1 /*-
2 * Copyright (c) 2003-2009 Tim Kientzle
3 * Copyright (c) 2010-2012 Michihiro NAKAJIMA
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer
11 * in this position and unchanged.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /* This is the tree-walking code for POSIX systems. */
29 #if !defined(_WIN32) || defined(__CYGWIN__)
30
31 #include "archive_platform.h"
32
33 #ifdef HAVE_SYS_PARAM_H
34 #include <sys/param.h>
35 #endif
36 #ifdef HAVE_SYS_STAT_H
37 #include <sys/stat.h>
38 #endif
39 #ifdef HAVE_SYS_STATFS_H
40 #include <sys/statfs.h>
41 #endif
42 #ifdef HAVE_SYS_STATVFS_H
43 #include <sys/statvfs.h>
44 #endif
45 #ifdef HAVE_SYS_TIME_H
46 #include <sys/time.h>
47 #endif
48 #ifdef HAVE_LINUX_MAGIC_H
49 #include <linux/magic.h>
50 #endif
51 #ifdef HAVE_LINUX_FS_H
52 #include <linux/fs.h>
53 #elif HAVE_SYS_MOUNT_H
54 #include <sys/mount.h>
55 #endif
56 /*
57 * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h.
58 * As the include guards don't agree, the order of include is important.
59 */
60 #ifdef HAVE_LINUX_EXT2_FS_H
61 #include <linux/ext2_fs.h> /* for Linux file flags */
62 #endif
63 #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__)
64 #include <ext2fs/ext2_fs.h> /* Linux file flags, broken on Cygwin */
65 #endif
66 #ifdef HAVE_DIRECT_H
67 #include <direct.h>
68 #endif
69 #ifdef HAVE_DIRENT_H
70 #include <dirent.h>
71 #endif
72 #ifdef HAVE_ERRNO_H
73 #include <errno.h>
74 #endif
75 #ifdef HAVE_FCNTL_H
76 #include <fcntl.h>
77 #endif
78 #ifdef HAVE_LIMITS_H
79 #include <limits.h>
80 #endif
81 #ifdef HAVE_STDLIB_H
82 #include <stdlib.h>
83 #endif
84 #ifdef HAVE_STRING_H
85 #include <string.h>
86 #endif
87 #ifdef HAVE_UNISTD_H
88 #include <unistd.h>
89 #endif
90 #ifdef HAVE_SYS_IOCTL_H
91 #include <sys/ioctl.h>
92 #endif
93
94 #include "archive.h"
95 #include "archive_string.h"
96 #include "archive_entry.h"
97 #include "archive_private.h"
98 #include "archive_read_disk_private.h"
99
100 #ifndef HAVE_FCHDIR
101 #error fchdir function required.
102 #endif
103 #ifndef O_BINARY
104 #define O_BINARY 0
105 #endif
106 #ifndef O_CLOEXEC
107 #define O_CLOEXEC 0
108 #endif
109
110 #if defined(__hpux) && !defined(HAVE_DIRFD)
111 #define dirfd(x) ((x)->__dd_fd)
112 #define HAVE_DIRFD
113 #endif
114
115 /*-
116 * This is a new directory-walking system that addresses a number
117 * of problems I've had with fts(3). In particular, it has no
118 * pathname-length limits (other than the size of 'int'), handles
119 * deep logical traversals, uses considerably less memory, and has
120 * an opaque interface (easier to modify in the future).
121 *
122 * Internally, it keeps a single list of "tree_entry" items that
123 * represent filesystem objects that require further attention.
124 * Non-directories are not kept in memory: they are pulled from
125 * readdir(), returned to the client, then freed as soon as possible.
126 * Any directory entry to be traversed gets pushed onto the stack.
127 *
128 * There is surprisingly little information that needs to be kept for
129 * each item on the stack. Just the name, depth (represented here as the
130 * string length of the parent directory's pathname), and some markers
131 * indicating how to get back to the parent (via chdir("..") for a
132 * regular dir or via fchdir(2) for a symlink).
133 */
134 /*
135 * TODO:
136 * 1) Loop checking.
137 * 3) Arbitrary logical traversals by closing/reopening intermediate fds.
138 */
139
140 struct restore_time {
141 const char *name;
142 time_t mtime;
143 long mtime_nsec;
144 time_t atime;
145 long atime_nsec;
146 mode_t filetype;
147 int noatime;
148 };
149
150 struct tree_entry {
151 int depth;
152 struct tree_entry *next;
153 struct tree_entry *parent;
154 struct archive_string name;
155 size_t dirname_length;
156 int64_t dev;
157 int64_t ino;
158 int flags;
159 int filesystem_id;
160 /* How to return back to the parent of a symlink. */
161 int symlink_parent_fd;
162 /* How to restore time of a directory. */
163 struct restore_time restore_time;
164 };
165
166 struct filesystem {
167 int64_t dev;
168 int synthetic;
169 int remote;
170 int noatime;
171 #if defined(USE_READDIR_R)
172 size_t name_max;
173 #endif
174 long incr_xfer_size;
175 long max_xfer_size;
176 long min_xfer_size;
177 long xfer_align;
178
179 /*
180 * Buffer used for reading file contents.
181 */
182 /* Exactly allocated memory pointer. */
183 unsigned char *allocation_ptr;
184 /* Pointer adjusted to the filesystem alignment . */
185 unsigned char *buff;
186 size_t buff_size;
187 };
188
189 /* Definitions for tree_entry.flags bitmap. */
190 #define isDir 1 /* This entry is a regular directory. */
191 #define isDirLink 2 /* This entry is a symbolic link to a directory. */
192 #define needsFirstVisit 4 /* This is an initial entry. */
193 #define needsDescent 8 /* This entry needs to be previsited. */
194 #define needsOpen 16 /* This is a directory that needs to be opened. */
195 #define needsAscent 32 /* This entry needs to be postvisited. */
196
197 /*
198 * Local data for this package.
199 */
200 struct tree {
201 struct tree_entry *stack;
202 struct tree_entry *current;
203 DIR *d;
204 #define INVALID_DIR_HANDLE NULL
205 struct dirent *de;
206 #if defined(USE_READDIR_R)
207 struct dirent *dirent;
208 size_t dirent_allocated;
209 #endif
210 int flags;
211 int visit_type;
212 /* Error code from last failed operation. */
213 int tree_errno;
214
215 /* Dynamically-sized buffer for holding path */
216 struct archive_string path;
217
218 /* Last path element */
219 const char *basename;
220 /* Leading dir length */
221 size_t dirname_length;
222
223 int depth;
224 int openCount;
225 int maxOpenCount;
226 int initial_dir_fd;
227 int working_dir_fd;
228
229 struct stat lst;
230 struct stat st;
231 int descend;
232 int nlink;
233 /* How to restore time of a file. */
234 struct restore_time restore_time;
235
236 struct entry_sparse {
237 int64_t length;
238 int64_t offset;
239 } *sparse_list, *current_sparse;
240 int sparse_count;
241 int sparse_list_size;
242
243 char initial_symlink_mode;
244 char symlink_mode;
245 struct filesystem *current_filesystem;
246 struct filesystem *filesystem_table;
247 int initial_filesystem_id;
248 int current_filesystem_id;
249 int max_filesystem_id;
250 int allocated_filesystem;
251
252 int entry_fd;
253 int entry_eof;
254 int64_t entry_remaining_bytes;
255 int64_t entry_total;
256 unsigned char *entry_buff;
257 size_t entry_buff_size;
258 };
259
260 /* Definitions for tree.flags bitmap. */
261 #define hasStat 16 /* The st entry is valid. */
262 #define hasLstat 32 /* The lst entry is valid. */
263 #define onWorkingDir 64 /* We are on the working dir where we are
264 * reading directory entry at this time. */
265 #define needsRestoreTimes 128
266 #define onInitialDir 256 /* We are on the initial dir. */
267
268 static int
269 tree_dir_next_posix(struct tree *t);
270
271 #ifdef HAVE_DIRENT_D_NAMLEN
272 /* BSD extension; avoids need for a strlen() call. */
273 #define D_NAMELEN(dp) (dp)->d_namlen
274 #else
275 #define D_NAMELEN(dp) (strlen((dp)->d_name))
276 #endif
277
278 /* Initiate/terminate a tree traversal. */
279 static struct tree *tree_open(const char *, int, int);
280 static struct tree *tree_reopen(struct tree *, const char *, int);
281 static void tree_close(struct tree *);
282 static void tree_free(struct tree *);
283 static void tree_push(struct tree *, const char *, int, int64_t, int64_t,
284 struct restore_time *);
285 static int tree_enter_initial_dir(struct tree *);
286 static int tree_enter_working_dir(struct tree *);
287 static int tree_current_dir_fd(struct tree *);
288
289 /*
290 * tree_next() returns Zero if there is no next entry, non-zero if
291 * there is. Note that directories are visited three times.
292 * Directories are always visited first as part of enumerating their
293 * parent; that is a "regular" visit. If tree_descend() is invoked at
294 * that time, the directory is added to a work list and will
295 * subsequently be visited two more times: once just after descending
296 * into the directory ("postdescent") and again just after ascending
297 * back to the parent ("postascent").
298 *
299 * TREE_ERROR_DIR is returned if the descent failed (because the
300 * directory couldn't be opened, for instance). This is returned
301 * instead of TREE_POSTDESCENT/TREE_POSTASCENT. TREE_ERROR_DIR is not a
302 * fatal error, but it does imply that the relevant subtree won't be
303 * visited. TREE_ERROR_FATAL is returned for an error that left the
304 * traversal completely hosed. Right now, this is only returned for
305 * chdir() failures during ascent.
306 */
307 #define TREE_REGULAR 1
308 #define TREE_POSTDESCENT 2
309 #define TREE_POSTASCENT 3
310 #define TREE_ERROR_DIR -1
311 #define TREE_ERROR_FATAL -2
312
313 static int tree_next(struct tree *);
314
315 /*
316 * Return information about the current entry.
317 */
318
319 /*
320 * The current full pathname, length of the full pathname, and a name
321 * that can be used to access the file. Because tree does use chdir
322 * extensively, the access path is almost never the same as the full
323 * current path.
324 *
325 * TODO: On platforms that support it, use openat()-style operations
326 * to eliminate the chdir() operations entirely while still supporting
327 * arbitrarily deep traversals. This makes access_path troublesome to
328 * support, of course, which means we'll need a rich enough interface
329 * that clients can function without it. (In particular, we'll need
330 * tree_current_open() that returns an open file descriptor.)
331 *
332 */
333 static const char *tree_current_path(struct tree *);
334 static const char *tree_current_access_path(struct tree *);
335
336 /*
337 * Request the lstat() or stat() data for the current path. Since the
338 * tree package needs to do some of this anyway, and caches the
339 * results, you should take advantage of it here if you need it rather
340 * than make a redundant stat() or lstat() call of your own.
