1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2006 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 /*
22 * Chips specific device attachment and device info collection
23 * Connects Init Reg Vectors, EEPROM Data, and device Functions.
24 */
25 #include "ah.h"
26 #include "ah_internal.h"
27 #include "ah_devid.h"
28
29 #include "ar5211/ar5211.h"
30 #include "ar5211/ar5211reg.h"
31 #include "ar5211/ar5211phy.h"
32
33 #include "ah_eeprom_v3.h"
34
35 /* Add static register initialization vectors */
36 #include "ar5211/boss.ini"
37
38 /*
39 * Structure to hold 11b tuning information for Beanie/Sombrero
40 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
41 */
42 typedef struct {
43 uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
44 uint32_t channelSelect; /* P[7:4]S[3:0] bits */
45 uint16_t channel5111; /* 11a channel for 5111 */
46 } CHAN_INFO_2GHZ;
47
48 #define CI_2GHZ_INDEX_CORRECTION 19
49 static const CHAN_INFO_2GHZ chan2GHzData[] = {
50 { 1, 0x46, 96 }, /* 2312 -19 */
51 { 1, 0x46, 97 }, /* 2317 -18 */
52 { 1, 0x46, 98 }, /* 2322 -17 */
53 { 1, 0x46, 99 }, /* 2327 -16 */
54 { 1, 0x46, 100 }, /* 2332 -15 */
55 { 1, 0x46, 101 }, /* 2337 -14 */
56 { 1, 0x46, 102 }, /* 2342 -13 */
57 { 1, 0x46, 103 }, /* 2347 -12 */
58 { 1, 0x46, 104 }, /* 2352 -11 */
59 { 1, 0x46, 105 }, /* 2357 -10 */
60 { 1, 0x46, 106 }, /* 2362 -9 */
61 { 1, 0x46, 107 }, /* 2367 -8 */
62 { 1, 0x46, 108 }, /* 2372 -7 */
63 /* index -6 to 0 are pad to make this a nolookup table */
64 { 1, 0x46, 116 }, /* -6 */
65 { 1, 0x46, 116 }, /* -5 */
66 { 1, 0x46, 116 }, /* -4 */
67 { 1, 0x46, 116 }, /* -3 */
68 { 1, 0x46, 116 }, /* -2 */
69 { 1, 0x46, 116 }, /* -1 */
70 { 1, 0x46, 116 }, /* 0 */
71 { 1, 0x46, 116 }, /* 2412 1 */
72 { 1, 0x46, 117 }, /* 2417 2 */
73 { 1, 0x46, 118 }, /* 2422 3 */
74 { 1, 0x46, 119 }, /* 2427 4 */
75 { 1, 0x46, 120 }, /* 2432 5 */
76 { 1, 0x46, 121 }, /* 2437 6 */
77 { 1, 0x46, 122 }, /* 2442 7 */
78 { 1, 0x46, 123 }, /* 2447 8 */
79 { 1, 0x46, 124 }, /* 2452 9 */
80 { 1, 0x46, 125 }, /* 2457 10 */
81 { 1, 0x46, 126 }, /* 2462 11 */
82 { 1, 0x46, 127 }, /* 2467 12 */
83 { 1, 0x46, 128 }, /* 2472 13 */
84 { 1, 0x44, 124 }, /* 2484 14 */
85 { 1, 0x46, 136 }, /* 2512 15 */
86 { 1, 0x46, 140 }, /* 2532 16 */
87 { 1, 0x46, 144 }, /* 2552 17 */
88 { 1, 0x46, 148 }, /* 2572 18 */
89 { 1, 0x46, 152 }, /* 2592 19 */
90 { 1, 0x46, 156 }, /* 2612 20 */
91 { 1, 0x46, 160 }, /* 2632 21 */
92 { 1, 0x46, 164 }, /* 2652 22 */
93 { 1, 0x46, 168 }, /* 2672 23 */
94 { 1, 0x46, 172 }, /* 2692 24 */
95 { 1, 0x46, 176 }, /* 2712 25 */
96 { 1, 0x46, 180 } /* 2732 26 */
97 };
98
99 /* Power timeouts in usec to wait for chip to wake-up. */
100 #define POWER_UP_TIME 2000
101
102 #define DELAY_PLL_SETTLE 300 /* 300 us */
103 #define DELAY_BASE_ACTIVATE 100 /* 100 us */
104
105 #define NUM_RATES 8
106
107 static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108 static HAL_BOOL ar5211SetChannel(struct ath_hal *,
109 const struct ieee80211_channel *);
110 static int16_t ar5211RunNoiseFloor(struct ath_hal *,
111 uint8_t runTime, int16_t startingNF);
112 static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
113 struct ieee80211_channel *chan);
114 static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
115 const struct ieee80211_channel *chan);
116 static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
117 const struct ieee80211_channel *chan);
118 static void ar5211SetPowerTable(struct ath_hal *,
119 PCDACS_EEPROM *pSrcStruct, uint16_t channel);
120 static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
121 const struct ieee80211_channel *);
122 static void ar5211SetRateTable(struct ath_hal *,
123 RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
124 uint16_t numChannels, const struct ieee80211_channel *chan);
125 static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
126 const PCDACS_EEPROM *pSrcStruct);
127 static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
128 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
129 static uint16_t ar5211GetInterpolatedValue(uint16_t target,
130 uint16_t srcLeft, uint16_t srcRight,
131 uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
132 static void ar5211GetLowerUpperValues(uint16_t value,
133 const uint16_t *pList, uint16_t listSize,
134 uint16_t *pLowerValue, uint16_t *pUpperValue);
135 static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
136 uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
137 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
138
139 static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
140 static void ar5211RequestRfgain(struct ath_hal *);
141 static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
142 static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
143 static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
144 static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
145
146 /*
147 * Places the device in and out of reset and then places sane
148 * values in the registers based on EEPROM config, initialization
149 * vectors (as determined by the mode), and station configuration
150 *
151 * bChannelChange is used to preserve DMA/PCU registers across
152 * a HW Reset during channel change.
