xref: /freebsd/sys/contrib/openzfs/module/zfs/arc.c (revision 1bbc898dbf72638ac0dfbc666f62d39dbd68258a)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2018, Joyent, Inc.
25  * Copyright (c) 2011, 2020, Delphix. All rights reserved.
26  * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017, Nexenta Systems, Inc.  All rights reserved.
28  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29  * Copyright (c) 2020, George Amanakis. All rights reserved.
30  * Copyright (c) 2019, 2024, 2025, Klara, Inc.
31  * Copyright (c) 2019, Allan Jude
32  * Copyright (c) 2020, The FreeBSD Foundation [1]
33  * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34  *
35  * [1] Portions of this software were developed by Allan Jude
36  *     under sponsorship from the FreeBSD Foundation.
37  */
38 
39 /*
40  * DVA-based Adjustable Replacement Cache
41  *
42  * While much of the theory of operation used here is
43  * based on the self-tuning, low overhead replacement cache
44  * presented by Megiddo and Modha at FAST 2003, there are some
45  * significant differences:
46  *
47  * 1. The Megiddo and Modha model assumes any page is evictable.
48  * Pages in its cache cannot be "locked" into memory.  This makes
49  * the eviction algorithm simple: evict the last page in the list.
50  * This also make the performance characteristics easy to reason
51  * about.  Our cache is not so simple.  At any given moment, some
52  * subset of the blocks in the cache are un-evictable because we
53  * have handed out a reference to them.  Blocks are only evictable
54  * when there are no external references active.  This makes
55  * eviction far more problematic:  we choose to evict the evictable
56  * blocks that are the "lowest" in the list.
57  *
58  * There are times when it is not possible to evict the requested
59  * space.  In these circumstances we are unable to adjust the cache
60  * size.  To prevent the cache growing unbounded at these times we
61  * implement a "cache throttle" that slows the flow of new data
62  * into the cache until we can make space available.
63  *
64  * 2. The Megiddo and Modha model assumes a fixed cache size.
65  * Pages are evicted when the cache is full and there is a cache
66  * miss.  Our model has a variable sized cache.  It grows with
67  * high use, but also tries to react to memory pressure from the
68  * operating system: decreasing its size when system memory is
69  * tight.
70  *
71  * 3. The Megiddo and Modha model assumes a fixed page size. All
72  * elements of the cache are therefore exactly the same size.  So
73  * when adjusting the cache size following a cache miss, its simply
74  * a matter of choosing a single page to evict.  In our model, we
75  * have variable sized cache blocks (ranging from 512 bytes to
76  * 128K bytes).  We therefore choose a set of blocks to evict to make
77  * space for a cache miss that approximates as closely as possible
78  * the space used by the new block.
79  *
80  * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
81  * by N. Megiddo & D. Modha, FAST 2003
82  */
83 
84 /*
85  * The locking model:
86  *
87  * A new reference to a cache buffer can be obtained in two
88  * ways: 1) via a hash table lookup using the DVA as a key,
89  * or 2) via one of the ARC lists.  The arc_read() interface
90  * uses method 1, while the internal ARC algorithms for
91  * adjusting the cache use method 2.  We therefore provide two
92  * types of locks: 1) the hash table lock array, and 2) the
93  * ARC list locks.
94  *
95  * Buffers do not have their own mutexes, rather they rely on the
96  * hash table mutexes for the bulk of their protection (i.e. most
97  * fields in the arc_buf_hdr_t are protected by these mutexes).
98  *
99  * buf_hash_find() returns the appropriate mutex (held) when it
100  * locates the requested buffer in the hash table.  It returns
101  * NULL for the mutex if the buffer was not in the table.
102  *
103  * buf_hash_remove() expects the appropriate hash mutex to be
104  * already held before it is invoked.
105  *
106  * Each ARC state also has a mutex which is used to protect the
107  * buffer list associated with the state.  When attempting to
108  * obtain a hash table lock while holding an ARC list lock you
109  * must use: mutex_tryenter() to avoid deadlock.  Also note that
110  * the active state mutex must be held before the ghost state mutex.
111  *
112  * It as also possible to register a callback which is run when the
113  * metadata limit is reached and no buffers can be safely evicted.  In
114  * this case the arc user should drop a reference on some arc buffers so
115  * they can be reclaimed.  For example, when using the ZPL each dentry
116  * holds a references on a znode.  These dentries must be pruned before
117  * the arc buffer holding the znode can be safely evicted.
118  *
119  * Note that the majority of the performance stats are manipulated
120  * with atomic operations.
121  *
122  * The L2ARC uses the l2ad_mtx on each vdev for the following:
123  *
124  *	- L2ARC buflist creation
125  *	- L2ARC buflist eviction
126  *	- L2ARC write completion, which walks L2ARC buflists
127  *	- ARC header destruction, as it removes from L2ARC buflists
128  *	- ARC header release, as it removes from L2ARC buflists
129  */
130 
131 /*
132  * ARC operation:
133  *
134  * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
135  * This structure can point either to a block that is still in the cache or to
136  * one that is only accessible in an L2 ARC device, or it can provide
137  * information about a block that was recently evicted. If a block is
138  * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
139  * information to retrieve it from the L2ARC device. This information is
140  * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
141  * that is in this state cannot access the data directly.
142  *
143  * Blocks that are actively being referenced or have not been evicted
144  * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
145  * the arc_buf_hdr_t that will point to the data block in memory. A block can
146  * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
147  * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
148  * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149  *
150  * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
151  * ability to store the physical data (b_pabd) associated with the DVA of the
152  * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
153  * it will match its on-disk compression characteristics. This behavior can be
154  * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
155  * compressed ARC functionality is disabled, the b_pabd will point to an
156  * uncompressed version of the on-disk data.
157  *
158  * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
159  * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
160  * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
161  * consumer. The ARC will provide references to this data and will keep it
162  * cached until it is no longer in use. The ARC caches only the L1ARC's physical
163  * data block and will evict any arc_buf_t that is no longer referenced. The
164  * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
165  * "overhead_size" kstat.
166  *
167  * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
168  * compressed form. The typical case is that consumers will want uncompressed
169  * data, and when that happens a new data buffer is allocated where the data is
170  * decompressed for them to use. Currently the only consumer who wants
171  * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
172  * exists on disk. When this happens, the arc_buf_t's data buffer is shared
173  * with the arc_buf_hdr_t.
174  *
175  * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
176  * first one is owned by a compressed send consumer (and therefore references
177  * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
178  * used by any other consumer (and has its own uncompressed copy of the data
179  * buffer).
180  *
181  *   arc_buf_hdr_t
182  *   +-----------+
183  *   | fields    |
184  *   | common to |
185  *   | L1- and   |
186  *   | L2ARC     |
187  *   +-----------+
188  *   | l2arc_buf_hdr_t
189  *   |           |
190  *   +-----------+
191  *   | l1arc_buf_hdr_t
192  *   |           |              arc_buf_t
193  *   | b_buf     +------------>+-----------+      arc_buf_t
194  *   | b_pabd    +-+           |b_next     +---->+-----------+
195  *   +-----------+ |           |-----------|     |b_next     +-->NULL
196  *                 |           |b_comp = T |     +-----------+
197  *                 |           |b_data     +-+   |b_comp = F |
198  *                 |           +-----------+ |   |b_data     +-+
199  *                 +->+------+               |   +-----------+ |
200  *        compressed  |      |               |                 |
201  *           data     |      |<--------------+                 | uncompressed
202  *                    +------+          compressed,            |     data
203  *                                        shared               +-->+------+
204  *                                         data                    |      |
205  *                                                                 |      |
206  *                                                                 +------+
207  *
208  * When a consumer reads a block, the ARC must first look to see if the
209  * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
210  * arc_buf_t and either copies uncompressed data into a new data buffer from an
211  * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
212  * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
213  * hdr is compressed and the desired compression characteristics of the
214  * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
215  * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
216  * the last buffer in the hdr's b_buf list, however a shared compressed buf can
217  * be anywhere in the hdr's list.
218  *
219  * The diagram below shows an example of an uncompressed ARC hdr that is
220  * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
221  * the last element in the buf list):
222  *
223  *                arc_buf_hdr_t
224  *                +-----------+
225  *                |           |
226  *                |           |
227  *                |           |
228  *                +-----------+
229  * l2arc_buf_hdr_t|           |
230  *                |           |
231  *                +-----------+
232  * l1arc_buf_hdr_t|           |
233  *                |           |                 arc_buf_t    (shared)
234  *                |    b_buf  +------------>+---------+      arc_buf_t
235  *                |           |             |b_next   +---->+---------+
236  *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
237  *                +-----------+ |           |         |     +---------+
238  *                              |           |b_data   +-+   |         |
239  *                              |           +---------+ |   |b_data   +-+
240  *                              +->+------+             |   +---------+ |
241  *                                 |      |             |               |
242  *                   uncompressed  |      |             |               |
243  *                        data     +------+             |               |
244  *                                    ^                 +->+------+     |
245  *                                    |       uncompressed |      |     |
246  *                                    |           data     |      |     |
247  *                                    |                    +------+     |
248  *                                    +---------------------------------+
249  *
250  * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
251  * since the physical block is about to be rewritten. The new data contents
252  * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
253  * it may compress the data before writing it to disk. The ARC will be called
254  * with the transformed data and will memcpy the transformed on-disk block into
255  * a newly allocated b_pabd. Writes are always done into buffers which have
256  * either been loaned (and hence are new and don't have other readers) or
257  * buffers which have been released (and hence have their own hdr, if there
258  * were originally other readers of the buf's original hdr). This ensures that
259  * the ARC only needs to update a single buf and its hdr after a write occurs.
260  *
261  * When the L2ARC is in use, it will also take advantage of the b_pabd. The
262  * L2ARC will always write the contents of b_pabd to the L2ARC. This means
263  * that when compressed ARC is enabled that the L2ARC blocks are identical
264  * to the on-disk block in the main data pool. This provides a significant
265  * advantage since the ARC can leverage the bp's checksum when reading from the
266  * L2ARC to determine if the contents are valid. However, if the compressed
267  * ARC is disabled, then the L2ARC's block must be transformed to look
268  * like the physical block in the main data pool before comparing the
269  * checksum and determining its validity.
270  *
271  * The L1ARC has a slightly different system for storing encrypted data.
272  * Raw (encrypted + possibly compressed) data has a few subtle differences from
273  * data that is just compressed. The biggest difference is that it is not
274  * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
275  * The other difference is that encryption cannot be treated as a suggestion.
276  * If a caller would prefer compressed data, but they actually wind up with
277  * uncompressed data the worst thing that could happen is there might be a
278  * performance hit. If the caller requests encrypted data, however, we must be
279  * sure they actually get it or else secret information could be leaked. Raw
280  * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
281  * may have both an encrypted version and a decrypted version of its data at
282  * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
283  * copied out of this header. To avoid complications with b_pabd, raw buffers
284  * cannot be shared.
285  */
286 
287 #include <sys/spa.h>
288 #include <sys/zio.h>
289 #include <sys/spa_impl.h>
290 #include <sys/zio_compress.h>
291 #include <sys/zio_checksum.h>
292 #include <sys/zfs_context.h>
293 #include <sys/arc.h>
294 #include <sys/zfs_refcount.h>
295 #include <sys/vdev.h>
296 #include <sys/vdev_impl.h>
297 #include <sys/dsl_pool.h>
298 #include <sys/multilist.h>
299 #include <sys/abd.h>
300 #include <sys/dbuf.h>
301 #include <sys/zil.h>
302 #include <sys/fm/fs/zfs.h>
303 #include <sys/callb.h>
304 #include <sys/kstat.h>
305 #include <sys/zthr.h>
306 #include <zfs_fletcher.h>
307 #include <sys/arc_impl.h>
308 #include <sys/trace_zfs.h>
309 #include <sys/aggsum.h>
310 #include <sys/wmsum.h>
311 #include <cityhash.h>
312 #include <sys/vdev_trim.h>
313 #include <sys/zfs_racct.h>
314 #include <sys/zstd/zstd.h>
315 
316 #ifndef _KERNEL
317 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
318 boolean_t arc_watch = B_FALSE;
319 #endif
320 
321 /*
322  * This thread's job is to keep enough free memory in the system, by
323  * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
324  * arc_available_memory().
325  */
326 static zthr_t *arc_reap_zthr;
327 
328 /*
329  * This thread's job is to keep arc_size under arc_c, by calling
330  * arc_evict(), which improves arc_is_overflowing().
331  */
332 static zthr_t *arc_evict_zthr;
333 static arc_buf_hdr_t **arc_state_evict_markers;
334 static int arc_state_evict_marker_count;
335 
336 static kmutex_t arc_evict_lock;
337 static boolean_t arc_evict_needed = B_FALSE;
338 static clock_t arc_last_uncached_flush;
339 
340 static taskq_t *arc_evict_taskq;
341 static struct evict_arg *arc_evict_arg;
342 
343 /*
344  * Count of bytes evicted since boot.
345  */
346 static uint64_t arc_evict_count;
347 
348 /*
349  * List of arc_evict_waiter_t's, representing threads waiting for the
350  * arc_evict_count to reach specific values.
351  */
352 static list_t arc_evict_waiters;
353 
354 /*
355  * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
356  * the requested amount of data to be evicted.  For example, by default for
357  * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
358  * Since this is above 100%, it ensures that progress is made towards getting
359  * arc_size under arc_c.  Since this is finite, it ensures that allocations
360  * can still happen, even during the potentially long time that arc_size is
361  * more than arc_c.
362  */
363 static uint_t zfs_arc_eviction_pct = 200;
364 
365 /*
366  * The number of headers to evict in arc_evict_state_impl() before
367  * dropping the sublist lock and evicting from another sublist. A lower
368  * value means we're more likely to evict the "correct" header (i.e. the
369  * oldest header in the arc state), but comes with higher overhead
370  * (i.e. more invocations of arc_evict_state_impl()).
371  */
372 static uint_t zfs_arc_evict_batch_limit = 10;
373 
374 /* number of seconds before growing cache again */
375 uint_t arc_grow_retry = 5;
376 
377 /*
378  * Minimum time between calls to arc_kmem_reap_soon().
379  */
380 static const int arc_kmem_cache_reap_retry_ms = 1000;
381 
382 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
383 static int zfs_arc_overflow_shift = 8;
384 
385 /* log2(fraction of arc to reclaim) */
386 uint_t arc_shrink_shift = 7;
387 
388 #ifdef _KERNEL
389 /* percent of pagecache to reclaim arc to */
390 uint_t zfs_arc_pc_percent = 0;
391 #endif
392 
393 /*
394  * log2(fraction of ARC which must be free to allow growing).
395  * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
396  * when reading a new block into the ARC, we will evict an equal-sized block
397  * from the ARC.
398  *
399  * This must be less than arc_shrink_shift, so that when we shrink the ARC,
400  * we will still not allow it to grow.
401  */
402 uint_t		arc_no_grow_shift = 5;
403 
404 
405 /*
406  * minimum lifespan of a prefetch block in clock ticks
407  * (initialized in arc_init())
408  */
409 static uint_t		arc_min_prefetch_ms;
410 static uint_t		arc_min_prescient_prefetch_ms;
411 
412 /*
413  * If this percent of memory is free, don't throttle.
414  */
415 uint_t arc_lotsfree_percent = 10;
416 
417 /*
418  * The arc has filled available memory and has now warmed up.
419  */
420 boolean_t arc_warm;
421 
422 /*
423  * These tunables are for performance analysis.
424  */
425 uint64_t zfs_arc_max = 0;
426 uint64_t zfs_arc_min = 0;
427 static uint64_t zfs_arc_dnode_limit = 0;
428 static uint_t zfs_arc_dnode_reduce_percent = 10;
429 static uint_t zfs_arc_grow_retry = 0;
430 static uint_t zfs_arc_shrink_shift = 0;
431 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
432 
433 /*
434  * ARC dirty data constraints for arc_tempreserve_space() throttle:
435  * * total dirty data limit
436  * * anon block dirty limit
437  * * each pool's anon allowance
438  */
439 static const unsigned long zfs_arc_dirty_limit_percent = 50;
440 static const unsigned long zfs_arc_anon_limit_percent = 25;
441 static const unsigned long zfs_arc_pool_dirty_percent = 20;
442 
443 /*
444  * Enable or disable compressed arc buffers.
445  */
446 int zfs_compressed_arc_enabled = B_TRUE;
447 
448 /*
449  * Balance between metadata and data on ghost hits.  Values above 100
450  * increase metadata caching by proportionally reducing effect of ghost
451  * data hits on target data/metadata rate.
452  */
453 static uint_t zfs_arc_meta_balance = 500;
454 
455 /*
456  * Percentage that can be consumed by dnodes of ARC meta buffers.
457  */
458 static uint_t zfs_arc_dnode_limit_percent = 10;
459 
460 /*
461  * These tunables are Linux-specific
462  */
463 static uint64_t zfs_arc_sys_free = 0;
464 static uint_t zfs_arc_min_prefetch_ms = 0;
465 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
466 static uint_t zfs_arc_lotsfree_percent = 10;
467 
468 /*
469  * Number of arc_prune threads
470  */
471 static int zfs_arc_prune_task_threads = 1;
472 
473 /* Used by spa_export/spa_destroy to flush the arc asynchronously */
474 static taskq_t *arc_flush_taskq;
475 
476 /*
477  * Controls the number of ARC eviction threads to dispatch sublists to.
478  *
479  * Possible values:
480  * 0  (auto) compute the number of threads using a logarithmic formula.
481  * 1  (disabled) one thread - parallel eviction is disabled.
482  * 2+ (manual) set the number manually.
483  *
484  * See arc_evict_thread_init() for how "auto" is computed.
485  */
486 static uint_t zfs_arc_evict_threads = 0;
487 
488 /* The 7 states: */
489 static arc_state_t ARC_anon;
490 /*  */ arc_state_t ARC_mru;
491 static arc_state_t ARC_mru_ghost;
492 /*  */ arc_state_t ARC_mfu;
493 static arc_state_t ARC_mfu_ghost;
494 static arc_state_t ARC_l2c_only;
495 static arc_state_t ARC_uncached;
496 
497 arc_stats_t arc_stats = {
498 	{ "hits",			KSTAT_DATA_UINT64 },
499 	{ "iohits",			KSTAT_DATA_UINT64 },
500 	{ "misses",			KSTAT_DATA_UINT64 },
501 	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
502 	{ "demand_data_iohits",		KSTAT_DATA_UINT64 },
503 	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
504 	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
505 	{ "demand_metadata_iohits",	KSTAT_DATA_UINT64 },
506 	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
507 	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
508 	{ "prefetch_data_iohits",	KSTAT_DATA_UINT64 },
509 	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
510 	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
511 	{ "prefetch_metadata_iohits",	KSTAT_DATA_UINT64 },
512 	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
513 	{ "mru_hits",			KSTAT_DATA_UINT64 },
514 	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
515 	{ "mfu_hits",			KSTAT_DATA_UINT64 },
516 	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
517 	{ "uncached_hits",		KSTAT_DATA_UINT64 },
518 	{ "deleted",			KSTAT_DATA_UINT64 },
519 	{ "mutex_miss",			KSTAT_DATA_UINT64 },
520 	{ "access_skip",		KSTAT_DATA_UINT64 },
521 	{ "evict_skip",			KSTAT_DATA_UINT64 },
522 	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
523 	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
524 	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
525 	{ "evict_l2_eligible_mfu",	KSTAT_DATA_UINT64 },
526 	{ "evict_l2_eligible_mru",	KSTAT_DATA_UINT64 },
527 	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
528 	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
529 	{ "hash_elements",		KSTAT_DATA_UINT64 },
530 	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
531 	{ "hash_collisions",		KSTAT_DATA_UINT64 },
532 	{ "hash_chains",		KSTAT_DATA_UINT64 },
533 	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
534 	{ "meta",			KSTAT_DATA_UINT64 },
535 	{ "pd",				KSTAT_DATA_UINT64 },
536 	{ "pm",				KSTAT_DATA_UINT64 },
537 	{ "c",				KSTAT_DATA_UINT64 },
538 	{ "c_min",			KSTAT_DATA_UINT64 },
539 	{ "c_max",			KSTAT_DATA_UINT64 },
540 	{ "size",			KSTAT_DATA_UINT64 },
541 	{ "compressed_size",		KSTAT_DATA_UINT64 },
542 	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
543 	{ "overhead_size",		KSTAT_DATA_UINT64 },
544 	{ "hdr_size",			KSTAT_DATA_UINT64 },
545 	{ "data_size",			KSTAT_DATA_UINT64 },
546 	{ "metadata_size",		KSTAT_DATA_UINT64 },
547 	{ "dbuf_size",			KSTAT_DATA_UINT64 },
548 	{ "dnode_size",			KSTAT_DATA_UINT64 },
549 	{ "bonus_size",			KSTAT_DATA_UINT64 },
550 #if defined(COMPAT_FREEBSD11)
551 	{ "other_size",			KSTAT_DATA_UINT64 },
552 #endif
553 	{ "anon_size",			KSTAT_DATA_UINT64 },
554 	{ "anon_data",			KSTAT_DATA_UINT64 },
555 	{ "anon_metadata",		KSTAT_DATA_UINT64 },
556 	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
557 	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
558 	{ "mru_size",			KSTAT_DATA_UINT64 },
559 	{ "mru_data",			KSTAT_DATA_UINT64 },
560 	{ "mru_metadata",		KSTAT_DATA_UINT64 },
561 	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
562 	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
563 	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
564 	{ "mru_ghost_data",		KSTAT_DATA_UINT64 },
565 	{ "mru_ghost_metadata",		KSTAT_DATA_UINT64 },
566 	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
567 	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
568 	{ "mfu_size",			KSTAT_DATA_UINT64 },
569 	{ "mfu_data",			KSTAT_DATA_UINT64 },
570 	{ "mfu_metadata",		KSTAT_DATA_UINT64 },
571 	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
572 	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
573 	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
574 	{ "mfu_ghost_data",		KSTAT_DATA_UINT64 },
575 	{ "mfu_ghost_metadata",		KSTAT_DATA_UINT64 },
576 	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
577 	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
578 	{ "uncached_size",		KSTAT_DATA_UINT64 },
579 	{ "uncached_data",		KSTAT_DATA_UINT64 },
580 	{ "uncached_metadata",		KSTAT_DATA_UINT64 },
581 	{ "uncached_evictable_data",	KSTAT_DATA_UINT64 },
582 	{ "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
583 	{ "l2_hits",			KSTAT_DATA_UINT64 },
584 	{ "l2_misses",			KSTAT_DATA_UINT64 },
585 	{ "l2_prefetch_asize",		KSTAT_DATA_UINT64 },
586 	{ "l2_mru_asize",		KSTAT_DATA_UINT64 },
587 	{ "l2_mfu_asize",		KSTAT_DATA_UINT64 },
588 	{ "l2_bufc_data_asize",		KSTAT_DATA_UINT64 },
589 	{ "l2_bufc_metadata_asize",	KSTAT_DATA_UINT64 },
590 	{ "l2_feeds",			KSTAT_DATA_UINT64 },
591 	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
592 	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
593 	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
594 	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
595 	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
596 	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
597 	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
598 	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
599 	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
600 	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
601 	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
602 	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
603 	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
604 	{ "l2_io_error",		KSTAT_DATA_UINT64 },
605 	{ "l2_size",			KSTAT_DATA_UINT64 },
606 	{ "l2_asize",			KSTAT_DATA_UINT64 },
607 	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
608 	{ "l2_log_blk_writes",		KSTAT_DATA_UINT64 },
609 	{ "l2_log_blk_avg_asize",	KSTAT_DATA_UINT64 },
610 	{ "l2_log_blk_asize",		KSTAT_DATA_UINT64 },
611 	{ "l2_log_blk_count",		KSTAT_DATA_UINT64 },
612 	{ "l2_data_to_meta_ratio",	KSTAT_DATA_UINT64 },
613 	{ "l2_rebuild_success",		KSTAT_DATA_UINT64 },
614 	{ "l2_rebuild_unsupported",	KSTAT_DATA_UINT64 },
615 	{ "l2_rebuild_io_errors",	KSTAT_DATA_UINT64 },
616 	{ "l2_rebuild_dh_errors",	KSTAT_DATA_UINT64 },
617 	{ "l2_rebuild_cksum_lb_errors",	KSTAT_DATA_UINT64 },
618 	{ "l2_rebuild_lowmem",		KSTAT_DATA_UINT64 },
619 	{ "l2_rebuild_size",		KSTAT_DATA_UINT64 },
620 	{ "l2_rebuild_asize",		KSTAT_DATA_UINT64 },
621 	{ "l2_rebuild_bufs",		KSTAT_DATA_UINT64 },
622 	{ "l2_rebuild_bufs_precached",	KSTAT_DATA_UINT64 },
623 	{ "l2_rebuild_log_blks",	KSTAT_DATA_UINT64 },
624 	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
625 	{ "memory_direct_count",	KSTAT_DATA_UINT64 },
626 	{ "memory_indirect_count",	KSTAT_DATA_UINT64 },
627 	{ "memory_all_bytes",		KSTAT_DATA_UINT64 },
628 	{ "memory_free_bytes",		KSTAT_DATA_UINT64 },
629 	{ "memory_available_bytes",	KSTAT_DATA_INT64 },
630 	{ "arc_no_grow",		KSTAT_DATA_UINT64 },
631 	{ "arc_tempreserve",		KSTAT_DATA_UINT64 },
632 	{ "arc_loaned_bytes",		KSTAT_DATA_UINT64 },
633 	{ "arc_prune",			KSTAT_DATA_UINT64 },
634 	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
635 	{ "arc_dnode_limit",		KSTAT_DATA_UINT64 },
636 	{ "async_upgrade_sync",		KSTAT_DATA_UINT64 },
637 	{ "predictive_prefetch", KSTAT_DATA_UINT64 },
638 	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
639 	{ "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
640 	{ "prescient_prefetch", KSTAT_DATA_UINT64 },
641 	{ "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
642 	{ "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
643 	{ "arc_need_free",		KSTAT_DATA_UINT64 },
644 	{ "arc_sys_free",		KSTAT_DATA_UINT64 },
645 	{ "arc_raw_size",		KSTAT_DATA_UINT64 },
646 	{ "cached_only_in_progress",	KSTAT_DATA_UINT64 },
647 	{ "abd_chunk_waste_size",	KSTAT_DATA_UINT64 },
648 };
649 
650 arc_sums_t arc_sums;
651 
652 #define	ARCSTAT_MAX(stat, val) {					\
653 	uint64_t m;							\
654 	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
655 	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
656 		continue;						\
657 }
658 
659 /*
660  * We define a macro to allow ARC hits/misses to be easily broken down by
661  * two separate conditions, giving a total of four different subtypes for
662  * each of hits and misses (so eight statistics total).
663  */
664 #define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
665 	if (cond1) {							\
666 		if (cond2) {						\
667 			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
668 		} else {						\
669 			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
670 		}							\
671 	} else {							\
672 		if (cond2) {						\
673 			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
674 		} else {						\
675 			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
676 		}							\
677 	}
678 
679 /*
680  * This macro allows us to use kstats as floating averages. Each time we
681  * update this kstat, we first factor it and the update value by
682  * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
683  * average. This macro assumes that integer loads and stores are atomic, but
684  * is not safe for multiple writers updating the kstat in parallel (only the
685  * last writer's update will remain).
686  */
687 #define	ARCSTAT_F_AVG_FACTOR	3
688 #define	ARCSTAT_F_AVG(stat, value) \
689 	do { \
690 		uint64_t x = ARCSTAT(stat); \
691 		x = x - x / ARCSTAT_F_AVG_FACTOR + \
692 		    (value) / ARCSTAT_F_AVG_FACTOR; \
693 		ARCSTAT(stat) = x; \
694 	} while (0)
695 
696 static kstat_t			*arc_ksp;
697 
698 /*
699  * There are several ARC variables that are critical to export as kstats --
700  * but we don't want to have to grovel around in the kstat whenever we wish to
701  * manipulate them.  For these variables, we therefore define them to be in
702  * terms of the statistic variable.  This assures that we are not introducing
703  * the possibility of inconsistency by having shadow copies of the variables,
704  * while still allowing the code to be readable.
705  */
706 #define	arc_tempreserve	ARCSTAT(arcstat_tempreserve)
707 #define	arc_loaned_bytes	ARCSTAT(arcstat_loaned_bytes)
708 #define	arc_dnode_limit	ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
709 #define	arc_need_free	ARCSTAT(arcstat_need_free) /* waiting to be evicted */
710 
711 hrtime_t arc_growtime;
712 list_t arc_prune_list;
713 kmutex_t arc_prune_mtx;
714 taskq_t *arc_prune_taskq;
715 
716 #define	GHOST_STATE(state)	\
717 	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
718 	(state) == arc_l2c_only)
719 
720 #define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
721 #define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
722 #define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
723 #define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
724 #define	HDR_PRESCIENT_PREFETCH(hdr)	\
725 	((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
726 #define	HDR_COMPRESSION_ENABLED(hdr)	\
727 	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
728 
729 #define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
730 #define	HDR_UNCACHED(hdr)	((hdr)->b_flags & ARC_FLAG_UNCACHED)
731 #define	HDR_L2_READING(hdr)	\
732 	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
733 	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
734 #define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
735 #define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
736 #define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
737 #define	HDR_PROTECTED(hdr)	((hdr)->b_flags & ARC_FLAG_PROTECTED)
738 #define	HDR_NOAUTH(hdr)		((hdr)->b_flags & ARC_FLAG_NOAUTH)
739 #define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
740 
741 #define	HDR_ISTYPE_METADATA(hdr)	\
742 	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
743 #define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
744 
745 #define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
746 #define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
747 #define	HDR_HAS_RABD(hdr)	\
748 	(HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) &&	\
749 	(hdr)->b_crypt_hdr.b_rabd != NULL)
750 #define	HDR_ENCRYPTED(hdr)	\
751 	(HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
752 #define	HDR_AUTHENTICATED(hdr)	\
753 	(HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
754 
755 /* For storing compression mode in b_flags */
756 #define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
757 
758 #define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
759 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
760 #define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
761 	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
762 
763 #define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
764 #define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
765 #define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
766 #define	ARC_BUF_ENCRYPTED(buf)	((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
767 
768 /*
769  * Other sizes
770  */
771 
772 #define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
773 #define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
774 
775 /*
776  * Hash table routines
777  */
778 
779 #define	BUF_LOCKS 2048
780 typedef struct buf_hash_table {
781 	uint64_t ht_mask;
782 	arc_buf_hdr_t **ht_table;
783 	kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
784 } buf_hash_table_t;
785 
786 static buf_hash_table_t buf_hash_table;
787 
788 #define	BUF_HASH_INDEX(spa, dva, birth) \
789 	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
790 #define	BUF_HASH_LOCK(idx)	(&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
791 #define	HDR_LOCK(hdr) \
792 	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
793 
794 uint64_t zfs_crc64_table[256];
795 
796 /*
797  * Asynchronous ARC flush
798  *
799  * We track these in a list for arc_async_flush_guid_inuse().
800  * Used for both L1 and L2 async teardown.
801  */
802 static list_t arc_async_flush_list;
803 static kmutex_t	arc_async_flush_lock;
804 
805 typedef struct arc_async_flush {
806 	uint64_t	af_spa_guid;
807 	taskq_ent_t	af_tqent;
808 	uint_t		af_cache_level;	/* 1 or 2 to differentiate node */
809 	list_node_t	af_node;
810 } arc_async_flush_t;
811 
812 
813 /*
814  * Level 2 ARC
815  */
816 
817 #define	L2ARC_WRITE_SIZE	(32 * 1024 * 1024)	/* initial write max */
818 #define	L2ARC_HEADROOM		8			/* num of writes */
819 
820 /*
821  * If we discover during ARC scan any buffers to be compressed, we boost
822  * our headroom for the next scanning cycle by this percentage multiple.
823  */
824 #define	L2ARC_HEADROOM_BOOST	200
825 #define	L2ARC_FEED_SECS		1		/* caching interval secs */
826 #define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
827 
828 /*
829  * We can feed L2ARC from two states of ARC buffers, mru and mfu,
830  * and each of the state has two types: data and metadata.
831  */
832 #define	L2ARC_FEED_TYPES	4
833 
834 /* L2ARC Performance Tunables */
835 static uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* def max write size */
836 static uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra warmup write */
837 static uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* # of dev writes */
838 static uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
839 static uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
840 static uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval msecs */
841 static int l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
842 static int l2arc_feed_again = B_TRUE;		/* turbo warmup */
843 static int l2arc_norw = B_FALSE;		/* no reads during writes */
844 static uint_t l2arc_meta_percent = 33;	/* limit on headers size */
845 
846 /*
847  * L2ARC Internals
848  */
849 static list_t L2ARC_dev_list;			/* device list */
850 static list_t *l2arc_dev_list;			/* device list pointer */
851 static kmutex_t l2arc_dev_mtx;			/* device list mutex */
852 static l2arc_dev_t *l2arc_dev_last;		/* last device used */
853 static list_t L2ARC_free_on_write;		/* free after write buf list */
854 static list_t *l2arc_free_on_write;		/* free after write list ptr */
855 static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
856 static uint64_t l2arc_ndev;			/* number of devices */
857 
858 typedef struct l2arc_read_callback {
859 	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
860 	blkptr_t		l2rcb_bp;		/* original blkptr */
861 	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
862 	int			l2rcb_flags;		/* original flags */
863 	abd_t			*l2rcb_abd;		/* temporary buffer */
864 } l2arc_read_callback_t;
865 
866 typedef struct l2arc_data_free {
867 	/* protected by l2arc_free_on_write_mtx */
868 	abd_t		*l2df_abd;
869 	size_t		l2df_size;
870 	arc_buf_contents_t l2df_type;
871 	list_node_t	l2df_list_node;
872 } l2arc_data_free_t;
873 
874 typedef enum arc_fill_flags {
875 	ARC_FILL_LOCKED		= 1 << 0, /* hdr lock is held */
876 	ARC_FILL_COMPRESSED	= 1 << 1, /* fill with compressed data */
877 	ARC_FILL_ENCRYPTED	= 1 << 2, /* fill with encrypted data */
878 	ARC_FILL_NOAUTH		= 1 << 3, /* don't attempt to authenticate */
879 	ARC_FILL_IN_PLACE	= 1 << 4  /* fill in place (special case) */
880 } arc_fill_flags_t;
881 
882 typedef enum arc_ovf_level {
883 	ARC_OVF_NONE,			/* ARC within target size. */
884 	ARC_OVF_SOME,			/* ARC is slightly overflowed. */
885 	ARC_OVF_SEVERE			/* ARC is severely overflowed. */
886 } arc_ovf_level_t;
887 
888 static kmutex_t l2arc_feed_thr_lock;
889 static kcondvar_t l2arc_feed_thr_cv;
890 static uint8_t l2arc_thread_exit;
891 
892 static kmutex_t l2arc_rebuild_thr_lock;
893 static kcondvar_t l2arc_rebuild_thr_cv;
894 
895 enum arc_hdr_alloc_flags {
896 	ARC_HDR_ALLOC_RDATA = 0x1,
897 	ARC_HDR_USE_RESERVE = 0x4,
898 	ARC_HDR_ALLOC_LINEAR = 0x8,
899 };
900 
901 
902 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
903 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
904 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
905 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
906 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
907 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
908     const void *tag);
909 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
910 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
911 static void arc_hdr_destroy(arc_buf_hdr_t *);
912 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
913 static void arc_buf_watch(arc_buf_t *);
914 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
915 
916 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
917 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
918 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
919 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
920 
921 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
922 static void l2arc_read_done(zio_t *);
923 static void l2arc_do_free_on_write(void);
924 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
925     boolean_t state_only);
926 
927 static void arc_prune_async(uint64_t adjust);
928 
929 #define	l2arc_hdr_arcstats_increment(hdr) \
930 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
931 #define	l2arc_hdr_arcstats_decrement(hdr) \
932 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
933 #define	l2arc_hdr_arcstats_increment_state(hdr) \
934 	l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
935 #define	l2arc_hdr_arcstats_decrement_state(hdr) \
936 	l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
937 
938 /*
939  * l2arc_exclude_special : A zfs module parameter that controls whether buffers
940  * 		present on special vdevs are eligibile for caching in L2ARC. If
941  * 		set to 1, exclude dbufs on special vdevs from being cached to
942  * 		L2ARC.
943  */
944 int l2arc_exclude_special = 0;
945 
946 /*
947  * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
948  * 		metadata and data are cached from ARC into L2ARC.
949  */
950 static int l2arc_mfuonly = 0;
951 
952 /*
953  * L2ARC TRIM
954  * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
955  * 		the current write size (l2arc_write_max) we should TRIM if we
956  * 		have filled the device. It is defined as a percentage of the
957  * 		write size. If set to 100 we trim twice the space required to
958  * 		accommodate upcoming writes. A minimum of 64MB will be trimmed.
959  * 		It also enables TRIM of the whole L2ARC device upon creation or
960  * 		addition to an existing pool or if the header of the device is
961  * 		invalid upon importing a pool or onlining a cache device. The
962  * 		default is 0, which disables TRIM on L2ARC altogether as it can
963  * 		put significant stress on the underlying storage devices. This
964  * 		will vary depending of how well the specific device handles
965  * 		these commands.
966  */
967 static uint64_t l2arc_trim_ahead = 0;
968 
969 /*
970  * Performance tuning of L2ARC persistence:
971  *
972  * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
973  * 		an L2ARC device (either at pool import or later) will attempt
974  * 		to rebuild L2ARC buffer contents.
975  * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
976  * 		whether log blocks are written to the L2ARC device. If the L2ARC
977  * 		device is less than 1GB, the amount of data l2arc_evict()
978  * 		evicts is significant compared to the amount of restored L2ARC
979  * 		data. In this case do not write log blocks in L2ARC in order
980  * 		not to waste space.
981  */
982 static int l2arc_rebuild_enabled = B_TRUE;
983 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
984 
985 /* L2ARC persistence rebuild control routines. */
986 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
987 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
988 static int l2arc_rebuild(l2arc_dev_t *dev);
989 
990 /* L2ARC persistence read I/O routines. */
991 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
992 static int l2arc_log_blk_read(l2arc_dev_t *dev,
993     const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
994     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
995     zio_t *this_io, zio_t **next_io);
996 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
997     const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
998 static void l2arc_log_blk_fetch_abort(zio_t *zio);
999 
1000 /* L2ARC persistence block restoration routines. */
1001 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
1002     const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
1003 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
1004     l2arc_dev_t *dev);
1005 
1006 /* L2ARC persistence write I/O routines. */
1007 static uint64_t l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
1008     l2arc_write_callback_t *cb);
1009 
1010 /* L2ARC persistence auxiliary routines. */
1011 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
1012     const l2arc_log_blkptr_t *lbp);
1013 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
1014     const arc_buf_hdr_t *ab);
1015 boolean_t l2arc_range_check_overlap(uint64_t bottom,
1016     uint64_t top, uint64_t check);
1017 static void l2arc_blk_fetch_done(zio_t *zio);
1018 static inline uint64_t
1019     l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
1020 
1021 /*
1022  * We use Cityhash for this. It's fast, and has good hash properties without
1023  * requiring any large static buffers.
1024  */
1025 static uint64_t
buf_hash(uint64_t spa,const dva_t * dva,uint64_t birth)1026 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1027 {
1028 	return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
1029 }
1030 
1031 #define	HDR_EMPTY(hdr)						\
1032 	((hdr)->b_dva.dva_word[0] == 0 &&			\
1033 	(hdr)->b_dva.dva_word[1] == 0)
1034 
1035 #define	HDR_EMPTY_OR_LOCKED(hdr)				\
1036 	(HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1037 
1038 #define	HDR_EQUAL(spa, dva, birth, hdr)				\
1039 	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1040 	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1041 	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1042 
1043 static void
buf_discard_identity(arc_buf_hdr_t * hdr)1044 buf_discard_identity(arc_buf_hdr_t *hdr)
1045 {
1046 	hdr->b_dva.dva_word[0] = 0;
1047 	hdr->b_dva.dva_word[1] = 0;
1048 	hdr->b_birth = 0;
1049 }
1050 
1051 static arc_buf_hdr_t *
buf_hash_find(uint64_t spa,const blkptr_t * bp,kmutex_t ** lockp)1052 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1053 {
1054 	const dva_t *dva = BP_IDENTITY(bp);
1055 	uint64_t birth = BP_GET_PHYSICAL_BIRTH(bp);
1056 	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1057 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1058 	arc_buf_hdr_t *hdr;
1059 
1060 	mutex_enter(hash_lock);
1061 	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1062 	    hdr = hdr->b_hash_next) {
1063 		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1064 			*lockp = hash_lock;
1065 			return (hdr);
1066 		}
1067 	}
1068 	mutex_exit(hash_lock);
1069 	*lockp = NULL;
1070 	return (NULL);
1071 }
1072 
1073 /*
1074  * Insert an entry into the hash table.  If there is already an element
1075  * equal to elem in the hash table, then the already existing element
1076  * will be returned and the new element will not be inserted.
1077  * Otherwise returns NULL.
1078  * If lockp == NULL, the caller is assumed to already hold the hash lock.
1079  */
1080 static arc_buf_hdr_t *
buf_hash_insert(arc_buf_hdr_t * hdr,kmutex_t ** lockp)1081 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1082 {
1083 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1084 	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1085 	arc_buf_hdr_t *fhdr;
1086 	uint32_t i;
1087 
1088 	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1089 	ASSERT(hdr->b_birth != 0);
1090 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1091 
1092 	if (lockp != NULL) {
1093 		*lockp = hash_lock;
1094 		mutex_enter(hash_lock);
1095 	} else {
1096 		ASSERT(MUTEX_HELD(hash_lock));
1097 	}
1098 
1099 	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1100 	    fhdr = fhdr->b_hash_next, i++) {
1101 		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1102 			return (fhdr);
1103 	}
1104 
1105 	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1106 	buf_hash_table.ht_table[idx] = hdr;
1107 	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1108 
1109 	/* collect some hash table performance data */
1110 	if (i > 0) {
1111 		ARCSTAT_BUMP(arcstat_hash_collisions);
1112 		if (i == 1)
1113 			ARCSTAT_BUMP(arcstat_hash_chains);
1114 		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1115 	}
1116 	ARCSTAT_BUMP(arcstat_hash_elements);
1117 
1118 	return (NULL);
1119 }
1120 
1121 static void
buf_hash_remove(arc_buf_hdr_t * hdr)1122 buf_hash_remove(arc_buf_hdr_t *hdr)
1123 {
1124 	arc_buf_hdr_t *fhdr, **hdrp;
1125 	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1126 
1127 	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1128 	ASSERT(HDR_IN_HASH_TABLE(hdr));
1129 
1130 	hdrp = &buf_hash_table.ht_table[idx];
1131 	while ((fhdr = *hdrp) != hdr) {
1132 		ASSERT3P(fhdr, !=, NULL);
1133 		hdrp = &fhdr->b_hash_next;
1134 	}
1135 	*hdrp = hdr->b_hash_next;
1136 	hdr->b_hash_next = NULL;
1137 	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1138 
1139 	/* collect some hash table performance data */
1140 	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1141 	if (buf_hash_table.ht_table[idx] &&
1142 	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1143 		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1144 }
1145 
1146 /*
1147  * Global data structures and functions for the buf kmem cache.
1148  */
1149 
1150 static kmem_cache_t *hdr_full_cache;
1151 static kmem_cache_t *hdr_l2only_cache;
1152 static kmem_cache_t *buf_cache;
1153 
1154 static void
buf_fini(void)1155 buf_fini(void)
1156 {
1157 #if defined(_KERNEL)
1158 	/*
1159 	 * Large allocations which do not require contiguous pages
1160 	 * should be using vmem_free() in the linux kernel\
1161 	 */
1162 	vmem_free(buf_hash_table.ht_table,
1163 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1164 #else
1165 	kmem_free(buf_hash_table.ht_table,
1166 	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1167 #endif
1168 	for (int i = 0; i < BUF_LOCKS; i++)
1169 		mutex_destroy(BUF_HASH_LOCK(i));
1170 	kmem_cache_destroy(hdr_full_cache);
1171 	kmem_cache_destroy(hdr_l2only_cache);
1172 	kmem_cache_destroy(buf_cache);
1173 }
1174 
1175 /*
1176  * Constructor callback - called when the cache is empty
1177  * and a new buf is requested.
1178  */
1179 static int
hdr_full_cons(void * vbuf,void * unused,int kmflag)1180 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1181 {
1182 	(void) unused, (void) kmflag;
1183 	arc_buf_hdr_t *hdr = vbuf;
1184 
1185 	memset(hdr, 0, HDR_FULL_SIZE);
1186 	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1187 	zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1188 #ifdef ZFS_DEBUG
1189 	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1190 #endif
1191 	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1192 	list_link_init(&hdr->b_l2hdr.b_l2node);
1193 	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1194 
1195 	return (0);
1196 }
1197 
1198 static int
hdr_l2only_cons(void * vbuf,void * unused,int kmflag)1199 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1200 {
1201 	(void) unused, (void) kmflag;
1202 	arc_buf_hdr_t *hdr = vbuf;
1203 
1204 	memset(hdr, 0, HDR_L2ONLY_SIZE);
1205 	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1206 
1207 	return (0);
1208 }
1209 
1210 static int
buf_cons(void * vbuf,void * unused,int kmflag)1211 buf_cons(void *vbuf, void *unused, int kmflag)
1212 {
1213 	(void) unused, (void) kmflag;
1214 	arc_buf_t *buf = vbuf;
1215 
1216 	memset(buf, 0, sizeof (arc_buf_t));
1217 	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1218 
1219 	return (0);
1220 }
1221 
1222 /*
1223  * Destructor callback - called when a cached buf is
1224  * no longer required.
1225  */
1226 static void
hdr_full_dest(void * vbuf,void * unused)1227 hdr_full_dest(void *vbuf, void *unused)
1228 {
1229 	(void) unused;
1230 	arc_buf_hdr_t *hdr = vbuf;
1231 
1232 	ASSERT(HDR_EMPTY(hdr));
1233 	zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1234 #ifdef ZFS_DEBUG
1235 	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1236 #endif
1237 	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1238 	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1239 }
1240 
1241 static void
hdr_l2only_dest(void * vbuf,void * unused)1242 hdr_l2only_dest(void *vbuf, void *unused)
1243 {
1244 	(void) unused;
1245 	arc_buf_hdr_t *hdr = vbuf;
1246 
1247 	ASSERT(HDR_EMPTY(hdr));
1248 	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1249 }
1250 
1251 static void
buf_dest(void * vbuf,void * unused)1252 buf_dest(void *vbuf, void *unused)
1253 {
1254 	(void) unused;
1255 	(void) vbuf;
1256 
1257 	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1258 }
1259 
1260 static void
buf_init(void)1261 buf_init(void)
1262 {
1263 	uint64_t *ct = NULL;
1264 	uint64_t hsize = 1ULL << 12;
1265 	int i, j;
1266 
1267 	/*
1268 	 * The hash table is big enough to fill all of physical memory
1269 	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1270 	 * By default, the table will take up
1271 	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1272 	 */
1273 	while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1274 		hsize <<= 1;
1275 retry:
1276 	buf_hash_table.ht_mask = hsize - 1;
1277 #if defined(_KERNEL)
1278 	/*
1279 	 * Large allocations which do not require contiguous pages
1280 	 * should be using vmem_alloc() in the linux kernel
1281 	 */
1282 	buf_hash_table.ht_table =
1283 	    vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1284 #else
1285 	buf_hash_table.ht_table =
1286 	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1287 #endif
1288 	if (buf_hash_table.ht_table == NULL) {
1289 		ASSERT(hsize > (1ULL << 8));
1290 		hsize >>= 1;
1291 		goto retry;
1292 	}
1293 
1294 	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1295 	    0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, KMC_RECLAIMABLE);
1296 	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1297 	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1298 	    NULL, NULL, 0);
1299 	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1300 	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1301 
1302 	for (i = 0; i < 256; i++)
1303 		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1304 			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1305 
1306 	for (i = 0; i < BUF_LOCKS; i++)
1307 		mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1308 }
1309 
1310 #define	ARC_MINTIME	(hz>>4) /* 62 ms */
1311 
1312 /*
1313  * This is the size that the buf occupies in memory. If the buf is compressed,
1314  * it will correspond to the compressed size. You should use this method of
1315  * getting the buf size unless you explicitly need the logical size.
1316  */
1317 uint64_t
arc_buf_size(arc_buf_t * buf)1318 arc_buf_size(arc_buf_t *buf)
1319 {
1320 	return (ARC_BUF_COMPRESSED(buf) ?
1321 	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1322 }
1323 
1324 uint64_t
arc_buf_lsize(arc_buf_t * buf)1325 arc_buf_lsize(arc_buf_t *buf)
1326 {
1327 	return (HDR_GET_LSIZE(buf->b_hdr));
1328 }
1329 
1330 /*
1331  * This function will return B_TRUE if the buffer is encrypted in memory.
1332  * This buffer can be decrypted by calling arc_untransform().
1333  */
1334 boolean_t
arc_is_encrypted(arc_buf_t * buf)1335 arc_is_encrypted(arc_buf_t *buf)
1336 {
1337 	return (ARC_BUF_ENCRYPTED(buf) != 0);
1338 }
1339 
1340 /*
1341  * Returns B_TRUE if the buffer represents data that has not had its MAC
1342  * verified yet.
1343  */
1344 boolean_t
arc_is_unauthenticated(arc_buf_t * buf)1345 arc_is_unauthenticated(arc_buf_t *buf)
1346 {
1347 	return (HDR_NOAUTH(buf->b_hdr) != 0);
1348 }
1349 
1350 void
arc_get_raw_params(arc_buf_t * buf,boolean_t * byteorder,uint8_t * salt,uint8_t * iv,uint8_t * mac)1351 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1352     uint8_t *iv, uint8_t *mac)
1353 {
1354 	arc_buf_hdr_t *hdr = buf->b_hdr;
1355 
1356 	ASSERT(HDR_PROTECTED(hdr));
1357 
1358 	memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1359 	memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1360 	memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1361 	*byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1362 	    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1363 }
1364 
1365 /*
1366  * Indicates how this buffer is compressed in memory. If it is not compressed
1367  * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1368  * arc_untransform() as long as it is also unencrypted.
1369  */
1370 enum zio_compress
arc_get_compression(arc_buf_t * buf)1371 arc_get_compression(arc_buf_t *buf)
1372 {
1373 	return (ARC_BUF_COMPRESSED(buf) ?
1374 	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1375 }
1376 
1377 /*
1378  * Return the compression algorithm used to store this data in the ARC. If ARC
1379  * compression is enabled or this is an encrypted block, this will be the same
1380  * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1381  */
1382 static inline enum zio_compress
arc_hdr_get_compress(arc_buf_hdr_t * hdr)1383 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1384 {
1385 	return (HDR_COMPRESSION_ENABLED(hdr) ?
1386 	    HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1387 }
1388 
1389 uint8_t
arc_get_complevel(arc_buf_t * buf)1390 arc_get_complevel(arc_buf_t *buf)
1391 {
1392 	return (buf->b_hdr->b_complevel);
1393 }
1394 
1395 __maybe_unused
1396 static inline boolean_t
arc_buf_is_shared(arc_buf_t * buf)1397 arc_buf_is_shared(arc_buf_t *buf)
1398 {
1399 	boolean_t shared = (buf->b_data != NULL &&
1400 	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1401 	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1402 	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1403 	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1404 	EQUIV(shared, ARC_BUF_SHARED(buf));
1405 	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1406 
1407 	/*
1408 	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1409 	 * already being shared" requirement prevents us from doing that.
1410 	 */
1411 
1412 	return (shared);
1413 }
1414 
1415 /*
1416  * Free the checksum associated with this header. If there is no checksum, this
1417  * is a no-op.
