xref: /freebsd/contrib/libarchive/libarchive/archive_read_disk_posix.c (revision 007679a138089676aadc9a712277f4004403b905)
1 /*-
2  * Copyright (c) 2003-2009 Tim Kientzle
3  * Copyright (c) 2010-2012 Michihiro NAKAJIMA
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /* This is the tree-walking code for POSIX systems. */
29 #if !defined(_WIN32) || defined(__CYGWIN__)
30 
31 #include "archive_platform.h"
32 
33 #ifdef HAVE_SYS_PARAM_H
34 #include <sys/param.h>
35 #endif
36 #ifdef HAVE_SYS_STAT_H
37 #include <sys/stat.h>
38 #endif
39 #ifdef HAVE_SYS_STATFS_H
40 #include <sys/statfs.h>
41 #endif
42 #ifdef HAVE_SYS_STATVFS_H
43 #include <sys/statvfs.h>
44 #endif
45 #ifdef HAVE_SYS_TIME_H
46 #include <sys/time.h>
47 #endif
48 #ifdef HAVE_LINUX_MAGIC_H
49 #include <linux/magic.h>
50 #endif
51 #ifdef HAVE_LINUX_FS_H
52 #include <linux/fs.h>
53 #elif HAVE_SYS_MOUNT_H
54 #include <sys/mount.h>
55 #endif
56 /*
57  * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h.
58  * As the include guards don't agree, the order of include is important.
59  */
60 #ifdef HAVE_LINUX_EXT2_FS_H
61 #include <linux/ext2_fs.h>      /* for Linux file flags */
62 #endif
63 #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__)
64 #include <ext2fs/ext2_fs.h>     /* Linux file flags, broken on Cygwin */
65 #endif
66 #ifdef HAVE_DIRECT_H
67 #include <direct.h>
68 #endif
69 #ifdef HAVE_DIRENT_H
70 #include <dirent.h>
71 #endif
72 #ifdef HAVE_ERRNO_H
73 #include <errno.h>
74 #endif
75 #ifdef HAVE_FCNTL_H
76 #include <fcntl.h>
77 #endif
78 #ifdef HAVE_LIMITS_H
79 #include <limits.h>
80 #endif
81 #ifdef HAVE_STDLIB_H
82 #include <stdlib.h>
83 #endif
84 #ifdef HAVE_STRING_H
85 #include <string.h>
86 #endif
87 #ifdef HAVE_UNISTD_H
88 #include <unistd.h>
89 #endif
90 #ifdef HAVE_SYS_IOCTL_H
91 #include <sys/ioctl.h>
92 #endif
93 
94 #include "archive.h"
95 #include "archive_string.h"
96 #include "archive_entry.h"
97 #include "archive_private.h"
98 #include "archive_read_disk_private.h"
99 
100 #ifndef HAVE_FCHDIR
101 #error fchdir function required.
102 #endif
103 #ifndef O_BINARY
104 #define O_BINARY	0
105 #endif
106 #ifndef O_CLOEXEC
107 #define O_CLOEXEC	0
108 #endif
109 
110 #define MAX_FILESYSTEM_ID 1000000
111 
112 #if defined(__hpux) && !defined(HAVE_DIRFD)
113 #define dirfd(x) ((x)->__dd_fd)
114 #define HAVE_DIRFD
115 #endif
116 
117 /*-
118  * This is a new directory-walking system that addresses a number
119  * of problems I've had with fts(3).  In particular, it has no
120  * pathname-length limits (other than the size of 'int'), handles
121  * deep logical traversals, uses considerably less memory, and has
122  * an opaque interface (easier to modify in the future).
123  *
124  * Internally, it keeps a single list of "tree_entry" items that
125  * represent filesystem objects that require further attention.
126  * Non-directories are not kept in memory: they are pulled from
127  * readdir(), returned to the client, then freed as soon as possible.
128  * Any directory entry to be traversed gets pushed onto the stack.
129  *
130  * There is surprisingly little information that needs to be kept for
131  * each item on the stack.  Just the name, depth (represented here as the
132  * string length of the parent directory's pathname), and some markers
133  * indicating how to get back to the parent (via chdir("..") for a
134  * regular dir or via fchdir(2) for a symlink).
135  */
136 /*
137  * TODO:
138  *    1) Loop checking.
139  *    3) Arbitrary logical traversals by closing/reopening intermediate fds.
140  */
141 
142 struct restore_time {
143 	const char		*name;
144 	time_t			 mtime;
145 	long			 mtime_nsec;
146 	time_t			 atime;
147 	long			 atime_nsec;
148 	mode_t			 filetype;
149 	int			 noatime;
150 };
151 
152 struct tree_entry {
153 	int			 depth;
154 	struct tree_entry	*next;
155 	struct tree_entry	*parent;
156 	struct archive_string	 name;
157 	size_t			 dirname_length;
158 	int64_t			 dev;
159 	int64_t			 ino;
160 	int			 flags;
161 	int			 filesystem_id;
162 	/* How to return back to the parent of a symlink. */
163 	int			 symlink_parent_fd;
164 	/* How to restore time of a directory. */
165 	struct restore_time	 restore_time;
166 };
167 
168 struct filesystem {
169 	int64_t		dev;
170 	int		synthetic;
171 	int		remote;
172 	int		noatime;
173 	long		incr_xfer_size;
174 	long		max_xfer_size;
175 	long		min_xfer_size;
176 	long		xfer_align;
177 
178 	/*
179 	 * Buffer used for reading file contents.
180 	 */
181 	/* Exactly allocated memory pointer. */
182 	unsigned char	*allocation_ptr;
183 	/* Pointer adjusted to the filesystem alignment . */
184 	unsigned char	*buff;
185 	size_t		 buff_size;
186 };
187 
188 /* Definitions for tree_entry.flags bitmap. */
189 #define	isDir		1  /* This entry is a regular directory. */
190 #define	isDirLink	2  /* This entry is a symbolic link to a directory. */
191 #define	needsFirstVisit	4  /* This is an initial entry. */
192 #define	needsDescent	8  /* This entry needs to be previsited. */
193 #define	needsOpen	16 /* This is a directory that needs to be opened. */
194 #define	needsAscent	32 /* This entry needs to be postvisited. */
195 
196 /*
197  * Local data for this package.
198  */
199 struct tree {
200 	struct tree_entry	*stack;
201 	struct tree_entry	*current;
202 	DIR			*d;
203 #define	INVALID_DIR_HANDLE NULL
204 	struct dirent		*de;
205 	int			 flags;
206 	int			 visit_type;
207 	/* Error code from last failed operation. */
208 	int			 tree_errno;
209 
210 	/* Dynamically-sized buffer for holding path */
211 	struct archive_string	 path;
212 
213 	/* Last path element */
214 	const char		*basename;
215 	/* Leading dir length */
216 	size_t			 dirname_length;
217 
218 	int			 depth;
219 	int			 openCount;
220 	int			 maxOpenCount;
221 	int			 initial_dir_fd;
222 	int			 working_dir_fd;
223 
224 	struct stat		 lst;
225 	struct stat		 st;
226 	int			 descend;
227 	int			 nlink;
228 	/* How to restore time of a file. */
229 	struct restore_time	 restore_time;
230 
231 	struct entry_sparse {
232 		int64_t		 length;
233 		int64_t		 offset;
234 	}			*sparse_list, *current_sparse;
235 	int			 sparse_count;
236 	int			 sparse_list_size;
237 
238 	char			 initial_symlink_mode;
239 	char			 symlink_mode;
240 	struct filesystem	*current_filesystem;
241 	struct filesystem	*filesystem_table;
242 	int			 initial_filesystem_id;
243 	int			 current_filesystem_id;
244 	int			 max_filesystem_id;
245 	int			 allocated_filesystem;
246 
247 	int			 entry_fd;
248 	int			 entry_eof;
249 	int64_t			 entry_remaining_bytes;
250 	int64_t			 entry_total;
251 	unsigned char		*entry_buff;
252 	size_t			 entry_buff_size;
253 };
254 
255 /* Definitions for tree.flags bitmap. */
256 #define	hasStat		16 /* The st entry is valid. */
257 #define	hasLstat	32 /* The lst entry is valid. */
258 #define	onWorkingDir	64 /* We are on the working dir where we are
259 			    * reading directory entry at this time. */
260 #define	needsRestoreTimes 128
261 #define	onInitialDir	256 /* We are on the initial dir. */
262 
263 static int
264 tree_dir_next_posix(struct tree *t);
265 
266 #ifdef HAVE_DIRENT_D_NAMLEN
267 /* BSD extension; avoids need for a strlen() call. */
268 #define	D_NAMELEN(dp)	(dp)->d_namlen
269 #else
270 #define	D_NAMELEN(dp)	(strlen((dp)->d_name))
271 #endif
272 
273 /* Initiate/terminate a tree traversal. */
274 static struct tree *tree_open(const char *, char, int);
275 static struct tree *tree_reopen(struct tree *, const char *, int);
276 static void tree_close(struct tree *);
277 static void tree_free(struct tree *);
278 static void tree_push(struct tree *, const char *, int, int64_t, int64_t,
279 		struct restore_time *);
280 static int tree_enter_initial_dir(struct tree *);
281 static int tree_enter_working_dir(struct tree *);
282 static int tree_current_dir_fd(struct tree *);
283 
284 /*
285  * tree_next() returns Zero if there is no next entry, non-zero if
286  * there is.  Note that directories are visited three times.
287  * Directories are always visited first as part of enumerating their
288  * parent; that is a "regular" visit.  If tree_descend() is invoked at
289  * that time, the directory is added to a work list and will
290  * subsequently be visited two more times: once just after descending
291  * into the directory ("postdescent") and again just after ascending
292  * back to the parent ("postascent").
293  *
294  * TREE_ERROR_DIR is returned if the descent failed (because the
295  * directory couldn't be opened, for instance).  This is returned
296  * instead of TREE_POSTDESCENT/TREE_POSTASCENT.  TREE_ERROR_DIR is not a
297  * fatal error, but it does imply that the relevant subtree won't be
298  * visited.  TREE_ERROR_FATAL is returned for an error that left the
299  * traversal completely hosed.  Right now, this is only returned for
300  * chdir() failures during ascent.
301  */
302 #define	TREE_REGULAR		1
303 #define	TREE_POSTDESCENT	2
304 #define	TREE_POSTASCENT		3
305 #define	TREE_ERROR_DIR		-1
306 #define	TREE_ERROR_FATAL	-2
307 
308 static int tree_next(struct tree *);
309 
310 /*
311  * Return information about the current entry.
312  */
313 
314 /*
315  * The current full pathname, length of the full pathname, and a name
316  * that can be used to access the file.  Because tree does use chdir
317  * extensively, the access path is almost never the same as the full
318  * current path.
319  *
320  * TODO: On platforms that support it, use openat()-style operations
321  * to eliminate the chdir() operations entirely while still supporting
322  * arbitrarily deep traversals.  This makes access_path troublesome to
323  * support, of course, which means we'll need a rich enough interface
324  * that clients can function without it.  (In particular, we'll need
325  * tree_current_open() that returns an open file descriptor.)
326  *
327  */
328 static const char *tree_current_path(struct tree *);
329 static const char *tree_current_access_path(struct tree *);
330 
331 /*
332  * Request the lstat() or stat() data for the current path.  Since the
333  * tree package needs to do some of this anyway, and caches the
334  * results, you should take advantage of it here if you need it rather
335  * than make a redundant stat() or lstat() call of your own.