153 */
154 HAL_BOOL
ar5211Reset(struct ath_hal * ah,HAL_OPMODE opmode,struct ieee80211_channel * chan,HAL_BOOL bChannelChange,HAL_RESET_TYPE resetType,HAL_STATUS * status)155 ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
156 struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
157 HAL_RESET_TYPE resetType,
158 HAL_STATUS *status)
159 {
160 uint32_t softLedCfg, softLedState;
161 #define N(a) (sizeof (a) /sizeof (a[0]))
162 #define FAIL(_code) do { ecode = _code; goto bad; } while (0)
163 struct ath_hal_5211 *ahp = AH5211(ah);
164 HAL_CHANNEL_INTERNAL *ichan;
165 uint32_t i, ledstate;
166 HAL_STATUS ecode;
167 int q;
168
169 uint32_t data, synthDelay;
170 uint32_t macStaId1;
171 uint16_t modesIndex = 0, freqIndex = 0;
172 uint32_t saveFrameSeqCount[AR_NUM_DCU];
173 uint32_t saveTsfLow = 0, saveTsfHigh = 0;
174 uint32_t saveDefAntenna;
175
176 HALDEBUG(ah, HAL_DEBUG_RESET,
177 "%s: opmode %u channel %u/0x%x %s channel\n",
178 __func__, opmode, chan->ic_freq, chan->ic_flags,
179 bChannelChange ? "change" : "same");
180
181 OS_MARK(ah, AH_MARK_RESET, bChannelChange);
182 /*
183 * Map public channel to private.
184 */
185 ichan = ath_hal_checkchannel(ah, chan);
186 if (ichan == AH_NULL)
187 FAIL(HAL_EINVAL);
188 switch (opmode) {
189 case HAL_M_STA:
190 case HAL_M_IBSS:
191 case HAL_M_HOSTAP:
192 case HAL_M_MONITOR:
193 break;
194 default:
195 HALDEBUG(ah, HAL_DEBUG_ANY,
196 "%s: invalid operating mode %u\n", __func__, opmode);
197 FAIL(HAL_EINVAL);
198 break;
199 }
200 HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
201
202 /* Preserve certain DMA hardware registers on a channel change */
203 if (bChannelChange) {
204 /*
205 * Need to save/restore the TSF because of an issue
206 * that accelerates the TSF during a chip reset.
207 *
208 * We could use system timer routines to more
209 * accurately restore the TSF, but
210 * 1. Timer routines on certain platforms are
211 * not accurate enough (e.g. 1 ms resolution).
212 * 2. It would still not be accurate.
213 *
214 * The most important aspect of this workaround,
215 * is that, after reset, the TSF is behind
216 * other STAs TSFs. This will allow the STA to
217 * properly resynchronize its TSF in adhoc mode.
218 */
219 saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
220 saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
221
222 /* Read frame sequence count */
223 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
224 saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
225 } else {
226 for (i = 0; i < AR_NUM_DCU; i++)
227 saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
228 }
229 if (!IEEE80211_IS_CHAN_DFS(chan))
230 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
231 }
232
233 /*
234 * Preserve the antenna on a channel change
235 */
236 saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
237 if (saveDefAntenna == 0)
238 saveDefAntenna = 1;
239
240 /* Save hardware flag before chip reset clears the register */
241 macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
242
243 /* Save led state from pci config register */
244 ledstate = OS_REG_READ(ah, AR_PCICFG) &
245 (AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
246 AR_PCICFG_LEDSLOW);
247 softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
248 softLedState = OS_REG_READ(ah, AR_GPIODO);
249
250 if (!ar5211ChipReset(ah, chan)) {
251 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
252 FAIL(HAL_EIO);
253 }
254
255 /* Setup the indices for the next set of register array writes */
256 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
257 freqIndex = 1;
258 if (IEEE80211_IS_CHAN_TURBO(chan))
259 modesIndex = 2;
260 else if (IEEE80211_IS_CHAN_A(chan))
261 modesIndex = 1;
262 else {
263 HALDEBUG(ah, HAL_DEBUG_ANY,
264 "%s: invalid channel %u/0x%x\n",
265 __func__, chan->ic_freq, chan->ic_flags);
266 FAIL(HAL_EINVAL);
267 }
268 } else {
269 freqIndex = 2;
270 if (IEEE80211_IS_CHAN_B(chan))
271 modesIndex = 3;
272 else if (IEEE80211_IS_CHAN_PUREG(chan))
273 modesIndex = 4;
274 else {
275 HALDEBUG(ah, HAL_DEBUG_ANY,
276 "%s: invalid channel %u/0x%x\n",
277 __func__, chan->ic_freq, chan->ic_flags);
278 FAIL(HAL_EINVAL);
279 }
280 }
281
282 /* Set correct Baseband to analog shift setting to access analog chips. */
283 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
284 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
285 } else {
286 OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
287 }
288
289 /* Write parameters specific to AR5211 */
290 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
291 if (IEEE80211_IS_CHAN_2GHZ(chan) &&
292 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
293 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
294 uint32_t ob2GHz, db2GHz;
295
296 if (IEEE80211_IS_CHAN_CCK(chan)) {
297 ob2GHz = ee->ee_ob2GHz[0];
298 db2GHz = ee->ee_db2GHz[0];
299 } else {
300 ob2GHz = ee->ee_ob2GHz[1];
301 db2GHz = ee->ee_db2GHz[1];
302 }
303 ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
304 db2GHz = ath_hal_reverseBits(db2GHz, 3);
305 ar5211Mode2_4[25][freqIndex] =
306 (ar5211Mode2_4[25][freqIndex] & ~0xC0) |
307 ((ob2GHz << 6) & 0xC0);
308 ar5211Mode2_4[26][freqIndex] =
309 (ar5211Mode2_4[26][freqIndex] & ~0x0F) |
310 (((ob2GHz >> 2) & 0x1) |
