1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34
35 #include <clocksource/arm_arch_timer.h>
36
37 #define CNTTIDR 0x08
38 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40 #define CNTACR(n) (0x40 + ((n) * 4))
41 #define CNTACR_RPCT BIT(0)
42 #define CNTACR_RVCT BIT(1)
43 #define CNTACR_RFRQ BIT(2)
44 #define CNTACR_RVOFF BIT(3)
45 #define CNTACR_RWVT BIT(4)
46 #define CNTACR_RWPT BIT(5)
47
48 #define CNTPCT_LO 0x00
49 #define CNTVCT_LO 0x08
50 #define CNTFRQ 0x10
51 #define CNTP_CVAL_LO 0x20
52 #define CNTP_CTL 0x2c
53 #define CNTV_CVAL_LO 0x30
54 #define CNTV_CTL 0x3c
55
56 /*
57 * The minimum amount of time a generic counter is guaranteed to not roll over
58 * (40 years)
59 */
60 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
61
62 static unsigned arch_timers_present __initdata;
63
64 struct arch_timer {
65 void __iomem *base;
66 struct clock_event_device evt;
67 };
68
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
78 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79 [ARCH_TIMER_VIRT_PPI] = "virt",
80 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
81 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
82 };
83
84 static struct clock_event_device __percpu *arch_timer_evt;
85
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
early_evtstrm_cfg(char * buf)99 static int __init early_evtstrm_cfg(char *buf)
100 {
101 return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105 /*
106 * Makes an educated guess at a valid counter width based on the Generic Timer
107 * specification. Of note:
108 * 1) the system counter is at least 56 bits wide
109 * 2) a roll-over time of not less than 40 years
110 *
111 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112 */
arch_counter_get_width(void)113 static int arch_counter_get_width(void)
114 {
115 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117 /* guarantee the returned width is within the valid range */
118 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120
121 /*
122 * Architected system timer support.
123 */
124
125 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u64 val,struct clock_event_device * clk)126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127 struct clock_event_device *clk)
128 {
129 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130 struct arch_timer *timer = to_arch_timer(clk);
131 switch (reg) {
132 case ARCH_TIMER_REG_CTRL:
133 writel_relaxed((u32)val, timer->base + CNTP_CTL);
134 break;
135 case ARCH_TIMER_REG_CVAL:
136 /*
137 * Not guaranteed to be atomic, so the timer
138 * must be disabled at this point.
139 */
140 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141 break;
142 default:
143 BUILD_BUG();
144 }
145 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146 struct arch_timer *timer = to_arch_timer(clk);
147 switch (reg) {
148 case ARCH_TIMER_REG_CTRL:
149 writel_relaxed((u32)val, timer->base + CNTV_CTL);
150 break;
151 case ARCH_TIMER_REG_CVAL:
152 /* Same restriction as above */
153 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154 break;
155 default:
156 BUILD_BUG();
157 }
158 } else {
159 arch_timer_reg_write_cp15(access, reg, val);
160 }
161 }
162
163 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165 struct clock_event_device *clk)
166 {
167 u32 val;
168
169 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170 struct arch_timer *timer = to_arch_timer(clk);
171 switch (reg) {
172 case ARCH_TIMER_REG_CTRL:
173 val = readl_relaxed(timer->base + CNTP_CTL);
174 break;
175 default:
176 BUILD_BUG();
177 }
178 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179 struct arch_timer *timer = to_arch_timer(clk);
180 switch (reg) {
181 case ARCH_TIMER_REG_CTRL:
182 val = readl_relaxed(timer->base + CNTV_CTL);
183 break;
184 default:
185 BUILD_BUG();
186 }
187 } else {
188 val = arch_timer_reg_read_cp15(access, reg);
189 }
190
191 return val;
192 }
193
raw_counter_get_cntpct_stable(void)194 static noinstr u64 raw_counter_get_cntpct_stable(void)
195 {
196 return __arch_counter_get_cntpct_stable();
197 }
198
arch_counter_get_cntpct_stable(void)199 static notrace u64 arch_counter_get_cntpct_stable(void)
200 {
201 u64 val;
202 preempt_disable_notrace();
203 val = __arch_counter_get_cntpct_stable();
204 preempt_enable_notrace();
205 return val;
206 }
207
arch_counter_get_cntpct(void)208 static noinstr u64 arch_counter_get_cntpct(void)
209 {
210 return __arch_counter_get_cntpct();
211 }
212
raw_counter_get_cntvct_stable(void)213 static noinstr u64 raw_counter_get_cntvct_stable(void)
214 {
215 return __arch_counter_get_cntvct_stable();
216 }
217
arch_counter_get_cntvct_stable(void)218 static notrace u64 arch_counter_get_cntvct_stable(void)
219 {
220 u64 val;
221 preempt_disable_notrace();
222 val = __arch_counter_get_cntvct_stable();
223 preempt_enable_notrace();
224 return val;
225 }
226
arch_counter_get_cntvct(void)227 static noinstr u64 arch_counter_get_cntvct(void)
228 {
229 return __arch_counter_get_cntvct();
230 }
231
232 /*
233 * Default to cp15 based access because arm64 uses this function for
234 * sched_clock() before DT is probed and the cp15 method is guaranteed
235 * to exist on arm64. arm doesn't use this before DT is probed so even
236 * if we don't have the cp15 accessors we won't have a problem.
237 */
238 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
239 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
240
arch_counter_read(struct clocksource * cs)241 static u64 arch_counter_read(struct clocksource *cs)
242 {
243 return arch_timer_read_counter();
244 }
245
arch_counter_read_cc(const struct cyclecounter * cc)246 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
247 {
248 return arch_timer_read_counter();
249 }
250
251 static struct clocksource clocksource_counter = {
252 .name = "arch_sys_counter",
253 .id = CSID_ARM_ARCH_COUNTER,
254 .rating = 400,
255 .read = arch_counter_read,
256 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
257 };
258
259 static struct cyclecounter cyclecounter __ro_after_init = {
260 .read = arch_counter_read_cc,
261 };
262
263 struct ate_acpi_oem_info {
264 char oem_id[ACPI_OEM_ID_SIZE + 1];
265 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
266 u32 oem_revision;
267 };
268
269 #ifdef CONFIG_FSL_ERRATUM_A008585
270 /*
271 * The number of retries is an arbitrary value well beyond the highest number
272 * of iterations the loop has been observed to take.