341 */
342 static const struct stat *tree_current_stat(struct tree *);
343 static const struct stat *tree_current_lstat(struct tree *);
344 static int tree_current_is_symblic_link_target(struct tree *);
345
346 /* The following functions use tricks to avoid a certain number of
347 * stat()/lstat() calls. */
348 /* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
349 static int tree_current_is_physical_dir(struct tree *);
350 /* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
351 static int tree_current_is_dir(struct tree *);
352 static int update_current_filesystem(struct archive_read_disk *a,
353 int64_t dev);
354 static int setup_current_filesystem(struct archive_read_disk *);
355 static int tree_target_is_same_as_parent(struct tree *, const struct stat *);
356
357 static int _archive_read_disk_open(struct archive *, const char *);
358 static int _archive_read_free(struct archive *);
359 static int _archive_read_close(struct archive *);
360 static int _archive_read_data_block(struct archive *,
361 const void **, size_t *, int64_t *);
362 static int _archive_read_next_header(struct archive *,
363 struct archive_entry **);
364 static int _archive_read_next_header2(struct archive *,
365 struct archive_entry *);
366 static const char *trivial_lookup_gname(void *, int64_t gid);
367 static const char *trivial_lookup_uname(void *, int64_t uid);
368 static int setup_sparse(struct archive_read_disk *, struct archive_entry *);
369 static int close_and_restore_time(int fd, struct tree *,
370 struct restore_time *);
371 static int open_on_current_dir(struct tree *, const char *, int);
372 static int tree_dup(int);
373
374
375 static const struct archive_vtable
376 archive_read_disk_vtable = {
377 .archive_free = _archive_read_free,
378 .archive_close = _archive_read_close,
379 .archive_read_data_block = _archive_read_data_block,
380 .archive_read_next_header = _archive_read_next_header,
381 .archive_read_next_header2 = _archive_read_next_header2,
382 };
383
384 const char *
archive_read_disk_gname(struct archive * _a,la_int64_t gid)385 archive_read_disk_gname(struct archive *_a, la_int64_t gid)
386 {
387 struct archive_read_disk *a = (struct archive_read_disk *)_a;
388 if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
389 ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
390 return (NULL);
391 if (a->lookup_gname == NULL)
392 return (NULL);
393 return ((*a->lookup_gname)(a->lookup_gname_data, gid));
394 }
395
396 const char *
archive_read_disk_uname(struct archive * _a,la_int64_t uid)397 archive_read_disk_uname(struct archive *_a, la_int64_t uid)
398 {
399 struct archive_read_disk *a = (struct archive_read_disk *)_a;
400 if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
401 ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
402 return (NULL);
403 if (a->lookup_uname == NULL)
404 return (NULL);
405 return ((*a->lookup_uname)(a->lookup_uname_data, uid));
406 }
407
408 int
archive_read_disk_set_gname_lookup(struct archive * _a,void * private_data,const char * (* lookup_gname)(void * private,la_int64_t gid),void (* cleanup_gname)(void * private))409 archive_read_disk_set_gname_lookup(struct archive *_a,
410 void *private_data,
411 const char * (*lookup_gname)(void *private, la_int64_t gid),
412 void (*cleanup_gname)(void *private))
413 {
414 struct archive_read_disk *a = (struct archive_read_disk *)_a;
415 archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
416 ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
417
418 if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
419 (a->cleanup_gname)(a->lookup_gname_data);
420
421 a->lookup_gname = lookup_gname;
422 a->cleanup_gname = cleanup_gname;
423 a->lookup_gname_data = private_data;
424 return (ARCHIVE_OK);
425 }
426
427 int
archive_read_disk_set_uname_lookup(struct archive * _a,void * private_data,const char * (* lookup_uname)(void * private,la_int64_t uid),void (* cleanup_uname)(void * private))428 archive_read_disk_set_uname_lookup(struct archive *_a,
429 void *private_data,
430 const char * (*lookup_uname)(void *private, la_int64_t uid),
431 void (*cleanup_uname)(void *private))
432 {
433 struct archive_read_disk *a = (struct archive_read_disk *)_a;
434 archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
435 ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
436
437 if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
438 (a->cleanup_uname)(a->lookup_uname_data);
439
440 a->lookup_uname = lookup_uname;
441 a->cleanup_uname = cleanup_uname;
442 a->lookup_uname_data = private_data;
443 return (ARCHIVE_OK);
444 }
445
446 /*
447 * Create a new archive_read_disk object and initialize it with global state.
448 */
449 struct archive *
archive_read_disk_new(void)450 archive_read_disk_new(void)
451 {
452 struct archive_read_disk *a;
453
454 a = calloc(1, sizeof(*a));
455 if (a == NULL)
456 return (NULL);
457 a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
458 a->archive.state = ARCHIVE_STATE_NEW;
459 a->archive.vtable = &archive_read_disk_vtable;
460 a->entry = archive_entry_new2(&a->archive);
461 a->lookup_uname = trivial_lookup_uname;
462 a->lookup_gname = trivial_lookup_gname;
463 a->flags = ARCHIVE_READDISK_MAC_COPYFILE;
464 a->open_on_current_dir = open_on_current_dir;
465 a->tree_current_dir_fd = tree_current_dir_fd;
466 a->tree_enter_working_dir = tree_enter_working_dir;
467 return (&a->archive);
468 }
469
470 static int
_archive_read_free(struct archive * _a)471 _archive_read_free(struct archive *_a)
472 {
473 struct archive_read_disk *a = (struct archive_read_disk *)_a;
474 int r;
475
476 if (_a == NULL)
477 return (ARCHIVE_OK);
478 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
479 ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
480
481 if (a->archive.state != ARCHIVE_STATE_CLOSED)
482 r = _archive_read_close(&a->archive);
483 else
484 r = ARCHIVE_OK;
485
486 tree_free(a->tree);
487 if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
488 (a->cleanup_gname)(a->lookup_gname_data);
489 if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
490 (a->cleanup_uname)(a->lookup_uname_data);
491 archive_string_free(&a->archive.error_string);
492 archive_entry_free(a->entry);
493 a->archive.magic = 0;
494 __archive_clean(&a->archive);
495 free(a);
496 return (r);
497 }
498
499 static int
_archive_read_close(struct archive * _a)500 _archive_read_close(struct archive *_a)
501 {
502 struct archive_read_disk *a = (struct archive_read_disk *)_a;
503
504 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
505 ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
506
507 if (a->archive.state != ARCHIVE_STATE_FATAL)
508 a->archive.state = ARCHIVE_STATE_CLOSED;
509
510 tree_close(a->tree);
511
512 return (ARCHIVE_OK);
513 }
514
515 static void
setup_symlink_mode(struct archive_read_disk * a,char symlink_mode,int follow_symlinks)516 setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
517 int follow_symlinks)
518 {
519 a->symlink_mode = symlink_mode;
520 a->follow_symlinks = follow_symlinks;
521 if (a->tree != NULL) {
522 a->tree->initial_symlink_mode = a->symlink_mode;
523 a->tree->symlink_mode = a->symlink_mode;
524 }
525 }
526
527 int
archive_read_disk_set_symlink_logical(struct archive * _a)528 archive_read_disk_set_symlink_logical(struct archive *_a)
529 {
530 struct archive_read_disk *a = (struct archive_read_disk *)_a;
531 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
532 ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
533 setup_symlink_mode(a, 'L', 1);
534 return (ARCHIVE_OK);
535 }
536
537 int
archive_read_disk_set_symlink_physical(struct archive * _a)538 archive_read_disk_set_symlink_physical(struct archive *_a)
539 {
540 struct archive_read_disk *a = (struct archive_read_disk *)_a;
541 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
542 ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
543 setup_symlink_mode(a, 'P', 0);
544 return (ARCHIVE_OK);
545 }
546
547 int
archive_read_disk_set_symlink_hybrid(struct archive * _a)548 archive_read_disk_set_symlink_hybrid(struct archive *_a)
549 {
550 struct archive_read_disk *a = (struct archive_read_disk *)_a;
551 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
552 ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
553 setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
554 return (ARCHIVE_OK);
555 }
556
557 int
archive_read_disk_set_atime_restored(struct archive * _a)558 archive_read_disk_set_atime_restored(struct archive *_a)
559 {
560 struct archive_read_disk *a = (struct archive_read_disk *)_a;
561 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
562 ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
563 #ifdef HAVE_UTIMES
564 a->flags |= ARCHIVE_READDISK_RESTORE_ATIME;
565 if (a->tree != NULL)
566 a->tree->flags |= needsRestoreTimes;
567 return (ARCHIVE_OK);
568 #else
569 /* Display warning and unset flag */
570 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
571 "Cannot restore access time on this system");
572 a->flags &= ~ARCHIVE_READDISK_RESTORE_ATIME;
573 return (ARCHIVE_WARN);
574 #endif
575 }
576
577 int
archive_read_disk_set_behavior(struct archive * _a,int flags)578 archive_read_disk_set_behavior(struct archive *_a, int flags)
579 {
580 struct archive_read_disk *a = (struct archive_read_disk *)_a;
581 int r = ARCHIVE_OK;
582
583 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
584 ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
585
586 a->flags = flags;
587
588 if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
589 r = archive_read_disk_set_atime_restored(_a);
590 else {
591 if (a->tree != NULL)
592 a->tree->flags &= ~needsRestoreTimes;
593 }
594 return (r);
595 }
596
597 /*
598 * Trivial implementations of gname/uname lookup functions.
599 * These are normally overridden by the client, but these stub
600 * versions ensure that we always have something that works.
601 */
602 static const char *
trivial_lookup_gname(void * private_data,int64_t gid)603 trivial_lookup_gname(void *private_data, int64_t gid)
604 {
605 (void)private_data; /* UNUSED */
606 (void)gid; /* UNUSED */
607 return (NULL);
608 }
609
610 static const char *
trivial_lookup_uname(void * private_data,int64_t uid)611 trivial_lookup_uname(void *private_data, int64_t uid)
612 {
613 (void)private_data; /* UNUSED */
614 (void)uid; /* UNUSED */
615 return (NULL);
616 }
617
618 /*
619 * Allocate memory for the reading buffer adjusted to the filesystem
620 * alignment.
621 */
622 static int
setup_suitable_read_buffer(struct archive_read_disk * a)623 setup_suitable_read_buffer(struct archive_read_disk *a)
624 {
625 struct tree *t = a->tree;
626 struct filesystem *cf = t->current_filesystem;
627 size_t asize;
628 size_t s;
629
630 if (cf->allocation_ptr == NULL) {
631 /* If we couldn't get a filesystem alignment,
632 * we use 4096 as default value but we won't use
633 * O_DIRECT to open() and openat() operations. */
634 long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align;
635
636 if (cf->max_xfer_size != -1)
637 asize = cf->max_xfer_size + xfer_align;
638 else {
639 long incr = cf->incr_xfer_size;
640 /* Some platform does not set a proper value to
641 * incr_xfer_size.*/
642 if (incr < 0)
643 incr = cf->min_xfer_size;
644 if (cf->min_xfer_size < 0) {
645 incr = xfer_align;
646 asize = xfer_align;
647 } else
648 asize = cf->min_xfer_size;
649
650 /* Increase a buffer size up to 64K bytes in
651 * a proper increment size. */
652 while (asize < 1024*64)
653 asize += incr;
654 /* Take a margin to adjust to the filesystem
655 * alignment. */
656 asize += xfer_align;
657 }
658 cf->allocation_ptr = malloc(asize);
659 if (cf->allocation_ptr == NULL) {
660 archive_set_error(&a->archive, ENOMEM,
661 "Couldn't allocate memory");
662 a->archive.state = ARCHIVE_STATE_FATAL;
663 return (ARCHIVE_FATAL);
664 }
665
666 /*
667 * Calculate proper address for the filesystem.
668 */
669 s = (uintptr_t)cf->allocation_ptr;
670 s %= xfer_align;
671 if (s > 0)
672 s = xfer_align - s;
673
674 /*
675 * Set a read buffer pointer in the proper alignment of
676 * the current filesystem.
677 */
678 cf->buff = cf->allocation_ptr + s;
679 cf->buff_size = asize - xfer_align;
680 }
681 return (ARCHIVE_OK);
682 }
683
684 static int
_archive_read_data_block(struct archive * _a,const void ** buff,size_t * size,int64_t * offset)685 _archive_read_data_block(struct archive *_a, const void **buff,
686 size_t *size, int64_t *offset)
687 {
688 struct archive_read_disk *a = (struct archive_read_disk *)_a;
689 struct tree *t = a->tree;
690 int r;
691 ssize_t bytes;
692 int64_t sparse_bytes;
693 size_t buffbytes;
694 int empty_sparse_region = 0;
695
696 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
697 "archive_read_data_block");
698
699 if (t->entry_eof || t->entry_remaining_bytes <= 0) {
700 r = ARCHIVE_EOF;
701 goto abort_read_data;
702 }
703
704 /*
705 * Open the current file.
706 */
707 if (t->entry_fd < 0) {
708 int flags = O_RDONLY | O_BINARY | O_CLOEXEC;
709
710 /*
711 * Eliminate or reduce cache effects if we can.
712 *
713 * Carefully consider this to be enabled.
714 */
715 #if defined(O_DIRECT) && 0/* Disabled for now */
716 if (t->current_filesystem->xfer_align != -1 &&
717 t->nlink == 1)
718 flags |= O_DIRECT;
719 #endif
720 #if defined(O_NOATIME)
721 /*
722 * Linux has O_NOATIME flag; use it if we need.
