx->vcpu, VMEXIT_UNHANDLED, 1);
817 		vme->exitcode = VM_EXITCODE_BOGUS;
818 		handled = UNHANDLED;
819 		break;
820 	}
821 
822 	return (handled);
823 }
824 
825 static void
ptp_release(void ** cookie)826 ptp_release(void **cookie)
827 {
828 	if (*cookie != NULL) {
829 		vm_gpa_release(*cookie);
830 		*cookie = NULL;
831 	}
832 }
833 
834 static void *
ptp_hold(struct vcpu * vcpu,vm_paddr_t ptpphys,size_t len,void ** cookie)835 ptp_hold(struct vcpu *vcpu, vm_paddr_t ptpphys, size_t len, void **cookie)
836 {
837 	void *ptr;
838 
839 	ptp_release(cookie);
840 	ptr = vm_gpa_hold(vcpu, ptpphys, len, VM_PROT_RW, cookie);
841 	return (ptr);
842 }
843 
844 /* log2 of the number of bytes in a page table entry */
845 #define	PTE_SHIFT	3
846 int
vmmops_gla2gpa(void * vcpui,struct vm_guest_paging * paging,uint64_t gla,int prot,uint64_t * gpa,int * is_fault)847 vmmops_gla2gpa(void *vcpui, struct vm_guest_paging *paging, uint64_t gla,
848     int prot, uint64_t *gpa, int *is_fault)
849 {
850 	struct hypctx *hypctx;
851 	void *cookie;
852 	uint64_t mask, *ptep, pte, pte_addr;
853 	int address_bits, granule_shift, ia_bits, levels, pte_shift, tsz;
854 	bool is_el0;
855 
856 	/* Check if the MMU is off */
857 	if ((paging->flags & VM_GP_MMU_ENABLED) == 0) {
858 		*is_fault = 0;
859 		*gpa = gla;
860 		return (0);
861 	}
862 
863 	is_el0 = (paging->flags & PSR_M_MASK) == PSR_M_EL0t;
864 
865 	if (ADDR_IS_KERNEL(gla)) {
866 		/* If address translation is disabled raise an exception */
867 		if ((paging->tcr_el1 & TCR_EPD1) != 0) {
868 			*is_fault = 1;
869 			return (0);
870 		}
871 		if (is_el0 && (paging->tcr_el1 & TCR_E0PD1) != 0) {
872 			*is_fault = 1;
873 			return (0);
874 		}
875 		pte_addr = paging->ttbr1_addr;
876 		tsz = (paging->tcr_el1 & TCR_T1SZ_MASK) >> TCR_T1SZ_SHIFT;
877 		/* Clear the top byte if TBI is on */
878 		if ((paging->tcr_el1 & TCR_TBI1) != 0)
879 			gla |= (0xfful << 56);
880 		switch (paging->tcr_el1 & TCR_TG1_MASK) {
881 		case TCR_TG1_4K:
882 			granule_shift = PAGE_SHIFT_4K;
883 			break;
884 		case TCR_TG1_16K:
885 			granule_shift = PAGE_SHIFT_16K;
886 			break;
887 		case TCR_TG1_64K:
888 			granule_shift = PAGE_SHIFT_64K;
889 			break;
890 		default:
891 			*is_fault = 1;
892 			return (EINVAL);
893 		}
894 	} else {
895 		/* If address translation is disabled raise an exception */
896 		if ((paging->tcr_el1 & TCR_EPD0) != 0) {
897 			*is_fault = 1;
898 			return (0);
899 		}
900 		if (is_el0 && (paging->tcr_el1 & TCR_E0PD0) != 0) {
901 			*is_fault = 1;
902 			return (0);
903 		}
904 		pte_addr = paging->ttbr0_addr;
905 		tsz = (paging->tcr_el1 & TCR_T0SZ_MASK) >> TCR_T0SZ_SHIFT;
906 		/* Clear the top byte if TBI is on */
907 		if ((paging->tcr_el1 & TCR_TBI0) != 0)
908 			gla &= ~(0xfful << 56);
909 		switch (paging->tcr_el1 & TCR_TG0_MASK) {
910 		case TCR_TG0_4K:
911 			granule_shift = PAGE_SHIFT_4K;
912 			break;
913 		case TCR_TG0_16K:
914 			granule_shift = PAGE_SHIFT_16K;
915 			break;
916 		case TCR_TG0_64K:
917 			granule_shift = PAGE_SHIFT_64K;
918 			break;
919 		default:
920 			*is_fault = 1;
921 			return (EINVAL);
922 		}
923 	}
924 
925 	/*
926 	 * TODO: Support FEAT_TTST for smaller tsz values and FEAT_LPA2
927 	 * for larger values.