311 ((db2GHz << 1) & 0x0E));
312 }
313 for (i = 0; i < N(ar5211Mode2_4); i++)
314 OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
315 ar5211Mode2_4[i][freqIndex]);
316 }
317
318 /* Write the analog registers 6 and 7 before other config */
319 ar5211SetRf6and7(ah, chan);
320
321 /* Write registers that vary across all modes */
322 for (i = 0; i < N(ar5211Modes); i++)
323 OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
324
325 /* Write RFGain Parameters that differ between 2.4 and 5 GHz */
326 for (i = 0; i < N(ar5211BB_RfGain); i++)
327 OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
328
329 /* Write Common Array Parameters */
330 for (i = 0; i < N(ar5211Common); i++) {
331 uint32_t reg = ar5211Common[i][0];
332 /* On channel change, don't reset the PCU registers */
333 if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
334 OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
335 }
336
337 /* Fix pre-AR5211 register values, this includes AR5311s. */
338 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
339 /*
340 * The TX and RX latency values have changed locations
341 * within the USEC register in AR5211. Since they're
342 * set via the .ini, for both AR5211 and AR5311, they
343 * are written properly here for AR5311.
344 */
345 data = OS_REG_READ(ah, AR_USEC);
346 /* Must be 0 for proper write in AR5311 */
347 HALASSERT((data & 0x00700000) == 0);
348 OS_REG_WRITE(ah, AR_USEC,
349 (data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
350 ((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
351 /* The following registers exist only on AR5311. */
352 OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
353
354 /* Set proper ADC & DAC delays for AR5311. */
355 OS_REG_WRITE(ah, 0x00009878, 0x00000008);
356
357 /* Enable the PCU FIFO corruption ECO on AR5311. */
358 OS_REG_WRITE(ah, AR_DIAG_SW,
359 OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
360 }
361
362 /* Restore certain DMA hardware registers on a channel change */
363 if (bChannelChange) {
364 /* Restore TSF */
365 OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
366 OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
367
368 if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
369 OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
370 } else {
371 for (i = 0; i < AR_NUM_DCU; i++)
372 OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
373 }
374 }
375
376 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
377 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
378 | macStaId1
379 );
380 ar5211SetOperatingMode(ah, opmode);
381
382 /* Restore previous led state */
383 OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
384 OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
385 OS_REG_WRITE(ah, AR_GPIODO, softLedState);
386
387 /* Restore previous antenna */
388 OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
389
390 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
391 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
392
393 /* Restore bmiss rssi & count thresholds */
394 OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
395
396 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
397
398 /*
399 * for pre-Production Oahu only.
400 * Disable clock gating in all DMA blocks. Helps when using
401 * 11B and AES but results in higher power consumption.
402 */
403 if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
404 AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
405 OS_REG_WRITE(ah, AR_CFG,
406 OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
407 }
408
409 /* Setup the transmit power values. */
410 if (!ar5211SetTransmitPower(ah, chan)) {
411 HALDEBUG(ah, HAL_DEBUG_ANY,
412 "%s: error init'ing transmit power\n", __func__);
413 FAIL(HAL_EIO);
414 }
415
416 /*
417 * Configurable OFDM spoofing for 11n compatibility; used
418 * only when operating in station mode.
419 */
420 if (opmode != HAL_M_HOSTAP &&
421 (AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
422 /* NB: override the .ini setting */
423 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
424 AR_PHY_FRAME_CTL_ERR_SERV,
425 MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
426 }
427
428 /* Setup board specific options for EEPROM version 3 */
429 ar5211SetBoardValues(ah, chan);
430
431 if (!ar5211SetChannel(ah, chan)) {
432 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
433 __func__);
434 FAIL(HAL_EIO);
435 }
436
437 /* Activate the PHY */
438 if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
439 IEEE80211_IS_CHAN_2GHZ(chan))
440 OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
441 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
442
443 /*
444 * Wait for the frequency synth to settle (synth goes on
445 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
446 * Value is in 100ns increments.
447 */
448 data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
449 if (IEEE80211_IS_CHAN_CCK(chan)) {
450 synthDelay = (4 * data) / 22;
451 } else {
452 synthDelay = data / 10;
453 }
454 /*
455 * There is an issue if the AP starts the calibration before
456 * the baseband timeout completes. This could result in the
457 * rxclear false triggering. Add an extra delay to ensure this
458 * this does not happen.