336  */
337 static const struct stat *tree_current_stat(struct tree *);
338 static const struct stat *tree_current_lstat(struct tree *);
339 static int	tree_current_is_symblic_link_target(struct tree *);
340 
341 /* The following functions use tricks to avoid a certain number of
342  * stat()/lstat() calls. */
343 /* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
344 static int tree_current_is_physical_dir(struct tree *);
345 /* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
346 static int tree_current_is_dir(struct tree *);
347 static int update_current_filesystem(struct archive_read_disk *a,
348 		    int64_t dev);
349 static int setup_current_filesystem(struct archive_read_disk *);
350 static int tree_target_is_same_as_parent(struct tree *, const struct stat *);
351 
352 static int	_archive_read_disk_open(struct archive *, const char *);
353 static int	_archive_read_free(struct archive *);
354 static int	_archive_read_close(struct archive *);
355 static int	_archive_read_data_block(struct archive *,
356 		    const void **, size_t *, int64_t *);
357 static int	_archive_read_next_header(struct archive *,
358 		    struct archive_entry **);
359 static int	_archive_read_next_header2(struct archive *,
360 		    struct archive_entry *);
361 static const char *trivial_lookup_gname(void *, int64_t gid);
362 static const char *trivial_lookup_uname(void *, int64_t uid);
363 static int	setup_sparse(struct archive_read_disk *, struct archive_entry *);
364 static int	close_and_restore_time(int fd, struct tree *,
365 		    struct restore_time *);
366 static int	open_on_current_dir(struct tree *, const char *, int);
367 static int	tree_dup(int);
368 
369 
370 static const struct archive_vtable
371 archive_read_disk_vtable = {
372 	.archive_free = _archive_read_free,
373 	.archive_close = _archive_read_close,
374 	.archive_read_data_block = _archive_read_data_block,
375 	.archive_read_next_header = _archive_read_next_header,
376 	.archive_read_next_header2 = _archive_read_next_header2,
377 };
378 
379 const char *
archive_read_disk_gname(struct archive * _a,la_int64_t gid)380 archive_read_disk_gname(struct archive *_a, la_int64_t gid)
381 {
382 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
383 	if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
384 		ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
385 		return (NULL);
386 	if (a->lookup_gname == NULL)
387 		return (NULL);
388 	return ((*a->lookup_gname)(a->lookup_gname_data, gid));
389 }
390 
391 const char *
archive_read_disk_uname(struct archive * _a,la_int64_t uid)392 archive_read_disk_uname(struct archive *_a, la_int64_t uid)
393 {
394 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
395 	if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
396 		ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
397 		return (NULL);
398 	if (a->lookup_uname == NULL)
399 		return (NULL);
400 	return ((*a->lookup_uname)(a->lookup_uname_data, uid));
401 }
402 
403 int
archive_read_disk_set_gname_lookup(struct archive * _a,void * private_data,const char * (* lookup_gname)(void * private,la_int64_t gid),void (* cleanup_gname)(void * private))404 archive_read_disk_set_gname_lookup(struct archive *_a,
405     void *private_data,
406     const char * (*lookup_gname)(void *private, la_int64_t gid),
407     void (*cleanup_gname)(void *private))
408 {
409 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
410 	archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
411 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
412 
413 	if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
414 		(a->cleanup_gname)(a->lookup_gname_data);
415 
416 	a->lookup_gname = lookup_gname;
417 	a->cleanup_gname = cleanup_gname;
418 	a->lookup_gname_data = private_data;
419 	return (ARCHIVE_OK);
420 }
421 
422 int
archive_read_disk_set_uname_lookup(struct archive * _a,void * private_data,const char * (* lookup_uname)(void * private,la_int64_t uid),void (* cleanup_uname)(void * private))423 archive_read_disk_set_uname_lookup(struct archive *_a,
424     void *private_data,
425     const char * (*lookup_uname)(void *private, la_int64_t uid),
426     void (*cleanup_uname)(void *private))
427 {
428 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
429 	archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
430 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
431 
432 	if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
433 		(a->cleanup_uname)(a->lookup_uname_data);
434 
435 	a->lookup_uname = lookup_uname;
436 	a->cleanup_uname = cleanup_uname;
437 	a->lookup_uname_data = private_data;
438 	return (ARCHIVE_OK);
439 }
440 
441 /*
442  * Create a new archive_read_disk object and initialize it with global state.
443  */
444 struct archive *
archive_read_disk_new(void)445 archive_read_disk_new(void)
446 {
447 	struct archive_read_disk *a;
448 
449 	a = calloc(1, sizeof(*a));
450 	if (a == NULL)
451 		return (NULL);
452 	a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
453 	a->archive.state = ARCHIVE_STATE_NEW;
454 	a->archive.vtable = &archive_read_disk_vtable;
455 	a->entry = archive_entry_new2(&a->archive);
456 	a->lookup_uname = trivial_lookup_uname;
457 	a->lookup_gname = trivial_lookup_gname;
458 	a->flags = ARCHIVE_READDISK_MAC_COPYFILE;
459 	a->open_on_current_dir = open_on_current_dir;
460 	a->tree_current_dir_fd = tree_current_dir_fd;
461 	a->tree_enter_working_dir = tree_enter_working_dir;
462 	return (&a->archive);
463 }
464 
465 static int
_archive_read_free(struct archive * _a)466 _archive_read_free(struct archive *_a)
467 {
468 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
469 	int r;
470 
471 	if (_a == NULL)
472 		return (ARCHIVE_OK);
473 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
474 	    ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
475 
476 	if (a->archive.state != ARCHIVE_STATE_CLOSED)
477 		r = _archive_read_close(&a->archive);
478 	else
479 		r = ARCHIVE_OK;
480 
481 	tree_free(a->tree);
482 	if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
483 		(a->cleanup_gname)(a->lookup_gname_data);
484 	if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
485 		(a->cleanup_uname)(a->lookup_uname_data);
486 	archive_string_free(&a->archive.error_string);
487 	archive_entry_free(a->entry);
488 	a->archive.magic = 0;
489 	__archive_clean(&a->archive);
490 	free(a);
491 	return (r);
492 }
493 
494 static int
_archive_read_close(struct archive * _a)495 _archive_read_close(struct archive *_a)
496 {
497 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
498 
499 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
500 	    ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
501 
502 	if (a->archive.state != ARCHIVE_STATE_FATAL)
503 		a->archive.state = ARCHIVE_STATE_CLOSED;
504 
505 	tree_close(a->tree);
506 
507 	return (ARCHIVE_OK);
508 }
509 
510 static void
setup_symlink_mode(struct archive_read_disk * a,char symlink_mode,char follow_symlinks)511 setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
512     char follow_symlinks)
513 {
514 	a->symlink_mode = symlink_mode;
515 	a->follow_symlinks = follow_symlinks;
516 	if (a->tree != NULL) {
517 		a->tree->initial_symlink_mode = a->symlink_mode;
518 		a->tree->symlink_mode = a->symlink_mode;
519 	}
520 }
521 
522 int
archive_read_disk_set_symlink_logical(struct archive * _a)523 archive_read_disk_set_symlink_logical(struct archive *_a)
524 {
525 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
526 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
527 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
528 	setup_symlink_mode(a, 'L', 1);
529 	return (ARCHIVE_OK);
530 }
531 
532 int
archive_read_disk_set_symlink_physical(struct archive * _a)533 archive_read_disk_set_symlink_physical(struct archive *_a)
534 {
535 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
536 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
537 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
538 	setup_symlink_mode(a, 'P', 0);
539 	return (ARCHIVE_OK);
540 }
541 
542 int
archive_read_disk_set_symlink_hybrid(struct archive * _a)543 archive_read_disk_set_symlink_hybrid(struct archive *_a)
544 {
545 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
546 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
547 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
548 	setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
549 	return (ARCHIVE_OK);
550 }
551 
552 int
archive_read_disk_set_atime_restored(struct archive * _a)553 archive_read_disk_set_atime_restored(struct archive *_a)
554 {
555 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
556 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
557 	    ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
558 #ifdef HAVE_UTIMES
559 	a->flags |= ARCHIVE_READDISK_RESTORE_ATIME;
560 	if (a->tree != NULL)
561 		a->tree->flags |= needsRestoreTimes;
562 	return (ARCHIVE_OK);
563 #else
564 	/* Display warning and unset flag */
565 	archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
566 	    "Cannot restore access time on this system");
567 	a->flags &= ~ARCHIVE_READDISK_RESTORE_ATIME;
568 	return (ARCHIVE_WARN);
569 #endif
570 }
571 
572 int
archive_read_disk_set_behavior(struct archive * _a,int flags)573 archive_read_disk_set_behavior(struct archive *_a, int flags)
574 {
575 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
576 	int r = ARCHIVE_OK;
577 
578 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
579 	    ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
580 
581 	a->flags = flags;
582 
583 	if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
584 		r = archive_read_disk_set_atime_restored(_a);
585 	else {
586 		if (a->tree != NULL)
587 			a->tree->flags &= ~needsRestoreTimes;
588 	}
589 	return (r);
590 }
591 
592 /*
593  * Trivial implementations of gname/uname lookup functions.
594  * These are normally overridden by the client, but these stub
595  * versions ensure that we always have something that works.
596  */
597 static const char *
trivial_lookup_gname(void * private_data,int64_t gid)598 trivial_lookup_gname(void *private_data, int64_t gid)
599 {
600 	(void)private_data; /* UNUSED */
601 	(void)gid; /* UNUSED */
602 	return (NULL);
603 }
604 
605 static const char *
trivial_lookup_uname(void * private_data,int64_t uid)606 trivial_lookup_uname(void *private_data, int64_t uid)
607 {
608 	(void)private_data; /* UNUSED */
609 	(void)uid; /* UNUSED */
610 	return (NULL);
611 }
612 
613 /*
614  * Allocate memory for the reading buffer adjusted to the filesystem
615  * alignment.
616  */
617 static int
setup_suitable_read_buffer(struct archive_read_disk * a)618 setup_suitable_read_buffer(struct archive_read_disk *a)
619 {
620 	struct tree *t = a->tree;
621 	struct filesystem *cf = t->current_filesystem;
622 	size_t asize;
623 	size_t s;
624 
625 	if (cf->allocation_ptr == NULL) {
626 		/* If we couldn't get a filesystem alignment,
627 		 * we use 4096 as default value but we won't use
628 		 * O_DIRECT to open() and openat() operations. */
629 		long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align;
630 
631 		if (cf->max_xfer_size != -1)
632 			asize = cf->max_xfer_size + xfer_align;
633 		else {
634 			long incr = cf->incr_xfer_size;
635 			/* Some platform does not set a proper value to
636 			 * incr_xfer_size.*/
637 			if (incr < 0)
638 				incr = cf->min_xfer_size;
639 			if (cf->min_xfer_size < 0) {
640 				incr = xfer_align;
641 				asize = xfer_align;
642 			} else
643 				asize = cf->min_xfer_size;
644 
645 			/* Increase a buffer size up to 64K bytes in
646 			 * a proper increment size. */
647 			while (asize < 1024*64)
648 				asize += incr;
649 			/* Take a margin to adjust to the filesystem
650 			 * alignment. */
651 			asize += xfer_align;
652 		}
653 		cf->allocation_ptr = malloc(asize);
654 		if (cf->allocation_ptr == NULL) {
655 			archive_set_error(&a->archive, ENOMEM,
656 			    "Couldn't allocate memory");
657 			a->archive.state = ARCHIVE_STATE_FATAL;
658 			return (ARCHIVE_FATAL);
659 		}
660 
661 		/*
662 		 * Calculate proper address for the filesystem.
663 		 */
664 		s = (uintptr_t)cf->allocation_ptr;
665 		s %= xfer_align;
666 		if (s > 0)
667 			s = xfer_align - s;
668 
669 		/*
670 		 * Set a read buffer pointer in the proper alignment of
671 		 * the current filesystem.
672 		 */
673 		cf->buff = cf->allocation_ptr + s;
674 		cf->buff_size = asize - xfer_align;
675 	}
676 	return (ARCHIVE_OK);
677 }
678 
679 static int
_archive_read_data_block(struct archive * _a,const void ** buff,size_t * size,int64_t * offset)680 _archive_read_data_block(struct archive *_a, const void **buff,
681     size_t *size, int64_t *offset)
682 {
683 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
684 	struct tree *t = a->tree;
685 	int r;
686 	ssize_t bytes;
687 	int64_t sparse_bytes;
688 	size_t buffbytes;
689 	int empty_sparse_region = 0;
690 
691 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
692 	    "archive_read_data_block");
693 
694 	if (t->entry_eof || t->entry_remaining_bytes <= 0) {
695 		r = ARCHIVE_EOF;
696 		goto abort_read_data;
697 	}
698 
699 	/*
700 	 * Open the current file.