723 */
724 if ((t->flags & needsRestoreTimes) != 0 &&
725 t->restore_time.noatime == 0)
726 flags |= O_NOATIME;
727 #endif
728 t->entry_fd = open_on_current_dir(t,
729 tree_current_access_path(t), flags);
730 __archive_ensure_cloexec_flag(t->entry_fd);
731 #if defined(O_NOATIME)
732 /*
733 * When we did open the file with O_NOATIME flag,
734 * if successful, set 1 to t->restore_time.noatime
735 * not to restore an atime of the file later.
736 * if failed by EPERM, retry it without O_NOATIME flag.
737 */
738 if (flags & O_NOATIME) {
739 if (t->entry_fd >= 0)
740 t->restore_time.noatime = 1;
741 else if (errno == EPERM)
742 flags &= ~O_NOATIME;
743 }
744 #endif
745 if (t->entry_fd < 0) {
746 archive_set_error(&a->archive, errno,
747 "Couldn't open %s", tree_current_path(t));
748 r = ARCHIVE_FAILED;
749 tree_enter_initial_dir(t);
750 goto abort_read_data;
751 }
752 tree_enter_initial_dir(t);
753 }
754
755 /*
756 * Allocate read buffer if not allocated.
757 */
758 if (t->current_filesystem->allocation_ptr == NULL) {
759 r = setup_suitable_read_buffer(a);
760 if (r != ARCHIVE_OK) {
761 a->archive.state = ARCHIVE_STATE_FATAL;
762 goto abort_read_data;
763 }
764 }
765 t->entry_buff = t->current_filesystem->buff;
766 t->entry_buff_size = t->current_filesystem->buff_size;
767
768 buffbytes = t->entry_buff_size;
769 if ((int64_t)buffbytes > t->current_sparse->length)
770 buffbytes = t->current_sparse->length;
771
772 if (t->current_sparse->length == 0)
773 empty_sparse_region = 1;
774
775 /*
776 * Skip hole.
777 * TODO: Should we consider t->current_filesystem->xfer_align?
778 */
779 if (t->current_sparse->offset > t->entry_total) {
780 if (lseek(t->entry_fd,
781 (off_t)t->current_sparse->offset, SEEK_SET) < 0) {
782 archive_set_error(&a->archive, errno, "Seek error");
783 r = ARCHIVE_FATAL;
784 a->archive.state = ARCHIVE_STATE_FATAL;
785 goto abort_read_data;
786 }
787 sparse_bytes = t->current_sparse->offset - t->entry_total;
788 t->entry_remaining_bytes -= sparse_bytes;
789 t->entry_total += sparse_bytes;
790 }
791
792 /*
793 * Read file contents.
794 */
795 if (buffbytes > 0) {
796 bytes = read(t->entry_fd, t->entry_buff, buffbytes);
797 if (bytes < 0) {
798 archive_set_error(&a->archive, errno, "Read error");
799 r = ARCHIVE_FATAL;
800 a->archive.state = ARCHIVE_STATE_FATAL;
801 goto abort_read_data;
802 }
803 } else
804 bytes = 0;
805 /*
806 * Return an EOF unless we've read a leading empty sparse region, which
807 * is used to represent fully-sparse files.
808 */
809 if (bytes == 0 && !empty_sparse_region) {
810 /* Get EOF */
811 t->entry_eof = 1;
812 r = ARCHIVE_EOF;
813 goto abort_read_data;
814 }
815 *buff = t->entry_buff;
816 *size = bytes;
817 *offset = t->entry_total;
818 t->entry_total += bytes;
819 t->entry_remaining_bytes -= bytes;
820 if (t->entry_remaining_bytes == 0) {
821 /* Close the current file descriptor */
822 close_and_restore_time(t->entry_fd, t, &t->restore_time);
823 t->entry_fd = -1;
824 t->entry_eof = 1;
825 }
826 t->current_sparse->offset += bytes;
827 t->current_sparse->length -= bytes;
828 if (t->current_sparse->length == 0 && !t->entry_eof)
829 t->current_sparse++;
830 return (ARCHIVE_OK);
831
832 abort_read_data:
833 *buff = NULL;
834 *size = 0;
835 *offset = t->entry_total;
836 if (t->entry_fd >= 0) {
837 /* Close the current file descriptor */
838 close_and_restore_time(t->entry_fd, t, &t->restore_time);
839 t->entry_fd = -1;
840 }
841 return (r);
842 }
843
844 static int
next_entry(struct archive_read_disk * a,struct tree * t,struct archive_entry * entry)845 next_entry(struct archive_read_disk *a, struct tree *t,
846 struct archive_entry *entry)
847 {
848 const struct stat *st; /* info to use for this entry */
849 const struct stat *lst;/* lstat() information */
850 const char *name;
851 int delayed, delayed_errno, descend, r;
852 struct archive_string delayed_str;
853
854 delayed = ARCHIVE_OK;
855 delayed_errno = 0;
856 archive_string_init(&delayed_str);
857
858 st = NULL;
859 lst = NULL;
860 t->descend = 0;
861 do {
862 switch (tree_next(t)) {
863 case TREE_ERROR_FATAL:
864 archive_set_error(&a->archive, t->tree_errno,
865 "%s: Unable to continue traversing directory tree",
866 tree_current_path(t));
867 a->archive.state = ARCHIVE_STATE_FATAL;
868 tree_enter_initial_dir(t);
869 return (ARCHIVE_FATAL);
870 case TREE_ERROR_DIR:
871 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
872 "%s: Couldn't visit directory",
873 tree_current_path(t));
874 tree_enter_initial_dir(t);
875 return (ARCHIVE_FAILED);
876 case 0:
877 tree_enter_initial_dir(t);
878 return (ARCHIVE_EOF);
879 case TREE_POSTDESCENT:
880 case TREE_POSTASCENT:
881 break;
882 case TREE_REGULAR:
883 lst = tree_current_lstat(t);
884 if (lst == NULL) {
885 if (errno == ENOENT && t->depth > 0) {
886 delayed = ARCHIVE_WARN;
887 delayed_errno = errno;
888 if (delayed_str.length == 0) {
889 archive_string_sprintf(&delayed_str,
890 "%s", tree_current_path(t));
891 } else {
892 archive_string_sprintf(&delayed_str,
893 " %s", tree_current_path(t));
894 }
895 } else {
896 archive_set_error(&a->archive, errno,
897 "%s: Cannot stat",
898 tree_current_path(t));
899 tree_enter_initial_dir(t);
900 return (ARCHIVE_FAILED);
901 }
902 }
903 break;
904 }
905 } while (lst == NULL);
906
907 #ifdef __APPLE__
908 if (a->flags & ARCHIVE_READDISK_MAC_COPYFILE) {
909 /* If we're using copyfile(), ignore "._XXX" files. */
910 const char *bname = strrchr(tree_current_path(t), '/');
911 if (bname == NULL)
912 bname = tree_current_path(t);
913 else
914 ++bname;
915 if (bname[0] == '.' && bname[1] == '_')
916 return (ARCHIVE_RETRY);
917 }
918 #endif
919
920 archive_entry_copy_pathname(entry, tree_current_path(t));
921 /*
922 * Perform path matching.
923 */
924 if (a->matching) {
925 r = archive_match_path_excluded(a->matching, entry);
926 if (r < 0) {
927 archive_set_error(&(a->archive), errno,
928 "Failed : %s", archive_error_string(a->matching));
929 return (r);
930 }
931 if (r) {
932 if (a->excluded_cb_func)
933 a->excluded_cb_func(&(a->archive),
934 a->excluded_cb_data, entry);
935 return (ARCHIVE_RETRY);
936 }
937 }
938
939 /*
940 * Distinguish 'L'/'P'/'H' symlink following.
941 */
942 switch(t->symlink_mode) {
943 case 'H':
944 /* 'H': After the first item, rest like 'P'. */
945 t->symlink_mode = 'P';
946 /* 'H': First item (from command line) like 'L'. */
947 /* FALLTHROUGH */
948 case 'L':
949 /* 'L': Do descend through a symlink to dir. */
950 descend = tree_current_is_dir(t);
951 /* 'L': Follow symlinks to files. */
952 a->symlink_mode = 'L';
953 a->follow_symlinks = 1;
954 /* 'L': Archive symlinks as targets, if we can. */
955 st = tree_current_stat(t);
956 if (st != NULL && !tree_target_is_same_as_parent(t, st))
957 break;
958 /* If stat fails, we have a broken symlink;
959 * in that case, don't follow the link. */
960 /* FALLTHROUGH */
961 default:
962 /* 'P': Don't descend through a symlink to dir. */
963 descend = tree_current_is_physical_dir(t);
964 /* 'P': Don't follow symlinks to files. */
965 a->symlink_mode = 'P';
966 a->follow_symlinks = 0;
967 /* 'P': Archive symlinks as symlinks. */
968 st = lst;
969 break;
970 }
971
972 if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) {
973 a->archive.state = ARCHIVE_STATE_FATAL;
974 tree_enter_initial_dir(t);
975 return (ARCHIVE_FATAL);
976 }
977 if (t->initial_filesystem_id == -1)
978 t->initial_filesystem_id = t->current_filesystem_id;
979 if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) {
980 if (t->initial_filesystem_id != t->current_filesystem_id)
981 descend = 0;
982 }
983 t->descend = descend;
984
985 /*
986 * Honor nodump flag.
987 * If the file is marked with nodump flag, do not return this entry.
988 */
989 if (a->flags & ARCHIVE_READDISK_HONOR_NODUMP) {
990 #if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP)
991 if (st->st_flags & UF_NODUMP)
992 return (ARCHIVE_RETRY);
993 #elif (defined(FS_IOC_GETFLAGS) && defined(FS_NODUMP_FL) && \
994 defined(HAVE_WORKING_FS_IOC_GETFLAGS)) || \
995 (defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) && \
996 defined(HAVE_WORKING_EXT2_IOC_GETFLAGS))
997 if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) {
998 int stflags;
999
1000 t->entry_fd = open_on_current_dir(t,
1001 tree_current_access_path(t),
1002 O_RDONLY | O_NONBLOCK | O_CLOEXEC);
1003 __archive_ensure_cloexec_flag(t->entry_fd);
1004 if (t->entry_fd >= 0) {
1005 r = ioctl(t->entry_fd,
1006 #ifdef FS_IOC_GETFLAGS
1007 FS_IOC_GETFLAGS,
1008 #else
1009 EXT2_IOC_GETFLAGS,
1010 #endif
1011 &stflags);
1012 #ifdef FS_NODUMP_FL
1013 if (r == 0 && (stflags & FS_NODUMP_FL) != 0)
1014 #else
1015 if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0)
1016 #endif
1017 return (ARCHIVE_RETRY);
1018 }
1019 }
1020 #endif
1021 }
1022
1023 archive_entry_copy_stat(entry, st);
1024
1025 /* Save the times to be restored. This must be in before
1026 * calling archive_read_disk_descend() or any chance of it,
1027 * especially, invoking a callback. */
1028 t->restore_time.mtime = archive_entry_mtime(entry);
1029 t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry);
1030 t->restore_time.atime = archive_entry_atime(entry);
1031 t->restore_time.atime_nsec = archive_entry_atime_nsec(entry);
1032 t->restore_time.filetype = archive_entry_filetype(entry);
1033 t->restore_time.noatime = t->current_filesystem->noatime;
1034
1035 /*
1036 * Perform time matching.
1037 */
1038 if (a->matching) {
1039 r = archive_match_time_excluded(a->matching, entry);
1040 if (r < 0) {
1041 archive_set_error(&(a->archive), errno,
1042 "Failed : %s", archive_error_string(a->matching));
1043 return (r);
1044 }
1045 if (r) {
1046 if (a->excluded_cb_func)
1047 a->excluded_cb_func(&(a->archive),
1048 a->excluded_cb_data, entry);
1049 return (ARCHIVE_RETRY);
1050 }
1051 }
1052
1053 /* Lookup uname/gname */
1054 name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
1055 if (name != NULL)
1056 archive_entry_copy_uname(entry, name);
1057 name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
1058 if (name != NULL)
1059 archive_entry_copy_gname(entry, name);
1060
1061 /*
1062 * Perform owner matching.