273 */
274 #define __fsl_a008585_read_reg(reg) ({ \
275 u64 _old, _new; \
276 int _retries = 200; \
277 \
278 do { \
279 _old = read_sysreg(reg); \
280 _new = read_sysreg(reg); \
281 _retries--; \
282 } while (unlikely(_old != _new) && _retries); \
283 \
284 WARN_ON_ONCE(!_retries); \
285 _new; \
286 })
287
fsl_a008585_read_cntpct_el0(void)288 static u64 notrace fsl_a008585_read_cntpct_el0(void)
289 {
290 return __fsl_a008585_read_reg(cntpct_el0);
291 }
292
fsl_a008585_read_cntvct_el0(void)293 static u64 notrace fsl_a008585_read_cntvct_el0(void)
294 {
295 return __fsl_a008585_read_reg(cntvct_el0);
296 }
297 #endif
298
299 #ifdef CONFIG_HISILICON_ERRATUM_161010101
300 /*
301 * Verify whether the value of the second read is larger than the first by
302 * less than 32 is the only way to confirm the value is correct, so clear the
303 * lower 5 bits to check whether the difference is greater than 32 or not.
304 * Theoretically the erratum should not occur more than twice in succession
305 * when reading the system counter, but it is possible that some interrupts
306 * may lead to more than twice read errors, triggering the warning, so setting
307 * the number of retries far beyond the number of iterations the loop has been
308 * observed to take.
309 */
310 #define __hisi_161010101_read_reg(reg) ({ \
311 u64 _old, _new; \
312 int _retries = 50; \
313 \
314 do { \
315 _old = read_sysreg(reg); \
316 _new = read_sysreg(reg); \
317 _retries--; \
318 } while (unlikely((_new - _old) >> 5) && _retries); \
319 \
320 WARN_ON_ONCE(!_retries); \
321 _new; \
322 })
323
hisi_161010101_read_cntpct_el0(void)324 static u64 notrace hisi_161010101_read_cntpct_el0(void)
325 {
326 return __hisi_161010101_read_reg(cntpct_el0);
327 }
328
hisi_161010101_read_cntvct_el0(void)329 static u64 notrace hisi_161010101_read_cntvct_el0(void)
330 {
331 return __hisi_161010101_read_reg(cntvct_el0);
332 }
333
334 static const struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
335 /*
336 * Note that trailing spaces are required to properly match
337 * the OEM table information.
338 */
339 {
340 .oem_id = "HISI ",
341 .oem_table_id = "HIP05 ",
342 .oem_revision = 0,
343 },
344 {
345 .oem_id = "HISI ",
346 .oem_table_id = "HIP06 ",
347 .oem_revision = 0,
348 },
349 {
350 .oem_id = "HISI ",
351 .oem_table_id = "HIP07 ",
352 .oem_revision = 0,
353 },
354 { /* Sentinel indicating the end of the OEM array */ },
355 };
356 #endif
357
358 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)359 static u64 notrace arm64_858921_read_cntpct_el0(void)
360 {
361 u64 old, new;
362
363 old = read_sysreg(cntpct_el0);
364 new = read_sysreg(cntpct_el0);
365 return (((old ^ new) >> 32) & 1) ? old : new;
366 }
367
arm64_858921_read_cntvct_el0(void)368 static u64 notrace arm64_858921_read_cntvct_el0(void)
369 {
370 u64 old, new;
371
372 old = read_sysreg(cntvct_el0);
373 new = read_sysreg(cntvct_el0);
374 return (((old ^ new) >> 32) & 1) ? old : new;
375 }
376 #endif
377
378 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
379 /*
380 * The low bits of the counter registers are indeterminate while bit 10 or
381 * greater is rolling over. Since the counter value can jump both backward
382 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383 * with all ones or all zeros in the low bits. Bound the loop by the maximum
384 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
385 */
386 #define __sun50i_a64_read_reg(reg) ({ \
387 u64 _val; \
388 int _retries = 150; \
389 \
390 do { \
391 _val = read_sysreg(reg); \
392 _retries--; \
393 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
394 \
395 WARN_ON_ONCE(!_retries); \
396 _val; \
397 })
398
sun50i_a64_read_cntpct_el0(void)399 static u64 notrace sun50i_a64_read_cntpct_el0(void)
400 {
401 return __sun50i_a64_read_reg(cntpct_el0);
402 }
403
sun50i_a64_read_cntvct_el0(void)404 static u64 notrace sun50i_a64_read_cntvct_el0(void)
405 {
406 return __sun50i_a64_read_reg(cntvct_el0);
407 }
408 #endif
409
410 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
412 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
413
414 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
415
416 /*
417 * Force the inlining of this function so that the register accesses
418 * can be themselves correctly inlined.