701 	 */
702 	if (t->entry_fd < 0) {
703 		int flags = O_RDONLY | O_BINARY | O_CLOEXEC;
704 
705 		/*
706 		 * Eliminate or reduce cache effects if we can.
707 		 *
708 		 * Carefully consider this to be enabled.
709 		 */
710 #if defined(O_DIRECT) && 0/* Disabled for now */
711 		if (t->current_filesystem->xfer_align != -1 &&
712 		    t->nlink == 1)
713 			flags |= O_DIRECT;
714 #endif
715 #if defined(O_NOATIME)
716 		/*
717 		 * Linux has O_NOATIME flag; use it if we need.
718 		 */
719 		if ((t->flags & needsRestoreTimes) != 0 &&
720 		    t->restore_time.noatime == 0)
721 			flags |= O_NOATIME;
722 #endif
723 		t->entry_fd = open_on_current_dir(t,
724 		    tree_current_access_path(t), flags);
725 		__archive_ensure_cloexec_flag(t->entry_fd);
726 #if defined(O_NOATIME)
727 		/*
728 		 * When we did open the file with O_NOATIME flag,
729 		 * if successful, set 1 to t->restore_time.noatime
730 		 * not to restore an atime of the file later.
731 		 * if failed by EPERM, retry it without O_NOATIME flag.
732 		 */
733 		if (flags & O_NOATIME) {
734 			if (t->entry_fd >= 0)
735 				t->restore_time.noatime = 1;
736 			else if (errno == EPERM)
737 				flags &= ~O_NOATIME;
738 		}
739 #endif
740 		if (t->entry_fd < 0) {
741 			archive_set_error(&a->archive, errno,
742 			    "Couldn't open %s", tree_current_path(t));
743 			r = ARCHIVE_FAILED;
744 			tree_enter_initial_dir(t);
745 			goto abort_read_data;
746 		}
747 		tree_enter_initial_dir(t);
748 	}
749 
750 	/*
751 	 * Allocate read buffer if not allocated.
752 	 */
753 	if (t->current_filesystem->allocation_ptr == NULL) {
754 		r = setup_suitable_read_buffer(a);
755 		if (r != ARCHIVE_OK) {
756 			a->archive.state = ARCHIVE_STATE_FATAL;
757 			goto abort_read_data;
758 		}
759 	}
760 	t->entry_buff = t->current_filesystem->buff;
761 	t->entry_buff_size = t->current_filesystem->buff_size;
762 
763 	buffbytes = t->entry_buff_size;
764 	if ((int64_t)buffbytes > t->current_sparse->length)
765 		buffbytes = t->current_sparse->length;
766 
767 	if (t->current_sparse->length == 0)
768 		empty_sparse_region = 1;
769 
770 	/*
771 	 * Skip hole.
772 	 * TODO: Should we consider t->current_filesystem->xfer_align?
773 	 */
774 	if (t->current_sparse->offset > t->entry_total) {
775 		if (lseek(t->entry_fd,
776 		    (off_t)t->current_sparse->offset, SEEK_SET) !=
777 		    t->current_sparse->offset) {
778 			archive_set_error(&a->archive, errno, "Seek error");
779 			r = ARCHIVE_FATAL;
780 			a->archive.state = ARCHIVE_STATE_FATAL;
781 			goto abort_read_data;
782 		}
783 		sparse_bytes = t->current_sparse->offset - t->entry_total;
784 		t->entry_remaining_bytes -= sparse_bytes;
785 		t->entry_total += sparse_bytes;
786 	}
787 
788 	/*
789 	 * Read file contents.
790 	 */
791 	if (buffbytes > 0) {
792 		bytes = read(t->entry_fd, t->entry_buff, buffbytes);
793 		if (bytes < 0) {
794 			archive_set_error(&a->archive, errno, "Read error");
795 			r = ARCHIVE_FATAL;
796 			a->archive.state = ARCHIVE_STATE_FATAL;
797 			goto abort_read_data;
798 		}
799 	} else
800 		bytes = 0;
801 	/*
802 	 * Return an EOF unless we've read a leading empty sparse region, which
803 	 * is used to represent fully-sparse files.
804 	*/
805 	if (bytes == 0 && !empty_sparse_region) {
806 		/* Get EOF */
807 		t->entry_eof = 1;
808 		r = ARCHIVE_EOF;
809 		goto abort_read_data;
810 	}
811 	*buff = t->entry_buff;
812 	*size = bytes;
813 	*offset = t->entry_total;
814 	t->entry_total += bytes;
815 	t->entry_remaining_bytes -= bytes;
816 	if (t->entry_remaining_bytes == 0) {
817 		/* Close the current file descriptor */
818 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
819 		t->entry_fd = -1;
820 		t->entry_eof = 1;
821 	}
822 	t->current_sparse->offset += bytes;
823 	t->current_sparse->length -= bytes;
824 	if (t->current_sparse->length == 0 && !t->entry_eof)
825 		t->current_sparse++;
826 	return (ARCHIVE_OK);
827 
828 abort_read_data:
829 	*buff = NULL;
830 	*size = 0;
831 	*offset = t->entry_total;
832 	if (t->entry_fd >= 0) {
833 		/* Close the current file descriptor */
834 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
835 		t->entry_fd = -1;
836 	}
837 	return (r);
838 }
839 
840 static int
next_entry(struct archive_read_disk * a,struct tree * t,struct archive_entry * entry)841 next_entry(struct archive_read_disk *a, struct tree *t,
842     struct archive_entry *entry)
843 {
844 	const struct stat *st; /* info to use for this entry */
845 	const struct stat *lst;/* lstat() information */
846 	const char *name;
847 	int delayed, delayed_errno, descend, r;
848 	struct archive_string delayed_str;
849 
850 	delayed = ARCHIVE_OK;
851 	delayed_errno = 0;
852 	archive_string_init(&delayed_str);
853 
854 	st = NULL;
855 	lst = NULL;
856 	t->descend = 0;
857 	do {
858 		switch (tree_next(t)) {
859 		case TREE_ERROR_FATAL:
860 			archive_set_error(&a->archive, t->tree_errno,
861 			    "%s: Unable to continue traversing directory tree",
862 			    tree_current_path(t));
863 			a->archive.state = ARCHIVE_STATE_FATAL;
864 			tree_enter_initial_dir(t);
865 			return (ARCHIVE_FATAL);
866 		case TREE_ERROR_DIR:
867 			archive_set_error(&a->archive, t->tree_errno,
868 			    "%s: Couldn't visit directory",
869 			    tree_current_path(t));
870 			tree_enter_initial_dir(t);
871 			return (ARCHIVE_FAILED);
872 		case 0:
873 			tree_enter_initial_dir(t);
874 			return (ARCHIVE_EOF);
875 		case TREE_POSTDESCENT:
876 		case TREE_POSTASCENT:
877 			break;
878 		case TREE_REGULAR:
879 			lst = tree_current_lstat(t);
880 			if (lst == NULL) {
881 			    if (errno == ENOENT && t->depth > 0) {
882 				delayed = ARCHIVE_WARN;
883 				delayed_errno = errno;
884 				if (delayed_str.length == 0) {
885 					archive_string_sprintf(&delayed_str,
886 					    "%s", tree_current_path(t));
887 				} else {
888 					archive_string_sprintf(&delayed_str,
889 					    " %s", tree_current_path(t));
890 				}
891 			    } else {
892 				archive_set_error(&a->archive, errno,
893 				    "%s: Cannot stat",
894 				    tree_current_path(t));
895 				tree_enter_initial_dir(t);
896 				return (ARCHIVE_FAILED);
897 			    }
898 			}
899 			break;
900 		}
901 	} while (lst == NULL);
902 
903 #ifdef __APPLE__
904 	if (a->flags & ARCHIVE_READDISK_MAC_COPYFILE) {
905 		/* If we're using copyfile(), ignore "._XXX" files. */
906 		const char *bname = strrchr(tree_current_path(t), '/');
907 		if (bname == NULL)
908 			bname = tree_current_path(t);
909 		else
910 			++bname;
911 		if (bname[0] == '.' && bname[1] == '_')
912 			return (ARCHIVE_RETRY);
913 	}
914 #endif
915 
916 	archive_entry_copy_pathname(entry, tree_current_path(t));
917 	/*
918 	 * Perform path matching.
919 	 */
920 	if (a->matching) {
921 		r = archive_match_path_excluded(a->matching, entry);
922 		if (r < 0) {
923 			archive_set_error(&(a->archive), errno,
924 			    "Failed : %s", archive_error_string(a->matching));
925 			return (r);
926 		}
927 		if (r) {
928 			if (a->excluded_cb_func)
929 				a->excluded_cb_func(&(a->archive),
930 				    a->excluded_cb_data, entry);
931 			return (ARCHIVE_RETRY);
932 		}
933 	}
934 
935 	/*
936 	 * Distinguish 'L'/'P'/'H' symlink following.
937 	 */
938 	switch(t->symlink_mode) {
939 	case 'H':
940 		/* 'H': After the first item, rest like 'P'. */
941 		t->symlink_mode = 'P';
942 		/* 'H': First item (from command line) like 'L'. */
943 		/* FALLTHROUGH */
944 	case 'L':
945 		/* 'L': Do descend through a symlink to dir. */
946 		descend = tree_current_is_dir(t);
947 		/* 'L': Follow symlinks to files. */
948 		a->symlink_mode = 'L';
949 		a->follow_symlinks = 1;
950 		/* 'L': Archive symlinks as targets, if we can. */
951 		st = tree_current_stat(t);
952 		if (st != NULL && !tree_target_is_same_as_parent(t, st))
953 			break;
954 		/* If stat fails, we have a broken symlink;
955 		 * in that case, don't follow the link. */
956 		/* FALLTHROUGH */
957 	default:
958 		/* 'P': Don't descend through a symlink to dir. */
959 		descend = tree_current_is_physical_dir(t);
960 		/* 'P': Don't follow symlinks to files. */
961 		a->symlink_mode = 'P';
962 		a->follow_symlinks = 0;
963 		/* 'P': Archive symlinks as symlinks. */
964 		st = lst;
965 		break;
966 	}
967 
968 	if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) {
969 		a->archive.state = ARCHIVE_STATE_FATAL;
970 		tree_enter_initial_dir(t);
971 		return (ARCHIVE_FATAL);
972 	}
973 	if (t->initial_filesystem_id == -1)
974 		t->initial_filesystem_id = t->current_filesystem_id;
975 	if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) {
976 		if (t->initial_filesystem_id != t->current_filesystem_id)
977 			descend = 0;
978 	}
979 	t->descend = descend;
980 
981 	/*
982 	 * Honor nodump flag.
983 	 * If the file is marked with nodump flag, do not return this entry.
984 	 */
985 	if (a->flags & ARCHIVE_READDISK_HONOR_NODUMP) {
986 #if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP)
987 		if (st->st_flags & UF_NODUMP)
988 			return (ARCHIVE_RETRY);
989 #elif (defined(FS_IOC_GETFLAGS) && defined(FS_NODUMP_FL) && \
990        defined(HAVE_WORKING_FS_IOC_GETFLAGS)) || \
991       (defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) && \
992        defined(HAVE_WORKING_EXT2_IOC_GETFLAGS))
993 		if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) {
994 			int stflags;
995 
996 			t->entry_fd = open_on_current_dir(t,
997 			    tree_current_access_path(t),
998 			    O_RDONLY | O_NONBLOCK | O_CLOEXEC);
999 			__archive_ensure_cloexec_flag(t->entry_fd);
1000 			if (t->entry_fd >= 0) {
1001 				r = ioctl(t->entry_fd,
1002 #ifdef FS_IOC_GETFLAGS
1003 				FS_IOC_GETFLAGS,
1004 #else
1005 				EXT2_IOC_GETFLAGS,
1006 #endif
1007 					&stflags);
1008 #ifdef FS_NODUMP_FL
1009 				if (r == 0 && (stflags & FS_NODUMP_FL) != 0)
1010 #else
1011 				if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0)
1012 #endif
1013 					return (ARCHIVE_RETRY);
1014 			}
1015 		}
1016 #endif
1017 	}
1018 
1019 	archive_entry_copy_stat(entry, st);
1020 
1021 	/* Save the times to be restored. This must be in before
1022 	 * calling archive_read_disk_descend() or any chance of it,
1023 	 * especially, invoking a callback. */
1024 	t->restore_time.mtime = archive_entry_mtime(entry);
1025 	t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry);
1026 	t->restore_time.atime = archive_entry_atime(entry);
1027 	t->restore_time.atime_nsec = archive_entry_atime_nsec(entry);
1028 	t->restore_time.filetype = archive_entry_filetype(entry);
1029 	t->restore_time.noatime = t->current_filesystem->noatime;
1030 
1031 	/*
1032 	 * Perform time matching.