1063 */
1064 if (a->matching) {
1065 r = archive_match_owner_excluded(a->matching, entry);
1066 if (r < 0) {
1067 archive_set_error(&(a->archive), errno,
1068 "Failed : %s", archive_error_string(a->matching));
1069 return (r);
1070 }
1071 if (r) {
1072 if (a->excluded_cb_func)
1073 a->excluded_cb_func(&(a->archive),
1074 a->excluded_cb_data, entry);
1075 return (ARCHIVE_RETRY);
1076 }
1077 }
1078
1079 /*
1080 * Invoke a meta data filter callback.
1081 */
1082 if (a->metadata_filter_func) {
1083 if (!a->metadata_filter_func(&(a->archive),
1084 a->metadata_filter_data, entry))
1085 return (ARCHIVE_RETRY);
1086 }
1087
1088 /*
1089 * Populate the archive_entry with metadata from the disk.
1090 */
1091 archive_entry_copy_sourcepath(entry, tree_current_access_path(t));
1092 r = archive_read_disk_entry_from_file(&(a->archive), entry,
1093 t->entry_fd, st);
1094
1095 if (r == ARCHIVE_OK) {
1096 r = delayed;
1097 if (r != ARCHIVE_OK) {
1098 archive_string_sprintf(&delayed_str, ": %s",
1099 "File removed before we read it");
1100 archive_set_error(&(a->archive), delayed_errno,
1101 "%s", delayed_str.s);
1102 }
1103 }
1104 archive_string_free(&delayed_str);
1105
1106 return (r);
1107 }
1108
1109 static int
_archive_read_next_header(struct archive * _a,struct archive_entry ** entryp)1110 _archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
1111 {
1112 int ret;
1113 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1114 *entryp = NULL;
1115 ret = _archive_read_next_header2(_a, a->entry);
1116 *entryp = a->entry;
1117 return ret;
1118 }
1119
1120 static int
_archive_read_next_header2(struct archive * _a,struct archive_entry * entry)1121 _archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
1122 {
1123 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1124 struct tree *t;
1125 int r;
1126
1127 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1128 ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1129 "archive_read_next_header2");
1130
1131 t = a->tree;
1132 if (t->entry_fd >= 0) {
1133 close_and_restore_time(t->entry_fd, t, &t->restore_time);
1134 t->entry_fd = -1;
1135 }
1136
1137 archive_entry_clear(entry);
1138
1139 for (;;) {
1140 r = next_entry(a, t, entry);
1141 if (t->entry_fd >= 0) {
1142 close(t->entry_fd);
1143 t->entry_fd = -1;
1144 }
1145
1146 if (r == ARCHIVE_RETRY) {
1147 archive_entry_clear(entry);
1148 continue;
1149 }
1150 break;
1151 }
1152
1153 /* Return to the initial directory. */
1154 tree_enter_initial_dir(t);
1155
1156 /*
1157 * EOF and FATAL are persistent at this layer. By
1158 * modifying the state, we guarantee that future calls to
1159 * read a header or read data will fail.
1160 */
1161 switch (r) {
1162 case ARCHIVE_EOF:
1163 a->archive.state = ARCHIVE_STATE_EOF;
1164 break;
1165 case ARCHIVE_OK:
1166 case ARCHIVE_WARN:
1167 /* Overwrite the sourcepath based on the initial directory. */
1168 archive_entry_copy_sourcepath(entry, tree_current_path(t));
1169 t->entry_total = 0;
1170 if (archive_entry_filetype(entry) == AE_IFREG) {
1171 t->nlink = archive_entry_nlink(entry);
1172 t->entry_remaining_bytes = archive_entry_size(entry);
1173 t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
1174 if (!t->entry_eof &&
1175 setup_sparse(a, entry) != ARCHIVE_OK)
1176 return (ARCHIVE_FATAL);
1177 } else {
1178 t->entry_remaining_bytes = 0;
1179 t->entry_eof = 1;
1180 }
1181 a->archive.state = ARCHIVE_STATE_DATA;
1182 break;
1183 case ARCHIVE_RETRY:
1184 break;
1185 case ARCHIVE_FATAL:
1186 a->archive.state = ARCHIVE_STATE_FATAL;
1187 break;
1188 }
1189
1190 __archive_reset_read_data(&a->archive);
1191 return (r);
1192 }
1193
1194 static int
setup_sparse(struct archive_read_disk * a,struct archive_entry * entry)1195 setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
1196 {
1197 struct tree *t = a->tree;
1198 int64_t length, offset;
1199 int i;
1200
1201 t->sparse_count = archive_entry_sparse_reset(entry);
1202 if (t->sparse_count+1 > t->sparse_list_size) {
1203 free(t->sparse_list);
1204 t->sparse_list_size = t->sparse_count + 1;
1205 t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
1206 t->sparse_list_size);
1207 if (t->sparse_list == NULL) {
1208 t->sparse_list_size = 0;
1209 archive_set_error(&a->archive, ENOMEM,
1210 "Can't allocate data");
1211 a->archive.state = ARCHIVE_STATE_FATAL;
1212 return (ARCHIVE_FATAL);
1213 }
1214 }
1215 for (i = 0; i < t->sparse_count; i++) {
1216 archive_entry_sparse_next(entry, &offset, &length);
1217 t->sparse_list[i].offset = offset;
1218 t->sparse_list[i].length = length;
1219 }
1220 if (i == 0) {
1221 t->sparse_list[i].offset = 0;
1222 t->sparse_list[i].length = archive_entry_size(entry);
1223 } else {
1224 t->sparse_list[i].offset = archive_entry_size(entry);
1225 t->sparse_list[i].length = 0;
1226 }
1227 t->current_sparse = t->sparse_list;
1228
1229 return (ARCHIVE_OK);
1230 }
1231
1232 int
archive_read_disk_set_matching(struct archive * _a,struct archive * _ma,void (* _excluded_func)(struct archive *,void *,struct archive_entry *),void * _client_data)1233 archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
1234 void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
1235 void *_client_data)
1236 {
1237 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1238 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1239 ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
1240 a->matching = _ma;
1241 a->excluded_cb_func = _excluded_func;
1242 a->excluded_cb_data = _client_data;
1243 return (ARCHIVE_OK);
1244 }
1245
1246 int
archive_read_disk_set_metadata_filter_callback(struct archive * _a,int (* _metadata_filter_func)(struct archive *,void *,struct archive_entry *),void * _client_data)1247 archive_read_disk_set_metadata_filter_callback(struct archive *_a,
1248 int (*_metadata_filter_func)(struct archive *, void *,
1249 struct archive_entry *), void *_client_data)
1250 {
1251 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1252
1253 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
1254 "archive_read_disk_set_metadata_filter_callback");
1255
1256 a->metadata_filter_func = _metadata_filter_func;
1257 a->metadata_filter_data = _client_data;
1258 return (ARCHIVE_OK);
1259 }
1260
1261 int
archive_read_disk_can_descend(struct archive * _a)1262 archive_read_disk_can_descend(struct archive *_a)
1263 {
1264 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1265 struct tree *t = a->tree;
1266
1267 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1268 ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1269 "archive_read_disk_can_descend");
1270
1271 return (t->visit_type == TREE_REGULAR && t->descend);
1272 }
1273
1274 /*
1275 * Called by the client to mark the directory just returned from
1276 * tree_next() as needing to be visited.
1277 */
1278 int
archive_read_disk_descend(struct archive * _a)1279 archive_read_disk_descend(struct archive *_a)
1280 {
1281 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1282 struct tree *t = a->tree;
1283
1284 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1285 ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1286 "archive_read_disk_descend");
1287
1288 if (!archive_read_disk_can_descend(_a))
1289 return (ARCHIVE_OK);
1290
1291 /*
1292 * We must not treat the initial specified path as a physical dir,
1293 * because if we do then we will try and ascend out of it by opening
1294 * ".." which is (a) wrong and (b) causes spurious permissions errors
1295 * if ".." is not readable by us. Instead, treat it as if it were a
1296 * symlink. (This uses an extra fd, but it can only happen once at the
1297 * top level of a traverse.) But we can't necessarily assume t->st is
1298 * valid here (though t->lst is), which complicates the logic a
1299 * little.
1300 */
1301 if (tree_current_is_physical_dir(t)) {
1302 tree_push(t, t->basename, t->current_filesystem_id,
1303 t->lst.st_dev, t->lst.st_ino, &t->restore_time);
1304 if (t->stack->parent->parent != NULL)
1305 t->stack->flags |= isDir;
1306 else
1307 t->stack->flags |= isDirLink;
1308 } else if (tree_current_is_dir(t)) {
1309 tree_push(t, t->basename, t->current_filesystem_id,
1310 t->st.st_dev, t->st.st_ino, &t->restore_time);
1311 t->stack->flags |= isDirLink;
1312 }
1313 t->descend = 0;
1314 return (ARCHIVE_OK);
1315 }
1316
1317 int
archive_read_disk_open(struct archive * _a,const char * pathname)1318 archive_read_disk_open(struct archive *_a, const char *pathname)
1319 {
1320 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1321
1322 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1323 ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1324 "archive_read_disk_open");
1325 archive_clear_error(&a->archive);
1326
1327 return (_archive_read_disk_open(_a, pathname));
1328 }
1329
1330 int
archive_read_disk_open_w(struct archive * _a,const wchar_t * pathname)1331 archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
1332 {
1333 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1334 struct archive_string path;
1335 int ret;
1336
1337 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1338 ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1339 "archive_read_disk_open_w");
1340 archive_clear_error(&a->archive);
1341
1342 /* Make a char string from a wchar_t string. */
1343 archive_string_init(&path);
1344 if (archive_string_append_from_wcs(&path, pathname,
1345 wcslen(pathname)) != 0) {
1346 if (errno == ENOMEM)
1347 archive_set_error(&a->archive, ENOMEM,
1348 "Can't allocate memory");
1349 else
1350 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1351 "Can't convert a path to a char string");
1352 a->archive.state = ARCHIVE_STATE_FATAL;
1353 ret = ARCHIVE_FATAL;
1354 } else
1355 ret = _archive_read_disk_open(_a, path.s);
1356
1357 archive_string_free(&path);
1358 return (ret);
1359 }
1360
1361 static int
_archive_read_disk_open(struct archive * _a,const char * pathname)1362 _archive_read_disk_open(struct archive *_a, const char *pathname)
1363 {
1364 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1365
1366 if (a->tree != NULL)
1367 a->tree = tree_reopen(a->tree, pathname,
1368 a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1369 else
1370 a->tree = tree_open(pathname, a->symlink_mode,
1371 a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1372 if (a->tree == NULL) {
1373 archive_set_error(&a->archive, ENOMEM,
1374 "Can't allocate tar data");
1375 a->archive.state = ARCHIVE_STATE_FATAL;
1376 return (ARCHIVE_FATAL);
1377 }
1378 a->archive.state = ARCHIVE_STATE_HEADER;
1379
1380 return (ARCHIVE_OK);
1381 }
1382
1383 /*
1384 * Return a current filesystem ID which is index of the filesystem entry
1385 * you've visited through archive_read_disk.
1386 */
1387 int
archive_read_disk_current_filesystem(struct archive * _a)1388 archive_read_disk_current_filesystem(struct archive *_a)
1389 {
1390 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1391
1392 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1393 "archive_read_disk_current_filesystem");
1394
1395 return (a->tree->current_filesystem_id);
1396 }
1397
1398 static int
update_current_filesystem(struct archive_read_disk * a,int64_t dev)1399 update_current_filesystem(struct archive_read_disk *a, int64_t dev)
1400 {
1401 struct tree *t = a->tree;
1402 int i, fid;
1403
1404 if (t->current_filesystem != NULL &&
1405 t->current_filesystem->dev == dev)
1406 return (ARCHIVE_OK);
1407
1408 for (i = 0; i < t->max_filesystem_id; i++) {
1409 if (t->filesystem_table[i].dev == dev) {
1410 /* There is the filesystem ID we've already generated. */
1411 t->current_filesystem_id = i;
1412 t->current_filesystem = &(t->filesystem_table[i]);
1413 return (ARCHIVE_OK);
1414 }
1415 }
1416
1417 /*
1418 * This is the new filesystem which we have to generate a new ID for.
