1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23 #include "ah_devid.h"
24
25 #include "ah_eeprom_v14.h"
26
27 #include "ar5416/ar5416.h"
28 #include "ar5416/ar5416reg.h"
29 #include "ar5416/ar5416phy.h"
30
31 /* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32 #define EEP_MINOR(_ah) \
33 (AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34 #define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35 #define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37 /* Additional Time delay to wait after activiting the Base band */
38 #define BASE_ACTIVATE_DELAY 100 /* 100 usec */
39 #define PLL_SETTLE_DELAY 300 /* 300 usec */
40 #define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
41
42 static void ar5416InitDMA(struct ath_hal *ah);
43 static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44 static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45 static void ar5416InitQoS(struct ath_hal *ah);
46 static void ar5416InitUserSettings(struct ath_hal *ah);
47 static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
48
49 #if 0
50 static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
51 #endif
52 static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
53
54 static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
55 static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
56 static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
57 struct ar5416eeprom *pEepData,
58 const struct ieee80211_channel *chan, int16_t *ratesArray,
59 uint16_t cfgCtl, uint16_t AntennaReduction,
60 uint16_t twiceMaxRegulatoryPower,
61 uint16_t powerLimit);
62 static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
63 static void ar5416MarkPhyInactive(struct ath_hal *ah);
64 static void ar5416SetIFSTiming(struct ath_hal *ah,
65 const struct ieee80211_channel *chan);
66
67 /*
68 * Places the device in and out of reset and then places sane
69 * values in the registers based on EEPROM config, initialization
70 * vectors (as determined by the mode), and station configuration
71 *
72 * bChannelChange is used to preserve DMA/PCU registers across
73 * a HW Reset during channel change.
74 */
75 HAL_BOOL
ar5416Reset(struct ath_hal * ah,HAL_OPMODE opmode,struct ieee80211_channel * chan,HAL_BOOL bChannelChange,HAL_RESET_TYPE resetType,HAL_STATUS * status)76 ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
77 struct ieee80211_channel *chan,
78 HAL_BOOL bChannelChange,
79 HAL_RESET_TYPE resetType,
80 HAL_STATUS *status)
81 {
82 #define N(a) (sizeof (a) / sizeof (a[0]))
83 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
84 struct ath_hal_5212 *ahp = AH5212(ah);
85 HAL_CHANNEL_INTERNAL *ichan;
86 uint32_t saveDefAntenna, saveLedState;
87 uint32_t macStaId1;
88 uint16_t rfXpdGain[2];
89 HAL_STATUS ecode;
90 uint32_t powerVal, rssiThrReg;
91 uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
92 int i;
93 uint64_t tsf = 0;
94
95 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
96
97 /* Bring out of sleep mode */
98 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
99 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
100 __func__);
101 FAIL(HAL_EIO);
102 }
103
104 /*
105 * Map public channel to private.
106 */
107 ichan = ath_hal_checkchannel(ah, chan);
108 if (ichan == AH_NULL)
109 FAIL(HAL_EINVAL);
110 switch (opmode) {
111 case HAL_M_STA:
112 case HAL_M_IBSS:
113 case HAL_M_HOSTAP:
114 case HAL_M_MONITOR:
115 break;
116 default:
117 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
118 __func__, opmode);
119 FAIL(HAL_EINVAL);
120 break;
121 }
122 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
123
124 /* Blank the channel survey statistics */
125 ath_hal_survey_clear(ah);
126
127 /* XXX Turn on fast channel change for 5416 */
128
129 /*
130 * Preserve the bmiss rssi threshold and count threshold
131 * across resets
132 */
133 rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
134 /* If reg is zero, first time thru set to default val */
135 if (rssiThrReg == 0)
136 rssiThrReg = INIT_RSSI_THR;
137
138 /*
139 * Preserve the antenna on a channel change
140 */
141 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
142
143 /*
144 * Don't do this for the AR9285 - it breaks RX for single
145 * antenna designs when diversity is disabled.
146 *
147 * I'm not sure what this was working around; it may be
148 * something to do with the AR5416. Certainly this register
149 * isn't supposed to be used by the MIMO chips for anything
150 * except for defining the default antenna when an external
151 * phase array / smart antenna is connected.
152 *
153 * See PR: kern/179269 .
154 */
155 if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */
156 saveDefAntenna = 1;
157
158 /* Save hardware flag before chip reset clears the register */
159 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
160 (AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
161
162 /* Save led state from pci config register */
163 saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
164 (AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
165 AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
166
167 /* For chips on which the RTC reset is done, save TSF before it gets cleared */
168 if (AR_SREV_HOWL(ah) ||
169 (AR_SREV_MERLIN(ah) &&
170 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
171 (resetType == HAL_RESET_FORCE_COLD) ||
172 (resetType == HAL_RESET_BBPANIC) ||
173 (ah->ah_config.ah_force_full_reset))
174 tsf = ar5416GetTsf64(ah);
175
176 /* Mark PHY as inactive; marked active in ar5416InitBB() */
177 ar5416MarkPhyInactive(ah);
178
179 if (!ar5416ChipReset(ah, chan, resetType)) {
180 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
181 FAIL(HAL_EIO);
182 }
183
184 /* Restore TSF */
185 if (tsf)
186 ar5416SetTsf64(ah, tsf);
187
188 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
189 if (AR_SREV_MERLIN_10_OR_LATER(ah))
190 OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
191
192 AH5416(ah)->ah_writeIni(ah, chan);
193
194 if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
195 /* Enable ASYNC FIFO */
196 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
197 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
198 OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
199 OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
200 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
201 OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
202 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
203 }
204
205 /* Override ini values (that can be overridden in this fashion) */
206 ar5416OverrideIni(ah, chan);
207
208 /* Setup 11n MAC/Phy mode registers */
209 ar5416Set11nRegs(ah, chan);
210
211 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
212
213 /*
214 * Some AR91xx SoC devices frequently fail to accept TSF writes
215 * right after the chip reset. When that happens, write a new
216 * value after the initvals have been applied, with an offset
217 * based on measured time difference
218 */
219 if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
220 tsf += 1500;
221 ar5416SetTsf64(ah, tsf);
222 }
223
224 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
225 __func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
226 HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
227 __func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
228
229 /*
230 * This routine swaps the analog chains - it should be done
231 * before any radio register twiddling is done.
232 */
233 ar5416InitChainMasks(ah);
234
235 /* Setup the open-loop power calibration if required */
236 if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
237 AH5416(ah)->ah_olcInit(ah);
238 AH5416(ah)->ah_olcTempCompensation(ah);
239 }
240
241 /* Setup the transmit power values. */
242 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
243 HALDEBUG(ah, HAL_DEBUG_ANY,
244 "%s: error init'ing transmit power\n", __func__);
245 FAIL(HAL_EIO);
246 }
247
248 /* Write the analog registers */
249 if (!ahp->ah_rfHal->setRfRegs(ah, chan,
250 IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
251 HALDEBUG(ah, HAL_DEBUG_ANY,
252 "%s: ar5212SetRfRegs failed\n", __func__);
253 FAIL(HAL_EIO);
254 }
255
256 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
257 if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
258 ar5416SetDeltaSlope(ah, chan);
259
260 AH5416(ah)->ah_spurMitigate(ah, chan);
261
262 /* Setup board specific options for EEPROM version 3 */
263 if (!ah->ah_setBoardValues(ah, chan)) {
264 HALDEBUG(ah, HAL_DEBUG_ANY,
265 "%s: error setting board options\n", __func__);
266 FAIL(HAL_EIO);
267 }
268
269 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
270
271 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
272 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
273 | macStaId1
274 | AR_STA_ID1_RTS_USE_DEF
275 | ahp->ah_staId1Defaults
276 );
277 ar5212SetOperatingMode(ah, opmode);
278
279 /* Set Venice BSSID mask according to current state */
280 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
281 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
282
283 /* Restore previous led state */
284 if (AR_SREV_HOWL(ah))
285 OS_REG_WRITE(ah, AR_MAC_LED,
286 AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
287 else
288 OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
289 saveLedState);
290
291 /* Start TSF2 for generic timer 8-15 */
292 #ifdef NOTYET
293 if (AR_SREV_KIWI(ah))
294 ar5416StartTsf2(ah);
295 #endif
296
297 /*
298 * Enable Bluetooth Coexistence if it's enabled.
299 */
300 if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
301 ar5416InitBTCoex(ah);
302
303 /* Restore previous antenna */
304 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
305
306 /* then our BSSID and associate id */
307 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
308 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
309 (ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
310
311 /* Restore bmiss rssi & count thresholds */
312 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
313
314 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
315
316 /* Restore bmiss rssi & count thresholds */
317 OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
318
319 if (!ar5212SetChannel(ah, chan))
320 FAIL(HAL_EIO);
321
322 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
323
324 /* Set 1:1 QCU to DCU mapping for all queues */
325 for (i = 0; i < AR_NUM_DCU; i++)
326 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
327
328 ahp->ah_intrTxqs = 0;
329 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
330 ah->ah_resetTxQueue(ah, i);
331
332 ar5416InitIMR(ah, opmode);
333 ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
334 ar5416InitQoS(ah);
335 /* This may override the AR_DIAG_SW register */
336 ar5416InitUserSettings(ah);
337
338 /* XXX this won't work for AR9287! */
339 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
340 ar5416SetIFSTiming(ah, chan);
341 #if 0
342 /*
343 * AR5413?
344 * Force window_length for 1/2 and 1/4 rate channels,
345 * the ini file sets this to zero otherwise.
346 */
347 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
348 AR_PHY_FRAME_CTL_WINLEN, 3);
349 }
350 #endif
351 }
352
353 if (AR_SREV_KIWI_13_OR_LATER(ah)) {
354 /*
355 * Enable ASYNC FIFO
356 *
357 * If Async FIFO is enabled, the following counters change
358 * as MAC now runs at 117 Mhz instead of 88/44MHz when
359 * async FIFO is disabled.
360 *
361 * Overwrite the delay/timeouts initialized in ProcessIni()
362 * above.
363 */
364 OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
365 AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
366 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
367 AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
368 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
369 AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
370
371 OS_REG_WRITE(ah, AR_TIME_OUT,
372 AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
373 OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
374
375 OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
376 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
377 OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
378 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
379 }
380
381 if (AR_SREV_KIWI_13_OR_LATER(ah)) {
382 /* Enable AGGWEP to accelerate encryption engine */
383 OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
384 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
385 }
386
387 /*
388 * disable seq number generation in hw
389 */
390 OS_REG_WRITE(ah, AR_STA_ID1,
391 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
392
393 ar5416InitDMA(ah);
394
395 /*
396 * program OBS bus to see MAC interrupts
397 */
398 OS_REG_WRITE(ah, AR_OBS, 8);
399
400 /*
401 * Disable the "general" TX/RX mitigation timers.