459 */
460 OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
461
462 /* Calibrate the AGC and wait for completion. */
463 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
464 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
465 (void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
466
467 /* Perform noise floor and set status */
468 if (!ar5211CalNoiseFloor(ah, chan)) {
469 if (!IEEE80211_IS_CHAN_CCK(chan))
470 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
471 HALDEBUG(ah, HAL_DEBUG_ANY,
472 "%s: noise floor calibration failed\n", __func__);
473 FAIL(HAL_EIO);
474 }
475
476 /* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
477 if (ahp->ah_calibrationTime != 0) {
478 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
479 AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
480 ahp->ah_bIQCalibration = AH_TRUE;
481 }
482
483 /* set 1:1 QCU to DCU mapping for all queues */
484 for (q = 0; q < AR_NUM_DCU; q++)
485 OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
486
487 for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
488 ar5211ResetTxQueue(ah, q);
489
490 /* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
491 OS_REG_WRITE(ah, AR_IMR_S0,
492 (AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
493 (AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
494 OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
495 OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
496
497 /*
498 * GBL_EIFS must always be written after writing
499 * to any QCUMASK register.
500 */
501 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
502
503 /* Now set up the Interrupt Mask Register and save it for future use */
504 OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
505 ahp->ah_maskReg = INIT_INTERRUPT_MASK;
506
507 /* Enable bus error interrupts */
508 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
509 AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
510
511 /* Enable interrupts specific to AP */
512 if (opmode == HAL_M_HOSTAP) {
513 OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
514 ahp->ah_maskReg |= AR_IMR_MIB;
515 }
516
517 if (AH_PRIVATE(ah)->ah_rfkillEnabled)
518 ar5211EnableRfKill(ah);
519
520 /*
521 * Writing to AR_BEACON will start timers. Hence it should
522 * be the last register to be written. Do not reset tsf, do
523 * not enable beacons at this point, but preserve other values
524 * like beaconInterval.
525 */
526 OS_REG_WRITE(ah, AR_BEACON,
527 (OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
528
529 /* Restore user-specified slot time and timeouts */
530 if (ahp->ah_sifstime != (u_int) -1)
531 ar5211SetSifsTime(ah, ahp->ah_sifstime);
532 if (ahp->ah_slottime != (u_int) -1)
533 ar5211SetSlotTime(ah, ahp->ah_slottime);
534 if (ahp->ah_acktimeout != (u_int) -1)
535 ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
536 if (ahp->ah_ctstimeout != (u_int) -1)
537 ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
538 if (AH_PRIVATE(ah)->ah_diagreg != 0)
539 OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
540
541 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
542
543 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
544
545 return AH_TRUE;
546 bad:
547 if (status != AH_NULL)
548 *status = ecode;
549 return AH_FALSE;
550 #undef FAIL
551 #undef N
552 }
553
554 /*
555 * Places the PHY and Radio chips into reset. A full reset
556 * must be called to leave this state. The PCI/MAC/PCU are
557 * not placed into reset as we must receive interrupt to
558 * re-enable the hardware.
559 */
560 HAL_BOOL
ar5211PhyDisable(struct ath_hal * ah)561 ar5211PhyDisable(struct ath_hal *ah)
562 {
563 return ar5211SetResetReg(ah, AR_RC_BB);
564 }
565
566 /*
567 * Places all of hardware into reset
568 */
569 HAL_BOOL
ar5211Disable(struct ath_hal * ah)570 ar5211Disable(struct ath_hal *ah)
571 {
572 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
573 return AH_FALSE;
574 /*
575 * Reset the HW - PCI must be reset after the rest of the
576 * device has been reset.
577 */
578 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
579 return AH_FALSE;
580 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
581
582 return AH_TRUE;
583 }
584
585 /*
586 * Places the hardware into reset and then pulls it out of reset
587 *
588 * Only write the PLL if we're changing to or from CCK mode
589 *
590 * Attach calls with channelFlags = 0, as the coldreset should have
591 * us in the correct mode and we cannot check the hwchannel flags.
592 */
593 HAL_BOOL
ar5211ChipReset(struct ath_hal * ah,const struct ieee80211_channel * chan)594 ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
595 {
596 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
597 return AH_FALSE;
598
599 /* NB: called from attach with chan null */
600 if (chan != AH_NULL) {
601 /* Set CCK and Turbo modes correctly */
602 OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
603 AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
604 if (IEEE80211_IS_CHAN_B(chan)) {
605 OS_REG_WRITE(ah, AR5211_PHY_MODE,
606 AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
607 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
608 /* Wait for the PLL to settle */
609 OS_DELAY(DELAY_PLL_SETTLE);
610 } else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
611 OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
612 OS_DELAY(DELAY_PLL_SETTLE);
613 OS_REG_WRITE(ah, AR5211_PHY_MODE,
614 AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
615 AR5211_PHY_MODE_RF2GHZ :
616 AR5211_PHY_MODE_RF5GHZ));
617 }
618 }
619
620 /*
621 * Reset the HW - PCI must be reset after the rest of the
622 * device has been reset
623 */
624 if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
625 return AH_FALSE;
626 OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
627
628 /* Bring out of sleep mode (AGAIN) */
629 if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
630 return AH_FALSE;
631
632 /* Clear warm reset register */
633 return ar5211SetResetReg(ah, 0);
634 }
635
636 /*
637 * Recalibrate the lower PHY chips to account for temperature/environment
638 * changes.