1419 */
1420 fid = t->max_filesystem_id++;
1421 if (t->max_filesystem_id > t->allocated_filesystem) {
1422 size_t s;
1423 void *p;
1424
1425 s = t->max_filesystem_id * 2;
1426 p = realloc(t->filesystem_table,
1427 s * sizeof(*t->filesystem_table));
1428 if (p == NULL) {
1429 archive_set_error(&a->archive, ENOMEM,
1430 "Can't allocate tar data");
1431 return (ARCHIVE_FATAL);
1432 }
1433 t->filesystem_table = (struct filesystem *)p;
1434 t->allocated_filesystem = s;
1435 }
1436 t->current_filesystem_id = fid;
1437 t->current_filesystem = &(t->filesystem_table[fid]);
1438 t->current_filesystem->dev = dev;
1439 t->current_filesystem->allocation_ptr = NULL;
1440 t->current_filesystem->buff = NULL;
1441
1442 /* Setup the current filesystem properties which depend on
1443 * platform specific. */
1444 return (setup_current_filesystem(a));
1445 }
1446
1447 /*
1448 * Returns 1 if current filesystem is generated filesystem, 0 if it is not
1449 * or -1 if it is unknown.
1450 */
1451 int
archive_read_disk_current_filesystem_is_synthetic(struct archive * _a)1452 archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
1453 {
1454 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1455
1456 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1457 "archive_read_disk_current_filesystem");
1458
1459 return (a->tree->current_filesystem->synthetic);
1460 }
1461
1462 /*
1463 * Returns 1 if current filesystem is remote filesystem, 0 if it is not
1464 * or -1 if it is unknown.
1465 */
1466 int
archive_read_disk_current_filesystem_is_remote(struct archive * _a)1467 archive_read_disk_current_filesystem_is_remote(struct archive *_a)
1468 {
1469 struct archive_read_disk *a = (struct archive_read_disk *)_a;
1470
1471 archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1472 "archive_read_disk_current_filesystem");
1473
1474 return (a->tree->current_filesystem->remote);
1475 }
1476
1477 #if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\
1478 defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN)
1479 static int
get_xfer_size(struct tree * t,int fd,const char * path)1480 get_xfer_size(struct tree *t, int fd, const char *path)
1481 {
1482 t->current_filesystem->xfer_align = -1;
1483 errno = 0;
1484 if (fd >= 0) {
1485 t->current_filesystem->incr_xfer_size =
1486 fpathconf(fd, _PC_REC_INCR_XFER_SIZE);
1487 t->current_filesystem->max_xfer_size =
1488 fpathconf(fd, _PC_REC_MAX_XFER_SIZE);
1489 t->current_filesystem->min_xfer_size =
1490 fpathconf(fd, _PC_REC_MIN_XFER_SIZE);
1491 t->current_filesystem->xfer_align =
1492 fpathconf(fd, _PC_REC_XFER_ALIGN);
1493 } else if (path != NULL) {
1494 t->current_filesystem->incr_xfer_size =
1495 pathconf(path, _PC_REC_INCR_XFER_SIZE);
1496 t->current_filesystem->max_xfer_size =
1497 pathconf(path, _PC_REC_MAX_XFER_SIZE);
1498 t->current_filesystem->min_xfer_size =
1499 pathconf(path, _PC_REC_MIN_XFER_SIZE);
1500 t->current_filesystem->xfer_align =
1501 pathconf(path, _PC_REC_XFER_ALIGN);
1502 }
1503 /* At least we need an alignment size. */
1504 if (t->current_filesystem->xfer_align == -1)
1505 return ((errno == EINVAL)?1:-1);
1506 else
1507 return (0);
1508 }
1509 #else
1510 static int
get_xfer_size(struct tree * t,int fd,const char * path)1511 get_xfer_size(struct tree *t, int fd, const char *path)
1512 {
1513 (void)t; /* UNUSED */
1514 (void)fd; /* UNUSED */
1515 (void)path; /* UNUSED */
1516 return (1);/* Not supported */
1517 }
1518 #endif
1519
1520 #if defined(HAVE_STATVFS)
1521 static inline __LA_UNUSED void
set_statvfs_transfer_size(struct filesystem * fs,const struct statvfs * sfs)1522 set_statvfs_transfer_size(struct filesystem *fs, const struct statvfs *sfs)
1523 {
1524 fs->xfer_align = sfs->f_frsize > 0 ? (long)sfs->f_frsize : -1;
1525 fs->max_xfer_size = -1;
1526 #if defined(HAVE_STRUCT_STATVFS_F_IOSIZE)
1527 fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1528 fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1529 #else
1530 fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1531 fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1532 #endif
1533 }
1534 #endif
1535
1536 #if defined(HAVE_STRUCT_STATFS)
1537 static inline __LA_UNUSED void
set_statfs_transfer_size(struct filesystem * fs,const struct statfs * sfs)1538 set_statfs_transfer_size(struct filesystem *fs, const struct statfs *sfs)
1539 {
1540 fs->xfer_align = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1541 fs->max_xfer_size = -1;
1542 #if defined(HAVE_STRUCT_STATFS_F_IOSIZE)
1543 fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1544 fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1545 #else
1546 fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1547 fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1548 #endif
1549 }
1550 #endif
1551
1552 #if defined(HAVE_STRUCT_STATFS) && defined(HAVE_STATFS) && \
1553 defined(HAVE_FSTATFS) && defined(MNT_LOCAL) && !defined(ST_LOCAL)
1554
1555 /*
1556 * Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X.
1557 */
1558 static int
setup_current_filesystem(struct archive_read_disk * a)1559 setup_current_filesystem(struct archive_read_disk *a)
1560 {
1561 struct tree *t = a->tree;
1562 struct statfs sfs;
1563 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1564 /* TODO: configure should set GETVFSBYNAME_ARG_TYPE to make
1565 * this accurate; some platforms have both and we need the one that's
1566 * used by getvfsbyname()
1567 *
1568 * Then the following would become:
1569 * #if defined(GETVFSBYNAME_ARG_TYPE)
1570 * GETVFSBYNAME_ARG_TYPE vfc;
1571 * #endif
1572 */
1573 # if defined(HAVE_STRUCT_XVFSCONF)
1574 struct xvfsconf vfc;
1575 # else
1576 struct vfsconf vfc;
1577 # endif
1578 #endif
1579 int r, xr = 0;
1580 #if !defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1581 long nm;
1582 #endif
1583
1584 t->current_filesystem->synthetic = -1;
1585 t->current_filesystem->remote = -1;
1586 if (tree_current_is_symblic_link_target(t)) {
1587 #if defined(HAVE_OPENAT)
1588 /*
1589 * Get file system statistics on any directory
1590 * where current is.
1591 */
1592 int fd = openat(tree_current_dir_fd(t),
1593 tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1594 __archive_ensure_cloexec_flag(fd);
1595 if (fd < 0) {
1596 archive_set_error(&a->archive, errno,
1597 "openat failed");
1598 return (ARCHIVE_FAILED);
1599 }
1600 r = fstatfs(fd, &sfs);
1601 if (r == 0)
1602 xr = get_xfer_size(t, fd, NULL);
1603 close(fd);
1604 #else
1605 if (tree_enter_working_dir(t) != 0) {
1606 archive_set_error(&a->archive, errno, "fchdir failed");
1607 return (ARCHIVE_FAILED);
1608 }
1609 r = statfs(tree_current_access_path(t), &sfs);
1610 if (r == 0)
1611 xr = get_xfer_size(t, -1, tree_current_access_path(t));
1612 #endif
1613 } else {
1614 r = fstatfs(tree_current_dir_fd(t), &sfs);
1615 if (r == 0)
1616 xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1617 }
1618 if (r == -1 || xr == -1) {
1619 archive_set_error(&a->archive, errno, "statfs failed");
1620 return (ARCHIVE_FAILED);
1621 } else if (xr == 1) {
1622 /* pathconf(_PC_REX_*) operations are not supported. */
1623 set_statfs_transfer_size(t->current_filesystem, &sfs);
1624 }
1625 if (sfs.f_flags & MNT_LOCAL)
1626 t->current_filesystem->remote = 0;
1627 else
1628 t->current_filesystem->remote = 1;
1629
1630 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1631 r = getvfsbyname(sfs.f_fstypename, &vfc);
1632 if (r == -1) {
1633 archive_set_error(&a->archive, errno, "getvfsbyname failed");
1634 return (ARCHIVE_FAILED);
1635 }
1636 if (vfc.vfc_flags & VFCF_SYNTHETIC)
1637 t->current_filesystem->synthetic = 1;
1638 else
1639 t->current_filesystem->synthetic = 0;
1640 #endif
1641
1642 #if defined(MNT_NOATIME)
1643 if (sfs.f_flags & MNT_NOATIME)
1644 t->current_filesystem->noatime = 1;
1645 else
1646 #endif
1647 t->current_filesystem->noatime = 0;
1648
1649 #if defined(USE_READDIR_R)
1650 /* Set maximum filename length. */
1651 #if defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1652 t->current_filesystem->name_max = sfs.f_namemax;
1653 #else
1654 # if defined(_PC_NAME_MAX)
1655 /* Mac OS X does not have f_namemax in struct statfs. */
1656 if (tree_current_is_symblic_link_target(t)) {
1657 if (tree_enter_working_dir(t) != 0) {
1658 archive_set_error(&a->archive, errno, "fchdir failed");
1659 return (ARCHIVE_FAILED);
1660 }
1661 nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1662 } else
1663 nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
1664 # else
1665 nm = -1;
1666 # endif
1667 if (nm == -1)
1668 t->current_filesystem->name_max = NAME_MAX;
1669 else
1670 t->current_filesystem->name_max = nm;
1671 #endif
1672 if (t->current_filesystem->name_max == 0) {
1673 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1674 "Cannot determine name_max");
1675 return (ARCHIVE_FAILED);
1676 }
1677 #endif /* USE_READDIR_R */
1678 return (ARCHIVE_OK);
1679 }
1680
1681 #elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL)
1682
1683 /*
1684 * Gather current filesystem properties on NetBSD
1685 */
1686 static int
setup_current_filesystem(struct archive_read_disk * a)1687 setup_current_filesystem(struct archive_read_disk *a)
1688 {
1689 struct tree *t = a->tree;
1690 struct statvfs svfs;
1691 int r, xr = 0;
1692
1693 t->current_filesystem->synthetic = -1;
1694 if (tree_enter_working_dir(t) != 0) {
1695 archive_set_error(&a->archive, errno, "fchdir failed");
1696 return (ARCHIVE_FAILED);
1697 }
1698 if (tree_current_is_symblic_link_target(t)) {
1699 r = statvfs(tree_current_access_path(t), &svfs);
1700 if (r == 0)
1701 xr = get_xfer_size(t, -1, tree_current_access_path(t));
1702 } else {
1703 #ifdef HAVE_FSTATVFS
1704 r = fstatvfs(tree_current_dir_fd(t), &svfs);
1705 if (r == 0)
1706 xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1707 #else
1708 r = statvfs(".", &svfs);
1709 if (r == 0)
1710 xr = get_xfer_size(t, -1, ".");
1711 #endif
1712 }
1713 if (r == -1 || xr == -1) {
1714 t->current_filesystem->remote = -1;
1715 archive_set_error(&a->archive, errno, "statvfs failed");
1716 return (ARCHIVE_FAILED);
1717 } else if (xr == 1) {
1718 /* Usually come here unless NetBSD supports _PC_REC_XFER_ALIGN
1719 * for pathconf() function. */
1720 set_statvfs_transfer_size(t->current_filesystem, &svfs);
1721 }
1722 if (svfs.f_flag & ST_LOCAL)
1723 t->current_filesystem->remote = 0;
1724 else
1725 t->current_filesystem->remote = 1;
1726
1727 #if defined(ST_NOATIME)
1728 if (svfs.f_flag & ST_NOATIME)
1729 t->current_filesystem->noatime = 1;
1730 else
1731 #endif
1732 t->current_filesystem->noatime = 0;
1733
1734 /* Set maximum filename length. */
1735 t->current_filesystem->name_max = svfs.f_namemax;
1736 return (ARCHIVE_OK);
1737 }
1738
1739 #elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\
1740 defined(HAVE_STATFS) && defined(HAVE_FSTATFS)
1741 /*
1742 * Note: statfs is deprecated since LSB 3.2
1743 */
1744
1745 #ifndef CIFS_SUPER_MAGIC
1746 #define CIFS_SUPER_MAGIC 0xFF534D42
1747 #endif
1748 #ifndef DEVFS_SUPER_MAGIC
1749 #define DEVFS_SUPER_MAGIC 0x1373
1750 #endif
1751
1752 /*
1753 * Gather current filesystem properties on Linux
1754 */
1755 static int
setup_current_filesystem(struct archive_read_disk * a)1756 setup_current_filesystem(struct archive_read_disk *a)
1757 {
1758 struct tree *t = a->tree;
1759 struct statfs sfs;
1760 #if defined(HAVE_STATVFS)
1761 struct statvfs svfs;
1762 #endif
1763 int r, vr = 0, xr = 0;
1764
1765 if (tree_current_is_symblic_link_target(t)) {
1766 #if defined(HAVE_OPENAT)
1767 /*
1768 * Get file system statistics on any directory
1769 * where current is.