1418  */
1419 static inline void
arc_cksum_free(arc_buf_hdr_t * hdr)1420 arc_cksum_free(arc_buf_hdr_t *hdr)
1421 {
1422 #ifdef ZFS_DEBUG
1423 	ASSERT(HDR_HAS_L1HDR(hdr));
1424 
1425 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1426 	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1427 		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1428 		hdr->b_l1hdr.b_freeze_cksum = NULL;
1429 	}
1430 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1431 #endif
1432 }
1433 
1434 /*
1435  * Return true iff at least one of the bufs on hdr is not compressed.
1436  * Encrypted buffers count as compressed.
1437  */
1438 static boolean_t
arc_hdr_has_uncompressed_buf(arc_buf_hdr_t * hdr)1439 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1440 {
1441 	ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1442 
1443 	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1444 		if (!ARC_BUF_COMPRESSED(b)) {
1445 			return (B_TRUE);
1446 		}
1447 	}
1448 	return (B_FALSE);
1449 }
1450 
1451 
1452 /*
1453  * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1454  * matches the checksum that is stored in the hdr. If there is no checksum,
1455  * or if the buf is compressed, this is a no-op.
1456  */
1457 static void
arc_cksum_verify(arc_buf_t * buf)1458 arc_cksum_verify(arc_buf_t *buf)
1459 {
1460 #ifdef ZFS_DEBUG
1461 	arc_buf_hdr_t *hdr = buf->b_hdr;
1462 	zio_cksum_t zc;
1463 
1464 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1465 		return;
1466 
1467 	if (ARC_BUF_COMPRESSED(buf))
1468 		return;
1469 
1470 	ASSERT(HDR_HAS_L1HDR(hdr));
1471 
1472 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1473 
1474 	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1475 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1476 		return;
1477 	}
1478 
1479 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1480 	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1481 		panic("buffer modified while frozen!");
1482 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1483 #endif
1484 }
1485 
1486 /*
1487  * This function makes the assumption that data stored in the L2ARC
1488  * will be transformed exactly as it is in the main pool. Because of
1489  * this we can verify the checksum against the reading process's bp.
1490  */
1491 static boolean_t
arc_cksum_is_equal(arc_buf_hdr_t * hdr,zio_t * zio)1492 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1493 {
1494 	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1495 	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1496 
1497 	/*
1498 	 * Block pointers always store the checksum for the logical data.
1499 	 * If the block pointer has the gang bit set, then the checksum
1500 	 * it represents is for the reconstituted data and not for an
1501 	 * individual gang member. The zio pipeline, however, must be able to
1502 	 * determine the checksum of each of the gang constituents so it
1503 	 * treats the checksum comparison differently than what we need
1504 	 * for l2arc blocks. This prevents us from using the
1505 	 * zio_checksum_error() interface directly. Instead we must call the
1506 	 * zio_checksum_error_impl() so that we can ensure the checksum is
1507 	 * generated using the correct checksum algorithm and accounts for the
1508 	 * logical I/O size and not just a gang fragment.
1509 	 */
1510 	return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1511 	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1512 	    zio->io_offset, NULL) == 0);
1513 }
1514 
1515 /*
1516  * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1517  * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1518  * isn't modified later on. If buf is compressed or there is already a checksum
1519  * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1520  */
1521 static void
arc_cksum_compute(arc_buf_t * buf)1522 arc_cksum_compute(arc_buf_t *buf)
1523 {
1524 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1525 		return;
1526 
1527 #ifdef ZFS_DEBUG
1528 	arc_buf_hdr_t *hdr = buf->b_hdr;
1529 	ASSERT(HDR_HAS_L1HDR(hdr));
1530 	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1531 	if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1532 		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1533 		return;
1534 	}
1535 
1536 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
1537 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1538 	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1539 	    KM_SLEEP);
1540 	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1541 	    hdr->b_l1hdr.b_freeze_cksum);
1542 	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1543 #endif
1544 	arc_buf_watch(buf);
1545 }
1546 
1547 #ifndef _KERNEL
1548 void
arc_buf_sigsegv(int sig,siginfo_t * si,void * unused)1549 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1550 {
1551 	(void) sig, (void) unused;
1552 	panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1553 }
1554 #endif
1555 
1556 static void
arc_buf_unwatch(arc_buf_t * buf)1557 arc_buf_unwatch(arc_buf_t *buf)
1558 {
1559 #ifndef _KERNEL
1560 	if (arc_watch) {
1561 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1562 		    PROT_READ | PROT_WRITE));
1563 	}
1564 #else
1565 	(void) buf;
1566 #endif
1567 }
1568 
1569 static void
arc_buf_watch(arc_buf_t * buf)1570 arc_buf_watch(arc_buf_t *buf)
1571 {
1572 #ifndef _KERNEL
1573 	if (arc_watch)
1574 		ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1575 		    PROT_READ));
1576 #else
1577 	(void) buf;
1578 #endif
1579 }
1580 
1581 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t * hdr)1582 arc_buf_type(arc_buf_hdr_t *hdr)
1583 {
1584 	arc_buf_contents_t type;
1585 	if (HDR_ISTYPE_METADATA(hdr)) {
1586 		type = ARC_BUFC_METADATA;
1587 	} else {
1588 		type = ARC_BUFC_DATA;
1589 	}
1590 	VERIFY3U(hdr->b_type, ==, type);
1591 	return (type);
1592 }
1593 
1594 boolean_t
arc_is_metadata(arc_buf_t * buf)1595 arc_is_metadata(arc_buf_t *buf)
1596 {
1597 	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1598 }
1599 
1600 static uint32_t
arc_bufc_to_flags(arc_buf_contents_t type)1601 arc_bufc_to_flags(arc_buf_contents_t type)
1602 {
1603 	switch (type) {
1604 	case ARC_BUFC_DATA:
1605 		/* metadata field is 0 if buffer contains normal data */
1606 		return (0);
1607 	case ARC_BUFC_METADATA:
1608 		return (ARC_FLAG_BUFC_METADATA);
1609 	default:
1610 		break;
1611 	}
1612 	panic("undefined ARC buffer type!");
1613 	return ((uint32_t)-1);
1614 }
1615 
1616 void
arc_buf_thaw(arc_buf_t * buf)1617 arc_buf_thaw(arc_buf_t *buf)
1618 {
1619 	arc_buf_hdr_t *hdr = buf->b_hdr;
1620 
1621 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1622 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1623 
1624 	arc_cksum_verify(buf);
1625 
1626 	/*
1627 	 * Compressed buffers do not manipulate the b_freeze_cksum.
1628 	 */
1629 	if (ARC_BUF_COMPRESSED(buf))
1630 		return;
1631 
1632 	ASSERT(HDR_HAS_L1HDR(hdr));
1633 	arc_cksum_free(hdr);
1634 	arc_buf_unwatch(buf);
1635 }
1636 
1637 void
arc_buf_freeze(arc_buf_t * buf)1638 arc_buf_freeze(arc_buf_t *buf)
1639 {
1640 	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1641 		return;
1642 
1643 	if (ARC_BUF_COMPRESSED(buf))
1644 		return;
1645 
1646 	ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1647 	arc_cksum_compute(buf);
1648 }
1649 
1650 /*
1651  * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1652  * the following functions should be used to ensure that the flags are
1653  * updated in a thread-safe way. When manipulating the flags either
1654  * the hash_lock must be held or the hdr must be undiscoverable. This
1655  * ensures that we're not racing with any other threads when updating
1656  * the flags.
1657  */
1658 static inline void
arc_hdr_set_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1659 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1660 {
1661 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1662 	hdr->b_flags |= flags;
1663 }
1664 
1665 static inline void
arc_hdr_clear_flags(arc_buf_hdr_t * hdr,arc_flags_t flags)1666 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1667 {
1668 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1669 	hdr->b_flags &= ~flags;
1670 }
1671 
1672 /*
1673  * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1674  * done in a special way since we have to clear and set bits
1675  * at the same time. Consumers that wish to set the compression bits
1676  * must use this function to ensure that the flags are updated in
1677  * thread-safe manner.
1678  */
1679 static void
arc_hdr_set_compress(arc_buf_hdr_t * hdr,enum zio_compress cmp)1680 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1681 {
1682 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1683 
1684 	/*
1685 	 * Holes and embedded blocks will always have a psize = 0 so
1686 	 * we ignore the compression of the blkptr and set the
1687 	 * want to uncompress them. Mark them as uncompressed.
1688 	 */
1689 	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1690 		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1691 		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1692 	} else {
1693 		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1694 		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1695 	}
1696 
1697 	HDR_SET_COMPRESS(hdr, cmp);
1698 	ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1699 }
1700 
1701 /*
1702  * Looks for another buf on the same hdr which has the data decompressed, copies
1703  * from it, and returns true. If no such buf exists, returns false.
1704  */
1705 static boolean_t
arc_buf_try_copy_decompressed_data(arc_buf_t * buf)1706 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1707 {
1708 	arc_buf_hdr_t *hdr = buf->b_hdr;
1709 	boolean_t copied = B_FALSE;
1710 
1711 	ASSERT(HDR_HAS_L1HDR(hdr));
1712 	ASSERT3P(buf->b_data, !=, NULL);
1713 	ASSERT(!ARC_BUF_COMPRESSED(buf));
1714 
1715 	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1716 	    from = from->b_next) {
1717 		/* can't use our own data buffer */
1718 		if (from == buf) {
1719 			continue;
1720 		}
1721 
1722 		if (!ARC_BUF_COMPRESSED(from)) {
1723 			memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1724 			copied = B_TRUE;
1725 			break;
1726 		}
1727 	}
1728 
1729 #ifdef ZFS_DEBUG
1730 	/*
1731 	 * There were no decompressed bufs, so there should not be a
1732 	 * checksum on the hdr either.
1733 	 */
1734 	if (zfs_flags & ZFS_DEBUG_MODIFY)
1735 		EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1736 #endif
1737 
1738 	return (copied);
1739 }
1740 
1741 /*
1742  * Allocates an ARC buf header that's in an evicted & L2-cached state.
1743  * This is used during l2arc reconstruction to make empty ARC buffers
1744  * which circumvent the regular disk->arc->l2arc path and instead come
1745  * into being in the reverse order, i.e. l2arc->arc.
1746  */
1747 static arc_buf_hdr_t *
arc_buf_alloc_l2only(size_t size,arc_buf_contents_t type,l2arc_dev_t * dev,dva_t dva,uint64_t daddr,int32_t psize,uint64_t asize,uint64_t birth,enum zio_compress compress,uint8_t complevel,boolean_t protected,boolean_t prefetch,arc_state_type_t arcs_state)1748 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1749     dva_t dva, uint64_t daddr, int32_t psize, uint64_t asize, uint64_t birth,
1750     enum zio_compress compress, uint8_t complevel, boolean_t protected,
1751     boolean_t prefetch, arc_state_type_t arcs_state)
1752 {
1753 	arc_buf_hdr_t	*hdr;
1754 
1755 	ASSERT(size != 0);
1756 	ASSERT(dev->l2ad_vdev != NULL);
1757 
1758 	hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1759 	hdr->b_birth = birth;
1760 	hdr->b_type = type;
1761 	hdr->b_flags = 0;
1762 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1763 	HDR_SET_LSIZE(hdr, size);
1764 	HDR_SET_PSIZE(hdr, psize);
1765 	HDR_SET_L2SIZE(hdr, asize);
1766 	arc_hdr_set_compress(hdr, compress);
1767 	hdr->b_complevel = complevel;
1768 	if (protected)
1769 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1770 	if (prefetch)
1771 		arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1772 	hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1773 
1774 	hdr->b_dva = dva;
1775 
1776 	hdr->b_l2hdr.b_dev = dev;
1777 	hdr->b_l2hdr.b_daddr = daddr;
1778 	hdr->b_l2hdr.b_arcs_state = arcs_state;
1779 
1780 	return (hdr);
1781 }
1782 
1783 /*
1784  * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1785  */
1786 static uint64_t
arc_hdr_size(arc_buf_hdr_t * hdr)1787 arc_hdr_size(arc_buf_hdr_t *hdr)
1788 {
1789 	uint64_t size;
1790 
1791 	if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1792 	    HDR_GET_PSIZE(hdr) > 0) {
1793 		size = HDR_GET_PSIZE(hdr);
1794 	} else {
1795 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1796 		size = HDR_GET_LSIZE(hdr);
1797 	}
1798 	return (size);
1799 }
1800 
1801 static int
arc_hdr_authenticate(arc_buf_hdr_t * hdr,spa_t * spa,uint64_t dsobj)1802 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1803 {
1804 	int ret;
1805 	uint64_t csize;
1806 	uint64_t lsize = HDR_GET_LSIZE(hdr);
1807 	uint64_t psize = HDR_GET_PSIZE(hdr);
1808 	abd_t *abd = hdr->b_l1hdr.b_pabd;
1809 	boolean_t free_abd = B_FALSE;
1810 
1811 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1812 	ASSERT(HDR_AUTHENTICATED(hdr));
1813 	ASSERT3P(abd, !=, NULL);
1814 
1815 	/*
1816 	 * The MAC is calculated on the compressed data that is stored on disk.
1817 	 * However, if compressed arc is disabled we will only have the
1818 	 * decompressed data available to us now. Compress it into a temporary
1819 	 * abd so we can verify the MAC. The performance overhead of this will
1820 	 * be relatively low, since most objects in an encrypted objset will
1821 	 * be encrypted (instead of authenticated) anyway.
1822 	 */
1823 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1824 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1825 		abd = NULL;
1826 		csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1827 		    hdr->b_l1hdr.b_pabd, &abd, lsize, MIN(lsize, psize),
1828 		    hdr->b_complevel);
1829 		if (csize >= lsize || csize > psize) {
1830 			ret = SET_ERROR(EIO);
1831 			return (ret);
1832 		}
1833 		ASSERT3P(abd, !=, NULL);
1834 		abd_zero_off(abd, csize, psize - csize);
1835 		free_abd = B_TRUE;
1836 	}
1837 
1838 	/*
1839 	 * Authentication is best effort. We authenticate whenever the key is
1840 	 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1841 	 */
1842 	if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1843 		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1844 		ASSERT3U(lsize, ==, psize);
1845 		ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1846 		    psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1847 	} else {
1848 		ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1849 		    hdr->b_crypt_hdr.b_mac);
1850 	}
1851 
1852 	if (ret == 0)
1853 		arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1854 	else if (ret == ENOENT)
1855 		ret = 0;
1856 
1857 	if (free_abd)
1858 		abd_free(abd);
1859 
1860 	return (ret);
1861 }
1862 
1863 /*
1864  * This function will take a header that only has raw encrypted data in
1865  * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1866  * b_l1hdr.b_pabd. If designated in the header flags, this function will
1867  * also decompress the data.
1868  */
1869 static int
arc_hdr_decrypt(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb)1870 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1871 {
1872 	int ret;
1873 	abd_t *cabd = NULL;
1874 	boolean_t no_crypt = B_FALSE;
1875 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1876 
1877 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1878 	ASSERT(HDR_ENCRYPTED(hdr));
1879 
1880 	arc_hdr_alloc_abd(hdr, 0);
1881 
1882 	ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1883 	    B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1884 	    hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1885 	    hdr->b_crypt_hdr.b_rabd, &no_crypt);
1886 	if (ret != 0)
1887 		goto error;
1888 
1889 	if (no_crypt) {
1890 		abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1891 		    HDR_GET_PSIZE(hdr));
1892 	}
1893 
1894 	/*
1895 	 * If this header has disabled arc compression but the b_pabd is
1896 	 * compressed after decrypting it, we need to decompress the newly
1897 	 * decrypted data.
1898 	 */
1899 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1900 	    !HDR_COMPRESSION_ENABLED(hdr)) {
1901 		/*
1902 		 * We want to make sure that we are correctly honoring the
1903 		 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1904 		 * and then loan a buffer from it, rather than allocating a
1905 		 * linear buffer and wrapping it in an abd later.
1906 		 */
1907 		cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 0);
1908 
1909 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1910 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
1911 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1912 		if (ret != 0) {
1913 			goto error;
1914 		}
1915 
1916 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1917 		    arc_hdr_size(hdr), hdr);
1918 		hdr->b_l1hdr.b_pabd = cabd;
1919 	}
1920 
1921 	return (0);
1922 
1923 error:
1924 	arc_hdr_free_abd(hdr, B_FALSE);
1925 	if (cabd != NULL)
1926 		arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
1927 
1928 	return (ret);
1929 }
1930 
1931 /*
1932  * This function is called during arc_buf_fill() to prepare the header's
1933  * abd plaintext pointer for use. This involves authenticated protected
1934  * data and decrypting encrypted data into the plaintext abd.
1935  */
1936 static int
arc_fill_hdr_crypt(arc_buf_hdr_t * hdr,kmutex_t * hash_lock,spa_t * spa,const zbookmark_phys_t * zb,boolean_t noauth)1937 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1938     const zbookmark_phys_t *zb, boolean_t noauth)
1939 {
1940 	int ret;
1941 
1942 	ASSERT(HDR_PROTECTED(hdr));
1943 
1944 	if (hash_lock != NULL)
1945 		mutex_enter(hash_lock);
1946 
1947 	if (HDR_NOAUTH(hdr) && !noauth) {
1948 		/*
1949 		 * The caller requested authenticated data but our data has
1950 		 * not been authenticated yet. Verify the MAC now if we can.
1951 		 */
1952 		ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1953 		if (ret != 0)
1954 			goto error;
1955 	} else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1956 		/*
1957 		 * If we only have the encrypted version of the data, but the
1958 		 * unencrypted version was requested we take this opportunity
1959 		 * to store the decrypted version in the header for future use.
1960 		 */
1961 		ret = arc_hdr_decrypt(hdr, spa, zb);
1962 		if (ret != 0)
1963 			goto error;
1964 	}
1965 
1966 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1967 
1968 	if (hash_lock != NULL)
1969 		mutex_exit(hash_lock);
1970 
1971 	return (0);
1972 
1973 error:
1974 	if (hash_lock != NULL)
1975 		mutex_exit(hash_lock);
1976 
1977 	return (ret);
1978 }
1979 
1980 /*
1981  * This function is used by the dbuf code to decrypt bonus buffers in place.
1982  * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1983  * block, so we use the hash lock here to protect against concurrent calls to
1984  * arc_buf_fill().
1985  */
1986 static void
arc_buf_untransform_in_place(arc_buf_t * buf)1987 arc_buf_untransform_in_place(arc_buf_t *buf)
1988 {
1989 	arc_buf_hdr_t *hdr = buf->b_hdr;
1990 
1991 	ASSERT(HDR_ENCRYPTED(hdr));
1992 	ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1993 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1994 	ASSERT3PF(hdr->b_l1hdr.b_pabd, !=, NULL, "hdr %px buf %px", hdr, buf);
1995 
1996 	zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1997 	    arc_buf_size(buf));
1998 	buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1999 	buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2000 }
2001 
2002 /*
2003  * Given a buf that has a data buffer attached to it, this function will
2004  * efficiently fill the buf with data of the specified compression setting from
2005  * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2006  * are already sharing a data buf, no copy is performed.
2007  *
2008  * If the buf is marked as compressed but uncompressed data was requested, this
2009  * will allocate a new data buffer for the buf, remove that flag, and fill the
2010  * buf with uncompressed data. You can't request a compressed buf on a hdr with
2011  * uncompressed data, and (since we haven't added support for it yet) if you
2012  * want compressed data your buf must already be marked as compressed and have
2013  * the correct-sized data buffer.
2014  */
2015 static int
arc_buf_fill(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,arc_fill_flags_t flags)2016 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2017     arc_fill_flags_t flags)
2018 {
2019 	int error = 0;
2020 	arc_buf_hdr_t *hdr = buf->b_hdr;
2021 	boolean_t hdr_compressed =
2022 	    (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2023 	boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2024 	boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2025 	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2026 	kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2027 
2028 	ASSERT3P(buf->b_data, !=, NULL);
2029 	IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2030 	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2031 	IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2032 	IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2033 	IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2034 	IMPLY(encrypted, !arc_buf_is_shared(buf));
2035 
2036 	/*
2037 	 * If the caller wanted encrypted data we just need to copy it from
2038 	 * b_rabd and potentially byteswap it. We won't be able to do any
2039 	 * further transforms on it.
2040 	 */
2041 	if (encrypted) {
2042 		ASSERT(HDR_HAS_RABD(hdr));
2043 		abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2044 		    HDR_GET_PSIZE(hdr));
2045 		goto byteswap;
2046 	}
2047 
2048 	/*
2049 	 * Adjust encrypted and authenticated headers to accommodate
2050 	 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2051 	 * allowed to fail decryption due to keys not being loaded
2052 	 * without being marked as an IO error.
2053 	 */
2054 	if (HDR_PROTECTED(hdr)) {
2055 		error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2056 		    zb, !!(flags & ARC_FILL_NOAUTH));
2057 		if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2058 			return (error);
2059 		} else if (error != 0) {
2060 			if (hash_lock != NULL)
2061 				mutex_enter(hash_lock);
2062 			arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2063 			if (hash_lock != NULL)
2064 				mutex_exit(hash_lock);
2065 			return (error);
2066 		}
2067 	}
2068 
2069 	/*
2070 	 * There is a special case here for dnode blocks which are
2071 	 * decrypting their bonus buffers. These blocks may request to
2072 	 * be decrypted in-place. This is necessary because there may
2073 	 * be many dnodes pointing into this buffer and there is
2074 	 * currently no method to synchronize replacing the backing
2075 	 * b_data buffer and updating all of the pointers. Here we use
2076 	 * the hash lock to ensure there are no races. If the need
2077 	 * arises for other types to be decrypted in-place, they must
2078 	 * add handling here as well.
2079 	 */
2080 	if ((flags & ARC_FILL_IN_PLACE) != 0) {
2081 		ASSERT(!hdr_compressed);
2082 		ASSERT(!compressed);
2083 		ASSERT(!encrypted);
2084 
2085 		if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2086 			ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2087 
2088 			if (hash_lock != NULL)
2089 				mutex_enter(hash_lock);
2090 			arc_buf_untransform_in_place(buf);
2091 			if (hash_lock != NULL)
2092 				mutex_exit(hash_lock);
2093 
2094 			/* Compute the hdr's checksum if necessary */
2095 			arc_cksum_compute(buf);
2096 		}
2097 
2098 		return (0);
2099 	}
2100 
2101 	if (hdr_compressed == compressed) {
2102 		if (ARC_BUF_SHARED(buf)) {
2103 			ASSERT(arc_buf_is_shared(buf));
2104 		} else {
2105 			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2106 			    arc_buf_size(buf));
2107 		}
2108 	} else {
2109 		ASSERT(hdr_compressed);
2110 		ASSERT(!compressed);
2111 
2112 		/*
2113 		 * If the buf is sharing its data with the hdr, unlink it and
2114 		 * allocate a new data buffer for the buf.
2115 		 */
2116 		if (ARC_BUF_SHARED(buf)) {
2117 			ASSERTF(ARC_BUF_COMPRESSED(buf),
2118 			"buf %p was uncompressed", buf);
2119 
2120 			/* We need to give the buf its own b_data */
2121 			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2122 			buf->b_data =
2123 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2124 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2125 
2126 			/* Previously overhead was 0; just add new overhead */
2127 			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2128 		} else if (ARC_BUF_COMPRESSED(buf)) {
2129 			ASSERT(!arc_buf_is_shared(buf));
2130 
2131 			/* We need to reallocate the buf's b_data */
2132 			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2133 			    buf);
2134 			buf->b_data =
2135 			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2136 
2137 			/* We increased the size of b_data; update overhead */
2138 			ARCSTAT_INCR(arcstat_overhead_size,
2139 			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2140 		}
2141 
2142 		/*
2143 		 * Regardless of the buf's previous compression settings, it
2144 		 * should not be compressed at the end of this function.
2145 		 */
2146 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2147 
2148 		/*
2149 		 * Try copying the data from another buf which already has a
2150 		 * decompressed version. If that's not possible, it's time to
2151 		 * bite the bullet and decompress the data from the hdr.
2152 		 */
2153 		if (arc_buf_try_copy_decompressed_data(buf)) {
2154 			/* Skip byteswapping and checksumming (already done) */
2155 			return (0);
2156 		} else {
2157 			abd_t dabd;
2158 			abd_get_from_buf_struct(&dabd, buf->b_data,
2159 			    HDR_GET_LSIZE(hdr));
2160 			error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2161 			    hdr->b_l1hdr.b_pabd, &dabd,
2162 			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2163 			    &hdr->b_complevel);
2164 			abd_free(&dabd);
2165 
2166 			/*
2167 			 * Absent hardware errors or software bugs, this should
2168 			 * be impossible, but log it anyway so we can debug it.
2169 			 */
2170 			if (error != 0) {
2171 				zfs_dbgmsg(
2172 				    "hdr %px, compress %d, psize %d, lsize %d",
2173 				    hdr, arc_hdr_get_compress(hdr),
2174 				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2175 				if (hash_lock != NULL)
2176 					mutex_enter(hash_lock);
2177 				arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2178 				if (hash_lock != NULL)
2179 					mutex_exit(hash_lock);
2180 				return (SET_ERROR(EIO));
2181 			}
2182 		}
2183 	}
2184 
2185 byteswap:
2186 	/* Byteswap the buf's data if necessary */
2187 	if (bswap != DMU_BSWAP_NUMFUNCS) {
2188 		ASSERT(!HDR_SHARED_DATA(hdr));
2189 		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2190 		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2191 	}
2192 
2193 	/* Compute the hdr's checksum if necessary */
2194 	arc_cksum_compute(buf);
2195 
2196 	return (0);
2197 }
2198 
2199 /*
2200  * If this function is being called to decrypt an encrypted buffer or verify an
2201  * authenticated one, the key must be loaded and a mapping must be made
2202  * available in the keystore via spa_keystore_create_mapping() or one of its
2203  * callers.
2204  */
2205 int
arc_untransform(arc_buf_t * buf,spa_t * spa,const zbookmark_phys_t * zb,boolean_t in_place)2206 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2207     boolean_t in_place)
2208 {
2209 	int ret;
2210 	arc_fill_flags_t flags = 0;
2211 
2212 	if (in_place)
2213 		flags |= ARC_FILL_IN_PLACE;
2214 
2215 	ret = arc_buf_fill(buf, spa, zb, flags);
2216 	if (ret == ECKSUM) {
2217 		/*
2218 		 * Convert authentication and decryption errors to EIO
2219 		 * (and generate an ereport) before leaving the ARC.
2220 		 */
2221 		ret = SET_ERROR(EIO);
2222 		spa_log_error(spa, zb, buf->b_hdr->b_birth);
2223 		(void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2224 		    spa, NULL, zb, NULL, 0);
2225 	}
2226 
2227 	return (ret);
2228 }
2229 
2230 /*
2231  * Increment the amount of evictable space in the arc_state_t's refcount.
2232  * We account for the space used by the hdr and the arc buf individually
2233  * so that we can add and remove them from the refcount individually.
2234  */
2235 static void
arc_evictable_space_increment(arc_buf_hdr_t * hdr,arc_state_t * state)2236 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2237 {
2238 	arc_buf_contents_t type = arc_buf_type(hdr);
2239 
2240 	ASSERT(HDR_HAS_L1HDR(hdr));
2241 
2242 	if (GHOST_STATE(state)) {
2243 		ASSERT0P(hdr->b_l1hdr.b_buf);
2244 		ASSERT0P(hdr->b_l1hdr.b_pabd);
2245 		ASSERT(!HDR_HAS_RABD(hdr));
2246 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2247 		    HDR_GET_LSIZE(hdr), hdr);
2248 		return;
2249 	}
2250 
2251 	if (hdr->b_l1hdr.b_pabd != NULL) {
2252 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2253 		    arc_hdr_size(hdr), hdr);
2254 	}
2255 	if (HDR_HAS_RABD(hdr)) {
2256 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2257 		    HDR_GET_PSIZE(hdr), hdr);
2258 	}
2259 
2260 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2261 	    buf = buf->b_next) {
2262 		if (ARC_BUF_SHARED(buf))
2263 			continue;
2264 		(void) zfs_refcount_add_many(&state->arcs_esize[type],
2265 		    arc_buf_size(buf), buf);
2266 	}
2267 }
2268 
2269 /*
2270  * Decrement the amount of evictable space in the arc_state_t's refcount.
2271  * We account for the space used by the hdr and the arc buf individually
2272  * so that we can add and remove them from the refcount individually.
2273  */
2274 static void
arc_evictable_space_decrement(arc_buf_hdr_t * hdr,arc_state_t * state)2275 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2276 {
2277 	arc_buf_contents_t type = arc_buf_type(hdr);
2278 
2279 	ASSERT(HDR_HAS_L1HDR(hdr));
2280 
2281 	if (GHOST_STATE(state)) {
2282 		ASSERT0P(hdr->b_l1hdr.b_buf);
2283 		ASSERT0P(hdr->b_l1hdr.b_pabd);
2284 		ASSERT(!HDR_HAS_RABD(hdr));
2285 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2286 		    HDR_GET_LSIZE(hdr), hdr);
2287 		return;
2288 	}
2289 
2290 	if (hdr->b_l1hdr.b_pabd != NULL) {
2291 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2292 		    arc_hdr_size(hdr), hdr);
2293 	}
2294 	if (HDR_HAS_RABD(hdr)) {
2295 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2296 		    HDR_GET_PSIZE(hdr), hdr);
2297 	}
2298 
2299 	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2300 	    buf = buf->b_next) {
2301 		if (ARC_BUF_SHARED(buf))
2302 			continue;
2303 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2304 		    arc_buf_size(buf), buf);
2305 	}
2306 }
2307 
2308 /*
2309  * Add a reference to this hdr indicating that someone is actively
2310  * referencing that memory. When the refcount transitions from 0 to 1,
2311  * we remove it from the respective arc_state_t list to indicate that
2312  * it is not evictable.
2313  */
2314 static void
add_reference(arc_buf_hdr_t * hdr,const void * tag)2315 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2316 {
2317 	arc_state_t *state = hdr->b_l1hdr.b_state;
2318 
2319 	ASSERT(HDR_HAS_L1HDR(hdr));
2320 	if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2321 		ASSERT(state == arc_anon);
2322 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2323 		ASSERT0P(hdr->b_l1hdr.b_buf);
2324 	}
2325 
2326 	if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2327 	    state != arc_anon && state != arc_l2c_only) {
2328 		/* We don't use the L2-only state list. */
2329 		multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2330 		arc_evictable_space_decrement(hdr, state);
2331 	}
2332 }
2333 
2334 /*
2335  * Remove a reference from this hdr. When the reference transitions from
2336  * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2337  * list making it eligible for eviction.
2338  */
2339 static int
remove_reference(arc_buf_hdr_t * hdr,const void * tag)2340 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2341 {
2342 	int cnt;
2343 	arc_state_t *state = hdr->b_l1hdr.b_state;
2344 
2345 	ASSERT(HDR_HAS_L1HDR(hdr));
2346 	ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2347 	ASSERT(!GHOST_STATE(state));	/* arc_l2c_only counts as a ghost. */
2348 
2349 	if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2350 		return (cnt);
2351 
2352 	if (state == arc_anon) {
2353 		arc_hdr_destroy(hdr);
2354 		return (0);
2355 	}
2356 	if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2357 		arc_change_state(arc_anon, hdr);
2358 		arc_hdr_destroy(hdr);
2359 		return (0);
2360 	}
2361 	multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2362 	arc_evictable_space_increment(hdr, state);
2363 	return (0);
2364 }
2365 
2366 /*
2367  * Returns detailed information about a specific arc buffer.  When the
2368  * state_index argument is set the function will calculate the arc header
2369  * list position for its arc state.  Since this requires a linear traversal
2370  * callers are strongly encourage not to do this.  However, it can be helpful
2371  * for targeted analysis so the functionality is provided.
2372  */
2373 void
arc_buf_info(arc_buf_t * ab,arc_buf_info_t * abi,int state_index)2374 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2375 {
2376 	(void) state_index;
2377 	arc_buf_hdr_t *hdr = ab->b_hdr;
2378 	l1arc_buf_hdr_t *l1hdr = NULL;
2379 	l2arc_buf_hdr_t *l2hdr = NULL;
2380 	arc_state_t *state = NULL;
2381 
2382 	memset(abi, 0, sizeof (arc_buf_info_t));
2383 
2384 	if (hdr == NULL)
2385 		return;
2386 
2387 	abi->abi_flags = hdr->b_flags;
2388 
2389 	if (HDR_HAS_L1HDR(hdr)) {
2390 		l1hdr = &hdr->b_l1hdr;
2391 		state = l1hdr->b_state;
2392 	}
2393 	if (HDR_HAS_L2HDR(hdr))
2394 		l2hdr = &hdr->b_l2hdr;
2395 
2396 	if (l1hdr) {
2397 		abi->abi_bufcnt = 0;
2398 		for (arc_buf_t *buf = l1hdr->b_buf; buf; buf = buf->b_next)
2399 			abi->abi_bufcnt++;
2400 		abi->abi_access = l1hdr->b_arc_access;
2401 		abi->abi_mru_hits = l1hdr->b_mru_hits;
2402 		abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2403 		abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2404 		abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2405 		abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2406 	}
2407 
2408 	if (l2hdr) {
2409 		abi->abi_l2arc_dattr = l2hdr->b_daddr;
2410 		abi->abi_l2arc_hits = l2hdr->b_hits;
2411 	}
2412 
2413 	abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2414 	abi->abi_state_contents = arc_buf_type(hdr);
2415 	abi->abi_size = arc_hdr_size(hdr);
2416 }
2417 
2418 /*
2419  * Move the supplied buffer to the indicated state. The hash lock
2420  * for the buffer must be held by the caller.
2421  */
2422 static void
arc_change_state(arc_state_t * new_state,arc_buf_hdr_t * hdr)2423 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2424 {
2425 	arc_state_t *old_state;
2426 	int64_t refcnt;
2427 	boolean_t update_old, update_new;
2428 	arc_buf_contents_t type = arc_buf_type(hdr);
2429 
2430 	/*
2431 	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2432 	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2433 	 * L1 hdr doesn't always exist when we change state to arc_anon before
2434 	 * destroying a header, in which case reallocating to add the L1 hdr is
2435 	 * pointless.
2436 	 */
2437 	if (HDR_HAS_L1HDR(hdr)) {
2438 		old_state = hdr->b_l1hdr.b_state;
2439 		refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2440 		update_old = (hdr->b_l1hdr.b_buf != NULL ||
2441 		    hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
2442 
2443 		IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2444 		IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2445 		IMPLY(old_state == arc_anon, hdr->b_l1hdr.b_buf == NULL ||
2446 		    ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
2447 	} else {
2448 		old_state = arc_l2c_only;
2449 		refcnt = 0;
2450 		update_old = B_FALSE;
2451 	}
2452 	update_new = update_old;
2453 	if (GHOST_STATE(old_state))
2454 		update_old = B_TRUE;
2455 	if (GHOST_STATE(new_state))
2456 		update_new = B_TRUE;
2457 
2458 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2459 	ASSERT3P(new_state, !=, old_state);
2460 
2461 	/*
2462 	 * If this buffer is evictable, transfer it from the
2463 	 * old state list to the new state list.
2464 	 */
2465 	if (refcnt == 0) {
2466 		if (old_state != arc_anon && old_state != arc_l2c_only) {
2467 			ASSERT(HDR_HAS_L1HDR(hdr));
2468 			/* remove_reference() saves on insert. */
2469 			if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2470 				multilist_remove(&old_state->arcs_list[type],
2471 				    hdr);
2472 				arc_evictable_space_decrement(hdr, old_state);
2473 			}
2474 		}
2475 		if (new_state != arc_anon && new_state != arc_l2c_only) {
2476 			/*
2477 			 * An L1 header always exists here, since if we're
2478 			 * moving to some L1-cached state (i.e. not l2c_only or
2479 			 * anonymous), we realloc the header to add an L1hdr
2480 			 * beforehand.
2481 			 */
2482 			ASSERT(HDR_HAS_L1HDR(hdr));
2483 			multilist_insert(&new_state->arcs_list[type], hdr);
2484 			arc_evictable_space_increment(hdr, new_state);
2485 		}
2486 	}
2487 
2488 	ASSERT(!HDR_EMPTY(hdr));
2489 	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2490 		buf_hash_remove(hdr);
2491 
2492 	/* adjust state sizes (ignore arc_l2c_only) */
2493 
2494 	if (update_new && new_state != arc_l2c_only) {
2495 		ASSERT(HDR_HAS_L1HDR(hdr));
2496 		if (GHOST_STATE(new_state)) {
2497 
2498 			/*
2499 			 * When moving a header to a ghost state, we first
2500 			 * remove all arc buffers. Thus, we'll have no arc
2501 			 * buffer to use for the reference. As a result, we
2502 			 * use the arc header pointer for the reference.
2503 			 */
2504 			(void) zfs_refcount_add_many(
2505 			    &new_state->arcs_size[type],
2506 			    HDR_GET_LSIZE(hdr), hdr);
2507 			ASSERT0P(hdr->b_l1hdr.b_pabd);
2508 			ASSERT(!HDR_HAS_RABD(hdr));
2509 		} else {
2510 
2511 			/*
2512 			 * Each individual buffer holds a unique reference,
2513 			 * thus we must remove each of these references one
2514 			 * at a time.
2515 			 */
2516 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2517 			    buf = buf->b_next) {
2518 
2519 				/*
2520 				 * When the arc_buf_t is sharing the data
2521 				 * block with the hdr, the owner of the
2522 				 * reference belongs to the hdr. Only
2523 				 * add to the refcount if the arc_buf_t is
2524 				 * not shared.
2525 				 */
2526 				if (ARC_BUF_SHARED(buf))
2527 					continue;
2528 
2529 				(void) zfs_refcount_add_many(
2530 				    &new_state->arcs_size[type],
2531 				    arc_buf_size(buf), buf);
2532 			}
2533 
2534 			if (hdr->b_l1hdr.b_pabd != NULL) {
2535 				(void) zfs_refcount_add_many(
2536 				    &new_state->arcs_size[type],
2537 				    arc_hdr_size(hdr), hdr);
2538 			}
2539 
2540 			if (HDR_HAS_RABD(hdr)) {
2541 				(void) zfs_refcount_add_many(
2542 				    &new_state->arcs_size[type],
2543 				    HDR_GET_PSIZE(hdr), hdr);
2544 			}
2545 		}
2546 	}
2547 
2548 	if (update_old && old_state != arc_l2c_only) {
2549 		ASSERT(HDR_HAS_L1HDR(hdr));
2550 		if (GHOST_STATE(old_state)) {
2551 			ASSERT0P(hdr->b_l1hdr.b_pabd);
2552 			ASSERT(!HDR_HAS_RABD(hdr));
2553 
2554 			/*
2555 			 * When moving a header off of a ghost state,
2556 			 * the header will not contain any arc buffers.
2557 			 * We use the arc header pointer for the reference
2558 			 * which is exactly what we did when we put the
2559 			 * header on the ghost state.
2560 			 */
2561 
2562 			(void) zfs_refcount_remove_many(
2563 			    &old_state->arcs_size[type],
2564 			    HDR_GET_LSIZE(hdr), hdr);
2565 		} else {
2566 
2567 			/*
2568 			 * Each individual buffer holds a unique reference,
2569 			 * thus we must remove each of these references one
2570 			 * at a time.
2571 			 */
2572 			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2573 			    buf = buf->b_next) {
2574 
2575 				/*
2576 				 * When the arc_buf_t is sharing the data
2577 				 * block with the hdr, the owner of the
2578 				 * reference belongs to the hdr. Only
2579 				 * add to the refcount if the arc_buf_t is
2580 				 * not shared.
2581 				 */
2582 				if (ARC_BUF_SHARED(buf))
2583 					continue;
2584 
2585 				(void) zfs_refcount_remove_many(
2586 				    &old_state->arcs_size[type],
2587 				    arc_buf_size(buf), buf);
2588 			}
2589 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2590 			    HDR_HAS_RABD(hdr));
2591 
2592 			if (hdr->b_l1hdr.b_pabd != NULL) {
2593 				(void) zfs_refcount_remove_many(
2594 				    &old_state->arcs_size[type],
2595 				    arc_hdr_size(hdr), hdr);
2596 			}
2597 
2598 			if (HDR_HAS_RABD(hdr)) {
2599 				(void) zfs_refcount_remove_many(
2600 				    &old_state->arcs_size[type],
2601 				    HDR_GET_PSIZE(hdr), hdr);
2602 			}
2603 		}
2604 	}
2605 
2606 	if (HDR_HAS_L1HDR(hdr)) {
2607 		hdr->b_l1hdr.b_state = new_state;
2608 
2609 		if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2610 			l2arc_hdr_arcstats_decrement_state(hdr);
2611 			hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2612 			l2arc_hdr_arcstats_increment_state(hdr);
2613 		}
2614 	}
2615 }
2616 
2617 void
arc_space_consume(uint64_t space,arc_space_type_t type)2618 arc_space_consume(uint64_t space, arc_space_type_t type)
2619 {
2620 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2621 
2622 	switch (type) {
2623 	default:
2624 		break;
2625 	case ARC_SPACE_DATA:
2626 		ARCSTAT_INCR(arcstat_data_size, space);
2627 		break;
2628 	case ARC_SPACE_META:
2629 		ARCSTAT_INCR(arcstat_metadata_size, space);
2630 		break;
2631 	case ARC_SPACE_BONUS:
2632 		ARCSTAT_INCR(arcstat_bonus_size, space);
2633 		break;
2634 	case ARC_SPACE_DNODE:
2635 		aggsum_add(&arc_sums.arcstat_dnode_size, space);
2636 		break;
2637 	case ARC_SPACE_DBUF:
2638 		ARCSTAT_INCR(arcstat_dbuf_size, space);
2639 		break;
2640 	case ARC_SPACE_HDRS:
2641 		ARCSTAT_INCR(arcstat_hdr_size, space);
2642 		break;
2643 	case ARC_SPACE_L2HDRS:
2644 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2645 		break;
2646 	case ARC_SPACE_ABD_CHUNK_WASTE:
2647 		/*
2648 		 * Note: this includes space wasted by all scatter ABD's, not
2649 		 * just those allocated by the ARC.  But the vast majority of
2650 		 * scatter ABD's come from the ARC, because other users are
2651 		 * very short-lived.
2652 		 */
2653 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2654 		break;
2655 	}
2656 
2657 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2658 		ARCSTAT_INCR(arcstat_meta_used, space);
2659 
2660 	aggsum_add(&arc_sums.arcstat_size, space);
2661 }
2662 
2663 void
arc_space_return(uint64_t space,arc_space_type_t type)2664 arc_space_return(uint64_t space, arc_space_type_t type)
2665 {
2666 	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2667 
2668 	switch (type) {
2669 	default:
2670 		break;
2671 	case ARC_SPACE_DATA:
2672 		ARCSTAT_INCR(arcstat_data_size, -space);
2673 		break;
2674 	case ARC_SPACE_META:
2675 		ARCSTAT_INCR(arcstat_metadata_size, -space);
2676 		break;
2677 	case ARC_SPACE_BONUS:
2678 		ARCSTAT_INCR(arcstat_bonus_size, -space);
2679 		break;
2680 	case ARC_SPACE_DNODE:
2681 		aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2682 		break;
2683 	case ARC_SPACE_DBUF:
2684 		ARCSTAT_INCR(arcstat_dbuf_size, -space);
2685 		break;
2686 	case ARC_SPACE_HDRS:
2687 		ARCSTAT_INCR(arcstat_hdr_size, -space);
2688 		break;
2689 	case ARC_SPACE_L2HDRS:
2690 		aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2691 		break;
2692 	case ARC_SPACE_ABD_CHUNK_WASTE:
2693 		ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2694 		break;
2695 	}
2696 
2697 	if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2698 		ARCSTAT_INCR(arcstat_meta_used, -space);
2699 
2700 	ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2701 	aggsum_add(&arc_sums.arcstat_size, -space);
2702 }
2703 
2704 /*
2705  * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2706  * with the hdr's b_pabd.
2707  */
2708 static boolean_t
arc_can_share(arc_buf_hdr_t * hdr,arc_buf_t * buf)2709 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2710 {
2711 	/*
2712 	 * The criteria for sharing a hdr's data are:
2713 	 * 1. the buffer is not encrypted
2714 	 * 2. the hdr's compression matches the buf's compression
2715 	 * 3. the hdr doesn't need to be byteswapped
2716 	 * 4. the hdr isn't already being shared
2717 	 * 5. the buf is either compressed or it is the last buf in the hdr list
2718 	 *
2719 	 * Criterion #5 maintains the invariant that shared uncompressed
2720 	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2721 	 * might ask, "if a compressed buf is allocated first, won't that be the
2722 	 * last thing in the list?", but in that case it's impossible to create
2723 	 * a shared uncompressed buf anyway (because the hdr must be compressed
2724 	 * to have the compressed buf). You might also think that #3 is
2725 	 * sufficient to make this guarantee, however it's possible
2726 	 * (specifically in the rare L2ARC write race mentioned in
2727 	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2728 	 * is shareable, but wasn't at the time of its allocation. Rather than
2729 	 * allow a new shared uncompressed buf to be created and then shuffle
2730 	 * the list around to make it the last element, this simply disallows
2731 	 * sharing if the new buf isn't the first to be added.
2732 	 */
2733 	ASSERT3P(buf->b_hdr, ==, hdr);
2734 	boolean_t hdr_compressed =
2735 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2736 	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2737 	return (!ARC_BUF_ENCRYPTED(buf) &&
2738 	    buf_compressed == hdr_compressed &&
2739 	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2740 	    !HDR_SHARED_DATA(hdr) &&
2741 	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2742 }
2743 
2744 /*
2745  * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2746  * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2747  * copy was made successfully, or an error code otherwise.
2748  */
2749 static int
arc_buf_alloc_impl(arc_buf_hdr_t * hdr,spa_t * spa,const zbookmark_phys_t * zb,const void * tag,boolean_t encrypted,boolean_t compressed,boolean_t noauth,boolean_t fill,arc_buf_t ** ret)2750 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2751     const void *tag, boolean_t encrypted, boolean_t compressed,
2752     boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2753 {
2754 	arc_buf_t *buf;
2755 	arc_fill_flags_t flags = ARC_FILL_LOCKED;
2756 
2757 	ASSERT(HDR_HAS_L1HDR(hdr));
2758 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2759 	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2760 	    hdr->b_type == ARC_BUFC_METADATA);
2761 	ASSERT3P(ret, !=, NULL);
2762 	ASSERT0P(*ret);
2763 	IMPLY(encrypted, compressed);
2764 
2765 	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2766 	buf->b_hdr = hdr;
2767 	buf->b_data = NULL;
2768 	buf->b_next = hdr->b_l1hdr.b_buf;
2769 	buf->b_flags = 0;
2770 
2771 	add_reference(hdr, tag);
2772 
2773 	/*
2774 	 * We're about to change the hdr's b_flags. We must either
2775 	 * hold the hash_lock or be undiscoverable.
2776 	 */
2777 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2778 
2779 	/*
2780 	 * Only honor requests for compressed bufs if the hdr is actually
2781 	 * compressed. This must be overridden if the buffer is encrypted since
2782 	 * encrypted buffers cannot be decompressed.
2783 	 */
2784 	if (encrypted) {
2785 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2786 		buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2787 		flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2788 	} else if (compressed &&
2789 	    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2790 		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2791 		flags |= ARC_FILL_COMPRESSED;
2792 	}
2793 
2794 	if (noauth) {
2795 		ASSERT0(encrypted);
2796 		flags |= ARC_FILL_NOAUTH;
2797 	}
2798 
2799 	/*
2800 	 * If the hdr's data can be shared then we share the data buffer and
2801 	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2802 	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2803 	 * buffer to store the buf's data.
2804 	 *
2805 	 * There are two additional restrictions here because we're sharing
2806 	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2807 	 * actively involved in an L2ARC write, because if this buf is used by
2808 	 * an arc_write() then the hdr's data buffer will be released when the
2809 	 * write completes, even though the L2ARC write might still be using it.
2810 	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2811 	 * need to be ABD-aware.  It must be allocated via
2812 	 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2813 	 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2814 	 * page" buffers because the ABD code needs to handle freeing them
2815 	 * specially.
2816 	 */
2817 	boolean_t can_share = arc_can_share(hdr, buf) &&
2818 	    !HDR_L2_WRITING(hdr) &&
2819 	    hdr->b_l1hdr.b_pabd != NULL &&
2820 	    abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2821 	    !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2822 
2823 	/* Set up b_data and sharing */
2824 	if (can_share) {
2825 		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2826 		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2827 		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2828 	} else {
2829 		buf->b_data =
2830 		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2831 		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2832 	}
2833 	VERIFY3P(buf->b_data, !=, NULL);
2834 
2835 	hdr->b_l1hdr.b_buf = buf;
2836 
2837 	/*
2838 	 * If the user wants the data from the hdr, we need to either copy or
2839 	 * decompress the data.
2840 	 */
2841 	if (fill) {
2842 		ASSERT3P(zb, !=, NULL);
2843 		return (arc_buf_fill(buf, spa, zb, flags));
2844 	}
2845 
2846 	return (0);
2847 }
2848 
2849 static const char *arc_onloan_tag = "onloan";
2850 
2851 static inline void
arc_loaned_bytes_update(int64_t delta)2852 arc_loaned_bytes_update(int64_t delta)
2853 {
2854 	atomic_add_64(&arc_loaned_bytes, delta);
2855 
2856 	/* assert that it did not wrap around */
2857 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2858 }
2859 
2860 /*
2861  * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2862  * flight data by arc_tempreserve_space() until they are "returned". Loaned
2863  * buffers must be returned to the arc before they can be used by the DMU or
2864  * freed.
2865  */
2866 arc_buf_t *
arc_loan_buf(spa_t * spa,boolean_t is_metadata,int size)2867 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2868 {
2869 	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2870 	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2871 
2872 	arc_loaned_bytes_update(arc_buf_size(buf));
2873 
2874 	return (buf);
2875 }
2876 
2877 arc_buf_t *
arc_loan_compressed_buf(spa_t * spa,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2878 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2879     enum zio_compress compression_type, uint8_t complevel)
2880 {
2881 	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2882 	    psize, lsize, compression_type, complevel);
2883 
2884 	arc_loaned_bytes_update(arc_buf_size(buf));
2885 
2886 	return (buf);
2887 }
2888 
2889 arc_buf_t *
arc_loan_raw_buf(spa_t * spa,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)2890 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2891     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2892     dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2893     enum zio_compress compression_type, uint8_t complevel)
2894 {
2895 	arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2896 	    byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2897 	    complevel);
2898 
2899 	atomic_add_64(&arc_loaned_bytes, psize);
2900 	return (buf);
2901 }
2902 
2903 
2904 /*
2905  * Return a loaned arc buffer to the arc.