402 */
403 OS_REG_WRITE(ah, AR_MIRT, 0);
404
405 #ifdef AH_AR5416_INTERRUPT_MITIGATION
406 /*
407 * This initialises the RX interrupt mitigation timers.
408 *
409 * The mitigation timers begin at idle and are triggered
410 * upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
411 * Then, the RX mitigation interrupt will fire:
412 *
413 * + 250uS after the last RX'ed frame, or
414 * + 700uS after the first RX'ed frame
415 *
416 * Thus, the LAST field dictates the extra latency
417 * induced by the RX mitigation method and the FIRST
418 * field dictates how long to delay before firing an
419 * RX mitigation interrupt.
420 *
421 * Please note this only seems to be for RXOK frames;
422 * not CRC or PHY error frames.
423 *
424 */
425 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
426 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
427 #endif
428 ar5416InitBB(ah, chan);
429
430 /* Setup compression registers */
431 ar5212SetCompRegs(ah); /* XXX not needed? */
432
433 /*
434 * 5416 baseband will check the per rate power table
435 * and select the lower of the two
436 */
437 ackTpcPow = 63;
438 ctsTpcPow = 63;
439 chirpTpcPow = 63;
440 powerVal = SM(ackTpcPow, AR_TPC_ACK) |
441 SM(ctsTpcPow, AR_TPC_CTS) |
442 SM(chirpTpcPow, AR_TPC_CHIRP);
443 OS_REG_WRITE(ah, AR_TPC, powerVal);
444
445 if (!ar5416InitCal(ah, chan))
446 FAIL(HAL_ESELFTEST);
447
448 ar5416RestoreChainMask(ah);
449
450 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
451
452 if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
453 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
454
455 if (AR_SREV_HOWL(ah)) {
456 /*
457 * Enable the MBSSID block-ack fix for HOWL.
458 * This feature is only supported on Howl 1.4, but it is safe to
459 * set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
460 * since bit 22 is unused in those Howl revisions.
461 */
462 unsigned int reg;
463 reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
464 OS_REG_WRITE(ah,AR_STA_ID1, reg);
465 ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
466 }
467
468 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
469
470 OS_MARK(ah, AH_MARK_RESET_DONE, 0);
471
472 return AH_TRUE;
473 bad:
474 OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
475 if (status != AH_NULL)
476 *status = ecode;
477 return AH_FALSE;
478 #undef FAIL
479 #undef N
480 }
481
482 #if 0
483 /*
484 * This channel change evaluates whether the selected hardware can
485 * perform a synthesizer-only channel change (no reset). If the
486 * TX is not stopped, or the RFBus cannot be granted in the given
487 * time, the function returns false as a reset is necessary
488 */
489 HAL_BOOL
490 ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
491 {
492 uint32_t ulCount;
493 uint32_t data, synthDelay, qnum;
494 uint16_t rfXpdGain[4];
495 struct ath_hal_5212 *ahp = AH5212(ah);
496 HAL_CHANNEL_INTERNAL *ichan;
497
498 /*
499 * Map public channel to private.
500 */
501 ichan = ath_hal_checkchannel(ah, chan);
502
503 /* TX must be stopped or RF Bus grant will not work */
504 for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
505 if (ar5212NumTxPending(ah, qnum)) {
506 HALDEBUG(ah, HAL_DEBUG_ANY,
507 "%s: frames pending on queue %d\n", __func__, qnum);
508 return AH_FALSE;
509 }
510 }
511
512 /*
513 * Kill last Baseband Rx Frame - Request analog bus grant
514 */
515 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
516 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
517 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
518 __func__);
519 return AH_FALSE;
520 }
521
522 ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
523
524 /* Change the synth */
525 if (!ar5212SetChannel(ah, chan))
526 return AH_FALSE;
527
528 /* Setup the transmit power values. */
529 if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
530 HALDEBUG(ah, HAL_DEBUG_ANY,
531 "%s: error init'ing transmit power\n", __func__);
532 return AH_FALSE;
533 }
534
535 /*
536 * Wait for the frequency synth to settle (synth goes on
537 * via PHY_ACTIVE_EN). Read the phy active delay register.
538 * Value is in 100ns increments.
539 */
540 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
541 if (IS_CHAN_CCK(ichan)) {
542 synthDelay = (4 * data) / 22;
543 } else {
544 synthDelay = data / 10;
545 }
546
547 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
548
549 /* Release the RFBus Grant */
550 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
551
552 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */
553 if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
554 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
555 ar5212SetSpurMitigation(ah, chan);
556 ar5416SetDeltaSlope(ah, chan);
557 }
558
559 /* XXX spur mitigation for Melin */
560
561 if (!IEEE80211_IS_CHAN_DFS(chan))
562 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
563
564 ichan->channel_time = 0;
565 ichan->tsf_last = ar5416GetTsf64(ah);
566 ar5212TxEnable(ah, AH_TRUE);
567 return AH_TRUE;
568 }
569 #endif
570
571 static void
ar5416InitDMA(struct ath_hal * ah)572 ar5416InitDMA(struct ath_hal *ah)
573 {
574 struct ath_hal_5212 *ahp = AH5212(ah);
575
576 /*
577 * set AHB_MODE not to do cacheline prefetches
578 */
579 OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
580
581 /*
582 * let mac dma reads be in 128 byte chunks
583 */
584 OS_REG_WRITE(ah, AR_TXCFG,
585 (OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
586
587 /*
588 * let mac dma writes be in 128 byte chunks
589 */
590 /*
591 * XXX If you change this, you must change the headroom
592 * assigned in ah_maxTxTrigLev - see ar5416InitState().
593 */
594 OS_REG_WRITE(ah, AR_RXCFG,
595 (OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
596
597 /* restore TX trigger level */
598 OS_REG_WRITE(ah, AR_TXCFG,
599 (OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
600 SM(ahp->ah_txTrigLev, AR_FTRIG));
601
602 /*
603 * Setup receive FIFO threshold to hold off TX activities
604 */
605 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
606
607 /*
608 * reduce the number of usable entries in PCU TXBUF to avoid
609 * wrap around.
610 */
611 if (AR_SREV_KITE(ah))
612 /*
613 * For AR9285 the number of Fifos are reduced to half.
614 * So set the usable tx buf size also to half to
615 * avoid data/delimiter underruns
616 */
617 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
618 else
619 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
620 }
621
622 static void
ar5416InitBB(struct ath_hal * ah,const struct ieee80211_channel * chan)623 ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
624 {
625 uint32_t synthDelay;
626
627 /*
628 * Wait for the frequency synth to settle (synth goes on
629 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
630 * Value is in 100ns increments.
631 */
632 synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
633 if (IEEE80211_IS_CHAN_CCK(chan)) {
634 synthDelay = (4 * synthDelay) / 22;
635 } else {
636 synthDelay /= 10;
637 }
638
639 /* Turn on PLL on 5416 */
640 HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
641 __func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
642
643 /* Activate the PHY (includes baseband activate and synthesizer on) */
644 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
645
646 /*
647 * If the AP starts the calibration before the base band timeout
648 * completes we could get rx_clear false triggering. Add an
649 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
650 * does not happen.
651 */
652 if (IEEE80211_IS_CHAN_HALF(chan)) {
653 OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
654 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
655 OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
656 } else {
657 OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
658 }
659 }
660
661 static void
ar5416InitIMR(struct ath_hal * ah,HAL_OPMODE opmode)662 ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
663 {
664 struct ath_hal_5212 *ahp = AH5212(ah);
665
666 /*
667 * Setup interrupt handling. Note that ar5212ResetTxQueue
668 * manipulates the secondary IMR's as queues are enabled
669 * and disabled. This is done with RMW ops to insure the
670 * settings we make here are preserved.
671 */
672 ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
673 | AR_IMR_RXERR | AR_IMR_RXORN
674 | AR_IMR_BCNMISC;
675
676 #ifdef AH_AR5416_INTERRUPT_MITIGATION
677 ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
678 #else
679 ahp->ah_maskReg |= AR_IMR_RXOK;
680 #endif
681 ahp->ah_maskReg |= AR_IMR_TXOK;
682
683 if (opmode == HAL_M_HOSTAP)
684 ahp->ah_maskReg |= AR_IMR_MIB;
685 OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
686
687 #ifdef ADRIAN_NOTYET
688 /* This is straight from ath9k */
689 if (! AR_SREV_HOWL(ah)) {
690 OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
691 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
692 OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
693 }
694 #endif
695
696 /* Enable bus errors that are OR'd to set the HIUERR bit */
697 #if 0
698 OS_REG_WRITE(ah, AR_IMR_S2,
699 OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
700 #endif
701 }
702
703 static void
ar5416InitQoS(struct ath_hal * ah)704 ar5416InitQoS(struct ath_hal *ah)
705 {
706 /* QoS support */
707 OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
708 OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
709
710 /* Turn on NOACK Support for QoS packets */
711 OS_REG_WRITE(ah, AR_NOACK,
712 SM(2, AR_NOACK_2BIT_VALUE) |
713 SM(5, AR_NOACK_BIT_OFFSET) |
714 SM(0, AR_NOACK_BYTE_OFFSET));
715
716 /*
717 * initialize TXOP for all TIDs
718 */
719 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
720 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
721 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
722 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
723 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
724 }
725
726 static void
ar5416InitUserSettings(struct ath_hal * ah)727 ar5416InitUserSettings(struct ath_hal *ah)
728 {
729 struct ath_hal_5212 *ahp = AH5212(ah);
730
731 /* Restore user-specified settings */
732 if (ahp->ah_miscMode != 0)
733 OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
734 | ahp->ah_miscMode);
735 if (ahp->ah_sifstime != (u_int) -1)
736 ar5212SetSifsTime(ah, ahp->ah_sifstime);
737 if (ahp->ah_slottime != (u_int) -1)
738 ar5212SetSlotTime(ah, ahp->ah_slottime);
739 if (ahp->ah_acktimeout != (u_int) -1)
740 ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
741 if (ahp->ah_ctstimeout != (u_int) -1)
742 ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
743 if (AH_PRIVATE(ah)->ah_diagreg != 0)
744 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
745 if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
746 ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
747 }
748
749 static void
ar5416SetRfMode(struct ath_hal * ah,const struct ieee80211_channel * chan)750 ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
751 {
752 uint32_t rfMode;
753
754 if (chan == AH_NULL)
755 return;
756
757 /* treat channel B as channel G , no B mode suport in owl */
758 rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
759 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
760
761 if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
762 /* phy mode bits for 5GHz channels require Fast Clock */
763 rfMode |= AR_PHY_MODE_DYNAMIC
764 | AR_PHY_MODE_DYN_CCK_DISABLE;
765 } else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
766 rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
767 AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
768 }
769
770 OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
771 }
772
773 /*
774 * Places the hardware into reset and then pulls it out of reset
775 */
776 HAL_BOOL
ar5416ChipReset(struct ath_hal * ah,const struct ieee80211_channel * chan,HAL_RESET_TYPE resetType)777 ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
778 HAL_RESET_TYPE resetType)
779 {
780 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
781 /*
782 * Warm reset is optimistic for open-loop TX power control.