1770 */
1771 int fd = openat(tree_current_dir_fd(t),
1772 tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1773 __archive_ensure_cloexec_flag(fd);
1774 if (fd < 0) {
1775 archive_set_error(&a->archive, errno,
1776 "openat failed");
1777 return (ARCHIVE_FAILED);
1778 }
1779 #if defined(HAVE_FSTATVFS)
1780 vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */
1781 #endif
1782 r = fstatfs(fd, &sfs);
1783 if (r == 0)
1784 xr = get_xfer_size(t, fd, NULL);
1785 close(fd);
1786 #else
1787 if (tree_enter_working_dir(t) != 0) {
1788 archive_set_error(&a->archive, errno, "fchdir failed");
1789 return (ARCHIVE_FAILED);
1790 }
1791 #if defined(HAVE_STATVFS)
1792 vr = statvfs(tree_current_access_path(t), &svfs);
1793 #endif
1794 r = statfs(tree_current_access_path(t), &sfs);
1795 if (r == 0)
1796 xr = get_xfer_size(t, -1, tree_current_access_path(t));
1797 #endif
1798 } else {
1799 #ifdef HAVE_FSTATFS
1800 #if defined(HAVE_FSTATVFS)
1801 vr = fstatvfs(tree_current_dir_fd(t), &svfs);
1802 #endif
1803 r = fstatfs(tree_current_dir_fd(t), &sfs);
1804 if (r == 0)
1805 xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1806 #else
1807 if (tree_enter_working_dir(t) != 0) {
1808 archive_set_error(&a->archive, errno, "fchdir failed");
1809 return (ARCHIVE_FAILED);
1810 }
1811 #if defined(HAVE_STATVFS)
1812 vr = statvfs(".", &svfs);
1813 #endif
1814 r = statfs(".", &sfs);
1815 if (r == 0)
1816 xr = get_xfer_size(t, -1, ".");
1817 #endif
1818 }
1819 if (r == -1 || xr == -1 || vr == -1) {
1820 t->current_filesystem->synthetic = -1;
1821 t->current_filesystem->remote = -1;
1822 archive_set_error(&a->archive, errno, "statfs failed");
1823 return (ARCHIVE_FAILED);
1824 } else if (xr == 1) {
1825 /* pathconf(_PC_REX_*) operations are not supported. */
1826 #if defined(HAVE_STATVFS)
1827 set_statvfs_transfer_size(t->current_filesystem, &svfs);
1828 #else
1829 set_statfs_transfer_size(t->current_filesystem, &sfs);
1830 #endif
1831 }
1832 switch (sfs.f_type) {
1833 case AFS_SUPER_MAGIC:
1834 case CIFS_SUPER_MAGIC:
1835 case CODA_SUPER_MAGIC:
1836 case NCP_SUPER_MAGIC:/* NetWare */
1837 case NFS_SUPER_MAGIC:
1838 case SMB_SUPER_MAGIC:
1839 t->current_filesystem->remote = 1;
1840 t->current_filesystem->synthetic = 0;
1841 break;
1842 case DEVFS_SUPER_MAGIC:
1843 case PROC_SUPER_MAGIC:
1844 case USBDEVICE_SUPER_MAGIC:
1845 t->current_filesystem->remote = 0;
1846 t->current_filesystem->synthetic = 1;
1847 break;
1848 default:
1849 t->current_filesystem->remote = 0;
1850 t->current_filesystem->synthetic = 0;
1851 break;
1852 }
1853
1854 #if defined(ST_NOATIME)
1855 #if defined(HAVE_STATVFS)
1856 if (svfs.f_flag & ST_NOATIME)
1857 #else
1858 if (sfs.f_flags & ST_NOATIME)
1859 #endif
1860 t->current_filesystem->noatime = 1;
1861 else
1862 #endif
1863 t->current_filesystem->noatime = 0;
1864
1865 #if defined(USE_READDIR_R)
1866 /* Set maximum filename length. */
1867 #if defined(HAVE_STATVFS)
1868 t->current_filesystem->name_max = svfs.f_namemax;
1869 #else
1870 t->current_filesystem->name_max = sfs.f_namelen;
1871 #endif
1872 if (t->current_filesystem->name_max == 0) {
1873 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1874 "Cannot determine name_max");
1875 return (ARCHIVE_FAILED);
1876 }
1877 #endif
1878 return (ARCHIVE_OK);
1879 }
1880
1881 #elif defined(HAVE_SYS_STATVFS_H) &&\
1882 (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS))
1883
1884 /*
1885 * Gather current filesystem properties on other posix platform.
1886 */
1887 static int
setup_current_filesystem(struct archive_read_disk * a)1888 setup_current_filesystem(struct archive_read_disk *a)
1889 {
1890 struct tree *t = a->tree;
1891 struct statvfs svfs;
1892 int r, xr = 0;
1893
1894 t->current_filesystem->synthetic = -1;/* Not supported */
1895 t->current_filesystem->remote = -1;/* Not supported */
1896 if (tree_current_is_symblic_link_target(t)) {
1897 #if defined(HAVE_OPENAT)
1898 /*
1899 * Get file system statistics on any directory
1900 * where current is.
1901 */
1902 int fd = openat(tree_current_dir_fd(t),
1903 tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1904 __archive_ensure_cloexec_flag(fd);
1905 if (fd < 0) {
1906 archive_set_error(&a->archive, errno,
1907 "openat failed");
1908 return (ARCHIVE_FAILED);
1909 }
1910 r = fstatvfs(fd, &svfs);
1911 if (r == 0)
1912 xr = get_xfer_size(t, fd, NULL);
1913 close(fd);
1914 #else
1915 if (tree_enter_working_dir(t) != 0) {
1916 archive_set_error(&a->archive, errno, "fchdir failed");
1917 return (ARCHIVE_FAILED);
1918 }
1919 r = statvfs(tree_current_access_path(t), &svfs);
1920 if (r == 0)
1921 xr = get_xfer_size(t, -1, tree_current_access_path(t));
1922 #endif
1923 } else {
1924 #ifdef HAVE_FSTATVFS
1925 r = fstatvfs(tree_current_dir_fd(t), &svfs);
1926 if (r == 0)
1927 xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1928 #else
1929 if (tree_enter_working_dir(t) != 0) {
1930 archive_set_error(&a->archive, errno, "fchdir failed");
1931 return (ARCHIVE_FAILED);
1932 }
1933 r = statvfs(".", &svfs);
1934 if (r == 0)
1935 xr = get_xfer_size(t, -1, ".");
1936 #endif
1937 }
1938 if (r == -1 || xr == -1) {
1939 t->current_filesystem->synthetic = -1;
1940 t->current_filesystem->remote = -1;
1941 archive_set_error(&a->archive, errno, "statvfs failed");
1942 return (ARCHIVE_FAILED);
1943 } else if (xr == 1) {
1944 /* pathconf(_PC_REX_*) operations are not supported. */
1945 set_statvfs_transfer_size(t->current_filesystem, &svfs);
1946 }
1947
1948 #if defined(ST_NOATIME)
1949 if (svfs.f_flag & ST_NOATIME)
1950 t->current_filesystem->noatime = 1;
1951 else
1952 #endif
1953 t->current_filesystem->noatime = 0;
1954
1955 #if defined(USE_READDIR_R)
1956 /* Set maximum filename length. */
1957 t->current_filesystem->name_max = svfs.f_namemax;
1958 if (t->current_filesystem->name_max == 0) {
1959 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1960 "Cannot determine name_max");
1961 return (ARCHIVE_FAILED);
1962 }
1963 #endif
1964 return (ARCHIVE_OK);
1965 }
1966
1967 #else
1968
1969 /*
1970 * Generic: Gather current filesystem properties.
1971 * TODO: Is this generic function really needed?
1972 */
1973 static int
setup_current_filesystem(struct archive_read_disk * a)1974 setup_current_filesystem(struct archive_read_disk *a)
1975 {
1976 struct tree *t = a->tree;
1977 #if defined(_PC_NAME_MAX) && defined(USE_READDIR_R)
1978 long nm;
1979 #endif
1980 t->current_filesystem->synthetic = -1;/* Not supported */
1981 t->current_filesystem->remote = -1;/* Not supported */
1982 t->current_filesystem->noatime = 0;
1983 (void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */
1984 t->current_filesystem->xfer_align = -1;/* Unknown */
1985 t->current_filesystem->max_xfer_size = -1;
1986 t->current_filesystem->min_xfer_size = -1;
1987 t->current_filesystem->incr_xfer_size = -1;
1988
1989 #if defined(USE_READDIR_R)
1990 /* Set maximum filename length. */
1991 # if defined(_PC_NAME_MAX)
1992 if (tree_current_is_symblic_link_target(t)) {
1993 if (tree_enter_working_dir(t) != 0) {
1994 archive_set_error(&a->archive, errno, "fchdir failed");
1995 return (ARCHIVE_FAILED);
1996 }
1997 nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1998 } else
1999 nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
2000 if (nm == -1)
2001 # endif /* _PC_NAME_MAX */
2002 /*
2003 * Some systems (HP-UX or others?) incorrectly defined
2004 * NAME_MAX macro to be a smaller value.
2005 */
2006 # if defined(NAME_MAX) && NAME_MAX >= 255
2007 t->current_filesystem->name_max = NAME_MAX;
2008 # else
2009 /* No way to get a trusted value of maximum filename
2010 * length. */
2011 t->current_filesystem->name_max = PATH_MAX;
2012 # endif /* NAME_MAX */
2013 # if defined(_PC_NAME_MAX)
2014 else
2015 t->current_filesystem->name_max = nm;
2016 # endif /* _PC_NAME_MAX */
2017 if (t->current_filesystem->name_max == 0) {
2018 archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
2019 "Cannot determine name_max");
2020 return (ARCHIVE_FAILED);
2021 }
2022 #endif /* USE_READDIR_R */
2023 return (ARCHIVE_OK);
2024 }
2025
2026 #endif
2027
2028 static int
close_and_restore_time(int fd,struct tree * t,struct restore_time * rt)2029 close_and_restore_time(int fd, struct tree *t, struct restore_time *rt)
2030 {
2031 #ifndef HAVE_UTIMES
2032 (void)t; /* UNUSED */
2033 (void)rt; /* UNUSED */
2034 return (close(fd));
2035 #else
2036 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
2037 struct timespec timespecs[2];
2038 #endif
2039 struct timeval times[2];
2040
2041 if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) {
2042 if (fd >= 0)
2043 return (close(fd));
2044 else
2045 return (0);
2046 }
2047
2048 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
2049 timespecs[1].tv_sec = rt->mtime;
2050 timespecs[1].tv_nsec = rt->mtime_nsec;
2051
2052 timespecs[0].tv_sec = rt->atime;
2053 timespecs[0].tv_nsec = rt->atime_nsec;
2054 /* futimens() is defined in POSIX.1-2008. */
2055 if (futimens(fd, timespecs) == 0)
2056 return (close(fd));
2057 #endif
2058
2059 times[1].tv_sec = rt->mtime;
2060 times[1].tv_usec = rt->mtime_nsec / 1000;
2061
2062 times[0].tv_sec = rt->atime;
2063 times[0].tv_usec = rt->atime_nsec / 1000;
2064
2065 #if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__)
2066 if (futimes(fd, times) == 0)
2067 return (close(fd));
2068 #endif
2069 close(fd);
2070 #if defined(HAVE_FUTIMESAT)
2071 if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0)
2072 return (0);
2073 #endif
2074 #ifdef HAVE_LUTIMES
2075 if (lutimes(rt->name, times) != 0)
2076 #else
2077 if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0)
2078 #endif
2079 return (-1);
2080 #endif
2081 return (0);
2082 }
2083
2084 static int
open_on_current_dir(struct tree * t,const char * path,int flags)2085 open_on_current_dir(struct tree *t, const char *path, int flags)
2086 {
2087 #ifdef HAVE_OPENAT
2088 return (openat(tree_current_dir_fd(t), path, flags));
2089 #else
2090 if (tree_enter_working_dir(t) != 0)
2091 return (-1);
2092 return (open(path, flags));
2093 #endif
2094 }
2095
2096 static int
tree_dup(int fd)2097 tree_dup(int fd)
2098 {
2099 int new_fd;
2100 #ifdef F_DUPFD_CLOEXEC
2101 static volatile int can_dupfd_cloexec = 1;
2102
2103 if (can_dupfd_cloexec) {
2104 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
2105 if (new_fd != -1)
2106 return (new_fd);
2107 /* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC,
2108 * but it cannot be used. So we have to try dup(). */
2109 /* We won't try F_DUPFD_CLOEXEC. */
2110 can_dupfd_cloexec = 0;
2111 }
2112 #endif /* F_DUPFD_CLOEXEC */
2113 new_fd = dup(fd);
2114 __archive_ensure_cloexec_flag(new_fd);
2115 return (new_fd);
2116 }
2117
2118 /*
2119 * Add a directory path to the current stack.
