1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 /*
22 * NB: Merlin and later have a simpler RF backend.
23 */
24 #include "ah.h"
25 #include "ah_internal.h"
26
27 #include "ah_eeprom_v14.h"
28
29 #include "ar9002/ar9287.h"
30 #include "ar5416/ar5416reg.h"
31 #include "ar5416/ar5416phy.h"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 struct ar9287State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[1]; /* XXX */
38 };
39 #define AR9287(ah) ((struct ar9287State *) AH5212(ah)->ah_rfHal)
40
41 static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *,
42 const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
43 int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
44
45 static void
ar9287WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)46 ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
47 int writes)
48 {
49 (void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
50 freqIndex, writes);
51 }
52
53 /*
54 * Take the MHz channel value and set the Channel value
55 *
56 * ASSUMES: Writes enabled to analog bus
57 *
58 * Actual Expression,
59 *
60 * For 2GHz channel,
61 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
62 * (freq_ref = 40MHz)
63 *
64 * For 5GHz channel,
65 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
66 * (freq_ref = 40MHz/(24>>amodeRefSel))
67 *
68 * For 5GHz channels which are 5MHz spaced,
69 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
70 * (freq_ref = 40MHz)
71 */
72 static HAL_BOOL
ar9287SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)73 ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
74 {
75 uint16_t bMode, fracMode, aModeRefSel = 0;
76 uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
77 CHAN_CENTERS centers;
78 uint32_t refDivA = 24;
79
80 OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
81
82 ar5416GetChannelCenters(ah, chan, ¢ers);
83 freq = centers.synth_center;
84
85 reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
86 reg32 &= 0xc0000000;
87
88 if (freq < 4800) { /* 2 GHz, fractional mode */
89 uint32_t txctl;
90 int regWrites = 0;
91
92 bMode = 1;
93 fracMode = 1;
94 aModeRefSel = 0;
95 channelSel = (freq * 0x10000)/15;
96
97 if (AR_SREV_KIWI_11_OR_LATER(ah)) {
98 if (freq == 2484) {
99 ath_hal_ini_write(ah,
100 &AH9287(ah)->ah_ini_cckFirJapan2484, 1,
101 regWrites);
102 } else {
103 ath_hal_ini_write(ah,
104 &AH9287(ah)->ah_ini_cckFirNormal, 1,
105 regWrites);
106 }
107 }
108
109 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110 if (freq == 2484) {
111 /* Enable channel spreading for channel 14 */
112 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114 } else {
115 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117 }
118 } else {
119 bMode = 0;
120 fracMode = 0;
121
122 if ((freq % 20) == 0) {
123 aModeRefSel = 3;
124 } else if ((freq % 10) == 0) {
125 aModeRefSel = 2;
126 } else {
127 aModeRefSel = 0;
128 /*
129 * Enable 2G (fractional) mode for channels which
130 * are 5MHz spaced
131 */
132 fracMode = 1;
133 refDivA = 1;
134 channelSel = (freq * 0x8000)/15;
135
136 /* RefDivA setting */
137 OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
138 AR_AN_SYNTH9_REFDIVA, refDivA);
139 }
140 if (!fracMode) {
141 ndiv = (freq * (refDivA >> aModeRefSel))/60;
142 channelSel = ndiv & 0x1ff;
143 channelFrac = (ndiv & 0xfffffe00) * 2;
144 channelSel = (channelSel << 17) | channelFrac;
145 }
146 }
147
148 reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
149 (aModeRefSel << 26) | (channelSel);
150
151 OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
152
153 AH_PRIVATE(ah)->ah_curchan = chan;
154
155 return AH_TRUE;
156 }
157
158 /*
159 * Return a reference to the requested RF Bank.