2906  */
2907 void
arc_return_buf(arc_buf_t * buf,const void * tag)2908 arc_return_buf(arc_buf_t *buf, const void *tag)
2909 {
2910 	arc_buf_hdr_t *hdr = buf->b_hdr;
2911 
2912 	ASSERT3P(buf->b_data, !=, NULL);
2913 	ASSERT(HDR_HAS_L1HDR(hdr));
2914 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2915 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2916 
2917 	arc_loaned_bytes_update(-arc_buf_size(buf));
2918 }
2919 
2920 /* Detach an arc_buf from a dbuf (tag) */
2921 void
arc_loan_inuse_buf(arc_buf_t * buf,const void * tag)2922 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2923 {
2924 	arc_buf_hdr_t *hdr = buf->b_hdr;
2925 
2926 	ASSERT3P(buf->b_data, !=, NULL);
2927 	ASSERT(HDR_HAS_L1HDR(hdr));
2928 	(void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2929 	(void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2930 
2931 	arc_loaned_bytes_update(arc_buf_size(buf));
2932 }
2933 
2934 static void
l2arc_free_abd_on_write(abd_t * abd,size_t size,arc_buf_contents_t type)2935 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2936 {
2937 	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2938 
2939 	df->l2df_abd = abd;
2940 	df->l2df_size = size;
2941 	df->l2df_type = type;
2942 	mutex_enter(&l2arc_free_on_write_mtx);
2943 	list_insert_head(l2arc_free_on_write, df);
2944 	mutex_exit(&l2arc_free_on_write_mtx);
2945 }
2946 
2947 static void
arc_hdr_free_on_write(arc_buf_hdr_t * hdr,boolean_t free_rdata)2948 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2949 {
2950 	arc_state_t *state = hdr->b_l1hdr.b_state;
2951 	arc_buf_contents_t type = arc_buf_type(hdr);
2952 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2953 
2954 	/* protected by hash lock, if in the hash table */
2955 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2956 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2957 		ASSERT(state != arc_anon && state != arc_l2c_only);
2958 
2959 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
2960 		    size, hdr);
2961 	}
2962 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, hdr);
2963 	if (type == ARC_BUFC_METADATA) {
2964 		arc_space_return(size, ARC_SPACE_META);
2965 	} else {
2966 		ASSERT(type == ARC_BUFC_DATA);
2967 		arc_space_return(size, ARC_SPACE_DATA);
2968 	}
2969 
2970 	if (free_rdata) {
2971 		l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2972 	} else {
2973 		l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2974 	}
2975 }
2976 
2977 /*
2978  * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2979  * data buffer, we transfer the refcount ownership to the hdr and update
2980  * the appropriate kstats.
2981  */
2982 static void
arc_share_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)2983 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2984 {
2985 	ASSERT(arc_can_share(hdr, buf));
2986 	ASSERT0P(hdr->b_l1hdr.b_pabd);
2987 	ASSERT(!ARC_BUF_ENCRYPTED(buf));
2988 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2989 
2990 	/*
2991 	 * Start sharing the data buffer. We transfer the
2992 	 * refcount ownership to the hdr since it always owns
2993 	 * the refcount whenever an arc_buf_t is shared.
2994 	 */
2995 	zfs_refcount_transfer_ownership_many(
2996 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
2997 	    arc_hdr_size(hdr), buf, hdr);
2998 	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2999 	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3000 	    HDR_ISTYPE_METADATA(hdr));
3001 	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3002 	buf->b_flags |= ARC_BUF_FLAG_SHARED;
3003 
3004 	/*
3005 	 * Since we've transferred ownership to the hdr we need
3006 	 * to increment its compressed and uncompressed kstats and
3007 	 * decrement the overhead size.
3008 	 */
3009 	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3010 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3011 	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3012 }
3013 
3014 static void
arc_unshare_buf(arc_buf_hdr_t * hdr,arc_buf_t * buf)3015 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3016 {
3017 	ASSERT(arc_buf_is_shared(buf));
3018 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3019 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3020 
3021 	/*
3022 	 * We are no longer sharing this buffer so we need
3023 	 * to transfer its ownership to the rightful owner.
3024 	 */
3025 	zfs_refcount_transfer_ownership_many(
3026 	    &hdr->b_l1hdr.b_state->arcs_size[arc_buf_type(hdr)],
3027 	    arc_hdr_size(hdr), hdr, buf);
3028 	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3029 	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3030 	abd_free(hdr->b_l1hdr.b_pabd);
3031 	hdr->b_l1hdr.b_pabd = NULL;
3032 	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3033 
3034 	/*
3035 	 * Since the buffer is no longer shared between
3036 	 * the arc buf and the hdr, count it as overhead.
3037 	 */
3038 	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3039 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3040 	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3041 }
3042 
3043 /*
3044  * Remove an arc_buf_t from the hdr's buf list and return the last
3045  * arc_buf_t on the list. If no buffers remain on the list then return
3046  * NULL.
3047  */
3048 static arc_buf_t *
arc_buf_remove(arc_buf_hdr_t * hdr,arc_buf_t * buf)3049 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3050 {
3051 	ASSERT(HDR_HAS_L1HDR(hdr));
3052 	ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3053 
3054 	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3055 	arc_buf_t *lastbuf = NULL;
3056 
3057 	/*
3058 	 * Remove the buf from the hdr list and locate the last
3059 	 * remaining buffer on the list.
3060 	 */
3061 	while (*bufp != NULL) {
3062 		if (*bufp == buf)
3063 			*bufp = buf->b_next;
3064 
3065 		/*
3066 		 * If we've removed a buffer in the middle of
3067 		 * the list then update the lastbuf and update
3068 		 * bufp.
3069 		 */
3070 		if (*bufp != NULL) {
3071 			lastbuf = *bufp;
3072 			bufp = &(*bufp)->b_next;
3073 		}
3074 	}
3075 	buf->b_next = NULL;
3076 	ASSERT3P(lastbuf, !=, buf);
3077 	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3078 
3079 	return (lastbuf);
3080 }
3081 
3082 /*
3083  * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3084  * list and free it.
3085  */
3086 static void
arc_buf_destroy_impl(arc_buf_t * buf)3087 arc_buf_destroy_impl(arc_buf_t *buf)
3088 {
3089 	arc_buf_hdr_t *hdr = buf->b_hdr;
3090 
3091 	/*
3092 	 * Free up the data associated with the buf but only if we're not
3093 	 * sharing this with the hdr. If we are sharing it with the hdr, the
3094 	 * hdr is responsible for doing the free.
3095 	 */
3096 	if (buf->b_data != NULL) {
3097 		/*
3098 		 * We're about to change the hdr's b_flags. We must either
3099 		 * hold the hash_lock or be undiscoverable.
3100 		 */
3101 		ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3102 
3103 		arc_cksum_verify(buf);
3104 		arc_buf_unwatch(buf);
3105 
3106 		if (ARC_BUF_SHARED(buf)) {
3107 			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3108 		} else {
3109 			ASSERT(!arc_buf_is_shared(buf));
3110 			uint64_t size = arc_buf_size(buf);
3111 			arc_free_data_buf(hdr, buf->b_data, size, buf);
3112 			ARCSTAT_INCR(arcstat_overhead_size, -size);
3113 		}
3114 		buf->b_data = NULL;
3115 
3116 		/*
3117 		 * If we have no more encrypted buffers and we've already
3118 		 * gotten a copy of the decrypted data we can free b_rabd
3119 		 * to save some space.
3120 		 */
3121 		if (ARC_BUF_ENCRYPTED(buf) && HDR_HAS_RABD(hdr) &&
3122 		    hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
3123 			arc_buf_t *b;
3124 			for (b = hdr->b_l1hdr.b_buf; b; b = b->b_next) {
3125 				if (b != buf && ARC_BUF_ENCRYPTED(b))
3126 					break;
3127 			}
3128 			if (b == NULL)
3129 				arc_hdr_free_abd(hdr, B_TRUE);
3130 		}
3131 	}
3132 
3133 	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3134 
3135 	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3136 		/*
3137 		 * If the current arc_buf_t is sharing its data buffer with the
3138 		 * hdr, then reassign the hdr's b_pabd to share it with the new
3139 		 * buffer at the end of the list. The shared buffer is always
3140 		 * the last one on the hdr's buffer list.
3141 		 *
3142 		 * There is an equivalent case for compressed bufs, but since
3143 		 * they aren't guaranteed to be the last buf in the list and
3144 		 * that is an exceedingly rare case, we just allow that space be
3145 		 * wasted temporarily. We must also be careful not to share
3146 		 * encrypted buffers, since they cannot be shared.
3147 		 */
3148 		if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3149 			/* Only one buf can be shared at once */
3150 			ASSERT(!arc_buf_is_shared(lastbuf));
3151 			/* hdr is uncompressed so can't have compressed buf */
3152 			ASSERT(!ARC_BUF_COMPRESSED(lastbuf));
3153 
3154 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3155 			arc_hdr_free_abd(hdr, B_FALSE);
3156 
3157 			/*
3158 			 * We must setup a new shared block between the
3159 			 * last buffer and the hdr. The data would have
3160 			 * been allocated by the arc buf so we need to transfer
3161 			 * ownership to the hdr since it's now being shared.
3162 			 */
3163 			arc_share_buf(hdr, lastbuf);
3164 		}
3165 	} else if (HDR_SHARED_DATA(hdr)) {
3166 		/*
3167 		 * Uncompressed shared buffers are always at the end
3168 		 * of the list. Compressed buffers don't have the
3169 		 * same requirements. This makes it hard to
3170 		 * simply assert that the lastbuf is shared so
3171 		 * we rely on the hdr's compression flags to determine
3172 		 * if we have a compressed, shared buffer.
3173 		 */
3174 		ASSERT3P(lastbuf, !=, NULL);
3175 		ASSERT(arc_buf_is_shared(lastbuf) ||
3176 		    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3177 	}
3178 
3179 	/*
3180 	 * Free the checksum if we're removing the last uncompressed buf from
3181 	 * this hdr.
3182 	 */
3183 	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3184 		arc_cksum_free(hdr);
3185 	}
3186 
3187 	/* clean up the buf */
3188 	buf->b_hdr = NULL;
3189 	kmem_cache_free(buf_cache, buf);
3190 }
3191 
3192 static void
arc_hdr_alloc_abd(arc_buf_hdr_t * hdr,int alloc_flags)3193 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3194 {
3195 	uint64_t size;
3196 	boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3197 
3198 	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3199 	ASSERT(HDR_HAS_L1HDR(hdr));
3200 	ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3201 	IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3202 
3203 	if (alloc_rdata) {
3204 		size = HDR_GET_PSIZE(hdr);
3205 		ASSERT0P(hdr->b_crypt_hdr.b_rabd);
3206 		hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3207 		    alloc_flags);
3208 		ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3209 		ARCSTAT_INCR(arcstat_raw_size, size);
3210 	} else {
3211 		size = arc_hdr_size(hdr);
3212 		ASSERT0P(hdr->b_l1hdr.b_pabd);
3213 		hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3214 		    alloc_flags);
3215 		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3216 	}
3217 
3218 	ARCSTAT_INCR(arcstat_compressed_size, size);
3219 	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3220 }
3221 
3222 static void
arc_hdr_free_abd(arc_buf_hdr_t * hdr,boolean_t free_rdata)3223 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3224 {
3225 	uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3226 
3227 	ASSERT(HDR_HAS_L1HDR(hdr));
3228 	ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3229 	IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3230 
3231 	/*
3232 	 * If the hdr is currently being written to the l2arc then
3233 	 * we defer freeing the data by adding it to the l2arc_free_on_write
3234 	 * list. The l2arc will free the data once it's finished
3235 	 * writing it to the l2arc device.
3236 	 */
3237 	if (HDR_L2_WRITING(hdr)) {
3238 		arc_hdr_free_on_write(hdr, free_rdata);
3239 		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3240 	} else if (free_rdata) {
3241 		arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3242 	} else {
3243 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3244 	}
3245 
3246 	if (free_rdata) {
3247 		hdr->b_crypt_hdr.b_rabd = NULL;
3248 		ARCSTAT_INCR(arcstat_raw_size, -size);
3249 	} else {
3250 		hdr->b_l1hdr.b_pabd = NULL;
3251 	}
3252 
3253 	if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3254 		hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3255 
3256 	ARCSTAT_INCR(arcstat_compressed_size, -size);
3257 	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3258 }
3259 
3260 /*
3261  * Allocate empty anonymous ARC header.  The header will get its identity
3262  * assigned and buffers attached later as part of read or write operations.
3263  *
3264  * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3265  * inserts it into ARC hash to become globally visible and allocates physical
3266  * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk.  On disk read
3267  * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3268  * sharing one of them with the physical ABD buffer.
3269  *
3270  * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3271  * data.  Then after compression and/or encryption arc_write_ready() allocates
3272  * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3273  * buffer.  On disk write completion arc_write_done() assigns the header its
3274  * new identity (b_dva + b_birth) and inserts into ARC hash.
3275  *
3276  * In case of partial overwrite the old data is read first as described. Then
3277  * arc_release() either allocates new anonymous ARC header and moves the ARC
3278  * buffer to it, or reuses the old ARC header by discarding its identity and
3279  * removing it from ARC hash.  After buffer modification normal write process
3280  * follows as described.
3281  */
3282 static arc_buf_hdr_t *
arc_hdr_alloc(uint64_t spa,int32_t psize,int32_t lsize,boolean_t protected,enum zio_compress compression_type,uint8_t complevel,arc_buf_contents_t type)3283 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3284     boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3285     arc_buf_contents_t type)
3286 {
3287 	arc_buf_hdr_t *hdr;
3288 
3289 	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3290 	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3291 
3292 	ASSERT(HDR_EMPTY(hdr));
3293 #ifdef ZFS_DEBUG
3294 	ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3295 #endif
3296 	HDR_SET_PSIZE(hdr, psize);
3297 	HDR_SET_LSIZE(hdr, lsize);
3298 	hdr->b_spa = spa;
3299 	hdr->b_type = type;
3300 	hdr->b_flags = 0;
3301 	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3302 	arc_hdr_set_compress(hdr, compression_type);
3303 	hdr->b_complevel = complevel;
3304 	if (protected)
3305 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3306 
3307 	hdr->b_l1hdr.b_state = arc_anon;
3308 	hdr->b_l1hdr.b_arc_access = 0;
3309 	hdr->b_l1hdr.b_mru_hits = 0;
3310 	hdr->b_l1hdr.b_mru_ghost_hits = 0;
3311 	hdr->b_l1hdr.b_mfu_hits = 0;
3312 	hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3313 	hdr->b_l1hdr.b_buf = NULL;
3314 
3315 	ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3316 
3317 	return (hdr);
3318 }
3319 
3320 /*
3321  * Transition between the two allocation states for the arc_buf_hdr struct.
3322  * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3323  * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3324  * version is used when a cache buffer is only in the L2ARC in order to reduce
3325  * memory usage.
3326  */
3327 static arc_buf_hdr_t *
arc_hdr_realloc(arc_buf_hdr_t * hdr,kmem_cache_t * old,kmem_cache_t * new)3328 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3329 {
3330 	ASSERT(HDR_HAS_L2HDR(hdr));
3331 
3332 	arc_buf_hdr_t *nhdr;
3333 	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3334 
3335 	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3336 	    (old == hdr_l2only_cache && new == hdr_full_cache));
3337 
3338 	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3339 
3340 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3341 	buf_hash_remove(hdr);
3342 
3343 	memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3344 
3345 	if (new == hdr_full_cache) {
3346 		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3347 		/*
3348 		 * arc_access and arc_change_state need to be aware that a
3349 		 * header has just come out of L2ARC, so we set its state to
3350 		 * l2c_only even though it's about to change.
3351 		 */
3352 		nhdr->b_l1hdr.b_state = arc_l2c_only;
3353 
3354 		/* Verify previous threads set to NULL before freeing */
3355 		ASSERT0P(nhdr->b_l1hdr.b_pabd);
3356 		ASSERT(!HDR_HAS_RABD(hdr));
3357 	} else {
3358 		ASSERT0P(hdr->b_l1hdr.b_buf);
3359 #ifdef ZFS_DEBUG
3360 		ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3361 #endif
3362 
3363 		/*
3364 		 * If we've reached here, We must have been called from
3365 		 * arc_evict_hdr(), as such we should have already been
3366 		 * removed from any ghost list we were previously on
3367 		 * (which protects us from racing with arc_evict_state),
3368 		 * thus no locking is needed during this check.
3369 		 */
3370 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3371 
3372 		/*
3373 		 * A buffer must not be moved into the arc_l2c_only
3374 		 * state if it's not finished being written out to the
3375 		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3376 		 * might try to be accessed, even though it was removed.
3377 		 */
3378 		VERIFY(!HDR_L2_WRITING(hdr));
3379 		VERIFY0P(hdr->b_l1hdr.b_pabd);
3380 		ASSERT(!HDR_HAS_RABD(hdr));
3381 
3382 		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3383 	}
3384 	/*
3385 	 * The header has been reallocated so we need to re-insert it into any
3386 	 * lists it was on.
3387 	 */
3388 	(void) buf_hash_insert(nhdr, NULL);
3389 
3390 	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3391 
3392 	mutex_enter(&dev->l2ad_mtx);
3393 
3394 	/*
3395 	 * We must place the realloc'ed header back into the list at
3396 	 * the same spot. Otherwise, if it's placed earlier in the list,
3397 	 * l2arc_write_buffers() could find it during the function's
3398 	 * write phase, and try to write it out to the l2arc.
3399 	 */
3400 	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3401 	list_remove(&dev->l2ad_buflist, hdr);
3402 
3403 	mutex_exit(&dev->l2ad_mtx);
3404 
3405 	/*
3406 	 * Since we're using the pointer address as the tag when
3407 	 * incrementing and decrementing the l2ad_alloc refcount, we
3408 	 * must remove the old pointer (that we're about to destroy) and
3409 	 * add the new pointer to the refcount. Otherwise we'd remove
3410 	 * the wrong pointer address when calling arc_hdr_destroy() later.
3411 	 */
3412 
3413 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3414 	    arc_hdr_size(hdr), hdr);
3415 	(void) zfs_refcount_add_many(&dev->l2ad_alloc,
3416 	    arc_hdr_size(nhdr), nhdr);
3417 
3418 	buf_discard_identity(hdr);
3419 	kmem_cache_free(old, hdr);
3420 
3421 	return (nhdr);
3422 }
3423 
3424 /*
3425  * This function is used by the send / receive code to convert a newly
3426  * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3427  * is also used to allow the root objset block to be updated without altering
3428  * its embedded MACs. Both block types will always be uncompressed so we do not
3429  * have to worry about compression type or psize.
3430  */
3431 void
arc_convert_to_raw(arc_buf_t * buf,uint64_t dsobj,boolean_t byteorder,dmu_object_type_t ot,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac)3432 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3433     dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3434     const uint8_t *mac)
3435 {
3436 	arc_buf_hdr_t *hdr = buf->b_hdr;
3437 
3438 	ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3439 	ASSERT(HDR_HAS_L1HDR(hdr));
3440 	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3441 
3442 	buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3443 	arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3444 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3445 	hdr->b_crypt_hdr.b_ot = ot;
3446 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3447 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3448 	if (!arc_hdr_has_uncompressed_buf(hdr))
3449 		arc_cksum_free(hdr);
3450 
3451 	if (salt != NULL)
3452 		memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3453 	if (iv != NULL)
3454 		memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3455 	if (mac != NULL)
3456 		memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3457 }
3458 
3459 /*
3460  * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3461  * The buf is returned thawed since we expect the consumer to modify it.
3462  */
3463 arc_buf_t *
arc_alloc_buf(spa_t * spa,const void * tag,arc_buf_contents_t type,int32_t size)3464 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3465     int32_t size)
3466 {
3467 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3468 	    B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3469 
3470 	arc_buf_t *buf = NULL;
3471 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3472 	    B_FALSE, B_FALSE, &buf));
3473 	arc_buf_thaw(buf);
3474 
3475 	return (buf);
3476 }
3477 
3478 /*
3479  * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3480  * for bufs containing metadata.
3481  */
3482 arc_buf_t *
arc_alloc_compressed_buf(spa_t * spa,const void * tag,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3483 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3484     uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3485 {
3486 	ASSERT3U(lsize, >, 0);
3487 	ASSERT3U(lsize, >=, psize);
3488 	ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3489 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3490 
3491 	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3492 	    B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3493 
3494 	arc_buf_t *buf = NULL;
3495 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3496 	    B_TRUE, B_FALSE, B_FALSE, &buf));
3497 	arc_buf_thaw(buf);
3498 
3499 	/*
3500 	 * To ensure that the hdr has the correct data in it if we call
3501 	 * arc_untransform() on this buf before it's been written to disk,
3502 	 * it's easiest if we just set up sharing between the buf and the hdr.
3503 	 */
3504 	arc_share_buf(hdr, buf);
3505 
3506 	return (buf);
3507 }
3508 
3509 arc_buf_t *
arc_alloc_raw_buf(spa_t * spa,const void * tag,uint64_t dsobj,boolean_t byteorder,const uint8_t * salt,const uint8_t * iv,const uint8_t * mac,dmu_object_type_t ot,uint64_t psize,uint64_t lsize,enum zio_compress compression_type,uint8_t complevel)3510 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3511     boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3512     const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3513     enum zio_compress compression_type, uint8_t complevel)
3514 {
3515 	arc_buf_hdr_t *hdr;
3516 	arc_buf_t *buf;
3517 	arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3518 	    ARC_BUFC_METADATA : ARC_BUFC_DATA;
3519 
3520 	ASSERT3U(lsize, >, 0);
3521 	ASSERT3U(lsize, >=, psize);
3522 	ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3523 	ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3524 
3525 	hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3526 	    compression_type, complevel, type);
3527 
3528 	hdr->b_crypt_hdr.b_dsobj = dsobj;
3529 	hdr->b_crypt_hdr.b_ot = ot;
3530 	hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3531 	    DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3532 	memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3533 	memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3534 	memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3535 
3536 	/*
3537 	 * This buffer will be considered encrypted even if the ot is not an
3538 	 * encrypted type. It will become authenticated instead in
3539 	 * arc_write_ready().
3540 	 */
3541 	buf = NULL;
3542 	VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3543 	    B_FALSE, B_FALSE, &buf));
3544 	arc_buf_thaw(buf);
3545 
3546 	return (buf);
3547 }
3548 
3549 static void
l2arc_hdr_arcstats_update(arc_buf_hdr_t * hdr,boolean_t incr,boolean_t state_only)3550 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3551     boolean_t state_only)
3552 {
3553 	uint64_t lsize = HDR_GET_LSIZE(hdr);
3554 	uint64_t psize = HDR_GET_PSIZE(hdr);
3555 	uint64_t asize = HDR_GET_L2SIZE(hdr);
3556 	arc_buf_contents_t type = hdr->b_type;
3557 	int64_t lsize_s;
3558 	int64_t psize_s;
3559 	int64_t asize_s;
3560 
3561 	/* For L2 we expect the header's b_l2size to be valid */
3562 	ASSERT3U(asize, >=, psize);
3563 
3564 	if (incr) {
3565 		lsize_s = lsize;
3566 		psize_s = psize;
3567 		asize_s = asize;
3568 	} else {
3569 		lsize_s = -lsize;
3570 		psize_s = -psize;
3571 		asize_s = -asize;
3572 	}
3573 
3574 	/* If the buffer is a prefetch, count it as such. */
3575 	if (HDR_PREFETCH(hdr)) {
3576 		ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3577 	} else {
3578 		/*
3579 		 * We use the value stored in the L2 header upon initial
3580 		 * caching in L2ARC. This value will be updated in case
3581 		 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3582 		 * metadata (log entry) cannot currently be updated. Having
3583 		 * the ARC state in the L2 header solves the problem of a
3584 		 * possibly absent L1 header (apparent in buffers restored
3585 		 * from persistent L2ARC).
3586 		 */
3587 		switch (hdr->b_l2hdr.b_arcs_state) {
3588 			case ARC_STATE_MRU_GHOST:
3589 			case ARC_STATE_MRU:
3590 				ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3591 				break;
3592 			case ARC_STATE_MFU_GHOST:
3593 			case ARC_STATE_MFU:
3594 				ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3595 				break;
3596 			default:
3597 				break;
3598 		}
3599 	}
3600 
3601 	if (state_only)
3602 		return;
3603 
3604 	ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3605 	ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3606 
3607 	switch (type) {
3608 		case ARC_BUFC_DATA:
3609 			ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3610 			break;
3611 		case ARC_BUFC_METADATA:
3612 			ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3613 			break;
3614 		default:
3615 			break;
3616 	}
3617 }
3618 
3619 
3620 static void
arc_hdr_l2hdr_destroy(arc_buf_hdr_t * hdr)3621 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3622 {
3623 	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3624 	l2arc_dev_t *dev = l2hdr->b_dev;
3625 
3626 	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3627 	ASSERT(HDR_HAS_L2HDR(hdr));
3628 
3629 	list_remove(&dev->l2ad_buflist, hdr);
3630 
3631 	l2arc_hdr_arcstats_decrement(hdr);
3632 	if (dev->l2ad_vdev != NULL) {
3633 		uint64_t asize = HDR_GET_L2SIZE(hdr);
3634 		vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3635 	}
3636 
3637 	(void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3638 	    hdr);
3639 	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3640 }
3641 
3642 static void
arc_hdr_destroy(arc_buf_hdr_t * hdr)3643 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3644 {
3645 	if (HDR_HAS_L1HDR(hdr)) {
3646 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3647 		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3648 	}
3649 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3650 	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3651 
3652 	if (HDR_HAS_L2HDR(hdr)) {
3653 		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3654 		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3655 
3656 		if (!buflist_held)
3657 			mutex_enter(&dev->l2ad_mtx);
3658 
3659 		/*
3660 		 * Even though we checked this conditional above, we
3661 		 * need to check this again now that we have the
3662 		 * l2ad_mtx. This is because we could be racing with
3663 		 * another thread calling l2arc_evict() which might have
3664 		 * destroyed this header's L2 portion as we were waiting
3665 		 * to acquire the l2ad_mtx. If that happens, we don't
3666 		 * want to re-destroy the header's L2 portion.
3667 		 */
3668 		if (HDR_HAS_L2HDR(hdr)) {
3669 
3670 			if (!HDR_EMPTY(hdr))
3671 				buf_discard_identity(hdr);
3672 
3673 			arc_hdr_l2hdr_destroy(hdr);
3674 		}
3675 
3676 		if (!buflist_held)
3677 			mutex_exit(&dev->l2ad_mtx);
3678 	}
3679 
3680 	/*
3681 	 * The header's identify can only be safely discarded once it is no
3682 	 * longer discoverable.  This requires removing it from the hash table
3683 	 * and the l2arc header list.  After this point the hash lock can not
3684 	 * be used to protect the header.
3685 	 */
3686 	if (!HDR_EMPTY(hdr))
3687 		buf_discard_identity(hdr);
3688 
3689 	if (HDR_HAS_L1HDR(hdr)) {
3690 		arc_cksum_free(hdr);
3691 
3692 		while (hdr->b_l1hdr.b_buf != NULL)
3693 			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3694 
3695 		if (hdr->b_l1hdr.b_pabd != NULL)
3696 			arc_hdr_free_abd(hdr, B_FALSE);
3697 
3698 		if (HDR_HAS_RABD(hdr))
3699 			arc_hdr_free_abd(hdr, B_TRUE);
3700 	}
3701 
3702 	ASSERT0P(hdr->b_hash_next);
3703 	if (HDR_HAS_L1HDR(hdr)) {
3704 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3705 		ASSERT0P(hdr->b_l1hdr.b_acb);
3706 #ifdef ZFS_DEBUG
3707 		ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
3708 #endif
3709 		kmem_cache_free(hdr_full_cache, hdr);
3710 	} else {
3711 		kmem_cache_free(hdr_l2only_cache, hdr);
3712 	}
3713 }
3714 
3715 void
arc_buf_destroy(arc_buf_t * buf,const void * tag)3716 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3717 {
3718 	arc_buf_hdr_t *hdr = buf->b_hdr;
3719 
3720 	if (hdr->b_l1hdr.b_state == arc_anon) {
3721 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
3722 		ASSERT(ARC_BUF_LAST(buf));
3723 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3724 		VERIFY0(remove_reference(hdr, tag));
3725 		return;
3726 	}
3727 
3728 	kmutex_t *hash_lock = HDR_LOCK(hdr);
3729 	mutex_enter(hash_lock);
3730 
3731 	ASSERT3P(hdr, ==, buf->b_hdr);
3732 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
3733 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3734 	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3735 	ASSERT3P(buf->b_data, !=, NULL);
3736 
3737 	arc_buf_destroy_impl(buf);
3738 	(void) remove_reference(hdr, tag);
3739 	mutex_exit(hash_lock);
3740 }
3741 
3742 /*
3743  * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3744  * state of the header is dependent on its state prior to entering this
3745  * function. The following transitions are possible:
3746  *
3747  *    - arc_mru -> arc_mru_ghost
3748  *    - arc_mfu -> arc_mfu_ghost
3749  *    - arc_mru_ghost -> arc_l2c_only
3750  *    - arc_mru_ghost -> deleted
3751  *    - arc_mfu_ghost -> arc_l2c_only
3752  *    - arc_mfu_ghost -> deleted
3753  *    - arc_uncached -> deleted
3754  *
3755  * Return total size of evicted data buffers for eviction progress tracking.
3756  * When evicting from ghost states return logical buffer size to make eviction
3757  * progress at the same (or at least comparable) rate as from non-ghost states.
3758  *
3759  * Return *real_evicted for actual ARC size reduction to wake up threads
3760  * waiting for it.  For non-ghost states it includes size of evicted data
3761  * buffers (the headers are not freed there).  For ghost states it includes
3762  * only the evicted headers size.
3763  */
3764 static int64_t
arc_evict_hdr(arc_buf_hdr_t * hdr,uint64_t * real_evicted)3765 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3766 {
3767 	arc_state_t *evicted_state, *state;
3768 	int64_t bytes_evicted = 0;
3769 	uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3770 	    arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3771 
3772 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3773 	ASSERT(HDR_HAS_L1HDR(hdr));
3774 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3775 	ASSERT0P(hdr->b_l1hdr.b_buf);
3776 	ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3777 
3778 	*real_evicted = 0;
3779 	state = hdr->b_l1hdr.b_state;
3780 	if (GHOST_STATE(state)) {
3781 
3782 		/*
3783 		 * l2arc_write_buffers() relies on a header's L1 portion
3784 		 * (i.e. its b_pabd field) during it's write phase.
3785 		 * Thus, we cannot push a header onto the arc_l2c_only
3786 		 * state (removing its L1 piece) until the header is
3787 		 * done being written to the l2arc.
3788 		 */
3789 		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3790 			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3791 			return (bytes_evicted);
3792 		}
3793 
3794 		ARCSTAT_BUMP(arcstat_deleted);
3795 		bytes_evicted += HDR_GET_LSIZE(hdr);
3796 
3797 		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3798 
3799 		if (HDR_HAS_L2HDR(hdr)) {
3800 			ASSERT0P(hdr->b_l1hdr.b_pabd);
3801 			ASSERT(!HDR_HAS_RABD(hdr));
3802 			/*
3803 			 * This buffer is cached on the 2nd Level ARC;
3804 			 * don't destroy the header.
3805 			 */
3806 			arc_change_state(arc_l2c_only, hdr);
3807 			/*
3808 			 * dropping from L1+L2 cached to L2-only,
3809 			 * realloc to remove the L1 header.
3810 			 */
3811 			(void) arc_hdr_realloc(hdr, hdr_full_cache,
3812 			    hdr_l2only_cache);
3813 			*real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3814 		} else {
3815 			arc_change_state(arc_anon, hdr);
3816 			arc_hdr_destroy(hdr);
3817 			*real_evicted += HDR_FULL_SIZE;
3818 		}
3819 		return (bytes_evicted);
3820 	}
3821 
3822 	ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3823 	evicted_state = (state == arc_uncached) ? arc_anon :
3824 	    ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3825 
3826 	/* prefetch buffers have a minimum lifespan */
3827 	if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3828 	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3829 	    MSEC_TO_TICK(min_lifetime)) {
3830 		ARCSTAT_BUMP(arcstat_evict_skip);
3831 		return (bytes_evicted);
3832 	}
3833 
3834 	if (HDR_HAS_L2HDR(hdr)) {
3835 		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3836 	} else {
3837 		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3838 			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3839 			    HDR_GET_LSIZE(hdr));
3840 
3841 			switch (state->arcs_state) {
3842 				case ARC_STATE_MRU:
3843 					ARCSTAT_INCR(
3844 					    arcstat_evict_l2_eligible_mru,
3845 					    HDR_GET_LSIZE(hdr));
3846 					break;
3847 				case ARC_STATE_MFU:
3848 					ARCSTAT_INCR(
3849 					    arcstat_evict_l2_eligible_mfu,
3850 					    HDR_GET_LSIZE(hdr));
3851 					break;
3852 				default:
3853 					break;
3854 			}
3855 		} else {
3856 			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3857 			    HDR_GET_LSIZE(hdr));
3858 		}
3859 	}
3860 
3861 	bytes_evicted += arc_hdr_size(hdr);
3862 	*real_evicted += arc_hdr_size(hdr);
3863 
3864 	/*
3865 	 * If this hdr is being evicted and has a compressed buffer then we
3866 	 * discard it here before we change states.  This ensures that the
3867 	 * accounting is updated correctly in arc_free_data_impl().
3868 	 */
3869 	if (hdr->b_l1hdr.b_pabd != NULL)
3870 		arc_hdr_free_abd(hdr, B_FALSE);
3871 
3872 	if (HDR_HAS_RABD(hdr))
3873 		arc_hdr_free_abd(hdr, B_TRUE);
3874 
3875 	arc_change_state(evicted_state, hdr);
3876 	DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3877 	if (evicted_state == arc_anon) {
3878 		arc_hdr_destroy(hdr);
3879 		*real_evicted += HDR_FULL_SIZE;
3880 	} else {
3881 		ASSERT(HDR_IN_HASH_TABLE(hdr));
3882 	}
3883 
3884 	return (bytes_evicted);
3885 }
3886 
3887 static void
arc_set_need_free(void)3888 arc_set_need_free(void)
3889 {
3890 	ASSERT(MUTEX_HELD(&arc_evict_lock));
3891 	int64_t remaining = arc_free_memory() - arc_sys_free / 2;
3892 	arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
3893 	if (aw == NULL) {
3894 		arc_need_free = MAX(-remaining, 0);
3895 	} else {
3896 		arc_need_free =
3897 		    MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
3898 	}
3899 }
3900 
3901 static uint64_t
arc_evict_state_impl(multilist_t * ml,int idx,arc_buf_hdr_t * marker,uint64_t spa,uint64_t bytes)3902 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3903     uint64_t spa, uint64_t bytes)
3904 {
3905 	multilist_sublist_t *mls;
3906 	uint64_t bytes_evicted = 0, real_evicted = 0;
3907 	arc_buf_hdr_t *hdr;
3908 	kmutex_t *hash_lock;
3909 	uint_t evict_count = zfs_arc_evict_batch_limit;
3910 
3911 	ASSERT3P(marker, !=, NULL);
3912 
3913 	mls = multilist_sublist_lock_idx(ml, idx);
3914 
3915 	for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
3916 	    hdr = multilist_sublist_prev(mls, marker)) {
3917 		if ((evict_count == 0) || (bytes_evicted >= bytes))
3918 			break;
3919 
3920 		/*
3921 		 * To keep our iteration location, move the marker
3922 		 * forward. Since we're not holding hdr's hash lock, we
3923 		 * must be very careful and not remove 'hdr' from the
3924 		 * sublist. Otherwise, other consumers might mistake the
3925 		 * 'hdr' as not being on a sublist when they call the
3926 		 * multilist_link_active() function (they all rely on
3927 		 * the hash lock protecting concurrent insertions and
3928 		 * removals). multilist_sublist_move_forward() was
3929 		 * specifically implemented to ensure this is the case
3930 		 * (only 'marker' will be removed and re-inserted).
3931 		 */
3932 		multilist_sublist_move_forward(mls, marker);
3933 
3934 		/*
3935 		 * The only case where the b_spa field should ever be
3936 		 * zero, is the marker headers inserted by
3937 		 * arc_evict_state(). It's possible for multiple threads
3938 		 * to be calling arc_evict_state() concurrently (e.g.
3939 		 * dsl_pool_close() and zio_inject_fault()), so we must
3940 		 * skip any markers we see from these other threads.
3941 		 */
3942 		if (hdr->b_spa == 0)
3943 			continue;
3944 
3945 		/* we're only interested in evicting buffers of a certain spa */
3946 		if (spa != 0 && hdr->b_spa != spa) {
3947 			ARCSTAT_BUMP(arcstat_evict_skip);
3948 			continue;
3949 		}
3950 
3951 		hash_lock = HDR_LOCK(hdr);
3952 
3953 		/*
3954 		 * We aren't calling this function from any code path
3955 		 * that would already be holding a hash lock, so we're
3956 		 * asserting on this assumption to be defensive in case
3957 		 * this ever changes. Without this check, it would be
3958 		 * possible to incorrectly increment arcstat_mutex_miss
3959 		 * below (e.g. if the code changed such that we called
3960 		 * this function with a hash lock held).
3961 		 */
3962 		ASSERT(!MUTEX_HELD(hash_lock));
3963 
3964 		if (mutex_tryenter(hash_lock)) {
3965 			uint64_t revicted;
3966 			uint64_t evicted = arc_evict_hdr(hdr, &revicted);
3967 			mutex_exit(hash_lock);
3968 
3969 			bytes_evicted += evicted;
3970 			real_evicted += revicted;
3971 
3972 			/*
3973 			 * If evicted is zero, arc_evict_hdr() must have
3974 			 * decided to skip this header, don't increment
3975 			 * evict_count in this case.
3976 			 */
3977 			if (evicted != 0)
3978 				evict_count--;
3979 
3980 		} else {
3981 			ARCSTAT_BUMP(arcstat_mutex_miss);
3982 		}
3983 	}
3984 
3985 	multilist_sublist_unlock(mls);
3986 
3987 	/*
3988 	 * Increment the count of evicted bytes, and wake up any threads that
3989 	 * are waiting for the count to reach this value.  Since the list is
3990 	 * ordered by ascending aew_count, we pop off the beginning of the
3991 	 * list until we reach the end, or a waiter that's past the current
3992 	 * "count".  Doing this outside the loop reduces the number of times
3993 	 * we need to acquire the global arc_evict_lock.
3994 	 *
3995 	 * Only wake when there's sufficient free memory in the system
3996 	 * (specifically, arc_sys_free/2, which by default is a bit more than
3997 	 * 1/64th of RAM).  See the comments in arc_wait_for_eviction().
3998 	 */
3999 	mutex_enter(&arc_evict_lock);
4000 	arc_evict_count += real_evicted;
4001 
4002 	if (arc_free_memory() > arc_sys_free / 2) {
4003 		arc_evict_waiter_t *aw;
4004 		while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4005 		    aw->aew_count <= arc_evict_count) {
4006 			list_remove(&arc_evict_waiters, aw);
4007 			cv_broadcast(&aw->aew_cv);
4008 		}
4009 	}
4010 	arc_set_need_free();
4011 	mutex_exit(&arc_evict_lock);
4012 
4013 	/*
4014 	 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4015 	 * if the average cached block is small), eviction can be on-CPU for
4016 	 * many seconds.  To ensure that other threads that may be bound to
4017 	 * this CPU are able to make progress, make a voluntary preemption
4018 	 * call here.
4019 	 */
4020 	kpreempt(KPREEMPT_SYNC);
4021 
4022 	return (bytes_evicted);
4023 }
4024 
4025 static arc_buf_hdr_t *
arc_state_alloc_marker(void)4026 arc_state_alloc_marker(void)
4027 {
4028 	arc_buf_hdr_t *marker = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4029 
4030 	/*
4031 	 * A b_spa of 0 is used to indicate that this header is
4032 	 * a marker. This fact is used in arc_evict_state_impl().
4033 	 */
4034 	marker->b_spa = 0;
4035 
4036 	return (marker);
4037 }
4038 
4039 static void
arc_state_free_marker(arc_buf_hdr_t * marker)4040 arc_state_free_marker(arc_buf_hdr_t *marker)
4041 {
4042 	kmem_cache_free(hdr_full_cache, marker);
4043 }
4044 
4045 /*
4046  * Allocate an array of buffer headers used as placeholders during arc state
4047  * eviction.
4048  */
4049 static arc_buf_hdr_t **
arc_state_alloc_markers(int count)4050 arc_state_alloc_markers(int count)
4051 {
4052 	arc_buf_hdr_t **markers;
4053 
4054 	markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4055 	for (int i = 0; i < count; i++)
4056 		markers[i] = arc_state_alloc_marker();
4057 	return (markers);
4058 }
4059 
4060 static void
arc_state_free_markers(arc_buf_hdr_t ** markers,int count)4061 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4062 {
4063 	for (int i = 0; i < count; i++)
4064 		arc_state_free_marker(markers[i]);
4065 	kmem_free(markers, sizeof (*markers) * count);
4066 }
4067 
4068 typedef struct evict_arg {
4069 	taskq_ent_t		eva_tqent;
4070 	multilist_t		*eva_ml;
4071 	arc_buf_hdr_t		*eva_marker;
4072 	int			eva_idx;
4073 	uint64_t		eva_spa;
4074 	uint64_t		eva_bytes;
4075 	uint64_t		eva_evicted;
4076 } evict_arg_t;
4077 
4078 static void
arc_evict_task(void * arg)4079 arc_evict_task(void *arg)
4080 {
4081 	evict_arg_t *eva = arg;
4082 	eva->eva_evicted = arc_evict_state_impl(eva->eva_ml, eva->eva_idx,
4083 	    eva->eva_marker, eva->eva_spa, eva->eva_bytes);
4084 }
4085 
4086 static void
arc_evict_thread_init(void)4087 arc_evict_thread_init(void)
4088 {
4089 	if (zfs_arc_evict_threads == 0) {
4090 		/*
4091 		 * Compute number of threads we want to use for eviction.
4092 		 *
4093 		 * Normally, it's log2(ncpus) + ncpus/32, which gets us to the
4094 		 * default max of 16 threads at ~256 CPUs.
4095 		 *
4096 		 * However, that formula goes to two threads at 4 CPUs, which
4097 		 * is still rather to low to be really useful, so we just go
4098 		 * with 1 thread at fewer than 6 cores.
4099 		 */
4100 		if (max_ncpus < 6)
4101 			zfs_arc_evict_threads = 1;
4102 		else
4103 			zfs_arc_evict_threads =
4104 			    (highbit64(max_ncpus) - 1) + max_ncpus / 32;
4105 	} else if (zfs_arc_evict_threads > max_ncpus)
4106 		zfs_arc_evict_threads = max_ncpus;
4107 
4108 	if (zfs_arc_evict_threads > 1) {
4109 		arc_evict_taskq = taskq_create("arc_evict",
4110 		    zfs_arc_evict_threads, defclsyspri, 0, INT_MAX,
4111 		    TASKQ_PREPOPULATE);
4112 		arc_evict_arg = kmem_zalloc(
4113 		    sizeof (evict_arg_t) * zfs_arc_evict_threads, KM_SLEEP);
4114 	}
4115 }
4116 
4117 /*
4118  * The minimum number of bytes we can evict at once is a block size.
4119  * So, SPA_MAXBLOCKSIZE is a reasonable minimal value per an eviction task.
4120  * We use this value to compute a scaling factor for the eviction tasks.
4121  */
4122 #define	MIN_EVICT_SIZE	(SPA_MAXBLOCKSIZE)
4123 
4124 /*
4125  * Evict buffers from the given arc state, until we've removed the
4126  * specified number of bytes. Move the removed buffers to the
4127  * appropriate evict state.
4128  *
4129  * This function makes a "best effort". It skips over any buffers
4130  * it can't get a hash_lock on, and so, may not catch all candidates.
4131  * It may also return without evicting as much space as requested.
4132  *
4133  * If bytes is specified using the special value ARC_EVICT_ALL, this
4134  * will evict all available (i.e. unlocked and evictable) buffers from
4135  * the given arc state; which is used by arc_flush().
4136  */
4137 static uint64_t
arc_evict_state(arc_state_t * state,arc_buf_contents_t type,uint64_t spa,uint64_t bytes)4138 arc_evict_state(arc_state_t *state, arc_buf_contents_t type, uint64_t spa,
4139     uint64_t bytes)
4140 {
4141 	uint64_t total_evicted = 0;
4142 	multilist_t *ml = &state->arcs_list[type];
4143 	int num_sublists;
4144 	arc_buf_hdr_t **markers;
4145 	evict_arg_t *eva = NULL;
4146 
4147 	num_sublists = multilist_get_num_sublists(ml);
4148 
4149 	boolean_t use_evcttq = zfs_arc_evict_threads > 1;
4150 
4151 	/*
4152 	 * If we've tried to evict from each sublist, made some
4153 	 * progress, but still have not hit the target number of bytes
4154 	 * to evict, we want to keep trying. The markers allow us to
4155 	 * pick up where we left off for each individual sublist, rather
4156 	 * than starting from the tail each time.
4157 	 */
4158 	if (zthr_iscurthread(arc_evict_zthr)) {
4159 		markers = arc_state_evict_markers;
4160 		ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4161 	} else {
4162 		markers = arc_state_alloc_markers(num_sublists);
4163 	}
4164 	for (int i = 0; i < num_sublists; i++) {
4165 		multilist_sublist_t *mls;
4166 
4167 		mls = multilist_sublist_lock_idx(ml, i);
4168 		multilist_sublist_insert_tail(mls, markers[i]);
4169 		multilist_sublist_unlock(mls);
4170 	}
4171 
4172 	if (use_evcttq) {
4173 		if (zthr_iscurthread(arc_evict_zthr))
4174 			eva = arc_evict_arg;
4175 		else
4176 			eva = kmem_alloc(sizeof (evict_arg_t) *
4177 			    zfs_arc_evict_threads, KM_NOSLEEP);
4178 		if (eva) {
4179 			for (int i = 0; i < zfs_arc_evict_threads; i++) {
4180 				taskq_init_ent(&eva[i].eva_tqent);
4181 				eva[i].eva_ml = ml;
4182 				eva[i].eva_spa = spa;
4183 			}
4184 		} else {
4185 			/*
4186 			 * Fall back to the regular single evict if it is not
4187 			 * possible to allocate memory for the taskq entries.
4188 			 */
4189 			use_evcttq = B_FALSE;
4190 		}
4191 	}
4192 
4193 	/*
4194 	 * Start eviction using a randomly selected sublist, this is to try and
4195 	 * evenly balance eviction across all sublists. Always starting at the
4196 	 * same sublist (e.g. index 0) would cause evictions to favor certain
4197 	 * sublists over others.
4198 	 */
4199 	uint64_t scan_evicted = 0;
4200 	int sublists_left = num_sublists;
4201 	int sublist_idx = multilist_get_random_index(ml);
4202 
4203 	/*
4204 	 * While we haven't hit our target number of bytes to evict, or
4205 	 * we're evicting all available buffers.
4206 	 */
4207 	while (total_evicted < bytes) {
4208 		uint64_t evict = MIN_EVICT_SIZE;
4209 		uint_t ntasks = zfs_arc_evict_threads;
4210 
4211 		if (use_evcttq) {
4212 			if (sublists_left < ntasks)
4213 				ntasks = sublists_left;
4214 
4215 			if (ntasks < 2)
4216 				use_evcttq = B_FALSE;
4217 		}
4218 
4219 		if (use_evcttq) {
4220 			uint64_t left = bytes - total_evicted;
4221 
4222 			if (bytes == ARC_EVICT_ALL) {
4223 				evict = bytes;
4224 			} else if (left > ntasks * MIN_EVICT_SIZE) {
4225 				evict = DIV_ROUND_UP(left, ntasks);
4226 			} else {
4227 				ntasks = DIV_ROUND_UP(left, MIN_EVICT_SIZE);
4228 				if (ntasks == 1)
4229 					use_evcttq = B_FALSE;
4230 			}
4231 		}
4232 
4233 		for (int i = 0; sublists_left > 0; i++, sublist_idx++,
4234 		    sublists_left--) {
4235 			uint64_t bytes_remaining;
4236 			uint64_t bytes_evicted;
4237 
4238 			/* we've reached the end, wrap to the beginning */
4239 			if (sublist_idx >= num_sublists)
4240 				sublist_idx = 0;
4241 
4242 			if (use_evcttq) {
4243 				if (i == ntasks)
4244 					break;
4245 
4246 				eva[i].eva_marker = markers[sublist_idx];
4247 				eva[i].eva_idx = sublist_idx;
4248 				eva[i].eva_bytes = evict;
4249 
4250 				taskq_dispatch_ent(arc_evict_taskq,
4251 				    arc_evict_task, &eva[i], 0,
4252 				    &eva[i].eva_tqent);
4253 
4254 				continue;
4255 			}
4256 
4257 			if (total_evicted < bytes)
4258 				bytes_remaining = bytes - total_evicted;
4259 			else
4260 				break;
4261 
4262 			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4263 			    markers[sublist_idx], spa, bytes_remaining);
4264 
4265 			scan_evicted += bytes_evicted;
4266 			total_evicted += bytes_evicted;
4267 		}
4268 
4269 		if (use_evcttq) {
4270 			taskq_wait(arc_evict_taskq);
4271 
4272 			for (int i = 0; i < ntasks; i++) {
4273 				scan_evicted += eva[i].eva_evicted;
4274 				total_evicted += eva[i].eva_evicted;
4275 			}
4276 		}
4277 
4278 		/*
4279 		 * If we scanned all sublists and didn't evict anything, we
4280 		 * have no reason to believe we'll evict more during another
4281 		 * scan, so break the loop.
4282 		 */
4283 		if (scan_evicted == 0 && sublists_left == 0) {
4284 			/* This isn't possible, let's make that obvious */
4285 			ASSERT3S(bytes, !=, 0);
4286 
4287 			/*
4288 			 * When bytes is ARC_EVICT_ALL, the only way to
4289 			 * break the loop is when scan_evicted is zero.
4290 			 * In that case, we actually have evicted enough,
4291 			 * so we don't want to increment the kstat.
4292 			 */
4293 			if (bytes != ARC_EVICT_ALL) {
4294 				ASSERT3S(total_evicted, <, bytes);
4295 				ARCSTAT_BUMP(arcstat_evict_not_enough);
4296 			}
4297 
4298 			break;
4299 		}
4300 
4301 		/*
4302 		 * If we scanned all sublists but still have more to do,
4303 		 * reset the counts so we can go around again.
4304 		 */
4305 		if (sublists_left == 0) {
4306 			sublists_left = num_sublists;
4307 			sublist_idx = multilist_get_random_index(ml);
4308 			scan_evicted = 0;
4309 
4310 			/*
4311 			 * Since we're about to reconsider all sublists,
4312 			 * re-enable use of the evict threads if available.
4313 			 */
4314 			use_evcttq = (zfs_arc_evict_threads > 1 && eva != NULL);
4315 		}
4316 	}
4317 
4318 	if (eva != NULL && eva != arc_evict_arg)
4319 		kmem_free(eva, sizeof (evict_arg_t) * zfs_arc_evict_threads);
4320 
4321 	for (int i = 0; i < num_sublists; i++) {
4322 		multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
4323 		multilist_sublist_remove(mls, markers[i]);
4324 		multilist_sublist_unlock(mls);
4325 	}
4326 
4327 	if (markers != arc_state_evict_markers)
4328 		arc_state_free_markers(markers, num_sublists);
4329 
4330 	return (total_evicted);
4331 }
4332 
4333 /*
4334  * Flush all "evictable" data of the given type from the arc state
4335  * specified. This will not evict any "active" buffers (i.e. referenced).
4336  *
4337  * When 'retry' is set to B_FALSE, the function will make a single pass
4338  * over the state and evict any buffers that it can. Since it doesn't
4339  * continually retry the eviction, it might end up leaving some buffers
4340  * in the ARC due to lock misses.
4341  *
4342  * When 'retry' is set to B_TRUE, the function will continually retry the
4343  * eviction until *all* evictable buffers have been removed from the
4344  * state. As a result, if concurrent insertions into the state are
4345  * allowed (e.g. if the ARC isn't shutting down), this function might
4346  * wind up in an infinite loop, continually trying to evict buffers.
4347  */
4348 static uint64_t
arc_flush_state(arc_state_t * state,uint64_t spa,arc_buf_contents_t type,boolean_t retry)4349 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4350     boolean_t retry)
4351 {
4352 	uint64_t evicted = 0;
4353 
4354 	while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4355 		evicted += arc_evict_state(state, type, spa, ARC_EVICT_ALL);
4356 
4357 		if (!retry)
4358 			break;
4359 	}
4360 
4361 	return (evicted);
4362 }
4363 
4364 /*
4365  * Evict the specified number of bytes from the state specified. This
4366  * function prevents us from trying to evict more from a state's list
4367  * than is "evictable", and to skip evicting altogether when passed a
4368  * negative value for "bytes". In contrast, arc_evict_state() will
4369  * evict everything it can, when passed a negative value for "bytes".