639 */
640 HAL_BOOL
ar5211PerCalibrationN(struct ath_hal * ah,struct ieee80211_channel * chan,u_int chainMask,HAL_BOOL longCal,HAL_BOOL * isCalDone)641 ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan,
642 u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
643 {
644 struct ath_hal_5211 *ahp = AH5211(ah);
645 HAL_CHANNEL_INTERNAL *ichan;
646 int32_t qCoff, qCoffDenom;
647 uint32_t data;
648 int32_t iqCorrMeas;
649 int32_t iCoff, iCoffDenom;
650 uint32_t powerMeasQ, powerMeasI;
651
652 ichan = ath_hal_checkchannel(ah, chan);
653 if (ichan == AH_NULL) {
654 HALDEBUG(ah, HAL_DEBUG_ANY,
655 "%s: invalid channel %u/0x%x; no mapping\n",
656 __func__, chan->ic_freq, chan->ic_flags);
657 return AH_FALSE;
658 }
659 /* IQ calibration in progress. Check to see if it has finished. */
660 if (ahp->ah_bIQCalibration &&
661 !(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
662 /* IQ Calibration has finished. */
663 ahp->ah_bIQCalibration = AH_FALSE;
664
665 /* Read calibration results. */
666 powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
667 powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
668 iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
669
670 /*
671 * Prescale these values to remove 64-bit operation requirement at the loss
672 * of a little precision.
673 */
674 iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
675 qCoffDenom = powerMeasQ / 64;
676
677 /* Protect against divide-by-0. */
678 if (iCoffDenom != 0 && qCoffDenom != 0) {
679 iCoff = (-iqCorrMeas) / iCoffDenom;
680 /* IQCORR_Q_I_COFF is a signed 6 bit number */
681 iCoff = iCoff & 0x3f;
682
683 qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
684 /* IQCORR_Q_Q_COFF is a signed 5 bit number */
685 qCoff = qCoff & 0x1f;
686
687 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
688 powerMeasI);
689 HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
690 powerMeasQ);
691 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
692 iqCorrMeas);
693 HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
694 iCoff);
695 HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
696 qCoff);
697
698 /* Write IQ */
699 data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
700 AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
701 (((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
702 ((uint32_t)qCoff);
703 OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
704 }
705 }
706 *isCalDone = !ahp->ah_bIQCalibration;
707
708 if (longCal) {
709 /* Perform noise floor and set status */
710 if (!ar5211IsNfGood(ah, chan)) {
711 /* report up and clear internal state */
712 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
713 return AH_FALSE;
714 }
715 if (!ar5211CalNoiseFloor(ah, chan)) {
716 /*
717 * Delay 5ms before retrying the noise floor
718 * just to make sure, as we are in an error
719 * condition here.
720 */
721 OS_DELAY(5000);
722 if (!ar5211CalNoiseFloor(ah, chan)) {
723 if (!IEEE80211_IS_CHAN_CCK(chan))
724 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
725 return AH_FALSE;
726 }
727 }
728 ar5211RequestRfgain(ah);
729 }
730 return AH_TRUE;
731 }
732
733 HAL_BOOL
ar5211PerCalibration(struct ath_hal * ah,struct ieee80211_channel * chan,HAL_BOOL * isIQdone)734 ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
735 HAL_BOOL *isIQdone)
736 {
737 return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
738 }
739
740 HAL_BOOL
ar5211ResetCalValid(struct ath_hal * ah,const struct ieee80211_channel * chan)741 ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
742 {
743 /* XXX */
744 return AH_TRUE;
745 }
746
747 /*
748 * Writes the given reset bit mask into the reset register
749 */
750 static HAL_BOOL
ar5211SetResetReg(struct ath_hal * ah,uint32_t resetMask)751 ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
752 {
753 uint32_t mask = resetMask ? resetMask : ~0;
754 HAL_BOOL rt;
755
756 (void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
757 OS_REG_WRITE(ah, AR_RC, resetMask);
758
759 /* need to wait at least 128 clocks when reseting PCI before read */
760 OS_DELAY(15);
761
762 resetMask &= AR_RC_MAC | AR_RC_BB;
763 mask &= AR_RC_MAC | AR_RC_BB;
764 rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
765 if ((resetMask & AR_RC_MAC) == 0) {
766 if (isBigEndian()) {
767 /*
768 * Set CFG, little-endian for descriptor accesses.
769 */
770 mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
771 OS_REG_WRITE(ah, AR_CFG, mask);
772 } else
773 OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
774 }
775 return rt;
776 }
777
778 /*
779 * Takes the MHz channel value and sets the Channel value
780 *
781 * ASSUMES: Writes enabled to analog bus before AGC is active
782 * or by disabling the AGC.