419 */
420 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)421 void erratum_set_next_event_generic(const int access, unsigned long evt,
422 struct clock_event_device *clk)
423 {
424 unsigned long ctrl;
425 u64 cval;
426
427 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
428 ctrl |= ARCH_TIMER_CTRL_ENABLE;
429 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
430
431 if (access == ARCH_TIMER_PHYS_ACCESS) {
432 cval = evt + arch_counter_get_cntpct_stable();
433 write_sysreg(cval, cntp_cval_el0);
434 } else {
435 cval = evt + arch_counter_get_cntvct_stable();
436 write_sysreg(cval, cntv_cval_el0);
437 }
438
439 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
440 }
441
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)442 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
443 struct clock_event_device *clk)
444 {
445 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
446 return 0;
447 }
448
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)449 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
450 struct clock_event_device *clk)
451 {
452 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
453 return 0;
454 }
455
456 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
457 #ifdef CONFIG_FSL_ERRATUM_A008585
458 {
459 .match_type = ate_match_dt,
460 .id = "fsl,erratum-a008585",
461 .desc = "Freescale erratum a005858",
462 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
463 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
464 .set_next_event_phys = erratum_set_next_event_phys,
465 .set_next_event_virt = erratum_set_next_event_virt,
466 },
467 #endif
468 #ifdef CONFIG_HISILICON_ERRATUM_161010101
469 {
470 .match_type = ate_match_dt,
471 .id = "hisilicon,erratum-161010101",
472 .desc = "HiSilicon erratum 161010101",
473 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
474 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
475 .set_next_event_phys = erratum_set_next_event_phys,
476 .set_next_event_virt = erratum_set_next_event_virt,
477 },
478 {
479 .match_type = ate_match_acpi_oem_info,
480 .id = hisi_161010101_oem_info,
481 .desc = "HiSilicon erratum 161010101",
482 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
483 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
484 .set_next_event_phys = erratum_set_next_event_phys,
485 .set_next_event_virt = erratum_set_next_event_virt,
486 },
487 #endif
488 #ifdef CONFIG_ARM64_ERRATUM_858921
489 {
490 .match_type = ate_match_local_cap_id,
491 .id = (void *)ARM64_WORKAROUND_858921,
492 .desc = "ARM erratum 858921",
493 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
494 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
495 .set_next_event_phys = erratum_set_next_event_phys,
496 .set_next_event_virt = erratum_set_next_event_virt,
497 },
498 #endif
499 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
500 {
501 .match_type = ate_match_dt,
502 .id = "allwinner,erratum-unknown1",
503 .desc = "Allwinner erratum UNKNOWN1",
504 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
505 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
506 .set_next_event_phys = erratum_set_next_event_phys,
507 .set_next_event_virt = erratum_set_next_event_virt,
508 },
509 #endif
510 #ifdef CONFIG_ARM64_ERRATUM_1418040
511 {
512 .match_type = ate_match_local_cap_id,
513 .id = (void *)ARM64_WORKAROUND_1418040,
514 .desc = "ARM erratum 1418040",
515 .disable_compat_vdso = true,
516 },
517 #endif
518 };
519
520 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
521 const void *);
522
523 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)524 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
525 const void *arg)
526 {
527 const struct device_node *np = arg;
528
529 return of_property_read_bool(np, wa->id);
530 }
531
532 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)533 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
534 const void *arg)
535 {
536 return this_cpu_has_cap((uintptr_t)wa->id);
537 }
538
539
540 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)541 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
542 const void *arg)
543 {
544 static const struct ate_acpi_oem_info empty_oem_info = {};
545 const struct ate_acpi_oem_info *info = wa->id;
546 const struct acpi_table_header *table = arg;
547
548 /* Iterate over the ACPI OEM info array, looking for a match */
549 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
550 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
551 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
552 info->oem_revision == table->oem_revision)
553 return true;
554
555 info++;
556 }
557
558 return false;
559 }
560
561 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)562 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
563 ate_match_fn_t match_fn,
564 void *arg)
565 {
566 int i;
567
568 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
569 if (ool_workarounds[i].match_type != type)
570 continue;
571
572 if (match_fn(&ool_workarounds[i], arg))
573 return &ool_workarounds[i];
574 }
575
576 return NULL;
577 }
578
579 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)580 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
581 bool local)
582 {
583 int i;
584
585 if (local) {
586 __this_cpu_write(timer_unstable_counter_workaround, wa);
587 } else {
588 for_each_possible_cpu(i)
589 per_cpu(timer_unstable_counter_workaround, i) = wa;
590 }
591
592 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
593 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
594
595 /*
596 * Don't use the vdso fastpath if errata require using the
597 * out-of-line counter accessor. We may change our mind pretty
598 * late in the game (with a per-CPU erratum, for example), so
599 * change both the default value and the vdso itself.
600 */
601 if (wa->read_cntvct_el0) {
602 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
603 vdso_default = VDSO_CLOCKMODE_NONE;
604 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
605 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
606 clocksource_counter.vdso_clock_mode = vdso_default;
607 }
608 }
609
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)610 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
611 void *arg)
612 {
613 const struct arch_timer_erratum_workaround *wa, *__wa;
614 ate_match_fn_t match_fn = NULL;
615 bool local = false;
616
617 switch (type) {
618 case ate_match_dt:
619 match_fn = arch_timer_check_dt_erratum;
620 break;
621 case ate_match_local_cap_id:
622 match_fn = arch_timer_check_local_cap_erratum;
623 local = true;
624 break;
625 case ate_match_acpi_oem_info:
626 match_fn = arch_timer_check_acpi_oem_erratum;
627 break;
628 default:
629 WARN_ON(1);
630 return;
631 }
632
633 wa = arch_timer_iterate_errata(type, match_fn, arg);
634 if (!wa)
635 return;
636
637 __wa = __this_cpu_read(timer_unstable_counter_workaround);
638 if (__wa && wa != __wa)
639 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640 wa->desc, __wa->desc);
641
642 if (__wa)
643 return;
644
645 arch_timer_enable_workaround(wa, local);
646 pr_info("Enabling %s workaround for %s\n",
647 local ? "local" : "global", wa->desc);
648 }
649
arch_timer_this_cpu_has_cntvct_wa(void)650 static bool arch_timer_this_cpu_has_cntvct_wa(void)
651 {
652 return has_erratum_handler(read_cntvct_el0);
653 }
654
arch_timer_counter_has_wa(void)655 static bool arch_timer_counter_has_wa(void)
656 {
657 return atomic_read(&timer_unstable_counter_workaround_in_use);
658 }
659 #else
660 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
661 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
662 #define arch_timer_counter_has_wa() ({false;})
663 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
664
timer_handler(const int access,struct clock_event_device * evt)665 static __always_inline irqreturn_t timer_handler(const int access,
666 struct clock_event_device *evt)
667 {
668 unsigned long ctrl;
669
670 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
671 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
672 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
673 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
674 evt->event_handler(evt);
675 return IRQ_HANDLED;
676 }
677
678 return IRQ_NONE;
679 }
680
arch_timer_handler_virt(int irq,void * dev_id)681 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
682 {
683 struct clock_event_device *evt = dev_id;
684
685 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
686 }
687
arch_timer_handler_phys(int irq,void * dev_id)688 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