4370  */
4371 static uint64_t
arc_evict_impl(arc_state_t * state,arc_buf_contents_t type,int64_t bytes)4372 arc_evict_impl(arc_state_t *state, arc_buf_contents_t type, int64_t bytes)
4373 {
4374 	uint64_t delta;
4375 
4376 	if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4377 		delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4378 		    bytes);
4379 		return (arc_evict_state(state, type, 0, delta));
4380 	}
4381 
4382 	return (0);
4383 }
4384 
4385 /*
4386  * Adjust specified fraction, taking into account initial ghost state(s) size,
4387  * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4388  * decreasing it, plus a balance factor, controlling the decrease rate, used
4389  * to balance metadata vs data.
4390  */
4391 static uint64_t
arc_evict_adj(uint64_t frac,uint64_t total,uint64_t up,uint64_t down,uint_t balance)4392 arc_evict_adj(uint64_t frac, uint64_t total, uint64_t up, uint64_t down,
4393     uint_t balance)
4394 {
4395 	if (total < 32 || up + down == 0)
4396 		return (frac);
4397 
4398 	/*
4399 	 * We should not have more ghost hits than ghost size, but they may
4400 	 * get close.  To avoid overflows below up/down should not be bigger
4401 	 * than 1/5 of total.  But to limit maximum adjustment speed restrict
4402 	 * it some more.
4403 	 */
4404 	if (up + down >= total / 16) {
4405 		uint64_t scale = (up + down) / (total / 32);
4406 		up /= scale;
4407 		down /= scale;
4408 	}
4409 
4410 	/* Get maximal dynamic range by choosing optimal shifts. */
4411 	int s = highbit64(total);
4412 	s = MIN(64 - s, 32);
4413 
4414 	ASSERT3U(frac, <=, 1ULL << 32);
4415 	uint64_t ofrac = (1ULL << 32) - frac;
4416 
4417 	if (frac >= 4 * ofrac)
4418 		up /= frac / (2 * ofrac + 1);
4419 	up = (up << s) / (total >> (32 - s));
4420 	if (ofrac >= 4 * frac)
4421 		down /= ofrac / (2 * frac + 1);
4422 	down = (down << s) / (total >> (32 - s));
4423 	down = down * 100 / balance;
4424 
4425 	ASSERT3U(up, <=, (1ULL << 32) - frac);
4426 	ASSERT3U(down, <=, frac);
4427 	return (frac + up - down);
4428 }
4429 
4430 /*
4431  * Calculate (x * multiplier / divisor) without unnecesary overflows.
4432  */
4433 static uint64_t
arc_mf(uint64_t x,uint64_t multiplier,uint64_t divisor)4434 arc_mf(uint64_t x, uint64_t multiplier, uint64_t divisor)
4435 {
4436 	uint64_t q = (x / divisor);
4437 	uint64_t r = (x % divisor);
4438 
4439 	return ((q * multiplier) + ((r * multiplier) / divisor));
4440 }
4441 
4442 /*
4443  * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4444  */
4445 static uint64_t
arc_evict(void)4446 arc_evict(void)
4447 {
4448 	uint64_t bytes, total_evicted = 0;
4449 	int64_t e, mrud, mrum, mfud, mfum, w;
4450 	static uint64_t ogrd, ogrm, ogfd, ogfm;
4451 	static uint64_t gsrd, gsrm, gsfd, gsfm;
4452 	uint64_t ngrd, ngrm, ngfd, ngfm;
4453 
4454 	/* Get current size of ARC states we can evict from. */
4455 	mrud = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_DATA]) +
4456 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]);
4457 	mrum = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA]) +
4458 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
4459 	mfud = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
4460 	mfum = zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
4461 	uint64_t d = mrud + mfud;
4462 	uint64_t m = mrum + mfum;
4463 	uint64_t t = d + m;
4464 
4465 	/* Get ARC ghost hits since last eviction. */
4466 	ngrd = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
4467 	uint64_t grd = ngrd - ogrd;
4468 	ogrd = ngrd;
4469 	ngrm = wmsum_value(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
4470 	uint64_t grm = ngrm - ogrm;
4471 	ogrm = ngrm;
4472 	ngfd = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
4473 	uint64_t gfd = ngfd - ogfd;
4474 	ogfd = ngfd;
4475 	ngfm = wmsum_value(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
4476 	uint64_t gfm = ngfm - ogfm;
4477 	ogfm = ngfm;
4478 
4479 	/* Adjust ARC states balance based on ghost hits. */
4480 	arc_meta = arc_evict_adj(arc_meta, gsrd + gsrm + gsfd + gsfm,
4481 	    grm + gfm, grd + gfd, zfs_arc_meta_balance);
4482 	arc_pd = arc_evict_adj(arc_pd, gsrd + gsfd, grd, gfd, 100);
4483 	arc_pm = arc_evict_adj(arc_pm, gsrm + gsfm, grm, gfm, 100);
4484 
4485 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4486 	uint64_t ac = arc_c;
4487 	int64_t wt = t - (asize - ac);
4488 
4489 	/*
4490 	 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4491 	 * target is not evictable or if they go over arc_dnode_limit.
4492 	 */
4493 	int64_t prune = 0;
4494 	int64_t dn = aggsum_value(&arc_sums.arcstat_dnode_size);
4495 	int64_t nem = zfs_refcount_count(&arc_mru->arcs_size[ARC_BUFC_METADATA])
4496 	    + zfs_refcount_count(&arc_mfu->arcs_size[ARC_BUFC_METADATA])
4497 	    - zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA])
4498 	    - zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4499 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4500 	if (nem > w * 3 / 4) {
4501 		prune = dn / sizeof (dnode_t) *
4502 		    zfs_arc_dnode_reduce_percent / 100;
4503 		if (nem < w && w > 4)
4504 			prune = arc_mf(prune, nem - w * 3 / 4, w / 4);
4505 	}
4506 	if (dn > arc_dnode_limit) {
4507 		prune = MAX(prune, (dn - arc_dnode_limit) / sizeof (dnode_t) *
4508 		    zfs_arc_dnode_reduce_percent / 100);
4509 	}
4510 	if (prune > 0)
4511 		arc_prune_async(prune);
4512 
4513 	/* Evict MRU metadata. */
4514 	w = wt * (int64_t)(arc_meta * arc_pm >> 48) >> 16;
4515 	e = MIN((int64_t)(asize - ac), (int64_t)(mrum - w));
4516 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_METADATA, e);
4517 	total_evicted += bytes;
4518 	mrum -= bytes;
4519 	asize -= bytes;
4520 
4521 	/* Evict MFU metadata. */
4522 	w = wt * (int64_t)(arc_meta >> 16) >> 16;
4523 	e = MIN((int64_t)(asize - ac), (int64_t)(m - bytes - w));
4524 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_METADATA, e);
4525 	total_evicted += bytes;
4526 	mfum -= bytes;
4527 	asize -= bytes;
4528 
4529 	/* Evict MRU data. */
4530 	wt -= m - total_evicted;
4531 	w = wt * (int64_t)(arc_pd >> 16) >> 16;
4532 	e = MIN((int64_t)(asize - ac), (int64_t)(mrud - w));
4533 	bytes = arc_evict_impl(arc_mru, ARC_BUFC_DATA, e);
4534 	total_evicted += bytes;
4535 	mrud -= bytes;
4536 	asize -= bytes;
4537 
4538 	/* Evict MFU data. */
4539 	e = asize - ac;
4540 	bytes = arc_evict_impl(arc_mfu, ARC_BUFC_DATA, e);
4541 	mfud -= bytes;
4542 	total_evicted += bytes;
4543 
4544 	/*
4545 	 * Evict ghost lists
4546 	 *
4547 	 * Size of each state's ghost list represents how much that state
4548 	 * may grow by shrinking the other states.  Would it need to shrink
4549 	 * other states to zero (that is unlikely), its ghost size would be
4550 	 * equal to sum of other three state sizes.  But excessive ghost
4551 	 * size may result in false ghost hits (too far back), that may
4552 	 * never result in real cache hits if several states are competing.
4553 	 * So choose some arbitraty point of 1/2 of other state sizes.
4554 	 */
4555 	gsrd = (mrum + mfud + mfum) / 2;
4556 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]) -
4557 	    gsrd;
4558 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_DATA, e);
4559 
4560 	gsrm = (mrud + mfud + mfum) / 2;
4561 	e = zfs_refcount_count(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]) -
4562 	    gsrm;
4563 	(void) arc_evict_impl(arc_mru_ghost, ARC_BUFC_METADATA, e);
4564 
4565 	gsfd = (mrud + mrum + mfum) / 2;
4566 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]) -
4567 	    gsfd;
4568 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_DATA, e);
4569 
4570 	gsfm = (mrud + mrum + mfud) / 2;
4571 	e = zfs_refcount_count(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]) -
4572 	    gsfm;
4573 	(void) arc_evict_impl(arc_mfu_ghost, ARC_BUFC_METADATA, e);
4574 
4575 	return (total_evicted);
4576 }
4577 
4578 static void
arc_flush_impl(uint64_t guid,boolean_t retry)4579 arc_flush_impl(uint64_t guid, boolean_t retry)
4580 {
4581 	ASSERT(!retry || guid == 0);
4582 
4583 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4584 	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4585 
4586 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4587 	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4588 
4589 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4590 	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4591 
4592 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4593 	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4594 
4595 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4596 	(void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4597 }
4598 
4599 void
arc_flush(spa_t * spa,boolean_t retry)4600 arc_flush(spa_t *spa, boolean_t retry)
4601 {
4602 	/*
4603 	 * If retry is B_TRUE, a spa must not be specified since we have
4604 	 * no good way to determine if all of a spa's buffers have been
4605 	 * evicted from an arc state.
4606 	 */
4607 	ASSERT(!retry || spa == NULL);
4608 
4609 	arc_flush_impl(spa != NULL ? spa_load_guid(spa) : 0, retry);
4610 }
4611 
4612 static arc_async_flush_t *
arc_async_flush_add(uint64_t spa_guid,uint_t level)4613 arc_async_flush_add(uint64_t spa_guid, uint_t level)
4614 {
4615 	arc_async_flush_t *af = kmem_alloc(sizeof (*af), KM_SLEEP);
4616 	af->af_spa_guid = spa_guid;
4617 	af->af_cache_level = level;
4618 	taskq_init_ent(&af->af_tqent);
4619 	list_link_init(&af->af_node);
4620 
4621 	mutex_enter(&arc_async_flush_lock);
4622 	list_insert_tail(&arc_async_flush_list, af);
4623 	mutex_exit(&arc_async_flush_lock);
4624 
4625 	return (af);
4626 }
4627 
4628 static void
arc_async_flush_remove(uint64_t spa_guid,uint_t level)4629 arc_async_flush_remove(uint64_t spa_guid, uint_t level)
4630 {
4631 	mutex_enter(&arc_async_flush_lock);
4632 	for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4633 	    af != NULL; af = list_next(&arc_async_flush_list, af)) {
4634 		if (af->af_spa_guid == spa_guid &&
4635 		    af->af_cache_level == level) {
4636 			list_remove(&arc_async_flush_list, af);
4637 			kmem_free(af, sizeof (*af));
4638 			break;
4639 		}
4640 	}
4641 	mutex_exit(&arc_async_flush_lock);
4642 }
4643 
4644 static void
arc_flush_task(void * arg)4645 arc_flush_task(void *arg)
4646 {
4647 	arc_async_flush_t *af = arg;
4648 	hrtime_t start_time = gethrtime();
4649 	uint64_t spa_guid = af->af_spa_guid;
4650 
4651 	arc_flush_impl(spa_guid, B_FALSE);
4652 	arc_async_flush_remove(spa_guid, af->af_cache_level);
4653 
4654 	uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
4655 	if (elaspsed > 0) {
4656 		zfs_dbgmsg("spa %llu arc flushed in %llu ms",
4657 		    (u_longlong_t)spa_guid, (u_longlong_t)elaspsed);
4658 	}
4659 }
4660 
4661 /*
4662  * ARC buffers use the spa's load guid and can continue to exist after
4663  * the spa_t is gone (exported). The blocks are orphaned since each
4664  * spa import has a different load guid.
4665  *
4666  * It's OK if the spa is re-imported while this asynchronous flush is
4667  * still in progress. The new spa_load_guid will be different.
4668  *
4669  * Also, arc_fini will wait for any arc_flush_task to finish.
4670  */
4671 void
arc_flush_async(spa_t * spa)4672 arc_flush_async(spa_t *spa)
4673 {
4674 	uint64_t spa_guid = spa_load_guid(spa);
4675 	arc_async_flush_t *af = arc_async_flush_add(spa_guid, 1);
4676 
4677 	taskq_dispatch_ent(arc_flush_taskq, arc_flush_task,
4678 	    af, TQ_SLEEP, &af->af_tqent);
4679 }
4680 
4681 /*
4682  * Check if a guid is still in-use as part of an async teardown task
4683  */
4684 boolean_t
arc_async_flush_guid_inuse(uint64_t spa_guid)4685 arc_async_flush_guid_inuse(uint64_t spa_guid)
4686 {
4687 	mutex_enter(&arc_async_flush_lock);
4688 	for (arc_async_flush_t *af = list_head(&arc_async_flush_list);
4689 	    af != NULL; af = list_next(&arc_async_flush_list, af)) {
4690 		if (af->af_spa_guid == spa_guid) {
4691 			mutex_exit(&arc_async_flush_lock);
4692 			return (B_TRUE);
4693 		}
4694 	}
4695 	mutex_exit(&arc_async_flush_lock);
4696 	return (B_FALSE);
4697 }
4698 
4699 uint64_t
arc_reduce_target_size(uint64_t to_free)4700 arc_reduce_target_size(uint64_t to_free)
4701 {
4702 	/*
4703 	 * Get the actual arc size.  Even if we don't need it, this updates
4704 	 * the aggsum lower bound estimate for arc_is_overflowing().
4705 	 */
4706 	uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4707 
4708 	/*
4709 	 * All callers want the ARC to actually evict (at least) this much
4710 	 * memory.  Therefore we reduce from the lower of the current size and
4711 	 * the target size.  This way, even if arc_c is much higher than
4712 	 * arc_size (as can be the case after many calls to arc_freed(), we will
4713 	 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4714 	 * will evict.
4715 	 */
4716 	uint64_t c = arc_c;
4717 	if (c > arc_c_min) {
4718 		c = MIN(c, MAX(asize, arc_c_min));
4719 		to_free = MIN(to_free, c - arc_c_min);
4720 		arc_c = c - to_free;
4721 	} else {
4722 		to_free = 0;
4723 	}
4724 
4725 	/*
4726 	 * Since dbuf cache size is a fraction of target ARC size, we should
4727 	 * notify dbuf about the reduction, which might be significant,
4728 	 * especially if current ARC size was much smaller than the target.
4729 	 */
4730 	dbuf_cache_reduce_target_size();
4731 
4732 	/*
4733 	 * Whether or not we reduced the target size, request eviction if the
4734 	 * current size is over it now, since caller obviously wants some RAM.
4735 	 */
4736 	if (asize > arc_c) {
4737 		/* See comment in arc_evict_cb_check() on why lock+flag */
4738 		mutex_enter(&arc_evict_lock);
4739 		arc_evict_needed = B_TRUE;
4740 		mutex_exit(&arc_evict_lock);
4741 		zthr_wakeup(arc_evict_zthr);
4742 	}
4743 
4744 	return (to_free);
4745 }
4746 
4747 /*
4748  * Determine if the system is under memory pressure and is asking
4749  * to reclaim memory. A return value of B_TRUE indicates that the system
4750  * is under memory pressure and that the arc should adjust accordingly.
4751  */
4752 boolean_t
arc_reclaim_needed(void)4753 arc_reclaim_needed(void)
4754 {
4755 	return (arc_available_memory() < 0);
4756 }
4757 
4758 void
arc_kmem_reap_soon(void)4759 arc_kmem_reap_soon(void)
4760 {
4761 	size_t			i;
4762 	kmem_cache_t		*prev_cache = NULL;
4763 	kmem_cache_t		*prev_data_cache = NULL;
4764 
4765 #ifdef _KERNEL
4766 #if defined(_ILP32)
4767 	/*
4768 	 * Reclaim unused memory from all kmem caches.
4769 	 */
4770 	kmem_reap();
4771 #endif
4772 #endif
4773 
4774 	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4775 #if defined(_ILP32)
4776 		/* reach upper limit of cache size on 32-bit */
4777 		if (zio_buf_cache[i] == NULL)
4778 			break;
4779 #endif
4780 		if (zio_buf_cache[i] != prev_cache) {
4781 			prev_cache = zio_buf_cache[i];
4782 			kmem_cache_reap_now(zio_buf_cache[i]);
4783 		}
4784 		if (zio_data_buf_cache[i] != prev_data_cache) {
4785 			prev_data_cache = zio_data_buf_cache[i];
4786 			kmem_cache_reap_now(zio_data_buf_cache[i]);
4787 		}
4788 	}
4789 	kmem_cache_reap_now(buf_cache);
4790 	kmem_cache_reap_now(hdr_full_cache);
4791 	kmem_cache_reap_now(hdr_l2only_cache);
4792 	kmem_cache_reap_now(zfs_btree_leaf_cache);
4793 	abd_cache_reap_now();
4794 }
4795 
4796 static boolean_t
arc_evict_cb_check(void * arg,zthr_t * zthr)4797 arc_evict_cb_check(void *arg, zthr_t *zthr)
4798 {
4799 	(void) arg, (void) zthr;
4800 
4801 #ifdef ZFS_DEBUG
4802 	/*
4803 	 * This is necessary in order to keep the kstat information
4804 	 * up to date for tools that display kstat data such as the
4805 	 * mdb ::arc dcmd and the Linux crash utility.  These tools
4806 	 * typically do not call kstat's update function, but simply
4807 	 * dump out stats from the most recent update.  Without
4808 	 * this call, these commands may show stale stats for the
4809 	 * anon, mru, mru_ghost, mfu, and mfu_ghost lists.  Even
4810 	 * with this call, the data might be out of date if the
4811 	 * evict thread hasn't been woken recently; but that should
4812 	 * suffice.  The arc_state_t structures can be queried
4813 	 * directly if more accurate information is needed.
4814 	 */
4815 	if (arc_ksp != NULL)
4816 		arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4817 #endif
4818 
4819 	/*
4820 	 * We have to rely on arc_wait_for_eviction() to tell us when to
4821 	 * evict, rather than checking if we are overflowing here, so that we
4822 	 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4823 	 * If we have become "not overflowing" since arc_wait_for_eviction()
4824 	 * checked, we need to wake it up.  We could broadcast the CV here,
4825 	 * but arc_wait_for_eviction() may have not yet gone to sleep.  We
4826 	 * would need to use a mutex to ensure that this function doesn't
4827 	 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4828 	 * the arc_evict_lock).  However, the lock ordering of such a lock
4829 	 * would necessarily be incorrect with respect to the zthr_lock,
4830 	 * which is held before this function is called, and is held by
4831 	 * arc_wait_for_eviction() when it calls zthr_wakeup().
4832 	 */
4833 	if (arc_evict_needed)
4834 		return (B_TRUE);
4835 
4836 	/*
4837 	 * If we have buffers in uncached state, evict them periodically.
4838 	 */
4839 	return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4840 	    zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4841 	    ddi_get_lbolt() - arc_last_uncached_flush >
4842 	    MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4843 }
4844 
4845 /*
4846  * Keep arc_size under arc_c by running arc_evict which evicts data
4847  * from the ARC.
4848  */
4849 static void
arc_evict_cb(void * arg,zthr_t * zthr)4850 arc_evict_cb(void *arg, zthr_t *zthr)
4851 {
4852 	(void) arg;
4853 
4854 	uint64_t evicted = 0;
4855 	fstrans_cookie_t cookie = spl_fstrans_mark();
4856 
4857 	/* Always try to evict from uncached state. */
4858 	arc_last_uncached_flush = ddi_get_lbolt();
4859 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4860 	evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4861 
4862 	/* Evict from other states only if told to. */
4863 	if (arc_evict_needed)
4864 		evicted += arc_evict();
4865 
4866 	/*
4867 	 * If evicted is zero, we couldn't evict anything
4868 	 * via arc_evict(). This could be due to hash lock
4869 	 * collisions, but more likely due to the majority of
4870 	 * arc buffers being unevictable. Therefore, even if
4871 	 * arc_size is above arc_c, another pass is unlikely to
4872 	 * be helpful and could potentially cause us to enter an
4873 	 * infinite loop.  Additionally, zthr_iscancelled() is
4874 	 * checked here so that if the arc is shutting down, the
4875 	 * broadcast will wake any remaining arc evict waiters.
4876 	 *
4877 	 * Note we cancel using zthr instead of arc_evict_zthr
4878 	 * because the latter may not yet be initializd when the
4879 	 * callback is first invoked.
4880 	 */
4881 	mutex_enter(&arc_evict_lock);
4882 	arc_evict_needed = !zthr_iscancelled(zthr) &&
4883 	    evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4884 	if (!arc_evict_needed) {
4885 		/*
4886 		 * We're either no longer overflowing, or we
4887 		 * can't evict anything more, so we should wake
4888 		 * arc_get_data_impl() sooner.
4889 		 */
4890 		arc_evict_waiter_t *aw;
4891 		while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4892 			cv_broadcast(&aw->aew_cv);
4893 		}
4894 		arc_set_need_free();
4895 	}
4896 	mutex_exit(&arc_evict_lock);
4897 	spl_fstrans_unmark(cookie);
4898 }
4899 
4900 static boolean_t
arc_reap_cb_check(void * arg,zthr_t * zthr)4901 arc_reap_cb_check(void *arg, zthr_t *zthr)
4902 {
4903 	(void) arg, (void) zthr;
4904 
4905 	int64_t free_memory = arc_available_memory();
4906 	static int reap_cb_check_counter = 0;
4907 
4908 	/*
4909 	 * If a kmem reap is already active, don't schedule more.  We must
4910 	 * check for this because kmem_cache_reap_soon() won't actually
4911 	 * block on the cache being reaped (this is to prevent callers from
4912 	 * becoming implicitly blocked by a system-wide kmem reap -- which,
4913 	 * on a system with many, many full magazines, can take minutes).
4914 	 */
4915 	if (!kmem_cache_reap_active() && free_memory < 0) {
4916 
4917 		arc_no_grow = B_TRUE;
4918 		arc_warm = B_TRUE;
4919 		/*
4920 		 * Wait at least zfs_grow_retry (default 5) seconds
4921 		 * before considering growing.
4922 		 */
4923 		arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4924 		return (B_TRUE);
4925 	} else if (free_memory < arc_c >> arc_no_grow_shift) {
4926 		arc_no_grow = B_TRUE;
4927 	} else if (gethrtime() >= arc_growtime) {
4928 		arc_no_grow = B_FALSE;
4929 	}
4930 
4931 	/*
4932 	 * Called unconditionally every 60 seconds to reclaim unused
4933 	 * zstd compression and decompression context. This is done
4934 	 * here to avoid the need for an independent thread.
4935 	 */
4936 	if (!((reap_cb_check_counter++) % 60))
4937 		zfs_zstd_cache_reap_now();
4938 
4939 	return (B_FALSE);
4940 }
4941 
4942 /*
4943  * Keep enough free memory in the system by reaping the ARC's kmem
4944  * caches.  To cause more slabs to be reapable, we may reduce the
4945  * target size of the cache (arc_c), causing the arc_evict_cb()
4946  * to free more buffers.
4947  */
4948 static void
arc_reap_cb(void * arg,zthr_t * zthr)4949 arc_reap_cb(void *arg, zthr_t *zthr)
4950 {
4951 	int64_t can_free, free_memory, to_free;
4952 
4953 	(void) arg, (void) zthr;
4954 	fstrans_cookie_t cookie = spl_fstrans_mark();
4955 
4956 	/*
4957 	 * Kick off asynchronous kmem_reap()'s of all our caches.
4958 	 */
4959 	arc_kmem_reap_soon();
4960 
4961 	/*
4962 	 * Wait at least arc_kmem_cache_reap_retry_ms between
4963 	 * arc_kmem_reap_soon() calls. Without this check it is possible to
4964 	 * end up in a situation where we spend lots of time reaping
4965 	 * caches, while we're near arc_c_min.  Waiting here also gives the
4966 	 * subsequent free memory check a chance of finding that the
4967 	 * asynchronous reap has already freed enough memory, and we don't
4968 	 * need to call arc_reduce_target_size().
4969 	 */
4970 	delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
4971 
4972 	/*
4973 	 * Reduce the target size as needed to maintain the amount of free
4974 	 * memory in the system at a fraction of the arc_size (1/128th by
4975 	 * default).  If oversubscribed (free_memory < 0) then reduce the
4976 	 * target arc_size by the deficit amount plus the fractional
4977 	 * amount.  If free memory is positive but less than the fractional
4978 	 * amount, reduce by what is needed to hit the fractional amount.
4979 	 */
4980 	free_memory = arc_available_memory();
4981 	can_free = arc_c - arc_c_min;
4982 	to_free = (MAX(can_free, 0) >> arc_shrink_shift) - free_memory;
4983 	if (to_free > 0)
4984 		arc_reduce_target_size(to_free);
4985 	spl_fstrans_unmark(cookie);
4986 }
4987 
4988 #ifdef _KERNEL
4989 /*
4990  * Determine the amount of memory eligible for eviction contained in the
4991  * ARC. All clean data reported by the ghost lists can always be safely
4992  * evicted. Due to arc_c_min, the same does not hold for all clean data
4993  * contained by the regular mru and mfu lists.
4994  *
4995  * In the case of the regular mru and mfu lists, we need to report as
4996  * much clean data as possible, such that evicting that same reported
4997  * data will not bring arc_size below arc_c_min. Thus, in certain
4998  * circumstances, the total amount of clean data in the mru and mfu
4999  * lists might not actually be evictable.
5000  *
5001  * The following two distinct cases are accounted for:
5002  *
5003  * 1. The sum of the amount of dirty data contained by both the mru and
5004  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
5005  *    is greater than or equal to arc_c_min.
5006  *    (i.e. amount of dirty data >= arc_c_min)
5007  *
5008  *    This is the easy case; all clean data contained by the mru and mfu
5009  *    lists is evictable. Evicting all clean data can only drop arc_size
5010  *    to the amount of dirty data, which is greater than arc_c_min.
5011  *
5012  * 2. The sum of the amount of dirty data contained by both the mru and
5013  *    mfu lists, plus the ARC's other accounting (e.g. the anon list),
5014  *    is less than arc_c_min.
5015  *    (i.e. arc_c_min > amount of dirty data)
5016  *
5017  *    2.1. arc_size is greater than or equal arc_c_min.
5018  *         (i.e. arc_size >= arc_c_min > amount of dirty data)
5019  *
5020  *         In this case, not all clean data from the regular mru and mfu
5021  *         lists is actually evictable; we must leave enough clean data
5022  *         to keep arc_size above arc_c_min. Thus, the maximum amount of
5023  *         evictable data from the two lists combined, is exactly the
5024  *         difference between arc_size and arc_c_min.
5025  *
5026  *    2.2. arc_size is less than arc_c_min
5027  *         (i.e. arc_c_min > arc_size > amount of dirty data)
5028  *
5029  *         In this case, none of the data contained in the mru and mfu
5030  *         lists is evictable, even if it's clean. Since arc_size is
5031  *         already below arc_c_min, evicting any more would only
5032  *         increase this negative difference.
5033  */
5034 
5035 #endif /* _KERNEL */
5036 
5037 /*
5038  * Adapt arc info given the number of bytes we are trying to add and
5039  * the state that we are coming from.  This function is only called
5040  * when we are adding new content to the cache.
5041  */
5042 static void
arc_adapt(uint64_t bytes)5043 arc_adapt(uint64_t bytes)
5044 {
5045 	/*
5046 	 * Wake reap thread if we do not have any available memory
5047 	 */
5048 	if (arc_reclaim_needed()) {
5049 		zthr_wakeup(arc_reap_zthr);
5050 		return;
5051 	}
5052 
5053 	if (arc_no_grow)
5054 		return;
5055 
5056 	if (arc_c >= arc_c_max)
5057 		return;
5058 
5059 	/*
5060 	 * If we're within (2 * maxblocksize) bytes of the target
5061 	 * cache size, increment the target cache size
5062 	 */
5063 	if (aggsum_upper_bound(&arc_sums.arcstat_size) +
5064 	    2 * SPA_MAXBLOCKSIZE >= arc_c) {
5065 		uint64_t dc = MAX(bytes, SPA_OLD_MAXBLOCKSIZE);
5066 		if (atomic_add_64_nv(&arc_c, dc) > arc_c_max)
5067 			arc_c = arc_c_max;
5068 	}
5069 }
5070 
5071 /*
5072  * Check if ARC current size has grown past our upper thresholds.
5073  */
5074 static arc_ovf_level_t
arc_is_overflowing(boolean_t lax,boolean_t use_reserve)5075 arc_is_overflowing(boolean_t lax, boolean_t use_reserve)
5076 {
5077 	/*
5078 	 * We just compare the lower bound here for performance reasons. Our
5079 	 * primary goals are to make sure that the arc never grows without
5080 	 * bound, and that it can reach its maximum size. This check
5081 	 * accomplishes both goals. The maximum amount we could run over by is
5082 	 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5083 	 * in the ARC. In practice, that's in the tens of MB, which is low
5084 	 * enough to be safe.
5085 	 */
5086 	int64_t arc_over = aggsum_lower_bound(&arc_sums.arcstat_size) - arc_c -
5087 	    zfs_max_recordsize;
5088 	int64_t dn_over = aggsum_lower_bound(&arc_sums.arcstat_dnode_size) -
5089 	    arc_dnode_limit;
5090 
5091 	/* Always allow at least one block of overflow. */
5092 	if (arc_over < 0 && dn_over <= 0)
5093 		return (ARC_OVF_NONE);
5094 
5095 	/* If we are under memory pressure, report severe overflow. */
5096 	if (!lax)
5097 		return (ARC_OVF_SEVERE);
5098 
5099 	/* We are not under pressure, so be more or less relaxed. */
5100 	int64_t overflow = (arc_c >> zfs_arc_overflow_shift) / 2;
5101 	if (use_reserve)
5102 		overflow *= 3;
5103 	return (arc_over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5104 }
5105 
5106 static abd_t *
arc_get_data_abd(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5107 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5108     int alloc_flags)
5109 {
5110 	arc_buf_contents_t type = arc_buf_type(hdr);
5111 
5112 	arc_get_data_impl(hdr, size, tag, alloc_flags);
5113 	if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
5114 		return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
5115 	else
5116 		return (abd_alloc(size, type == ARC_BUFC_METADATA));
5117 }
5118 
5119 static void *
arc_get_data_buf(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5120 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5121 {
5122 	arc_buf_contents_t type = arc_buf_type(hdr);
5123 
5124 	arc_get_data_impl(hdr, size, tag, 0);
5125 	if (type == ARC_BUFC_METADATA) {
5126 		return (zio_buf_alloc(size));
5127 	} else {
5128 		ASSERT(type == ARC_BUFC_DATA);
5129 		return (zio_data_buf_alloc(size));
5130 	}
5131 }
5132 
5133 /*
5134  * Wait for the specified amount of data (in bytes) to be evicted from the
5135  * ARC, and for there to be sufficient free memory in the system.
5136  * The lax argument specifies that caller does not have a specific reason
5137  * to wait, not aware of any memory pressure.  Low memory handlers though
5138  * should set it to B_FALSE to wait for all required evictions to complete.
5139  * The use_reserve argument allows some callers to wait less than others
5140  * to not block critical code paths, possibly blocking other resources.
5141  */
5142 void
arc_wait_for_eviction(uint64_t amount,boolean_t lax,boolean_t use_reserve)5143 arc_wait_for_eviction(uint64_t amount, boolean_t lax, boolean_t use_reserve)
5144 {
5145 	switch (arc_is_overflowing(lax, use_reserve)) {
5146 	case ARC_OVF_NONE:
5147 		return;
5148 	case ARC_OVF_SOME:
5149 		/*
5150 		 * This is a bit racy without taking arc_evict_lock, but the
5151 		 * worst that can happen is we either call zthr_wakeup() extra
5152 		 * time due to race with other thread here, or the set flag
5153 		 * get cleared by arc_evict_cb(), which is unlikely due to
5154 		 * big hysteresis, but also not important since at this level
5155 		 * of overflow the eviction is purely advisory.  Same time
5156 		 * taking the global lock here every time without waiting for
5157 		 * the actual eviction creates a significant lock contention.
5158 		 */
5159 		if (!arc_evict_needed) {
5160 			arc_evict_needed = B_TRUE;
5161 			zthr_wakeup(arc_evict_zthr);
5162 		}
5163 		return;
5164 	case ARC_OVF_SEVERE:
5165 	default:
5166 	{
5167 		arc_evict_waiter_t aw;
5168 		list_link_init(&aw.aew_node);
5169 		cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5170 
5171 		uint64_t last_count = 0;
5172 		mutex_enter(&arc_evict_lock);
5173 		if (!list_is_empty(&arc_evict_waiters)) {
5174 			arc_evict_waiter_t *last =
5175 			    list_tail(&arc_evict_waiters);
5176 			last_count = last->aew_count;
5177 		} else if (!arc_evict_needed) {
5178 			arc_evict_needed = B_TRUE;
5179 			zthr_wakeup(arc_evict_zthr);
5180 		}
5181 		/*
5182 		 * Note, the last waiter's count may be less than
5183 		 * arc_evict_count if we are low on memory in which
5184 		 * case arc_evict_state_impl() may have deferred
5185 		 * wakeups (but still incremented arc_evict_count).
5186 		 */
5187 		aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5188 
5189 		list_insert_tail(&arc_evict_waiters, &aw);
5190 
5191 		arc_set_need_free();
5192 
5193 		DTRACE_PROBE3(arc__wait__for__eviction,
5194 		    uint64_t, amount,
5195 		    uint64_t, arc_evict_count,
5196 		    uint64_t, aw.aew_count);
5197 
5198 		/*
5199 		 * We will be woken up either when arc_evict_count reaches
5200 		 * aew_count, or when the ARC is no longer overflowing and
5201 		 * eviction completes.
5202 		 * In case of "false" wakeup, we will still be on the list.
5203 		 */
5204 		do {
5205 			cv_wait(&aw.aew_cv, &arc_evict_lock);
5206 		} while (list_link_active(&aw.aew_node));
5207 		mutex_exit(&arc_evict_lock);
5208 
5209 		cv_destroy(&aw.aew_cv);
5210 	}
5211 	}
5212 }
5213 
5214 /*
5215  * Allocate a block and return it to the caller. If we are hitting the
5216  * hard limit for the cache size, we must sleep, waiting for the eviction
5217  * thread to catch up. If we're past the target size but below the hard
5218  * limit, we'll only signal the reclaim thread and continue on.
5219  */
5220 static void
arc_get_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag,int alloc_flags)5221 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5222     int alloc_flags)
5223 {
5224 	arc_adapt(size);
5225 
5226 	/*
5227 	 * If arc_size is currently overflowing, we must be adding data
5228 	 * faster than we are evicting.  To ensure we don't compound the
5229 	 * problem by adding more data and forcing arc_size to grow even
5230 	 * further past it's target size, we wait for the eviction thread to
5231 	 * make some progress.  We also wait for there to be sufficient free
5232 	 * memory in the system, as measured by arc_free_memory().
5233 	 *
5234 	 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5235 	 * requested size to be evicted.  This should be more than 100%, to
5236 	 * ensure that that progress is also made towards getting arc_size
5237 	 * under arc_c.  See the comment above zfs_arc_eviction_pct.
5238 	 */
5239 	arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5240 	    B_TRUE, alloc_flags & ARC_HDR_USE_RESERVE);
5241 
5242 	arc_buf_contents_t type = arc_buf_type(hdr);
5243 	if (type == ARC_BUFC_METADATA) {
5244 		arc_space_consume(size, ARC_SPACE_META);
5245 	} else {
5246 		arc_space_consume(size, ARC_SPACE_DATA);
5247 	}
5248 
5249 	/*
5250 	 * Update the state size.  Note that ghost states have a
5251 	 * "ghost size" and so don't need to be updated.
5252 	 */
5253 	arc_state_t *state = hdr->b_l1hdr.b_state;
5254 	if (!GHOST_STATE(state)) {
5255 
5256 		(void) zfs_refcount_add_many(&state->arcs_size[type], size,
5257 		    tag);
5258 
5259 		/*
5260 		 * If this is reached via arc_read, the link is
5261 		 * protected by the hash lock. If reached via
5262 		 * arc_buf_alloc, the header should not be accessed by
5263 		 * any other thread. And, if reached via arc_read_done,
5264 		 * the hash lock will protect it if it's found in the
5265 		 * hash table; otherwise no other thread should be
5266 		 * trying to [add|remove]_reference it.
5267 		 */
5268 		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5269 			ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5270 			(void) zfs_refcount_add_many(&state->arcs_esize[type],
5271 			    size, tag);
5272 		}
5273 	}
5274 }
5275 
5276 static void
arc_free_data_abd(arc_buf_hdr_t * hdr,abd_t * abd,uint64_t size,const void * tag)5277 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5278     const void *tag)
5279 {
5280 	arc_free_data_impl(hdr, size, tag);
5281 	abd_free(abd);
5282 }
5283 
5284 static void
arc_free_data_buf(arc_buf_hdr_t * hdr,void * buf,uint64_t size,const void * tag)5285 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5286 {
5287 	arc_buf_contents_t type = arc_buf_type(hdr);
5288 
5289 	arc_free_data_impl(hdr, size, tag);
5290 	if (type == ARC_BUFC_METADATA) {
5291 		zio_buf_free(buf, size);
5292 	} else {
5293 		ASSERT(type == ARC_BUFC_DATA);
5294 		zio_data_buf_free(buf, size);
5295 	}
5296 }
5297 
5298 /*
5299  * Free the arc data buffer.
5300  */
5301 static void
arc_free_data_impl(arc_buf_hdr_t * hdr,uint64_t size,const void * tag)5302 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5303 {
5304 	arc_state_t *state = hdr->b_l1hdr.b_state;
5305 	arc_buf_contents_t type = arc_buf_type(hdr);
5306 
5307 	/* protected by hash lock, if in the hash table */
5308 	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5309 		ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5310 		ASSERT(state != arc_anon && state != arc_l2c_only);
5311 
5312 		(void) zfs_refcount_remove_many(&state->arcs_esize[type],
5313 		    size, tag);
5314 	}
5315 	(void) zfs_refcount_remove_many(&state->arcs_size[type], size, tag);
5316 
5317 	VERIFY3U(hdr->b_type, ==, type);
5318 	if (type == ARC_BUFC_METADATA) {
5319 		arc_space_return(size, ARC_SPACE_META);
5320 	} else {
5321 		ASSERT(type == ARC_BUFC_DATA);
5322 		arc_space_return(size, ARC_SPACE_DATA);
5323 	}
5324 }
5325 
5326 /*
5327  * This routine is called whenever a buffer is accessed.
5328  */
5329 static void
arc_access(arc_buf_hdr_t * hdr,arc_flags_t arc_flags,boolean_t hit)5330 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5331 {
5332 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5333 	ASSERT(HDR_HAS_L1HDR(hdr));
5334 
5335 	/*
5336 	 * Update buffer prefetch status.
5337 	 */
5338 	boolean_t was_prefetch = HDR_PREFETCH(hdr);
5339 	boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5340 	if (was_prefetch != now_prefetch) {
5341 		if (was_prefetch) {
5342 			ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5343 			    HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5344 			    prefetch);
5345 		}
5346 		if (HDR_HAS_L2HDR(hdr))
5347 			l2arc_hdr_arcstats_decrement_state(hdr);
5348 		if (was_prefetch) {
5349 			arc_hdr_clear_flags(hdr,
5350 			    ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5351 		} else {
5352 			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5353 		}
5354 		if (HDR_HAS_L2HDR(hdr))
5355 			l2arc_hdr_arcstats_increment_state(hdr);
5356 	}
5357 	if (now_prefetch) {
5358 		if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5359 			arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5360 			ARCSTAT_BUMP(arcstat_prescient_prefetch);
5361 		} else {
5362 			ARCSTAT_BUMP(arcstat_predictive_prefetch);
5363 		}
5364 	}
5365 	if (arc_flags & ARC_FLAG_L2CACHE)
5366 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5367 
5368 	clock_t now = ddi_get_lbolt();
5369 	if (hdr->b_l1hdr.b_state == arc_anon) {
5370 		arc_state_t	*new_state;
5371 		/*
5372 		 * This buffer is not in the cache, and does not appear in
5373 		 * our "ghost" lists.  Add it to the MRU or uncached state.
5374 		 */
5375 		ASSERT0(hdr->b_l1hdr.b_arc_access);
5376 		hdr->b_l1hdr.b_arc_access = now;
5377 		if (HDR_UNCACHED(hdr)) {
5378 			new_state = arc_uncached;
5379 			DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5380 			    hdr);
5381 		} else {
5382 			new_state = arc_mru;
5383 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5384 		}
5385 		arc_change_state(new_state, hdr);
5386 	} else if (hdr->b_l1hdr.b_state == arc_mru) {
5387 		/*
5388 		 * This buffer has been accessed once recently and either
5389 		 * its read is still in progress or it is in the cache.
5390 		 */
5391 		if (HDR_IO_IN_PROGRESS(hdr)) {
5392 			hdr->b_l1hdr.b_arc_access = now;
5393 			return;
5394 		}
5395 		hdr->b_l1hdr.b_mru_hits++;
5396 		ARCSTAT_BUMP(arcstat_mru_hits);
5397 
5398 		/*
5399 		 * If the previous access was a prefetch, then it already
5400 		 * handled possible promotion, so nothing more to do for now.
5401 		 */
5402 		if (was_prefetch) {
5403 			hdr->b_l1hdr.b_arc_access = now;
5404 			return;
5405 		}
5406 
5407 		/*
5408 		 * If more than ARC_MINTIME have passed from the previous
5409 		 * hit, promote the buffer to the MFU state.
5410 		 */
5411 		if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5412 		    ARC_MINTIME)) {
5413 			hdr->b_l1hdr.b_arc_access = now;
5414 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5415 			arc_change_state(arc_mfu, hdr);
5416 		}
5417 	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5418 		arc_state_t	*new_state;
5419 		/*
5420 		 * This buffer has been accessed once recently, but was
5421 		 * evicted from the cache.  Would we have bigger MRU, it
5422 		 * would be an MRU hit, so handle it the same way, except
5423 		 * we don't need to check the previous access time.
5424 		 */
5425 		hdr->b_l1hdr.b_mru_ghost_hits++;
5426 		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5427 		hdr->b_l1hdr.b_arc_access = now;
5428 		wmsum_add(&arc_mru_ghost->arcs_hits[arc_buf_type(hdr)],
5429 		    arc_hdr_size(hdr));
5430 		if (was_prefetch) {
5431 			new_state = arc_mru;
5432 			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5433 		} else {
5434 			new_state = arc_mfu;
5435 			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5436 		}
5437 		arc_change_state(new_state, hdr);
5438 	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
5439 		/*
5440 		 * This buffer has been accessed more than once and either
5441 		 * still in the cache or being restored from one of ghosts.
5442 		 */
5443 		if (!HDR_IO_IN_PROGRESS(hdr)) {
5444 			hdr->b_l1hdr.b_mfu_hits++;
5445 			ARCSTAT_BUMP(arcstat_mfu_hits);
5446 		}
5447 		hdr->b_l1hdr.b_arc_access = now;
5448 	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5449 		/*
5450 		 * This buffer has been accessed more than once recently, but
5451 		 * has been evicted from the cache.  Would we have bigger MFU
5452 		 * it would stay in cache, so move it back to MFU state.
5453 		 */
5454 		hdr->b_l1hdr.b_mfu_ghost_hits++;
5455 		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5456 		hdr->b_l1hdr.b_arc_access = now;
5457 		wmsum_add(&arc_mfu_ghost->arcs_hits[arc_buf_type(hdr)],
5458 		    arc_hdr_size(hdr));
5459 		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5460 		arc_change_state(arc_mfu, hdr);
5461 	} else if (hdr->b_l1hdr.b_state == arc_uncached) {
5462 		/*
5463 		 * This buffer is uncacheable, but we got a hit.  Probably
5464 		 * a demand read after prefetch.  Nothing more to do here.
5465 		 */
5466 		if (!HDR_IO_IN_PROGRESS(hdr))
5467 			ARCSTAT_BUMP(arcstat_uncached_hits);
5468 		hdr->b_l1hdr.b_arc_access = now;
5469 	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5470 		/*
5471 		 * This buffer is on the 2nd Level ARC and was not accessed
5472 		 * for a long time, so treat it as new and put into MRU.
5473 		 */
5474 		hdr->b_l1hdr.b_arc_access = now;
5475 		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5476 		arc_change_state(arc_mru, hdr);
5477 	} else {
5478 		cmn_err(CE_PANIC, "invalid arc state 0x%p",
5479 		    hdr->b_l1hdr.b_state);
5480 	}
5481 }
5482 
5483 /*
5484  * This routine is called by dbuf_hold() to update the arc_access() state
5485  * which otherwise would be skipped for entries in the dbuf cache.
5486  */
5487 void
arc_buf_access(arc_buf_t * buf)5488 arc_buf_access(arc_buf_t *buf)
5489 {
5490 	arc_buf_hdr_t *hdr = buf->b_hdr;
5491 
5492 	/*
5493 	 * Avoid taking the hash_lock when possible as an optimization.
5494 	 * The header must be checked again under the hash_lock in order
5495 	 * to handle the case where it is concurrently being released.
5496 	 */
5497 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5498 		return;
5499 
5500 	kmutex_t *hash_lock = HDR_LOCK(hdr);
5501 	mutex_enter(hash_lock);
5502 
5503 	if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5504 		mutex_exit(hash_lock);
5505 		ARCSTAT_BUMP(arcstat_access_skip);
5506 		return;
5507 	}
5508 
5509 	ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5510 	    hdr->b_l1hdr.b_state == arc_mfu ||
5511 	    hdr->b_l1hdr.b_state == arc_uncached);
5512 
5513 	DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5514 	arc_access(hdr, 0, B_TRUE);
5515 	mutex_exit(hash_lock);
5516 
5517 	ARCSTAT_BUMP(arcstat_hits);
5518 	ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5519 	    !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5520 }
5521 
5522 /* a generic arc_read_done_func_t which you can use */
5523 void
arc_bcopy_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5524 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5525     arc_buf_t *buf, void *arg)
5526 {
5527 	(void) zio, (void) zb, (void) bp;
5528 
5529 	if (buf == NULL)
5530 		return;
5531 
5532 	memcpy(arg, buf->b_data, arc_buf_size(buf));
5533 	arc_buf_destroy(buf, arg);
5534 }
5535 
5536 /* a generic arc_read_done_func_t */
5537 void
arc_getbuf_func(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * arg)5538 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5539     arc_buf_t *buf, void *arg)
5540 {
5541 	(void) zb, (void) bp;
5542 	arc_buf_t **bufp = arg;
5543 
5544 	if (buf == NULL) {
5545 		ASSERT(zio == NULL || zio->io_error != 0);
5546 		*bufp = NULL;
5547 	} else {
5548 		ASSERT(zio == NULL || zio->io_error == 0);
5549 		*bufp = buf;
5550 		ASSERT(buf->b_data != NULL);
5551 	}
5552 }
5553 
5554 static void
arc_hdr_verify(arc_buf_hdr_t * hdr,blkptr_t * bp)5555 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5556 {
5557 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5558 		ASSERT0(HDR_GET_PSIZE(hdr));
5559 		ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5560 	} else {
5561 		if (HDR_COMPRESSION_ENABLED(hdr)) {
5562 			ASSERT3U(arc_hdr_get_compress(hdr), ==,
5563 			    BP_GET_COMPRESS(bp));
5564 		}
5565 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5566 		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5567 		ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5568 	}
5569 }
5570 
5571 static void
arc_read_done(zio_t * zio)5572 arc_read_done(zio_t *zio)
5573 {
5574 	blkptr_t 	*bp = zio->io_bp;
5575 	arc_buf_hdr_t	*hdr = zio->io_private;
5576 	kmutex_t	*hash_lock = NULL;
5577 	arc_callback_t	*callback_list;
5578 	arc_callback_t	*acb;
5579 
5580 	/*
5581 	 * The hdr was inserted into hash-table and removed from lists
5582 	 * prior to starting I/O.  We should find this header, since
5583 	 * it's in the hash table, and it should be legit since it's
5584 	 * not possible to evict it during the I/O.  The only possible
5585 	 * reason for it not to be found is if we were freed during the
5586 	 * read.
5587 	 */
5588 	if (HDR_IN_HASH_TABLE(hdr)) {
5589 		arc_buf_hdr_t *found;
5590 
5591 		ASSERT3U(hdr->b_birth, ==, BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5592 		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5593 		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5594 		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5595 		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5596 
5597 		found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5598 
5599 		ASSERT((found == hdr &&
5600 		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5601 		    (found == hdr && HDR_L2_READING(hdr)));
5602 		ASSERT3P(hash_lock, !=, NULL);
5603 	}
5604 
5605 	if (BP_IS_PROTECTED(bp)) {
5606 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5607 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5608 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5609 		    hdr->b_crypt_hdr.b_iv);
5610 
5611 		if (zio->io_error == 0) {
5612 			if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5613 				void *tmpbuf;
5614 
5615 				tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5616 				    sizeof (zil_chain_t));
5617 				zio_crypt_decode_mac_zil(tmpbuf,
5618 				    hdr->b_crypt_hdr.b_mac);
5619 				abd_return_buf(zio->io_abd, tmpbuf,
5620 				    sizeof (zil_chain_t));
5621 			} else {
5622 				zio_crypt_decode_mac_bp(bp,
5623 				    hdr->b_crypt_hdr.b_mac);
5624 			}
5625 		}
5626 	}
5627 
5628 	if (zio->io_error == 0) {
5629 		/* byteswap if necessary */
5630 		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5631 			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5632 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5633 			} else {
5634 				hdr->b_l1hdr.b_byteswap =
5635 				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5636 			}
5637 		} else {
5638 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5639 		}
5640 		if (!HDR_L2_READING(hdr)) {
5641 			hdr->b_complevel = zio->io_prop.zp_complevel;
5642 		}
5643 	}
5644 
5645 	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5646 	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5647 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5648 
5649 	callback_list = hdr->b_l1hdr.b_acb;
5650 	ASSERT3P(callback_list, !=, NULL);
5651 	hdr->b_l1hdr.b_acb = NULL;
5652 
5653 	/*
5654 	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5655 	 * make a buf containing the data according to the parameters which were
5656 	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5657 	 * aren't needlessly decompressing the data multiple times.
5658 	 */
5659 	int callback_cnt = 0;
5660 	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5661 
5662 		/* We need the last one to call below in original order. */
5663 		callback_list = acb;
5664 
5665 		if (!acb->acb_done || acb->acb_nobuf)
5666 			continue;
5667 
5668 		callback_cnt++;
5669 
5670 		if (zio->io_error != 0)
5671 			continue;
5672 
5673 		int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5674 		    &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5675 		    acb->acb_compressed, acb->acb_noauth, B_TRUE,
5676 		    &acb->acb_buf);
5677 
5678 		/*
5679 		 * Assert non-speculative zios didn't fail because an
5680 		 * encryption key wasn't loaded
5681 		 */
5682 		ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5683 		    error != EACCES);
5684 
5685 		/*
5686 		 * If we failed to decrypt, report an error now (as the zio
5687 		 * layer would have done if it had done the transforms).