783 */
784 if (AR_SREV_MERLIN(ah) &&
785 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
786 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
787 return AH_FALSE;
788 } else if (ah->ah_config.ah_force_full_reset) {
789 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
790 return AH_FALSE;
791 } else if ((resetType == HAL_RESET_FORCE_COLD) ||
792 (resetType == HAL_RESET_BBPANIC)) {
793 HALDEBUG(ah, HAL_DEBUG_RESET,
794 "%s: full reset; resetType=%d\n",
795 __func__, resetType);
796 if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
797 return AH_FALSE;
798 } else {
799 if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
800 return AH_FALSE;
801 }
802
803 /* Bring out of sleep mode (AGAIN) */
804 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
805 return AH_FALSE;
806
807 #ifdef notyet
808 ahp->ah_chipFullSleep = AH_FALSE;
809 #endif
810
811 AH5416(ah)->ah_initPLL(ah, chan);
812
813 /*
814 * Perform warm reset before the mode/PLL/turbo registers
815 * are changed in order to deactivate the radio. Mode changes
816 * with an active radio can result in corrupted shifts to the
817 * radio device.
818 */
819 ar5416SetRfMode(ah, chan);
820
821 return AH_TRUE;
822 }
823
824 /*
825 * Delta slope coefficient computation.
826 * Required for OFDM operation.
827 */
828 static void
ar5416GetDeltaSlopeValues(struct ath_hal * ah,uint32_t coef_scaled,uint32_t * coef_mantissa,uint32_t * coef_exponent)829 ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
830 uint32_t *coef_mantissa, uint32_t *coef_exponent)
831 {
832 #define COEF_SCALE_S 24
833 uint32_t coef_exp, coef_man;
834 /*
835 * ALGO -> coef_exp = 14-floor(log2(coef));
836 * floor(log2(x)) is the highest set bit position
837 */
838 for (coef_exp = 31; coef_exp > 0; coef_exp--)
839 if ((coef_scaled >> coef_exp) & 0x1)
840 break;
841 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
842 HALASSERT(coef_exp);
843 coef_exp = 14 - (coef_exp - COEF_SCALE_S);
844
845 /*
846 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
847 * The coefficient is already shifted up for scaling
848 */
849 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
850
851 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
852 *coef_exponent = coef_exp - 16;
853
854 #undef COEF_SCALE_S
855 }
856
857 void
ar5416SetDeltaSlope(struct ath_hal * ah,const struct ieee80211_channel * chan)858 ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
859 {
860 #define INIT_CLOCKMHZSCALED 0x64000000
861 uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
862 uint32_t clockMhzScaled;
863
864 CHAN_CENTERS centers;
865
866 /* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
867 /* scale for selected channel bandwidth */
868 clockMhzScaled = INIT_CLOCKMHZSCALED;
869 if (IEEE80211_IS_CHAN_TURBO(chan))
870 clockMhzScaled <<= 1;
871 else if (IEEE80211_IS_CHAN_HALF(chan))
872 clockMhzScaled >>= 1;
873 else if (IEEE80211_IS_CHAN_QUARTER(chan))
874 clockMhzScaled >>= 2;
875
876 /*
877 * ALGO -> coef = 1e8/fcarrier*fclock/40;
878 * scaled coef to provide precision for this floating calculation
879 */
880 ar5416GetChannelCenters(ah, chan, ¢ers);
881 coef_scaled = clockMhzScaled / centers.synth_center;
882
883 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
884
885 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
886 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
887 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
888 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
889
890 /*
891 * For Short GI,
892 * scaled coeff is 9/10 that of normal coeff
893 */
894 coef_scaled = (9 * coef_scaled)/10;
895
896 ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
897
898 /* for short gi */
899 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
900 AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
901 OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
902 AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
903 #undef INIT_CLOCKMHZSCALED
904 }
905
906 /*
907 * Set a limit on the overall output power. Used for dynamic
908 * transmit power control and the like.
909 *
910 * NB: limit is in units of 0.5 dbM.
911 */
912 HAL_BOOL
ar5416SetTxPowerLimit(struct ath_hal * ah,uint32_t limit)913 ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
914 {
915 uint16_t dummyXpdGains[2];
916
917 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
918 return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
919 dummyXpdGains);
920 }
921
922 HAL_BOOL
ar5416GetChipPowerLimits(struct ath_hal * ah,struct ieee80211_channel * chan)923 ar5416GetChipPowerLimits(struct ath_hal *ah,
924 struct ieee80211_channel *chan)
925 {
926 struct ath_hal_5212 *ahp = AH5212(ah);
927 int16_t minPower, maxPower;
928
929 /*
930 * Get Pier table max and min powers.
931 */
932 if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
933 /* NB: rf code returns 1/4 dBm units, convert */
934 chan->ic_maxpower = maxPower / 2;
935 chan->ic_minpower = minPower / 2;
936 } else {
937 HALDEBUG(ah, HAL_DEBUG_ANY,
938 "%s: no min/max power for %u/0x%x\n",
939 __func__, chan->ic_freq, chan->ic_flags);
940 chan->ic_maxpower = AR5416_MAX_RATE_POWER;
941 chan->ic_minpower = 0;
942 }
943 HALDEBUG(ah, HAL_DEBUG_RESET,
944 "Chan %d: MaxPow = %d MinPow = %d\n",
945 chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
946 return AH_TRUE;
947 }
948
949 /**************************************************************
950 * ar5416WriteTxPowerRateRegisters
951 *
952 * Write the TX power rate registers from the raw values given
953 * in ratesArray[].
954 *
955 * The CCK and HT40 rate registers are only written if needed.
956 * HT20 and 11g/11a OFDM rate registers are always written.
957 *
958 * The values written are raw values which should be written
959 * to the registers - so it's up to the caller to pre-adjust
960 * them (eg CCK power offset value, or Merlin TX power offset,
961 * etc.)
962 */
963 void
ar5416WriteTxPowerRateRegisters(struct ath_hal * ah,const struct ieee80211_channel * chan,const int16_t ratesArray[])964 ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
965 const struct ieee80211_channel *chan, const int16_t ratesArray[])
966 {
967 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
968
969 /* Write the OFDM power per rate set */
970 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
971 POW_SM(ratesArray[rate18mb], 24)
972 | POW_SM(ratesArray[rate12mb], 16)
973 | POW_SM(ratesArray[rate9mb], 8)
974 | POW_SM(ratesArray[rate6mb], 0)
975 );
976 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
977 POW_SM(ratesArray[rate54mb], 24)
978 | POW_SM(ratesArray[rate48mb], 16)
979 | POW_SM(ratesArray[rate36mb], 8)
980 | POW_SM(ratesArray[rate24mb], 0)
981 );
982
983 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
984 /* Write the CCK power per rate set */
985 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
986 POW_SM(ratesArray[rate2s], 24)
987 | POW_SM(ratesArray[rate2l], 16)
988 | POW_SM(ratesArray[rateXr], 8) /* XR target power */
989 | POW_SM(ratesArray[rate1l], 0)
990 );
991 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
992 POW_SM(ratesArray[rate11s], 24)
993 | POW_SM(ratesArray[rate11l], 16)
994 | POW_SM(ratesArray[rate5_5s], 8)
995 | POW_SM(ratesArray[rate5_5l], 0)
996 );
997 HALDEBUG(ah, HAL_DEBUG_RESET,
998 "%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
999 __func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1000 OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1001 }
1002
1003 /* Write the HT20 power per rate set */
1004 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1005 POW_SM(ratesArray[rateHt20_3], 24)
1006 | POW_SM(ratesArray[rateHt20_2], 16)
1007 | POW_SM(ratesArray[rateHt20_1], 8)
1008 | POW_SM(ratesArray[rateHt20_0], 0)
1009 );
1010 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1011 POW_SM(ratesArray[rateHt20_7], 24)
1012 | POW_SM(ratesArray[rateHt20_6], 16)
1013 | POW_SM(ratesArray[rateHt20_5], 8)
1014 | POW_SM(ratesArray[rateHt20_4], 0)
1015 );
1016
1017 if (IEEE80211_IS_CHAN_HT40(chan)) {
1018 /* Write the HT40 power per rate set */
1019 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1020 POW_SM(ratesArray[rateHt40_3], 24)
1021 | POW_SM(ratesArray[rateHt40_2], 16)
1022 | POW_SM(ratesArray[rateHt40_1], 8)
1023 | POW_SM(ratesArray[rateHt40_0], 0)
1024 );
1025 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1026 POW_SM(ratesArray[rateHt40_7], 24)
1027 | POW_SM(ratesArray[rateHt40_6], 16)
1028 | POW_SM(ratesArray[rateHt40_5], 8)
1029 | POW_SM(ratesArray[rateHt40_4], 0)
1030 );
1031 /* Write the Dup/Ext 40 power per rate set */
1032 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1033 POW_SM(ratesArray[rateExtOfdm], 24)
1034 | POW_SM(ratesArray[rateExtCck], 16)
1035 | POW_SM(ratesArray[rateDupOfdm], 8)
1036 | POW_SM(ratesArray[rateDupCck], 0)
1037 );
1038 }
1039
1040 /*
1041 * Set max power to 30 dBm and, optionally,
1042 * enable TPC in tx descriptors.
1043 */
1044 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1045 (AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1046 #undef POW_SM
1047 }
1048
1049 /**************************************************************
1050 * ar5416SetTransmitPower
1051 *
1052 * Set the transmit power in the baseband for the given
1053 * operating channel and mode.
1054 */
1055 HAL_BOOL
ar5416SetTransmitPower(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)1056 ar5416SetTransmitPower(struct ath_hal *ah,
1057 const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1058 {
1059 #define N(a) (sizeof (a) / sizeof (a[0]))
1060 #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
1061
1062 MODAL_EEP_HEADER *pModal;
1063 struct ath_hal_5212 *ahp = AH5212(ah);
1064 int16_t txPowerIndexOffset = 0;
1065 int i;
1066
1067 uint16_t cfgCtl;
1068 uint16_t powerLimit;
1069 uint16_t twiceAntennaReduction;
1070 uint16_t twiceMaxRegulatoryPower;
1071 int16_t maxPower;
1072 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1073 struct ar5416eeprom *pEepData = &ee->ee_base;
1074
1075 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1076
1077 /*
1078 * Default to 2, is overridden based on the EEPROM version / value.