689 {
690 struct clock_event_device *evt = dev_id;
691
692 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
693 }
694
arch_timer_handler_phys_mem(int irq,void * dev_id)695 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
696 {
697 struct clock_event_device *evt = dev_id;
698
699 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
700 }
701
arch_timer_handler_virt_mem(int irq,void * dev_id)702 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
703 {
704 struct clock_event_device *evt = dev_id;
705
706 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
707 }
708
arch_timer_shutdown(const int access,struct clock_event_device * clk)709 static __always_inline int arch_timer_shutdown(const int access,
710 struct clock_event_device *clk)
711 {
712 unsigned long ctrl;
713
714 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
716 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
717
718 return 0;
719 }
720
arch_timer_shutdown_virt(struct clock_event_device * clk)721 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
722 {
723 return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
724 }
725
arch_timer_shutdown_phys(struct clock_event_device * clk)726 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
727 {
728 return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
729 }
730
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)731 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
732 {
733 return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
734 }
735
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)736 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
737 {
738 return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
739 }
740
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)741 static __always_inline void set_next_event(const int access, unsigned long evt,
742 struct clock_event_device *clk)
743 {
744 unsigned long ctrl;
745 u64 cnt;
746
747 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
748 ctrl |= ARCH_TIMER_CTRL_ENABLE;
749 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
750
751 if (access == ARCH_TIMER_PHYS_ACCESS)
752 cnt = __arch_counter_get_cntpct();
753 else
754 cnt = __arch_counter_get_cntvct();
755
756 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
757 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
758 }
759
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)760 static int arch_timer_set_next_event_virt(unsigned long evt,
761 struct clock_event_device *clk)
762 {
763 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
764 return 0;
765 }
766
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)767 static int arch_timer_set_next_event_phys(unsigned long evt,
768 struct clock_event_device *clk)
769 {
770 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
771 return 0;
772 }
773
arch_counter_get_cnt_mem(struct arch_timer * t,int offset_lo)774 static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
775 {
776 u32 cnt_lo, cnt_hi, tmp_hi;
777
778 do {
779 cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
780 cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
781 tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
782 } while (cnt_hi != tmp_hi);
783
784 return ((u64) cnt_hi << 32) | cnt_lo;
785 }
786
set_next_event_mem(const int access,unsigned long evt,struct clock_event_device * clk)787 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
788 struct clock_event_device *clk)
789 {
790 struct arch_timer *timer = to_arch_timer(clk);
791 unsigned long ctrl;
792 u64 cnt;
793
794 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
795
796 /* Timer must be disabled before programming CVAL */
797 if (ctrl & ARCH_TIMER_CTRL_ENABLE) {
798 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
799 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
800 }
801
802 ctrl |= ARCH_TIMER_CTRL_ENABLE;
803 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
804
805 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
806 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
807 else
808 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
809
810 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
811 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
812 }
813
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)814 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
815 struct clock_event_device *clk)
816 {
817 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
818 return 0;
819 }
820
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)821 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
822 struct clock_event_device *clk)
823 {
824 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
825 return 0;
826 }
827
__arch_timer_check_delta(void)828 static u64 __arch_timer_check_delta(void)
829 {
830 #ifdef CONFIG_ARM64
831 const struct midr_range broken_cval_midrs[] = {
832 /*
833 * XGene-1 implements CVAL in terms of TVAL, meaning
834 * that the maximum timer range is 32bit. Shame on them.
835 *
836 * Note that TVAL is signed, thus has only 31 of its
837 * 32 bits to express magnitude.
838 */
839 MIDR_REV_RANGE(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
840 APM_CPU_PART_XGENE),
841 APM_CPU_VAR_POTENZA, 0x0, 0xf),
842 {},
843 };
844
845 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
846 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
847 return CLOCKSOURCE_MASK(31);
848 }
849 #endif
850 return CLOCKSOURCE_MASK(arch_counter_get_width());
851 }
852
__arch_timer_setup(unsigned type,struct clock_event_device * clk)853 static void __arch_timer_setup(unsigned type,
854 struct clock_event_device *clk)
855 {
856 u64 max_delta;
857
858 clk->features = CLOCK_EVT_FEAT_ONESHOT;
859
860 if (type == ARCH_TIMER_TYPE_CP15) {
861 typeof(clk->set_next_event) sne;
862
863 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
864
865 if (arch_timer_c3stop)
866 clk->features |= CLOCK_EVT_FEAT_C3STOP;
867 clk->name = "arch_sys_timer";
868 clk->rating = 450;
869 clk->cpumask = cpumask_of(smp_processor_id());
870 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
871 switch (arch_timer_uses_ppi) {
872 case ARCH_TIMER_VIRT_PPI:
873 clk->set_state_shutdown = arch_timer_shutdown_virt;
874 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
875 sne = erratum_handler(set_next_event_virt);
876 break;
877 case ARCH_TIMER_PHYS_SECURE_PPI:
878 case ARCH_TIMER_PHYS_NONSECURE_PPI:
879 case ARCH_TIMER_HYP_PPI:
880 clk->set_state_shutdown = arch_timer_shutdown_phys;
881 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
882 sne = erratum_handler(set_next_event_phys);
883 break;
884 default:
885 BUG();
886 }
887
888 clk->set_next_event = sne;
889 max_delta = __arch_timer_check_delta();
890 } else {
891 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
892 clk->name = "arch_mem_timer";
893 clk->rating = 400;
894 clk->cpumask = cpu_possible_mask;
895 if (arch_timer_mem_use_virtual) {
896 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
897 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
898 clk->set_next_event =
899 arch_timer_set_next_event_virt_mem;
900 } else {
901 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
902 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
903 clk->set_next_event =
904 arch_timer_set_next_event_phys_mem;
905 }
906
907 max_delta = CLOCKSOURCE_MASK(56);
908 }
909
910 clk->set_state_shutdown(clk);
911
912 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
913 }
914
arch_timer_evtstrm_enable(unsigned int divider)915 static void arch_timer_evtstrm_enable(unsigned int divider)
916 {
917 u32 cntkctl = arch_timer_get_cntkctl();
918
919 #ifdef CONFIG_ARM64
920 /* ECV is likely to require a large divider. Use the EVNTIS flag. */
921 if (cpus_have_final_cap(ARM64_HAS_ECV) && divider > 15) {
922 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
923 divider -= 8;
924 }
925 #endif
926
927 divider = min(divider, 15U);
928 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
929 /* Set the divider and enable virtual event stream */
930 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
931 | ARCH_TIMER_VIRT_EVT_EN;
932 arch_timer_set_cntkctl(cntkctl);
933 arch_timer_set_evtstrm_feature();
934 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
935 }
936
arch_timer_configure_evtstream(void)937 static void arch_timer_configure_evtstream(void)
938 {
939 int evt_stream_div, lsb;
940
941 /*
942 * As the event stream can at most be generated at half the frequency
943 * of the counter, use half the frequency when computing the divider.