5688 		 */
5689 		if (error == ECKSUM) {
5690 			ASSERT(BP_IS_PROTECTED(bp));
5691 			error = SET_ERROR(EIO);
5692 			if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5693 				spa_log_error(zio->io_spa, &acb->acb_zb,
5694 				    BP_GET_PHYSICAL_BIRTH(zio->io_bp));
5695 				(void) zfs_ereport_post(
5696 				    FM_EREPORT_ZFS_AUTHENTICATION,
5697 				    zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5698 			}
5699 		}
5700 
5701 		if (error != 0) {
5702 			/*
5703 			 * Decompression or decryption failed.  Set
5704 			 * io_error so that when we call acb_done
5705 			 * (below), we will indicate that the read
5706 			 * failed. Note that in the unusual case
5707 			 * where one callback is compressed and another
5708 			 * uncompressed, we will mark all of them
5709 			 * as failed, even though the uncompressed
5710 			 * one can't actually fail.  In this case,
5711 			 * the hdr will not be anonymous, because
5712 			 * if there are multiple callbacks, it's
5713 			 * because multiple threads found the same
5714 			 * arc buf in the hash table.
5715 			 */
5716 			zio->io_error = error;
5717 		}
5718 	}
5719 
5720 	/*
5721 	 * If there are multiple callbacks, we must have the hash lock,
5722 	 * because the only way for multiple threads to find this hdr is
5723 	 * in the hash table.  This ensures that if there are multiple
5724 	 * callbacks, the hdr is not anonymous.  If it were anonymous,
5725 	 * we couldn't use arc_buf_destroy() in the error case below.
5726 	 */
5727 	ASSERT(callback_cnt < 2 || hash_lock != NULL);
5728 
5729 	if (zio->io_error == 0) {
5730 		arc_hdr_verify(hdr, zio->io_bp);
5731 	} else {
5732 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5733 		if (hdr->b_l1hdr.b_state != arc_anon)
5734 			arc_change_state(arc_anon, hdr);
5735 		if (HDR_IN_HASH_TABLE(hdr))
5736 			buf_hash_remove(hdr);
5737 	}
5738 
5739 	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5740 	(void) remove_reference(hdr, hdr);
5741 
5742 	if (hash_lock != NULL)
5743 		mutex_exit(hash_lock);
5744 
5745 	/* execute each callback and free its structure */
5746 	while ((acb = callback_list) != NULL) {
5747 		if (acb->acb_done != NULL) {
5748 			if (zio->io_error != 0 && acb->acb_buf != NULL) {
5749 				/*
5750 				 * If arc_buf_alloc_impl() fails during
5751 				 * decompression, the buf will still be
5752 				 * allocated, and needs to be freed here.
5753 				 */
5754 				arc_buf_destroy(acb->acb_buf,
5755 				    acb->acb_private);
5756 				acb->acb_buf = NULL;
5757 			}
5758 			acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5759 			    acb->acb_buf, acb->acb_private);
5760 		}
5761 
5762 		if (acb->acb_zio_dummy != NULL) {
5763 			acb->acb_zio_dummy->io_error = zio->io_error;
5764 			zio_nowait(acb->acb_zio_dummy);
5765 		}
5766 
5767 		callback_list = acb->acb_prev;
5768 		if (acb->acb_wait) {
5769 			mutex_enter(&acb->acb_wait_lock);
5770 			acb->acb_wait_error = zio->io_error;
5771 			acb->acb_wait = B_FALSE;
5772 			cv_signal(&acb->acb_wait_cv);
5773 			mutex_exit(&acb->acb_wait_lock);
5774 			/* acb will be freed by the waiting thread. */
5775 		} else {
5776 			kmem_free(acb, sizeof (arc_callback_t));
5777 		}
5778 	}
5779 }
5780 
5781 /*
5782  * Lookup the block at the specified DVA (in bp), and return the manner in
5783  * which the block is cached. A zero return indicates not cached.
5784  */
5785 int
arc_cached(spa_t * spa,const blkptr_t * bp)5786 arc_cached(spa_t *spa, const blkptr_t *bp)
5787 {
5788 	arc_buf_hdr_t *hdr = NULL;
5789 	kmutex_t *hash_lock = NULL;
5790 	uint64_t guid = spa_load_guid(spa);
5791 	int flags = 0;
5792 
5793 	if (BP_IS_EMBEDDED(bp))
5794 		return (ARC_CACHED_EMBEDDED);
5795 
5796 	hdr = buf_hash_find(guid, bp, &hash_lock);
5797 	if (hdr == NULL)
5798 		return (0);
5799 
5800 	if (HDR_HAS_L1HDR(hdr)) {
5801 		arc_state_t *state = hdr->b_l1hdr.b_state;
5802 		/*
5803 		 * We switch to ensure that any future arc_state_type_t
5804 		 * changes are handled. This is just a shift to promote
5805 		 * more compile-time checking.
5806 		 */
5807 		switch (state->arcs_state) {
5808 		case ARC_STATE_ANON:
5809 			break;
5810 		case ARC_STATE_MRU:
5811 			flags |= ARC_CACHED_IN_MRU | ARC_CACHED_IN_L1;
5812 			break;
5813 		case ARC_STATE_MFU:
5814 			flags |= ARC_CACHED_IN_MFU | ARC_CACHED_IN_L1;
5815 			break;
5816 		case ARC_STATE_UNCACHED:
5817 			/* The header is still in L1, probably not for long */
5818 			flags |= ARC_CACHED_IN_L1;
5819 			break;
5820 		default:
5821 			break;
5822 		}
5823 	}
5824 	if (HDR_HAS_L2HDR(hdr))
5825 		flags |= ARC_CACHED_IN_L2;
5826 
5827 	mutex_exit(hash_lock);
5828 
5829 	return (flags);
5830 }
5831 
5832 /*
5833  * "Read" the block at the specified DVA (in bp) via the
5834  * cache.  If the block is found in the cache, invoke the provided
5835  * callback immediately and return.  Note that the `zio' parameter
5836  * in the callback will be NULL in this case, since no IO was
5837  * required.  If the block is not in the cache pass the read request
5838  * on to the spa with a substitute callback function, so that the
5839  * requested block will be added to the cache.
5840  *
5841  * If a read request arrives for a block that has a read in-progress,
5842  * either wait for the in-progress read to complete (and return the
5843  * results); or, if this is a read with a "done" func, add a record
5844  * to the read to invoke the "done" func when the read completes,
5845  * and return; or just return.
5846  *
5847  * arc_read_done() will invoke all the requested "done" functions
5848  * for readers of this block.
5849  */
5850 int
arc_read(zio_t * pio,spa_t * spa,const blkptr_t * bp,arc_read_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,arc_flags_t * arc_flags,const zbookmark_phys_t * zb)5851 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5852     arc_read_done_func_t *done, void *private, zio_priority_t priority,
5853     int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5854 {
5855 	arc_buf_hdr_t *hdr = NULL;
5856 	kmutex_t *hash_lock = NULL;
5857 	zio_t *rzio;
5858 	uint64_t guid = spa_load_guid(spa);
5859 	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5860 	boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5861 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5862 	boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5863 	    (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5864 	boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5865 	boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5866 	arc_buf_t *buf = NULL;
5867 	int rc = 0;
5868 	boolean_t bp_validation = B_FALSE;
5869 
5870 	ASSERT(!embedded_bp ||
5871 	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5872 	ASSERT(!BP_IS_HOLE(bp));
5873 	ASSERT(!BP_IS_REDACTED(bp));
5874 
5875 	/*
5876 	 * Normally SPL_FSTRANS will already be set since kernel threads which
5877 	 * expect to call the DMU interfaces will set it when created.  System
5878 	 * calls are similarly handled by setting/cleaning the bit in the
5879 	 * registered callback (module/os/.../zfs/zpl_*).
5880 	 *
5881 	 * External consumers such as Lustre which call the exported DMU
5882 	 * interfaces may not have set SPL_FSTRANS.  To avoid a deadlock
5883 	 * on the hash_lock always set and clear the bit.
5884 	 */
5885 	fstrans_cookie_t cookie = spl_fstrans_mark();
5886 top:
5887 	if (!embedded_bp) {
5888 		/*
5889 		 * Embedded BP's have no DVA and require no I/O to "read".
5890 		 * Create an anonymous arc buf to back it.
5891 		 */
5892 		hdr = buf_hash_find(guid, bp, &hash_lock);
5893 	}
5894 
5895 	/*
5896 	 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5897 	 * we maintain encrypted data separately from compressed / uncompressed
5898 	 * data. If the user is requesting raw encrypted data and we don't have
5899 	 * that in the header we will read from disk to guarantee that we can
5900 	 * get it even if the encryption keys aren't loaded.
5901 	 */
5902 	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5903 	    (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
5904 		boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
5905 
5906 		/*
5907 		 * Verify the block pointer contents are reasonable.  This
5908 		 * should always be the case since the blkptr is protected by
5909 		 * a checksum.
5910 		 */
5911 		if (zfs_blkptr_verify(spa, bp, BLK_CONFIG_SKIP,
5912 		    BLK_VERIFY_LOG)) {
5913 			mutex_exit(hash_lock);
5914 			rc = SET_ERROR(ECKSUM);
5915 			goto done;
5916 		}
5917 
5918 		if (HDR_IO_IN_PROGRESS(hdr)) {
5919 			if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5920 				mutex_exit(hash_lock);
5921 				ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5922 				rc = SET_ERROR(ENOENT);
5923 				goto done;
5924 			}
5925 
5926 			zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
5927 			ASSERT3P(head_zio, !=, NULL);
5928 			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5929 			    priority == ZIO_PRIORITY_SYNC_READ) {
5930 				/*
5931 				 * This is a sync read that needs to wait for
5932 				 * an in-flight async read. Request that the
5933 				 * zio have its priority upgraded.
5934 				 */
5935 				zio_change_priority(head_zio, priority);
5936 				DTRACE_PROBE1(arc__async__upgrade__sync,
5937 				    arc_buf_hdr_t *, hdr);
5938 				ARCSTAT_BUMP(arcstat_async_upgrade_sync);
5939 			}
5940 
5941 			DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
5942 			arc_access(hdr, *arc_flags, B_FALSE);
5943 
5944 			/*
5945 			 * If there are multiple threads reading the same block
5946 			 * and that block is not yet in the ARC, then only one
5947 			 * thread will do the physical I/O and all other
5948 			 * threads will wait until that I/O completes.
5949 			 * Synchronous reads use the acb_wait_cv whereas nowait
5950 			 * reads register a callback. Both are signalled/called
5951 			 * in arc_read_done.
5952 			 *
5953 			 * Errors of the physical I/O may need to be propagated.
5954 			 * Synchronous read errors are returned here from
5955 			 * arc_read_done via acb_wait_error.  Nowait reads
5956 			 * attach the acb_zio_dummy zio to pio and
5957 			 * arc_read_done propagates the physical I/O's io_error
5958 			 * to acb_zio_dummy, and thereby to pio.
5959 			 */
5960 			arc_callback_t *acb = NULL;
5961 			if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
5962 				acb = kmem_zalloc(sizeof (arc_callback_t),
5963 				    KM_SLEEP);
5964 				acb->acb_done = done;
5965 				acb->acb_private = private;
5966 				acb->acb_compressed = compressed_read;
5967 				acb->acb_encrypted = encrypted_read;
5968 				acb->acb_noauth = noauth_read;
5969 				acb->acb_nobuf = no_buf;
5970 				if (*arc_flags & ARC_FLAG_WAIT) {
5971 					acb->acb_wait = B_TRUE;
5972 					mutex_init(&acb->acb_wait_lock, NULL,
5973 					    MUTEX_DEFAULT, NULL);
5974 					cv_init(&acb->acb_wait_cv, NULL,
5975 					    CV_DEFAULT, NULL);
5976 				}
5977 				acb->acb_zb = *zb;
5978 				if (pio != NULL) {
5979 					acb->acb_zio_dummy = zio_null(pio,
5980 					    spa, NULL, NULL, NULL, zio_flags);
5981 				}
5982 				acb->acb_zio_head = head_zio;
5983 				acb->acb_next = hdr->b_l1hdr.b_acb;
5984 				hdr->b_l1hdr.b_acb->acb_prev = acb;
5985 				hdr->b_l1hdr.b_acb = acb;
5986 			}
5987 			mutex_exit(hash_lock);
5988 
5989 			ARCSTAT_BUMP(arcstat_iohits);
5990 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
5991 			    demand, prefetch, is_data, data, metadata, iohits);
5992 
5993 			if (*arc_flags & ARC_FLAG_WAIT) {
5994 				mutex_enter(&acb->acb_wait_lock);
5995 				while (acb->acb_wait) {
5996 					cv_wait(&acb->acb_wait_cv,
5997 					    &acb->acb_wait_lock);
5998 				}
5999 				rc = acb->acb_wait_error;
6000 				mutex_exit(&acb->acb_wait_lock);
6001 				mutex_destroy(&acb->acb_wait_lock);
6002 				cv_destroy(&acb->acb_wait_cv);
6003 				kmem_free(acb, sizeof (arc_callback_t));
6004 			}
6005 			goto out;
6006 		}
6007 
6008 		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6009 		    hdr->b_l1hdr.b_state == arc_mfu ||
6010 		    hdr->b_l1hdr.b_state == arc_uncached);
6011 
6012 		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6013 		arc_access(hdr, *arc_flags, B_TRUE);
6014 
6015 		if (done && !no_buf) {
6016 			ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6017 
6018 			/* Get a buf with the desired data in it. */
6019 			rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6020 			    encrypted_read, compressed_read, noauth_read,
6021 			    B_TRUE, &buf);
6022 			if (rc == ECKSUM) {
6023 				/*
6024 				 * Convert authentication and decryption errors
6025 				 * to EIO (and generate an ereport if needed)
6026 				 * before leaving the ARC.
6027 				 */
6028 				rc = SET_ERROR(EIO);
6029 				if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6030 					spa_log_error(spa, zb, hdr->b_birth);
6031 					(void) zfs_ereport_post(
6032 					    FM_EREPORT_ZFS_AUTHENTICATION,
6033 					    spa, NULL, zb, NULL, 0);
6034 				}
6035 			}
6036 			if (rc != 0) {
6037 				arc_buf_destroy_impl(buf);
6038 				buf = NULL;
6039 				(void) remove_reference(hdr, private);
6040 			}
6041 
6042 			/* assert any errors weren't due to unloaded keys */
6043 			ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6044 			    rc != EACCES);
6045 		}
6046 		mutex_exit(hash_lock);
6047 		ARCSTAT_BUMP(arcstat_hits);
6048 		ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6049 		    demand, prefetch, is_data, data, metadata, hits);
6050 		*arc_flags |= ARC_FLAG_CACHED;
6051 		goto done;
6052 	} else {
6053 		uint64_t lsize = BP_GET_LSIZE(bp);
6054 		uint64_t psize = BP_GET_PSIZE(bp);
6055 		arc_callback_t *acb;
6056 		vdev_t *vd = NULL;
6057 		uint64_t addr = 0;
6058 		boolean_t devw = B_FALSE;
6059 		uint64_t size;
6060 		abd_t *hdr_abd;
6061 		int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6062 		arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6063 		int config_lock;
6064 		int error;
6065 
6066 		if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6067 			if (hash_lock != NULL)
6068 				mutex_exit(hash_lock);
6069 			rc = SET_ERROR(ENOENT);
6070 			goto done;
6071 		}
6072 
6073 		if (zio_flags & ZIO_FLAG_CONFIG_WRITER) {
6074 			config_lock = BLK_CONFIG_HELD;
6075 		} else if (hash_lock != NULL) {
6076 			/*
6077 			 * Prevent lock order reversal
6078 			 */
6079 			config_lock = BLK_CONFIG_NEEDED_TRY;
6080 		} else {
6081 			config_lock = BLK_CONFIG_NEEDED;
6082 		}
6083 
6084 		/*
6085 		 * Verify the block pointer contents are reasonable.  This
6086 		 * should always be the case since the blkptr is protected by
6087 		 * a checksum.
6088 		 */
6089 		if (!bp_validation && (error = zfs_blkptr_verify(spa, bp,
6090 		    config_lock, BLK_VERIFY_LOG))) {
6091 			if (hash_lock != NULL)
6092 				mutex_exit(hash_lock);
6093 			if (error == EBUSY && !zfs_blkptr_verify(spa, bp,
6094 			    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
6095 				bp_validation = B_TRUE;
6096 				goto top;
6097 			}
6098 			rc = SET_ERROR(ECKSUM);
6099 			goto done;
6100 		}
6101 
6102 		if (hdr == NULL) {
6103 			/*
6104 			 * This block is not in the cache or it has
6105 			 * embedded data.
6106 			 */
6107 			arc_buf_hdr_t *exists = NULL;
6108 			hdr = arc_hdr_alloc(guid, psize, lsize,
6109 			    BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6110 
6111 			if (!embedded_bp) {
6112 				hdr->b_dva = *BP_IDENTITY(bp);
6113 				hdr->b_birth = BP_GET_PHYSICAL_BIRTH(bp);
6114 				exists = buf_hash_insert(hdr, &hash_lock);
6115 			}
6116 			if (exists != NULL) {
6117 				/* somebody beat us to the hash insert */
6118 				mutex_exit(hash_lock);
6119 				buf_discard_identity(hdr);
6120 				arc_hdr_destroy(hdr);
6121 				goto top; /* restart the IO request */
6122 			}
6123 		} else {
6124 			/*
6125 			 * This block is in the ghost cache or encrypted data
6126 			 * was requested and we didn't have it. If it was
6127 			 * L2-only (and thus didn't have an L1 hdr),
6128 			 * we realloc the header to add an L1 hdr.
6129 			 */
6130 			if (!HDR_HAS_L1HDR(hdr)) {
6131 				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6132 				    hdr_full_cache);
6133 			}
6134 
6135 			if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6136 				ASSERT0P(hdr->b_l1hdr.b_pabd);
6137 				ASSERT(!HDR_HAS_RABD(hdr));
6138 				ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6139 				ASSERT0(zfs_refcount_count(
6140 				    &hdr->b_l1hdr.b_refcnt));
6141 				ASSERT0P(hdr->b_l1hdr.b_buf);
6142 #ifdef ZFS_DEBUG
6143 				ASSERT0P(hdr->b_l1hdr.b_freeze_cksum);
6144 #endif
6145 			} else if (HDR_IO_IN_PROGRESS(hdr)) {
6146 				/*
6147 				 * If this header already had an IO in progress
6148 				 * and we are performing another IO to fetch
6149 				 * encrypted data we must wait until the first
6150 				 * IO completes so as not to confuse
6151 				 * arc_read_done(). This should be very rare
6152 				 * and so the performance impact shouldn't
6153 				 * matter.
6154 				 */
6155 				arc_callback_t *acb = kmem_zalloc(
6156 				    sizeof (arc_callback_t), KM_SLEEP);
6157 				acb->acb_wait = B_TRUE;
6158 				mutex_init(&acb->acb_wait_lock, NULL,
6159 				    MUTEX_DEFAULT, NULL);
6160 				cv_init(&acb->acb_wait_cv, NULL, CV_DEFAULT,
6161 				    NULL);
6162 				acb->acb_zio_head =
6163 				    hdr->b_l1hdr.b_acb->acb_zio_head;
6164 				acb->acb_next = hdr->b_l1hdr.b_acb;
6165 				hdr->b_l1hdr.b_acb->acb_prev = acb;
6166 				hdr->b_l1hdr.b_acb = acb;
6167 				mutex_exit(hash_lock);
6168 				mutex_enter(&acb->acb_wait_lock);
6169 				while (acb->acb_wait) {
6170 					cv_wait(&acb->acb_wait_cv,
6171 					    &acb->acb_wait_lock);
6172 				}
6173 				mutex_exit(&acb->acb_wait_lock);
6174 				mutex_destroy(&acb->acb_wait_lock);
6175 				cv_destroy(&acb->acb_wait_cv);
6176 				kmem_free(acb, sizeof (arc_callback_t));
6177 				goto top;
6178 			}
6179 		}
6180 		if (*arc_flags & ARC_FLAG_UNCACHED) {
6181 			arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6182 			if (!encrypted_read)
6183 				alloc_flags |= ARC_HDR_ALLOC_LINEAR;
6184 		}
6185 
6186 		/*
6187 		 * Take additional reference for IO_IN_PROGRESS.  It stops
6188 		 * arc_access() from putting this header without any buffers
6189 		 * and so other references but obviously nonevictable onto
6190 		 * the evictable list of MRU or MFU state.
6191 		 */
6192 		add_reference(hdr, hdr);
6193 		if (!embedded_bp)
6194 			arc_access(hdr, *arc_flags, B_FALSE);
6195 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6196 		arc_hdr_alloc_abd(hdr, alloc_flags);
6197 		if (encrypted_read) {
6198 			ASSERT(HDR_HAS_RABD(hdr));
6199 			size = HDR_GET_PSIZE(hdr);
6200 			hdr_abd = hdr->b_crypt_hdr.b_rabd;
6201 			zio_flags |= ZIO_FLAG_RAW;
6202 		} else {
6203 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6204 			size = arc_hdr_size(hdr);
6205 			hdr_abd = hdr->b_l1hdr.b_pabd;
6206 
6207 			if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6208 				zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6209 			}
6210 
6211 			/*
6212 			 * For authenticated bp's, we do not ask the ZIO layer
6213 			 * to authenticate them since this will cause the entire
6214 			 * IO to fail if the key isn't loaded. Instead, we
6215 			 * defer authentication until arc_buf_fill(), which will
6216 			 * verify the data when the key is available.
6217 			 */
6218 			if (BP_IS_AUTHENTICATED(bp))
6219 				zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6220 		}
6221 
6222 		if (BP_IS_AUTHENTICATED(bp))
6223 			arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6224 		if (BP_GET_LEVEL(bp) > 0)
6225 			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6226 		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6227 
6228 		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6229 		acb->acb_done = done;
6230 		acb->acb_private = private;
6231 		acb->acb_compressed = compressed_read;
6232 		acb->acb_encrypted = encrypted_read;
6233 		acb->acb_noauth = noauth_read;
6234 		acb->acb_nobuf = no_buf;
6235 		acb->acb_zb = *zb;
6236 
6237 		ASSERT0P(hdr->b_l1hdr.b_acb);
6238 		hdr->b_l1hdr.b_acb = acb;
6239 
6240 		if (HDR_HAS_L2HDR(hdr) &&
6241 		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6242 			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6243 			addr = hdr->b_l2hdr.b_daddr;
6244 			/*
6245 			 * Lock out L2ARC device removal.
6246 			 */
6247 			if (vdev_is_dead(vd) ||
6248 			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6249 				vd = NULL;
6250 		}
6251 
6252 		/*
6253 		 * We count both async reads and scrub IOs as asynchronous so
6254 		 * that both can be upgraded in the event of a cache hit while
6255 		 * the read IO is still in-flight.
6256 		 */
6257 		if (priority == ZIO_PRIORITY_ASYNC_READ ||
6258 		    priority == ZIO_PRIORITY_SCRUB)
6259 			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6260 		else
6261 			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6262 
6263 		/*
6264 		 * At this point, we have a level 1 cache miss or a blkptr
6265 		 * with embedded data.  Try again in L2ARC if possible.
6266 		 */
6267 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6268 
6269 		/*
6270 		 * Skip ARC stat bump for block pointers with embedded
6271 		 * data. The data are read from the blkptr itself via
6272 		 * decode_embedded_bp_compressed().
6273 		 */
6274 		if (!embedded_bp) {
6275 			DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6276 			    blkptr_t *, bp, uint64_t, lsize,
6277 			    zbookmark_phys_t *, zb);
6278 			ARCSTAT_BUMP(arcstat_misses);
6279 			ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6280 			    demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6281 			    metadata, misses);
6282 			zfs_racct_read(spa, size, 1,
6283 			    (*arc_flags & ARC_FLAG_UNCACHED) ?
6284 			    DMU_UNCACHEDIO : 0);
6285 		}
6286 
6287 		/* Check if the spa even has l2 configured */
6288 		const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6289 		    spa->spa_l2cache.sav_count > 0;
6290 
6291 		if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6292 			/*
6293 			 * Read from the L2ARC if the following are true:
6294 			 * 1. The L2ARC vdev was previously cached.
6295 			 * 2. This buffer still has L2ARC metadata.
6296 			 * 3. This buffer isn't currently writing to the L2ARC.
6297 			 * 4. The L2ARC entry wasn't evicted, which may
6298 			 *    also have invalidated the vdev.
6299 			 */
6300 			if (HDR_HAS_L2HDR(hdr) &&
6301 			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr)) {
6302 				l2arc_read_callback_t *cb;
6303 				abd_t *abd;
6304 				uint64_t asize;
6305 
6306 				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6307 				ARCSTAT_BUMP(arcstat_l2_hits);
6308 				hdr->b_l2hdr.b_hits++;
6309 
6310 				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6311 				    KM_SLEEP);
6312 				cb->l2rcb_hdr = hdr;
6313 				cb->l2rcb_bp = *bp;
6314 				cb->l2rcb_zb = *zb;
6315 				cb->l2rcb_flags = zio_flags;
6316 
6317 				/*
6318 				 * When Compressed ARC is disabled, but the
6319 				 * L2ARC block is compressed, arc_hdr_size()
6320 				 * will have returned LSIZE rather than PSIZE.
6321 				 */
6322 				if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6323 				    !HDR_COMPRESSION_ENABLED(hdr) &&
6324 				    HDR_GET_PSIZE(hdr) != 0) {
6325 					size = HDR_GET_PSIZE(hdr);
6326 				}
6327 
6328 				asize = vdev_psize_to_asize(vd, size);
6329 				if (asize != size) {
6330 					abd = abd_alloc_for_io(asize,
6331 					    HDR_ISTYPE_METADATA(hdr));
6332 					cb->l2rcb_abd = abd;
6333 				} else {
6334 					abd = hdr_abd;
6335 				}
6336 
6337 				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6338 				    addr + asize <= vd->vdev_psize -
6339 				    VDEV_LABEL_END_SIZE);
6340 
6341 				/*
6342 				 * l2arc read.  The SCL_L2ARC lock will be
6343 				 * released by l2arc_read_done().
6344 				 * Issue a null zio if the underlying buffer
6345 				 * was squashed to zero size by compression.
6346 				 */
6347 				ASSERT3U(arc_hdr_get_compress(hdr), !=,
6348 				    ZIO_COMPRESS_EMPTY);
6349 				rzio = zio_read_phys(pio, vd, addr,
6350 				    asize, abd,
6351 				    ZIO_CHECKSUM_OFF,
6352 				    l2arc_read_done, cb, priority,
6353 				    zio_flags | ZIO_FLAG_CANFAIL |
6354 				    ZIO_FLAG_DONT_PROPAGATE |
6355 				    ZIO_FLAG_DONT_RETRY, B_FALSE);
6356 				acb->acb_zio_head = rzio;
6357 
6358 				if (hash_lock != NULL)
6359 					mutex_exit(hash_lock);
6360 
6361 				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6362 				    zio_t *, rzio);
6363 				ARCSTAT_INCR(arcstat_l2_read_bytes,
6364 				    HDR_GET_PSIZE(hdr));
6365 
6366 				if (*arc_flags & ARC_FLAG_NOWAIT) {
6367 					zio_nowait(rzio);
6368 					goto out;
6369 				}
6370 
6371 				ASSERT(*arc_flags & ARC_FLAG_WAIT);
6372 				if (zio_wait(rzio) == 0)
6373 					goto out;
6374 
6375 				/* l2arc read error; goto zio_read() */
6376 				if (hash_lock != NULL)
6377 					mutex_enter(hash_lock);
6378 			} else {
6379 				DTRACE_PROBE1(l2arc__miss,
6380 				    arc_buf_hdr_t *, hdr);
6381 				ARCSTAT_BUMP(arcstat_l2_misses);
6382 				if (HDR_L2_WRITING(hdr))
6383 					ARCSTAT_BUMP(arcstat_l2_rw_clash);
6384 				spa_config_exit(spa, SCL_L2ARC, vd);
6385 			}
6386 		} else {
6387 			if (vd != NULL)
6388 				spa_config_exit(spa, SCL_L2ARC, vd);
6389 
6390 			/*
6391 			 * Only a spa with l2 should contribute to l2
6392 			 * miss stats.  (Including the case of having a
6393 			 * faulted cache device - that's also a miss.)
6394 			 */
6395 			if (spa_has_l2) {
6396 				/*
6397 				 * Skip ARC stat bump for block pointers with
6398 				 * embedded data. The data are read from the
6399 				 * blkptr itself via
6400 				 * decode_embedded_bp_compressed().
6401 				 */
6402 				if (!embedded_bp) {
6403 					DTRACE_PROBE1(l2arc__miss,
6404 					    arc_buf_hdr_t *, hdr);
6405 					ARCSTAT_BUMP(arcstat_l2_misses);
6406 				}
6407 			}
6408 		}
6409 
6410 		rzio = zio_read(pio, spa, bp, hdr_abd, size,
6411 		    arc_read_done, hdr, priority, zio_flags, zb);
6412 		acb->acb_zio_head = rzio;
6413 
6414 		if (hash_lock != NULL)
6415 			mutex_exit(hash_lock);
6416 
6417 		if (*arc_flags & ARC_FLAG_WAIT) {
6418 			rc = zio_wait(rzio);
6419 			goto out;
6420 		}
6421 
6422 		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6423 		zio_nowait(rzio);
6424 	}
6425 
6426 out:
6427 	/* embedded bps don't actually go to disk */
6428 	if (!embedded_bp)
6429 		spa_read_history_add(spa, zb, *arc_flags);
6430 	spl_fstrans_unmark(cookie);
6431 	return (rc);
6432 
6433 done:
6434 	if (done)
6435 		done(NULL, zb, bp, buf, private);
6436 	if (pio && rc != 0) {
6437 		zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6438 		zio->io_error = rc;
6439 		zio_nowait(zio);
6440 	}
6441 	goto out;
6442 }
6443 
6444 arc_prune_t *
arc_add_prune_callback(arc_prune_func_t * func,void * private)6445 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6446 {
6447 	arc_prune_t *p;
6448 
6449 	p = kmem_alloc(sizeof (*p), KM_SLEEP);
6450 	p->p_pfunc = func;
6451 	p->p_private = private;
6452 	list_link_init(&p->p_node);
6453 	zfs_refcount_create(&p->p_refcnt);
6454 
6455 	mutex_enter(&arc_prune_mtx);
6456 	zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6457 	list_insert_head(&arc_prune_list, p);
6458 	mutex_exit(&arc_prune_mtx);
6459 
6460 	return (p);
6461 }
6462 
6463 void
arc_remove_prune_callback(arc_prune_t * p)6464 arc_remove_prune_callback(arc_prune_t *p)
6465 {
6466 	boolean_t wait = B_FALSE;
6467 	mutex_enter(&arc_prune_mtx);
6468 	list_remove(&arc_prune_list, p);
6469 	if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6470 		wait = B_TRUE;
6471 	mutex_exit(&arc_prune_mtx);
6472 
6473 	/* wait for arc_prune_task to finish */
6474 	if (wait)
6475 		taskq_wait_outstanding(arc_prune_taskq, 0);
6476 	ASSERT0(zfs_refcount_count(&p->p_refcnt));
6477 	zfs_refcount_destroy(&p->p_refcnt);
6478 	kmem_free(p, sizeof (*p));
6479 }
6480 
6481 /*
6482  * Helper function for arc_prune_async() it is responsible for safely
6483  * handling the execution of a registered arc_prune_func_t.
6484  */
6485 static void
arc_prune_task(void * ptr)6486 arc_prune_task(void *ptr)
6487 {
6488 	arc_prune_t *ap = (arc_prune_t *)ptr;
6489 	arc_prune_func_t *func = ap->p_pfunc;
6490 
6491 	if (func != NULL)
6492 		func(ap->p_adjust, ap->p_private);
6493 
6494 	(void) zfs_refcount_remove(&ap->p_refcnt, func);
6495 }
6496 
6497 /*
6498  * Notify registered consumers they must drop holds on a portion of the ARC
6499  * buffers they reference.  This provides a mechanism to ensure the ARC can
6500  * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6501  *
6502  * This operation is performed asynchronously so it may be safely called
6503  * in the context of the arc_reclaim_thread().  A reference is taken here
6504  * for each registered arc_prune_t and the arc_prune_task() is responsible
6505  * for releasing it once the registered arc_prune_func_t has completed.
6506  */
6507 static void
arc_prune_async(uint64_t adjust)6508 arc_prune_async(uint64_t adjust)
6509 {
6510 	arc_prune_t *ap;
6511 
6512 	mutex_enter(&arc_prune_mtx);
6513 	for (ap = list_head(&arc_prune_list); ap != NULL;
6514 	    ap = list_next(&arc_prune_list, ap)) {
6515 
6516 		if (zfs_refcount_count(&ap->p_refcnt) >= 2)
6517 			continue;
6518 
6519 		zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
6520 		ap->p_adjust = adjust;
6521 		if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
6522 		    ap, TQ_SLEEP) == TASKQID_INVALID) {
6523 			(void) zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
6524 			continue;
6525 		}
6526 		ARCSTAT_BUMP(arcstat_prune);
6527 	}
6528 	mutex_exit(&arc_prune_mtx);
6529 }
6530 
6531 /*
6532  * Notify the arc that a block was freed, and thus will never be used again.
6533  */
6534 void
arc_freed(spa_t * spa,const blkptr_t * bp)6535 arc_freed(spa_t *spa, const blkptr_t *bp)
6536 {
6537 	arc_buf_hdr_t *hdr;
6538 	kmutex_t *hash_lock;
6539 	uint64_t guid = spa_load_guid(spa);
6540 
6541 	ASSERT(!BP_IS_EMBEDDED(bp));
6542 
6543 	hdr = buf_hash_find(guid, bp, &hash_lock);
6544 	if (hdr == NULL)
6545 		return;
6546 
6547 	/*
6548 	 * We might be trying to free a block that is still doing I/O
6549 	 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6550 	 * dmu_sync-ed block). A block may also have a reference if it is
6551 	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6552 	 * have written the new block to its final resting place on disk but
6553 	 * without the dedup flag set. This would have left the hdr in the MRU
6554 	 * state and discoverable. When the txg finally syncs it detects that
6555 	 * the block was overridden in open context and issues an override I/O.
6556 	 * Since this is a dedup block, the override I/O will determine if the
6557 	 * block is already in the DDT. If so, then it will replace the io_bp
6558 	 * with the bp from the DDT and allow the I/O to finish. When the I/O
6559 	 * reaches the done callback, dbuf_write_override_done, it will
6560 	 * check to see if the io_bp and io_bp_override are identical.
6561 	 * If they are not, then it indicates that the bp was replaced with
6562 	 * the bp in the DDT and the override bp is freed. This allows
6563 	 * us to arrive here with a reference on a block that is being
6564 	 * freed. So if we have an I/O in progress, or a reference to
6565 	 * this hdr, then we don't destroy the hdr.
6566 	 */
6567 	if (!HDR_HAS_L1HDR(hdr) ||
6568 	    zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6569 		arc_change_state(arc_anon, hdr);
6570 		arc_hdr_destroy(hdr);
6571 		mutex_exit(hash_lock);
6572 	} else {
6573 		mutex_exit(hash_lock);
6574 	}
6575 
6576 }
6577 
6578 /*
6579  * Release this buffer from the cache, making it an anonymous buffer.  This
6580  * must be done after a read and prior to modifying the buffer contents.
6581  * If the buffer has more than one reference, we must make
6582  * a new hdr for the buffer.
6583  */
6584 void
arc_release(arc_buf_t * buf,const void * tag)6585 arc_release(arc_buf_t *buf, const void *tag)
6586 {
6587 	arc_buf_hdr_t *hdr = buf->b_hdr;
6588 
6589 	/*
6590 	 * It would be nice to assert that if its DMU metadata (level >
6591 	 * 0 || it's the dnode file), then it must be syncing context.
6592 	 * But we don't know that information at this level.
6593 	 */
6594 
6595 	ASSERT(HDR_HAS_L1HDR(hdr));
6596 
6597 	/*
6598 	 * We don't grab the hash lock prior to this check, because if
6599 	 * the buffer's header is in the arc_anon state, it won't be
6600 	 * linked into the hash table.
6601 	 */
6602 	if (hdr->b_l1hdr.b_state == arc_anon) {
6603 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6604 		ASSERT(!HDR_IN_HASH_TABLE(hdr));
6605 		ASSERT(!HDR_HAS_L2HDR(hdr));
6606 
6607 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6608 		ASSERT(ARC_BUF_LAST(buf));
6609 		ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6610 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6611 
6612 		hdr->b_l1hdr.b_arc_access = 0;
6613 
6614 		/*
6615 		 * If the buf is being overridden then it may already
6616 		 * have a hdr that is not empty.
6617 		 */
6618 		buf_discard_identity(hdr);
6619 		arc_buf_thaw(buf);
6620 
6621 		return;
6622 	}
6623 
6624 	kmutex_t *hash_lock = HDR_LOCK(hdr);
6625 	mutex_enter(hash_lock);
6626 
6627 	/*
6628 	 * This assignment is only valid as long as the hash_lock is
6629 	 * held, we must be careful not to reference state or the
6630 	 * b_state field after dropping the lock.
6631 	 */
6632 	arc_state_t *state = hdr->b_l1hdr.b_state;
6633 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6634 	ASSERT3P(state, !=, arc_anon);
6635 	ASSERT3P(state, !=, arc_l2c_only);
6636 
6637 	/* this buffer is not on any list */
6638 	ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6639 
6640 	/*
6641 	 * Do we have more than one buf?
6642 	 */
6643 	if (hdr->b_l1hdr.b_buf != buf || !ARC_BUF_LAST(buf)) {
6644 		arc_buf_hdr_t *nhdr;
6645 		uint64_t spa = hdr->b_spa;
6646 		uint64_t psize = HDR_GET_PSIZE(hdr);
6647 		uint64_t lsize = HDR_GET_LSIZE(hdr);
6648 		boolean_t protected = HDR_PROTECTED(hdr);
6649 		enum zio_compress compress = arc_hdr_get_compress(hdr);
6650 		arc_buf_contents_t type = arc_buf_type(hdr);
6651 
6652 		if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
6653 			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6654 			ASSERT(ARC_BUF_LAST(buf));
6655 		}
6656 
6657 		/*
6658 		 * Pull the buffer off of this hdr and find the last buffer
6659 		 * in the hdr's buffer list.
6660 		 */
6661 		VERIFY3S(remove_reference(hdr, tag), >, 0);
6662 		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6663 		ASSERT3P(lastbuf, !=, NULL);
6664 
6665 		/*
6666 		 * If the current arc_buf_t and the hdr are sharing their data
6667 		 * buffer, then we must stop sharing that block.
6668 		 */
6669 		if (ARC_BUF_SHARED(buf)) {
6670 			ASSERT(!arc_buf_is_shared(lastbuf));
6671 
6672 			/*
6673 			 * First, sever the block sharing relationship between
6674 			 * buf and the arc_buf_hdr_t.
6675 			 */
6676 			arc_unshare_buf(hdr, buf);
6677 
6678 			/*
6679 			 * Now we need to recreate the hdr's b_pabd. Since we
6680 			 * have lastbuf handy, we try to share with it, but if
6681 			 * we can't then we allocate a new b_pabd and copy the
6682 			 * data from buf into it.
6683 			 */
6684 			if (arc_can_share(hdr, lastbuf)) {
6685 				arc_share_buf(hdr, lastbuf);
6686 			} else {
6687 				arc_hdr_alloc_abd(hdr, 0);
6688 				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6689 				    buf->b_data, psize);
6690 			}
6691 		} else if (HDR_SHARED_DATA(hdr)) {
6692 			/*
6693 			 * Uncompressed shared buffers are always at the end
6694 			 * of the list. Compressed buffers don't have the
6695 			 * same requirements. This makes it hard to
6696 			 * simply assert that the lastbuf is shared so
6697 			 * we rely on the hdr's compression flags to determine
6698 			 * if we have a compressed, shared buffer.
6699 			 */
6700 			ASSERT(arc_buf_is_shared(lastbuf) ||
6701 			    arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6702 			ASSERT(!arc_buf_is_shared(buf));
6703 		}
6704 
6705 		ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6706 
6707 		(void) zfs_refcount_remove_many(&state->arcs_size[type],
6708 		    arc_buf_size(buf), buf);
6709 
6710 		arc_cksum_verify(buf);
6711 		arc_buf_unwatch(buf);
6712 
6713 		/* if this is the last uncompressed buf free the checksum */
6714 		if (!arc_hdr_has_uncompressed_buf(hdr))
6715 			arc_cksum_free(hdr);
6716 
6717 		mutex_exit(hash_lock);
6718 
6719 		nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6720 		    compress, hdr->b_complevel, type);
6721 		ASSERT0P(nhdr->b_l1hdr.b_buf);
6722 		ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6723 		VERIFY3U(nhdr->b_type, ==, type);
6724 		ASSERT(!HDR_SHARED_DATA(nhdr));
6725 
6726 		nhdr->b_l1hdr.b_buf = buf;
6727 		(void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6728 		buf->b_hdr = nhdr;
6729 
6730 		(void) zfs_refcount_add_many(&arc_anon->arcs_size[type],
6731 		    arc_buf_size(buf), buf);
6732 	} else {
6733 		ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6734 		/* protected by hash lock, or hdr is on arc_anon */
6735 		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6736 		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6737 
6738 		if (HDR_HAS_L2HDR(hdr)) {
6739 			mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6740 			/* Recheck to prevent race with l2arc_evict(). */
6741 			if (HDR_HAS_L2HDR(hdr))
6742 				arc_hdr_l2hdr_destroy(hdr);
6743 			mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6744 		}
6745 
6746 		hdr->b_l1hdr.b_mru_hits = 0;
6747 		hdr->b_l1hdr.b_mru_ghost_hits = 0;
6748 		hdr->b_l1hdr.b_mfu_hits = 0;
6749 		hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6750 		arc_change_state(arc_anon, hdr);
6751 		hdr->b_l1hdr.b_arc_access = 0;
6752 
6753 		mutex_exit(hash_lock);
6754 		buf_discard_identity(hdr);
6755 		arc_buf_thaw(buf);
6756 	}
6757 }
6758 
6759 int
arc_released(arc_buf_t * buf)6760 arc_released(arc_buf_t *buf)
6761 {
6762 	return (buf->b_data != NULL &&
6763 	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
6764 }
6765 
6766 #ifdef ZFS_DEBUG
6767 int
arc_referenced(arc_buf_t * buf)6768 arc_referenced(arc_buf_t *buf)
6769 {
6770 	return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6771 }
6772 #endif
6773 
6774 static void
arc_write_ready(zio_t * zio)6775 arc_write_ready(zio_t *zio)
6776 {
6777 	arc_write_callback_t *callback = zio->io_private;
6778 	arc_buf_t *buf = callback->awcb_buf;
6779 	arc_buf_hdr_t *hdr = buf->b_hdr;
6780 	blkptr_t *bp = zio->io_bp;
6781 	uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6782 	fstrans_cookie_t cookie = spl_fstrans_mark();
6783 
6784 	ASSERT(HDR_HAS_L1HDR(hdr));
6785 	ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6786 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
6787 
6788 	/*
6789 	 * If we're reexecuting this zio because the pool suspended, then
6790 	 * cleanup any state that was previously set the first time the
6791 	 * callback was invoked.
6792 	 */
6793 	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6794 		arc_cksum_free(hdr);
6795 		arc_buf_unwatch(buf);
6796 		if (hdr->b_l1hdr.b_pabd != NULL) {
6797 			if (ARC_BUF_SHARED(buf)) {
6798 				arc_unshare_buf(hdr, buf);
6799 			} else {
6800 				ASSERT(!arc_buf_is_shared(buf));
6801 				arc_hdr_free_abd(hdr, B_FALSE);
6802 			}
6803 		}
6804 
6805 		if (HDR_HAS_RABD(hdr))
6806 			arc_hdr_free_abd(hdr, B_TRUE);
6807 	}
6808 	ASSERT0P(hdr->b_l1hdr.b_pabd);
6809 	ASSERT(!HDR_HAS_RABD(hdr));
6810 	ASSERT(!HDR_SHARED_DATA(hdr));
6811 	ASSERT(!arc_buf_is_shared(buf));
6812 
6813 	callback->awcb_ready(zio, buf, callback->awcb_private);
6814 
6815 	if (HDR_IO_IN_PROGRESS(hdr)) {
6816 		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6817 	} else {
6818 		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6819 		add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6820 	}
6821 
6822 	if (BP_IS_PROTECTED(bp)) {
6823 		/* ZIL blocks are written through zio_rewrite */
6824 		ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6825 
6826 		if (BP_SHOULD_BYTESWAP(bp)) {
6827 			if (BP_GET_LEVEL(bp) > 0) {
6828 				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6829 			} else {
6830 				hdr->b_l1hdr.b_byteswap =
6831 				    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6832 			}
6833 		} else {
6834 			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6835 		}
6836 
6837 		arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
6838 		hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6839 		hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6840 		zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6841 		    hdr->b_crypt_hdr.b_iv);
6842 		zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6843 	} else {
6844 		arc_hdr_clear_flags(hdr, ARC_FLAG_PROTECTED);
6845 	}
6846 
6847 	/*
6848 	 * If this block was written for raw encryption but the zio layer
6849 	 * ended up only authenticating it, adjust the buffer flags now.
6850 	 */
6851 	if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6852 		arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6853 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6854 		if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6855 			buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6856 	} else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6857 		buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6858 		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6859 	}
6860 
6861 	/* this must be done after the buffer flags are adjusted */
6862 	arc_cksum_compute(buf);
6863 
6864 	enum zio_compress compress;
6865 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6866 		compress = ZIO_COMPRESS_OFF;
6867 	} else {
6868 		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6869 		compress = BP_GET_COMPRESS(bp);
6870 	}
6871 	HDR_SET_PSIZE(hdr, psize);
6872 	arc_hdr_set_compress(hdr, compress);
6873 	hdr->b_complevel = zio->io_prop.zp_complevel;
6874 
6875 	if (zio->io_error != 0 || psize == 0)
6876 		goto out;
6877 
6878 	/*
6879 	 * Fill the hdr with data. If the buffer is encrypted we have no choice
6880 	 * but to copy the data into b_radb. If the hdr is compressed, the data
6881 	 * we want is available from the zio, otherwise we can take it from
6882 	 * the buf.
6883 	 *
6884 	 * We might be able to share the buf's data with the hdr here. However,
6885 	 * doing so would cause the ARC to be full of linear ABDs if we write a
6886 	 * lot of shareable data. As a compromise, we check whether scattered
6887 	 * ABDs are allowed, and assume that if they are then the user wants
6888 	 * the ARC to be primarily filled with them regardless of the data being
6889 	 * written. Therefore, if they're allowed then we allocate one and copy
6890 	 * the data into it; otherwise, we share the data directly if we can.
6891 	 */
6892 	if (ARC_BUF_ENCRYPTED(buf)) {
6893 		ASSERT3U(psize, >, 0);
6894 		ASSERT(ARC_BUF_COMPRESSED(buf));
6895 		arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6896 		    ARC_HDR_USE_RESERVE);
6897 		abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6898 	} else if (!(HDR_UNCACHED(hdr) ||
6899 	    abd_size_alloc_linear(arc_buf_size(buf))) ||
6900 	    !arc_can_share(hdr, buf)) {
6901 		/*
6902 		 * Ideally, we would always copy the io_abd into b_pabd, but the
6903 		 * user may have disabled compressed ARC, thus we must check the
6904 		 * hdr's compression setting rather than the io_bp's.
6905 		 */
6906 		if (BP_IS_ENCRYPTED(bp)) {
6907 			ASSERT3U(psize, >, 0);
6908 			arc_hdr_alloc_abd(hdr, ARC_HDR_ALLOC_RDATA |
6909 			    ARC_HDR_USE_RESERVE);
6910 			abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6911 		} else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6912 		    !ARC_BUF_COMPRESSED(buf)) {
6913 			ASSERT3U(psize, >, 0);
6914 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6915 			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6916 		} else {
6917 			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6918 			arc_hdr_alloc_abd(hdr, ARC_HDR_USE_RESERVE);
6919 			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6920 			    arc_buf_size(buf));
6921 		}
6922 	} else {
6923 		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6924 		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6925 		ASSERT3P(hdr->b_l1hdr.b_buf, ==, buf);
6926 		ASSERT(ARC_BUF_LAST(buf));
6927 
6928 		arc_share_buf(hdr, buf);
6929 	}
6930 
6931 out:
6932 	arc_hdr_verify(hdr, bp);
6933 	spl_fstrans_unmark(cookie);
6934 }
6935 
6936 static void
arc_write_children_ready(zio_t * zio)6937 arc_write_children_ready(zio_t *zio)
6938 {
6939 	arc_write_callback_t *callback = zio->io_private;
6940 	arc_buf_t *buf = callback->awcb_buf;
6941 
6942 	callback->awcb_children_ready(zio, buf, callback->awcb_private);
6943 }
6944 
6945 static void
arc_write_done(zio_t * zio)6946 arc_write_done(zio_t *zio)
6947 {
6948 	arc_write_callback_t *callback = zio->io_private;
6949 	arc_buf_t *buf = callback->awcb_buf;
6950 	arc_buf_hdr_t *hdr = buf->b_hdr;
6951 
6952 	ASSERT0P(hdr->b_l1hdr.b_acb);
6953 
6954 	if (zio->io_error == 0) {
6955 		arc_hdr_verify(hdr, zio->io_bp);
6956 
6957 		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6958 			buf_discard_identity(hdr);
6959 		} else {
6960 			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6961 			hdr->b_birth = BP_GET_PHYSICAL_BIRTH(zio->io_bp);
6962 		}
6963 	} else {
6964 		ASSERT(HDR_EMPTY(hdr));
6965 	}
6966 
6967 	/*
6968 	 * If the block to be written was all-zero or compressed enough to be
6969 	 * embedded in the BP, no write was performed so there will be no
6970 	 * dva/birth/checksum.  The buffer must therefore remain anonymous
6971 	 * (and uncached).
6972 	 */
6973 	if (!HDR_EMPTY(hdr)) {
6974 		arc_buf_hdr_t *exists;
6975 		kmutex_t *hash_lock;
6976 
6977 		ASSERT0(zio->io_error);
6978 
6979 		arc_cksum_verify(buf);
6980 
6981 		exists = buf_hash_insert(hdr, &hash_lock);
6982 		if (exists != NULL) {
6983 			/*
6984 			 * This can only happen if we overwrite for
6985 			 * sync-to-convergence, because we remove
6986 			 * buffers from the hash table when we arc_free().