1033 	 */
1034 	if (a->matching) {
1035 		r = archive_match_time_excluded(a->matching, entry);
1036 		if (r < 0) {
1037 			archive_set_error(&(a->archive), errno,
1038 			    "Failed : %s", archive_error_string(a->matching));
1039 			return (r);
1040 		}
1041 		if (r) {
1042 			if (a->excluded_cb_func)
1043 				a->excluded_cb_func(&(a->archive),
1044 				    a->excluded_cb_data, entry);
1045 			return (ARCHIVE_RETRY);
1046 		}
1047 	}
1048 
1049 	/* Lookup uname/gname */
1050 	name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
1051 	if (name != NULL)
1052 		archive_entry_copy_uname(entry, name);
1053 	name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
1054 	if (name != NULL)
1055 		archive_entry_copy_gname(entry, name);
1056 
1057 	/*
1058 	 * Perform owner matching.
1059 	 */
1060 	if (a->matching) {
1061 		r = archive_match_owner_excluded(a->matching, entry);
1062 		if (r < 0) {
1063 			archive_set_error(&(a->archive), errno,
1064 			    "Failed : %s", archive_error_string(a->matching));
1065 			return (r);
1066 		}
1067 		if (r) {
1068 			if (a->excluded_cb_func)
1069 				a->excluded_cb_func(&(a->archive),
1070 				    a->excluded_cb_data, entry);
1071 			return (ARCHIVE_RETRY);
1072 		}
1073 	}
1074 
1075 	/*
1076 	 * Invoke a meta data filter callback.
1077 	 */
1078 	if (a->metadata_filter_func) {
1079 		if (!a->metadata_filter_func(&(a->archive),
1080 		    a->metadata_filter_data, entry))
1081 			return (ARCHIVE_RETRY);
1082 	}
1083 
1084 	/*
1085 	 * Populate the archive_entry with metadata from the disk.
1086 	 */
1087 	archive_entry_copy_sourcepath(entry, tree_current_access_path(t));
1088 	r = archive_read_disk_entry_from_file(&(a->archive), entry,
1089 		t->entry_fd, st);
1090 
1091 	if (r == ARCHIVE_OK) {
1092 		r = delayed;
1093 		if (r != ARCHIVE_OK) {
1094 			archive_string_sprintf(&delayed_str, ": %s",
1095 			    "File removed before we read it");
1096 			archive_set_error(&(a->archive), delayed_errno,
1097 			    "%s", delayed_str.s);
1098 		}
1099 	}
1100 	archive_string_free(&delayed_str);
1101 
1102 	return (r);
1103 }
1104 
1105 static int
_archive_read_next_header(struct archive * _a,struct archive_entry ** entryp)1106 _archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
1107 {
1108 	int ret;
1109 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1110 	*entryp = NULL;
1111 	ret = _archive_read_next_header2(_a, a->entry);
1112 	*entryp = a->entry;
1113 	return ret;
1114 }
1115 
1116 static int
_archive_read_next_header2(struct archive * _a,struct archive_entry * entry)1117 _archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
1118 {
1119 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1120 	struct tree *t;
1121 	int r;
1122 
1123 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1124 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1125 	    "archive_read_next_header2");
1126 
1127 	t = a->tree;
1128 	if (t->entry_fd >= 0) {
1129 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
1130 		t->entry_fd = -1;
1131 	}
1132 
1133 	archive_entry_clear(entry);
1134 
1135 	for (;;) {
1136 		r = next_entry(a, t, entry);
1137 		if (t->entry_fd >= 0) {
1138 			close(t->entry_fd);
1139 			t->entry_fd = -1;
1140 		}
1141 
1142 		if (r == ARCHIVE_RETRY) {
1143 			archive_entry_clear(entry);
1144 			continue;
1145 		}
1146 		break;
1147 	}
1148 
1149 	/* Return to the initial directory. */
1150 	tree_enter_initial_dir(t);
1151 
1152 	/*
1153 	 * EOF and FATAL are persistent at this layer.  By
1154 	 * modifying the state, we guarantee that future calls to
1155 	 * read a header or read data will fail.
1156 	 */
1157 	switch (r) {
1158 	case ARCHIVE_EOF:
1159 		a->archive.state = ARCHIVE_STATE_EOF;
1160 		break;
1161 	case ARCHIVE_OK:
1162 	case ARCHIVE_WARN:
1163 		/* Overwrite the sourcepath based on the initial directory. */
1164 		archive_entry_copy_sourcepath(entry, tree_current_path(t));
1165 		t->entry_total = 0;
1166 		if (archive_entry_filetype(entry) == AE_IFREG) {
1167 			t->nlink = archive_entry_nlink(entry);
1168 			t->entry_remaining_bytes = archive_entry_size(entry);
1169 			t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
1170 			if (!t->entry_eof &&
1171 			    setup_sparse(a, entry) != ARCHIVE_OK)
1172 				return (ARCHIVE_FATAL);
1173 		} else {
1174 			t->entry_remaining_bytes = 0;
1175 			t->entry_eof = 1;
1176 		}
1177 		a->archive.state = ARCHIVE_STATE_DATA;
1178 		break;
1179 	case ARCHIVE_RETRY:
1180 		break;
1181 	case ARCHIVE_FATAL:
1182 		a->archive.state = ARCHIVE_STATE_FATAL;
1183 		break;
1184 	}
1185 
1186 	__archive_reset_read_data(&a->archive);
1187 	return (r);
1188 }
1189 
1190 static int
setup_sparse(struct archive_read_disk * a,struct archive_entry * entry)1191 setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
1192 {
1193 	struct tree *t = a->tree;
1194 	int64_t length, offset;
1195 	int i;
1196 
1197 	t->sparse_count = archive_entry_sparse_reset(entry);
1198 	if (t->sparse_count+1 > t->sparse_list_size) {
1199 		free(t->sparse_list);
1200 		t->sparse_list_size = t->sparse_count + 1;
1201 		t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
1202 		    t->sparse_list_size);
1203 		if (t->sparse_list == NULL) {
1204 			t->sparse_list_size = 0;
1205 			archive_set_error(&a->archive, ENOMEM,
1206 			    "Can't allocate data");
1207 			a->archive.state = ARCHIVE_STATE_FATAL;
1208 			return (ARCHIVE_FATAL);
1209 		}
1210 	}
1211 	for (i = 0; i < t->sparse_count; i++) {
1212 		archive_entry_sparse_next(entry, &offset, &length);
1213 		t->sparse_list[i].offset = offset;
1214 		t->sparse_list[i].length = length;
1215 	}
1216 	if (i == 0) {
1217 		t->sparse_list[i].offset = 0;
1218 		t->sparse_list[i].length = archive_entry_size(entry);
1219 	} else {
1220 		t->sparse_list[i].offset = archive_entry_size(entry);
1221 		t->sparse_list[i].length = 0;
1222 	}
1223 	t->current_sparse = t->sparse_list;
1224 
1225 	return (ARCHIVE_OK);
1226 }
1227 
1228 int
archive_read_disk_set_matching(struct archive * _a,struct archive * _ma,void (* _excluded_func)(struct archive *,void *,struct archive_entry *),void * _client_data)1229 archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
1230     void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
1231     void *_client_data)
1232 {
1233 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1234 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1235 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
1236 	a->matching = _ma;
1237 	a->excluded_cb_func = _excluded_func;
1238 	a->excluded_cb_data = _client_data;
1239 	return (ARCHIVE_OK);
1240 }
1241 
1242 int
archive_read_disk_set_metadata_filter_callback(struct archive * _a,int (* _metadata_filter_func)(struct archive *,void *,struct archive_entry *),void * _client_data)1243 archive_read_disk_set_metadata_filter_callback(struct archive *_a,
1244     int (*_metadata_filter_func)(struct archive *, void *,
1245     struct archive_entry *), void *_client_data)
1246 {
1247 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1248 
1249 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
1250 	    "archive_read_disk_set_metadata_filter_callback");
1251 
1252 	a->metadata_filter_func = _metadata_filter_func;
1253 	a->metadata_filter_data = _client_data;
1254 	return (ARCHIVE_OK);
1255 }
1256 
1257 int
archive_read_disk_can_descend(struct archive * _a)1258 archive_read_disk_can_descend(struct archive *_a)
1259 {
1260 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1261 	struct tree *t = a->tree;
1262 
1263 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1264 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1265 	    "archive_read_disk_can_descend");
1266 
1267 	return (t->visit_type == TREE_REGULAR && t->descend);
1268 }
1269 
1270 /*
1271  * Called by the client to mark the directory just returned from
1272  * tree_next() as needing to be visited.
1273  */
1274 int
archive_read_disk_descend(struct archive * _a)1275 archive_read_disk_descend(struct archive *_a)
1276 {
1277 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1278 	struct tree *t = a->tree;
1279 
1280 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1281 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1282 	    "archive_read_disk_descend");
1283 
1284 	if (!archive_read_disk_can_descend(_a))
1285 		return (ARCHIVE_OK);
1286 
1287 	/*
1288 	 * We must not treat the initial specified path as a physical dir,
1289 	 * because if we do then we will try and ascend out of it by opening
1290 	 * ".." which is (a) wrong and (b) causes spurious permissions errors
1291 	 * if ".." is not readable by us. Instead, treat it as if it were a
1292 	 * symlink. (This uses an extra fd, but it can only happen once at the
1293 	 * top level of a traverse.) But we can't necessarily assume t->st is
1294 	 * valid here (though t->lst is), which complicates the logic a
1295 	 * little.
1296 	 */
1297 	if (tree_current_is_physical_dir(t)) {
1298 		tree_push(t, t->basename, t->current_filesystem_id,
1299 		    t->lst.st_dev, t->lst.st_ino, &t->restore_time);
1300 		if (t->stack->parent->parent != NULL)
1301 			t->stack->flags |= isDir;
1302 		else
1303 			t->stack->flags |= isDirLink;
1304 	} else if (tree_current_is_dir(t)) {
1305 		tree_push(t, t->basename, t->current_filesystem_id,
1306 		    t->st.st_dev, t->st.st_ino, &t->restore_time);
1307 		t->stack->flags |= isDirLink;
1308 	}
1309 	t->descend = 0;
1310 	return (ARCHIVE_OK);
1311 }
1312 
1313 int
archive_read_disk_open(struct archive * _a,const char * pathname)1314 archive_read_disk_open(struct archive *_a, const char *pathname)
1315 {
1316 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1317 
1318 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1319 	    ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1320 	    "archive_read_disk_open");
1321 	archive_clear_error(&a->archive);
1322 
1323 	return (_archive_read_disk_open(_a, pathname));
1324 }
1325 
1326 int
archive_read_disk_open_w(struct archive * _a,const wchar_t * pathname)1327 archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
1328 {
1329 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1330 	struct archive_string path;
1331 	int ret;
1332 
1333 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1334 	    ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1335 	    "archive_read_disk_open_w");
1336 	archive_clear_error(&a->archive);
1337 
1338 	/* Make a char string from a wchar_t string. */
1339 	archive_string_init(&path);
1340 	if (archive_string_append_from_wcs(&path, pathname,
1341 	    wcslen(pathname)) != 0) {
1342 		if (errno == ENOMEM)
1343 			archive_set_error(&a->archive, ENOMEM,
1344 			    "Can't allocate memory");
1345 		else
1346 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1347 			    "Can't convert a path to a char string");
1348 		a->archive.state = ARCHIVE_STATE_FATAL;
1349 		ret = ARCHIVE_FATAL;
1350 	} else
1351 		ret = _archive_read_disk_open(_a, path.s);
1352 
1353 	archive_string_free(&path);
1354 	return (ret);
1355 }
1356 
1357 static int
_archive_read_disk_open(struct archive * _a,const char * pathname)1358 _archive_read_disk_open(struct archive *_a, const char *pathname)
1359 {
1360 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1361 
1362 	if (a->tree != NULL)
1363 		a->tree = tree_reopen(a->tree, pathname,
1364 		    a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1365 	else
1366 		a->tree = tree_open(pathname, a->symlink_mode,
1367 		    a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1368 	if (a->tree == NULL) {
1369 		archive_set_error(&a->archive, ENOMEM,
1370 		    "Can't allocate tar data");
1371 		a->archive.state = ARCHIVE_STATE_FATAL;
1372 		return (ARCHIVE_FATAL);
1373 	}
1374 	a->archive.state = ARCHIVE_STATE_HEADER;
1375 
1376 	return (ARCHIVE_OK);
1377 }
1378 
1379 /*
1380  * Return a current filesystem ID which is index of the filesystem entry
1381  * you've visited through archive_read_disk.