1079 */
1080 AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1081
1082 /* Setup info for the actual eeprom */
1083 OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1084 cfgCtl = ath_hal_getctl(ah, chan);
1085 powerLimit = chan->ic_maxregpower * 2;
1086 twiceAntennaReduction = chan->ic_maxantgain;
1087 twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1088 pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1089 HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1090 __func__,chan->ic_freq, cfgCtl );
1091
1092 if (IS_EEP_MINOR_V2(ah)) {
1093 AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1094 }
1095
1096 if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
1097 &AH5416(ah)->ah_ratesArray[0],
1098 cfgCtl,
1099 twiceAntennaReduction,
1100 twiceMaxRegulatoryPower, powerLimit)) {
1101 HALDEBUG(ah, HAL_DEBUG_ANY,
1102 "%s: unable to set tx power per rate table\n", __func__);
1103 return AH_FALSE;
1104 }
1105
1106 if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
1107 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1108 __func__);
1109 return AH_FALSE;
1110 }
1111
1112 maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1113 AH5416(ah)->ah_ratesArray[rateHt20_0]);
1114
1115 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1116 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1117 }
1118
1119 if (IEEE80211_IS_CHAN_HT40(chan)) {
1120 maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1121 }
1122
1123 ahp->ah_tx6PowerInHalfDbm = maxPower;
1124 AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1125 ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1126
1127 /*
1128 * txPowerIndexOffset is set by the SetPowerTable() call -
1129 * adjust the rate table (0 offset if rates EEPROM not loaded)
1130 */
1131 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1132 AH5416(ah)->ah_ratesArray[i] =
1133 (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1134 if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1135 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1136 }
1137
1138 #ifdef AH_EEPROM_DUMP
1139 /*
1140 * Dump the rate array whilst it represents the intended dBm*2
1141 * values versus what's being adjusted before being programmed
1142 * in. Keep this in mind if you code up this function and enable
1143 * this debugging; the values won't necessarily be what's being
1144 * programmed into the hardware.
1145 */
1146 ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1147 #endif
1148
1149 /*
1150 * Merlin and later have a power offset, so subtract
1151 * pwr_table_offset * 2 from each value. The default
1152 * power offset is -5 dBm - ie, a register value of 0
1153 * equates to a TX power of -5 dBm.
1154 */
1155 if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1156 int8_t pwr_table_offset;
1157
1158 (void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1159 &pwr_table_offset);
1160 /* Underflow power gets clamped at raw value 0 */
1161 /* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1162 for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1163 /*
1164 * + pwr_table_offset is in dBm
1165 * + ratesArray is in 1/2 dBm
1166 */
1167 AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1168 if (AH5416(ah)->ah_ratesArray[i] < 0)
1169 AH5416(ah)->ah_ratesArray[i] = 0;
1170 else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1171 AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1172 }
1173 }
1174
1175 /*
1176 * Adjust rates for OLC where needed
1177 *
1178 * The following CCK rates need adjusting when doing 2.4ghz
1179 * CCK transmission.
1180 *
1181 * + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1182 * + rateExtCck, rateDupCck
1183 *
1184 * They're adjusted here regardless. The hardware then gets
1185 * programmed as needed. 5GHz operation doesn't program in CCK
1186 * rates for legacy mode but they seem to be initialised for
1187 * HT40 regardless of channel type.
1188 */
1189 if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1190 ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1191 int adj[] = {
1192 rate2s, rate2l, rate1l, rate11s, rate11l,
1193 rate5_5s, rate5_5l, rateExtCck, rateDupCck
1194 };
1195 int cck_ofdm_delta = 2;
1196 int i;
1197 for (i = 0; i < N(adj); i++) {
1198 AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1199 if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1200 AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1201 }
1202 }
1203
1204 /*
1205 * Adjust the HT40 power to meet the correct target TX power
1206 * for 40MHz mode, based on TX power curves that are established
1207 * for 20MHz mode.
1208 *
1209 * XXX handle overflow/too high power level?
1210 */
1211 if (IEEE80211_IS_CHAN_HT40(chan)) {
1212 AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1213 AH5416(ah)->ah_ht40PowerIncForPdadc;
1214 AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1215 AH5416(ah)->ah_ht40PowerIncForPdadc;
1216 AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1217 AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1218 AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1219 AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1220 AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1221 AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1222 }
1223
1224 /* Write the TX power rate registers */
1225 ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1226
1227 /* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1228 OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1229 POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1230 | POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1231 );
1232 return AH_TRUE;
1233 #undef POW_SM
1234 #undef N
1235 }
1236
1237 /*
1238 * Exported call to check for a recent gain reading and return
1239 * the current state of the thermal calibration gain engine.
1240 */
1241 HAL_RFGAIN
ar5416GetRfgain(struct ath_hal * ah)1242 ar5416GetRfgain(struct ath_hal *ah)
1243 {
1244
1245 return (HAL_RFGAIN_INACTIVE);
1246 }
1247
1248 /*
1249 * Places all of hardware into reset
1250 */
1251 HAL_BOOL
ar5416Disable(struct ath_hal * ah)1252 ar5416Disable(struct ath_hal *ah)
1253 {
1254
1255 if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1256 return AH_FALSE;
1257 if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1258 return AH_FALSE;
1259
1260 AH5416(ah)->ah_initPLL(ah, AH_NULL);
1261 return (AH_TRUE);
1262 }
1263
1264 /*
1265 * Places the PHY and Radio chips into reset. A full reset
1266 * must be called to leave this state. The PCI/MAC/PCU are
1267 * not placed into reset as we must receive interrupt to
1268 * re-enable the hardware.
1269 */
1270 HAL_BOOL
ar5416PhyDisable(struct ath_hal * ah)1271 ar5416PhyDisable(struct ath_hal *ah)
1272 {
1273
1274 if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1275 return AH_FALSE;
1276
1277 AH5416(ah)->ah_initPLL(ah, AH_NULL);
1278 return (AH_TRUE);
1279 }
1280
1281 /*
1282 * Write the given reset bit mask into the reset register
1283 */
1284 HAL_BOOL
ar5416SetResetReg(struct ath_hal * ah,uint32_t type)1285 ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1286 {
1287 /*
1288 * Set force wake
1289 */
1290 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1291 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1292
1293 switch (type) {
1294 case HAL_RESET_POWER_ON:
1295 return ar5416SetResetPowerOn(ah);
1296 case HAL_RESET_WARM:
1297 case HAL_RESET_COLD:
1298 return ar5416SetReset(ah, type);
1299 default:
1300 HALASSERT(AH_FALSE);
1301 return AH_FALSE;
1302 }
1303 }
1304
1305 static HAL_BOOL
ar5416SetResetPowerOn(struct ath_hal * ah)1306 ar5416SetResetPowerOn(struct ath_hal *ah)
1307 {
1308 /* Power On Reset (Hard Reset) */
1309
1310 /*
1311 * Set force wake
1312 *
1313 * If the MAC was running, previously calling
1314 * reset will wake up the MAC but it may go back to sleep
1315 * before we can start polling.
1316 * Set force wake stops that
1317 * This must be called before initiating a hard reset.
1318 */
1319 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1320 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1321
1322 /*
1323 * PowerOn reset can be used in open loop power control or failure recovery.
1324 * If we do RTC reset while DMA is still running, hardware may corrupt memory.
1325 * Therefore, we need to reset AHB first to stop DMA.
1326 */
1327 if (! AR_SREV_HOWL(ah))
1328 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1329 /*
1330 * RTC reset and clear
1331 */
1332 OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1333 OS_DELAY(20);
1334
1335 if (! AR_SREV_HOWL(ah))
1336 OS_REG_WRITE(ah, AR_RC, 0);
1337
1338 OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1339
1340 /*
1341 * Poll till RTC is ON
1342 */
1343 if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1344 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1345 return AH_FALSE;
1346 }
1347
1348 return ar5416SetReset(ah, HAL_RESET_COLD);
1349 }
1350
1351 static HAL_BOOL
ar5416SetReset(struct ath_hal * ah,int type)1352 ar5416SetReset(struct ath_hal *ah, int type)
1353 {
1354 uint32_t tmpReg, mask;
1355 uint32_t rst_flags;
1356
1357 #ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */
1358 if (AR_SREV_HOWL(ah)) {
1359 HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1360 uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1361 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1362 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1363 OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1364 (void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1365 }
1366 #endif /* AH_SUPPORT_AR9130 */
1367
1368 /*
1369 * Force wake
1370 */
1371 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1372 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1373
1374 #ifdef AH_SUPPORT_AR9130
1375 if (AR_SREV_HOWL(ah)) {
1376 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1377 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1378 } else {
1379 #endif /* AH_SUPPORT_AR9130 */
1380 /*
1381 * Reset AHB
1382 *
1383 * (In case the last interrupt source was a bus timeout.)
1384 * XXX TODO: this is not the way to do it! It should be recorded
1385 * XXX by the interrupt handler and passed _into_ the
1386 * XXX reset path routine so this occurs.
1387 */
1388 tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1389 if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1390 OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1391 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1392 } else {
1393 OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394 }
1395 rst_flags = AR_RTC_RC_MAC_WARM;
1396 if (type == HAL_RESET_COLD)
1397 rst_flags |= AR_RTC_RC_MAC_COLD;
1398 #ifdef AH_SUPPORT_AR9130
1399 }
1400 #endif /* AH_SUPPORT_AR9130 */
1401
1402 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1403
1404 if (AR_SREV_HOWL(ah))
1405 OS_DELAY(10000);
1406 else
1407 OS_DELAY(100);
1408
1409 /*
1410 * Clear resets and force wakeup
1411 */
1412 OS_REG_WRITE(ah, AR_RTC_RC, 0);
1413 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1414 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1415 return AH_FALSE;
1416 }
1417
1418 /* Clear AHB reset */
1419 if (! AR_SREV_HOWL(ah))
1420 OS_REG_WRITE(ah, AR_RC, 0);
1421
1422 if (AR_SREV_HOWL(ah))
1423 OS_DELAY(50);
1424
1425 if (AR_SREV_HOWL(ah)) {
1426 uint32_t mask;
1427 mask = OS_REG_READ(ah, AR_CFG);
1428 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1429 HALDEBUG(ah, HAL_DEBUG_RESET,
1430 "CFG Byte Swap Set 0x%x\n", mask);
1431 } else {
1432 mask =
1433 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1434 OS_REG_WRITE(ah, AR_CFG, mask);
1435 HALDEBUG(ah, HAL_DEBUG_RESET,
1436 "Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1437 }
1438 } else {
1439 if (type == HAL_RESET_COLD) {
1440 if (isBigEndian()) {
1441 /*
1442 * Set CFG, little-endian for descriptor accesses.