928 	 */
929 	switch (granule_shift) {
930 	case PAGE_SHIFT_4K:
931 	case PAGE_SHIFT_16K:
932 		/*
933 		 * See "Table D8-11 4KB granule, determining stage 1 initial
934 		 * lookup level" and "Table D8-21 16KB granule, determining
935 		 * stage 1 initial lookup level" from the "Arm Architecture
936 		 * Reference Manual for A-Profile architecture" revision I.a
937 		 * for the minimum and maximum values.
938 		 *
939 		 * TODO: Support less than 16 when FEAT_LPA2 is implemented
940 		 * and TCR_EL1.DS == 1
941 		 * TODO: Support more than 39 when FEAT_TTST is implemented
942 		 */
943 		if (tsz < 16 || tsz > 39) {
944 			*is_fault = 1;
945 			return (EINVAL);
946 		}
947 		break;
948 	case PAGE_SHIFT_64K:
949 	/* TODO: Support 64k granule. It will probably work, but is untested */
950 	default:
951 		*is_fault = 1;
952 		return (EINVAL);
953 	}
954 
955 	/*
956 	 * Calculate the input address bits. These are 64 bit in an address
957 	 * with the top tsz bits being all 0 or all 1.
958 	  */
959 	ia_bits = 64 - tsz;
960 
961 	/*
962 	 * Calculate the number of address bits used in the page table
963 	 * calculation. This is ia_bits minus the bottom granule_shift
964 	 * bits that are passed to the output address.
965 	 */
966 	address_bits = ia_bits - granule_shift;
967 
968 	/*
969 	 * Calculate the number of levels. Each level uses
970 	 * granule_shift - PTE_SHIFT bits of the input address.
971 	 * This is because the table is 1 << granule_shift and each
972 	 * entry is 1 << PTE_SHIFT bytes.
973 	 */
974 	levels = howmany(address_bits, granule_shift - PTE_SHIFT);
975 
976 	/* Mask of the upper unused bits in the virtual address */
977 	gla &= (1ul << ia_bits) - 1;
978 	hypctx = (struct hypctx *)vcpui;
979 	cookie = NULL;
980 	/* TODO: Check if the level supports block descriptors */
981 	for (;levels > 0; levels--) {
982 		int idx;
983 
984 		pte_shift = (levels - 1) * (granule_shift - PTE_SHIFT) +
985 		    granule_shift;
986 		idx = (gla >> pte_shift) &
987 		    ((1ul << (granule_shift - PTE_SHIFT)) - 1);
988 		while (idx > PAGE_SIZE / sizeof(pte)) {
989 			idx -= PAGE_SIZE / sizeof(pte);
990 			pte_addr += PAGE_SIZE;
991 		}
992 
993 		ptep = ptp_hold(hypctx->vcpu, pte_addr, PAGE_SIZE, &cookie);
994 		if (ptep == NULL)
995 			goto error;
996 		pte = ptep[idx];
997 
998 		/* Calculate the level we are looking at */
999 		switch (levels) {
1000 		default:
1001 			goto fault;
1002 		/* TODO: Level -1 when FEAT_LPA2 is implemented */
1003 		case 4: /* Level 0 */
1004 			if ((pte & ATTR_DESCR_MASK) != L0_TABLE)
1005 				goto fault;
1006 			/* FALLTHROUGH */
1007 		case 3: /* Level 1 */
1008 		case 2: /* Level 2 */
1009 			switch (pte & ATTR_DESCR_MASK) {
1010 			/* Use L1 macro as all levels are the same */
1011 			case L1_TABLE:
1012 				/* Check if EL0 can access this address space */
1013 				if (is_el0 &&
1014 				    (pte & TATTR_AP_TABLE_NO_EL0) != 0)
1015 					goto fault;
1016 				/* Check if the address space is writable */