1382  */
1383 int
archive_read_disk_current_filesystem(struct archive * _a)1384 archive_read_disk_current_filesystem(struct archive *_a)
1385 {
1386 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1387 
1388 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1389 	    "archive_read_disk_current_filesystem");
1390 
1391 	return (a->tree->current_filesystem_id);
1392 }
1393 
1394 static int
update_current_filesystem(struct archive_read_disk * a,int64_t dev)1395 update_current_filesystem(struct archive_read_disk *a, int64_t dev)
1396 {
1397 	struct tree *t = a->tree;
1398 	int i, fid;
1399 
1400 	if (t->current_filesystem != NULL &&
1401 	    t->current_filesystem->dev == dev)
1402 		return (ARCHIVE_OK);
1403 
1404 	for (i = 0; i < t->max_filesystem_id; i++) {
1405 		if (t->filesystem_table[i].dev == dev) {
1406 			/* There is the filesystem ID we've already generated. */
1407 			t->current_filesystem_id = i;
1408 			t->current_filesystem = &(t->filesystem_table[i]);
1409 			return (ARCHIVE_OK);
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * This is the new filesystem which we have to generate a new ID for.
1415 	 */
1416 	fid = t->max_filesystem_id++;
1417 	if (fid > MAX_FILESYSTEM_ID) {
1418 		archive_set_error(&a->archive, ENOMEM, "Too many filesystems");
1419 		return (ARCHIVE_FATAL);
1420 	}
1421 	if (t->max_filesystem_id > t->allocated_filesystem) {
1422 		int s;
1423 		void *p;
1424 
1425 		s = t->max_filesystem_id * 2;
1426 		p = realloc(t->filesystem_table,
1427 		        s * sizeof(*t->filesystem_table));
1428 		if (p == NULL) {
1429 			archive_set_error(&a->archive, ENOMEM,
1430 			    "Can't allocate tar data");
1431 			return (ARCHIVE_FATAL);
1432 		}
1433 		t->filesystem_table = (struct filesystem *)p;
1434 		t->allocated_filesystem = s;
1435 	}
1436 	t->current_filesystem_id = fid;
1437 	t->current_filesystem = &(t->filesystem_table[fid]);
1438 	t->current_filesystem->dev = dev;
1439 	t->current_filesystem->allocation_ptr = NULL;
1440 	t->current_filesystem->buff = NULL;
1441 
1442 	/* Setup the current filesystem properties which depend on
1443 	 * platform specific. */
1444 	return (setup_current_filesystem(a));
1445 }
1446 
1447 /*
1448  * Returns 1 if current filesystem is generated filesystem, 0 if it is not
1449  * or -1 if it is unknown.
1450  */
1451 int
archive_read_disk_current_filesystem_is_synthetic(struct archive * _a)1452 archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
1453 {
1454 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1455 
1456 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1457 	    "archive_read_disk_current_filesystem");
1458 
1459 	return (a->tree->current_filesystem->synthetic);
1460 }
1461 
1462 /*
1463  * Returns 1 if current filesystem is remote filesystem, 0 if it is not
1464  * or -1 if it is unknown.
1465  */
1466 int
archive_read_disk_current_filesystem_is_remote(struct archive * _a)1467 archive_read_disk_current_filesystem_is_remote(struct archive *_a)
1468 {
1469 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1470 
1471 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1472 	    "archive_read_disk_current_filesystem");
1473 
1474 	return (a->tree->current_filesystem->remote);
1475 }
1476 
1477 #if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\
1478 	defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN)
1479 static int
get_xfer_size(struct tree * t,int fd,const char * path)1480 get_xfer_size(struct tree *t, int fd, const char *path)
1481 {
1482 	t->current_filesystem->xfer_align = -1;
1483 	errno = 0;
1484 	if (fd >= 0) {
1485 		t->current_filesystem->incr_xfer_size =
1486 		    fpathconf(fd, _PC_REC_INCR_XFER_SIZE);
1487 		t->current_filesystem->max_xfer_size =
1488 		    fpathconf(fd, _PC_REC_MAX_XFER_SIZE);
1489 		t->current_filesystem->min_xfer_size =
1490 		    fpathconf(fd, _PC_REC_MIN_XFER_SIZE);
1491 		t->current_filesystem->xfer_align =
1492 		    fpathconf(fd, _PC_REC_XFER_ALIGN);
1493 	} else if (path != NULL) {
1494 		t->current_filesystem->incr_xfer_size =
1495 		    pathconf(path, _PC_REC_INCR_XFER_SIZE);
1496 		t->current_filesystem->max_xfer_size =
1497 		    pathconf(path, _PC_REC_MAX_XFER_SIZE);
1498 		t->current_filesystem->min_xfer_size =
1499 		    pathconf(path, _PC_REC_MIN_XFER_SIZE);
1500 		t->current_filesystem->xfer_align =
1501 		    pathconf(path, _PC_REC_XFER_ALIGN);
1502 	}
1503 	/* At least we need an alignment size. */
1504 	if (t->current_filesystem->xfer_align == -1)
1505 		return ((errno == EINVAL)?1:-1);
1506 	else
1507 		return (0);
1508 }
1509 #else
1510 static int
get_xfer_size(struct tree * t,int fd,const char * path)1511 get_xfer_size(struct tree *t, int fd, const char *path)
1512 {
1513 	(void)t; /* UNUSED */
1514 	(void)fd; /* UNUSED */
1515 	(void)path; /* UNUSED */
1516 	return (1);/* Not supported */
1517 }
1518 #endif
1519 
1520 #if defined(HAVE_STATVFS)
1521 static inline __LA_UNUSED void
set_statvfs_transfer_size(struct filesystem * fs,const struct statvfs * sfs)1522 set_statvfs_transfer_size(struct filesystem *fs, const struct statvfs *sfs)
1523 {
1524 	fs->xfer_align = sfs->f_frsize > 0 ? (long)sfs->f_frsize : -1;
1525 	fs->max_xfer_size = -1;
1526 #if defined(HAVE_STRUCT_STATVFS_F_IOSIZE)
1527 	fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1528 	fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1529 #else
1530 	fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1531 	fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1532 #endif
1533 }
1534 #endif
1535 
1536 #if defined(HAVE_STRUCT_STATFS)
1537 static inline __LA_UNUSED void
set_statfs_transfer_size(struct filesystem * fs,const struct statfs * sfs)1538 set_statfs_transfer_size(struct filesystem *fs, const struct statfs *sfs)
1539 {
1540 	fs->xfer_align = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1541 	fs->max_xfer_size = -1;
1542 #if defined(HAVE_STRUCT_STATFS_F_IOSIZE)
1543 	fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1544 	fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1545 #else
1546 	fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1547 	fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1548 #endif
1549 }
1550 #endif
1551 
1552 #if defined(HAVE_STRUCT_STATFS) && defined(HAVE_STATFS) && \
1553     defined(HAVE_FSTATFS) && defined(MNT_LOCAL) && !defined(ST_LOCAL)
1554 
1555 /*
1556  * Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X.
1557  */
1558 static int
setup_current_filesystem(struct archive_read_disk * a)1559 setup_current_filesystem(struct archive_read_disk *a)
1560 {
1561 	struct tree *t = a->tree;
1562 	struct statfs sfs;
1563 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1564 /* TODO: configure should set GETVFSBYNAME_ARG_TYPE to make
1565  * this accurate; some platforms have both and we need the one that's
1566  * used by getvfsbyname()
1567  *
1568  * Then the following would become:
1569  *  #if defined(GETVFSBYNAME_ARG_TYPE)
1570  *   GETVFSBYNAME_ARG_TYPE vfc;
1571  *  #endif
1572  */
1573 #  if defined(HAVE_STRUCT_XVFSCONF)
1574 	struct xvfsconf vfc;
1575 #  else
1576 	struct vfsconf vfc;
1577 #  endif
1578 #endif
1579 	int r, xr = 0;
1580 
1581 	t->current_filesystem->synthetic = -1;
1582 	t->current_filesystem->remote = -1;
1583 	if (tree_current_is_symblic_link_target(t)) {
1584 #if defined(HAVE_OPENAT)
1585 		/*
1586 		 * Get file system statistics on any directory
1587 		 * where current is.
1588 		 */
1589 		int fd = openat(tree_current_dir_fd(t),
1590 		    tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1591 		__archive_ensure_cloexec_flag(fd);
1592 		if (fd < 0) {
1593 			archive_set_error(&a->archive, errno,
1594 			    "openat failed");
1595 			return (ARCHIVE_FAILED);
1596 		}
1597 		r = fstatfs(fd, &sfs);
1598 		if (r == 0)
1599 			xr = get_xfer_size(t, fd, NULL);
1600 		close(fd);
1601 #else
1602 		if (tree_enter_working_dir(t) != 0) {
1603 			archive_set_error(&a->archive, errno, "fchdir failed");
1604 			return (ARCHIVE_FAILED);
1605 		}
1606 		r = statfs(tree_current_access_path(t), &sfs);
1607 		if (r == 0)
1608 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1609 #endif
1610 	} else {
1611 		r = fstatfs(tree_current_dir_fd(t), &sfs);
1612 		if (r == 0)
1613 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1614 	}
1615 	if (r == -1 || xr == -1) {
1616 		archive_set_error(&a->archive, errno, "statfs failed");
1617 		return (ARCHIVE_FAILED);
1618 	} else if (xr == 1) {
1619 		/* pathconf(_PC_REX_*) operations are not supported. */
1620 		set_statfs_transfer_size(t->current_filesystem, &sfs);
1621 	}
1622 	if (sfs.f_flags & MNT_LOCAL)
1623 		t->current_filesystem->remote = 0;
1624 	else
1625 		t->current_filesystem->remote = 1;
1626 
1627 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1628 	r = getvfsbyname(sfs.f_fstypename, &vfc);
1629 	if (r == -1) {
1630 		archive_set_error(&a->archive, errno, "getvfsbyname failed");
1631 		return (ARCHIVE_FAILED);
1632 	}
1633 	if (vfc.vfc_flags & VFCF_SYNTHETIC)
1634 		t->current_filesystem->synthetic = 1;
1635 	else
1636 		t->current_filesystem->synthetic = 0;
1637 #endif
1638 
1639 #if defined(MNT_NOATIME)
1640 	if (sfs.f_flags & MNT_NOATIME)
1641 		t->current_filesystem->noatime = 1;
1642 	else
1643 #endif
1644 		t->current_filesystem->noatime = 0;
1645 
1646 	return (ARCHIVE_OK);
1647 }
1648 
1649 #elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL)
1650 
1651 /*
1652  * Gather current filesystem properties on NetBSD
1653  */
1654 static int
setup_current_filesystem(struct archive_read_disk * a)1655 setup_current_filesystem(struct archive_read_disk *a)
1656 {
1657 	struct tree *t = a->tree;
1658 	struct statvfs svfs;
1659 	int r, xr = 0;
1660 
1661 	t->current_filesystem->synthetic = -1;
1662 	if (tree_enter_working_dir(t) != 0) {
1663 		archive_set_error(&a->archive, errno, "fchdir failed");
1664 		return (ARCHIVE_FAILED);
1665 	}
1666 	if (tree_current_is_symblic_link_target(t)) {
1667 		r = statvfs(tree_current_access_path(t), &svfs);
1668 		if (r == 0)
1669 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1670 	} else {
1671 #ifdef HAVE_FSTATVFS
1672 		r = fstatvfs(tree_current_dir_fd(t), &svfs);
1673 		if (r == 0)
1674 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1675 #else
1676 		r = statvfs(".", &svfs);
1677 		if (r == 0)
1678 			xr = get_xfer_size(t, -1, ".");
1679 #endif
1680 	}
1681 	if (r == -1 || xr == -1) {
1682 		t->current_filesystem->remote = -1;
1683 		archive_set_error(&a->archive, errno, "statvfs failed");
1684 		return (ARCHIVE_FAILED);
1685 	} else if (xr == 1) {
1686 		/* Usually come here unless NetBSD supports _PC_REC_XFER_ALIGN
1687 		 * for pathconf() function. */
1688 		set_statvfs_transfer_size(t->current_filesystem, &svfs);
1689 	}
1690 	if (svfs.f_flag & ST_LOCAL)
1691 		t->current_filesystem->remote = 0;
1692 	else
1693 		t->current_filesystem->remote = 1;
1694 
1695 #if defined(ST_NOATIME)
1696 	if (svfs.f_flag & ST_NOATIME)
1697 		t->current_filesystem->noatime = 1;
1698 	else
1699 #endif
1700 		t->current_filesystem->noatime = 0;
1701 
1702 	return (ARCHIVE_OK);
1703 }
1704 
1705 #elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\
1706 	defined(HAVE_STATFS) && defined(HAVE_FSTATFS)
1707 /*
1708  * Note: statfs is deprecated since LSB 3.2
1709  */
1710 
1711 #ifndef CIFS_SUPER_MAGIC
1712 #define CIFS_SUPER_MAGIC 0xFF534D42
1713 #endif
1714 #ifndef DEVFS_SUPER_MAGIC
1715 #define DEVFS_SUPER_MAGIC 0x1373
1716 #endif
1717 
1718 /*
1719  * Gather current filesystem properties on Linux
1720  */
1721 static int
setup_current_filesystem(struct archive_read_disk * a)1722 setup_current_filesystem(struct archive_read_disk *a)
1723 {
1724 	struct tree *t = a->tree;
1725 	struct statfs sfs;
1726 #if defined(HAVE_STATVFS)
1727 	struct statvfs svfs;
1728 #endif
1729 	int r, vr = 0, xr = 0;
1730 
1731 	if (tree_current_is_symblic_link_target(t)) {
1732 #if defined(HAVE_OPENAT)
1733 		/*
1734 		 * Get file system statistics on any directory
1735 		 * where current is.