944 */
945 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
946
947 /*
948 * Find the closest power of two to the divisor. If the adjacent bit
949 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
950 */
951 lsb = fls(evt_stream_div) - 1;
952 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
953 lsb++;
954
955 /* enable event stream */
956 arch_timer_evtstrm_enable(max(0, lsb));
957 }
958
arch_timer_evtstrm_starting_cpu(unsigned int cpu)959 static int arch_timer_evtstrm_starting_cpu(unsigned int cpu)
960 {
961 arch_timer_configure_evtstream();
962 return 0;
963 }
964
arch_timer_evtstrm_dying_cpu(unsigned int cpu)965 static int arch_timer_evtstrm_dying_cpu(unsigned int cpu)
966 {
967 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
968 return 0;
969 }
970
arch_timer_evtstrm_register(void)971 static int __init arch_timer_evtstrm_register(void)
972 {
973 if (!arch_timer_evt || !evtstrm_enable)
974 return 0;
975
976 return cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_EVTSTRM_STARTING,
977 "clockevents/arm/arch_timer_evtstrm:starting",
978 arch_timer_evtstrm_starting_cpu,
979 arch_timer_evtstrm_dying_cpu);
980 }
981 core_initcall(arch_timer_evtstrm_register);
982
arch_counter_set_user_access(void)983 static void arch_counter_set_user_access(void)
984 {
985 u32 cntkctl = arch_timer_get_cntkctl();
986
987 /* Disable user access to the timers and both counters */
988 /* Also disable virtual event stream */
989 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
990 | ARCH_TIMER_USR_VT_ACCESS_EN
991 | ARCH_TIMER_USR_VCT_ACCESS_EN
992 | ARCH_TIMER_VIRT_EVT_EN
993 | ARCH_TIMER_USR_PCT_ACCESS_EN);
994
995 /*
996 * Enable user access to the virtual counter if it doesn't
997 * need to be workaround. The vdso may have been already
998 * disabled though.
999 */
1000 if (arch_timer_this_cpu_has_cntvct_wa())
1001 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
1002 else
1003 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
1004
1005 arch_timer_set_cntkctl(cntkctl);
1006 }
1007
arch_timer_has_nonsecure_ppi(void)1008 static bool arch_timer_has_nonsecure_ppi(void)
1009 {
1010 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
1011 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1012 }
1013
check_ppi_trigger(int irq)1014 static u32 check_ppi_trigger(int irq)
1015 {
1016 u32 flags = irq_get_trigger_type(irq);
1017
1018 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
1019 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
1020 pr_warn("WARNING: Please fix your firmware\n");
1021 flags = IRQF_TRIGGER_LOW;
1022 }
1023
1024 return flags;
1025 }
1026
arch_timer_starting_cpu(unsigned int cpu)1027 static int arch_timer_starting_cpu(unsigned int cpu)
1028 {
1029 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1030 u32 flags;
1031
1032 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1033
1034 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1035 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1036
1037 if (arch_timer_has_nonsecure_ppi()) {
1038 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1039 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1040 flags);
1041 }
1042
1043 arch_counter_set_user_access();
1044
1045 return 0;
1046 }
1047
validate_timer_rate(void)1048 static int validate_timer_rate(void)
1049 {
1050 if (!arch_timer_rate)
1051 return -EINVAL;
1052
1053 /* Arch timer frequency < 1MHz can cause trouble */
1054 WARN_ON(arch_timer_rate < 1000000);
1055
1056 return 0;
1057 }
1058
1059 /*
1060 * For historical reasons, when probing with DT we use whichever (non-zero)
1061 * rate was probed first, and don't verify that others match. If the first node
1062 * probed has a clock-frequency property, this overrides the HW register.
1063 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)1064 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1065 {
1066 /* Who has more than one independent system counter? */
1067 if (arch_timer_rate)
1068 return;
1069
1070 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1071 arch_timer_rate = rate;
1072
1073 /* Check the timer frequency. */
1074 if (validate_timer_rate())
1075 pr_warn("frequency not available\n");
1076 }
1077
arch_timer_banner(unsigned type)1078 static void __init arch_timer_banner(unsigned type)
1079 {
1080 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1081 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1082 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1083 " and " : "",
1084 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1085 (unsigned long)arch_timer_rate / 1000000,
1086 (unsigned long)(arch_timer_rate / 10000) % 100,
1087 type & ARCH_TIMER_TYPE_CP15 ?
1088 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1089 "",
1090 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1091 type & ARCH_TIMER_TYPE_MEM ?
1092 arch_timer_mem_use_virtual ? "virt" : "phys" :
1093 "");
1094 }
1095
arch_timer_get_rate(void)1096 u32 arch_timer_get_rate(void)
1097 {
1098 return arch_timer_rate;
1099 }
1100
arch_timer_evtstrm_available(void)1101 bool arch_timer_evtstrm_available(void)
1102 {
1103 /*
1104 * We might get called from a preemptible context. This is fine
1105 * because availability of the event stream should be always the same
1106 * for a preemptible context and context where we might resume a task.