1017 				if ((prot & PROT_WRITE) != 0 &&
1018 				    (pte & TATTR_AP_TABLE_RO) != 0)
1019 					goto fault;
1020 				if ((prot & PROT_EXEC) != 0) {
1021 					/* Check the table exec attribute */
1022 					if ((is_el0 &&
1023 					    (pte & TATTR_UXN_TABLE) != 0) ||
1024 					    (!is_el0 &&
1025 					     (pte & TATTR_PXN_TABLE) != 0))
1026 						goto fault;
1027 				}
1028 				pte_addr = pte & ~ATTR_MASK;
1029 				break;
1030 			case L1_BLOCK:
1031 				goto done;
1032 			default:
1033 				goto fault;
1034 			}
1035 			break;
1036 		case 1: /* Level 3 */
1037 			if ((pte & ATTR_DESCR_MASK) == L3_PAGE)
1038 				goto done;
1039 			goto fault;
1040 		}
1041 	}
1042 
1043 done:
1044 	/* Check if EL0 has access to the block/page */
1045 	if (is_el0 && (pte & ATTR_S1_AP(ATTR_S1_AP_USER)) == 0)
1046 		goto fault;
1047 	if ((prot & PROT_WRITE) != 0 && (pte & ATTR_S1_AP_RW_BIT) != 0)
1048 		goto fault;
1049 	if ((prot & PROT_EXEC) != 0) {
1050 		if ((is_el0 && (pte & ATTR_S1_UXN) != 0) ||
1051 		    (!is_el0 && (pte & ATTR_S1_PXN) != 0))
1052 			goto fault;
1053 	}
1054 	mask = (1ul << pte_shift) - 1;
1055 	*gpa = (pte & ~ATTR_MASK) | (gla & mask);
1056 	*is_fault = 0;
1057 	ptp_release(&cookie);
1058 	return (0);
1059 
1060 error:
1061 	ptp_release(&cookie);
1062 	return (EFAULT);
1063 fault:
1064 	*is_fault = 1;
1065 	ptp_release(&cookie);
1066 	return (0);
1067 }
1068 
1069 int
vmmops_run(void * vcpui,register_t pc,pmap_t pmap,struct vm_eventinfo * evinfo)1070 vmmops_run(void *vcpui, register_t pc, pmap_t pmap, struct vm_eventinfo *evinfo)
1071 {
1072 	uint64_t excp_type;
1073 	int handled;
1074 	register_t daif;
1075 	struct hyp *hyp;
1076 	struct hypctx *hypctx;
1077 	struct vcpu *vcpu;
1078 	struct vm_exit *vme;
1079 	int mode;
1080 
1081 	hypctx = (struct hypctx *)vcpui;
1082 	hyp = hypctx->hyp;
1083 	vcpu = hypctx->vcpu;
1084 	vme = vm_exitinfo(vcpu);
1085 
1086 	hypctx->tf.tf_elr = (uint64_t)pc;
1087 
1088 	for (;;) {
1089 		if (hypctx->has_exception) {
1090 			hypctx->has_exception = false;
1091 			hypctx->elr_el1 = hypctx->tf.tf_elr;
1092 
1093 			mode = hypctx->tf.tf_spsr & (PSR_M_MASK | PSR_M_32);
1094 
1095 			if (mode == PSR_M_EL1t) {
1096 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x0;
1097 			} else if (mode == PSR_M_EL1h) {
1098 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x200;
1099 			} else if ((mode & PSR_M_32) == PSR_M_64) {
1100 				/* 64-bit EL0 */
1101 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x400;
1102 			} else {
1103 				/* 32-bit EL0 */
1104 				hypctx->tf.tf_elr = hypctx->vbar_el1 + 0x600;
1105 			}
1106 
1107 			/* Set the new spsr */
1108 			hypctx->spsr_el1 = hypctx->tf.tf_spsr;
1109 
1110 			/* Set the new cpsr */
1111 			hypctx->tf.tf_spsr = hypctx->spsr_el1 & PSR_FLAGS;
1112 			hypctx->tf.tf_spsr |= PSR_DAIF | PSR_M_EL1h;
1113 
1114 			/*
1115 			 * Update fields that may change on exeption entry
1116 			 * based on how sctlr_el1 is configured.