1736 		 */
1737 		int fd = openat(tree_current_dir_fd(t),
1738 		    tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1739 		__archive_ensure_cloexec_flag(fd);
1740 		if (fd < 0) {
1741 			archive_set_error(&a->archive, errno,
1742 			    "openat failed");
1743 			return (ARCHIVE_FAILED);
1744 		}
1745 #if defined(HAVE_FSTATVFS)
1746 		vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */
1747 #endif
1748 		r = fstatfs(fd, &sfs);
1749 		if (r == 0)
1750 			xr = get_xfer_size(t, fd, NULL);
1751 		close(fd);
1752 #else
1753 		if (tree_enter_working_dir(t) != 0) {
1754 			archive_set_error(&a->archive, errno, "fchdir failed");
1755 			return (ARCHIVE_FAILED);
1756 		}
1757 #if defined(HAVE_STATVFS)
1758 		vr = statvfs(tree_current_access_path(t), &svfs);
1759 #endif
1760 		r = statfs(tree_current_access_path(t), &sfs);
1761 		if (r == 0)
1762 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1763 #endif
1764 	} else {
1765 #ifdef HAVE_FSTATFS
1766 #if defined(HAVE_FSTATVFS)
1767 		vr = fstatvfs(tree_current_dir_fd(t), &svfs);
1768 #endif
1769 		r = fstatfs(tree_current_dir_fd(t), &sfs);
1770 		if (r == 0)
1771 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1772 #else
1773 		if (tree_enter_working_dir(t) != 0) {
1774 			archive_set_error(&a->archive, errno, "fchdir failed");
1775 			return (ARCHIVE_FAILED);
1776 		}
1777 #if defined(HAVE_STATVFS)
1778 		vr = statvfs(".", &svfs);
1779 #endif
1780 		r = statfs(".", &sfs);
1781 		if (r == 0)
1782 			xr = get_xfer_size(t, -1, ".");
1783 #endif
1784 	}
1785 	if (r == -1 || xr == -1 || vr == -1) {
1786 		t->current_filesystem->synthetic = -1;
1787 		t->current_filesystem->remote = -1;
1788 		archive_set_error(&a->archive, errno, "statfs failed");
1789 		return (ARCHIVE_FAILED);
1790 	} else if (xr == 1) {
1791 		/* pathconf(_PC_REX_*) operations are not supported. */
1792 #if defined(HAVE_STATVFS)
1793 		set_statvfs_transfer_size(t->current_filesystem, &svfs);
1794 #else
1795 		set_statfs_transfer_size(t->current_filesystem, &sfs);
1796 #endif
1797 	}
1798 	switch (sfs.f_type) {
1799 	case AFS_SUPER_MAGIC:
1800 	case CIFS_SUPER_MAGIC:
1801 	case CODA_SUPER_MAGIC:
1802 	case NCP_SUPER_MAGIC:/* NetWare */
1803 	case NFS_SUPER_MAGIC:
1804 	case SMB_SUPER_MAGIC:
1805 		t->current_filesystem->remote = 1;
1806 		t->current_filesystem->synthetic = 0;
1807 		break;
1808 	case DEVFS_SUPER_MAGIC:
1809 	case PROC_SUPER_MAGIC:
1810 	case USBDEVICE_SUPER_MAGIC:
1811 		t->current_filesystem->remote = 0;
1812 		t->current_filesystem->synthetic = 1;
1813 		break;
1814 	default:
1815 		t->current_filesystem->remote = 0;
1816 		t->current_filesystem->synthetic = 0;
1817 		break;
1818 	}
1819 
1820 #if defined(ST_NOATIME)
1821 #if defined(HAVE_STATVFS)
1822 	if (svfs.f_flag & ST_NOATIME)
1823 #else
1824 	if (sfs.f_flags & ST_NOATIME)
1825 #endif
1826 		t->current_filesystem->noatime = 1;
1827 	else
1828 #endif
1829 		t->current_filesystem->noatime = 0;
1830 
1831 	return (ARCHIVE_OK);
1832 }
1833 
1834 #elif defined(HAVE_SYS_STATVFS_H) &&\
1835 	(defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS))
1836 
1837 /*
1838  * Gather current filesystem properties on other posix platform.
1839  */
1840 static int
setup_current_filesystem(struct archive_read_disk * a)1841 setup_current_filesystem(struct archive_read_disk *a)
1842 {
1843 	struct tree *t = a->tree;
1844 	struct statvfs svfs;
1845 	int r, xr = 0;
1846 
1847 	t->current_filesystem->synthetic = -1;/* Not supported */
1848 	t->current_filesystem->remote = -1;/* Not supported */
1849 	if (tree_current_is_symblic_link_target(t)) {
1850 #if defined(HAVE_OPENAT)
1851 		/*
1852 		 * Get file system statistics on any directory
1853 		 * where current is.
1854 		 */
1855 		int fd = openat(tree_current_dir_fd(t),
1856 		    tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1857 		__archive_ensure_cloexec_flag(fd);
1858 		if (fd < 0) {
1859 			archive_set_error(&a->archive, errno,
1860 			    "openat failed");
1861 			return (ARCHIVE_FAILED);
1862 		}
1863 		r = fstatvfs(fd, &svfs);
1864 		if (r == 0)
1865 			xr = get_xfer_size(t, fd, NULL);
1866 		close(fd);
1867 #else
1868 		if (tree_enter_working_dir(t) != 0) {
1869 			archive_set_error(&a->archive, errno, "fchdir failed");
1870 			return (ARCHIVE_FAILED);
1871 		}
1872 		r = statvfs(tree_current_access_path(t), &svfs);
1873 		if (r == 0)
1874 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1875 #endif
1876 	} else {
1877 #ifdef HAVE_FSTATVFS
1878 		r = fstatvfs(tree_current_dir_fd(t), &svfs);
1879 		if (r == 0)
1880 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1881 #else
1882 		if (tree_enter_working_dir(t) != 0) {
1883 			archive_set_error(&a->archive, errno, "fchdir failed");
1884 			return (ARCHIVE_FAILED);
1885 		}
1886 		r = statvfs(".", &svfs);
1887 		if (r == 0)
1888 			xr = get_xfer_size(t, -1, ".");
1889 #endif
1890 	}
1891 	if (r == -1 || xr == -1) {
1892 		t->current_filesystem->synthetic = -1;
1893 		t->current_filesystem->remote = -1;
1894 		archive_set_error(&a->archive, errno, "statvfs failed");
1895 		return (ARCHIVE_FAILED);
1896 	} else if (xr == 1) {
1897 		/* pathconf(_PC_REX_*) operations are not supported. */
1898 		set_statvfs_transfer_size(t->current_filesystem, &svfs);
1899 	}
1900 
1901 #if defined(ST_NOATIME)
1902 	if (svfs.f_flag & ST_NOATIME)
1903 		t->current_filesystem->noatime = 1;
1904 	else
1905 #endif
1906 		t->current_filesystem->noatime = 0;
1907 
1908 	return (ARCHIVE_OK);
1909 }
1910 
1911 #else
1912 
1913 /*
1914  * Generic: Gather current filesystem properties.
1915  * TODO: Is this generic function really needed?
1916  */
1917 static int
setup_current_filesystem(struct archive_read_disk * a)1918 setup_current_filesystem(struct archive_read_disk *a)
1919 {
1920 	struct tree *t = a->tree;
1921 	t->current_filesystem->synthetic = -1;/* Not supported */
1922 	t->current_filesystem->remote = -1;/* Not supported */
1923 	t->current_filesystem->noatime = 0;
1924 	(void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */
1925 	t->current_filesystem->xfer_align = -1;/* Unknown */
1926 	t->current_filesystem->max_xfer_size = -1;
1927 	t->current_filesystem->min_xfer_size = -1;
1928 	t->current_filesystem->incr_xfer_size = -1;
1929 
1930 	return (ARCHIVE_OK);
1931 }
1932 
1933 #endif
1934 
1935 static int
close_and_restore_time(int fd,struct tree * t,struct restore_time * rt)1936 close_and_restore_time(int fd, struct tree *t, struct restore_time *rt)
1937 {
1938 #ifndef HAVE_UTIMES
1939 	(void)t; /* UNUSED */
1940 	(void)rt; /* UNUSED */
1941 	return (close(fd));
1942 #else
1943 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
1944 	struct timespec timespecs[2];
1945 #endif
1946 	struct timeval times[2];
1947 
1948 	if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) {
1949 		if (fd >= 0)
1950 			return (close(fd));
1951 		else
1952 			return (0);
1953 	}
1954 
1955 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
1956 	timespecs[1].tv_sec = rt->mtime;
1957 	timespecs[1].tv_nsec = rt->mtime_nsec;
1958 
1959 	timespecs[0].tv_sec = rt->atime;
1960 	timespecs[0].tv_nsec = rt->atime_nsec;
1961 	/* futimens() is defined in POSIX.1-2008. */
1962 	if (futimens(fd, timespecs) == 0)
1963 		return (close(fd));
1964 #endif
1965 
1966 	times[1].tv_sec = rt->mtime;
1967 	times[1].tv_usec = rt->mtime_nsec / 1000;
1968 
1969 	times[0].tv_sec = rt->atime;
1970 	times[0].tv_usec = rt->atime_nsec / 1000;
1971 
1972 #if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__)
1973 	if (futimes(fd, times) == 0)
1974 		return (close(fd));
1975 #endif
1976 	close(fd);
1977 #if defined(HAVE_FUTIMESAT)
1978 	if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0)
1979 		return (0);
1980 #endif
1981 #ifdef HAVE_LUTIMES
1982 	if (lutimes(rt->name, times) != 0)
1983 #else
1984 	if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0)
1985 #endif
1986 		return (-1);
1987 #endif
1988 	return (0);
1989 }
1990 
1991 static int
open_on_current_dir(struct tree * t,const char * path,int flags)1992 open_on_current_dir(struct tree *t, const char *path, int flags)
1993 {
1994 #ifdef HAVE_OPENAT
1995 	return (openat(tree_current_dir_fd(t), path, flags));
1996 #else
1997 	if (tree_enter_working_dir(t) != 0)
1998 		return (-1);
1999 	return (open(path, flags));
2000 #endif
2001 }
2002 
2003 static int
tree_dup(int fd)2004 tree_dup(int fd)
2005 {
2006 	int new_fd;
2007 #ifdef F_DUPFD_CLOEXEC
2008 	static volatile int can_dupfd_cloexec = 1;
2009 
2010 	if (can_dupfd_cloexec) {
2011 		new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
2012 		if (new_fd != -1)
2013 			return (new_fd);
2014 		/* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC,
2015 		 * but it cannot be used. So we have to try dup(). */
2016 		/* We won't try F_DUPFD_CLOEXEC. */
2017 		can_dupfd_cloexec = 0;
2018 	}
2019 #endif /* F_DUPFD_CLOEXEC */
2020 	new_fd = dup(fd);
2021 	if (new_fd != -1) {
2022 		__archive_ensure_cloexec_flag(new_fd);
2023 		return (new_fd);
2024 	}
2025 	return (-1);
2026 }
2027 
2028 /*
2029  * Add a directory path to the current stack.