1443 */
1444 mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1445 #ifndef AH_NEED_DESC_SWAP
1446 mask |= AR_CFG_SWTD;
1447 #endif
1448 HALDEBUG(ah, HAL_DEBUG_RESET,
1449 "%s Applying descriptor swap\n", __func__);
1450 OS_REG_WRITE(ah, AR_CFG, mask);
1451 } else
1452 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1453 }
1454 }
1455
1456 return AH_TRUE;
1457 }
1458
1459 void
ar5416InitChainMasks(struct ath_hal * ah)1460 ar5416InitChainMasks(struct ath_hal *ah)
1461 {
1462 int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1463
1464 /* Flip this for this chainmask regardless of chip */
1465 if (rx_chainmask == 0x5)
1466 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1467
1468 /*
1469 * Workaround for OWL 1.0 calibration failure; enable multi-chain;
1470 * then set true mask after calibration.
1471 */
1472 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1473 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1474 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1475 } else {
1476 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1477 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1478 }
1479 OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1480
1481 if (AH5416(ah)->ah_tx_chainmask == 0x5)
1482 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1483
1484 if (AR_SREV_HOWL(ah)) {
1485 OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1486 OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1487 }
1488 }
1489
1490 /*
1491 * Work-around for Owl 1.0 calibration failure.
1492 *
1493 * ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1494 * due to init calibration failures. ar5416RestoreChainMask restores
1495 * these registers to the correct setting.
1496 */
1497 void
ar5416RestoreChainMask(struct ath_hal * ah)1498 ar5416RestoreChainMask(struct ath_hal *ah)
1499 {
1500 int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1501
1502 if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1503 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1504 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1505 }
1506 }
1507
1508 void
ar5416InitPLL(struct ath_hal * ah,const struct ieee80211_channel * chan)1509 ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1510 {
1511 uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1512 if (chan != AH_NULL) {
1513 if (IEEE80211_IS_CHAN_HALF(chan))
1514 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1515 else if (IEEE80211_IS_CHAN_QUARTER(chan))
1516 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1517
1518 if (IEEE80211_IS_CHAN_5GHZ(chan))
1519 pll |= SM(0xa, AR_RTC_PLL_DIV);
1520 else
1521 pll |= SM(0xb, AR_RTC_PLL_DIV);
1522 } else
1523 pll |= SM(0xb, AR_RTC_PLL_DIV);
1524
1525 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1526
1527 /* TODO:
1528 * For multi-band owl, switch between bands by reiniting the PLL.
1529 */
1530
1531 OS_DELAY(RTC_PLL_SETTLE_DELAY);
1532
1533 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1534 }
1535
1536 static void
ar5416SetDefGainValues(struct ath_hal * ah,const MODAL_EEP_HEADER * pModal,const struct ar5416eeprom * eep,uint8_t txRxAttenLocal,int regChainOffset,int i)1537 ar5416SetDefGainValues(struct ath_hal *ah,
1538 const MODAL_EEP_HEADER *pModal,
1539 const struct ar5416eeprom *eep,
1540 uint8_t txRxAttenLocal, int regChainOffset, int i)
1541 {
1542
1543 if (IS_EEP_MINOR_V3(ah)) {
1544 txRxAttenLocal = pModal->txRxAttenCh[i];
1545
1546 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1547 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1548 AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1549 pModal->bswMargin[i]);
1550 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1551 AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1552 pModal->bswAtten[i]);
1553 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1554 AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1555 pModal->xatten2Margin[i]);
1556 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1557 AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1558 pModal->xatten2Db[i]);
1559 } else {
1560 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1561 AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1562 pModal->bswMargin[i]);
1563 OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1564 AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1565 pModal->bswAtten[i]);
1566 }
1567 }
1568
1569 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1570 OS_REG_RMW_FIELD(ah,
1571 AR_PHY_RXGAIN + regChainOffset,
1572 AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1573 OS_REG_RMW_FIELD(ah,
1574 AR_PHY_RXGAIN + regChainOffset,
1575 AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1576 } else {
1577 OS_REG_RMW_FIELD(ah,
1578 AR_PHY_RXGAIN + regChainOffset,
1579 AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1580 OS_REG_RMW_FIELD(ah,
1581 AR_PHY_GAIN_2GHZ + regChainOffset,
1582 AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1583 }
1584 }
1585
1586 /*
1587 * Get the register chain offset for the given chain.
1588 *
1589 * Take into account the register chain swapping with AR5416 v2.0.
1590 *
1591 * XXX make sure that the reg chain swapping is only done for
1592 * XXX AR5416 v2.0 or greater, and not later chips?
1593 */
1594 int
ar5416GetRegChainOffset(struct ath_hal * ah,int i)1595 ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1596 {
1597 int regChainOffset;
1598
1599 if (AR_SREV_5416_V20_OR_LATER(ah) &&
1600 (AH5416(ah)->ah_rx_chainmask == 0x5 ||
1601 AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1602 /* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1603 * only chains 0 and 2 populated
1604 */
1605 regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1606 } else {
1607 regChainOffset = i * 0x1000;
1608 }
1609
1610 return regChainOffset;
1611 }
1612
1613 /*
1614 * Read EEPROM header info and program the device for correct operation
1615 * given the channel value.
1616 */
1617 HAL_BOOL
ar5416SetBoardValues(struct ath_hal * ah,const struct ieee80211_channel * chan)1618 ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1619 {
1620 const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1621 const struct ar5416eeprom *eep = &ee->ee_base;
1622 const MODAL_EEP_HEADER *pModal;
1623 int i, regChainOffset;
1624 uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
1625
1626 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1627 pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1628
1629 /* NB: workaround for eeprom versions <= 14.2 */
1630 txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1631
1632 OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1633 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1634 if (AR_SREV_MERLIN(ah)) {
1635 if (i >= 2) break;
1636 }
1637 regChainOffset = ar5416GetRegChainOffset(ah, i);
1638
1639 OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1640
1641 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1642 (OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1643 ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1644 SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1645 SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1646
1647 /*
1648 * Large signal upgrade,
1649 * If 14.3 or later EEPROM, use
1650 * txRxAttenLocal = pModal->txRxAttenCh[i]
1651 * else txRxAttenLocal is fixed value above.
1652 */
1653
1654 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1655 ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1656 }
1657
1658 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1659 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1660 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1661 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1662 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1663 OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1664 } else {
1665 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1666 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1667 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1668 OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1669 }
1670 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1671 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1672 !!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1673 OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1674 !!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1675 }
1676
1677 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1678 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1679
1680 if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1681 OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1682
1683 OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1684 SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1685 | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1686 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1687 | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1688
1689 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1690 pModal->txEndToRxOn);
1691
1692 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1693 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1694 pModal->thresh62);
1695 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1696 pModal->thresh62);
1697 } else {
1698 OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1699 pModal->thresh62);
1700 OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1701 pModal->thresh62);
1702 }
1703
1704 /* Minor Version Specific application */
1705 if (IS_EEP_MINOR_V2(ah)) {
1706 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1707 pModal->txFrameToDataStart);
1708 OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1709 pModal->txFrameToPaOn);
1710 }
1711
1712 if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1713 /* Overwrite switch settling with HT40 value */
1714 OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1715 pModal->swSettleHt40);
1716
1717 if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1718 OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1719
1720 if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1721 if (IEEE80211_IS_CHAN_2GHZ(chan))
1722 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1723 eep->baseEepHeader.dacLpMode);
1724 else if (eep->baseEepHeader.dacHiPwrMode_5G)
1725 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1726 else
1727 OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1728 eep->baseEepHeader.dacLpMode);
1729
1730 OS_DELAY(100);
1731
1732 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1733 pModal->miscBits >> 2);
1734 OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1735 eep->baseEepHeader.desiredScaleCCK);
1736 }
1737
1738 return (AH_TRUE);
1739 }
1740
1741 /*
1742 * Helper functions common for AP/CB/XB
1743 */
1744
1745 /*
1746 * Set the target power array "ratesArray" from the
1747 * given set of target powers.
1748 *
1749 * This is used by the various chipset/EEPROM TX power
1750 * setup routines.
1751 */
1752 void
ar5416SetRatesArrayFromTargetPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * ratesArray,const CAL_TARGET_POWER_LEG * targetPowerCck,const CAL_TARGET_POWER_LEG * targetPowerCckExt,const CAL_TARGET_POWER_LEG * targetPowerOfdm,const CAL_TARGET_POWER_LEG * targetPowerOfdmExt,const CAL_TARGET_POWER_HT * targetPowerHt20,const CAL_TARGET_POWER_HT * targetPowerHt40)1753 ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1754 const struct ieee80211_channel *chan,
1755 int16_t *ratesArray,
1756 const CAL_TARGET_POWER_LEG *targetPowerCck,
1757 const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1758 const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1759 const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1760 const CAL_TARGET_POWER_HT *targetPowerHt20,
1761 const CAL_TARGET_POWER_HT *targetPowerHt40)
1762 {
1763 #define N(a) (sizeof(a)/sizeof(a[0]))
1764 int i;
1765
1766 /* Blank the rates array, to be consistent */
1767 for (i = 0; i < Ar5416RateSize; i++)
1768 ratesArray[i] = 0;
1769
1770 /* Set rates Array from collected data */
1771 ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1772 ratesArray[rate18mb] = ratesArray[rate24mb] =
1773 targetPowerOfdm->tPow2x[0];
1774 ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1775 ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1776 ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1777 ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1778
1779 for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1780 ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1781 }
1782
1783 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1784 ratesArray[rate1l] = targetPowerCck->tPow2x[0];
1785 ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1];
1786 ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1787 ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1788 }
1789 if (IEEE80211_IS_CHAN_HT40(chan)) {
1790 for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1791 ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1792 }
1793 ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1794 ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0];
1795 ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1796 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1797 ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0];
1798 }
1799 }
1800 #undef N
1801 }
1802
1803 /*
1804 * ar5416SetPowerPerRateTable
1805 *
1806 * Sets the transmit power in the baseband for the given
1807 * operating channel and mode.