2120 */
2121 static void
tree_push(struct tree * t,const char * path,int filesystem_id,int64_t dev,int64_t ino,struct restore_time * rt)2122 tree_push(struct tree *t, const char *path, int filesystem_id,
2123 int64_t dev, int64_t ino, struct restore_time *rt)
2124 {
2125 struct tree_entry *te;
2126
2127 te = calloc(1, sizeof(*te));
2128 if (te == NULL)
2129 __archive_errx(1, "Out of memory");
2130 te->next = t->stack;
2131 te->parent = t->current;
2132 if (te->parent)
2133 te->depth = te->parent->depth + 1;
2134 t->stack = te;
2135 archive_string_init(&te->name);
2136 te->symlink_parent_fd = -1;
2137 archive_strcpy(&te->name, path);
2138 te->flags = needsDescent | needsOpen | needsAscent;
2139 te->filesystem_id = filesystem_id;
2140 te->dev = dev;
2141 te->ino = ino;
2142 te->dirname_length = t->dirname_length;
2143 te->restore_time.name = te->name.s;
2144 if (rt != NULL) {
2145 te->restore_time.mtime = rt->mtime;
2146 te->restore_time.mtime_nsec = rt->mtime_nsec;
2147 te->restore_time.atime = rt->atime;
2148 te->restore_time.atime_nsec = rt->atime_nsec;
2149 te->restore_time.filetype = rt->filetype;
2150 te->restore_time.noatime = rt->noatime;
2151 }
2152 }
2153
2154 /*
2155 * Append a name to the current dir path.
2156 */
2157 static void
tree_append(struct tree * t,const char * name,size_t name_length)2158 tree_append(struct tree *t, const char *name, size_t name_length)
2159 {
2160 size_t size_needed;
2161
2162 t->path.s[t->dirname_length] = '\0';
2163 t->path.length = t->dirname_length;
2164 /* Strip trailing '/' from name, unless entire name is "/". */
2165 while (name_length > 1 && name[name_length - 1] == '/')
2166 name_length--;
2167
2168 /* Resize pathname buffer as needed. */
2169 size_needed = name_length + t->dirname_length + 2;
2170 archive_string_ensure(&t->path, size_needed);
2171 /* Add a separating '/' if it's needed. */
2172 if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/')
2173 archive_strappend_char(&t->path, '/');
2174 t->basename = t->path.s + archive_strlen(&t->path);
2175 archive_strncat(&t->path, name, name_length);
2176 t->restore_time.name = t->basename;
2177 }
2178
2179 /*
2180 * Open a directory tree for traversal.
2181 */
2182 static struct tree *
tree_open(const char * path,int symlink_mode,int restore_time)2183 tree_open(const char *path, int symlink_mode, int restore_time)
2184 {
2185 struct tree *t;
2186
2187 if ((t = calloc(1, sizeof(*t))) == NULL)
2188 return (NULL);
2189 archive_string_init(&t->path);
2190 archive_string_ensure(&t->path, 31);
2191 t->initial_symlink_mode = symlink_mode;
2192 return (tree_reopen(t, path, restore_time));
2193 }
2194
2195 static struct tree *
tree_reopen(struct tree * t,const char * path,int restore_time)2196 tree_reopen(struct tree *t, const char *path, int restore_time)
2197 {
2198 #if defined(O_PATH)
2199 /* Linux */
2200 const int o_flag = O_PATH;
2201 #elif defined(O_SEARCH)
2202 /* SunOS */
2203 const int o_flag = O_SEARCH;
2204 #elif defined(__FreeBSD__) && defined(O_EXEC)
2205 /* FreeBSD */
2206 const int o_flag = O_EXEC;
2207 #endif
2208
2209 t->flags = (restore_time != 0)?needsRestoreTimes:0;
2210 t->flags |= onInitialDir;
2211 t->visit_type = 0;
2212 t->tree_errno = 0;
2213 t->dirname_length = 0;
2214 t->depth = 0;
2215 t->descend = 0;
2216 t->current = NULL;
2217 t->d = INVALID_DIR_HANDLE;
2218 t->symlink_mode = t->initial_symlink_mode;
2219 archive_string_empty(&t->path);
2220 t->entry_fd = -1;
2221 t->entry_eof = 0;
2222 t->entry_remaining_bytes = 0;
2223 t->initial_filesystem_id = -1;
2224
2225 /* First item is set up a lot like a symlink traversal. */
2226 tree_push(t, path, 0, 0, 0, NULL);
2227 t->stack->flags = needsFirstVisit;
2228 t->maxOpenCount = t->openCount = 1;
2229 t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC);
2230 #if defined(O_PATH) || defined(O_SEARCH) || \
2231 (defined(__FreeBSD__) && defined(O_EXEC))
2232 /*
2233 * Most likely reason to fail opening "." is that it's not readable,
2234 * so try again for execute. The consequences of not opening this are
2235 * unhelpful and unnecessary errors later.
2236 */
2237 if (t->initial_dir_fd < 0)
2238 t->initial_dir_fd = open(".", o_flag | O_CLOEXEC);
2239 #endif
2240 __archive_ensure_cloexec_flag(t->initial_dir_fd);
2241 t->working_dir_fd = tree_dup(t->initial_dir_fd);
2242 return (t);
2243 }
2244
2245 static int
tree_descent(struct tree * t)2246 tree_descent(struct tree *t)
2247 {
2248 int flag, new_fd, r = 0;
2249
2250 t->dirname_length = archive_strlen(&t->path);
2251 flag = O_RDONLY | O_CLOEXEC;
2252 #if defined(O_DIRECTORY)
2253 flag |= O_DIRECTORY;
2254 #endif
2255 new_fd = open_on_current_dir(t, t->stack->name.s, flag);
2256 __archive_ensure_cloexec_flag(new_fd);
2257 if (new_fd < 0) {
2258 t->tree_errno = errno;
2259 r = TREE_ERROR_DIR;
2260 } else {
2261 t->depth++;
2262 /* If it is a link, set up fd for the ascent. */
2263 if (t->stack->flags & isDirLink) {
2264 t->stack->symlink_parent_fd = t->working_dir_fd;
2265 t->openCount++;
2266 if (t->openCount > t->maxOpenCount)
2267 t->maxOpenCount = t->openCount;
2268 } else
2269 close(t->working_dir_fd);
2270 /* Renew the current working directory. */
2271 t->working_dir_fd = new_fd;
2272 t->flags &= ~onWorkingDir;
2273 }
2274 return (r);
2275 }
2276
2277 /*
2278 * We've finished a directory; ascend back to the parent.
2279 */
2280 static int
tree_ascend(struct tree * t)2281 tree_ascend(struct tree *t)
2282 {
2283 struct tree_entry *te;
2284 int new_fd, r = 0, prev_dir_fd;
2285
2286 te = t->stack;
2287 prev_dir_fd = t->working_dir_fd;
2288 if (te->flags & isDirLink)
2289 new_fd = te->symlink_parent_fd;
2290 else {
2291 new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC);
2292 __archive_ensure_cloexec_flag(new_fd);
2293 }
2294 if (new_fd < 0) {
2295 t->tree_errno = errno;
2296 r = TREE_ERROR_FATAL;
2297 } else {
2298 /* Renew the current working directory. */
2299 t->working_dir_fd = new_fd;
2300 t->flags &= ~onWorkingDir;
2301 /* Current directory has been changed, we should
2302 * close an fd of previous working directory. */
2303 close_and_restore_time(prev_dir_fd, t, &te->restore_time);
2304 if (te->flags & isDirLink) {
2305 t->openCount--;
2306 te->symlink_parent_fd = -1;
2307 }
2308 t->depth--;
2309 }
2310 return (r);
2311 }
2312
2313 /*
2314 * Return to the initial directory where tree_open() was performed.
2315 */
2316 static int
tree_enter_initial_dir(struct tree * t)2317 tree_enter_initial_dir(struct tree *t)
2318 {
2319 int r = 0;
2320
2321 if ((t->flags & onInitialDir) == 0) {
2322 r = fchdir(t->initial_dir_fd);
2323 if (r == 0) {
2324 t->flags &= ~onWorkingDir;
2325 t->flags |= onInitialDir;
2326 }
2327 }
2328 return (r);
2329 }
2330
2331 /*
2332 * Restore working directory of directory traversals.
2333 */
2334 static int
tree_enter_working_dir(struct tree * t)2335 tree_enter_working_dir(struct tree *t)
2336 {
2337 int r = 0;
2338
2339 /*
2340 * Change the current directory if really needed.
2341 * Sometimes this is unneeded when we did not do
2342 * descent.
2343 */
2344 if (t->depth > 0 && (t->flags & onWorkingDir) == 0) {
2345 r = fchdir(t->working_dir_fd);
2346 if (r == 0) {
2347 t->flags &= ~onInitialDir;
2348 t->flags |= onWorkingDir;
2349 }
2350 }
2351 return (r);
2352 }
2353
2354 static int
tree_current_dir_fd(struct tree * t)2355 tree_current_dir_fd(struct tree *t)
2356 {
2357 return (t->working_dir_fd);
2358 }
2359
2360 /*
2361 * Pop the working stack.
2362 */
2363 static void
tree_pop(struct tree * t)2364 tree_pop(struct tree *t)
2365 {
2366 struct tree_entry *te;
2367
2368 t->path.s[t->dirname_length] = '\0';
2369 t->path.length = t->dirname_length;
2370 if (t->stack == t->current && t->current != NULL)
2371 t->current = t->current->parent;
2372 te = t->stack;
2373 t->stack = te->next;
2374 t->dirname_length = te->dirname_length;
2375 t->basename = t->path.s + t->dirname_length;
2376 while (t->basename[0] == '/')
2377 t->basename++;
2378 archive_string_free(&te->name);
2379 free(te);
2380 }
2381
2382 /*
2383 * Get the next item in the tree traversal.