2030  */
2031 static void
tree_push(struct tree * t,const char * path,int filesystem_id,int64_t dev,int64_t ino,struct restore_time * rt)2032 tree_push(struct tree *t, const char *path, int filesystem_id,
2033     int64_t dev, int64_t ino, struct restore_time *rt)
2034 {
2035 	struct tree_entry *te;
2036 
2037 	te = calloc(1, sizeof(*te));
2038 	if (te == NULL)
2039 		__archive_errx(1, "Out of memory");
2040 	te->next = t->stack;
2041 	te->parent = t->current;
2042 	if (te->parent)
2043 		te->depth = te->parent->depth + 1;
2044 	t->stack = te;
2045 	archive_string_init(&te->name);
2046 	te->symlink_parent_fd = -1;
2047 	archive_strcpy(&te->name, path);
2048 	te->flags = needsDescent | needsOpen | needsAscent;
2049 	te->filesystem_id = filesystem_id;
2050 	te->dev = dev;
2051 	te->ino = ino;
2052 	te->dirname_length = t->dirname_length;
2053 	te->restore_time.name = te->name.s;
2054 	if (rt != NULL) {
2055 		te->restore_time.mtime = rt->mtime;
2056 		te->restore_time.mtime_nsec = rt->mtime_nsec;
2057 		te->restore_time.atime = rt->atime;
2058 		te->restore_time.atime_nsec = rt->atime_nsec;
2059 		te->restore_time.filetype = rt->filetype;
2060 		te->restore_time.noatime = rt->noatime;
2061 	}
2062 }
2063 
2064 /*
2065  * Append a name to the current dir path.
2066  */
2067 static void
tree_append(struct tree * t,const char * name,size_t name_length)2068 tree_append(struct tree *t, const char *name, size_t name_length)
2069 {
2070 	size_t size_needed;
2071 
2072 	t->path.s[t->dirname_length] = '\0';
2073 	t->path.length = t->dirname_length;
2074 	/* Strip trailing '/' from name, unless entire name is "/". */
2075 	while (name_length > 1 && name[name_length - 1] == '/')
2076 		name_length--;
2077 
2078 	/* Resize pathname buffer as needed. */
2079 	size_needed = name_length + t->dirname_length + 2;
2080 	archive_string_ensure(&t->path, size_needed);
2081 	/* Add a separating '/' if it's needed. */
2082 	if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/')
2083 		archive_strappend_char(&t->path, '/');
2084 	t->basename = t->path.s + archive_strlen(&t->path);
2085 	archive_strncat(&t->path, name, name_length);
2086 	t->restore_time.name = t->basename;
2087 }
2088 
2089 /*
2090  * Open a directory tree for traversal.
2091  */
2092 static struct tree *
tree_open(const char * path,char symlink_mode,int restore_time)2093 tree_open(const char *path, char symlink_mode, int restore_time)
2094 {
2095 	struct tree *t;
2096 
2097 	if ((t = calloc(1, sizeof(*t))) == NULL)
2098 		return (NULL);
2099 	archive_string_init(&t->path);
2100 	archive_string_ensure(&t->path, 31);
2101 	t->initial_symlink_mode = symlink_mode;
2102 	return (tree_reopen(t, path, restore_time));
2103 }
2104 
2105 static struct tree *
tree_reopen(struct tree * t,const char * path,int restore_time)2106 tree_reopen(struct tree *t, const char *path, int restore_time)
2107 {
2108 #if defined(O_PATH)
2109 	/* Linux */
2110 	const int o_flag = O_PATH;
2111 #elif defined(O_SEARCH)
2112 	/* SunOS */
2113 	const int o_flag = O_SEARCH;
2114 #elif defined(__FreeBSD__) && defined(O_EXEC)
2115 	/* FreeBSD */
2116 	const int o_flag = O_EXEC;
2117 #endif
2118 
2119 	t->flags = (restore_time != 0)?needsRestoreTimes:0;
2120 	t->flags |= onInitialDir;
2121 	t->visit_type = 0;
2122 	t->tree_errno = 0;
2123 	t->dirname_length = 0;
2124 	t->depth = 0;
2125 	t->descend = 0;
2126 	t->current = NULL;
2127 	t->d = INVALID_DIR_HANDLE;
2128 	t->symlink_mode = t->initial_symlink_mode;
2129 	archive_string_empty(&t->path);
2130 	t->entry_fd = -1;
2131 	t->entry_eof = 0;
2132 	t->entry_remaining_bytes = 0;
2133 	t->initial_filesystem_id = -1;
2134 
2135 	/* First item is set up a lot like a symlink traversal. */
2136 	tree_push(t, path, 0, 0, 0, NULL);
2137 	t->stack->flags = needsFirstVisit;
2138 	t->maxOpenCount = t->openCount = 1;
2139 	t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC);
2140 #if defined(O_PATH) || defined(O_SEARCH) || \
2141  (defined(__FreeBSD__) && defined(O_EXEC))
2142 	/*
2143 	 * Most likely reason to fail opening "." is that it's not readable,
2144 	 * so try again for execute. The consequences of not opening this are
2145 	 * unhelpful and unnecessary errors later.
2146 	 */
2147 	if (t->initial_dir_fd < 0) {
2148 		t->initial_dir_fd = open(".", o_flag | O_CLOEXEC);
2149 		if (t->initial_dir_fd < 0)
2150 			return NULL;
2151 	}
2152 #endif
2153 	__archive_ensure_cloexec_flag(t->initial_dir_fd);
2154 	t->working_dir_fd = tree_dup(t->initial_dir_fd);
2155 	if (t->working_dir_fd < 0)
2156 		return NULL;
2157 	return (t);
2158 }
2159 
2160 static int
tree_descent(struct tree * t)2161 tree_descent(struct tree *t)
2162 {
2163 	int flag, new_fd, r = 0;
2164 
2165 	t->dirname_length = archive_strlen(&t->path);
2166 	flag = O_RDONLY | O_CLOEXEC;
2167 #if defined(O_DIRECTORY)
2168 	flag |= O_DIRECTORY;
2169 #endif
2170 	new_fd = open_on_current_dir(t, t->stack->name.s, flag);
2171 	__archive_ensure_cloexec_flag(new_fd);
2172 	if (new_fd < 0) {
2173 		t->tree_errno = errno;
2174 		r = TREE_ERROR_DIR;
2175 	} else {
2176 		t->depth++;
2177 		/* If it is a link, set up fd for the ascent. */
2178 		if (t->stack->flags & isDirLink) {
2179 			t->stack->symlink_parent_fd = t->working_dir_fd;
2180 			t->openCount++;
2181 			if (t->openCount > t->maxOpenCount)
2182 				t->maxOpenCount = t->openCount;
2183 		} else
2184 			close(t->working_dir_fd);
2185 		/* Renew the current working directory. */
2186 		t->working_dir_fd = new_fd;
2187 		t->flags &= ~onWorkingDir;
2188 	}
2189 	return (r);
2190 }
2191 
2192 /*
2193  * We've finished a directory; ascend back to the parent.
2194  */
2195 static int
tree_ascend(struct tree * t)2196 tree_ascend(struct tree *t)
2197 {
2198 	struct tree_entry *te;
2199 	int new_fd, r = 0, prev_dir_fd;
2200 
2201 	te = t->stack;
2202 	prev_dir_fd = t->working_dir_fd;
2203 	if (te->flags & isDirLink)
2204 		new_fd = te->symlink_parent_fd;
2205 	else {
2206 		new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC);
2207 		__archive_ensure_cloexec_flag(new_fd);
2208 	}
2209 	if (new_fd < 0) {
2210 		t->tree_errno = errno;
2211 		r = TREE_ERROR_FATAL;
2212 	} else {
2213 		/* Renew the current working directory. */
2214 		t->working_dir_fd = new_fd;
2215 		t->flags &= ~onWorkingDir;
2216 		/* Current directory has been changed, we should
2217 		 * close an fd of previous working directory. */
2218 		close_and_restore_time(prev_dir_fd, t, &te->restore_time);
2219 		if (te->flags & isDirLink) {
2220 			t->openCount--;
2221 			te->symlink_parent_fd = -1;
2222 		}
2223 		t->depth--;
2224 	}
2225 	return (r);
2226 }
2227 
2228 /*
2229  * Return to the initial directory where tree_open() was performed.
2230  */
2231 static int
tree_enter_initial_dir(struct tree * t)2232 tree_enter_initial_dir(struct tree *t)
2233 {
2234 	int r = 0;
2235 
2236 	if ((t->flags & onInitialDir) == 0) {
2237 		r = fchdir(t->initial_dir_fd);
2238 		if (r == 0) {
2239 			t->flags &= ~onWorkingDir;
2240 			t->flags |= onInitialDir;
2241 		}
2242 	}
2243 	return (r);
2244 }
2245 
2246 /*
2247  * Restore working directory of directory traversals.
2248  */
2249 static int
tree_enter_working_dir(struct tree * t)2250 tree_enter_working_dir(struct tree *t)
2251 {
2252 	int r = 0;
2253 
2254 	/*
2255 	 * Change the current directory if really needed.
2256 	 * Sometimes this is unneeded when we did not do
2257 	 * descent.
2258 	 */
2259 	if (t->depth > 0 && (t->flags & onWorkingDir) == 0) {
2260 		r = fchdir(t->working_dir_fd);
2261 		if (r == 0) {
2262 			t->flags &= ~onInitialDir;
2263 			t->flags |= onWorkingDir;
2264 		}
2265 	}
2266 	return (r);
2267 }
2268 
2269 static int
tree_current_dir_fd(struct tree * t)2270 tree_current_dir_fd(struct tree *t)
2271 {
2272 	return (t->working_dir_fd);
2273 }
2274 
2275 /*
2276  * Pop the working stack.
2277  */
2278 static void
tree_pop(struct tree * t)2279 tree_pop(struct tree *t)
2280 {
2281 	struct tree_entry *te;
2282 
2283 	t->path.s[t->dirname_length] = '\0';
2284 	t->path.length = t->dirname_length;
2285 	if (t->stack == t->current && t->current != NULL)
2286 		t->current = t->current->parent;
2287 	te = t->stack;
2288 	t->stack = te->next;
2289 	t->dirname_length = te->dirname_length;
2290 	t->basename = t->path.s + t->dirname_length;
2291 	while (t->basename[0] == '/')
2292 		t->basename++;
2293 	archive_string_free(&te->name);
2294 	free(te);
2295 }
2296 
2297 /*
2298  * Get the next item in the tree traversal.