6987 			 */
6988 			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6989 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6990 					panic("bad overwrite, hdr=%p exists=%p",
6991 					    (void *)hdr, (void *)exists);
6992 				ASSERT(zfs_refcount_is_zero(
6993 				    &exists->b_l1hdr.b_refcnt));
6994 				arc_change_state(arc_anon, exists);
6995 				arc_hdr_destroy(exists);
6996 				mutex_exit(hash_lock);
6997 				exists = buf_hash_insert(hdr, &hash_lock);
6998 				ASSERT0P(exists);
6999 			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7000 				/* nopwrite */
7001 				ASSERT(zio->io_prop.zp_nopwrite);
7002 				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7003 					panic("bad nopwrite, hdr=%p exists=%p",
7004 					    (void *)hdr, (void *)exists);
7005 			} else {
7006 				/* Dedup */
7007 				ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7008 				ASSERT(ARC_BUF_LAST(hdr->b_l1hdr.b_buf));
7009 				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7010 				ASSERT(BP_GET_DEDUP(zio->io_bp));
7011 				ASSERT0(BP_GET_LEVEL(zio->io_bp));
7012 			}
7013 		}
7014 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7015 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
7016 		/* if it's not anon, we are doing a scrub */
7017 		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7018 			arc_access(hdr, 0, B_FALSE);
7019 		mutex_exit(hash_lock);
7020 	} else {
7021 		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7022 		VERIFY3S(remove_reference(hdr, hdr), >, 0);
7023 	}
7024 
7025 	callback->awcb_done(zio, buf, callback->awcb_private);
7026 
7027 	abd_free(zio->io_abd);
7028 	kmem_free(callback, sizeof (arc_write_callback_t));
7029 }
7030 
7031 zio_t *
arc_write(zio_t * pio,spa_t * spa,uint64_t txg,blkptr_t * bp,arc_buf_t * buf,boolean_t uncached,boolean_t l2arc,const zio_prop_t * zp,arc_write_done_func_t * ready,arc_write_done_func_t * children_ready,arc_write_done_func_t * done,void * private,zio_priority_t priority,int zio_flags,const zbookmark_phys_t * zb)7032 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7033     blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
7034     const zio_prop_t *zp, arc_write_done_func_t *ready,
7035     arc_write_done_func_t *children_ready, arc_write_done_func_t *done,
7036     void *private, zio_priority_t priority, int zio_flags,
7037     const zbookmark_phys_t *zb)
7038 {
7039 	arc_buf_hdr_t *hdr = buf->b_hdr;
7040 	arc_write_callback_t *callback;
7041 	zio_t *zio;
7042 	zio_prop_t localprop = *zp;
7043 
7044 	ASSERT3P(ready, !=, NULL);
7045 	ASSERT3P(done, !=, NULL);
7046 	ASSERT(!HDR_IO_ERROR(hdr));
7047 	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7048 	ASSERT0P(hdr->b_l1hdr.b_acb);
7049 	ASSERT3P(hdr->b_l1hdr.b_buf, !=, NULL);
7050 	if (uncached)
7051 		arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
7052 	else if (l2arc)
7053 		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7054 
7055 	if (ARC_BUF_ENCRYPTED(buf)) {
7056 		ASSERT(ARC_BUF_COMPRESSED(buf));
7057 		localprop.zp_encrypt = B_TRUE;
7058 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7059 		localprop.zp_complevel = hdr->b_complevel;
7060 		localprop.zp_byteorder =
7061 		    (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7062 		    ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7063 		memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
7064 		    ZIO_DATA_SALT_LEN);
7065 		memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
7066 		    ZIO_DATA_IV_LEN);
7067 		memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
7068 		    ZIO_DATA_MAC_LEN);
7069 		if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7070 			localprop.zp_nopwrite = B_FALSE;
7071 			localprop.zp_copies =
7072 			    MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7073 			localprop.zp_gang_copies =
7074 			    MIN(localprop.zp_gang_copies, SPA_DVAS_PER_BP - 1);
7075 		}
7076 		zio_flags |= ZIO_FLAG_RAW;
7077 	} else if (ARC_BUF_COMPRESSED(buf)) {
7078 		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7079 		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7080 		localprop.zp_complevel = hdr->b_complevel;
7081 		zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7082 	}
7083 	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7084 	callback->awcb_ready = ready;
7085 	callback->awcb_children_ready = children_ready;
7086 	callback->awcb_done = done;
7087 	callback->awcb_private = private;
7088 	callback->awcb_buf = buf;
7089 
7090 	/*
7091 	 * The hdr's b_pabd is now stale, free it now. A new data block
7092 	 * will be allocated when the zio pipeline calls arc_write_ready().
7093 	 */
7094 	if (hdr->b_l1hdr.b_pabd != NULL) {
7095 		/*
7096 		 * If the buf is currently sharing the data block with
7097 		 * the hdr then we need to break that relationship here.
7098 		 * The hdr will remain with a NULL data pointer and the
7099 		 * buf will take sole ownership of the block.
7100 		 */
7101 		if (ARC_BUF_SHARED(buf)) {
7102 			arc_unshare_buf(hdr, buf);
7103 		} else {
7104 			ASSERT(!arc_buf_is_shared(buf));
7105 			arc_hdr_free_abd(hdr, B_FALSE);
7106 		}
7107 		VERIFY3P(buf->b_data, !=, NULL);
7108 	}
7109 
7110 	if (HDR_HAS_RABD(hdr))
7111 		arc_hdr_free_abd(hdr, B_TRUE);
7112 
7113 	if (!(zio_flags & ZIO_FLAG_RAW))
7114 		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7115 
7116 	ASSERT(!arc_buf_is_shared(buf));
7117 	ASSERT0P(hdr->b_l1hdr.b_pabd);
7118 
7119 	zio = zio_write(pio, spa, txg, bp,
7120 	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7121 	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7122 	    (children_ready != NULL) ? arc_write_children_ready : NULL,
7123 	    arc_write_done, callback, priority, zio_flags, zb);
7124 
7125 	return (zio);
7126 }
7127 
7128 void
arc_tempreserve_clear(uint64_t reserve)7129 arc_tempreserve_clear(uint64_t reserve)
7130 {
7131 	atomic_add_64(&arc_tempreserve, -reserve);
7132 	ASSERT((int64_t)arc_tempreserve >= 0);
7133 }
7134 
7135 int
arc_tempreserve_space(spa_t * spa,uint64_t reserve,uint64_t txg)7136 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7137 {
7138 	int error;
7139 	uint64_t anon_size;
7140 
7141 	if (!arc_no_grow &&
7142 	    reserve > arc_c/4 &&
7143 	    reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7144 		arc_c = MIN(arc_c_max, reserve * 4);
7145 
7146 	/*
7147 	 * Throttle when the calculated memory footprint for the TXG
7148 	 * exceeds the target ARC size.
7149 	 */
7150 	if (reserve > arc_c) {
7151 		DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7152 		return (SET_ERROR(ERESTART));
7153 	}
7154 
7155 	/*
7156 	 * Don't count loaned bufs as in flight dirty data to prevent long
7157 	 * network delays from blocking transactions that are ready to be
7158 	 * assigned to a txg.
7159 	 */
7160 
7161 	/* assert that it has not wrapped around */
7162 	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7163 
7164 	anon_size = MAX((int64_t)
7165 	    (zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_DATA]) +
7166 	    zfs_refcount_count(&arc_anon->arcs_size[ARC_BUFC_METADATA]) -
7167 	    arc_loaned_bytes), 0);
7168 
7169 	/*
7170 	 * Writes will, almost always, require additional memory allocations
7171 	 * in order to compress/encrypt/etc the data.  We therefore need to
7172 	 * make sure that there is sufficient available memory for this.
7173 	 */
7174 	error = arc_memory_throttle(spa, reserve, txg);
7175 	if (error != 0)
7176 		return (error);
7177 
7178 	/*
7179 	 * Throttle writes when the amount of dirty data in the cache
7180 	 * gets too large.  We try to keep the cache less than half full
7181 	 * of dirty blocks so that our sync times don't grow too large.
7182 	 *
7183 	 * In the case of one pool being built on another pool, we want
7184 	 * to make sure we don't end up throttling the lower (backing)
7185 	 * pool when the upper pool is the majority contributor to dirty
7186 	 * data. To insure we make forward progress during throttling, we
7187 	 * also check the current pool's net dirty data and only throttle
7188 	 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7189 	 * data in the cache.
7190 	 *
7191 	 * Note: if two requests come in concurrently, we might let them
7192 	 * both succeed, when one of them should fail.  Not a huge deal.
7193 	 */
7194 	uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7195 	uint64_t spa_dirty_anon = spa_dirty_data(spa);
7196 	uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7197 	if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7198 	    anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7199 	    spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7200 #ifdef ZFS_DEBUG
7201 		uint64_t meta_esize = zfs_refcount_count(
7202 		    &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7203 		uint64_t data_esize =
7204 		    zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7205 		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7206 		    "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7207 		    (u_longlong_t)arc_tempreserve >> 10,
7208 		    (u_longlong_t)meta_esize >> 10,
7209 		    (u_longlong_t)data_esize >> 10,
7210 		    (u_longlong_t)reserve >> 10,
7211 		    (u_longlong_t)rarc_c >> 10);
7212 #endif
7213 		DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7214 		return (SET_ERROR(ERESTART));
7215 	}
7216 	atomic_add_64(&arc_tempreserve, reserve);
7217 	return (0);
7218 }
7219 
7220 static void
arc_kstat_update_state(arc_state_t * state,kstat_named_t * size,kstat_named_t * data,kstat_named_t * metadata,kstat_named_t * evict_data,kstat_named_t * evict_metadata)7221 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7222     kstat_named_t *data, kstat_named_t *metadata,
7223     kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7224 {
7225 	data->value.ui64 =
7226 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_DATA]);
7227 	metadata->value.ui64 =
7228 	    zfs_refcount_count(&state->arcs_size[ARC_BUFC_METADATA]);
7229 	size->value.ui64 = data->value.ui64 + metadata->value.ui64;
7230 	evict_data->value.ui64 =
7231 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7232 	evict_metadata->value.ui64 =
7233 	    zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7234 }
7235 
7236 static int
arc_kstat_update(kstat_t * ksp,int rw)7237 arc_kstat_update(kstat_t *ksp, int rw)
7238 {
7239 	arc_stats_t *as = ksp->ks_data;
7240 
7241 	if (rw == KSTAT_WRITE)
7242 		return (SET_ERROR(EACCES));
7243 
7244 	as->arcstat_hits.value.ui64 =
7245 	    wmsum_value(&arc_sums.arcstat_hits);
7246 	as->arcstat_iohits.value.ui64 =
7247 	    wmsum_value(&arc_sums.arcstat_iohits);
7248 	as->arcstat_misses.value.ui64 =
7249 	    wmsum_value(&arc_sums.arcstat_misses);
7250 	as->arcstat_demand_data_hits.value.ui64 =
7251 	    wmsum_value(&arc_sums.arcstat_demand_data_hits);
7252 	as->arcstat_demand_data_iohits.value.ui64 =
7253 	    wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7254 	as->arcstat_demand_data_misses.value.ui64 =
7255 	    wmsum_value(&arc_sums.arcstat_demand_data_misses);
7256 	as->arcstat_demand_metadata_hits.value.ui64 =
7257 	    wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7258 	as->arcstat_demand_metadata_iohits.value.ui64 =
7259 	    wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7260 	as->arcstat_demand_metadata_misses.value.ui64 =
7261 	    wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7262 	as->arcstat_prefetch_data_hits.value.ui64 =
7263 	    wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7264 	as->arcstat_prefetch_data_iohits.value.ui64 =
7265 	    wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7266 	as->arcstat_prefetch_data_misses.value.ui64 =
7267 	    wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7268 	as->arcstat_prefetch_metadata_hits.value.ui64 =
7269 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7270 	as->arcstat_prefetch_metadata_iohits.value.ui64 =
7271 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7272 	as->arcstat_prefetch_metadata_misses.value.ui64 =
7273 	    wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7274 	as->arcstat_mru_hits.value.ui64 =
7275 	    wmsum_value(&arc_sums.arcstat_mru_hits);
7276 	as->arcstat_mru_ghost_hits.value.ui64 =
7277 	    wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7278 	as->arcstat_mfu_hits.value.ui64 =
7279 	    wmsum_value(&arc_sums.arcstat_mfu_hits);
7280 	as->arcstat_mfu_ghost_hits.value.ui64 =
7281 	    wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7282 	as->arcstat_uncached_hits.value.ui64 =
7283 	    wmsum_value(&arc_sums.arcstat_uncached_hits);
7284 	as->arcstat_deleted.value.ui64 =
7285 	    wmsum_value(&arc_sums.arcstat_deleted);
7286 	as->arcstat_mutex_miss.value.ui64 =
7287 	    wmsum_value(&arc_sums.arcstat_mutex_miss);
7288 	as->arcstat_access_skip.value.ui64 =
7289 	    wmsum_value(&arc_sums.arcstat_access_skip);
7290 	as->arcstat_evict_skip.value.ui64 =
7291 	    wmsum_value(&arc_sums.arcstat_evict_skip);
7292 	as->arcstat_evict_not_enough.value.ui64 =
7293 	    wmsum_value(&arc_sums.arcstat_evict_not_enough);
7294 	as->arcstat_evict_l2_cached.value.ui64 =
7295 	    wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7296 	as->arcstat_evict_l2_eligible.value.ui64 =
7297 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7298 	as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7299 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7300 	as->arcstat_evict_l2_eligible_mru.value.ui64 =
7301 	    wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7302 	as->arcstat_evict_l2_ineligible.value.ui64 =
7303 	    wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7304 	as->arcstat_evict_l2_skip.value.ui64 =
7305 	    wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7306 	as->arcstat_hash_elements.value.ui64 =
7307 	    as->arcstat_hash_elements_max.value.ui64 =
7308 	    wmsum_value(&arc_sums.arcstat_hash_elements);
7309 	as->arcstat_hash_collisions.value.ui64 =
7310 	    wmsum_value(&arc_sums.arcstat_hash_collisions);
7311 	as->arcstat_hash_chains.value.ui64 =
7312 	    wmsum_value(&arc_sums.arcstat_hash_chains);
7313 	as->arcstat_size.value.ui64 =
7314 	    aggsum_value(&arc_sums.arcstat_size);
7315 	as->arcstat_compressed_size.value.ui64 =
7316 	    wmsum_value(&arc_sums.arcstat_compressed_size);
7317 	as->arcstat_uncompressed_size.value.ui64 =
7318 	    wmsum_value(&arc_sums.arcstat_uncompressed_size);
7319 	as->arcstat_overhead_size.value.ui64 =
7320 	    wmsum_value(&arc_sums.arcstat_overhead_size);
7321 	as->arcstat_hdr_size.value.ui64 =
7322 	    wmsum_value(&arc_sums.arcstat_hdr_size);
7323 	as->arcstat_data_size.value.ui64 =
7324 	    wmsum_value(&arc_sums.arcstat_data_size);
7325 	as->arcstat_metadata_size.value.ui64 =
7326 	    wmsum_value(&arc_sums.arcstat_metadata_size);
7327 	as->arcstat_dbuf_size.value.ui64 =
7328 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7329 #if defined(COMPAT_FREEBSD11)
7330 	as->arcstat_other_size.value.ui64 =
7331 	    wmsum_value(&arc_sums.arcstat_bonus_size) +
7332 	    aggsum_value(&arc_sums.arcstat_dnode_size) +
7333 	    wmsum_value(&arc_sums.arcstat_dbuf_size);
7334 #endif
7335 
7336 	arc_kstat_update_state(arc_anon,
7337 	    &as->arcstat_anon_size,
7338 	    &as->arcstat_anon_data,
7339 	    &as->arcstat_anon_metadata,
7340 	    &as->arcstat_anon_evictable_data,
7341 	    &as->arcstat_anon_evictable_metadata);
7342 	arc_kstat_update_state(arc_mru,
7343 	    &as->arcstat_mru_size,
7344 	    &as->arcstat_mru_data,
7345 	    &as->arcstat_mru_metadata,
7346 	    &as->arcstat_mru_evictable_data,
7347 	    &as->arcstat_mru_evictable_metadata);
7348 	arc_kstat_update_state(arc_mru_ghost,
7349 	    &as->arcstat_mru_ghost_size,
7350 	    &as->arcstat_mru_ghost_data,
7351 	    &as->arcstat_mru_ghost_metadata,
7352 	    &as->arcstat_mru_ghost_evictable_data,
7353 	    &as->arcstat_mru_ghost_evictable_metadata);
7354 	arc_kstat_update_state(arc_mfu,
7355 	    &as->arcstat_mfu_size,
7356 	    &as->arcstat_mfu_data,
7357 	    &as->arcstat_mfu_metadata,
7358 	    &as->arcstat_mfu_evictable_data,
7359 	    &as->arcstat_mfu_evictable_metadata);
7360 	arc_kstat_update_state(arc_mfu_ghost,
7361 	    &as->arcstat_mfu_ghost_size,
7362 	    &as->arcstat_mfu_ghost_data,
7363 	    &as->arcstat_mfu_ghost_metadata,
7364 	    &as->arcstat_mfu_ghost_evictable_data,
7365 	    &as->arcstat_mfu_ghost_evictable_metadata);
7366 	arc_kstat_update_state(arc_uncached,
7367 	    &as->arcstat_uncached_size,
7368 	    &as->arcstat_uncached_data,
7369 	    &as->arcstat_uncached_metadata,
7370 	    &as->arcstat_uncached_evictable_data,
7371 	    &as->arcstat_uncached_evictable_metadata);
7372 
7373 	as->arcstat_dnode_size.value.ui64 =
7374 	    aggsum_value(&arc_sums.arcstat_dnode_size);
7375 	as->arcstat_bonus_size.value.ui64 =
7376 	    wmsum_value(&arc_sums.arcstat_bonus_size);
7377 	as->arcstat_l2_hits.value.ui64 =
7378 	    wmsum_value(&arc_sums.arcstat_l2_hits);
7379 	as->arcstat_l2_misses.value.ui64 =
7380 	    wmsum_value(&arc_sums.arcstat_l2_misses);
7381 	as->arcstat_l2_prefetch_asize.value.ui64 =
7382 	    wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7383 	as->arcstat_l2_mru_asize.value.ui64 =
7384 	    wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7385 	as->arcstat_l2_mfu_asize.value.ui64 =
7386 	    wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7387 	as->arcstat_l2_bufc_data_asize.value.ui64 =
7388 	    wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7389 	as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7390 	    wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7391 	as->arcstat_l2_feeds.value.ui64 =
7392 	    wmsum_value(&arc_sums.arcstat_l2_feeds);
7393 	as->arcstat_l2_rw_clash.value.ui64 =
7394 	    wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7395 	as->arcstat_l2_read_bytes.value.ui64 =
7396 	    wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7397 	as->arcstat_l2_write_bytes.value.ui64 =
7398 	    wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7399 	as->arcstat_l2_writes_sent.value.ui64 =
7400 	    wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7401 	as->arcstat_l2_writes_done.value.ui64 =
7402 	    wmsum_value(&arc_sums.arcstat_l2_writes_done);
7403 	as->arcstat_l2_writes_error.value.ui64 =
7404 	    wmsum_value(&arc_sums.arcstat_l2_writes_error);
7405 	as->arcstat_l2_writes_lock_retry.value.ui64 =
7406 	    wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7407 	as->arcstat_l2_evict_lock_retry.value.ui64 =
7408 	    wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7409 	as->arcstat_l2_evict_reading.value.ui64 =
7410 	    wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7411 	as->arcstat_l2_evict_l1cached.value.ui64 =
7412 	    wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7413 	as->arcstat_l2_free_on_write.value.ui64 =
7414 	    wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7415 	as->arcstat_l2_abort_lowmem.value.ui64 =
7416 	    wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7417 	as->arcstat_l2_cksum_bad.value.ui64 =
7418 	    wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7419 	as->arcstat_l2_io_error.value.ui64 =
7420 	    wmsum_value(&arc_sums.arcstat_l2_io_error);
7421 	as->arcstat_l2_lsize.value.ui64 =
7422 	    wmsum_value(&arc_sums.arcstat_l2_lsize);
7423 	as->arcstat_l2_psize.value.ui64 =
7424 	    wmsum_value(&arc_sums.arcstat_l2_psize);
7425 	as->arcstat_l2_hdr_size.value.ui64 =
7426 	    aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7427 	as->arcstat_l2_log_blk_writes.value.ui64 =
7428 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7429 	as->arcstat_l2_log_blk_asize.value.ui64 =
7430 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7431 	as->arcstat_l2_log_blk_count.value.ui64 =
7432 	    wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7433 	as->arcstat_l2_rebuild_success.value.ui64 =
7434 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7435 	as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7436 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7437 	as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7438 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7439 	as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7440 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7441 	as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7442 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7443 	as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7444 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7445 	as->arcstat_l2_rebuild_size.value.ui64 =
7446 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7447 	as->arcstat_l2_rebuild_asize.value.ui64 =
7448 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7449 	as->arcstat_l2_rebuild_bufs.value.ui64 =
7450 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7451 	as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7452 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7453 	as->arcstat_l2_rebuild_log_blks.value.ui64 =
7454 	    wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7455 	as->arcstat_memory_throttle_count.value.ui64 =
7456 	    wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7457 	as->arcstat_memory_direct_count.value.ui64 =
7458 	    wmsum_value(&arc_sums.arcstat_memory_direct_count);
7459 	as->arcstat_memory_indirect_count.value.ui64 =
7460 	    wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7461 
7462 	as->arcstat_memory_all_bytes.value.ui64 =
7463 	    arc_all_memory();
7464 	as->arcstat_memory_free_bytes.value.ui64 =
7465 	    arc_free_memory();
7466 	as->arcstat_memory_available_bytes.value.i64 =
7467 	    arc_available_memory();
7468 
7469 	as->arcstat_prune.value.ui64 =
7470 	    wmsum_value(&arc_sums.arcstat_prune);
7471 	as->arcstat_meta_used.value.ui64 =
7472 	    wmsum_value(&arc_sums.arcstat_meta_used);
7473 	as->arcstat_async_upgrade_sync.value.ui64 =
7474 	    wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7475 	as->arcstat_predictive_prefetch.value.ui64 =
7476 	    wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7477 	as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7478 	    wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7479 	as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7480 	    wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7481 	as->arcstat_prescient_prefetch.value.ui64 =
7482 	    wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7483 	as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7484 	    wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7485 	as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7486 	    wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7487 	as->arcstat_raw_size.value.ui64 =
7488 	    wmsum_value(&arc_sums.arcstat_raw_size);
7489 	as->arcstat_cached_only_in_progress.value.ui64 =
7490 	    wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7491 	as->arcstat_abd_chunk_waste_size.value.ui64 =
7492 	    wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7493 
7494 	return (0);
7495 }
7496 
7497 /*
7498  * This function *must* return indices evenly distributed between all
7499  * sublists of the multilist. This is needed due to how the ARC eviction
7500  * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7501  * distributed between all sublists and uses this assumption when
7502  * deciding which sublist to evict from and how much to evict from it.
7503  */
7504 static unsigned int
arc_state_multilist_index_func(multilist_t * ml,void * obj)7505 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7506 {
7507 	arc_buf_hdr_t *hdr = obj;
7508 
7509 	/*
7510 	 * We rely on b_dva to generate evenly distributed index
7511 	 * numbers using buf_hash below. So, as an added precaution,
7512 	 * let's make sure we never add empty buffers to the arc lists.
7513 	 */
7514 	ASSERT(!HDR_EMPTY(hdr));
7515 
7516 	/*
7517 	 * The assumption here, is the hash value for a given
7518 	 * arc_buf_hdr_t will remain constant throughout its lifetime
7519 	 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7520 	 * Thus, we don't need to store the header's sublist index
7521 	 * on insertion, as this index can be recalculated on removal.
7522 	 *
7523 	 * Also, the low order bits of the hash value are thought to be
7524 	 * distributed evenly. Otherwise, in the case that the multilist
7525 	 * has a power of two number of sublists, each sublists' usage
7526 	 * would not be evenly distributed. In this context full 64bit
7527 	 * division would be a waste of time, so limit it to 32 bits.
7528 	 */
7529 	return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7530 	    multilist_get_num_sublists(ml));
7531 }
7532 
7533 static unsigned int
arc_state_l2c_multilist_index_func(multilist_t * ml,void * obj)7534 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7535 {
7536 	panic("Header %p insert into arc_l2c_only %p", obj, ml);
7537 }
7538 
7539 #define	WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do {	\
7540 	if ((do_warn) && (tuning) && ((tuning) != (value))) {	\
7541 		cmn_err(CE_WARN,				\
7542 		    "ignoring tunable %s (using %llu instead)",	\
7543 		    (#tuning), (u_longlong_t)(value));	\
7544 	}							\
7545 } while (0)
7546 
7547 /*
7548  * Called during module initialization and periodically thereafter to
7549  * apply reasonable changes to the exposed performance tunings.  Can also be
7550  * called explicitly by param_set_arc_*() functions when ARC tunables are
7551  * updated manually.  Non-zero zfs_* values which differ from the currently set
7552  * values will be applied.
7553  */
7554 void
arc_tuning_update(boolean_t verbose)7555 arc_tuning_update(boolean_t verbose)
7556 {
7557 	uint64_t allmem = arc_all_memory();
7558 
7559 	/* Valid range: 32M - <arc_c_max> */
7560 	if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7561 	    (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7562 	    (zfs_arc_min <= arc_c_max)) {
7563 		arc_c_min = zfs_arc_min;
7564 		arc_c = MAX(arc_c, arc_c_min);
7565 	}
7566 	WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7567 
7568 	/* Valid range: 64M - <all physical memory> */
7569 	if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7570 	    (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7571 	    (zfs_arc_max > arc_c_min)) {
7572 		arc_c_max = zfs_arc_max;
7573 		arc_c = MIN(arc_c, arc_c_max);
7574 		if (arc_dnode_limit > arc_c_max)
7575 			arc_dnode_limit = arc_c_max;
7576 	}
7577 	WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7578 
7579 	/* Valid range: 0 - <all physical memory> */
7580 	arc_dnode_limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7581 	    MIN(zfs_arc_dnode_limit_percent, 100) * arc_c_max / 100;
7582 	WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_limit, verbose);
7583 
7584 	/* Valid range: 1 - N */
7585 	if (zfs_arc_grow_retry)
7586 		arc_grow_retry = zfs_arc_grow_retry;
7587 
7588 	/* Valid range: 1 - N */
7589 	if (zfs_arc_shrink_shift) {
7590 		arc_shrink_shift = zfs_arc_shrink_shift;
7591 		arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7592 	}
7593 
7594 	/* Valid range: 1 - N ms */
7595 	if (zfs_arc_min_prefetch_ms)
7596 		arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7597 
7598 	/* Valid range: 1 - N ms */
7599 	if (zfs_arc_min_prescient_prefetch_ms) {
7600 		arc_min_prescient_prefetch_ms =
7601 		    zfs_arc_min_prescient_prefetch_ms;
7602 	}
7603 
7604 	/* Valid range: 0 - 100 */
7605 	if (zfs_arc_lotsfree_percent <= 100)
7606 		arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7607 	WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7608 	    verbose);
7609 
7610 	/* Valid range: 0 - <all physical memory> */
7611 	if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7612 		arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7613 	WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7614 }
7615 
7616 static void
arc_state_multilist_init(multilist_t * ml,multilist_sublist_index_func_t * index_func,int * maxcountp)7617 arc_state_multilist_init(multilist_t *ml,
7618     multilist_sublist_index_func_t *index_func, int *maxcountp)
7619 {
7620 	multilist_create(ml, sizeof (arc_buf_hdr_t),
7621 	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7622 	*maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7623 }
7624 
7625 static void
arc_state_init(void)7626 arc_state_init(void)
7627 {
7628 	int num_sublists = 0;
7629 
7630 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7631 	    arc_state_multilist_index_func, &num_sublists);
7632 	arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7633 	    arc_state_multilist_index_func, &num_sublists);
7634 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7635 	    arc_state_multilist_index_func, &num_sublists);
7636 	arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7637 	    arc_state_multilist_index_func, &num_sublists);
7638 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7639 	    arc_state_multilist_index_func, &num_sublists);
7640 	arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7641 	    arc_state_multilist_index_func, &num_sublists);
7642 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7643 	    arc_state_multilist_index_func, &num_sublists);
7644 	arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7645 	    arc_state_multilist_index_func, &num_sublists);
7646 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7647 	    arc_state_multilist_index_func, &num_sublists);
7648 	arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7649 	    arc_state_multilist_index_func, &num_sublists);
7650 
7651 	/*
7652 	 * L2 headers should never be on the L2 state list since they don't
7653 	 * have L1 headers allocated.  Special index function asserts that.
7654 	 */
7655 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7656 	    arc_state_l2c_multilist_index_func, &num_sublists);
7657 	arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7658 	    arc_state_l2c_multilist_index_func, &num_sublists);
7659 
7660 	/*
7661 	 * Keep track of the number of markers needed to reclaim buffers from
7662 	 * any ARC state.  The markers will be pre-allocated so as to minimize
7663 	 * the number of memory allocations performed by the eviction thread.
7664 	 */
7665 	arc_state_evict_marker_count = num_sublists;
7666 
7667 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7668 	zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7669 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7670 	zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7671 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7672 	zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7673 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7674 	zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7675 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7676 	zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7677 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7678 	zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7679 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7680 	zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7681 
7682 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7683 	zfs_refcount_create(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7684 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7685 	zfs_refcount_create(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7686 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7687 	zfs_refcount_create(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7688 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7689 	zfs_refcount_create(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7690 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7691 	zfs_refcount_create(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7692 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7693 	zfs_refcount_create(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7694 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7695 	zfs_refcount_create(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7696 
7697 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7698 	wmsum_init(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7699 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA], 0);
7700 	wmsum_init(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA], 0);
7701 
7702 	wmsum_init(&arc_sums.arcstat_hits, 0);
7703 	wmsum_init(&arc_sums.arcstat_iohits, 0);
7704 	wmsum_init(&arc_sums.arcstat_misses, 0);
7705 	wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7706 	wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7707 	wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7708 	wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7709 	wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7710 	wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7711 	wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7712 	wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7713 	wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7714 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7715 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7716 	wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7717 	wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7718 	wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7719 	wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7720 	wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7721 	wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7722 	wmsum_init(&arc_sums.arcstat_deleted, 0);
7723 	wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7724 	wmsum_init(&arc_sums.arcstat_access_skip, 0);
7725 	wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7726 	wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7727 	wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7728 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7729 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7730 	wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7731 	wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7732 	wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7733 	wmsum_init(&arc_sums.arcstat_hash_elements, 0);
7734 	wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7735 	wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7736 	aggsum_init(&arc_sums.arcstat_size, 0);
7737 	wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7738 	wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7739 	wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7740 	wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7741 	wmsum_init(&arc_sums.arcstat_data_size, 0);
7742 	wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7743 	wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7744 	aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7745 	wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7746 	wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7747 	wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7748 	wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7749 	wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7750 	wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7751 	wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7752 	wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7753 	wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7754 	wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7755 	wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7756 	wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7757 	wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7758 	wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7759 	wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7760 	wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7761 	wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7762 	wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7763 	wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7764 	wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7765 	wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7766 	wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7767 	wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7768 	wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7769 	wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7770 	aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7771 	wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7772 	wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7773 	wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7774 	wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7775 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7776 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7777 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7778 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7779 	wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7780 	wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7781 	wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7782 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7783 	wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7784 	wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7785 	wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7786 	wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7787 	wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7788 	wmsum_init(&arc_sums.arcstat_prune, 0);
7789 	wmsum_init(&arc_sums.arcstat_meta_used, 0);
7790 	wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7791 	wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7792 	wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7793 	wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7794 	wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7795 	wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7796 	wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7797 	wmsum_init(&arc_sums.arcstat_raw_size, 0);
7798 	wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7799 	wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7800 
7801 	arc_anon->arcs_state = ARC_STATE_ANON;
7802 	arc_mru->arcs_state = ARC_STATE_MRU;
7803 	arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7804 	arc_mfu->arcs_state = ARC_STATE_MFU;
7805 	arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7806 	arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7807 	arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7808 }
7809 
7810 static void
arc_state_fini(void)7811 arc_state_fini(void)
7812 {
7813 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7814 	zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7815 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7816 	zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7817 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7818 	zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7819 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7820 	zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7821 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7822 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7823 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7824 	zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7825 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7826 	zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7827 
7828 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_DATA]);
7829 	zfs_refcount_destroy(&arc_anon->arcs_size[ARC_BUFC_METADATA]);
7830 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_DATA]);
7831 	zfs_refcount_destroy(&arc_mru->arcs_size[ARC_BUFC_METADATA]);
7832 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_DATA]);
7833 	zfs_refcount_destroy(&arc_mru_ghost->arcs_size[ARC_BUFC_METADATA]);
7834 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_DATA]);
7835 	zfs_refcount_destroy(&arc_mfu->arcs_size[ARC_BUFC_METADATA]);
7836 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_DATA]);
7837 	zfs_refcount_destroy(&arc_mfu_ghost->arcs_size[ARC_BUFC_METADATA]);
7838 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_DATA]);
7839 	zfs_refcount_destroy(&arc_l2c_only->arcs_size[ARC_BUFC_METADATA]);
7840 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_DATA]);
7841 	zfs_refcount_destroy(&arc_uncached->arcs_size[ARC_BUFC_METADATA]);
7842 
7843 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7844 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7845 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7846 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7847 	multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7848 	multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7849 	multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7850 	multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7851 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7852 	multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7853 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7854 	multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7855 
7856 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_DATA]);
7857 	wmsum_fini(&arc_mru_ghost->arcs_hits[ARC_BUFC_METADATA]);
7858 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_DATA]);
7859 	wmsum_fini(&arc_mfu_ghost->arcs_hits[ARC_BUFC_METADATA]);
7860 
7861 	wmsum_fini(&arc_sums.arcstat_hits);
7862 	wmsum_fini(&arc_sums.arcstat_iohits);
7863 	wmsum_fini(&arc_sums.arcstat_misses);
7864 	wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7865 	wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7866 	wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7867 	wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7868 	wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7869 	wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7870 	wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7871 	wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7872 	wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7873 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7874 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7875 	wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7876 	wmsum_fini(&arc_sums.arcstat_mru_hits);
7877 	wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7878 	wmsum_fini(&arc_sums.arcstat_mfu_hits);
7879 	wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7880 	wmsum_fini(&arc_sums.arcstat_uncached_hits);
7881 	wmsum_fini(&arc_sums.arcstat_deleted);
7882 	wmsum_fini(&arc_sums.arcstat_mutex_miss);
7883 	wmsum_fini(&arc_sums.arcstat_access_skip);
7884 	wmsum_fini(&arc_sums.arcstat_evict_skip);
7885 	wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7886 	wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7887 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7888 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7889 	wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7890 	wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7891 	wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7892 	wmsum_fini(&arc_sums.arcstat_hash_elements);
7893 	wmsum_fini(&arc_sums.arcstat_hash_collisions);
7894 	wmsum_fini(&arc_sums.arcstat_hash_chains);
7895 	aggsum_fini(&arc_sums.arcstat_size);
7896 	wmsum_fini(&arc_sums.arcstat_compressed_size);
7897 	wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7898 	wmsum_fini(&arc_sums.arcstat_overhead_size);
7899 	wmsum_fini(&arc_sums.arcstat_hdr_size);
7900 	wmsum_fini(&arc_sums.arcstat_data_size);
7901 	wmsum_fini(&arc_sums.arcstat_metadata_size);
7902 	wmsum_fini(&arc_sums.arcstat_dbuf_size);
7903 	aggsum_fini(&arc_sums.arcstat_dnode_size);
7904 	wmsum_fini(&arc_sums.arcstat_bonus_size);
7905 	wmsum_fini(&arc_sums.arcstat_l2_hits);
7906 	wmsum_fini(&arc_sums.arcstat_l2_misses);
7907 	wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7908 	wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7909 	wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7910 	wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7911 	wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7912 	wmsum_fini(&arc_sums.arcstat_l2_feeds);
7913 	wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7914 	wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7915 	wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7916 	wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7917 	wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7918 	wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7919 	wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7920 	wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7921 	wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7922 	wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7923 	wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7924 	wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7925 	wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7926 	wmsum_fini(&arc_sums.arcstat_l2_io_error);
7927 	wmsum_fini(&arc_sums.arcstat_l2_lsize);
7928 	wmsum_fini(&arc_sums.arcstat_l2_psize);
7929 	aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7930 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7931 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7932 	wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7933 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7934 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7935 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7936 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7937 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7938 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7939 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7940 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7941 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7942 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7943 	wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7944 	wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7945 	wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7946 	wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7947 	wmsum_fini(&arc_sums.arcstat_prune);
7948 	wmsum_fini(&arc_sums.arcstat_meta_used);
7949 	wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7950 	wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7951 	wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7952 	wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7953 	wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7954 	wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7955 	wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7956 	wmsum_fini(&arc_sums.arcstat_raw_size);
7957 	wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7958 	wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7959 }
7960 
7961 uint64_t
arc_target_bytes(void)7962 arc_target_bytes(void)
7963 {
7964 	return (arc_c);
7965 }
7966 
7967 void
arc_set_limits(uint64_t allmem)7968 arc_set_limits(uint64_t allmem)
7969 {
7970 	/* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7971 	arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7972 
7973 	/* How to set default max varies by platform. */
7974 	arc_c_max = arc_default_max(arc_c_min, allmem);
7975 }
7976 
7977 void
arc_init(void)7978 arc_init(void)
7979 {
7980 	uint64_t percent, allmem = arc_all_memory();
7981 	mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
7982 	list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7983 	    offsetof(arc_evict_waiter_t, aew_node));
7984 
7985 	arc_min_prefetch_ms = 1000;
7986 	arc_min_prescient_prefetch_ms = 6000;
7987 
7988 #if defined(_KERNEL)
7989 	arc_lowmem_init();
7990 #endif
7991 
7992 	arc_set_limits(allmem);
7993 
7994 #ifdef _KERNEL
7995 	/*
7996 	 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7997 	 * environment before the module was loaded, don't block setting the
7998 	 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7999 	 * to a lower value.
8000 	 * zfs_arc_min will be handled by arc_tuning_update().
8001 	 */
8002 	if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
8003 	    zfs_arc_max < allmem) {
8004 		arc_c_max = zfs_arc_max;
8005 		if (arc_c_min >= arc_c_max) {
8006 			arc_c_min = MAX(zfs_arc_max / 2,
8007 			    2ULL << SPA_MAXBLOCKSHIFT);
8008 		}
8009 	}
8010 #else
8011 	/*
8012 	 * In userland, there's only the memory pressure that we artificially
8013 	 * create (see arc_available_memory()).  Don't let arc_c get too
8014 	 * small, because it can cause transactions to be larger than
8015 	 * arc_c, causing arc_tempreserve_space() to fail.
8016 	 */
8017 	arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
8018 #endif
8019 
8020 	arc_c = arc_c_min;
8021 	/*
8022 	 * 32-bit fixed point fractions of metadata from total ARC size,
8023 	 * MRU data from all data and MRU metadata from all metadata.
8024 	 */
8025 	arc_meta = (1ULL << 32) / 4;	/* Metadata is 25% of arc_c. */
8026 	arc_pd = (1ULL << 32) / 2;	/* Data MRU is 50% of data. */
8027 	arc_pm = (1ULL << 32) / 2;	/* Metadata MRU is 50% of metadata. */
8028 
8029 	percent = MIN(zfs_arc_dnode_limit_percent, 100);
8030 	arc_dnode_limit = arc_c_max * percent / 100;
8031 
8032 	/* Apply user specified tunings */
8033 	arc_tuning_update(B_TRUE);
8034 
8035 	/* if kmem_flags are set, lets try to use less memory */
8036 	if (kmem_debugging())
8037 		arc_c = arc_c / 2;
8038 	if (arc_c < arc_c_min)
8039 		arc_c = arc_c_min;
8040 
8041 	arc_register_hotplug();
8042 
8043 	arc_state_init();
8044 
8045 	buf_init();
8046 
8047 	list_create(&arc_prune_list, sizeof (arc_prune_t),
8048 	    offsetof(arc_prune_t, p_node));
8049 	mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8050 
8051 	arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8052 	    defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8053 
8054 	arc_evict_thread_init();
8055 
8056 	list_create(&arc_async_flush_list, sizeof (arc_async_flush_t),
8057 	    offsetof(arc_async_flush_t, af_node));
8058 	mutex_init(&arc_async_flush_lock, NULL, MUTEX_DEFAULT, NULL);
8059 	arc_flush_taskq = taskq_create("arc_flush", MIN(boot_ncpus, 4),
8060 	    defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
8061 
8062 	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8063 	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8064 
8065 	if (arc_ksp != NULL) {
8066 		arc_ksp->ks_data = &arc_stats;
8067 		arc_ksp->ks_update = arc_kstat_update;
8068 		kstat_install(arc_ksp);
8069 	}
8070 
8071 	arc_state_evict_markers =
8072 	    arc_state_alloc_markers(arc_state_evict_marker_count);
8073 	arc_evict_zthr = zthr_create_timer("arc_evict",
8074 	    arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
8075 	arc_reap_zthr = zthr_create_timer("arc_reap",
8076 	    arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8077 
8078 	arc_warm = B_FALSE;
8079 
8080 	/*
8081 	 * Calculate maximum amount of dirty data per pool.
8082 	 *
8083 	 * If it has been set by a module parameter, take that.
8084 	 * Otherwise, use a percentage of physical memory defined by
8085 	 * zfs_dirty_data_max_percent (default 10%) with a cap at
8086 	 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8087 	 */
8088 #ifdef __LP64__
8089 	if (zfs_dirty_data_max_max == 0)
8090 		zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8091 		    allmem * zfs_dirty_data_max_max_percent / 100);
8092 #else
8093 	if (zfs_dirty_data_max_max == 0)
8094 		zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8095 		    allmem * zfs_dirty_data_max_max_percent / 100);
8096 #endif
8097 
8098 	if (zfs_dirty_data_max == 0) {
8099 		zfs_dirty_data_max = allmem *
8100 		    zfs_dirty_data_max_percent / 100;
8101 		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8102 		    zfs_dirty_data_max_max);
8103 	}
8104 
8105 	if (zfs_wrlog_data_max == 0) {
8106 
8107 		/*
8108 		 * dp_wrlog_total is reduced for each txg at the end of
8109 		 * spa_sync(). However, dp_dirty_total is reduced every time
8110 		 * a block is written out. Thus under normal operation,
8111 		 * dp_wrlog_total could grow 2 times as big as
8112 		 * zfs_dirty_data_max.
8113 		 */
8114 		zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8115 	}
8116 }
8117 
8118 void
arc_fini(void)8119 arc_fini(void)
8120 {
8121 	arc_prune_t *p;
8122 
8123 #ifdef _KERNEL
8124 	arc_lowmem_fini();
8125 #endif /* _KERNEL */
8126 
8127 	/* Wait for any background flushes */
8128 	taskq_wait(arc_flush_taskq);
8129 	taskq_destroy(arc_flush_taskq);
8130 
8131 	/* Use B_TRUE to ensure *all* buffers are evicted */
8132 	arc_flush(NULL, B_TRUE);
8133 
8134 	if (arc_ksp != NULL) {
8135 		kstat_delete(arc_ksp);
8136 		arc_ksp = NULL;
8137 	}
8138 
8139 	taskq_wait(arc_prune_taskq);
8140 	taskq_destroy(arc_prune_taskq);
8141 
8142 	list_destroy(&arc_async_flush_list);
8143 	mutex_destroy(&arc_async_flush_lock);
8144 
8145 	mutex_enter(&arc_prune_mtx);
8146 	while ((p = list_remove_head(&arc_prune_list)) != NULL) {
8147 		(void) zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8148 		zfs_refcount_destroy(&p->p_refcnt);
8149 		kmem_free(p, sizeof (*p));
8150 	}
8151 	mutex_exit(&arc_prune_mtx);
8152 
8153 	list_destroy(&arc_prune_list);
8154 	mutex_destroy(&arc_prune_mtx);
8155 
8156 	if (arc_evict_taskq != NULL)
8157 		taskq_wait(arc_evict_taskq);
8158 
8159 	(void) zthr_cancel(arc_evict_zthr);
8160 	(void) zthr_cancel(arc_reap_zthr);
8161 	arc_state_free_markers(arc_state_evict_markers,
8162 	    arc_state_evict_marker_count);
8163 
8164 	if (arc_evict_taskq != NULL) {
8165 		taskq_destroy(arc_evict_taskq);
8166 		kmem_free(arc_evict_arg,
8167 		    sizeof (evict_arg_t) * zfs_arc_evict_threads);
8168 	}
8169 
8170 	mutex_destroy(&arc_evict_lock);
8171 	list_destroy(&arc_evict_waiters);
8172 
8173 	/*
8174 	 * Free any buffers that were tagged for destruction.  This needs
8175 	 * to occur before arc_state_fini() runs and destroys the aggsum
8176 	 * values which are updated when freeing scatter ABDs.
8177 	 */
8178 	l2arc_do_free_on_write();
8179 
8180 	/*
8181 	 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8182 	 * trigger the release of kmem magazines, which can callback to
8183 	 * arc_space_return() which accesses aggsums freed in act_state_fini().
8184 	 */
8185 	buf_fini();
8186 	arc_state_fini();
8187 
8188 	arc_unregister_hotplug();
8189 
8190 	/*
8191 	 * We destroy the zthrs after all the ARC state has been
8192 	 * torn down to avoid the case of them receiving any
8193 	 * wakeup() signals after they are destroyed.
8194 	 */
8195 	zthr_destroy(arc_evict_zthr);
8196 	zthr_destroy(arc_reap_zthr);
8197 
8198 	ASSERT0(arc_loaned_bytes);
8199 }
8200 
8201 /*
8202  * Level 2 ARC
8203  *
8204  * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8205  * It uses dedicated storage devices to hold cached data, which are populated
8206  * using large infrequent writes.  The main role of this cache is to boost
8207  * the performance of random read workloads.  The intended L2ARC devices
8208  * include short-stroked disks, solid state disks, and other media with
8209  * substantially faster read latency than disk.
8210  *
8211  *                 +-----------------------+
8212  *                 |         ARC           |
8213  *                 +-----------------------+
8214  *                    |         ^     ^
8215  *                    |         |     |
8216  *      l2arc_feed_thread()    arc_read()
8217  *                    |         |     |
8218  *                    |  l2arc read   |
8219  *                    V         |     |
8220  *               +---------------+    |
8221  *               |     L2ARC     |    |
8222  *               +---------------+    |
8223  *                   |    ^           |
8224  *          l2arc_write() |           |
8225  *                   |    |           |
8226  *                   V    |           |
8227  *                 +-------+      +-------+
8228  *                 | vdev  |      | vdev  |
8229  *                 | cache |      | cache |
8230  *                 +-------+      +-------+
8231  *                 +=========+     .-----.
8232  *                 :  L2ARC  :    |-_____-|
8233  *                 : devices :    | Disks |
8234  *                 +=========+    `-_____-'
8235  *
8236  * Read requests are satisfied from the following sources, in order:
8237  *
8238  *	1) ARC
8239  *	2) vdev cache of L2ARC devices
8240  *	3) L2ARC devices
8241  *	4) vdev cache of disks
8242  *	5) disks
8243  *
8244  * Some L2ARC device types exhibit extremely slow write performance.
8245  * To accommodate for this there are some significant differences between
8246  * the L2ARC and traditional cache design:
8247  *
8248  * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
8249  * the ARC behave as usual, freeing buffers and placing headers on ghost
8250  * lists.  The ARC does not send buffers to the L2ARC during eviction as
8251  * this would add inflated write latencies for all ARC memory pressure.
8252  *
8253  * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8254  * It does this by periodically scanning buffers from the eviction-end of
8255  * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8256  * not already there. It scans until a headroom of buffers is satisfied,
8257  * which itself is a buffer for ARC eviction. If a compressible buffer is
8258  * found during scanning and selected for writing to an L2ARC device, we
8259  * temporarily boost scanning headroom during the next scan cycle to make
8260  * sure we adapt to compression effects (which might significantly reduce
8261  * the data volume we write to L2ARC). The thread that does this is
8262  * l2arc_feed_thread(), illustrated below; example sizes are included to
8263  * provide a better sense of ratio than this diagram:
8264  *
8265  *	       head -->                        tail
8266  *	        +---------------------+----------+
8267  *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
8268  *	        +---------------------+----------+   |   o L2ARC eligible
8269  *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
8270  *	        +---------------------+----------+   |
8271  *	             15.9 Gbytes      ^ 32 Mbytes    |
8272  *	                           headroom          |
8273  *	                                      l2arc_feed_thread()
8274  *	                                             |
8275  *	                 l2arc write hand <--[oooo]--'
8276  *	                         |           8 Mbyte
8277  *	                         |          write max
8278  *	                         V
8279  *		  +==============================+
8280  *	L2ARC dev |####|#|###|###|    |####| ... |
8281  *	          +==============================+
8282  *	                     32 Gbytes
8283  *
8284  * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8285  * evicted, then the L2ARC has cached a buffer much sooner than it probably
8286  * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
8287  * safe to say that this is an uncommon case, since buffers at the end of
8288  * the ARC lists have moved there due to inactivity.
8289  *
8290  * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8291  * then the L2ARC simply misses copying some buffers.  This serves as a
8292  * pressure valve to prevent heavy read workloads from both stalling the ARC
8293  * with waits and clogging the L2ARC with writes.  This also helps prevent
8294  * the potential for the L2ARC to churn if it attempts to cache content too
8295  * quickly, such as during backups of the entire pool.
8296  *
8297  * 5. After system boot and before the ARC has filled main memory, there are
8298  * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8299  * lists can remain mostly static.  Instead of searching from tail of these
8300  * lists as pictured, the l2arc_feed_thread() will search from the list heads
8301  * for eligible buffers, greatly increasing its chance of finding them.
8302  *
8303  * The L2ARC device write speed is also boosted during this time so that
8304  * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
8305  * there are no L2ARC reads, and no fear of degrading read performance
8306  * through increased writes.
8307  *
8308  * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8309  * the vdev queue can aggregate them into larger and fewer writes.  Each
8310  * device is written to in a rotor fashion, sweeping writes through
8311  * available space then repeating.
8312  *
8313  * 7. The L2ARC does not store dirty content.  It never needs to flush
8314  * write buffers back to disk based storage.
8315  *
8316  * 8. If an ARC buffer is written (and dirtied) which also exists in the
8317  * L2ARC, the now stale L2ARC buffer is immediately dropped.
8318  *
8319  * The performance of the L2ARC can be tweaked by a number of tunables, which
8320  * may be necessary for different workloads:
8321  *
8322  *	l2arc_write_max		max write bytes per interval
8323  *	l2arc_write_boost	extra write bytes during device warmup
8324  *	l2arc_noprefetch	skip caching prefetched buffers
8325  *	l2arc_headroom		number of max device writes to precache
8326  *	l2arc_headroom_boost	when we find compressed buffers during ARC
8327  *				scanning, we multiply headroom by this
8328  *				percentage factor for the next scan cycle,
8329  *				since more compressed buffers are likely to
8330  *				be present
8331  *	l2arc_feed_secs		seconds between L2ARC writing
8332  *
8333  * Tunables may be removed or added as future performance improvements are
8334  * integrated, and also may become zpool properties.
8335  *
8336  * There are three key functions that control how the L2ARC warms up:
8337  *
8338  *	l2arc_write_eligible()	check if a buffer is eligible to cache
8339  *	l2arc_write_size()	calculate how much to write
8340  *	l2arc_write_interval()	calculate sleep delay between writes
8341  *
8342  * These three functions determine what to write, how much, and how quickly
8343  * to send writes.
8344  *
8345  * L2ARC persistence:
8346  *
8347  * When writing buffers to L2ARC, we periodically add some metadata to
8348  * make sure we can pick them up after reboot, thus dramatically reducing
8349  * the impact that any downtime has on the performance of storage systems
8350  * with large caches.
8351  *
8352  * The implementation works fairly simply by integrating the following two
8353  * modifications:
8354  *
8355  * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8356  *    which is an additional piece of metadata which describes what's been
8357  *    written. This allows us to rebuild the arc_buf_hdr_t structures of the
8358  *    main ARC buffers. There are 2 linked-lists of log blocks headed by
8359  *    dh_start_lbps[2]. We alternate which chain we append to, so they are
8360  *    time-wise and offset-wise interleaved, but that is an optimization rather
8361  *    than for correctness. The log block also includes a pointer to the
8362  *    previous block in its chain.
8363  *
8364  * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8365  *    for our header bookkeeping purposes. This contains a device header,
8366  *    which contains our top-level reference structures. We update it each
8367  *    time we write a new log block, so that we're able to locate it in the
8368  *    L2ARC device. If this write results in an inconsistent device header
8369  *    (e.g. due to power failure), we detect this by verifying the header's
8370  *    checksum and simply fail to reconstruct the L2ARC after reboot.