1117 			 */
1118 			if ((hypctx->sctlr_el1 & SCTLR_SPAN) == 0)
1119 				hypctx->tf.tf_spsr |= PSR_PAN;
1120 			if ((hypctx->sctlr_el1 & SCTLR_DSSBS) == 0)
1121 				hypctx->tf.tf_spsr &= ~PSR_SSBS;
1122 			else
1123 				hypctx->tf.tf_spsr |= PSR_SSBS;
1124 		}
1125 
1126 		daif = intr_disable();
1127 
1128 		/* Check if the vcpu is suspended */
1129 		if (vcpu_suspended(evinfo)) {
1130 			intr_restore(daif);
1131 			vm_exit_suspended(vcpu, pc);
1132 			break;
1133 		}
1134 
1135 		if (vcpu_debugged(vcpu)) {
1136 			intr_restore(daif);
1137 			vm_exit_debug(vcpu, pc);
1138 			break;
1139 		}
1140 
1141 		/* Activate the stage2 pmap so the vmid is valid */
1142 		pmap_activate_vm(pmap);
1143 		hyp->vttbr_el2 = pmap_to_ttbr0(pmap);
1144 
1145 		/*
1146 		 * TODO: What happens if a timer interrupt is asserted exactly
1147 		 * here, but for the previous VM?
1148 		 */
1149 		arm64_set_active_vcpu(hypctx);
1150 		vgic_flush_hwstate(hypctx);
1151 
1152 		/* Call into EL2 to switch to the guest */
1153 		excp_type = vmm_enter_guest(hyp, hypctx);
1154 
1155 		vgic_sync_hwstate(hypctx);
1156 		vtimer_sync_hwstate(hypctx);
1157 
1158 		/*
1159 		 * Deactivate the stage2 pmap.
1160 		 */
1161 		PCPU_SET(curvmpmap, NULL);
1162 		intr_restore(daif);
1163 
1164 		vmm_stat_incr(vcpu, VMEXIT_COUNT, 1);
1165 		if (excp_type == EXCP_TYPE_MAINT_IRQ)
1166 			continue;
1167 
1168 		vme->pc = hypctx->tf.tf_elr;
1169 		vme->inst_length = INSN_SIZE;
1170 		vme->u.hyp.exception_nr = excp_type;
1171 		vme->u.hyp.esr_el2 = hypctx->tf.tf_esr;
1172 		vme->u.hyp.far_el2 = hypctx->exit_info.far_el2;
1173 		vme->u.hyp.hpfar_el2 = hypctx->exit_info.hpfar_el2;
1174 
1175 		handled = arm64_handle_world_switch(hypctx, excp_type, vme,
1176 		    pmap);
1177 		if (handled == UNHANDLED)
1178 			/* Exit loop to emulate instruction. */
1179 			break;
1180 		else
1181 			/* Resume guest execution from the next instruction. */
1182 			hypctx->tf.tf_elr += vme->inst_length;
1183 	}
1184 
1185 	return (0);
1186 }
1187 
1188 static void
arm_pcpu_vmcleanup(void * arg)1189 arm_pcpu_vmcleanup(void *arg)
1190 {
1191 	struct hyp *hyp;
1192 	int i, maxcpus;
1193 
1194 	hyp = arg;
1195 	maxcpus = vm_get_maxcpus(hyp->vm);
1196 	for (i = 0; i < maxcpus; i++) {
1197 		if (arm64_get_active_vcpu() == hyp->ctx[i]) {
1198 			arm64_set_active_vcpu(NULL);
1199 			break;
1200 		}
1201 	}
1202 }
1203 
1204 void
vmmops_vcpu_cleanup(void * vcpui)1205 vmmops_vcpu_cleanup(void *vcpui)
1206 {
1207 	struct hypctx *hypctx = vcpui;
1208 
1209 	vtimer_cpucleanup(hypctx);
1210 	vgic_cpucleanup(hypctx);
1211 
1212 	if (!in_vhe())
1213 		vmmpmap_remove(hypctx->el2_addr, el2_hypctx_size(), true);
1214 
1215 	free(hypctx, M_HYP);
1216 }
1217 
1218 void
vmmops_cleanup(void * vmi)1219 vmmops_cleanup(void *vmi)
1220 {
1221 	struct hyp *hyp = vmi;
1222 
1223 	vtimer_vmcleanup(hyp);
1224 	vgic_vmcleanup(hyp);
1225 
1226 	smp_rendezvous(NULL, arm_pcpu_vmcleanup, NULL, hyp);
1227 
1228 	if (!in_vhe())
1229 		vmmpmap_remove(hyp->el2_addr, el2_hyp_size(hyp->vm), true);
1230 
1231 	free(hyp, M_HYP);
1232 }
1233 
1234 /*
1235  * Return register value. Registers have different sizes and an explicit cast
1236  * must be made to ensure proper conversion.