783 */
784 static HAL_BOOL
ar5211SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)785 ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
786 {
787 uint32_t refClk, reg32, data2111;
788 int16_t chan5111, chanIEEE;
789
790 chanIEEE = chan->ic_ieee;
791 if (IEEE80211_IS_CHAN_2GHZ(chan)) {
792 const CHAN_INFO_2GHZ* ci =
793 &chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
794
795 data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
796 << 5)
797 | (ci->refClkSel << 4);
798 chan5111 = ci->channel5111;
799 } else {
800 data2111 = 0;
801 chan5111 = chanIEEE;
802 }
803
804 /* Rest of the code is common for 5 GHz and 2.4 GHz. */
805 if (chan5111 >= 145 || (chan5111 & 0x1)) {
806 reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
807 refClk = 1;
808 } else {
809 reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
810 refClk = 0;
811 }
812
813 reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
814 OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
815 reg32 >>= 8;
816 OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
817
818 AH_PRIVATE(ah)->ah_curchan = chan;
819 return AH_TRUE;
820 }
821
822 static int16_t
ar5211GetNoiseFloor(struct ath_hal * ah)823 ar5211GetNoiseFloor(struct ath_hal *ah)
824 {
825 int16_t nf;
826
827 nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
828 if (nf & 0x100)
829 nf = 0 - ((nf ^ 0x1ff) + 1);
830 return nf;
831 }
832
833 /*
834 * Peform the noisefloor calibration for the length of time set
835 * in runTime (valid values 1 to 7)
836 *
837 * Returns: The NF value at the end of the given time (or 0 for failure)
838 */
839 int16_t
ar5211RunNoiseFloor(struct ath_hal * ah,uint8_t runTime,int16_t startingNF)840 ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
841 {
842 int i, searchTime;
843
844 HALASSERT(runTime <= 7);
845
846 /* Setup noise floor run time and starting value */
847 OS_REG_WRITE(ah, AR_PHY(25),
848 (OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
849 ((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
850 /* Calibrate the noise floor */
851 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
852 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
853
854 /* Compute the required amount of searchTime needed to finish NF */
855 if (runTime == 0) {
856 /* 8 search windows * 6.4us each */
857 searchTime = 8 * 7;
858 } else {
859 /* 512 * runtime search windows * 6.4us each */
860 searchTime = (runTime * 512) * 7;
861 }
862
863 /*
864 * Do not read noise floor until it has been updated
865 *
866 * As a guesstimate - we may only get 1/60th the time on
867 * the air to see search windows in a heavily congested
868 * network (40 us every 2400 us of time)
869 */
870 for (i = 0; i < 60; i++) {
871 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
872 break;
873 OS_DELAY(searchTime);
874 }
875 if (i >= 60) {
876 HALDEBUG(ah, HAL_DEBUG_NFCAL,
877 "NF with runTime %d failed to end on channel %d\n",
878 runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
879 HALDEBUG(ah, HAL_DEBUG_NFCAL,
880 " PHY NF Reg state: 0x%x\n",
881 OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
882 HALDEBUG(ah, HAL_DEBUG_NFCAL,
883 " PHY Active Reg state: 0x%x\n",
884 OS_REG_READ(ah, AR_PHY_ACTIVE));
885 return 0;
886 }
887
888 return ar5211GetNoiseFloor(ah);
889 }
890
891 static HAL_BOOL
getNoiseFloorThresh(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * nft)892 getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
893 int16_t *nft)
894 {
895 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
896
897 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
898 case IEEE80211_CHAN_A:
899 *nft = ee->ee_noiseFloorThresh[0];
900 break;
901 case IEEE80211_CHAN_B:
902 *nft = ee->ee_noiseFloorThresh[1];
903 break;
904 case IEEE80211_CHAN_PUREG:
905 *nft = ee->ee_noiseFloorThresh[2];
906 break;
907 default:
908 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
909 __func__, chan->ic_flags);
910 return AH_FALSE;
911 }
912 return AH_TRUE;
913 }
914
915 /*
916 * Read the NF and check it against the noise floor threshold
917 *
918 * Returns: TRUE if the NF is good
919 */
920 static HAL_BOOL
ar5211IsNfGood(struct ath_hal * ah,struct ieee80211_channel * chan)921 ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
922 {
923 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
924 int16_t nf, nfThresh;
925
926 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
927 return AH_FALSE;
928 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
929 HALDEBUG(ah, HAL_DEBUG_ANY,
930 "%s: NF did not complete in calibration window\n", __func__);
931 }
932 nf = ar5211GetNoiseFloor(ah);
933 if (nf > nfThresh) {
934 HALDEBUG(ah, HAL_DEBUG_ANY,
935 "%s: noise floor failed; detected %u, threshold %u\n",
936 __func__, nf, nfThresh);
937 /*
938 * NB: Don't discriminate 2.4 vs 5Ghz, if this
939 * happens it indicates a problem regardless
940 * of the band.
941 */
942 chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
943 }
944 ichan->rawNoiseFloor = nf;
945 return (nf <= nfThresh);
946 }
947
948 /*
949 * Peform the noisefloor calibration and check for any constant channel
950 * interference.
951 *
952 * NOTE: preAR5211 have a lengthy carrier wave detection process - hence
953 * it is if'ed for MKK regulatory domain only.
954 *
955 * Returns: TRUE for a successful noise floor calibration; else FALSE
956 */
957 HAL_BOOL
ar5211CalNoiseFloor(struct ath_hal * ah,const struct ieee80211_channel * chan)958 ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
959 {
960 #define N(a) (sizeof (a) / sizeof (a[0]))
961 /* Check for Carrier Wave interference in MKK regulatory zone */
962 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
963 (chan->ic_flags & CHANNEL_NFCREQUIRED)) {
964 static const uint8_t runtime[3] = { 0, 2, 7 };
965 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
966 int16_t nf, nfThresh;
967 int i;
968
969 if (!getNoiseFloorThresh(ah, chan, &nfThresh))
970 return AH_FALSE;
971 /*
972 * Run a quick noise floor that will hopefully
973 * complete (decrease delay time).