1808 */
1809 static HAL_BOOL
ar5416SetPowerPerRateTable(struct ath_hal * ah,struct ar5416eeprom * pEepData,const struct ieee80211_channel * chan,int16_t * ratesArray,uint16_t cfgCtl,uint16_t AntennaReduction,uint16_t twiceMaxRegulatoryPower,uint16_t powerLimit)1810 ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1811 const struct ieee80211_channel *chan,
1812 int16_t *ratesArray, uint16_t cfgCtl,
1813 uint16_t AntennaReduction,
1814 uint16_t twiceMaxRegulatoryPower,
1815 uint16_t powerLimit)
1816 {
1817 #define N(a) (sizeof(a)/sizeof(a[0]))
1818 /* Local defines to distinguish between extension and control CTL's */
1819 #define EXT_ADDITIVE (0x8000)
1820 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1821 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1822 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1823
1824 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1825 int i;
1826 int16_t twiceLargestAntenna;
1827 CAL_CTL_DATA *rep;
1828 CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1829 CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1830 CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1831 int16_t scaledPower, minCtlPower;
1832
1833 #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
1834 #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
1835 static const uint16_t ctlModesFor11a[] = {
1836 CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1837 };
1838 static const uint16_t ctlModesFor11g[] = {
1839 CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1840 };
1841 const uint16_t *pCtlMode;
1842 uint16_t numCtlModes, ctlMode, freq;
1843 CHAN_CENTERS centers;
1844
1845 ar5416GetChannelCenters(ah, chan, ¢ers);
1846
1847 /* Compute TxPower reduction due to Antenna Gain */
1848
1849 twiceLargestAntenna = AH_MAX(AH_MAX(
1850 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1851 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1852 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1853 #if 0
1854 /* Turn it back on if we need to calculate per chain antenna gain reduction */
1855 /* Use only if the expected gain > 6dbi */
1856 /* Chain 0 is always used */
1857 twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1858
1859 /* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1860 if (ahp->ah_tx_chainmask & 0x2)
1861 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1862 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1863
1864 if (ahp->ah_tx_chainmask & 0x4)
1865 twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1866 pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1867 #endif
1868 twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1869
1870 /* XXX setup for 5212 use (really used?) */
1871 ath_hal_eepromSet(ah,
1872 IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1873 twiceLargestAntenna);
1874
1875 /*
1876 * scaledPower is the minimum of the user input power level and
1877 * the regulatory allowed power level
1878 */
1879 scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1880
1881 /* Reduce scaled Power by number of chains active to get to per chain tx power level */
1882 /* TODO: better value than these? */
1883 switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1884 case 1:
1885 break;
1886 case 2:
1887 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1888 break;
1889 case 3:
1890 scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1891 break;
1892 default:
1893 return AH_FALSE; /* Unsupported number of chains */
1894 }
1895
1896 scaledPower = AH_MAX(0, scaledPower);
1897
1898 /* Get target powers from EEPROM - our baseline for TX Power */
1899 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1900 /* Setup for CTL modes */
1901 numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1902 pCtlMode = ctlModesFor11g;
1903
1904 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
1905 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1906 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
1907 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1908 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
1909 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1910
1911 if (IEEE80211_IS_CHAN_HT40(chan)) {
1912 numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
1913
1914 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
1915 AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1916 /* Get target powers for extension channels */
1917 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
1918 AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1919 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
1920 AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1921 }
1922 } else {
1923 /* Setup for CTL modes */
1924 numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1925 pCtlMode = ctlModesFor11a;
1926
1927 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
1928 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1929 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
1930 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1931
1932 if (IEEE80211_IS_CHAN_HT40(chan)) {
1933 numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1934
1935 ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
1936 AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1937 ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
1938 AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1939 }
1940 }
1941
1942 /*
1943 * For MIMO, need to apply regulatory caps individually across dynamically
1944 * running modes: CCK, OFDM, HT20, HT40
1945 *
1946 * The outer loop walks through each possible applicable runtime mode.
1947 * The inner loop walks through each ctlIndex entry in EEPROM.
1948 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1949 *
1950 */
1951 for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1952 HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1953 (pCtlMode[ctlMode] == CTL_2GHT40);
1954 if (isHt40CtlMode) {
1955 freq = centers.ctl_center;
1956 } else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1957 freq = centers.ext_center;
1958 } else {
1959 freq = centers.ctl_center;
1960 }
1961
1962 /* walk through each CTL index stored in EEPROM */
1963 for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1964 uint16_t twiceMinEdgePower;
1965
1966 /* compare test group from regulatory channel list with test mode from pCtlMode list */
1967 if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1968 (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1969 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1970 rep = &(pEepData->ctlData[i]);
1971 twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1972 rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1973 IEEE80211_IS_CHAN_2GHZ(chan));
1974 if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1975 /* Find the minimum of all CTL edge powers that apply to this channel */
1976 twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1977 } else {
1978 /* specific */
1979 twiceMaxEdgePower = twiceMinEdgePower;
1980 break;
1981 }
1982 }
1983 }
1984 minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1985 /* Apply ctl mode to correct target power set */
1986 switch(pCtlMode[ctlMode]) {
1987 case CTL_11B:
1988 for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1989 targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1990 }
1991 break;
1992 case CTL_11A:
1993 case CTL_11G:
1994 for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1995 targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1996 }
1997 break;
1998 case CTL_5GHT20:
1999 case CTL_2GHT20:
2000 for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2001 targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2002 }
2003 break;
2004 case CTL_11B_EXT:
2005 targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2006 break;
2007 case CTL_11A_EXT:
2008 case CTL_11G_EXT:
2009 targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2010 break;
2011 case CTL_5GHT40:
2012 case CTL_2GHT40:
2013 for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2014 targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2015 }
2016 break;
2017 default:
2018 return AH_FALSE;
2019 break;
2020 }
2021 } /* end ctl mode checking */
2022
2023 /* Set rates Array from collected data */
2024 ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2025 &targetPowerCck,
2026 &targetPowerCckExt,
2027 &targetPowerOfdm,
2028 &targetPowerOfdmExt,
2029 &targetPowerHt20,
2030 &targetPowerHt40);
2031 return AH_TRUE;
2032 #undef EXT_ADDITIVE
2033 #undef CTL_11A_EXT
2034 #undef CTL_11G_EXT
2035 #undef CTL_11B_EXT
2036 #undef SUB_NUM_CTL_MODES_AT_5G_40
2037 #undef SUB_NUM_CTL_MODES_AT_2G_40
2038 #undef N
2039 }
2040
2041 /**************************************************************************
2042 * fbin2freq
2043 *
2044 * Get channel value from binary representation held in eeprom
2045 * RETURNS: the frequency in MHz
2046 */
2047 static uint16_t
fbin2freq(uint8_t fbin,HAL_BOOL is2GHz)2048 fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2049 {
2050 /*
2051 * Reserved value 0xFF provides an empty definition both as
2052 * an fbin and as a frequency - do not convert
2053 */
2054 if (fbin == AR5416_BCHAN_UNUSED) {
2055 return fbin;
2056 }
2057
2058 return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2059 }
2060
2061 /*
2062 * ar5416GetMaxEdgePower
2063 *
2064 * Find the maximum conformance test limit for the given channel and CTL info
2065 */
2066 uint16_t
ar5416GetMaxEdgePower(uint16_t freq,CAL_CTL_EDGES * pRdEdgesPower,HAL_BOOL is2GHz)2067 ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2068 {
2069 uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2070 int i;
2071
2072 /* Get the edge power */
2073 for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2074 /*
2075 * If there's an exact channel match or an inband flag set
2076 * on the lower channel use the given rdEdgePower
2077 */
2078 if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2079 twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2080 break;
2081 } else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2082 if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2083 twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2084 }
2085 /* Leave loop - no more affecting edges possible in this monotonic increasing list */
2086 break;
2087 }
2088 }
2089 HALASSERT(twiceMaxEdgePower > 0);
2090 return twiceMaxEdgePower;
2091 }
2092
2093 /**************************************************************
2094 * ar5416GetTargetPowers
2095 *
2096 * Return the rates of target power for the given target power table
2097 * channel, and number of channels
2098 */
2099 void
ar5416GetTargetPowers(struct ath_hal * ah,const struct ieee80211_channel * chan,CAL_TARGET_POWER_HT * powInfo,uint16_t numChannels,CAL_TARGET_POWER_HT * pNewPower,uint16_t numRates,HAL_BOOL isHt40Target)2100 ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2101 CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2102 CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2103 HAL_BOOL isHt40Target)
2104 {
2105 uint16_t clo, chi;
2106 int i;
2107 int matchIndex = -1, lowIndex = -1;
2108 uint16_t freq;
2109 CHAN_CENTERS centers;
2110
2111 ar5416GetChannelCenters(ah, chan, ¢ers);
2112 freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2113
2114 /* Copy the target powers into the temp channel list */
2115 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2116 matchIndex = 0;
2117 } else {
2118 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2119 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2120 matchIndex = i;
2121 break;
2122 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2123 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2124 {
2125 lowIndex = i - 1;
2126 break;
2127 }
2128 }
2129 if ((matchIndex == -1) && (lowIndex == -1)) {
2130 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2131 matchIndex = i - 1;
2132 }
2133 }
2134
2135 if (matchIndex != -1) {
2136 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2137 } else {
2138 HALASSERT(lowIndex != -1);
2139 /*
2140 * Get the lower and upper channels, target powers,
2141 * and interpolate between them.
2142 */
2143 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2144 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2145
2146 for (i = 0; i < numRates; i++) {
2147 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2148 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2149 }
2150 }
2151 }
2152 /**************************************************************
2153 * ar5416GetTargetPowersLeg
2154 *
2155 * Return the four rates of target power for the given target power table
2156 * channel, and number of channels
2157 */
2158 void
ar5416GetTargetPowersLeg(struct ath_hal * ah,const struct ieee80211_channel * chan,CAL_TARGET_POWER_LEG * powInfo,uint16_t numChannels,CAL_TARGET_POWER_LEG * pNewPower,uint16_t numRates,HAL_BOOL isExtTarget)2159 ar5416GetTargetPowersLeg(struct ath_hal *ah,
2160 const struct ieee80211_channel *chan,
2161 CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2162 CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2163 HAL_BOOL isExtTarget)
2164 {
2165 uint16_t clo, chi;
2166 int i;
2167 int matchIndex = -1, lowIndex = -1;
2168 uint16_t freq;
2169 CHAN_CENTERS centers;
2170
2171 ar5416GetChannelCenters(ah, chan, ¢ers);
2172 freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2173
2174 /* Copy the target powers into the temp channel list */
2175 if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2176 matchIndex = 0;
2177 } else {
2178 for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2179 if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2180 matchIndex = i;
2181 break;
2182 } else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2183 (freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2184 {
2185 lowIndex = i - 1;
2186 break;
2187 }
2188 }
2189 if ((matchIndex == -1) && (lowIndex == -1)) {
2190 HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2191 matchIndex = i - 1;
2192 }
2193 }
2194
2195 if (matchIndex != -1) {
2196 OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2197 } else {
2198 HALASSERT(lowIndex != -1);
2199 /*
2200 * Get the lower and upper channels, target powers,
2201 * and interpolate between them.