2299  */
2300 static int
tree_next(struct tree * t)2301 tree_next(struct tree *t)
2302 {
2303 	int r;
2304 
2305 	while (t->stack != NULL) {
2306 		/* If there's an open dir, get the next entry from there. */
2307 		if (t->d != INVALID_DIR_HANDLE) {
2308 			r = tree_dir_next_posix(t);
2309 			if (r == 0)
2310 				continue;
2311 			return (r);
2312 		}
2313 
2314 		if (t->stack->flags & needsFirstVisit) {
2315 			/* Top stack item needs a regular visit. */
2316 			t->current = t->stack;
2317 			tree_append(t, t->stack->name.s,
2318 			    archive_strlen(&(t->stack->name)));
2319 			/* t->dirname_length = t->path_length; */
2320 			/* tree_pop(t); */
2321 			t->stack->flags &= ~needsFirstVisit;
2322 			return (t->visit_type = TREE_REGULAR);
2323 		} else if (t->stack->flags & needsDescent) {
2324 			/* Top stack item is dir to descend into. */
2325 			t->current = t->stack;
2326 			tree_append(t, t->stack->name.s,
2327 			    archive_strlen(&(t->stack->name)));
2328 			t->stack->flags &= ~needsDescent;
2329 			r = tree_descent(t);
2330 			if (r != 0) {
2331 				tree_pop(t);
2332 				t->visit_type = r;
2333 			} else
2334 				t->visit_type = TREE_POSTDESCENT;
2335 			return (t->visit_type);
2336 		} else if (t->stack->flags & needsOpen) {
2337 			t->stack->flags &= ~needsOpen;
2338 			r = tree_dir_next_posix(t);
2339 			if (r == 0)
2340 				continue;
2341 			return (r);
2342 		} else if (t->stack->flags & needsAscent) {
2343 		        /* Top stack item is dir and we're done with it. */
2344 			r = tree_ascend(t);
2345 			tree_pop(t);
2346 			t->visit_type = r != 0 ? r : TREE_POSTASCENT;
2347 			return (t->visit_type);
2348 		} else {
2349 			/* Top item on stack is dead. */
2350 			tree_pop(t);
2351 			t->flags &= ~hasLstat;
2352 			t->flags &= ~hasStat;
2353 		}
2354 	}
2355 	return (t->visit_type = 0);
2356 }
2357 
2358 static int
tree_dir_next_posix(struct tree * t)2359 tree_dir_next_posix(struct tree *t)
2360 {
2361 	int r;
2362 	const char *name;
2363 	size_t namelen;
2364 
2365 	if (t->d == NULL) {
2366 
2367 #if defined(HAVE_FDOPENDIR)
2368 		int fd = tree_dup(t->working_dir_fd);
2369 		if (fd != -1)
2370 			t->d = fdopendir(fd);
2371 #else /* HAVE_FDOPENDIR */
2372 		if (tree_enter_working_dir(t) == 0) {
2373 			t->d = opendir(".");
2374 #ifdef HAVE_DIRFD
2375 			__archive_ensure_cloexec_flag(dirfd(t->d));
2376 #endif
2377 		}
2378 #endif /* HAVE_FDOPENDIR */
2379 		if (t->d == NULL) {
2380 			r = tree_ascend(t); /* Undo "chdir" */
2381 			tree_pop(t);
2382 			t->tree_errno = errno;
2383 			t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
2384 			return (t->visit_type);
2385 		}
2386 	}
2387 	for (;;) {
2388 		errno = 0;
2389 		t->de = readdir(t->d);
2390 		if (t->de == NULL) {
2391 			r = errno;
2392 			closedir(t->d);
2393 			t->d = INVALID_DIR_HANDLE;
2394 			if (r != 0) {
2395 				t->tree_errno = r;
2396 				t->visit_type = TREE_ERROR_DIR;
2397 				return (t->visit_type);
2398 			} else
2399 				return (0);
2400 		}
2401 		name = t->de->d_name;
2402 		namelen = D_NAMELEN(t->de);
2403 		t->flags &= ~hasLstat;
2404 		t->flags &= ~hasStat;
2405 		if (name[0] == '.' && name[1] == '\0')
2406 			continue;
2407 		if (name[0] == '.' && name[1] == '.' && name[2] == '\0')
2408 			continue;
2409 		tree_append(t, name, namelen);
2410 		return (t->visit_type = TREE_REGULAR);
2411 	}
2412 }
2413 
2414 
2415 /*
2416  * Get the stat() data for the entry just returned from tree_next().
2417  */
2418 static const struct stat *
tree_current_stat(struct tree * t)2419 tree_current_stat(struct tree *t)
2420 {
2421 	if (!(t->flags & hasStat)) {
2422 #ifdef HAVE_FSTATAT
2423 		if (fstatat(tree_current_dir_fd(t),
2424 		    tree_current_access_path(t), &t->st, 0) != 0)
2425 #else
2426 		if (tree_enter_working_dir(t) != 0)
2427 			return NULL;
2428 		if (la_stat(tree_current_access_path(t), &t->st) != 0)
2429 #endif
2430 			return NULL;
2431 		t->flags |= hasStat;
2432 	}
2433 	return (&t->st);
2434 }
2435 
2436 /*
2437  * Get the lstat() data for the entry just returned from tree_next().
2438  */
2439 static const struct stat *
tree_current_lstat(struct tree * t)2440 tree_current_lstat(struct tree *t)
2441 {
2442 	if (!(t->flags & hasLstat)) {
2443 #ifdef HAVE_FSTATAT
2444 		if (fstatat(tree_current_dir_fd(t),
2445 		    tree_current_access_path(t), &t->lst,
2446 		    AT_SYMLINK_NOFOLLOW) != 0)
2447 #else
2448 		if (tree_enter_working_dir(t) != 0)
2449 			return NULL;
2450 #ifdef HAVE_LSTAT
2451 		if (lstat(tree_current_access_path(t), &t->lst) != 0)
2452 #else
2453 		if (la_stat(tree_current_access_path(t), &t->lst) != 0)
2454 #endif
2455 #endif
2456 			return NULL;
2457 		t->flags |= hasLstat;
2458 	}
2459 	return (&t->lst);
2460 }
2461 
2462 /*
2463  * Test whether current entry is a dir or link to a dir.
2464  */
2465 static int
tree_current_is_dir(struct tree * t)2466 tree_current_is_dir(struct tree *t)
2467 {
2468 	const struct stat *st;
2469 	/*
2470 	 * If we already have lstat() info, then try some
2471 	 * cheap tests to determine if this is a dir.
2472 	 */
2473 	if (t->flags & hasLstat) {
2474 		/* If lstat() says it's a dir, it must be a dir. */
2475 		st = tree_current_lstat(t);
2476 		if (st == NULL)
2477 			return 0;
2478 		if (S_ISDIR(st->st_mode))
2479 			return 1;
2480 		/* Not a dir; might be a link to a dir. */
2481 		/* If it's not a link, then it's not a link to a dir. */
2482 		if (!S_ISLNK(st->st_mode))
2483 			return 0;
2484 		/*
2485 		 * It's a link, but we don't know what it's a link to,
2486 		 * so we'll have to use stat().
2487 		 */
2488 	}
2489 
2490 	st = tree_current_stat(t);
2491 	/* If we can't stat it, it's not a dir. */
2492 	if (st == NULL)
2493 		return 0;
2494 	/* Use the definitive test.  Hopefully this is cached. */
2495 	return (S_ISDIR(st->st_mode));
2496 }
2497 
2498 /*
2499  * Test whether current entry is a physical directory.  Usually, we
2500  * already have at least one of stat() or lstat() in memory, so we
2501  * use tricks to try to avoid an extra trip to the disk.
2502  */
2503 static int
tree_current_is_physical_dir(struct tree * t)2504 tree_current_is_physical_dir(struct tree *t)
2505 {
2506 	const struct stat *st;
2507 
2508 	/*
2509 	 * If stat() says it isn't a dir, then it's not a dir.
2510 	 * If stat() data is cached, this check is free, so do it first.
2511 	 */
2512 	if (t->flags & hasStat) {
2513 		st = tree_current_stat(t);
2514 		if (st == NULL)
2515 			return (0);
2516 		if (!S_ISDIR(st->st_mode))
2517 			return (0);
2518 	}
2519 
2520 	/*
2521 	 * Either stat() said it was a dir (in which case, we have
2522 	 * to determine whether it's really a link to a dir) or
2523 	 * stat() info wasn't available.  So we use lstat(), which
2524 	 * hopefully is already cached.
2525 	 */
2526 
2527 	st = tree_current_lstat(t);
2528 	/* If we can't stat it, it's not a dir. */
2529 	if (st == NULL)
2530 		return 0;
2531 	/* Use the definitive test.  Hopefully this is cached. */
2532 	return (S_ISDIR(st->st_mode));
2533 }
2534 
2535 /*
2536  * Test whether the same file has been in the tree as its parent.
2537  */
2538 static int
tree_target_is_same_as_parent(struct tree * t,const struct stat * st)2539 tree_target_is_same_as_parent(struct tree *t, const struct stat *st)
2540 {
2541 	struct tree_entry *te;
2542 
2543 	for (te = t->current->parent; te != NULL; te = te->parent) {
2544 		if (te->dev == (int64_t)st->st_dev &&
2545 		    te->ino == (int64_t)st->st_ino)
2546 			return (1);
2547 	}
2548 	return (0);
2549 }
2550 
2551 /*
2552  * Test whether the current file is symbolic link target and
2553  * on the other filesystem.
2554  */
2555 static int
tree_current_is_symblic_link_target(struct tree * t)2556 tree_current_is_symblic_link_target(struct tree *t)
2557 {
2558 	static const struct stat *lst, *st;
2559 
2560 	lst = tree_current_lstat(t);
2561 	st = tree_current_stat(t);
2562 	return (st != NULL && lst != NULL &&
2563 	    (int64_t)st->st_dev == t->current_filesystem->dev &&
2564 	    st->st_dev != lst->st_dev);
2565 }
2566 
2567 /*
2568  * Return the access path for the entry just returned from tree_next().
2569  */
2570 static const char *
tree_current_access_path(struct tree * t)2571 tree_current_access_path(struct tree *t)
2572 {
2573 	return (t->basename);
2574 }
2575 
2576 /*
2577  * Return the full path for the entry just returned from tree_next().
2578  */
2579 static const char *
tree_current_path(struct tree * t)2580 tree_current_path(struct tree *t)
2581 {
2582 	return (t->path.s);
2583 }
2584 
2585 /*
2586  * Terminate the traversal.
2587  */
2588 static void
tree_close(struct tree * t)2589 tree_close(struct tree *t)
2590 {
2591 
2592 	if (t == NULL)
2593 		return;
2594 	if (t->entry_fd >= 0) {
2595 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
2596 		t->entry_fd = -1;
2597 	}
2598 	/* Close the handle of readdir(). */
2599 	if (t->d != INVALID_DIR_HANDLE) {
2600 		closedir(t->d);
2601 		t->d = INVALID_DIR_HANDLE;
2602 	}
2603 	/* Release anything remaining in the stack. */
2604 	while (t->stack != NULL) {
2605 		if (t->stack->flags & isDirLink)
2606 			close(t->stack->symlink_parent_fd);
2607 		tree_pop(t);
2608 	}
2609 	if (t->working_dir_fd >= 0) {
2610 		close(t->working_dir_fd);
2611 		t->working_dir_fd = -1;
2612 	}
2613 	if (t->initial_dir_fd >= 0) {
2614 		close(t->initial_dir_fd);
2615 		t->initial_dir_fd = -1;
2616 	}
2617 }
2618 
2619 /*
2620  * Release any resources.
2621  */
2622 static void
tree_free(struct tree * t)2623 tree_free(struct tree *t)
2624 {
2625 	int i;
2626 
2627 	if (t == NULL)
2628 		return;
2629 	archive_string_free(&t->path);
2630 	free(t->sparse_list);
2631 	for (i = 0; i < t->max_filesystem_id; i++)
2632 		free(t->filesystem_table[i].allocation_ptr);
2633 	free(t->filesystem_table);
2634 	free(t);
2635 }
2636 
2637 #endif
2638