1107 */
1108 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1109 }
1110
arch_counter_get_cntvct_mem(void)1111 static noinstr u64 arch_counter_get_cntvct_mem(void)
1112 {
1113 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1114 }
1115
1116 static struct arch_timer_kvm_info arch_timer_kvm_info;
1117
arch_timer_get_kvm_info(void)1118 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1119 {
1120 return &arch_timer_kvm_info;
1121 }
1122
arch_counter_register(unsigned type)1123 static void __init arch_counter_register(unsigned type)
1124 {
1125 u64 (*scr)(void);
1126 u64 start_count;
1127 int width;
1128
1129 /* Register the CP15 based counter if we have one */
1130 if (type & ARCH_TIMER_TYPE_CP15) {
1131 u64 (*rd)(void);
1132
1133 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1134 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1135 if (arch_timer_counter_has_wa()) {
1136 rd = arch_counter_get_cntvct_stable;
1137 scr = raw_counter_get_cntvct_stable;
1138 } else {
1139 rd = arch_counter_get_cntvct;
1140 scr = arch_counter_get_cntvct;
1141 }
1142 } else {
1143 if (arch_timer_counter_has_wa()) {
1144 rd = arch_counter_get_cntpct_stable;
1145 scr = raw_counter_get_cntpct_stable;
1146 } else {
1147 rd = arch_counter_get_cntpct;
1148 scr = arch_counter_get_cntpct;
1149 }
1150 }
1151
1152 arch_timer_read_counter = rd;
1153 clocksource_counter.vdso_clock_mode = vdso_default;
1154 } else {
1155 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1156 scr = arch_counter_get_cntvct_mem;
1157 }
1158
1159 width = arch_counter_get_width();
1160 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1161 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1162
1163 if (!arch_counter_suspend_stop)
1164 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1165 start_count = arch_timer_read_counter();
1166 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1167 cyclecounter.mult = clocksource_counter.mult;
1168 cyclecounter.shift = clocksource_counter.shift;
1169 timecounter_init(&arch_timer_kvm_info.timecounter,
1170 &cyclecounter, start_count);
1171
1172 sched_clock_register(scr, width, arch_timer_rate);
1173 }
1174
arch_timer_stop(struct clock_event_device * clk)1175 static void arch_timer_stop(struct clock_event_device *clk)
1176 {
1177 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1178
1179 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1180 if (arch_timer_has_nonsecure_ppi())
1181 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1182 }
1183
arch_timer_dying_cpu(unsigned int cpu)1184 static int arch_timer_dying_cpu(unsigned int cpu)
1185 {
1186 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1187
1188 arch_timer_stop(clk);
1189 return 0;
1190 }
1191
1192 #ifdef CONFIG_CPU_PM
1193 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1194 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1195 unsigned long action, void *hcpu)
1196 {
1197 if (action == CPU_PM_ENTER) {
1198 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1199
1200 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1201 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1202 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1203
1204 if (arch_timer_have_evtstrm_feature())
1205 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1206 }
1207 return NOTIFY_OK;
1208 }
1209
1210 static struct notifier_block arch_timer_cpu_pm_notifier = {
1211 .notifier_call = arch_timer_cpu_pm_notify,
1212 };
1213
arch_timer_cpu_pm_init(void)1214 static int __init arch_timer_cpu_pm_init(void)
1215 {
1216 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1217 }
1218
arch_timer_cpu_pm_deinit(void)1219 static void __init arch_timer_cpu_pm_deinit(void)
1220 {
1221 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1222 }
1223
1224 #else
arch_timer_cpu_pm_init(void)1225 static int __init arch_timer_cpu_pm_init(void)
1226 {
1227 return 0;
1228 }
1229
arch_timer_cpu_pm_deinit(void)1230 static void __init arch_timer_cpu_pm_deinit(void)
1231 {
1232 }
1233 #endif
1234
arch_timer_register(void)1235 static int __init arch_timer_register(void)
1236 {
1237 int err;
1238 int ppi;
1239
1240 arch_timer_evt = alloc_percpu(struct clock_event_device);
1241 if (!arch_timer_evt) {
1242 err = -ENOMEM;
1243 goto out;
1244 }
1245
1246 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1247 switch (arch_timer_uses_ppi) {
1248 case ARCH_TIMER_VIRT_PPI:
1249 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1250 "arch_timer", arch_timer_evt);
1251 break;
1252 case ARCH_TIMER_PHYS_SECURE_PPI:
1253 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1254 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1255 "arch_timer", arch_timer_evt);
1256 if (!err && arch_timer_has_nonsecure_ppi()) {
1257 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1258 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1259 "arch_timer", arch_timer_evt);
1260 if (err)
1261 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1262 arch_timer_evt);
1263 }
1264 break;
1265 case ARCH_TIMER_HYP_PPI:
1266 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1267 "arch_timer", arch_timer_evt);
1268 break;
1269 default:
1270 BUG();
1271 }
1272
1273 if (err) {
1274 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1275 goto out_free;
1276 }
1277
1278 err = arch_timer_cpu_pm_init();
1279 if (err)
1280 goto out_unreg_notify;
1281
1282 /* Register and immediately configure the timer on the boot CPU */
1283 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1284 "clockevents/arm/arch_timer:starting",
1285 arch_timer_starting_cpu, arch_timer_dying_cpu);
1286 if (err)
1287 goto out_unreg_cpupm;
1288 return 0;
1289
1290 out_unreg_cpupm:
1291 arch_timer_cpu_pm_deinit();
1292
1293 out_unreg_notify:
1294 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1295 if (arch_timer_has_nonsecure_ppi())
1296 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1297 arch_timer_evt);
1298
1299 out_free:
1300 free_percpu(arch_timer_evt);
1301 arch_timer_evt = NULL;
1302 out:
1303 return err;
1304 }
1305
arch_timer_mem_register(void __iomem * base,unsigned int irq)1306 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1307 {
1308 int ret;
1309 irq_handler_t func;
1310
1311 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1312 if (!arch_timer_mem)
1313 return -ENOMEM;
1314
1315 arch_timer_mem->base = base;
1316 arch_timer_mem->evt.irq = irq;
1317 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1318
1319 if (arch_timer_mem_use_virtual)
1320 func = arch_timer_handler_virt_mem;
1321 else
1322 func = arch_timer_handler_phys_mem;
1323
1324 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1325 if (ret) {
1326 pr_err("Failed to request mem timer irq\n");
1327 kfree(arch_timer_mem);
1328 arch_timer_mem = NULL;
1329 }
1330
1331 return ret;
1332 }
1333
1334 static const struct of_device_id arch_timer_of_match[] __initconst = {
1335 { .compatible = "arm,armv7-timer", },
1336 { .compatible = "arm,armv8-timer", },
1337 {},
1338 };
1339
1340 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1341 { .compatible = "arm,armv7-timer-mem", },
1342 {},
1343 };
1344
arch_timer_needs_of_probing(void)1345 static bool __init arch_timer_needs_of_probing(void)
1346 {
1347 struct device_node *dn;
1348 bool needs_probing = false;
1349 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1350
1351 /* We have two timers, and both device-tree nodes are probed. */
1352 if ((arch_timers_present & mask) == mask)
1353 return false;
1354
1355 /*
1356 * Only one type of timer is probed,
1357 * check if we have another type of timer node in device-tree.