2384 */
2385 static int
tree_next(struct tree * t)2386 tree_next(struct tree *t)
2387 {
2388 int r;
2389
2390 while (t->stack != NULL) {
2391 /* If there's an open dir, get the next entry from there. */
2392 if (t->d != INVALID_DIR_HANDLE) {
2393 r = tree_dir_next_posix(t);
2394 if (r == 0)
2395 continue;
2396 return (r);
2397 }
2398
2399 if (t->stack->flags & needsFirstVisit) {
2400 /* Top stack item needs a regular visit. */
2401 t->current = t->stack;
2402 tree_append(t, t->stack->name.s,
2403 archive_strlen(&(t->stack->name)));
2404 /* t->dirname_length = t->path_length; */
2405 /* tree_pop(t); */
2406 t->stack->flags &= ~needsFirstVisit;
2407 return (t->visit_type = TREE_REGULAR);
2408 } else if (t->stack->flags & needsDescent) {
2409 /* Top stack item is dir to descend into. */
2410 t->current = t->stack;
2411 tree_append(t, t->stack->name.s,
2412 archive_strlen(&(t->stack->name)));
2413 t->stack->flags &= ~needsDescent;
2414 r = tree_descent(t);
2415 if (r != 0) {
2416 tree_pop(t);
2417 t->visit_type = r;
2418 } else
2419 t->visit_type = TREE_POSTDESCENT;
2420 return (t->visit_type);
2421 } else if (t->stack->flags & needsOpen) {
2422 t->stack->flags &= ~needsOpen;
2423 r = tree_dir_next_posix(t);
2424 if (r == 0)
2425 continue;
2426 return (r);
2427 } else if (t->stack->flags & needsAscent) {
2428 /* Top stack item is dir and we're done with it. */
2429 r = tree_ascend(t);
2430 tree_pop(t);
2431 t->visit_type = r != 0 ? r : TREE_POSTASCENT;
2432 return (t->visit_type);
2433 } else {
2434 /* Top item on stack is dead. */
2435 tree_pop(t);
2436 t->flags &= ~hasLstat;
2437 t->flags &= ~hasStat;
2438 }
2439 }
2440 return (t->visit_type = 0);
2441 }
2442
2443 static int
tree_dir_next_posix(struct tree * t)2444 tree_dir_next_posix(struct tree *t)
2445 {
2446 int r;
2447 const char *name;
2448 size_t namelen;
2449
2450 if (t->d == NULL) {
2451 #if defined(USE_READDIR_R)
2452 size_t dirent_size;
2453 #endif
2454
2455 #if defined(HAVE_FDOPENDIR)
2456 t->d = fdopendir(tree_dup(t->working_dir_fd));
2457 #else /* HAVE_FDOPENDIR */
2458 if (tree_enter_working_dir(t) == 0) {
2459 t->d = opendir(".");
2460 #ifdef HAVE_DIRFD
2461 __archive_ensure_cloexec_flag(dirfd(t->d));
2462 #endif
2463 }
2464 #endif /* HAVE_FDOPENDIR */
2465 if (t->d == NULL) {
2466 r = tree_ascend(t); /* Undo "chdir" */
2467 tree_pop(t);
2468 t->tree_errno = errno;
2469 t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
2470 return (t->visit_type);
2471 }
2472 #if defined(USE_READDIR_R)
2473 dirent_size = offsetof(struct dirent, d_name) +
2474 t->filesystem_table[t->current->filesystem_id].name_max + 1;
2475 if (t->dirent == NULL || t->dirent_allocated < dirent_size) {
2476 free(t->dirent);
2477 t->dirent = malloc(dirent_size);
2478 if (t->dirent == NULL) {
2479 closedir(t->d);
2480 t->d = INVALID_DIR_HANDLE;
2481 (void)tree_ascend(t);
2482 tree_pop(t);
2483 t->tree_errno = ENOMEM;
2484 t->visit_type = TREE_ERROR_DIR;
2485 return (t->visit_type);
2486 }
2487 t->dirent_allocated = dirent_size;
2488 }
2489 #endif /* USE_READDIR_R */
2490 }
2491 for (;;) {
2492 errno = 0;
2493 #if defined(USE_READDIR_R)
2494 r = readdir_r(t->d, t->dirent, &t->de);
2495 #ifdef _AIX
2496 /* Note: According to the man page, return value 9 indicates
2497 * that the readdir_r was not successful and the error code
2498 * is set to the global errno variable. And then if the end
2499 * of directory entries was reached, the return value is 9
2500 * and the third parameter is set to NULL and errno is
2501 * unchanged. */
2502 if (r == 9)
2503 r = errno;
2504 #endif /* _AIX */
2505 if (r != 0 || t->de == NULL) {
2506 #else
2507 t->de = readdir(t->d);
2508 if (t->de == NULL) {
2509 r = errno;
2510 #endif
2511 closedir(t->d);
2512 t->d = INVALID_DIR_HANDLE;
2513 if (r != 0) {
2514 t->tree_errno = r;
2515 t->visit_type = TREE_ERROR_DIR;
2516 return (t->visit_type);
2517 } else
2518 return (0);
2519 }
2520 name = t->de->d_name;
2521 namelen = D_NAMELEN(t->de);
2522 t->flags &= ~hasLstat;
2523 t->flags &= ~hasStat;
2524 if (name[0] == '.' && name[1] == '\0')
2525 continue;
2526 if (name[0] == '.' && name[1] == '.' && name[2] == '\0')
2527 continue;
2528 tree_append(t, name, namelen);
2529 return (t->visit_type = TREE_REGULAR);
2530 }
2531 }
2532
2533
2534 /*
2535 * Get the stat() data for the entry just returned from tree_next().
2536 */
2537 static const struct stat *
2538 tree_current_stat(struct tree *t)
2539 {
2540 if (!(t->flags & hasStat)) {
2541 #ifdef HAVE_FSTATAT
2542 if (fstatat(tree_current_dir_fd(t),
2543 tree_current_access_path(t), &t->st, 0) != 0)
2544 #else
2545 if (tree_enter_working_dir(t) != 0)
2546 return NULL;
2547 if (la_stat(tree_current_access_path(t), &t->st) != 0)
2548 #endif
2549 return NULL;
2550 t->flags |= hasStat;
2551 }
2552 return (&t->st);
2553 }
2554
2555 /*
2556 * Get the lstat() data for the entry just returned from tree_next().
2557 */
2558 static const struct stat *
2559 tree_current_lstat(struct tree *t)
2560 {
2561 if (!(t->flags & hasLstat)) {
2562 #ifdef HAVE_FSTATAT
2563 if (fstatat(tree_current_dir_fd(t),
2564 tree_current_access_path(t), &t->lst,
2565 AT_SYMLINK_NOFOLLOW) != 0)
2566 #else
2567 if (tree_enter_working_dir(t) != 0)
2568 return NULL;
2569 #ifdef HAVE_LSTAT
2570 if (lstat(tree_current_access_path(t), &t->lst) != 0)
2571 #else
2572 if (la_stat(tree_current_access_path(t), &t->lst) != 0)
2573 #endif
2574 #endif
2575 return NULL;
2576 t->flags |= hasLstat;
2577 }
2578 return (&t->lst);
2579 }
2580
2581 /*
2582 * Test whether current entry is a dir or link to a dir.
2583 */
2584 static int
2585 tree_current_is_dir(struct tree *t)
2586 {
2587 const struct stat *st;
2588 /*
2589 * If we already have lstat() info, then try some
2590 * cheap tests to determine if this is a dir.
2591 */
2592 if (t->flags & hasLstat) {
2593 /* If lstat() says it's a dir, it must be a dir. */
2594 st = tree_current_lstat(t);
2595 if (st == NULL)
2596 return 0;
2597 if (S_ISDIR(st->st_mode))
2598 return 1;
2599 /* Not a dir; might be a link to a dir. */
2600 /* If it's not a link, then it's not a link to a dir. */
2601 if (!S_ISLNK(st->st_mode))
2602 return 0;
2603 /*
2604 * It's a link, but we don't know what it's a link to,
2605 * so we'll have to use stat().
2606 */
2607 }
2608
2609 st = tree_current_stat(t);
2610 /* If we can't stat it, it's not a dir. */
2611 if (st == NULL)
2612 return 0;
2613 /* Use the definitive test. Hopefully this is cached. */
2614 return (S_ISDIR(st->st_mode));
2615 }
2616
2617 /*
2618 * Test whether current entry is a physical directory. Usually, we
2619 * already have at least one of stat() or lstat() in memory, so we
2620 * use tricks to try to avoid an extra trip to the disk.
2621 */
2622 static int
2623 tree_current_is_physical_dir(struct tree *t)
2624 {
2625 const struct stat *st;
2626
2627 /*
2628 * If stat() says it isn't a dir, then it's not a dir.
2629 * If stat() data is cached, this check is free, so do it first.
2630 */
2631 if (t->flags & hasStat) {
2632 st = tree_current_stat(t);
2633 if (st == NULL)
2634 return (0);
2635 if (!S_ISDIR(st->st_mode))
2636 return (0);
2637 }
2638
2639 /*
2640 * Either stat() said it was a dir (in which case, we have
2641 * to determine whether it's really a link to a dir) or
2642 * stat() info wasn't available. So we use lstat(), which
2643 * hopefully is already cached.
2644 */
2645
2646 st = tree_current_lstat(t);
2647 /* If we can't stat it, it's not a dir. */
2648 if (st == NULL)
2649 return 0;
2650 /* Use the definitive test. Hopefully this is cached. */
2651 return (S_ISDIR(st->st_mode));
2652 }
2653
2654 /*
2655 * Test whether the same file has been in the tree as its parent.
2656 */
2657 static int
2658 tree_target_is_same_as_parent(struct tree *t, const struct stat *st)
2659 {
2660 struct tree_entry *te;
2661
2662 for (te = t->current->parent; te != NULL; te = te->parent) {
2663 if (te->dev == (int64_t)st->st_dev &&
2664 te->ino == (int64_t)st->st_ino)
2665 return (1);
2666 }
2667 return (0);
2668 }
2669
2670 /*
2671 * Test whether the current file is symbolic link target and
2672 * on the other filesystem.
2673 */
2674 static int
2675 tree_current_is_symblic_link_target(struct tree *t)
2676 {
2677 static const struct stat *lst, *st;
2678
2679 lst = tree_current_lstat(t);
2680 st = tree_current_stat(t);
2681 return (st != NULL && lst != NULL &&
2682 (int64_t)st->st_dev == t->current_filesystem->dev &&
2683 st->st_dev != lst->st_dev);
2684 }
2685
2686 /*
2687 * Return the access path for the entry just returned from tree_next().
2688 */
2689 static const char *
2690 tree_current_access_path(struct tree *t)
2691 {
2692 return (t->basename);
2693 }
2694
2695 /*
2696 * Return the full path for the entry just returned from tree_next().
2697 */
2698 static const char *
2699 tree_current_path(struct tree *t)
2700 {
2701 return (t->path.s);
2702 }
2703
2704 /*
2705 * Terminate the traversal.
2706 */
2707 static void
2708 tree_close(struct tree *t)
2709 {
2710
2711 if (t == NULL)
2712 return;
2713 if (t->entry_fd >= 0) {
2714 close_and_restore_time(t->entry_fd, t, &t->restore_time);
2715 t->entry_fd = -1;
2716 }
2717 /* Close the handle of readdir(). */
2718 if (t->d != INVALID_DIR_HANDLE) {
2719 closedir(t->d);
2720 t->d = INVALID_DIR_HANDLE;
2721 }
2722 /* Release anything remaining in the stack. */
2723 while (t->stack != NULL) {
2724 if (t->stack->flags & isDirLink)
2725 close(t->stack->symlink_parent_fd);
2726 tree_pop(t);
2727 }
2728 if (t->working_dir_fd >= 0) {
2729 close(t->working_dir_fd);
2730 t->working_dir_fd = -1;
2731 }
2732 if (t->initial_dir_fd >= 0) {
2733 close(t->initial_dir_fd);
2734 t->initial_dir_fd = -1;
2735 }
2736 }
2737
2738 /*
2739 * Release any resources.
2740 */
2741 static void
2742 tree_free(struct tree *t)
2743 {
2744 int i;
2745
2746 if (t == NULL)
2747 return;
2748 archive_string_free(&t->path);
2749 #if defined(USE_READDIR_R)
2750 free(t->dirent);
2751 #endif
2752 free(t->sparse_list);
2753 for (i = 0; i < t->max_filesystem_id; i++)
2754 free(t->filesystem_table[i].allocation_ptr);
2755 free(t->filesystem_table);
2756 free(t);
2757 }
2758
2759 #endif
2760