8371  *
8372  * Implementation diagram:
8373  *
8374  * +=== L2ARC device (not to scale) ======================================+
8375  * |       ___two newest log block pointers__.__________                  |
8376  * |      /                                   \dh_start_lbps[1]           |
8377  * |	 /				       \         \dh_start_lbps[0]|
8378  * |.___/__.                                    V         V               |
8379  * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8380  * ||   hdr|      ^         /^       /^        /         /                |
8381  * |+------+  ...--\-------/  \-----/--\------/         /                 |
8382  * |                \--------------/    \--------------/                  |
8383  * +======================================================================+
8384  *
8385  * As can be seen on the diagram, rather than using a simple linked list,
8386  * we use a pair of linked lists with alternating elements. This is a
8387  * performance enhancement due to the fact that we only find out the
8388  * address of the next log block access once the current block has been
8389  * completely read in. Obviously, this hurts performance, because we'd be
8390  * keeping the device's I/O queue at only a 1 operation deep, thus
8391  * incurring a large amount of I/O round-trip latency. Having two lists
8392  * allows us to fetch two log blocks ahead of where we are currently
8393  * rebuilding L2ARC buffers.
8394  *
8395  * On-device data structures:
8396  *
8397  * L2ARC device header:	l2arc_dev_hdr_phys_t
8398  * L2ARC log block:	l2arc_log_blk_phys_t
8399  *
8400  * L2ARC reconstruction:
8401  *
8402  * When writing data, we simply write in the standard rotary fashion,
8403  * evicting buffers as we go and simply writing new data over them (writing
8404  * a new log block every now and then). This obviously means that once we
8405  * loop around the end of the device, we will start cutting into an already
8406  * committed log block (and its referenced data buffers), like so:
8407  *
8408  *    current write head__       __old tail
8409  *                        \     /
8410  *                        V    V
8411  * <--|bufs |lb |bufs |lb |    |bufs |lb |bufs |lb |-->
8412  *                         ^    ^^^^^^^^^___________________________________
8413  *                         |                                                \
8414  *                   <<nextwrite>> may overwrite this blk and/or its bufs --'
8415  *
8416  * When importing the pool, we detect this situation and use it to stop
8417  * our scanning process (see l2arc_rebuild).
8418  *
8419  * There is one significant caveat to consider when rebuilding ARC contents
8420  * from an L2ARC device: what about invalidated buffers? Given the above
8421  * construction, we cannot update blocks which we've already written to amend
8422  * them to remove buffers which were invalidated. Thus, during reconstruction,
8423  * we might be populating the cache with buffers for data that's not on the
8424  * main pool anymore, or may have been overwritten!
8425  *
8426  * As it turns out, this isn't a problem. Every arc_read request includes
8427  * both the DVA and, crucially, the birth TXG of the BP the caller is
8428  * looking for. So even if the cache were populated by completely rotten
8429  * blocks for data that had been long deleted and/or overwritten, we'll
8430  * never actually return bad data from the cache, since the DVA with the
8431  * birth TXG uniquely identify a block in space and time - once created,
8432  * a block is immutable on disk. The worst thing we have done is wasted
8433  * some time and memory at l2arc rebuild to reconstruct outdated ARC
8434  * entries that will get dropped from the l2arc as it is being updated
8435  * with new blocks.
8436  *
8437  * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8438  * hand are not restored. This is done by saving the offset (in bytes)
8439  * l2arc_evict() has evicted to in the L2ARC device header and taking it
8440  * into account when restoring buffers.
8441  */
8442 
8443 static boolean_t
l2arc_write_eligible(uint64_t spa_guid,arc_buf_hdr_t * hdr)8444 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8445 {
8446 	/*
8447 	 * A buffer is *not* eligible for the L2ARC if it:
8448 	 * 1. belongs to a different spa.
8449 	 * 2. is already cached on the L2ARC.
8450 	 * 3. has an I/O in progress (it may be an incomplete read).
8451 	 * 4. is flagged not eligible (zfs property).
8452 	 */
8453 	if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8454 	    HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8455 		return (B_FALSE);
8456 
8457 	return (B_TRUE);
8458 }
8459 
8460 static uint64_t
l2arc_write_size(l2arc_dev_t * dev)8461 l2arc_write_size(l2arc_dev_t *dev)
8462 {
8463 	uint64_t size;
8464 
8465 	/*
8466 	 * Make sure our globals have meaningful values in case the user
8467 	 * altered them.
8468 	 */
8469 	size = l2arc_write_max;
8470 	if (size == 0) {
8471 		cmn_err(CE_NOTE, "l2arc_write_max must be greater than zero, "
8472 		    "resetting it to the default (%d)", L2ARC_WRITE_SIZE);
8473 		size = l2arc_write_max = L2ARC_WRITE_SIZE;
8474 	}
8475 
8476 	if (arc_warm == B_FALSE)
8477 		size += l2arc_write_boost;
8478 
8479 	/* We need to add in the worst case scenario of log block overhead. */
8480 	size += l2arc_log_blk_overhead(size, dev);
8481 	if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) {
8482 		/*
8483 		 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8484 		 * times the writesize, whichever is greater.
8485 		 */
8486 		size += MAX(64 * 1024 * 1024,
8487 		    (size * l2arc_trim_ahead) / 100);
8488 	}
8489 
8490 	/*
8491 	 * Make sure the write size does not exceed the size of the cache
8492 	 * device. This is important in l2arc_evict(), otherwise infinite
8493 	 * iteration can occur.
8494 	 */
8495 	size = MIN(size, (dev->l2ad_end - dev->l2ad_start) / 4);
8496 
8497 	size = P2ROUNDUP(size, 1ULL << dev->l2ad_vdev->vdev_ashift);
8498 
8499 	return (size);
8500 
8501 }
8502 
8503 static clock_t
l2arc_write_interval(clock_t began,uint64_t wanted,uint64_t wrote)8504 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8505 {
8506 	clock_t interval, next, now;
8507 
8508 	/*
8509 	 * If the ARC lists are busy, increase our write rate; if the
8510 	 * lists are stale, idle back.  This is achieved by checking
8511 	 * how much we previously wrote - if it was more than half of
8512 	 * what we wanted, schedule the next write much sooner.
8513 	 */
8514 	if (l2arc_feed_again && wrote > (wanted / 2))
8515 		interval = (hz * l2arc_feed_min_ms) / 1000;
8516 	else
8517 		interval = hz * l2arc_feed_secs;
8518 
8519 	now = ddi_get_lbolt();
8520 	next = MAX(now, MIN(now + interval, began + interval));
8521 
8522 	return (next);
8523 }
8524 
8525 static boolean_t
l2arc_dev_invalid(const l2arc_dev_t * dev)8526 l2arc_dev_invalid(const l2arc_dev_t *dev)
8527 {
8528 	/*
8529 	 * We want to skip devices that are being rebuilt, trimmed,
8530 	 * removed, or belong to a spa that is being exported.
8531 	 */
8532 	return (dev->l2ad_vdev == NULL || vdev_is_dead(dev->l2ad_vdev) ||
8533 	    dev->l2ad_rebuild || dev->l2ad_trim_all ||
8534 	    dev->l2ad_spa == NULL || dev->l2ad_spa->spa_is_exporting);
8535 }
8536 
8537 /*
8538  * Cycle through L2ARC devices.  This is how L2ARC load balances.
8539  * If a device is returned, this also returns holding the spa config lock.
8540  */
8541 static l2arc_dev_t *
l2arc_dev_get_next(void)8542 l2arc_dev_get_next(void)
8543 {
8544 	l2arc_dev_t *first, *next = NULL;
8545 
8546 	/*
8547 	 * Lock out the removal of spas (spa_namespace_lock), then removal
8548 	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
8549 	 * both locks will be dropped and a spa config lock held instead.
8550 	 */
8551 	mutex_enter(&spa_namespace_lock);
8552 	mutex_enter(&l2arc_dev_mtx);
8553 
8554 	/* if there are no vdevs, there is nothing to do */
8555 	if (l2arc_ndev == 0)
8556 		goto out;
8557 
8558 	first = NULL;
8559 	next = l2arc_dev_last;
8560 	do {
8561 		/* loop around the list looking for a non-faulted vdev */
8562 		if (next == NULL) {
8563 			next = list_head(l2arc_dev_list);
8564 		} else {
8565 			next = list_next(l2arc_dev_list, next);
8566 			if (next == NULL)
8567 				next = list_head(l2arc_dev_list);
8568 		}
8569 
8570 		/* if we have come back to the start, bail out */
8571 		if (first == NULL)
8572 			first = next;
8573 		else if (next == first)
8574 			break;
8575 
8576 		ASSERT3P(next, !=, NULL);
8577 	} while (l2arc_dev_invalid(next));
8578 
8579 	/* if we were unable to find any usable vdevs, return NULL */
8580 	if (l2arc_dev_invalid(next))
8581 		next = NULL;
8582 
8583 	l2arc_dev_last = next;
8584 
8585 out:
8586 	mutex_exit(&l2arc_dev_mtx);
8587 
8588 	/*
8589 	 * Grab the config lock to prevent the 'next' device from being
8590 	 * removed while we are writing to it.
8591 	 */
8592 	if (next != NULL)
8593 		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8594 	mutex_exit(&spa_namespace_lock);
8595 
8596 	return (next);
8597 }
8598 
8599 /*
8600  * Free buffers that were tagged for destruction.
8601  */
8602 static void
l2arc_do_free_on_write(void)8603 l2arc_do_free_on_write(void)
8604 {
8605 	l2arc_data_free_t *df;
8606 
8607 	mutex_enter(&l2arc_free_on_write_mtx);
8608 	while ((df = list_remove_head(l2arc_free_on_write)) != NULL) {
8609 		ASSERT3P(df->l2df_abd, !=, NULL);
8610 		abd_free(df->l2df_abd);
8611 		kmem_free(df, sizeof (l2arc_data_free_t));
8612 	}
8613 	mutex_exit(&l2arc_free_on_write_mtx);
8614 }
8615 
8616 /*
8617  * A write to a cache device has completed.  Update all headers to allow
8618  * reads from these buffers to begin.
8619  */
8620 static void
l2arc_write_done(zio_t * zio)8621 l2arc_write_done(zio_t *zio)
8622 {
8623 	l2arc_write_callback_t	*cb;
8624 	l2arc_lb_abd_buf_t	*abd_buf;
8625 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
8626 	l2arc_dev_t		*dev;
8627 	l2arc_dev_hdr_phys_t	*l2dhdr;
8628 	list_t			*buflist;
8629 	arc_buf_hdr_t		*head, *hdr, *hdr_prev;
8630 	kmutex_t		*hash_lock;
8631 	int64_t			bytes_dropped = 0;
8632 
8633 	cb = zio->io_private;
8634 	ASSERT3P(cb, !=, NULL);
8635 	dev = cb->l2wcb_dev;
8636 	l2dhdr = dev->l2ad_dev_hdr;
8637 	ASSERT3P(dev, !=, NULL);
8638 	head = cb->l2wcb_head;
8639 	ASSERT3P(head, !=, NULL);
8640 	buflist = &dev->l2ad_buflist;
8641 	ASSERT3P(buflist, !=, NULL);
8642 	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8643 	    l2arc_write_callback_t *, cb);
8644 
8645 	/*
8646 	 * All writes completed, or an error was hit.
8647 	 */
8648 top:
8649 	mutex_enter(&dev->l2ad_mtx);
8650 	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8651 		hdr_prev = list_prev(buflist, hdr);
8652 
8653 		hash_lock = HDR_LOCK(hdr);
8654 
8655 		/*
8656 		 * We cannot use mutex_enter or else we can deadlock
8657 		 * with l2arc_write_buffers (due to swapping the order
8658 		 * the hash lock and l2ad_mtx are taken).
8659 		 */
8660 		if (!mutex_tryenter(hash_lock)) {
8661 			/*
8662 			 * Missed the hash lock. We must retry so we
8663 			 * don't leave the ARC_FLAG_L2_WRITING bit set.
8664 			 */
8665 			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8666 
8667 			/*
8668 			 * We don't want to rescan the headers we've
8669 			 * already marked as having been written out, so
8670 			 * we reinsert the head node so we can pick up
8671 			 * where we left off.
8672 			 */
8673 			list_remove(buflist, head);
8674 			list_insert_after(buflist, hdr, head);
8675 
8676 			mutex_exit(&dev->l2ad_mtx);
8677 
8678 			/*
8679 			 * We wait for the hash lock to become available
8680 			 * to try and prevent busy waiting, and increase
8681 			 * the chance we'll be able to acquire the lock
8682 			 * the next time around.
8683 			 */
8684 			mutex_enter(hash_lock);
8685 			mutex_exit(hash_lock);
8686 			goto top;
8687 		}
8688 
8689 		/*
8690 		 * We could not have been moved into the arc_l2c_only
8691 		 * state while in-flight due to our ARC_FLAG_L2_WRITING
8692 		 * bit being set. Let's just ensure that's being enforced.
8693 		 */
8694 		ASSERT(HDR_HAS_L1HDR(hdr));
8695 
8696 		/*
8697 		 * Skipped - drop L2ARC entry and mark the header as no
8698 		 * longer L2 eligibile.
8699 		 */
8700 		if (zio->io_error != 0) {
8701 			/*
8702 			 * Error - drop L2ARC entry.
8703 			 */
8704 			list_remove(buflist, hdr);
8705 			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8706 
8707 			uint64_t psize = HDR_GET_PSIZE(hdr);
8708 			l2arc_hdr_arcstats_decrement(hdr);
8709 
8710 			ASSERT(dev->l2ad_vdev != NULL);
8711 
8712 			bytes_dropped +=
8713 			    vdev_psize_to_asize(dev->l2ad_vdev, psize);
8714 			(void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8715 			    arc_hdr_size(hdr), hdr);
8716 		}
8717 
8718 		/*
8719 		 * Allow ARC to begin reads and ghost list evictions to
8720 		 * this L2ARC entry.
8721 		 */
8722 		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8723 
8724 		mutex_exit(hash_lock);
8725 	}
8726 
8727 	/*
8728 	 * Free the allocated abd buffers for writing the log blocks.
8729 	 * If the zio failed reclaim the allocated space and remove the
8730 	 * pointers to these log blocks from the log block pointer list
8731 	 * of the L2ARC device.
8732 	 */
8733 	while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8734 		abd_free(abd_buf->abd);
8735 		zio_buf_free(abd_buf, sizeof (*abd_buf));
8736 		if (zio->io_error != 0) {
8737 			lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8738 			/*
8739 			 * L2BLK_GET_PSIZE returns aligned size for log
8740 			 * blocks.
8741 			 */
8742 			uint64_t asize =
8743 			    L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8744 			bytes_dropped += asize;
8745 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8746 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8747 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8748 			    lb_ptr_buf);
8749 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
8750 			    lb_ptr_buf);
8751 			kmem_free(lb_ptr_buf->lb_ptr,
8752 			    sizeof (l2arc_log_blkptr_t));
8753 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8754 		}
8755 	}
8756 	list_destroy(&cb->l2wcb_abd_list);
8757 
8758 	if (zio->io_error != 0) {
8759 		ARCSTAT_BUMP(arcstat_l2_writes_error);
8760 
8761 		/*
8762 		 * Restore the lbps array in the header to its previous state.
8763 		 * If the list of log block pointers is empty, zero out the
8764 		 * log block pointers in the device header.
8765 		 */
8766 		lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8767 		for (int i = 0; i < 2; i++) {
8768 			if (lb_ptr_buf == NULL) {
8769 				/*
8770 				 * If the list is empty zero out the device
8771 				 * header. Otherwise zero out the second log
8772 				 * block pointer in the header.
8773 				 */
8774 				if (i == 0) {
8775 					memset(l2dhdr, 0,
8776 					    dev->l2ad_dev_hdr_asize);
8777 				} else {
8778 					memset(&l2dhdr->dh_start_lbps[i], 0,
8779 					    sizeof (l2arc_log_blkptr_t));
8780 				}
8781 				break;
8782 			}
8783 			memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8784 			    sizeof (l2arc_log_blkptr_t));
8785 			lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8786 			    lb_ptr_buf);
8787 		}
8788 	}
8789 
8790 	ARCSTAT_BUMP(arcstat_l2_writes_done);
8791 	list_remove(buflist, head);
8792 	ASSERT(!HDR_HAS_L1HDR(head));
8793 	kmem_cache_free(hdr_l2only_cache, head);
8794 	mutex_exit(&dev->l2ad_mtx);
8795 
8796 	ASSERT(dev->l2ad_vdev != NULL);
8797 	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8798 
8799 	l2arc_do_free_on_write();
8800 
8801 	kmem_free(cb, sizeof (l2arc_write_callback_t));
8802 }
8803 
8804 static int
l2arc_untransform(zio_t * zio,l2arc_read_callback_t * cb)8805 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8806 {
8807 	int ret;
8808 	spa_t *spa = zio->io_spa;
8809 	arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8810 	blkptr_t *bp = zio->io_bp;
8811 	uint8_t salt[ZIO_DATA_SALT_LEN];
8812 	uint8_t iv[ZIO_DATA_IV_LEN];
8813 	uint8_t mac[ZIO_DATA_MAC_LEN];
8814 	boolean_t no_crypt = B_FALSE;
8815 
8816 	/*
8817 	 * ZIL data is never be written to the L2ARC, so we don't need
8818 	 * special handling for its unique MAC storage.
8819 	 */
8820 	ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8821 	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8822 	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8823 
8824 	/*
8825 	 * If the data was encrypted, decrypt it now. Note that
8826 	 * we must check the bp here and not the hdr, since the
8827 	 * hdr does not have its encryption parameters updated
8828 	 * until arc_read_done().
8829 	 */
8830 	if (BP_IS_ENCRYPTED(bp)) {
8831 		abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8832 		    ARC_HDR_USE_RESERVE);
8833 
8834 		zio_crypt_decode_params_bp(bp, salt, iv);
8835 		zio_crypt_decode_mac_bp(bp, mac);
8836 
8837 		ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8838 		    BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8839 		    salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8840 		    hdr->b_l1hdr.b_pabd, &no_crypt);
8841 		if (ret != 0) {
8842 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8843 			goto error;
8844 		}
8845 
8846 		/*
8847 		 * If we actually performed decryption, replace b_pabd
8848 		 * with the decrypted data. Otherwise we can just throw
8849 		 * our decryption buffer away.
8850 		 */
8851 		if (!no_crypt) {
8852 			arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8853 			    arc_hdr_size(hdr), hdr);
8854 			hdr->b_l1hdr.b_pabd = eabd;
8855 			zio->io_abd = eabd;
8856 		} else {
8857 			arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8858 		}
8859 	}
8860 
8861 	/*
8862 	 * If the L2ARC block was compressed, but ARC compression
8863 	 * is disabled we decompress the data into a new buffer and
8864 	 * replace the existing data.
8865 	 */
8866 	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8867 	    !HDR_COMPRESSION_ENABLED(hdr)) {
8868 		abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8869 		    ARC_HDR_USE_RESERVE);
8870 
8871 		ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8872 		    hdr->b_l1hdr.b_pabd, cabd, HDR_GET_PSIZE(hdr),
8873 		    HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8874 		if (ret != 0) {
8875 			arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8876 			goto error;
8877 		}
8878 
8879 		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8880 		    arc_hdr_size(hdr), hdr);
8881 		hdr->b_l1hdr.b_pabd = cabd;
8882 		zio->io_abd = cabd;
8883 		zio->io_size = HDR_GET_LSIZE(hdr);
8884 	}
8885 
8886 	return (0);
8887 
8888 error:
8889 	return (ret);
8890 }
8891 
8892 
8893 /*
8894  * A read to a cache device completed.  Validate buffer contents before
8895  * handing over to the regular ARC routines.
8896  */
8897 static void
l2arc_read_done(zio_t * zio)8898 l2arc_read_done(zio_t *zio)
8899 {
8900 	int tfm_error = 0;
8901 	l2arc_read_callback_t *cb = zio->io_private;
8902 	arc_buf_hdr_t *hdr;
8903 	kmutex_t *hash_lock;
8904 	boolean_t valid_cksum;
8905 	boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8906 	    (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8907 
8908 	ASSERT3P(zio->io_vd, !=, NULL);
8909 	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8910 
8911 	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8912 
8913 	ASSERT3P(cb, !=, NULL);
8914 	hdr = cb->l2rcb_hdr;
8915 	ASSERT3P(hdr, !=, NULL);
8916 
8917 	hash_lock = HDR_LOCK(hdr);
8918 	mutex_enter(hash_lock);
8919 	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8920 
8921 	/*
8922 	 * If the data was read into a temporary buffer,
8923 	 * move it and free the buffer.
8924 	 */
8925 	if (cb->l2rcb_abd != NULL) {
8926 		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8927 		if (zio->io_error == 0) {
8928 			if (using_rdata) {
8929 				abd_copy(hdr->b_crypt_hdr.b_rabd,
8930 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8931 			} else {
8932 				abd_copy(hdr->b_l1hdr.b_pabd,
8933 				    cb->l2rcb_abd, arc_hdr_size(hdr));
8934 			}
8935 		}
8936 
8937 		/*
8938 		 * The following must be done regardless of whether
8939 		 * there was an error:
8940 		 * - free the temporary buffer
8941 		 * - point zio to the real ARC buffer
8942 		 * - set zio size accordingly
8943 		 * These are required because zio is either re-used for
8944 		 * an I/O of the block in the case of the error
8945 		 * or the zio is passed to arc_read_done() and it
8946 		 * needs real data.
8947 		 */
8948 		abd_free(cb->l2rcb_abd);
8949 		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8950 
8951 		if (using_rdata) {
8952 			ASSERT(HDR_HAS_RABD(hdr));
8953 			zio->io_abd = zio->io_orig_abd =
8954 			    hdr->b_crypt_hdr.b_rabd;
8955 		} else {
8956 			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8957 			zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8958 		}
8959 	}
8960 
8961 	ASSERT3P(zio->io_abd, !=, NULL);
8962 
8963 	/*
8964 	 * Check this survived the L2ARC journey.
8965 	 */
8966 	ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8967 	    (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8968 	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
8969 	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
8970 	zio->io_prop.zp_complevel = hdr->b_complevel;
8971 
8972 	valid_cksum = arc_cksum_is_equal(hdr, zio);
8973 
8974 	/*
8975 	 * b_rabd will always match the data as it exists on disk if it is
8976 	 * being used. Therefore if we are reading into b_rabd we do not
8977 	 * attempt to untransform the data.
8978 	 */
8979 	if (valid_cksum && !using_rdata)
8980 		tfm_error = l2arc_untransform(zio, cb);
8981 
8982 	if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8983 	    !HDR_L2_EVICTED(hdr)) {
8984 		mutex_exit(hash_lock);
8985 		zio->io_private = hdr;
8986 		arc_read_done(zio);
8987 	} else {
8988 		/*
8989 		 * Buffer didn't survive caching.  Increment stats and
8990 		 * reissue to the original storage device.
8991 		 */
8992 		if (zio->io_error != 0) {
8993 			ARCSTAT_BUMP(arcstat_l2_io_error);
8994 		} else {
8995 			zio->io_error = SET_ERROR(EIO);
8996 		}
8997 		if (!valid_cksum || tfm_error != 0)
8998 			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8999 
9000 		/*
9001 		 * If there's no waiter, issue an async i/o to the primary
9002 		 * storage now.  If there *is* a waiter, the caller must
9003 		 * issue the i/o in a context where it's OK to block.
9004 		 */
9005 		if (zio->io_waiter == NULL) {
9006 			zio_t *pio = zio_unique_parent(zio);
9007 			void *abd = (using_rdata) ?
9008 			    hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
9009 
9010 			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
9011 
9012 			zio = zio_read(pio, zio->io_spa, zio->io_bp,
9013 			    abd, zio->io_size, arc_read_done,
9014 			    hdr, zio->io_priority, cb->l2rcb_flags,
9015 			    &cb->l2rcb_zb);
9016 
9017 			/*
9018 			 * Original ZIO will be freed, so we need to update
9019 			 * ARC header with the new ZIO pointer to be used
9020 			 * by zio_change_priority() in arc_read().
9021 			 */
9022 			for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
9023 			    acb != NULL; acb = acb->acb_next)
9024 				acb->acb_zio_head = zio;
9025 
9026 			mutex_exit(hash_lock);
9027 			zio_nowait(zio);
9028 		} else {
9029 			mutex_exit(hash_lock);
9030 		}
9031 	}
9032 
9033 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9034 }
9035 
9036 /*
9037  * This is the list priority from which the L2ARC will search for pages to
9038  * cache.  This is used within loops (0..3) to cycle through lists in the
9039  * desired order.  This order can have a significant effect on cache
9040  * performance.
9041  *
9042  * Currently the metadata lists are hit first, MFU then MRU, followed by
9043  * the data lists.  This function returns a locked list, and also returns
9044  * the lock pointer.
9045  */
9046 static multilist_sublist_t *
l2arc_sublist_lock(int list_num)9047 l2arc_sublist_lock(int list_num)
9048 {
9049 	multilist_t *ml = NULL;
9050 	unsigned int idx;
9051 
9052 	ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
9053 
9054 	switch (list_num) {
9055 	case 0:
9056 		ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
9057 		break;
9058 	case 1:
9059 		ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
9060 		break;
9061 	case 2:
9062 		ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
9063 		break;
9064 	case 3:
9065 		ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
9066 		break;
9067 	default:
9068 		return (NULL);
9069 	}
9070 
9071 	/*
9072 	 * Return a randomly-selected sublist. This is acceptable
9073 	 * because the caller feeds only a little bit of data for each
9074 	 * call (8MB). Subsequent calls will result in different
9075 	 * sublists being selected.
9076 	 */
9077 	idx = multilist_get_random_index(ml);
9078 	return (multilist_sublist_lock_idx(ml, idx));
9079 }
9080 
9081 /*
9082  * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9083  * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9084  * overhead in processing to make sure there is enough headroom available
9085  * when writing buffers.
9086  */
9087 static inline uint64_t
l2arc_log_blk_overhead(uint64_t write_sz,l2arc_dev_t * dev)9088 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9089 {
9090 	if (dev->l2ad_log_entries == 0) {
9091 		return (0);
9092 	} else {
9093 		ASSERT(dev->l2ad_vdev != NULL);
9094 
9095 		uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9096 
9097 		uint64_t log_blocks = (log_entries +
9098 		    dev->l2ad_log_entries - 1) /
9099 		    dev->l2ad_log_entries;
9100 
9101 		return (vdev_psize_to_asize(dev->l2ad_vdev,
9102 		    sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9103 	}
9104 }
9105 
9106 /*
9107  * Evict buffers from the device write hand to the distance specified in
9108  * bytes. This distance may span populated buffers, it may span nothing.
9109  * This is clearing a region on the L2ARC device ready for writing.
9110  * If the 'all' boolean is set, every buffer is evicted.
9111  */
9112 static void
l2arc_evict(l2arc_dev_t * dev,uint64_t distance,boolean_t all)9113 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9114 {
9115 	list_t *buflist;
9116 	arc_buf_hdr_t *hdr, *hdr_prev;
9117 	kmutex_t *hash_lock;
9118 	uint64_t taddr;
9119 	l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9120 	vdev_t *vd = dev->l2ad_vdev;
9121 	boolean_t rerun;
9122 
9123 	ASSERT(vd != NULL || all);
9124 	ASSERT(dev->l2ad_spa != NULL || all);
9125 
9126 	buflist = &dev->l2ad_buflist;
9127 
9128 top:
9129 	rerun = B_FALSE;
9130 	if (dev->l2ad_hand + distance > dev->l2ad_end) {
9131 		/*
9132 		 * When there is no space to accommodate upcoming writes,
9133 		 * evict to the end. Then bump the write and evict hands
9134 		 * to the start and iterate. This iteration does not
9135 		 * happen indefinitely as we make sure in
9136 		 * l2arc_write_size() that when the write hand is reset,
9137 		 * the write size does not exceed the end of the device.
9138 		 */
9139 		rerun = B_TRUE;
9140 		taddr = dev->l2ad_end;
9141 	} else {
9142 		taddr = dev->l2ad_hand + distance;
9143 	}
9144 	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9145 	    uint64_t, taddr, boolean_t, all);
9146 
9147 	if (!all) {
9148 		/*
9149 		 * This check has to be placed after deciding whether to
9150 		 * iterate (rerun).
9151 		 */
9152 		if (dev->l2ad_first) {
9153 			/*
9154 			 * This is the first sweep through the device. There is
9155 			 * nothing to evict. We have already trimmmed the
9156 			 * whole device.
9157 			 */
9158 			goto out;
9159 		} else {
9160 			/*
9161 			 * Trim the space to be evicted.
9162 			 */
9163 			if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9164 			    l2arc_trim_ahead > 0) {
9165 				/*
9166 				 * We have to drop the spa_config lock because
9167 				 * vdev_trim_range() will acquire it.
9168 				 * l2ad_evict already accounts for the label
9169 				 * size. To prevent vdev_trim_ranges() from
9170 				 * adding it again, we subtract it from
9171 				 * l2ad_evict.
9172 				 */
9173 				spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9174 				vdev_trim_simple(vd,
9175 				    dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9176 				    taddr - dev->l2ad_evict);
9177 				spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9178 				    RW_READER);
9179 			}
9180 
9181 			/*
9182 			 * When rebuilding L2ARC we retrieve the evict hand
9183 			 * from the header of the device. Of note, l2arc_evict()
9184 			 * does not actually delete buffers from the cache
9185 			 * device, but trimming may do so depending on the
9186 			 * hardware implementation. Thus keeping track of the
9187 			 * evict hand is useful.
9188 			 */
9189 			dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9190 		}
9191 	}
9192 
9193 retry:
9194 	mutex_enter(&dev->l2ad_mtx);
9195 	/*
9196 	 * We have to account for evicted log blocks. Run vdev_space_update()
9197 	 * on log blocks whose offset (in bytes) is before the evicted offset
9198 	 * (in bytes) by searching in the list of pointers to log blocks
9199 	 * present in the L2ARC device.
9200 	 */
9201 	for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9202 	    lb_ptr_buf = lb_ptr_buf_prev) {
9203 
9204 		lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9205 
9206 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
9207 		uint64_t asize = L2BLK_GET_PSIZE(
9208 		    (lb_ptr_buf->lb_ptr)->lbp_prop);
9209 
9210 		/*
9211 		 * We don't worry about log blocks left behind (ie
9212 		 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9213 		 * will never write more than l2arc_evict() evicts.
9214 		 */
9215 		if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9216 			break;
9217 		} else {
9218 			if (vd != NULL)
9219 				vdev_space_update(vd, -asize, 0, 0);
9220 			ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9221 			ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9222 			zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9223 			    lb_ptr_buf);
9224 			(void) zfs_refcount_remove(&dev->l2ad_lb_count,
9225 			    lb_ptr_buf);
9226 			list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9227 			kmem_free(lb_ptr_buf->lb_ptr,
9228 			    sizeof (l2arc_log_blkptr_t));
9229 			kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9230 		}
9231 	}
9232 
9233 	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9234 		hdr_prev = list_prev(buflist, hdr);
9235 
9236 		ASSERT(!HDR_EMPTY(hdr));
9237 		hash_lock = HDR_LOCK(hdr);
9238 
9239 		/*
9240 		 * We cannot use mutex_enter or else we can deadlock
9241 		 * with l2arc_write_buffers (due to swapping the order
9242 		 * the hash lock and l2ad_mtx are taken).
9243 		 */
9244 		if (!mutex_tryenter(hash_lock)) {
9245 			/*
9246 			 * Missed the hash lock.  Retry.
9247 			 */
9248 			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9249 			mutex_exit(&dev->l2ad_mtx);
9250 			mutex_enter(hash_lock);
9251 			mutex_exit(hash_lock);
9252 			goto retry;
9253 		}
9254 
9255 		/*
9256 		 * A header can't be on this list if it doesn't have L2 header.
9257 		 */
9258 		ASSERT(HDR_HAS_L2HDR(hdr));
9259 
9260 		/* Ensure this header has finished being written. */
9261 		ASSERT(!HDR_L2_WRITING(hdr));
9262 		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9263 
9264 		if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9265 		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9266 			/*
9267 			 * We've evicted to the target address,
9268 			 * or the end of the device.
9269 			 */
9270 			mutex_exit(hash_lock);
9271 			break;
9272 		}
9273 
9274 		if (!HDR_HAS_L1HDR(hdr)) {
9275 			ASSERT(!HDR_L2_READING(hdr));
9276 			/*
9277 			 * This doesn't exist in the ARC.  Destroy.
9278 			 * arc_hdr_destroy() will call list_remove()
9279 			 * and decrement arcstat_l2_lsize.
9280 			 */
9281 			arc_change_state(arc_anon, hdr);
9282 			arc_hdr_destroy(hdr);
9283 		} else {
9284 			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9285 			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9286 			/*
9287 			 * Invalidate issued or about to be issued
9288 			 * reads, since we may be about to write
9289 			 * over this location.
9290 			 */
9291 			if (HDR_L2_READING(hdr)) {
9292 				ARCSTAT_BUMP(arcstat_l2_evict_reading);
9293 				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9294 			}
9295 
9296 			arc_hdr_l2hdr_destroy(hdr);
9297 		}
9298 		mutex_exit(hash_lock);
9299 	}
9300 	mutex_exit(&dev->l2ad_mtx);
9301 
9302 out:
9303 	/*
9304 	 * We need to check if we evict all buffers, otherwise we may iterate
9305 	 * unnecessarily.
9306 	 */
9307 	if (!all && rerun) {
9308 		/*
9309 		 * Bump device hand to the device start if it is approaching the
9310 		 * end. l2arc_evict() has already evicted ahead for this case.
9311 		 */
9312 		dev->l2ad_hand = dev->l2ad_start;
9313 		dev->l2ad_evict = dev->l2ad_start;
9314 		dev->l2ad_first = B_FALSE;
9315 		goto top;
9316 	}
9317 
9318 	if (!all) {
9319 		/*
9320 		 * In case of cache device removal (all) the following
9321 		 * assertions may be violated without functional consequences
9322 		 * as the device is about to be removed.
9323 		 */
9324 		ASSERT3U(dev->l2ad_hand + distance, <=, dev->l2ad_end);
9325 		if (!dev->l2ad_first)
9326 			ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9327 	}
9328 }
9329 
9330 /*
9331  * Handle any abd transforms that might be required for writing to the L2ARC.
9332  * If successful, this function will always return an abd with the data
9333  * transformed as it is on disk in a new abd of asize bytes.
9334  */
9335 static int
l2arc_apply_transforms(spa_t * spa,arc_buf_hdr_t * hdr,uint64_t asize,abd_t ** abd_out)9336 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9337     abd_t **abd_out)
9338 {
9339 	int ret;
9340 	abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9341 	enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9342 	uint64_t psize = HDR_GET_PSIZE(hdr);
9343 	uint64_t size = arc_hdr_size(hdr);
9344 	boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9345 	boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9346 	dsl_crypto_key_t *dck = NULL;
9347 	uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9348 	boolean_t no_crypt = B_FALSE;
9349 
9350 	ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9351 	    !HDR_COMPRESSION_ENABLED(hdr)) ||
9352 	    HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9353 	ASSERT3U(psize, <=, asize);
9354 
9355 	/*
9356 	 * If this data simply needs its own buffer, we simply allocate it
9357 	 * and copy the data. This may be done to eliminate a dependency on a
9358 	 * shared buffer or to reallocate the buffer to match asize.
9359 	 */
9360 	if (HDR_HAS_RABD(hdr)) {
9361 		ASSERT3U(asize, >, psize);
9362 		to_write = abd_alloc_for_io(asize, ismd);
9363 		abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9364 		abd_zero_off(to_write, psize, asize - psize);
9365 		goto out;
9366 	}
9367 
9368 	if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9369 	    !HDR_ENCRYPTED(hdr)) {
9370 		ASSERT3U(size, ==, psize);
9371 		to_write = abd_alloc_for_io(asize, ismd);
9372 		abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9373 		if (asize > size)
9374 			abd_zero_off(to_write, size, asize - size);
9375 		goto out;
9376 	}
9377 
9378 	if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9379 		cabd = abd_alloc_for_io(MAX(size, asize), ismd);
9380 		uint64_t csize = zio_compress_data(compress, to_write, &cabd,
9381 		    size, MIN(size, psize), hdr->b_complevel);
9382 		if (csize >= size || csize > psize) {
9383 			/*
9384 			 * We can't re-compress the block into the original
9385 			 * psize.  Even if it fits into asize, it does not
9386 			 * matter, since checksum will never match on read.
9387 			 */
9388 			abd_free(cabd);
9389 			return (SET_ERROR(EIO));
9390 		}
9391 		if (asize > csize)
9392 			abd_zero_off(cabd, csize, asize - csize);
9393 		to_write = cabd;
9394 	}
9395 
9396 	if (HDR_ENCRYPTED(hdr)) {
9397 		eabd = abd_alloc_for_io(asize, ismd);
9398 
9399 		/*
9400 		 * If the dataset was disowned before the buffer
9401 		 * made it to this point, the key to re-encrypt
9402 		 * it won't be available. In this case we simply
9403 		 * won't write the buffer to the L2ARC.
9404 		 */
9405 		ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9406 		    FTAG, &dck);
9407 		if (ret != 0)
9408 			goto error;
9409 
9410 		ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9411 		    hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9412 		    hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9413 		    &no_crypt);
9414 		if (ret != 0)
9415 			goto error;
9416 
9417 		if (no_crypt)
9418 			abd_copy(eabd, to_write, psize);
9419 
9420 		if (psize != asize)
9421 			abd_zero_off(eabd, psize, asize - psize);
9422 
9423 		/* assert that the MAC we got here matches the one we saved */
9424 		ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9425 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9426 
9427 		if (to_write == cabd)
9428 			abd_free(cabd);
9429 
9430 		to_write = eabd;
9431 	}
9432 
9433 out:
9434 	ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9435 	*abd_out = to_write;
9436 	return (0);
9437 
9438 error:
9439 	if (dck != NULL)
9440 		spa_keystore_dsl_key_rele(spa, dck, FTAG);
9441 	if (cabd != NULL)
9442 		abd_free(cabd);
9443 	if (eabd != NULL)
9444 		abd_free(eabd);
9445 
9446 	*abd_out = NULL;
9447 	return (ret);
9448 }
9449 
9450 static void
l2arc_blk_fetch_done(zio_t * zio)9451 l2arc_blk_fetch_done(zio_t *zio)
9452 {
9453 	l2arc_read_callback_t *cb;
9454 
9455 	cb = zio->io_private;
9456 	if (cb->l2rcb_abd != NULL)
9457 		abd_free(cb->l2rcb_abd);
9458 	kmem_free(cb, sizeof (l2arc_read_callback_t));
9459 }
9460 
9461 /*
9462  * Find and write ARC buffers to the L2ARC device.
9463  *
9464  * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9465  * for reading until they have completed writing.
9466  * The headroom_boost is an in-out parameter used to maintain headroom boost
9467  * state between calls to this function.
9468  *
9469  * Returns the number of bytes actually written (which may be smaller than
9470  * the delta by which the device hand has changed due to alignment and the
9471  * writing of log blocks).
9472  */
9473 static uint64_t
l2arc_write_buffers(spa_t * spa,l2arc_dev_t * dev,uint64_t target_sz)9474 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9475 {
9476 	arc_buf_hdr_t 		*hdr, *head, *marker;
9477 	uint64_t 		write_asize, write_psize, headroom;
9478 	boolean_t		full, from_head = !arc_warm;
9479 	l2arc_write_callback_t	*cb = NULL;
9480 	zio_t 			*pio, *wzio;
9481 	uint64_t 		guid = spa_load_guid(spa);
9482 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
9483 
9484 	ASSERT3P(dev->l2ad_vdev, !=, NULL);
9485 
9486 	pio = NULL;
9487 	write_asize = write_psize = 0;
9488 	full = B_FALSE;
9489 	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9490 	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9491 	marker = arc_state_alloc_marker();
9492 
9493 	/*
9494 	 * Copy buffers for L2ARC writing.
9495 	 */
9496 	for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9497 		/*
9498 		 * pass == 0: MFU meta
9499 		 * pass == 1: MRU meta
9500 		 * pass == 2: MFU data
9501 		 * pass == 3: MRU data
9502 		 */
9503 		if (l2arc_mfuonly == 1) {
9504 			if (pass == 1 || pass == 3)
9505 				continue;
9506 		} else if (l2arc_mfuonly > 1) {
9507 			if (pass == 3)
9508 				continue;
9509 		}
9510 
9511 		uint64_t passed_sz = 0;
9512 		headroom = target_sz * l2arc_headroom;
9513 		if (zfs_compressed_arc_enabled)
9514 			headroom = (headroom * l2arc_headroom_boost) / 100;
9515 
9516 		/*
9517 		 * Until the ARC is warm and starts to evict, read from the
9518 		 * head of the ARC lists rather than the tail.
9519 		 */
9520 		multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9521 		ASSERT3P(mls, !=, NULL);
9522 		if (from_head)
9523 			hdr = multilist_sublist_head(mls);
9524 		else
9525 			hdr = multilist_sublist_tail(mls);
9526 
9527 		while (hdr != NULL) {
9528 			kmutex_t *hash_lock;
9529 			abd_t *to_write = NULL;
9530 
9531 			hash_lock = HDR_LOCK(hdr);
9532 			if (!mutex_tryenter(hash_lock)) {
9533 skip:
9534 				/* Skip this buffer rather than waiting. */
9535 				if (from_head)
9536 					hdr = multilist_sublist_next(mls, hdr);
9537 				else
9538 					hdr = multilist_sublist_prev(mls, hdr);
9539 				continue;
9540 			}
9541 
9542 			passed_sz += HDR_GET_LSIZE(hdr);
9543 			if (l2arc_headroom != 0 && passed_sz > headroom) {
9544 				/*
9545 				 * Searched too far.
9546 				 */
9547 				mutex_exit(hash_lock);
9548 				break;
9549 			}
9550 
9551 			if (!l2arc_write_eligible(guid, hdr)) {
9552 				mutex_exit(hash_lock);
9553 				goto skip;
9554 			}
9555 
9556 			ASSERT(HDR_HAS_L1HDR(hdr));
9557 			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9558 			ASSERT3U(arc_hdr_size(hdr), >, 0);
9559 			ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9560 			    HDR_HAS_RABD(hdr));
9561 			uint64_t psize = HDR_GET_PSIZE(hdr);
9562 			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9563 			    psize);
9564 
9565 			/*
9566 			 * If the allocated size of this buffer plus the max
9567 			 * size for the pending log block exceeds the evicted
9568 			 * target size, terminate writing buffers for this run.
9569 			 */
9570 			if (write_asize + asize +
9571 			    sizeof (l2arc_log_blk_phys_t) > target_sz) {
9572 				full = B_TRUE;
9573 				mutex_exit(hash_lock);
9574 				break;
9575 			}
9576 
9577 			/*
9578 			 * We should not sleep with sublist lock held or it
9579 			 * may block ARC eviction.  Insert a marker to save
9580 			 * the position and drop the lock.
9581 			 */
9582 			if (from_head) {
9583 				multilist_sublist_insert_after(mls, hdr,
9584 				    marker);
9585 			} else {
9586 				multilist_sublist_insert_before(mls, hdr,
9587 				    marker);
9588 			}
9589 			multilist_sublist_unlock(mls);
9590 
9591 			/*
9592 			 * If this header has b_rabd, we can use this since it
9593 			 * must always match the data exactly as it exists on
9594 			 * disk. Otherwise, the L2ARC can normally use the
9595 			 * hdr's data, but if we're sharing data between the
9596 			 * hdr and one of its bufs, L2ARC needs its own copy of
9597 			 * the data so that the ZIO below can't race with the
9598 			 * buf consumer. To ensure that this copy will be
9599 			 * available for the lifetime of the ZIO and be cleaned
9600 			 * up afterwards, we add it to the l2arc_free_on_write
9601 			 * queue. If we need to apply any transforms to the
9602 			 * data (compression, encryption) we will also need the
9603 			 * extra buffer.
9604 			 */
9605 			if (HDR_HAS_RABD(hdr) && psize == asize) {
9606 				to_write = hdr->b_crypt_hdr.b_rabd;
9607 			} else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9608 			    HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9609 			    !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9610 			    psize == asize) {
9611 				to_write = hdr->b_l1hdr.b_pabd;
9612 			} else {
9613 				int ret;
9614 				arc_buf_contents_t type = arc_buf_type(hdr);
9615 
9616 				ret = l2arc_apply_transforms(spa, hdr, asize,
9617 				    &to_write);
9618 				if (ret != 0) {
9619 					arc_hdr_clear_flags(hdr,
9620 					    ARC_FLAG_L2CACHE);
9621 					mutex_exit(hash_lock);
9622 					goto next;
9623 				}
9624 
9625 				l2arc_free_abd_on_write(to_write, asize, type);
9626 			}
9627 
9628 			hdr->b_l2hdr.b_dev = dev;
9629 			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9630 			hdr->b_l2hdr.b_hits = 0;
9631 			hdr->b_l2hdr.b_arcs_state =
9632 			    hdr->b_l1hdr.b_state->arcs_state;
9633 			/* l2arc_hdr_arcstats_update() expects a valid asize */
9634 			HDR_SET_L2SIZE(hdr, asize);
9635 			arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR |
9636 			    ARC_FLAG_L2_WRITING);
9637 
9638 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
9639 			    arc_hdr_size(hdr), hdr);
9640 			l2arc_hdr_arcstats_increment(hdr);
9641 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9642 
9643 			mutex_enter(&dev->l2ad_mtx);
9644 			if (pio == NULL) {
9645 				/*
9646 				 * Insert a dummy header on the buflist so
9647 				 * l2arc_write_done() can find where the
9648 				 * write buffers begin without searching.
9649 				 */
9650 				list_insert_head(&dev->l2ad_buflist, head);
9651 			}
9652 			list_insert_head(&dev->l2ad_buflist, hdr);
9653 			mutex_exit(&dev->l2ad_mtx);
9654 
9655 			boolean_t commit = l2arc_log_blk_insert(dev, hdr);
9656 			mutex_exit(hash_lock);
9657 
9658 			if (pio == NULL) {
9659 				cb = kmem_alloc(
9660 				    sizeof (l2arc_write_callback_t), KM_SLEEP);
9661 				cb->l2wcb_dev = dev;
9662 				cb->l2wcb_head = head;
9663 				list_create(&cb->l2wcb_abd_list,
9664 				    sizeof (l2arc_lb_abd_buf_t),
9665 				    offsetof(l2arc_lb_abd_buf_t, node));
9666 				pio = zio_root(spa, l2arc_write_done, cb,
9667 				    ZIO_FLAG_CANFAIL);
9668 			}
9669 
9670 			wzio = zio_write_phys(pio, dev->l2ad_vdev,
9671 			    dev->l2ad_hand, asize, to_write,
9672 			    ZIO_CHECKSUM_OFF, NULL, hdr,
9673 			    ZIO_PRIORITY_ASYNC_WRITE,
9674 			    ZIO_FLAG_CANFAIL, B_FALSE);
9675 
9676 			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9677 			    zio_t *, wzio);
9678 			zio_nowait(wzio);
9679 
9680 			write_psize += psize;
9681 			write_asize += asize;
9682 			dev->l2ad_hand += asize;
9683 
9684 			if (commit) {
9685 				/* l2ad_hand will be adjusted inside. */
9686 				write_asize +=
9687 				    l2arc_log_blk_commit(dev, pio, cb);
9688 			}
9689 
9690 next:
9691 			multilist_sublist_lock(mls);
9692 			if (from_head)
9693 				hdr = multilist_sublist_next(mls, marker);
9694 			else
9695 				hdr = multilist_sublist_prev(mls, marker);
9696 			multilist_sublist_remove(mls, marker);
9697 		}
9698 
9699 		multilist_sublist_unlock(mls);
9700 
9701 		if (full == B_TRUE)
9702 			break;
9703 	}
9704 
9705 	arc_state_free_marker(marker);
9706 
9707 	/* No buffers selected for writing? */
9708 	if (pio == NULL) {
9709 		ASSERT0(write_psize);
9710 		ASSERT(!HDR_HAS_L1HDR(head));
9711 		kmem_cache_free(hdr_l2only_cache, head);
9712 
9713 		/*
9714 		 * Although we did not write any buffers l2ad_evict may
9715 		 * have advanced.
9716 		 */
9717 		if (dev->l2ad_evict != l2dhdr->dh_evict)
9718 			l2arc_dev_hdr_update(dev);
9719 
9720 		return (0);
9721 	}
9722 
9723 	if (!dev->l2ad_first)
9724 		ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9725 
9726 	ASSERT3U(write_asize, <=, target_sz);
9727 	ARCSTAT_BUMP(arcstat_l2_writes_sent);
9728 	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9729 
9730 	dev->l2ad_writing = B_TRUE;
9731 	(void) zio_wait(pio);
9732 	dev->l2ad_writing = B_FALSE;
9733 
9734 	/*
9735 	 * Update the device header after the zio completes as
9736 	 * l2arc_write_done() may have updated the memory holding the log block
9737 	 * pointers in the device header.
9738 	 */
9739 	l2arc_dev_hdr_update(dev);
9740 
9741 	return (write_asize);
9742 }
9743 
9744 static boolean_t
l2arc_hdr_limit_reached(void)9745 l2arc_hdr_limit_reached(void)
9746 {
9747 	int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9748 
9749 	return (arc_reclaim_needed() ||
9750 	    (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9751 }
9752 
9753 /*
9754  * This thread feeds the L2ARC at regular intervals.  This is the beating
9755  * heart of the L2ARC.
9756  */
9757 static  __attribute__((noreturn)) void
l2arc_feed_thread(void * unused)9758 l2arc_feed_thread(void *unused)
9759 {
9760 	(void) unused;
9761 	callb_cpr_t cpr;
9762 	l2arc_dev_t *dev;
9763 	spa_t *spa;
9764 	uint64_t size, wrote;
9765 	clock_t begin, next = ddi_get_lbolt();
9766 	fstrans_cookie_t cookie;
9767 
9768 	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9769 
9770 	mutex_enter(&l2arc_feed_thr_lock);
9771 
9772 	cookie = spl_fstrans_mark();
9773 	while (l2arc_thread_exit == 0) {
9774 		CALLB_CPR_SAFE_BEGIN(&cpr);
9775 		(void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9776 		    &l2arc_feed_thr_lock, next);
9777 		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9778 		next = ddi_get_lbolt() + hz;
9779 
9780 		/*
9781 		 * Quick check for L2ARC devices.
9782 		 */
9783 		mutex_enter(&l2arc_dev_mtx);
9784 		if (l2arc_ndev == 0) {
9785 			mutex_exit(&l2arc_dev_mtx);
9786 			continue;
9787 		}
9788 		mutex_exit(&l2arc_dev_mtx);
9789 		begin = ddi_get_lbolt();
9790 
9791 		/*
9792 		 * This selects the next l2arc device to write to, and in
9793 		 * doing so the next spa to feed from: dev->l2ad_spa.   This
9794 		 * will return NULL if there are now no l2arc devices or if
9795 		 * they are all faulted.
9796 		 *
9797 		 * If a device is returned, its spa's config lock is also
9798 		 * held to prevent device removal.  l2arc_dev_get_next()
9799 		 * will grab and release l2arc_dev_mtx.
9800 		 */
9801 		if ((dev = l2arc_dev_get_next()) == NULL)
9802 			continue;
9803 
9804 		spa = dev->l2ad_spa;
9805 		ASSERT3P(spa, !=, NULL);
9806 
9807 		/*
9808 		 * If the pool is read-only then force the feed thread to
9809 		 * sleep a little longer.
9810 		 */
9811 		if (!spa_writeable(spa)) {
9812 			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9813 			spa_config_exit(spa, SCL_L2ARC, dev);
9814 			continue;
9815 		}
9816 
9817 		/*
9818 		 * Avoid contributing to memory pressure.
9819 		 */
9820 		if (l2arc_hdr_limit_reached()) {
9821 			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9822 			spa_config_exit(spa, SCL_L2ARC, dev);
9823 			continue;
9824 		}
9825 
9826 		ARCSTAT_BUMP(arcstat_l2_feeds);
9827 
9828 		size = l2arc_write_size(dev);
9829 
9830 		/*
9831 		 * Evict L2ARC buffers that will be overwritten.
9832 		 */
9833 		l2arc_evict(dev, size, B_FALSE);
9834 
9835 		/*
9836 		 * Write ARC buffers.