1358 */
1359 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1360 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1361 else
1362 dn = of_find_matching_node(NULL, arch_timer_of_match);
1363
1364 if (dn && of_device_is_available(dn))
1365 needs_probing = true;
1366
1367 of_node_put(dn);
1368
1369 return needs_probing;
1370 }
1371
arch_timer_common_init(void)1372 static int __init arch_timer_common_init(void)
1373 {
1374 arch_timer_banner(arch_timers_present);
1375 arch_counter_register(arch_timers_present);
1376 return arch_timer_arch_init();
1377 }
1378
1379 /**
1380 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1381 *
1382 * If HYP mode is available, we know that the physical timer
1383 * has been configured to be accessible from PL1. Use it, so
1384 * that a guest can use the virtual timer instead.
1385 *
1386 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1387 * accesses to CNTP_*_EL1 registers are silently redirected to
1388 * their CNTHP_*_EL2 counterparts, and use a different PPI
1389 * number.
1390 *
1391 * If no interrupt provided for virtual timer, we'll have to
1392 * stick to the physical timer. It'd better be accessible...
1393 * For arm64 we never use the secure interrupt.
1394 *
1395 * Return: a suitable PPI type for the current system.
1396 */
arch_timer_select_ppi(void)1397 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1398 {
1399 if (is_kernel_in_hyp_mode())
1400 return ARCH_TIMER_HYP_PPI;
1401
1402 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1403 return ARCH_TIMER_VIRT_PPI;
1404
1405 if (IS_ENABLED(CONFIG_ARM64))
1406 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1407
1408 return ARCH_TIMER_PHYS_SECURE_PPI;
1409 }
1410
arch_timer_populate_kvm_info(void)1411 static void __init arch_timer_populate_kvm_info(void)
1412 {
1413 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1414 if (is_kernel_in_hyp_mode())
1415 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1416 }
1417
arch_timer_of_init(struct device_node * np)1418 static int __init arch_timer_of_init(struct device_node *np)
1419 {
1420 int i, irq, ret;
1421 u32 rate;
1422 bool has_names;
1423
1424 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1425 pr_warn("multiple nodes in dt, skipping\n");
1426 return 0;
1427 }
1428
1429 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1430
1431 has_names = of_property_present(np, "interrupt-names");
1432
1433 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1434 if (has_names)
1435 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1436 else
1437 irq = of_irq_get(np, i);
1438 if (irq > 0)
1439 arch_timer_ppi[i] = irq;
1440 }
1441
1442 arch_timer_populate_kvm_info();
1443
1444 rate = arch_timer_get_cntfrq();
1445 arch_timer_of_configure_rate(rate, np);
1446
1447 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1448
1449 /* Check for globally applicable workarounds */
1450 arch_timer_check_ool_workaround(ate_match_dt, np);
1451
1452 /*
1453 * If we cannot rely on firmware initializing the timer registers then
1454 * we should use the physical timers instead.
1455 */
1456 if (IS_ENABLED(CONFIG_ARM) &&
1457 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1458 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1459 else
1460 arch_timer_uses_ppi = arch_timer_select_ppi();
1461
1462 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1463 pr_err("No interrupt available, giving up\n");
1464 return -EINVAL;
1465 }
1466
1467 /* On some systems, the counter stops ticking when in suspend. */
1468 arch_counter_suspend_stop = of_property_read_bool(np,
1469 "arm,no-tick-in-suspend");
1470
1471 ret = arch_timer_register();
1472 if (ret)
1473 return ret;
1474
1475 if (arch_timer_needs_of_probing())
1476 return 0;
1477
1478 return arch_timer_common_init();
1479 }
1480 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1481 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1482
1483 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1484 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1485 {
1486 void __iomem *base;
1487 u32 rate;
1488
1489 base = ioremap(frame->cntbase, frame->size);
1490 if (!base) {
1491 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1492 return 0;
1493 }
1494
1495 rate = readl_relaxed(base + CNTFRQ);
1496
1497 iounmap(base);
1498
1499 return rate;
1500 }
1501
1502 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1503 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1504 {
1505 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1506 void __iomem *cntctlbase;
1507 u32 cnttidr;
1508 int i;
1509
1510 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1511 if (!cntctlbase) {
1512 pr_err("Can't map CNTCTLBase @ %pa\n",
1513 &timer_mem->cntctlbase);
1514 return NULL;
1515 }
1516
1517 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1518
1519 /*
1520 * Try to find a virtual capable frame. Otherwise fall back to a
1521 * physical capable frame.
1522 */
1523 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1524 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1525 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1526
1527 frame = &timer_mem->frame[i];
1528 if (!frame->valid)
1529 continue;
1530
1531 /* Try enabling everything, and see what sticks */
1532 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1533 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1534
1535 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1536 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1537 best_frame = frame;
1538 arch_timer_mem_use_virtual = true;
1539 break;
1540 }
1541
1542 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1543 continue;
1544
1545 best_frame = frame;
1546 }
1547
1548 iounmap(cntctlbase);
1549
1550 return best_frame;
1551 }
1552
1553 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1554 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1555 {
1556 void __iomem *base;
1557 int ret, irq;
1558
1559 if (arch_timer_mem_use_virtual)
1560 irq = frame->virt_irq;
1561 else
1562 irq = frame->phys_irq;
1563
1564 if (!irq) {
1565 pr_err("Frame missing %s irq.\n",
1566 arch_timer_mem_use_virtual ? "virt" : "phys");
1567 return -EINVAL;
1568 }
1569
1570 if (!request_mem_region(frame->cntbase, frame->size,
1571 "arch_mem_timer"))
1572 return -EBUSY;
1573
1574 base = ioremap(frame->cntbase, frame->size);
1575 if (!base) {
1576 pr_err("Can't map frame's registers\n");
1577 return -ENXIO;
1578 }
1579
1580 ret = arch_timer_mem_register(base, irq);
1581 if (ret) {
1582 iounmap(base);
1583 return ret;
1584 }
1585
1586 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1587
1588 return 0;
1589 }
1590
arch_timer_mem_of_init(struct device_node * np)1591 static int __init arch_timer_mem_of_init(struct device_node *np)
1592 {
1593 struct arch_timer_mem *timer_mem;