160 */
161 static uint32_t *
ar9287GetRfBank(struct ath_hal * ah,int bank)162 ar9287GetRfBank(struct ath_hal *ah, int bank)
163 {
164 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
165 __func__, bank);
166 return AH_NULL;
167 }
168
169 /*
170 * Reads EEPROM header info from device structure and programs
171 * all rf registers
172 */
173 static HAL_BOOL
ar9287SetRfRegs(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t modesIndex,uint16_t * rfXpdGain)174 ar9287SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
175 uint16_t modesIndex, uint16_t *rfXpdGain)
176 {
177 return AH_TRUE; /* nothing to do */
178 }
179
180 /*
181 * Read the transmit power levels from the structures taken from EEPROM
182 * Interpolate read transmit power values for this channel
183 * Organize the transmit power values into a table for writing into the hardware
184 */
185
186 static HAL_BOOL
ar9287SetPowerTable(struct ath_hal * ah,int16_t * pPowerMin,int16_t * pPowerMax,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)187 ar9287SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
188 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
189 {
190 return AH_TRUE;
191 }
192
193 #if 0
194 static int16_t
195 ar9287GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
196 {
197 int i, minIndex;
198 int16_t minGain,minPwr,minPcdac,retVal;
199
200 /* Assume NUM_POINTS_XPD0 > 0 */
201 minGain = data->pDataPerXPD[0].xpd_gain;
202 for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
203 if (data->pDataPerXPD[i].xpd_gain < minGain) {
204 minIndex = i;
205 minGain = data->pDataPerXPD[i].xpd_gain;
206 }
207 }
208 minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
209 minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
210 for (i=1; i<NUM_POINTS_XPD0; i++) {
211 if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
212 minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
213 minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
214 }
215 }
216 retVal = minPwr - (minPcdac*2);
217 return(retVal);
218 }
219 #endif
220
221 static HAL_BOOL
ar9287GetChannelMaxMinPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * maxPow,int16_t * minPow)222 ar9287GetChannelMaxMinPower(struct ath_hal *ah,
223 const struct ieee80211_channel *chan,
224 int16_t *maxPow, int16_t *minPow)
225 {
226 #if 0
227 struct ath_hal_5212 *ahp = AH5212(ah);
228 int numChannels=0,i,last;
229 int totalD, totalF,totalMin;
230 EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
231 EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
232
233 *maxPow = 0;
234 if (IS_CHAN_A(chan)) {
235 powerArray = ahp->ah_modePowerArray5112;
236 data = powerArray[headerInfo11A].pDataPerChannel;
237 numChannels = powerArray[headerInfo11A].numChannels;
238 } else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
239 /* XXX - is this correct? Should we also use the same power for turbo G? */
240 powerArray = ahp->ah_modePowerArray5112;
241 data = powerArray[headerInfo11G].pDataPerChannel;
242 numChannels = powerArray[headerInfo11G].numChannels;
243 } else if (IS_CHAN_B(chan)) {
244 powerArray = ahp->ah_modePowerArray5112;
245 data = powerArray[headerInfo11B].pDataPerChannel;
246 numChannels = powerArray[headerInfo11B].numChannels;
247 } else {
248 return (AH_TRUE);
249 }
250 /* Make sure the channel is in the range of the TP values
251 * (freq piers)
252 */
253 if ((numChannels < 1) ||
254 (chan->channel < data[0].channelValue) ||
255 (chan->channel > data[numChannels-1].channelValue))
256 return(AH_FALSE);
257
258 /* Linearly interpolate the power value now */
259 for (last=0,i=0;
260 (i<numChannels) && (chan->channel > data[i].channelValue);
261 last=i++);
262 totalD = data[i].channelValue - data[last].channelValue;
263 if (totalD > 0) {
264 totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
265 *maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
266
267 totalMin = ar9287GetMinPower(ah,&data[i]) - ar9287GetMinPower(ah, &data[last]);