9837 		 */
9838 		wrote = l2arc_write_buffers(spa, dev, size);
9839 
9840 		/*
9841 		 * Calculate interval between writes.
9842 		 */
9843 		next = l2arc_write_interval(begin, size, wrote);
9844 		spa_config_exit(spa, SCL_L2ARC, dev);
9845 	}
9846 	spl_fstrans_unmark(cookie);
9847 
9848 	l2arc_thread_exit = 0;
9849 	cv_broadcast(&l2arc_feed_thr_cv);
9850 	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
9851 	thread_exit();
9852 }
9853 
9854 boolean_t
l2arc_vdev_present(vdev_t * vd)9855 l2arc_vdev_present(vdev_t *vd)
9856 {
9857 	return (l2arc_vdev_get(vd) != NULL);
9858 }
9859 
9860 /*
9861  * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9862  * the vdev_t isn't an L2ARC device.
9863  */
9864 l2arc_dev_t *
l2arc_vdev_get(vdev_t * vd)9865 l2arc_vdev_get(vdev_t *vd)
9866 {
9867 	l2arc_dev_t	*dev;
9868 
9869 	mutex_enter(&l2arc_dev_mtx);
9870 	for (dev = list_head(l2arc_dev_list); dev != NULL;
9871 	    dev = list_next(l2arc_dev_list, dev)) {
9872 		if (dev->l2ad_vdev == vd)
9873 			break;
9874 	}
9875 	mutex_exit(&l2arc_dev_mtx);
9876 
9877 	return (dev);
9878 }
9879 
9880 static void
l2arc_rebuild_dev(l2arc_dev_t * dev,boolean_t reopen)9881 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9882 {
9883 	l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9884 	uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9885 	spa_t *spa = dev->l2ad_spa;
9886 
9887 	/*
9888 	 * After a l2arc_remove_vdev(), the spa_t will no longer be valid
9889 	 */
9890 	if (spa == NULL)
9891 		return;
9892 
9893 	/*
9894 	 * The L2ARC has to hold at least the payload of one log block for
9895 	 * them to be restored (persistent L2ARC). The payload of a log block
9896 	 * depends on the amount of its log entries. We always write log blocks
9897 	 * with 1022 entries. How many of them are committed or restored depends
9898 	 * on the size of the L2ARC device. Thus the maximum payload of
9899 	 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9900 	 * is less than that, we reduce the amount of committed and restored
9901 	 * log entries per block so as to enable persistence.
9902 	 */
9903 	if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9904 		dev->l2ad_log_entries = 0;
9905 	} else {
9906 		dev->l2ad_log_entries = MIN((dev->l2ad_end -
9907 		    dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9908 		    L2ARC_LOG_BLK_MAX_ENTRIES);
9909 	}
9910 
9911 	/*
9912 	 * Read the device header, if an error is returned do not rebuild L2ARC.
9913 	 */
9914 	if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9915 		/*
9916 		 * If we are onlining a cache device (vdev_reopen) that was
9917 		 * still present (l2arc_vdev_present()) and rebuild is enabled,
9918 		 * we should evict all ARC buffers and pointers to log blocks
9919 		 * and reclaim their space before restoring its contents to
9920 		 * L2ARC.
9921 		 */
9922 		if (reopen) {
9923 			if (!l2arc_rebuild_enabled) {
9924 				return;
9925 			} else {
9926 				l2arc_evict(dev, 0, B_TRUE);
9927 				/* start a new log block */
9928 				dev->l2ad_log_ent_idx = 0;
9929 				dev->l2ad_log_blk_payload_asize = 0;
9930 				dev->l2ad_log_blk_payload_start = 0;
9931 			}
9932 		}
9933 		/*
9934 		 * Just mark the device as pending for a rebuild. We won't
9935 		 * be starting a rebuild in line here as it would block pool
9936 		 * import. Instead spa_load_impl will hand that off to an
9937 		 * async task which will call l2arc_spa_rebuild_start.
9938 		 */
9939 		dev->l2ad_rebuild = B_TRUE;
9940 	} else if (spa_writeable(spa)) {
9941 		/*
9942 		 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9943 		 * otherwise create a new header. We zero out the memory holding
9944 		 * the header to reset dh_start_lbps. If we TRIM the whole
9945 		 * device the new header will be written by
9946 		 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9947 		 * trim_state in the header too. When reading the header, if
9948 		 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9949 		 * we opt to TRIM the whole device again.
9950 		 */
9951 		if (l2arc_trim_ahead > 0) {
9952 			dev->l2ad_trim_all = B_TRUE;
9953 		} else {
9954 			memset(l2dhdr, 0, l2dhdr_asize);
9955 			l2arc_dev_hdr_update(dev);
9956 		}
9957 	}
9958 }
9959 
9960 /*
9961  * Add a vdev for use by the L2ARC.  By this point the spa has already
9962  * validated the vdev and opened it.
9963  */
9964 void
l2arc_add_vdev(spa_t * spa,vdev_t * vd)9965 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9966 {
9967 	l2arc_dev_t		*adddev;
9968 	uint64_t		l2dhdr_asize;
9969 
9970 	ASSERT(!l2arc_vdev_present(vd));
9971 
9972 	/*
9973 	 * Create a new l2arc device entry.
9974 	 */
9975 	adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9976 	adddev->l2ad_spa = spa;
9977 	adddev->l2ad_vdev = vd;
9978 	/* leave extra size for an l2arc device header */
9979 	l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9980 	    MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9981 	adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9982 	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9983 	ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9984 	adddev->l2ad_hand = adddev->l2ad_start;
9985 	adddev->l2ad_evict = adddev->l2ad_start;
9986 	adddev->l2ad_first = B_TRUE;
9987 	adddev->l2ad_writing = B_FALSE;
9988 	adddev->l2ad_trim_all = B_FALSE;
9989 	list_link_init(&adddev->l2ad_node);
9990 	adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
9991 
9992 	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
9993 	/*
9994 	 * This is a list of all ARC buffers that are still valid on the
9995 	 * device.
9996 	 */
9997 	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9998 	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
9999 
10000 	/*
10001 	 * This is a list of pointers to log blocks that are still present
10002 	 * on the device.
10003 	 */
10004 	list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
10005 	    offsetof(l2arc_lb_ptr_buf_t, node));
10006 
10007 	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
10008 	zfs_refcount_create(&adddev->l2ad_alloc);
10009 	zfs_refcount_create(&adddev->l2ad_lb_asize);
10010 	zfs_refcount_create(&adddev->l2ad_lb_count);
10011 
10012 	/*
10013 	 * Decide if dev is eligible for L2ARC rebuild or whole device
10014 	 * trimming. This has to happen before the device is added in the
10015 	 * cache device list and l2arc_dev_mtx is released. Otherwise
10016 	 * l2arc_feed_thread() might already start writing on the
10017 	 * device.
10018 	 */
10019 	l2arc_rebuild_dev(adddev, B_FALSE);
10020 
10021 	/*
10022 	 * Add device to global list
10023 	 */
10024 	mutex_enter(&l2arc_dev_mtx);
10025 	list_insert_head(l2arc_dev_list, adddev);
10026 	atomic_inc_64(&l2arc_ndev);
10027 	mutex_exit(&l2arc_dev_mtx);
10028 }
10029 
10030 /*
10031  * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
10032  * in case of onlining a cache device.
10033  */
10034 void
l2arc_rebuild_vdev(vdev_t * vd,boolean_t reopen)10035 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
10036 {
10037 	l2arc_dev_t		*dev = NULL;
10038 
10039 	dev = l2arc_vdev_get(vd);
10040 	ASSERT3P(dev, !=, NULL);
10041 
10042 	/*
10043 	 * In contrast to l2arc_add_vdev() we do not have to worry about
10044 	 * l2arc_feed_thread() invalidating previous content when onlining a
10045 	 * cache device. The device parameters (l2ad*) are not cleared when
10046 	 * offlining the device and writing new buffers will not invalidate
10047 	 * all previous content. In worst case only buffers that have not had
10048 	 * their log block written to the device will be lost.
10049 	 * When onlining the cache device (ie offline->online without exporting
10050 	 * the pool in between) this happens:
10051 	 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10052 	 * 			|			|
10053 	 * 		vdev_is_dead() = B_FALSE	l2ad_rebuild = B_TRUE
10054 	 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10055 	 * is set to B_TRUE we might write additional buffers to the device.
10056 	 */
10057 	l2arc_rebuild_dev(dev, reopen);
10058 }
10059 
10060 typedef struct {
10061 	l2arc_dev_t	*rva_l2arc_dev;
10062 	uint64_t	rva_spa_gid;
10063 	uint64_t	rva_vdev_gid;
10064 	boolean_t	rva_async;
10065 
10066 } remove_vdev_args_t;
10067 
10068 static void
l2arc_device_teardown(void * arg)10069 l2arc_device_teardown(void *arg)
10070 {
10071 	remove_vdev_args_t *rva = arg;
10072 	l2arc_dev_t *remdev = rva->rva_l2arc_dev;
10073 	hrtime_t start_time = gethrtime();
10074 
10075 	/*
10076 	 * Clear all buflists and ARC references.  L2ARC device flush.
10077 	 */
10078 	l2arc_evict(remdev, 0, B_TRUE);
10079 	list_destroy(&remdev->l2ad_buflist);
10080 	ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10081 	list_destroy(&remdev->l2ad_lbptr_list);
10082 	mutex_destroy(&remdev->l2ad_mtx);
10083 	zfs_refcount_destroy(&remdev->l2ad_alloc);
10084 	zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10085 	zfs_refcount_destroy(&remdev->l2ad_lb_count);
10086 	kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10087 	vmem_free(remdev, sizeof (l2arc_dev_t));
10088 
10089 	uint64_t elaspsed = NSEC2MSEC(gethrtime() - start_time);
10090 	if (elaspsed > 0) {
10091 		zfs_dbgmsg("spa %llu, vdev %llu removed in %llu ms",
10092 		    (u_longlong_t)rva->rva_spa_gid,
10093 		    (u_longlong_t)rva->rva_vdev_gid,
10094 		    (u_longlong_t)elaspsed);
10095 	}
10096 
10097 	if (rva->rva_async)
10098 		arc_async_flush_remove(rva->rva_spa_gid, 2);
10099 	kmem_free(rva, sizeof (remove_vdev_args_t));
10100 }
10101 
10102 /*
10103  * Remove a vdev from the L2ARC.
10104  */
10105 void
l2arc_remove_vdev(vdev_t * vd)10106 l2arc_remove_vdev(vdev_t *vd)
10107 {
10108 	spa_t *spa = vd->vdev_spa;
10109 	boolean_t asynchronous = spa->spa_state == POOL_STATE_EXPORTED ||
10110 	    spa->spa_state == POOL_STATE_DESTROYED;
10111 
10112 	/*
10113 	 * Find the device by vdev
10114 	 */
10115 	l2arc_dev_t *remdev = l2arc_vdev_get(vd);
10116 	ASSERT3P(remdev, !=, NULL);
10117 
10118 	/*
10119 	 * Save info for final teardown
10120 	 */
10121 	remove_vdev_args_t *rva = kmem_alloc(sizeof (remove_vdev_args_t),
10122 	    KM_SLEEP);
10123 	rva->rva_l2arc_dev = remdev;
10124 	rva->rva_spa_gid = spa_load_guid(spa);
10125 	rva->rva_vdev_gid = remdev->l2ad_vdev->vdev_guid;
10126 
10127 	/*
10128 	 * Cancel any ongoing or scheduled rebuild.
10129 	 */
10130 	mutex_enter(&l2arc_rebuild_thr_lock);
10131 	remdev->l2ad_rebuild_cancel = B_TRUE;
10132 	if (remdev->l2ad_rebuild_began == B_TRUE) {
10133 		while (remdev->l2ad_rebuild == B_TRUE)
10134 			cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10135 	}
10136 	mutex_exit(&l2arc_rebuild_thr_lock);
10137 	rva->rva_async = asynchronous;
10138 
10139 	/*
10140 	 * Remove device from global list
10141 	 */
10142 	ASSERT(spa_config_held(spa, SCL_L2ARC, RW_WRITER) & SCL_L2ARC);
10143 	mutex_enter(&l2arc_dev_mtx);
10144 	list_remove(l2arc_dev_list, remdev);
10145 	l2arc_dev_last = NULL;		/* may have been invalidated */
10146 	atomic_dec_64(&l2arc_ndev);
10147 
10148 	/* During a pool export spa & vdev will no longer be valid */
10149 	if (asynchronous) {
10150 		remdev->l2ad_spa = NULL;
10151 		remdev->l2ad_vdev = NULL;
10152 	}
10153 	mutex_exit(&l2arc_dev_mtx);
10154 
10155 	if (!asynchronous) {
10156 		l2arc_device_teardown(rva);
10157 		return;
10158 	}
10159 
10160 	arc_async_flush_t *af = arc_async_flush_add(rva->rva_spa_gid, 2);
10161 
10162 	taskq_dispatch_ent(arc_flush_taskq, l2arc_device_teardown, rva,
10163 	    TQ_SLEEP, &af->af_tqent);
10164 }
10165 
10166 void
l2arc_init(void)10167 l2arc_init(void)
10168 {
10169 	l2arc_thread_exit = 0;
10170 	l2arc_ndev = 0;
10171 
10172 	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10173 	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10174 	mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10175 	cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10176 	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10177 	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10178 
10179 	l2arc_dev_list = &L2ARC_dev_list;
10180 	l2arc_free_on_write = &L2ARC_free_on_write;
10181 	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10182 	    offsetof(l2arc_dev_t, l2ad_node));
10183 	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10184 	    offsetof(l2arc_data_free_t, l2df_list_node));
10185 }
10186 
10187 void
l2arc_fini(void)10188 l2arc_fini(void)
10189 {
10190 	mutex_destroy(&l2arc_feed_thr_lock);
10191 	cv_destroy(&l2arc_feed_thr_cv);
10192 	mutex_destroy(&l2arc_rebuild_thr_lock);
10193 	cv_destroy(&l2arc_rebuild_thr_cv);
10194 	mutex_destroy(&l2arc_dev_mtx);
10195 	mutex_destroy(&l2arc_free_on_write_mtx);
10196 
10197 	list_destroy(l2arc_dev_list);
10198 	list_destroy(l2arc_free_on_write);
10199 }
10200 
10201 void
l2arc_start(void)10202 l2arc_start(void)
10203 {
10204 	if (!(spa_mode_global & SPA_MODE_WRITE))
10205 		return;
10206 
10207 	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10208 	    TS_RUN, defclsyspri);
10209 }
10210 
10211 void
l2arc_stop(void)10212 l2arc_stop(void)
10213 {
10214 	if (!(spa_mode_global & SPA_MODE_WRITE))
10215 		return;
10216 
10217 	mutex_enter(&l2arc_feed_thr_lock);
10218 	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
10219 	l2arc_thread_exit = 1;
10220 	while (l2arc_thread_exit != 0)
10221 		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10222 	mutex_exit(&l2arc_feed_thr_lock);
10223 }
10224 
10225 /*
10226  * Punches out rebuild threads for the L2ARC devices in a spa. This should
10227  * be called after pool import from the spa async thread, since starting
10228  * these threads directly from spa_import() will make them part of the
10229  * "zpool import" context and delay process exit (and thus pool import).
10230  */
10231 void
l2arc_spa_rebuild_start(spa_t * spa)10232 l2arc_spa_rebuild_start(spa_t *spa)
10233 {
10234 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
10235 
10236 	/*
10237 	 * Locate the spa's l2arc devices and kick off rebuild threads.
10238 	 */
10239 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10240 		l2arc_dev_t *dev =
10241 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10242 		if (dev == NULL) {
10243 			/* Don't attempt a rebuild if the vdev is UNAVAIL */
10244 			continue;
10245 		}
10246 		mutex_enter(&l2arc_rebuild_thr_lock);
10247 		if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10248 			dev->l2ad_rebuild_began = B_TRUE;
10249 			(void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10250 			    dev, 0, &p0, TS_RUN, minclsyspri);
10251 		}
10252 		mutex_exit(&l2arc_rebuild_thr_lock);
10253 	}
10254 }
10255 
10256 void
l2arc_spa_rebuild_stop(spa_t * spa)10257 l2arc_spa_rebuild_stop(spa_t *spa)
10258 {
10259 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
10260 	    spa->spa_export_thread == curthread);
10261 
10262 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10263 		l2arc_dev_t *dev =
10264 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10265 		if (dev == NULL)
10266 			continue;
10267 		mutex_enter(&l2arc_rebuild_thr_lock);
10268 		dev->l2ad_rebuild_cancel = B_TRUE;
10269 		mutex_exit(&l2arc_rebuild_thr_lock);
10270 	}
10271 	for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10272 		l2arc_dev_t *dev =
10273 		    l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10274 		if (dev == NULL)
10275 			continue;
10276 		mutex_enter(&l2arc_rebuild_thr_lock);
10277 		if (dev->l2ad_rebuild_began == B_TRUE) {
10278 			while (dev->l2ad_rebuild == B_TRUE) {
10279 				cv_wait(&l2arc_rebuild_thr_cv,
10280 				    &l2arc_rebuild_thr_lock);
10281 			}
10282 		}
10283 		mutex_exit(&l2arc_rebuild_thr_lock);
10284 	}
10285 }
10286 
10287 /*
10288  * Main entry point for L2ARC rebuilding.
10289  */
10290 static __attribute__((noreturn)) void
l2arc_dev_rebuild_thread(void * arg)10291 l2arc_dev_rebuild_thread(void *arg)
10292 {
10293 	l2arc_dev_t *dev = arg;
10294 
10295 	VERIFY(dev->l2ad_rebuild);
10296 	(void) l2arc_rebuild(dev);
10297 	mutex_enter(&l2arc_rebuild_thr_lock);
10298 	dev->l2ad_rebuild_began = B_FALSE;
10299 	dev->l2ad_rebuild = B_FALSE;
10300 	cv_signal(&l2arc_rebuild_thr_cv);
10301 	mutex_exit(&l2arc_rebuild_thr_lock);
10302 
10303 	thread_exit();
10304 }
10305 
10306 /*
10307  * This function implements the actual L2ARC metadata rebuild. It:
10308  * starts reading the log block chain and restores each block's contents
10309  * to memory (reconstructing arc_buf_hdr_t's).
10310  *
10311  * Operation stops under any of the following conditions:
10312  *
10313  * 1) We reach the end of the log block chain.
10314  * 2) We encounter *any* error condition (cksum errors, io errors)
10315  */
10316 static int
l2arc_rebuild(l2arc_dev_t * dev)10317 l2arc_rebuild(l2arc_dev_t *dev)
10318 {
10319 	vdev_t			*vd = dev->l2ad_vdev;
10320 	spa_t			*spa = vd->vdev_spa;
10321 	int			err = 0;
10322 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10323 	l2arc_log_blk_phys_t	*this_lb, *next_lb;
10324 	zio_t			*this_io = NULL, *next_io = NULL;
10325 	l2arc_log_blkptr_t	lbps[2];
10326 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10327 	boolean_t		lock_held;
10328 
10329 	this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10330 	next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10331 
10332 	/*
10333 	 * We prevent device removal while issuing reads to the device,
10334 	 * then during the rebuilding phases we drop this lock again so
10335 	 * that a spa_unload or device remove can be initiated - this is
10336 	 * safe, because the spa will signal us to stop before removing
10337 	 * our device and wait for us to stop.
10338 	 */
10339 	spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10340 	lock_held = B_TRUE;
10341 
10342 	/*
10343 	 * Retrieve the persistent L2ARC device state.
10344 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10345 	 */
10346 	dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10347 	dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10348 	    L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10349 	    dev->l2ad_start);
10350 	dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10351 
10352 	vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10353 	vd->vdev_trim_state = l2dhdr->dh_trim_state;
10354 
10355 	/*
10356 	 * In case the zfs module parameter l2arc_rebuild_enabled is false
10357 	 * we do not start the rebuild process.
10358 	 */
10359 	if (!l2arc_rebuild_enabled)
10360 		goto out;
10361 
10362 	/* Prepare the rebuild process */
10363 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10364 
10365 	/* Start the rebuild process */
10366 	for (;;) {
10367 		if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10368 			break;
10369 
10370 		if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10371 		    this_lb, next_lb, this_io, &next_io)) != 0)
10372 			goto out;
10373 
10374 		/*
10375 		 * Our memory pressure valve. If the system is running low
10376 		 * on memory, rather than swamping memory with new ARC buf
10377 		 * hdrs, we opt not to rebuild the L2ARC. At this point,
10378 		 * however, we have already set up our L2ARC dev to chain in
10379 		 * new metadata log blocks, so the user may choose to offline/
10380 		 * online the L2ARC dev at a later time (or re-import the pool)
10381 		 * to reconstruct it (when there's less memory pressure).
10382 		 */
10383 		if (l2arc_hdr_limit_reached()) {
10384 			ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10385 			cmn_err(CE_NOTE, "System running low on memory, "
10386 			    "aborting L2ARC rebuild.");
10387 			err = SET_ERROR(ENOMEM);
10388 			goto out;
10389 		}
10390 
10391 		spa_config_exit(spa, SCL_L2ARC, vd);
10392 		lock_held = B_FALSE;
10393 
10394 		/*
10395 		 * Now that we know that the next_lb checks out alright, we
10396 		 * can start reconstruction from this log block.
10397 		 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10398 		 */
10399 		uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10400 		l2arc_log_blk_restore(dev, this_lb, asize);
10401 
10402 		/*
10403 		 * log block restored, include its pointer in the list of
10404 		 * pointers to log blocks present in the L2ARC device.
10405 		 */
10406 		lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10407 		lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10408 		    KM_SLEEP);
10409 		memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10410 		    sizeof (l2arc_log_blkptr_t));
10411 		mutex_enter(&dev->l2ad_mtx);
10412 		list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10413 		ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10414 		ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10415 		zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10416 		zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10417 		mutex_exit(&dev->l2ad_mtx);
10418 		vdev_space_update(vd, asize, 0, 0);
10419 
10420 		/*
10421 		 * Protection against loops of log blocks:
10422 		 *
10423 		 *				       l2ad_hand  l2ad_evict
10424 		 *                                         V	      V
10425 		 * l2ad_start |=======================================| l2ad_end
10426 		 *             -----|||----|||---|||----|||
10427 		 *                  (3)    (2)   (1)    (0)
10428 		 *             ---|||---|||----|||---|||
10429 		 *		  (7)   (6)    (5)   (4)
10430 		 *
10431 		 * In this situation the pointer of log block (4) passes
10432 		 * l2arc_log_blkptr_valid() but the log block should not be
10433 		 * restored as it is overwritten by the payload of log block
10434 		 * (0). Only log blocks (0)-(3) should be restored. We check
10435 		 * whether l2ad_evict lies in between the payload starting
10436 		 * offset of the next log block (lbps[1].lbp_payload_start)
10437 		 * and the payload starting offset of the present log block
10438 		 * (lbps[0].lbp_payload_start). If true and this isn't the
10439 		 * first pass, we are looping from the beginning and we should
10440 		 * stop.
10441 		 */
10442 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10443 		    lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10444 		    !dev->l2ad_first)
10445 			goto out;
10446 
10447 		kpreempt(KPREEMPT_SYNC);
10448 		for (;;) {
10449 			mutex_enter(&l2arc_rebuild_thr_lock);
10450 			if (dev->l2ad_rebuild_cancel) {
10451 				mutex_exit(&l2arc_rebuild_thr_lock);
10452 				err = SET_ERROR(ECANCELED);
10453 				goto out;
10454 			}
10455 			mutex_exit(&l2arc_rebuild_thr_lock);
10456 			if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10457 			    RW_READER)) {
10458 				lock_held = B_TRUE;
10459 				break;
10460 			}
10461 			/*
10462 			 * L2ARC config lock held by somebody in writer,
10463 			 * possibly due to them trying to remove us. They'll
10464 			 * likely to want us to shut down, so after a little
10465 			 * delay, we check l2ad_rebuild_cancel and retry
10466 			 * the lock again.
10467 			 */
10468 			delay(1);
10469 		}
10470 
10471 		/*
10472 		 * Continue with the next log block.
10473 		 */
10474 		lbps[0] = lbps[1];
10475 		lbps[1] = this_lb->lb_prev_lbp;
10476 		PTR_SWAP(this_lb, next_lb);
10477 		this_io = next_io;
10478 		next_io = NULL;
10479 	}
10480 
10481 	if (this_io != NULL)
10482 		l2arc_log_blk_fetch_abort(this_io);
10483 out:
10484 	if (next_io != NULL)
10485 		l2arc_log_blk_fetch_abort(next_io);
10486 	vmem_free(this_lb, sizeof (*this_lb));
10487 	vmem_free(next_lb, sizeof (*next_lb));
10488 
10489 	if (err == ECANCELED) {
10490 		/*
10491 		 * In case the rebuild was canceled do not log to spa history
10492 		 * log as the pool may be in the process of being removed.
10493 		 */
10494 		zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10495 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10496 		return (err);
10497 	} else if (!l2arc_rebuild_enabled) {
10498 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10499 		    "disabled");
10500 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10501 		ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10502 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10503 		    "successful, restored %llu blocks",
10504 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10505 	} else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10506 		/*
10507 		 * No error but also nothing restored, meaning the lbps array
10508 		 * in the device header points to invalid/non-present log
10509 		 * blocks. Reset the header.
10510 		 */
10511 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10512 		    "no valid log blocks");
10513 		memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10514 		l2arc_dev_hdr_update(dev);
10515 	} else if (err != 0) {
10516 		spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10517 		    "aborted, restored %llu blocks",
10518 		    (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10519 	}
10520 
10521 	if (lock_held)
10522 		spa_config_exit(spa, SCL_L2ARC, vd);
10523 
10524 	return (err);
10525 }
10526 
10527 /*
10528  * Attempts to read the device header on the provided L2ARC device and writes
10529  * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10530  * error code is returned.
10531  */
10532 static int
l2arc_dev_hdr_read(l2arc_dev_t * dev)10533 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10534 {
10535 	int			err;
10536 	uint64_t		guid;
10537 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10538 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10539 	abd_t 			*abd;
10540 
10541 	guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10542 
10543 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10544 
10545 	err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10546 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10547 	    ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10548 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10549 	    ZIO_FLAG_SPECULATIVE, B_FALSE));
10550 
10551 	abd_free(abd);
10552 
10553 	if (err != 0) {
10554 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10555 		zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10556 		    "vdev guid: %llu", err,
10557 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10558 		return (err);
10559 	}
10560 
10561 	if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10562 		byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10563 
10564 	if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10565 	    l2dhdr->dh_spa_guid != guid ||
10566 	    l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10567 	    l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10568 	    l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10569 	    l2dhdr->dh_end != dev->l2ad_end ||
10570 	    !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10571 	    l2dhdr->dh_evict) ||
10572 	    (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10573 	    l2arc_trim_ahead > 0)) {
10574 		/*
10575 		 * Attempt to rebuild a device containing no actual dev hdr
10576 		 * or containing a header from some other pool or from another
10577 		 * version of persistent L2ARC.
10578 		 */
10579 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10580 		return (SET_ERROR(ENOTSUP));
10581 	}
10582 
10583 	return (0);
10584 }
10585 
10586 /*
10587  * Reads L2ARC log blocks from storage and validates their contents.
10588  *
10589  * This function implements a simple fetcher to make sure that while
10590  * we're processing one buffer the L2ARC is already fetching the next
10591  * one in the chain.
10592  *
10593  * The arguments this_lp and next_lp point to the current and next log block
10594  * address in the block chain. Similarly, this_lb and next_lb hold the
10595  * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10596  *
10597  * The `this_io' and `next_io' arguments are used for block fetching.
10598  * When issuing the first blk IO during rebuild, you should pass NULL for
10599  * `this_io'. This function will then issue a sync IO to read the block and
10600  * also issue an async IO to fetch the next block in the block chain. The
10601  * fetched IO is returned in `next_io'. On subsequent calls to this
10602  * function, pass the value returned in `next_io' from the previous call
10603  * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10604  * Prior to the call, you should initialize your `next_io' pointer to be
10605  * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10606  *
10607  * On success, this function returns 0, otherwise it returns an appropriate
10608  * error code. On error the fetching IO is aborted and cleared before
10609  * returning from this function. Therefore, if we return `success', the
10610  * caller can assume that we have taken care of cleanup of fetch IOs.
10611  */
10612 static int
l2arc_log_blk_read(l2arc_dev_t * dev,const l2arc_log_blkptr_t * this_lbp,const l2arc_log_blkptr_t * next_lbp,l2arc_log_blk_phys_t * this_lb,l2arc_log_blk_phys_t * next_lb,zio_t * this_io,zio_t ** next_io)10613 l2arc_log_blk_read(l2arc_dev_t *dev,
10614     const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10615     l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10616     zio_t *this_io, zio_t **next_io)
10617 {
10618 	int		err = 0;
10619 	zio_cksum_t	cksum;
10620 	uint64_t	asize;
10621 
10622 	ASSERT(this_lbp != NULL && next_lbp != NULL);
10623 	ASSERT(this_lb != NULL && next_lb != NULL);
10624 	ASSERT(next_io != NULL && *next_io == NULL);
10625 	ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10626 
10627 	/*
10628 	 * Check to see if we have issued the IO for this log block in a
10629 	 * previous run. If not, this is the first call, so issue it now.
10630 	 */
10631 	if (this_io == NULL) {
10632 		this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10633 		    this_lb);
10634 	}
10635 
10636 	/*
10637 	 * Peek to see if we can start issuing the next IO immediately.
10638 	 */
10639 	if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10640 		/*
10641 		 * Start issuing IO for the next log block early - this
10642 		 * should help keep the L2ARC device busy while we
10643 		 * decompress and restore this log block.
10644 		 */
10645 		*next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10646 		    next_lb);
10647 	}
10648 
10649 	/* Wait for the IO to read this log block to complete */
10650 	if ((err = zio_wait(this_io)) != 0) {
10651 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10652 		zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10653 		    "offset: %llu, vdev guid: %llu", err,
10654 		    (u_longlong_t)this_lbp->lbp_daddr,
10655 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10656 		goto cleanup;
10657 	}
10658 
10659 	/*
10660 	 * Make sure the buffer checks out.
10661 	 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10662 	 */
10663 	asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10664 	fletcher_4_native(this_lb, asize, NULL, &cksum);
10665 	if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10666 		ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10667 		zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10668 		    "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10669 		    (u_longlong_t)this_lbp->lbp_daddr,
10670 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10671 		    (u_longlong_t)dev->l2ad_hand,
10672 		    (u_longlong_t)dev->l2ad_evict);
10673 		err = SET_ERROR(ECKSUM);
10674 		goto cleanup;
10675 	}
10676 
10677 	/* Now we can take our time decoding this buffer */
10678 	switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10679 	case ZIO_COMPRESS_OFF:
10680 		break;
10681 	case ZIO_COMPRESS_LZ4: {
10682 		abd_t *abd = abd_alloc_linear(asize, B_TRUE);
10683 		abd_copy_from_buf_off(abd, this_lb, 0, asize);
10684 		abd_t dabd;
10685 		abd_get_from_buf_struct(&dabd, this_lb, sizeof (*this_lb));
10686 		err = zio_decompress_data(
10687 		    L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10688 		    abd, &dabd, asize, sizeof (*this_lb), NULL);
10689 		abd_free(&dabd);
10690 		abd_free(abd);
10691 		if (err != 0) {
10692 			err = SET_ERROR(EINVAL);
10693 			goto cleanup;
10694 		}
10695 		break;
10696 	}
10697 	default:
10698 		err = SET_ERROR(EINVAL);
10699 		goto cleanup;
10700 	}
10701 	if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10702 		byteswap_uint64_array(this_lb, sizeof (*this_lb));
10703 	if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10704 		err = SET_ERROR(EINVAL);
10705 		goto cleanup;
10706 	}
10707 cleanup:
10708 	/* Abort an in-flight fetch I/O in case of error */
10709 	if (err != 0 && *next_io != NULL) {
10710 		l2arc_log_blk_fetch_abort(*next_io);
10711 		*next_io = NULL;
10712 	}
10713 	return (err);
10714 }
10715 
10716 /*
10717  * Restores the payload of a log block to ARC. This creates empty ARC hdr
10718  * entries which only contain an l2arc hdr, essentially restoring the
10719  * buffers to their L2ARC evicted state. This function also updates space
10720  * usage on the L2ARC vdev to make sure it tracks restored buffers.
10721  */
10722 static void
l2arc_log_blk_restore(l2arc_dev_t * dev,const l2arc_log_blk_phys_t * lb,uint64_t lb_asize)10723 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10724     uint64_t lb_asize)
10725 {
10726 	uint64_t	size = 0, asize = 0;
10727 	uint64_t	log_entries = dev->l2ad_log_entries;
10728 
10729 	/*
10730 	 * Usually arc_adapt() is called only for data, not headers, but
10731 	 * since we may allocate significant amount of memory here, let ARC
10732 	 * grow its arc_c.
10733 	 */
10734 	arc_adapt(log_entries * HDR_L2ONLY_SIZE);
10735 
10736 	for (int i = log_entries - 1; i >= 0; i--) {
10737 		/*
10738 		 * Restore goes in the reverse temporal direction to preserve
10739 		 * correct temporal ordering of buffers in the l2ad_buflist.
10740 		 * l2arc_hdr_restore also does a list_insert_tail instead of
10741 		 * list_insert_head on the l2ad_buflist:
10742 		 *
10743 		 *		LIST	l2ad_buflist		LIST
10744 		 *		HEAD  <------ (time) ------	TAIL
10745 		 * direction	+-----+-----+-----+-----+-----+    direction
10746 		 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10747 		 * fill		+-----+-----+-----+-----+-----+
10748 		 *		^				^
10749 		 *		|				|
10750 		 *		|				|
10751 		 *	l2arc_feed_thread		l2arc_rebuild
10752 		 *	will place new bufs here	restores bufs here
10753 		 *
10754 		 * During l2arc_rebuild() the device is not used by
10755 		 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10756 		 */
10757 		size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10758 		asize += vdev_psize_to_asize(dev->l2ad_vdev,
10759 		    L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10760 		l2arc_hdr_restore(&lb->lb_entries[i], dev);
10761 	}
10762 
10763 	/*
10764 	 * Record rebuild stats:
10765 	 *	size		Logical size of restored buffers in the L2ARC
10766 	 *	asize		Aligned size of restored buffers in the L2ARC
10767 	 */
10768 	ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10769 	ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10770 	ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10771 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10772 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10773 	ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10774 }
10775 
10776 /*
10777  * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10778  * into a state indicating that it has been evicted to L2ARC.
10779  */
10780 static void
l2arc_hdr_restore(const l2arc_log_ent_phys_t * le,l2arc_dev_t * dev)10781 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10782 {
10783 	arc_buf_hdr_t		*hdr, *exists;
10784 	kmutex_t		*hash_lock;
10785 	arc_buf_contents_t	type = L2BLK_GET_TYPE((le)->le_prop);
10786 	uint64_t		asize = vdev_psize_to_asize(dev->l2ad_vdev,
10787 	    L2BLK_GET_PSIZE((le)->le_prop));
10788 
10789 	/*
10790 	 * Do all the allocation before grabbing any locks, this lets us
10791 	 * sleep if memory is full and we don't have to deal with failed
10792 	 * allocations.
10793 	 */
10794 	hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10795 	    dev, le->le_dva, le->le_daddr,
10796 	    L2BLK_GET_PSIZE((le)->le_prop), asize, le->le_birth,
10797 	    L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10798 	    L2BLK_GET_PROTECTED((le)->le_prop),
10799 	    L2BLK_GET_PREFETCH((le)->le_prop),
10800 	    L2BLK_GET_STATE((le)->le_prop));
10801 
10802 	/*
10803 	 * vdev_space_update() has to be called before arc_hdr_destroy() to
10804 	 * avoid underflow since the latter also calls vdev_space_update().
10805 	 */
10806 	l2arc_hdr_arcstats_increment(hdr);
10807 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10808 
10809 	mutex_enter(&dev->l2ad_mtx);
10810 	list_insert_tail(&dev->l2ad_buflist, hdr);
10811 	(void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10812 	mutex_exit(&dev->l2ad_mtx);
10813 
10814 	exists = buf_hash_insert(hdr, &hash_lock);
10815 	if (exists) {
10816 		/* Buffer was already cached, no need to restore it. */
10817 		arc_hdr_destroy(hdr);
10818 		/*
10819 		 * If the buffer is already cached, check whether it has
10820 		 * L2ARC metadata. If not, enter them and update the flag.
10821 		 * This is important is case of onlining a cache device, since
10822 		 * we previously evicted all L2ARC metadata from ARC.
10823 		 */
10824 		if (!HDR_HAS_L2HDR(exists)) {
10825 			arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10826 			exists->b_l2hdr.b_dev = dev;
10827 			exists->b_l2hdr.b_daddr = le->le_daddr;
10828 			exists->b_l2hdr.b_arcs_state =
10829 			    L2BLK_GET_STATE((le)->le_prop);
10830 			/* l2arc_hdr_arcstats_update() expects a valid asize */
10831 			HDR_SET_L2SIZE(exists, asize);
10832 			mutex_enter(&dev->l2ad_mtx);
10833 			list_insert_tail(&dev->l2ad_buflist, exists);
10834 			(void) zfs_refcount_add_many(&dev->l2ad_alloc,
10835 			    arc_hdr_size(exists), exists);
10836 			mutex_exit(&dev->l2ad_mtx);
10837 			l2arc_hdr_arcstats_increment(exists);
10838 			vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10839 		}
10840 		ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10841 	}
10842 
10843 	mutex_exit(hash_lock);
10844 }
10845 
10846 /*
10847  * Starts an asynchronous read IO to read a log block. This is used in log
10848  * block reconstruction to start reading the next block before we are done
10849  * decoding and reconstructing the current block, to keep the l2arc device
10850  * nice and hot with read IO to process.
10851  * The returned zio will contain a newly allocated memory buffers for the IO
10852  * data which should then be freed by the caller once the zio is no longer
10853  * needed (i.e. due to it having completed). If you wish to abort this
10854  * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10855  * care of disposing of the allocated buffers correctly.
10856  */
10857 static zio_t *
l2arc_log_blk_fetch(vdev_t * vd,const l2arc_log_blkptr_t * lbp,l2arc_log_blk_phys_t * lb)10858 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10859     l2arc_log_blk_phys_t *lb)
10860 {
10861 	uint32_t		asize;
10862 	zio_t			*pio;
10863 	l2arc_read_callback_t	*cb;
10864 
10865 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
10866 	asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10867 	ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10868 
10869 	cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10870 	cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10871 	pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10872 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY);
10873 	(void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10874 	    cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10875 	    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL |
10876 	    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10877 
10878 	return (pio);
10879 }
10880 
10881 /*
10882  * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10883  * buffers allocated for it.
10884  */
10885 static void
l2arc_log_blk_fetch_abort(zio_t * zio)10886 l2arc_log_blk_fetch_abort(zio_t *zio)
10887 {
10888 	(void) zio_wait(zio);
10889 }
10890 
10891 /*
10892  * Creates a zio to update the device header on an l2arc device.
10893  */
10894 void
l2arc_dev_hdr_update(l2arc_dev_t * dev)10895 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10896 {
10897 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10898 	const uint64_t		l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10899 	abd_t			*abd;
10900 	int			err;
10901 
10902 	VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10903 
10904 	l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10905 	l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10906 	l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10907 	l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10908 	l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10909 	l2dhdr->dh_evict = dev->l2ad_evict;
10910 	l2dhdr->dh_start = dev->l2ad_start;
10911 	l2dhdr->dh_end = dev->l2ad_end;
10912 	l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10913 	l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10914 	l2dhdr->dh_flags = 0;
10915 	l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10916 	l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10917 	if (dev->l2ad_first)
10918 		l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10919 
10920 	abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10921 
10922 	err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10923 	    VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10924 	    NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10925 
10926 	abd_free(abd);
10927 
10928 	if (err != 0) {
10929 		zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10930 		    "vdev guid: %llu", err,
10931 		    (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10932 	}
10933 }
10934 
10935 /*
10936  * Commits a log block to the L2ARC device. This routine is invoked from
10937  * l2arc_write_buffers when the log block fills up.
10938  * This function allocates some memory to temporarily hold the serialized
10939  * buffer to be written. This is then released in l2arc_write_done.
10940  */
10941 static uint64_t
l2arc_log_blk_commit(l2arc_dev_t * dev,zio_t * pio,l2arc_write_callback_t * cb)10942 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10943 {
10944 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
10945 	l2arc_dev_hdr_phys_t	*l2dhdr = dev->l2ad_dev_hdr;
10946 	uint64_t		psize, asize;
10947 	zio_t			*wzio;
10948 	l2arc_lb_abd_buf_t	*abd_buf;
10949 	abd_t			*abd = NULL;
10950 	l2arc_lb_ptr_buf_t	*lb_ptr_buf;
10951 
10952 	VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10953 
10954 	abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10955 	abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10956 	lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10957 	lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10958 
10959 	/* link the buffer into the block chain */
10960 	lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10961 	lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10962 
10963 	/*
10964 	 * l2arc_log_blk_commit() may be called multiple times during a single
10965 	 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10966 	 * so we can free them in l2arc_write_done() later on.
10967 	 */
10968 	list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10969 
10970 	/* try to compress the buffer, at least one sector to save */
10971 	psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10972 	    abd_buf->abd, &abd, sizeof (*lb),
10973 	    zio_get_compression_max_size(ZIO_COMPRESS_LZ4,
10974 	    dev->l2ad_vdev->vdev_ashift,
10975 	    dev->l2ad_vdev->vdev_ashift, sizeof (*lb)), 0);
10976 
10977 	/* a log block is never entirely zero */
10978 	ASSERT(psize != 0);
10979 	asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10980 	ASSERT(asize <= sizeof (*lb));
10981 
10982 	/*
10983 	 * Update the start log block pointer in the device header to point
10984 	 * to the log block we're about to write.
10985 	 */
10986 	l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10987 	l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10988 	l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10989 	    dev->l2ad_log_blk_payload_asize;
10990 	l2dhdr->dh_start_lbps[0].lbp_payload_start =
10991 	    dev->l2ad_log_blk_payload_start;
10992 	L2BLK_SET_LSIZE(
10993 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10994 	L2BLK_SET_PSIZE(
10995 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10996 	L2BLK_SET_CHECKSUM(
10997 	    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10998 	    ZIO_CHECKSUM_FLETCHER_4);
10999 	if (asize < sizeof (*lb)) {
11000 		/* compression succeeded */
11001 		abd_zero_off(abd, psize, asize - psize);
11002 		L2BLK_SET_COMPRESS(
11003 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11004 		    ZIO_COMPRESS_LZ4);
11005 	} else {
11006 		/* compression failed */
11007 		abd_copy_from_buf_off(abd, lb, 0, sizeof (*lb));
11008 		L2BLK_SET_COMPRESS(
11009 		    (&l2dhdr->dh_start_lbps[0])->lbp_prop,
11010 		    ZIO_COMPRESS_OFF);
11011 	}
11012 
11013 	/* checksum what we're about to write */
11014 	abd_fletcher_4_native(abd, asize, NULL,
11015 	    &l2dhdr->dh_start_lbps[0].lbp_cksum);
11016 
11017 	abd_free(abd_buf->abd);
11018 
11019 	/* perform the write itself */
11020 	abd_buf->abd = abd;
11021 	wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
11022 	    asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
11023 	    ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
11024 	DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
11025 	(void) zio_nowait(wzio);
11026 
11027 	dev->l2ad_hand += asize;
11028 	vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
11029 
11030 	/*
11031 	 * Include the committed log block's pointer  in the list of pointers
11032 	 * to log blocks present in the L2ARC device.
11033 	 */
11034 	memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
11035 	    sizeof (l2arc_log_blkptr_t));
11036 	mutex_enter(&dev->l2ad_mtx);
11037 	list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
11038 	ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
11039 	ARCSTAT_BUMP(arcstat_l2_log_blk_count);
11040 	zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
11041 	zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
11042 	mutex_exit(&dev->l2ad_mtx);
11043 
11044 	/* bump the kstats */
11045 	ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
11046 	ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
11047 	ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
11048 	ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
11049 	    dev->l2ad_log_blk_payload_asize / asize);
11050 
11051 	/* start a new log block */
11052 	dev->l2ad_log_ent_idx = 0;
11053 	dev->l2ad_log_blk_payload_asize = 0;
11054 	dev->l2ad_log_blk_payload_start = 0;
11055 
11056 	return (asize);
11057 }
11058 
11059 /*
11060  * Validates an L2ARC log block address to make sure that it can be read
11061  * from the provided L2ARC device.
11062  */
11063 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t * dev,const l2arc_log_blkptr_t * lbp)11064 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
11065 {
11066 	/* L2BLK_GET_PSIZE returns aligned size for log blocks */
11067 	uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
11068 	uint64_t end = lbp->lbp_daddr + asize - 1;
11069 	uint64_t start = lbp->lbp_payload_start;
11070 	boolean_t evicted = B_FALSE;
11071 
11072 	/*
11073 	 * A log block is valid if all of the following conditions are true:
11074 	 * - it fits entirely (including its payload) between l2ad_start and
11075 	 *   l2ad_end
11076 	 * - it has a valid size
11077 	 * - neither the log block itself nor part of its payload was evicted
11078 	 *   by l2arc_evict():
11079 	 *
11080 	 *		l2ad_hand          l2ad_evict
11081 	 *		|			 |	lbp_daddr
11082 	 *		|     start		 |	|  end
11083 	 *		|     |			 |	|  |
11084 	 *		V     V		         V	V  V
11085 	 *   l2ad_start ============================================ l2ad_end
11086 	 *                    --------------------------||||
11087 	 *				^		 ^
11088 	 *				|		log block
11089 	 *				payload
11090 	 */
11091 
11092 	evicted =
11093 	    l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
11094 	    l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
11095 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
11096 	    l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
11097 
11098 	return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
11099 	    asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
11100 	    (!evicted || dev->l2ad_first));
11101 }
11102 
11103 /*
11104  * Inserts ARC buffer header `hdr' into the current L2ARC log block on
11105  * the device. The buffer being inserted must be present in L2ARC.
11106  * Returns B_TRUE if the L2ARC log block is full and needs to be committed
11107  * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
11108  */
11109 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t * dev,const arc_buf_hdr_t * hdr)11110 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
11111 {
11112 	l2arc_log_blk_phys_t	*lb = &dev->l2ad_log_blk;
11113 	l2arc_log_ent_phys_t	*le;
11114 
11115 	if (dev->l2ad_log_entries == 0)
11116 		return (B_FALSE);
11117 
11118 	int index = dev->l2ad_log_ent_idx++;
11119 
11120 	ASSERT3S(index, <, dev->l2ad_log_entries);
11121 	ASSERT(HDR_HAS_L2HDR(hdr));
11122 
11123 	le = &lb->lb_entries[index];
11124 	memset(le, 0, sizeof (*le));
11125 	le->le_dva = hdr->b_dva;
11126 	le->le_birth = hdr->b_birth;
11127 	le->le_daddr = hdr->b_l2hdr.b_daddr;
11128 	if (index == 0)
11129 		dev->l2ad_log_blk_payload_start = le->le_daddr;
11130 	L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
11131 	L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
11132 	L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
11133 	le->le_complevel = hdr->b_complevel;
11134 	L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
11135 	L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
11136 	L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
11137 	L2BLK_SET_STATE((le)->le_prop, hdr->b_l2hdr.b_arcs_state);
11138 
11139 	dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
11140 	    HDR_GET_PSIZE(hdr));
11141 
11142 	return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
11143 }
11144 
11145 /*
11146  * Checks whether a given L2ARC device address sits in a time-sequential
11147  * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11148  * just do a range comparison, we need to handle the situation in which the
11149  * range wraps around the end of the L2ARC device. Arguments:
11150  *	bottom -- Lower end of the range to check (written to earlier).
11151  *	top    -- Upper end of the range to check (written to later).
11152  *	check  -- The address for which we want to determine if it sits in
11153  *		  between the top and bottom.
11154  *
11155  * The 3-way conditional below represents the following cases:
11156  *
11157  *	bottom < top : Sequentially ordered case:
11158  *	  <check>--------+-------------------+
11159  *	                 |  (overlap here?)  |
11160  *	 L2ARC dev       V                   V
11161  *	 |---------------<bottom>============<top>--------------|
11162  *
11163  *	bottom > top: Looped-around case:
11164  *	                      <check>--------+------------------+
11165  *	                                     |  (overlap here?) |
11166  *	 L2ARC dev                           V                  V
11167  *	 |===============<top>---------------<bottom>===========|
11168  *	 ^               ^
11169  *	 |  (or here?)   |
11170  *	 +---------------+---------<check>
11171  *
11172  *	top == bottom : Just a single address comparison.
11173  */
11174 boolean_t
l2arc_range_check_overlap(uint64_t bottom,uint64_t top,uint64_t check)11175 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11176 {
11177 	if (bottom < top)
11178 		return (bottom <= check && check <= top);
11179 	else if (bottom > top)
11180 		return (check <= top || bottom <= check);
11181 	else
11182 		return (check == top);
11183 }
11184 
11185 EXPORT_SYMBOL(arc_buf_size);
11186 EXPORT_SYMBOL(arc_write);
11187 EXPORT_SYMBOL(arc_read);
11188 EXPORT_SYMBOL(arc_buf_info);
11189 EXPORT_SYMBOL(arc_getbuf_func);
11190 EXPORT_SYMBOL(arc_add_prune_callback);
11191 EXPORT_SYMBOL(arc_remove_prune_callback);
11192 
11193 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11194 	spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11195 
11196 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11197 	spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11198 
11199 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_balance, UINT, ZMOD_RW,
11200 	"Balance between metadata and data on ghost hits.");
11201 
11202 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11203 	param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11204 
11205 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11206 	param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11207 
11208 #ifdef _KERNEL
11209 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11210 	"Percent of pagecache to reclaim ARC to");
11211 #endif
11212 
11213 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11214 	"Target average block size");
11215 
11216 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11217 	"Disable compressed ARC buffers");
11218 
11219 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11220 	param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11221 
11222 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11223     param_set_arc_int, param_get_uint, ZMOD_RW,
11224 	"Min life of prescient prefetched block in ms");
11225 
11226 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11227 	"Max write bytes per interval");
11228 
11229 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11230 	"Extra write bytes during device warmup");
11231 
11232 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11233 	"Number of max device writes to precache");
11234 
11235 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11236 	"Compressed l2arc_headroom multiplier");
11237 
11238 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11239 	"TRIM ahead L2ARC write size multiplier");
11240 
11241 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11242 	"Seconds between L2ARC writing");
11243 
11244 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11245 	"Min feed interval in milliseconds");
11246 
11247 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11248 	"Skip caching prefetched buffers");
11249 
11250 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11251 	"Turbo L2ARC warmup");
11252 
11253 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11254 	"No reads during writes");
11255 
11256 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11257 	"Percent of ARC size allowed for L2ARC-only headers");
11258 
11259 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11260 	"Rebuild the L2ARC when importing a pool");
11261 
11262 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11263 	"Min size in bytes to write rebuild log blocks in L2ARC");
11264 
11265 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11266 	"Cache only MFU data from ARC into L2ARC");
11267 
11268 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11269 	"Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11270 
11271 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11272 	param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11273 
11274 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11275 	spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11276 
11277 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11278 	spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11279 
11280 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11281     param_set_arc_int, param_get_uint, ZMOD_RW,
11282 	"Percent of ARC meta buffers for dnodes");
11283 
11284 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11285 	"Percentage of excess dnodes to try to unpin");
11286 
11287 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11288 	"When full, ARC allocation waits for eviction of this % of alloc size");
11289 
11290 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11291 	"The number of headers to evict per sublist before moving to the next");
11292 
11293 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11294 	"Number of arc_prune threads");
11295 
11296 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_threads, UINT, ZMOD_RD,
11297 	"Number of threads to use for ARC eviction.");
11298