1594 struct arch_timer_mem_frame *frame;
1595 struct resource res;
1596 int ret = -EINVAL;
1597 u32 rate;
1598
1599 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1600 if (!timer_mem)
1601 return -ENOMEM;
1602
1603 if (of_address_to_resource(np, 0, &res))
1604 goto out;
1605 timer_mem->cntctlbase = res.start;
1606 timer_mem->size = resource_size(&res);
1607
1608 for_each_available_child_of_node_scoped(np, frame_node) {
1609 u32 n;
1610 struct arch_timer_mem_frame *frame;
1611
1612 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1613 pr_err(FW_BUG "Missing frame-number.\n");
1614 goto out;
1615 }
1616 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1617 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1618 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1619 goto out;
1620 }
1621 frame = &timer_mem->frame[n];
1622
1623 if (frame->valid) {
1624 pr_err(FW_BUG "Duplicated frame-number.\n");
1625 goto out;
1626 }
1627
1628 if (of_address_to_resource(frame_node, 0, &res))
1629 goto out;
1630
1631 frame->cntbase = res.start;
1632 frame->size = resource_size(&res);
1633
1634 frame->virt_irq = irq_of_parse_and_map(frame_node,
1635 ARCH_TIMER_VIRT_SPI);
1636 frame->phys_irq = irq_of_parse_and_map(frame_node,
1637 ARCH_TIMER_PHYS_SPI);
1638
1639 frame->valid = true;
1640 }
1641
1642 frame = arch_timer_mem_find_best_frame(timer_mem);
1643 if (!frame) {
1644 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1645 &timer_mem->cntctlbase);
1646 ret = -EINVAL;
1647 goto out;
1648 }
1649
1650 rate = arch_timer_mem_frame_get_cntfrq(frame);
1651 arch_timer_of_configure_rate(rate, np);
1652
1653 ret = arch_timer_mem_frame_register(frame);
1654 if (!ret && !arch_timer_needs_of_probing())
1655 ret = arch_timer_common_init();
1656 out:
1657 kfree(timer_mem);
1658 return ret;
1659 }
1660 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1661 arch_timer_mem_of_init);
1662
1663 #ifdef CONFIG_ACPI_GTDT
1664 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1665 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1666 {
1667 struct arch_timer_mem_frame *frame;
1668 u32 rate;
1669 int i;
1670
1671 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1672 frame = &timer_mem->frame[i];
1673
1674 if (!frame->valid)
1675 continue;
1676
1677 rate = arch_timer_mem_frame_get_cntfrq(frame);
1678 if (rate == arch_timer_rate)
1679 continue;
1680
1681 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1682 &frame->cntbase,
1683 (unsigned long)rate, (unsigned long)arch_timer_rate);
1684
1685 return -EINVAL;
1686 }
1687
1688 return 0;
1689 }
1690
arch_timer_mem_acpi_init(int platform_timer_count)1691 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1692 {
1693 struct arch_timer_mem *timers, *timer;
1694 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1695 int timer_count, i, ret = 0;
1696
1697 timers = kcalloc(platform_timer_count, sizeof(*timers),
1698 GFP_KERNEL);
1699 if (!timers)
1700 return -ENOMEM;
1701
1702 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1703 if (ret || !timer_count)
1704 goto out;
1705
1706 /*
1707 * While unlikely, it's theoretically possible that none of the frames
1708 * in a timer expose the combination of feature we want.
1709 */
1710 for (i = 0; i < timer_count; i++) {
1711 timer = &timers[i];
1712
1713 frame = arch_timer_mem_find_best_frame(timer);
1714 if (!best_frame)
1715 best_frame = frame;
1716
1717 ret = arch_timer_mem_verify_cntfrq(timer);
1718 if (ret) {
1719 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1720 goto out;
1721 }
1722
1723 if (!best_frame) /* implies !frame */
1724 /*
1725 * Only complain about missing suitable frames if we
1726 * haven't already found one in a previous iteration.
1727 */
1728 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1729 &timer->cntctlbase);
1730 }
1731
1732 if (best_frame)
1733 ret = arch_timer_mem_frame_register(best_frame);
1734 out:
1735 kfree(timers);
1736 return ret;
1737 }
1738
1739 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1740 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1741 {
1742 int ret, platform_timer_count;
1743
1744 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1745 pr_warn("already initialized, skipping\n");
1746 return -EINVAL;
1747 }
1748
1749 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1750
1751 ret = acpi_gtdt_init(table, &platform_timer_count);
1752 if (ret)
1753 return ret;
1754
1755 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1756 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1757
1758 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1759 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1760
1761 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1762 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1763
1764 arch_timer_populate_kvm_info();
1765
1766 /*
1767 * When probing via ACPI, we have no mechanism to override the sysreg
1768 * CNTFRQ value. This *must* be correct.
1769 */
1770 arch_timer_rate = arch_timer_get_cntfrq();
1771 ret = validate_timer_rate();
1772 if (ret) {
1773 pr_err(FW_BUG "frequency not available.\n");
1774 return ret;
1775 }
1776
1777 arch_timer_uses_ppi = arch_timer_select_ppi();
1778 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1779 pr_err("No interrupt available, giving up\n");
1780 return -EINVAL;
1781 }
1782
1783 /* Always-on capability */
1784 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1785
1786 /* Check for globally applicable workarounds */
1787 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1788
1789 ret = arch_timer_register();
1790 if (ret)
1791 return ret;
1792
1793 if (platform_timer_count &&
1794 arch_timer_mem_acpi_init(platform_timer_count))
1795 pr_err("Failed to initialize memory-mapped timer.\n");
1796
1797 return arch_timer_common_init();
1798 }
1799 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1800 #endif
1801
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,enum clocksource_ids * cs_id)1802 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1803 enum clocksource_ids *cs_id)
1804 {
1805 struct arm_smccc_res hvc_res;
1806 u32 ptp_counter;
1807 ktime_t ktime;
1808
1809 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1810 return -EOPNOTSUPP;
1811
1812 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1813 ptp_counter = KVM_PTP_VIRT_COUNTER;
1814 else
1815 ptp_counter = KVM_PTP_PHYS_COUNTER;
1816
1817 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1818 ptp_counter, &hvc_res);
1819
1820 if ((int)(hvc_res.a0) < 0)
1821 return -EOPNOTSUPP;
1822
1823 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1824 *ts = ktime_to_timespec64(ktime);
1825 if (cycle)
1826 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1827 if (cs_id)
1828 *cs_id = CSID_ARM_ARCH_COUNTER;
1829
1830 return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1833