1237  */
1238 static uint64_t *
hypctx_regptr(struct hypctx * hypctx,int reg)1239 hypctx_regptr(struct hypctx *hypctx, int reg)
1240 {
1241 	switch (reg) {
1242 	case VM_REG_GUEST_X0 ... VM_REG_GUEST_X29:
1243 		return (&hypctx->tf.tf_x[reg]);
1244 	case VM_REG_GUEST_LR:
1245 		return (&hypctx->tf.tf_lr);
1246 	case VM_REG_GUEST_SP:
1247 		return (&hypctx->tf.tf_sp);
1248 	case VM_REG_GUEST_CPSR:
1249 		return (&hypctx->tf.tf_spsr);
1250 	case VM_REG_GUEST_PC:
1251 		return (&hypctx->tf.tf_elr);
1252 	case VM_REG_GUEST_SCTLR_EL1:
1253 		return (&hypctx->sctlr_el1);
1254 	case VM_REG_GUEST_TTBR0_EL1:
1255 		return (&hypctx->ttbr0_el1);
1256 	case VM_REG_GUEST_TTBR1_EL1:
1257 		return (&hypctx->ttbr1_el1);
1258 	case VM_REG_GUEST_TCR_EL1:
1259 		return (&hypctx->tcr_el1);
1260 	case VM_REG_GUEST_TCR2_EL1:
1261 		return (&hypctx->tcr2_el1);
1262 	case VM_REG_GUEST_MPIDR_EL1:
1263 		return (&hypctx->vmpidr_el2);
1264 	default:
1265 		break;
1266 	}
1267 	return (NULL);
1268 }
1269 
1270 int
vmmops_getreg(void * vcpui,int reg,uint64_t * retval)1271 vmmops_getreg(void *vcpui, int reg, uint64_t *retval)
1272 {
1273 	uint64_t *regp;
1274 	int running, hostcpu;
1275 	struct hypctx *hypctx = vcpui;
1276 
1277 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1278 	if (running && hostcpu != curcpu)
1279 		panic("arm_getreg: %s%d is running", vm_name(hypctx->hyp->vm),
1280 		    vcpu_vcpuid(hypctx->vcpu));
1281 
1282 	regp = hypctx_regptr(hypctx, reg);
1283 	if (regp == NULL)
1284 		return (EINVAL);
1285 
1286 	*retval = *regp;
1287 	return (0);
1288 }
1289 
1290 int
vmmops_setreg(void * vcpui,int reg,uint64_t val)1291 vmmops_setreg(void *vcpui, int reg, uint64_t val)
1292 {
1293 	uint64_t *regp;
1294 	struct hypctx *hypctx = vcpui;
1295 	int running, hostcpu;
1296 
1297 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1298 	if (running && hostcpu != curcpu)
1299 		panic("arm_setreg: %s%d is running", vm_name(hypctx->hyp->vm),
1300 		    vcpu_vcpuid(hypctx->vcpu));
1301 
1302 	regp = hypctx_regptr(hypctx, reg);
1303 	if (regp == NULL)
1304 		return (EINVAL);
1305 
1306 	*regp = val;
1307 	return (0);
1308 }
1309 
1310 int
vmmops_exception(void * vcpui,uint64_t esr,uint64_t far)1311 vmmops_exception(void *vcpui, uint64_t esr, uint64_t far)
1312 {
1313 	struct hypctx *hypctx = vcpui;
1314 	int running, hostcpu;
1315 
1316 	running = vcpu_is_running(hypctx->vcpu, &hostcpu);
1317 	if (running && hostcpu != curcpu)
1318 		panic("%s: %s%d is running", __func__, vm_name(hypctx->hyp->vm),
1319 		    vcpu_vcpuid(hypctx->vcpu));
1320 
1321 	hypctx->far_el1 = far;