2202 */
2203 clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2204 chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2205
2206 for (i = 0; i < numRates; i++) {
2207 pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2208 powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2209 }
2210 }
2211 }
2212
2213 /*
2214 * Set the gain boundaries for the given radio chain.
2215 *
2216 * The gain boundaries tell the hardware at what point in the
2217 * PDADC array to "switch over" from one PD gain setting
2218 * to another. There's also a gain overlap between two
2219 * PDADC array gain curves where there's valid PD values
2220 * for 2 gain settings.
2221 *
2222 * The hardware uses the gain overlap and gain boundaries
2223 * to determine which gain curve to use for the given
2224 * target TX power.
2225 */
2226 void
ar5416SetGainBoundariesClosedLoop(struct ath_hal * ah,int i,uint16_t pdGainOverlap_t2,uint16_t gainBoundaries[])2227 ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2228 uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2229 {
2230 int regChainOffset;
2231
2232 regChainOffset = ar5416GetRegChainOffset(ah, i);
2233
2234 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2235 " gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2236 gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2237 gainBoundaries[3]);
2238 OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2239 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2240 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
2241 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
2242 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
2243 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2244 }
2245
2246 /*
2247 * Get the gain values and the number of gain levels given
2248 * in xpdMask.
2249 *
2250 * The EEPROM xpdMask determines which power detector gain
2251 * levels were used during calibration. Each of these mask
2252 * bits maps to a fixed gain level in hardware.
2253 */
2254 uint16_t
ar5416GetXpdGainValues(struct ath_hal * ah,uint16_t xpdMask,uint16_t xpdGainValues[])2255 ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2256 uint16_t xpdGainValues[])
2257 {
2258 int i;
2259 uint16_t numXpdGain = 0;
2260
2261 for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2262 if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2263 if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2264 HALASSERT(0);
2265 break;
2266 }
2267 xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2268 numXpdGain++;
2269 }
2270 }
2271 return numXpdGain;
2272 }
2273
2274 /*
2275 * Write the detector gain and biases.
2276 *
2277 * There are four power detector gain levels. The xpdMask in the EEPROM
2278 * determines which power detector gain levels have TX power calibration
2279 * data associated with them. This function writes the number of
2280 * PD gain levels and their values into the hardware.
2281 *
2282 * This is valid for all TX chains - the calibration data itself however
2283 * will likely differ per-chain.
2284 */
2285 void
ar5416WriteDetectorGainBiases(struct ath_hal * ah,uint16_t numXpdGain,uint16_t xpdGainValues[])2286 ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2287 uint16_t xpdGainValues[])
2288 {
2289 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2290 " xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2291 xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2292
2293 OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2294 ~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2295 AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2296 SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2297 SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2298 SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2299 SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
2300 }
2301
2302 /*
2303 * Write the PDADC array to the given radio chain i.
2304 *
2305 * The 32 PDADC registers are written without any care about
2306 * their contents - so if various chips treat values as "special",
2307 * this routine will not care.
2308 */
2309 void
ar5416WritePdadcValues(struct ath_hal * ah,int i,uint8_t pdadcValues[])2310 ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2311 {
2312 int regOffset, regChainOffset;
2313 int j;
2314 int reg32;
2315
2316 regChainOffset = ar5416GetRegChainOffset(ah, i);
2317 regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2318
2319 for (j = 0; j < 32; j++) {
2320 reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
2321 ((pdadcValues[4*j + 1] & 0xFF) << 8) |
2322 ((pdadcValues[4*j + 2] & 0xFF) << 16) |
2323 ((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2324 OS_REG_WRITE(ah, regOffset, reg32);
2325 HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2326 " PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2327 " Value %3d | PDADC %3d Value %3d |\n",
2328 i,
2329 4*j, pdadcValues[4*j],
2330 4*j+1, pdadcValues[4*j + 1],
2331 4*j+2, pdadcValues[4*j + 2],
2332 4*j+3, pdadcValues[4*j + 3]);
2333 regOffset += 4;
2334 }
2335 }
2336
2337 /**************************************************************
2338 * ar5416SetPowerCalTable
2339 *
2340 * Pull the PDADC piers from cal data and interpolate them across the given
2341 * points as well as from the nearest pier(s) to get a power detector
2342 * linear voltage to power level table.
2343 */
2344 HAL_BOOL
ar5416SetPowerCalTable(struct ath_hal * ah,struct ar5416eeprom * pEepData,const struct ieee80211_channel * chan,int16_t * pTxPowerIndexOffset)2345 ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2346 const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2347 {
2348 CAL_DATA_PER_FREQ *pRawDataset;
2349 uint8_t *pCalBChans = AH_NULL;
2350 uint16_t pdGainOverlap_t2;
2351 static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
2352 uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2353 uint16_t numPiers, i;
2354 int16_t tMinCalPower;
2355 uint16_t numXpdGain, xpdMask;
2356 uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2357 uint32_t regChainOffset;
2358
2359 OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2360
2361 xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2362
2363 if (IS_EEP_MINOR_V2(ah)) {
2364 pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2365 } else {
2366 pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2367 }
2368
2369 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2370 pCalBChans = pEepData->calFreqPier2G;
2371 numPiers = AR5416_NUM_2G_CAL_PIERS;
2372 } else {
2373 pCalBChans = pEepData->calFreqPier5G;
2374 numPiers = AR5416_NUM_5G_CAL_PIERS;
2375 }
2376
2377 /* Calculate the value of xpdgains from the xpdGain Mask */
2378 numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2379
2380 /* Write the detector gain biases and their number */
2381 ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2382
2383 for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2384 regChainOffset = ar5416GetRegChainOffset(ah, i);
2385
2386 if (pEepData->baseEepHeader.txMask & (1 << i)) {
2387 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2388 pRawDataset = pEepData->calPierData2G[i];
2389 } else {
2390 pRawDataset = pEepData->calPierData5G[i];
2391 }
2392
2393 /* Fetch the gain boundaries and the PDADC values */
2394 ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
2395 pCalBChans, numPiers,
2396 pdGainOverlap_t2,
2397 &tMinCalPower, gainBoundaries,
2398 pdadcValues, numXpdGain);
2399
2400 if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2401 ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2402 gainBoundaries);
2403 }
2404
2405 /* Write the power values into the baseband power table */
2406 ar5416WritePdadcValues(ah, i, pdadcValues);
2407 }
2408 }
2409 *pTxPowerIndexOffset = 0;
2410
2411 return AH_TRUE;
2412 }
2413
2414 /**************************************************************
2415 * ar5416GetGainBoundariesAndPdadcs
2416 *
2417 * Uses the data points read from EEPROM to reconstruct the pdadc power table
2418 * Called by ar5416SetPowerCalTable only.
2419 */
2420 void
ar5416GetGainBoundariesAndPdadcs(struct ath_hal * ah,const struct ieee80211_channel * chan,CAL_DATA_PER_FREQ * pRawDataSet,uint8_t * bChans,uint16_t availPiers,uint16_t tPdGainOverlap,int16_t * pMinCalPower,uint16_t * pPdGainBoundaries,uint8_t * pPDADCValues,uint16_t numXpdGains)2421 ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2422 const struct ieee80211_channel *chan,
2423 CAL_DATA_PER_FREQ *pRawDataSet,
2424 uint8_t * bChans, uint16_t availPiers,
2425 uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2426 uint8_t * pPDADCValues, uint16_t numXpdGains)
2427 {
2428
2429 int i, j, k;
2430 int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
2431 uint16_t idxL, idxR, numPiers; /* Pier indexes */
2432
2433 /* filled out Vpd table for all pdGains (chanL) */
2434 static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2435
2436 /* filled out Vpd table for all pdGains (chanR) */
2437 static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2438
2439 /* filled out Vpd table for all pdGains (interpolated) */
2440 static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2441
2442 uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2443 uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
2444 uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
2445 int16_t vpdStep;
2446 int16_t tmpVal;
2447 uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
2448 HAL_BOOL match;
2449 int16_t minDelta = 0;
2450 CHAN_CENTERS centers;
2451
2452 ar5416GetChannelCenters(ah, chan, ¢ers);
2453
2454 /* Trim numPiers for the number of populated channel Piers */
2455 for (numPiers = 0; numPiers < availPiers; numPiers++) {
2456 if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2457 break;
2458 }
2459 }
2460
2461 /* Find pier indexes around the current channel */
2462 match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2463 IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2464
2465 if (match) {
2466 /* Directly fill both vpd tables from the matching index */
2467 for (i = 0; i < numXpdGains; i++) {
2468 minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2469 maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2470 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2471 pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2472 }
2473 } else {
2474 for (i = 0; i < numXpdGains; i++) {
2475 pVpdL = pRawDataSet[idxL].vpdPdg[i];
2476 pPwrL = pRawDataSet[idxL].pwrPdg[i];
2477 pVpdR = pRawDataSet[idxR].vpdPdg[i];
2478 pPwrR = pRawDataSet[idxR].pwrPdg[i];
2479
2480 /* Start Vpd interpolation from the max of the minimum powers */
2481 minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2482
2483 /* End Vpd interpolation from the min of the max powers */
2484 maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2485 HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2486
2487 /* Fill pier Vpds */
2488 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2489 ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2490
2491 /* Interpolate the final vpd */
2492 for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2493 vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2494 IEEE80211_IS_CHAN_2GHZ(chan)),
2495 bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2496 }
2497 }
2498 }
2499 *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2500
2501 k = 0; /* index for the final table */
2502 for (i = 0; i < numXpdGains; i++) {
2503 if (i == (numXpdGains - 1)) {
2504 pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2505 } else {
2506 pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2507 }
2508
2509 pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2510
2511 /* NB: only applies to owl 1.0 */
2512 if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2513 /*
2514 * fix the gain delta, but get a delta that can be applied to min to
2515 * keep the upper power values accurate, don't think max needs to
2516 * be adjusted because should not be at that area of the table?