974 */
975 for (i = 0; i < N(runtime); i++) {
976 nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
977 if (nf > nfThresh) {
978 HALDEBUG(ah, HAL_DEBUG_ANY,
979 "%s: run failed with %u > threshold %u "
980 "(runtime %u)\n", __func__,
981 nf, nfThresh, runtime[i]);
982 ichan->rawNoiseFloor = 0;
983 } else
984 ichan->rawNoiseFloor = nf;
985 }
986 return (i <= N(runtime));
987 } else {
988 /* Calibrate the noise floor */
989 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
990 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
991 AR_PHY_AGC_CONTROL_NF);
992 }
993 return AH_TRUE;
994 #undef N
995 }
996
997 /*
998 * Adjust NF based on statistical values for 5GHz frequencies.
999 */
1000 int16_t
ar5211GetNfAdjust(struct ath_hal * ah,const HAL_CHANNEL_INTERNAL * c)1001 ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1002 {
1003 static const struct {
1004 uint16_t freqLow;
1005 int16_t adjust;
1006 } adjust5111[] = {
1007 { 5790, 11 }, /* NB: ordered high -> low */
1008 { 5730, 10 },
1009 { 5690, 9 },
1010 { 5660, 8 },
1011 { 5610, 7 },
1012 { 5530, 5 },
1013 { 5450, 4 },
1014 { 5379, 2 },
1015 { 5209, 0 }, /* XXX? bogus but doesn't matter */
1016 { 0, 1 },
1017 };
1018 int i;
1019
1020 for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1021 ;
1022 /* NB: placeholder for 5111's less severe requirement */
1023 return adjust5111[i].adjust / 3;
1024 }
1025
1026 /*
1027 * Reads EEPROM header info from device structure and programs
1028 * analog registers 6 and 7
1029 *
1030 * REQUIRES: Access to the analog device
1031 */
1032 static HAL_BOOL
ar5211SetRf6and7(struct ath_hal * ah,const struct ieee80211_channel * chan)1033 ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1034 {
1035 #define N(a) (sizeof (a) / sizeof (a[0]))
1036 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1037 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1038 struct ath_hal_5211 *ahp = AH5211(ah);
1039 uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1040 uint16_t tempOB, tempDB;
1041 uint16_t freqIndex;
1042 int i;
1043
1044 freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1045
1046 /*
1047 * TODO: This array mode correspondes with the index used
1048 * during the read.
1049 * For readability, this should be changed to an enum or #define
1050 */
1051 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1052 case IEEE80211_CHAN_A:
1053 if (freq > 4000 && freq < 5260) {
1054 tempOB = ee->ee_ob1;
1055 tempDB = ee->ee_db1;
1056 } else if (freq >= 5260 && freq < 5500) {
1057 tempOB = ee->ee_ob2;
1058 tempDB = ee->ee_db2;
1059 } else if (freq >= 5500 && freq < 5725) {
1060 tempOB = ee->ee_ob3;
1061 tempDB = ee->ee_db3;
1062 } else if (freq >= 5725) {
1063 tempOB = ee->ee_ob4;
1064 tempDB = ee->ee_db4;
1065 } else {
1066 /* XXX panic?? */
1067 tempOB = tempDB = 0;
1068 }
1069
1070 rfXpdGain = ee->ee_xgain[0];
1071 rfPloSel = ee->ee_xpd[0];
1072 rfPwdXpd = !ee->ee_xpd[0];
1073
1074 ar5211Rf6n7[5][freqIndex] =
1075 (ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1076 (ee->ee_cornerCal.pd84<< 28);
1077 ar5211Rf6n7[6][freqIndex] =
1078 (ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1079 (ee->ee_cornerCal.pd90 << 26);
1080 ar5211Rf6n7[21][freqIndex] =
1081 (ar5211Rf6n7[21][freqIndex] & ~0x08) |
1082 (ee->ee_cornerCal.gSel << 3);
1083 break;
1084 case IEEE80211_CHAN_B:
1085 tempOB = ee->ee_obFor24;
1086 tempDB = ee->ee_dbFor24;
1087 rfXpdGain = ee->ee_xgain[1];
1088 rfPloSel = ee->ee_xpd[1];
1089 rfPwdXpd = !ee->ee_xpd[1];
1090 break;
1091 case IEEE80211_CHAN_PUREG:
1092 tempOB = ee->ee_obFor24g;
1093 tempDB = ee->ee_dbFor24g;
1094 rfXpdGain = ee->ee_xgain[2];
1095 rfPloSel = ee->ee_xpd[2];
1096 rfPwdXpd = !ee->ee_xpd[2];
1097 break;
1098 default:
1099 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1100 __func__, chan->ic_flags);
1101 return AH_FALSE;
1102 }
1103
1104 HALASSERT(1 <= tempOB && tempOB <= 5);
1105 HALASSERT(1 <= tempDB && tempDB <= 5);
1106
1107 /* Set rfXpdGain and rfPwdXpd */
1108 ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1109 (((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1110 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1111 ((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1112
1113 /* Set OB */
1114 ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1115 ((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1116 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1117 ((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1118
1119 /* Set DB */
1120 ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1121 ((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1122
1123 /* Set rfPloSel */
1124 ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1125 ((rfPloSel << 3) & 0x08);
1126
1127 /* Write the Rf registers 6 & 7 */
1128 for (i = 0; i < N(ar5211Rf6n7); i++)
1129 OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1130
1131 /* Now that we have reprogrammed rfgain value, clear the flag. */
1132 ahp->ah_rfgainState = RFGAIN_INACTIVE;
1133
1134 return AH_TRUE;
1135 #undef N
1136 }
1137
1138 HAL_BOOL
ar5211SetAntennaSwitchInternal(struct ath_hal * ah,HAL_ANT_SETTING settings,const struct ieee80211_channel * chan)1139 ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1140 const struct ieee80211_channel *chan)
1141 {
1142 #define ANT_SWITCH_TABLE1 0x9960
1143 #define ANT_SWITCH_TABLE2 0x9964
1144 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1145 struct ath_hal_5211 *ahp = AH5211(ah);
1146 uint32_t antSwitchA, antSwitchB;