1322 	hypctx->esr_el1 = esr;
1323 	hypctx->has_exception = true;
1324 
1325 	return (0);
1326 }
1327 
1328 int
vmmops_getcap(void * vcpui,int num,int * retval)1329 vmmops_getcap(void *vcpui, int num, int *retval)
1330 {
1331 	struct hypctx *hypctx = vcpui;
1332 	int ret;
1333 
1334 	ret = ENOENT;
1335 
1336 	switch (num) {
1337 	case VM_CAP_UNRESTRICTED_GUEST:
1338 		*retval = 1;
1339 		ret = 0;
1340 		break;
1341 	case VM_CAP_BRK_EXIT:
1342 	case VM_CAP_SS_EXIT:
1343 	case VM_CAP_MASK_HWINTR:
1344 		*retval = (hypctx->setcaps & (1ul << num)) != 0;
1345 		break;
1346 	default:
1347 		break;
1348 	}
1349 
1350 	return (ret);
1351 }
1352 
1353 int
vmmops_setcap(void * vcpui,int num,int val)1354 vmmops_setcap(void *vcpui, int num, int val)
1355 {
1356 	struct hypctx *hypctx = vcpui;
1357 	int ret;
1358 
1359 	ret = 0;
1360 
1361 	switch (num) {
1362 	case VM_CAP_BRK_EXIT:
1363 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1364 			break;
1365 		if (val != 0)
1366 			hypctx->mdcr_el2 |= MDCR_EL2_TDE;
1367 		else
1368 			hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
1369 		break;
1370 	case VM_CAP_SS_EXIT:
1371 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1372 			break;
1373 
1374 		if (val != 0) {
1375 			hypctx->debug_spsr |= (hypctx->tf.tf_spsr & PSR_SS);
1376 			hypctx->debug_mdscr |= hypctx->mdscr_el1 &
1377 			    (MDSCR_SS | MDSCR_KDE);
1378 
1379 			hypctx->tf.tf_spsr |= PSR_SS;
1380 			hypctx->mdscr_el1 |= MDSCR_SS | MDSCR_KDE;
1381 			hypctx->mdcr_el2 |= MDCR_EL2_TDE;
1382 		} else {
1383 			hypctx->tf.tf_spsr &= ~PSR_SS;
1384 			hypctx->tf.tf_spsr |= hypctx->debug_spsr;
1385 			hypctx->debug_spsr &= ~PSR_SS;
1386 			hypctx->mdscr_el1 &= ~(MDSCR_SS | MDSCR_KDE);
1387 			hypctx->mdscr_el1 |= hypctx->debug_mdscr;
1388 			hypctx->debug_mdscr &= ~(MDSCR_SS | MDSCR_KDE);
1389 			hypctx->mdcr_el2 &= ~MDCR_EL2_TDE;
1390 		}
1391 		break;
1392 	case VM_CAP_MASK_HWINTR:
1393 		if ((val != 0) == ((hypctx->setcaps & (1ul << num)) != 0))
1394 			break;
1395 
1396 		if (val != 0) {
1397 			hypctx->debug_spsr |= (hypctx->tf.tf_spsr &
1398 			    (PSR_I | PSR_F));
1399 			hypctx->tf.tf_spsr |= PSR_I | PSR_F;
1400 		} else {
1401 			hypctx->tf.tf_spsr &= ~(PSR_I | PSR_F);
1402 			hypctx->tf.tf_spsr |= (hypctx->debug_spsr &
1403 			    (PSR_I | PSR_F));
1404 			hypctx->debug_spsr &= ~(PSR_I | PSR_F);
1405 		}
1406 		break;
1407 	default:
1408 		ret = ENOENT;
1409 		break;
1410 	}
1411 
1412 	if (ret == 0) {
1413 		if (val == 0)
1414 			hypctx->setcaps &= ~(1ul << num);
1415 		else
1416 			hypctx->setcaps |= (1ul << num);
1417 	}
1418 
1419 	return (ret);
1420 }
1421