2517 */
2518 minDelta = pPdGainBoundaries[0] - 23;
2519 pPdGainBoundaries[0] = 23;
2520 }
2521 else {
2522 minDelta = 0;
2523 }
2524
2525 /* Find starting index for this pdGain */
2526 if (i == 0) {
2527 if (AR_SREV_MERLIN_10_OR_LATER(ah))
2528 ss = (int16_t)(0 - (minPwrT4[i] / 2));
2529 else
2530 ss = 0; /* for the first pdGain, start from index 0 */
2531 } else {
2532 /* need overlap entries extrapolated below. */
2533 ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2534 }
2535 vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2536 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2537 /*
2538 *-ve ss indicates need to extrapolate data below for this pdGain
2539 */
2540 while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2541 tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2542 pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2543 ss++;
2544 }
2545
2546 sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2547 tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2548 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2549
2550 while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2551 pPDADCValues[k++] = vpdTableI[i][ss++];
2552 }
2553
2554 vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2555 vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2556 /*
2557 * for last gain, pdGainBoundary == Pmax_t2, so will
2558 * have to extrapolate
2559 */
2560 if (tgtIndex >= maxIndex) { /* need to extrapolate above */
2561 while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2562 tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2563 (ss - maxIndex +1) * vpdStep));
2564 pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2565 ss++;
2566 }
2567 } /* extrapolated above */
2568 } /* for all pdGainUsed */
2569
2570 /* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2571 while (i < AR5416_PD_GAINS_IN_MASK) {
2572 pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2573 i++;
2574 }
2575
2576 while (k < AR5416_NUM_PDADC_VALUES) {
2577 pPDADCValues[k] = pPDADCValues[k-1];
2578 k++;
2579 }
2580 return;
2581 }
2582
2583 /*
2584 * The linux ath9k driver and (from what I've been told) the reference
2585 * Atheros driver enables the 11n PHY by default whether or not it's
2586 * configured.
2587 */
2588 static void
ar5416Set11nRegs(struct ath_hal * ah,const struct ieee80211_channel * chan)2589 ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2590 {
2591 uint32_t phymode;
2592 uint32_t enableDacFifo = 0;
2593 HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
2594
2595 if (AR_SREV_KITE_10_OR_LATER(ah))
2596 enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2597
2598 /* Enable 11n HT, 20 MHz */
2599 phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2600 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2601
2602 /* Configure baseband for dynamic 20/40 operation */
2603 if (IEEE80211_IS_CHAN_HT40(chan)) {
2604 phymode |= AR_PHY_FC_DYN2040_EN;
2605
2606 /* Configure control (primary) channel at +-10MHz */
2607 if (IEEE80211_IS_CHAN_HT40U(chan))
2608 phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2609 #if 0
2610 /* Configure 20/25 spacing */
2611 if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2612 phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2613 #endif
2614 macmode = HAL_HT_MACMODE_2040;
2615 } else
2616 macmode = HAL_HT_MACMODE_20;
2617 OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2618
2619 /* Configure MAC for 20/40 operation */
2620 ar5416Set11nMac2040(ah, macmode);
2621
2622 /* global transmit timeout (25 TUs default)*/
2623 /* XXX - put this elsewhere??? */
2624 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2625
2626 /* carrier sense timeout */
2627 OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2628 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2629 }
2630
2631 void
ar5416GetChannelCenters(struct ath_hal * ah,const struct ieee80211_channel * chan,CHAN_CENTERS * centers)2632 ar5416GetChannelCenters(struct ath_hal *ah,
2633 const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2634 {
2635 uint16_t freq = ath_hal_gethwchannel(ah, chan);
2636
2637 centers->ctl_center = freq;
2638 centers->synth_center = freq;
2639 /*
2640 * In 20/40 phy mode, the center frequency is
2641 * "between" the control and extension channels.
2642 */
2643 if (IEEE80211_IS_CHAN_HT40U(chan)) {
2644 centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2645 centers->ext_center =
2646 centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2647 } else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2648 centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2649 centers->ext_center =
2650 centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2651 } else {
2652 centers->ext_center = freq;
2653 }
2654 }
2655
2656 /*
2657 * Override the INI vals being programmed.
2658 */
2659 static void
ar5416OverrideIni(struct ath_hal * ah,const struct ieee80211_channel * chan)2660 ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2661 {
2662 uint32_t val;
2663
2664 /*
2665 * Set the RX_ABORT and RX_DIS and clear if off only after
2666 * RXE is set for MAC. This prevents frames with corrupted
2667 * descriptor status.
2668 */
2669 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2670
2671 if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2672 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2673 val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2674 if (!AR_SREV_9271(ah))
2675 val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2676
2677 if (AR_SREV_KIWI_10_OR_LATER(ah))
2678 val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2679
2680 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2681 }
2682
2683 /*
2684 * Disable RIFS search on some chips to avoid baseband
2685 * hang issues.
2686 */
2687 if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2688 (void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2689
2690 if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2691 return;
2692
2693 /*
2694 * Disable BB clock gating
2695 * Necessary to avoid issues on AR5416 2.0
2696 */
2697 OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2698 }
2699
2700 struct ini {
2701 uint32_t *data; /* NB: !const */
2702 int rows, cols;
2703 };
2704
2705 /*
2706 * Override XPA bias level based on operating frequency.
2707 * This is a v14 EEPROM specific thing for the AR9160.
2708 */
2709 void
ar5416EepromSetAddac(struct ath_hal * ah,const struct ieee80211_channel * chan)2710 ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2711 {
2712 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
2713 MODAL_EEP_HEADER *pModal;
2714 HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2715 struct ar5416eeprom *eep = &ee->ee_base;
2716 uint8_t biaslevel;
2717
2718 if (! AR_SREV_SOWL(ah))
2719 return;
2720
2721 if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2722 return;
2723
2724 pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2725
2726 if (pModal->xpaBiasLvl != 0xff)
2727 biaslevel = pModal->xpaBiasLvl;
2728 else {
2729 uint16_t resetFreqBin, freqBin, freqCount = 0;
2730 CHAN_CENTERS centers;
2731
2732 ar5416GetChannelCenters(ah, chan, ¢ers);
2733
2734 resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2735 freqBin = XPA_LVL_FREQ(0) & 0xff;
2736 biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2737
2738 freqCount++;
2739
2740 while (freqCount < 3) {
2741 if (XPA_LVL_FREQ(freqCount) == 0x0)
2742 break;
2743
2744 freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2745 if (resetFreqBin >= freqBin)
2746 biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2747 else
2748 break;
2749 freqCount++;
2750 }
2751 }
2752
2753 HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2754 __func__, biaslevel);
2755
2756 /*
2757 * This is a dirty workaround for the const initval data,
2758 * which will upset multiple AR9160's on the same board.
2759 *
2760 * The HAL should likely just have a private copy of the addac
2761 * data per instance.
2762 */
2763 if (IEEE80211_IS_CHAN_2GHZ(chan))
2764 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2765 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2766 else
2767 HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2768 (HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2769 #undef XPA_LVL_FREQ
2770 }
2771
2772 static void
ar5416MarkPhyInactive(struct ath_hal * ah)2773 ar5416MarkPhyInactive(struct ath_hal *ah)
2774 {
2775 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2776 }
2777
2778 #define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */
2779 #define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */
2780 #define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */
2781
2782 #define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */
2783 #define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */
2784 #define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */
2785
2786 #define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */
2787 #define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */
2788 #define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */
2789
2790 #define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */
2791 #define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */
2792 #define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */
2793
2794 #define AR5416_INIT_USEC_40 40
2795 #define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */
2796 #define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */
2797
2798 #define AR5416_INIT_USEC_44 44
2799 #define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */
2800 #define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */
2801
2802 /* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2803 #define AR5416_RX_NON_FULL_RATE_LATENCY 63
2804 #define AR5416_TX_HALF_RATE_LATENCY 108
2805 #define AR5416_TX_QUARTER_RATE_LATENCY 216
2806
2807 /*
2808 * Adjust various register settings based on half/quarter rate clock setting.
2809 * This includes:
2810 *
2811 * + USEC, TX/RX latency,
2812 * + IFS params: slot, eifs, misc etc.
2813 *
2814 * TODO:
2815 *
2816 * + Verify which other registers need to be tweaked;
2817 * + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2818 * + This just plain won't work for long distance links - the coverage class
2819 * code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2820 * change;
2821 * + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2822 * series chips?
2823 * + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2824 */
2825 static void
ar5416SetIFSTiming(struct ath_hal * ah,const struct ieee80211_channel * chan)2826 ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2827 {
2828 uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2829 int clk_44 = 0;
2830
2831 HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2832 IEEE80211_IS_CHAN_QUARTER(chan));
2833
2834 /* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2835 if (IEEE80211_IS_CHAN_2GHZ(chan))
2836 clk_44 = 1;
2837 else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2838 IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2839 clk_44 = 1;
2840
2841 /* XXX does this need save/restoring for the 11n chips? */
2842 /*
2843 * XXX TODO: should mask out the txlat/rxlat/usec values?
2844 */
2845 refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2846
2847 /*
2848 * XXX This really should calculate things, not use
2849 * hard coded values! Ew.
2850 */
2851 if (IEEE80211_IS_CHAN_HALF(chan)) {
2852 if (clk_44) {
2853 slot = AR5416_IFS_SLOT_HALF_RATE_44;
2854 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2855 AR5416_USEC_RX_LAT_S;
2856 txLat = AR5416_TX_HALF_RATE_LATENCY <<
2857 AR5416_USEC_TX_LAT_S;
2858 usec = AR5416_HALF_RATE_USEC_44;
2859 eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2860 init_usec = AR5416_INIT_USEC_44 >> 1;
2861 } else {
2862 slot = AR5416_IFS_SLOT_HALF_RATE_40;
2863 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2864 AR5416_USEC_RX_LAT_S;
2865 txLat = AR5416_TX_HALF_RATE_LATENCY <<
2866 AR5416_USEC_TX_LAT_S;
2867 usec = AR5416_HALF_RATE_USEC_40;
2868 eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2869 init_usec = AR5416_INIT_USEC_40 >> 1;
2870 }
2871 } else { /* quarter rate */
2872 if (clk_44) {
2873 slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2874 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2875 AR5416_USEC_RX_LAT_S;
2876 txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2877 AR5416_USEC_TX_LAT_S;
2878 usec = AR5416_QUARTER_RATE_USEC_44;
2879 eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2880 init_usec = AR5416_INIT_USEC_44 >> 2;
2881 } else {
2882 slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2883 rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2884 AR5416_USEC_RX_LAT_S;
2885 txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2886 AR5416_USEC_TX_LAT_S;
2887 usec = AR5416_QUARTER_RATE_USEC_40;
2888 eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2889 init_usec = AR5416_INIT_USEC_40 >> 2;
2890 }
2891 }
2892
2893 /* XXX verify these! */
2894 OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2895 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2896 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2897 OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2898 AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2899 }
2900