268 *minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9287GetMinPower(ah, &data[last])*totalD)/totalD);
269 return (AH_TRUE);
270 } else {
271 if (chan->channel == data[i].channelValue) {
272 *maxPow = data[i].maxPower_t4;
273 *minPow = ar9287GetMinPower(ah, &data[i]);
274 return(AH_TRUE);
275 } else
276 return(AH_FALSE);
277 }
278 #else
279 *maxPow = *minPow = 0;
280 return AH_FALSE;
281 #endif
282 }
283
284 /*
285 * The ordering of nfarray is thus:
286 *
287 * nfarray[0]: Chain 0 ctl
288 * nfarray[1]: Chain 1 ctl
289 * nfarray[2]: Chain 2 ctl
290 * nfarray[3]: Chain 0 ext
291 * nfarray[4]: Chain 1 ext
292 * nfarray[5]: Chain 2 ext
293 */
294 static void
ar9287GetNoiseFloor(struct ath_hal * ah,int16_t nfarray[])295 ar9287GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
296 {
297 int16_t nf;
298
299 nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
300 if (nf & 0x100)
301 nf = 0 - ((nf ^ 0x1ff) + 1);
302 HALDEBUG(ah, HAL_DEBUG_NFCAL,
303 "NF calibrated [ctl] [chain 0] is %d\n", nf);
304 nfarray[0] = nf;
305
306 nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
307 if (nf & 0x100)
308 nf = 0 - ((nf ^ 0x1ff) + 1);
309 HALDEBUG(ah, HAL_DEBUG_NFCAL,
310 "NF calibrated [ctl] [chain 1] is %d\n", nf);
311 nfarray[1] = nf;
312
313 nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
314 if (nf & 0x100)
315 nf = 0 - ((nf ^ 0x1ff) + 1);
316 HALDEBUG(ah, HAL_DEBUG_NFCAL,
317 "NF calibrated [ext] [chain 0] is %d\n", nf);
318 nfarray[3] = nf;
319
320 nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
321 if (nf & 0x100)
322 nf = 0 - ((nf ^ 0x1ff) + 1);
323 HALDEBUG(ah, HAL_DEBUG_NFCAL,
324 "NF calibrated [ext] [chain 1] is %d\n", nf);
325 nfarray[4] = nf;
326
327 /* Chain 2 - invalid */
328 nfarray[2] = 0;
329 nfarray[5] = 0;
330
331 }
332
333 /*
334 * Adjust NF based on statistical values for 5GHz frequencies.
335 * Stubbed:Not used by Fowl
336 */
337 int16_t
ar9287GetNfAdjust(struct ath_hal * ah,const HAL_CHANNEL_INTERNAL * c)338 ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
339 {
340 return 0;
341 }
342
343 /*
344 * Free memory for analog bank scratch buffers
345 */
346 static void
ar9287RfDetach(struct ath_hal * ah)347 ar9287RfDetach(struct ath_hal *ah)
348 {
349 struct ath_hal_5212 *ahp = AH5212(ah);
350
351 HALASSERT(ahp->ah_rfHal != AH_NULL);
352 ath_hal_free(ahp->ah_rfHal);
353 ahp->ah_rfHal = AH_NULL;
354 }
355
356 HAL_BOOL
ar9287RfAttach(struct ath_hal * ah,HAL_STATUS * status)357 ar9287RfAttach(struct ath_hal *ah, HAL_STATUS *status)
358 {
359 struct ath_hal_5212 *ahp = AH5212(ah);
360 struct ar9287State *priv;
361
362 HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
363
364 HALASSERT(ahp->ah_rfHal == AH_NULL);
365 priv = ath_hal_malloc(sizeof(struct ar9287State));
366 if (priv == AH_NULL) {
367 HALDEBUG(ah, HAL_DEBUG_ANY,
368 "%s: cannot allocate private state\n", __func__);
369 *status = HAL_ENOMEM; /* XXX */
370 return AH_FALSE;
371 }
372 priv->base.rfDetach = ar9287RfDetach;
373 priv->base.writeRegs = ar9287WriteRegs;
374 priv->base.getRfBank = ar9287GetRfBank;
375 priv->base.setChannel = ar9287SetChannel;
376 priv->base.setRfRegs = ar9287SetRfRegs;
377 priv->base.setPowerTable = ar9287SetPowerTable;
378 priv->base.getChannelMaxMinPower = ar9287GetChannelMaxMinPower;
379 priv->base.getNfAdjust = ar9287GetNfAdjust;
380
381 ahp->ah_pcdacTable = priv->pcdacTable;
382 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
383 ahp->ah_rfHal = &priv->base;
384 /*
385 * Set noise floor adjust method; we arrange a
386 * direct call instead of thunking.
387 */
388 AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
389 AH_PRIVATE(ah)->ah_getNoiseFloor = ar9287GetNoiseFloor;
390
391 return AH_TRUE;
392 }
393
394 static HAL_BOOL
ar9287RfProbe(struct ath_hal * ah)395 ar9287RfProbe(struct ath_hal *ah)
396 {
397 return (AR_SREV_KIWI(ah));
398 }
399
400 AH_RF(RF9287, ar9287RfProbe, ar9287RfAttach);
401