1147 int ix;
1148
1149 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1150 case IEEE80211_CHAN_A: ix = 0; break;
1151 case IEEE80211_CHAN_B: ix = 1; break;
1152 case IEEE80211_CHAN_PUREG: ix = 2; break;
1153 default:
1154 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1155 __func__, chan->ic_flags);
1156 return AH_FALSE;
1157 }
1158
1159 antSwitchA = ee->ee_antennaControl[1][ix]
1160 | (ee->ee_antennaControl[2][ix] << 6)
1161 | (ee->ee_antennaControl[3][ix] << 12)
1162 | (ee->ee_antennaControl[4][ix] << 18)
1163 | (ee->ee_antennaControl[5][ix] << 24)
1164 ;
1165 antSwitchB = ee->ee_antennaControl[6][ix]
1166 | (ee->ee_antennaControl[7][ix] << 6)
1167 | (ee->ee_antennaControl[8][ix] << 12)
1168 | (ee->ee_antennaControl[9][ix] << 18)
1169 | (ee->ee_antennaControl[10][ix] << 24)
1170 ;
1171 /*
1172 * For fixed antenna, give the same setting for both switch banks
1173 */
1174 switch (settings) {
1175 case HAL_ANT_FIXED_A:
1176 antSwitchB = antSwitchA;
1177 break;
1178 case HAL_ANT_FIXED_B:
1179 antSwitchA = antSwitchB;
1180 break;
1181 case HAL_ANT_VARIABLE:
1182 break;
1183 default:
1184 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1185 __func__, settings);
1186 return AH_FALSE;
1187 }
1188 ahp->ah_diversityControl = settings;
1189
1190 OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1191 OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1192
1193 return AH_TRUE;
1194 #undef ANT_SWITCH_TABLE1
1195 #undef ANT_SWITCH_TABLE2
1196 }
1197
1198 /*
1199 * Reads EEPROM header info and programs the device for correct operation
1200 * given the channel value
1201 */
1202 static HAL_BOOL
ar5211SetBoardValues(struct ath_hal * ah,const struct ieee80211_channel * chan)1203 ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1204 {
1205 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1206 struct ath_hal_5211 *ahp = AH5211(ah);
1207 int arrayMode, falseDectectBackoff;
1208
1209 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1210 case IEEE80211_CHAN_A:
1211 arrayMode = 0;
1212 OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1213 AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1214 break;
1215 case IEEE80211_CHAN_B:
1216 arrayMode = 1;
1217 break;
1218 case IEEE80211_CHAN_PUREG:
1219 arrayMode = 2;
1220 break;
1221 default:
1222 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1223 __func__, chan->ic_flags);
1224 return AH_FALSE;
1225 }
1226
1227 /* Set the antenna register(s) correctly for the chip revision */
1228 if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1229 OS_REG_WRITE(ah, AR_PHY(68),
1230 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1231 } else {
1232 OS_REG_WRITE(ah, AR_PHY(68),
1233 (OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1234 (ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1235
1236 ar5211SetAntennaSwitchInternal(ah,
1237 ahp->ah_diversityControl, chan);
1238
1239 /* Set the Noise Floor Thresh on ar5211 devices */
1240 OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1241 (ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1242 }
1243 OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1244 (OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1245 ((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1246 OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1247 (OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1248 ((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1249 OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1250 (OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1251 ((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1252 (ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1253 OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1254 (ee->ee_txEndToXPAOff[arrayMode] << 24) |
1255 (ee->ee_txEndToXPAOff[arrayMode] << 16) |
1256 (ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1257 ee->ee_txFrameToXPAOn[arrayMode]);
1258 OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1259 (OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1260 (ee->ee_txEndToXLNAOn[arrayMode] << 8));
1261 OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1262 (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1263 ((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1264
1265 #define NO_FALSE_DETECT_BACKOFF 2
1266 #define CB22_FALSE_DETECT_BACKOFF 6
1267 /*
1268 * False detect backoff - suspected 32 MHz spur causes
1269 * false detects in OFDM, causing Tx Hangs. Decrease
1270 * weak signal sensitivity for this card.
1271 */
1272 falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1273 if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1274 if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1275 IEEE80211_IS_CHAN_OFDM(chan))
1276 falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1277 } else {
1278 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1279 uint32_t remainder = freq % 32;
1280
1281 if (remainder && (remainder < 10 || remainder > 22))
1282 falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1283 }
1284 OS_REG_WRITE(ah, 0x9924,
1285 (OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1286 | ((falseDectectBackoff << 1) & 0xF7));
1287
1288 return AH_TRUE;
1289 #undef NO_FALSE_DETECT_BACKOFF
1290 #undef CB22_FALSE_DETECT_BACKOFF
1291 }
1292
1293 /*
1294 * Set the limit on the overall output power. Used for dynamic
1295 * transmit power control and the like.
1296 *
1297 * NOTE: The power is passed in is in units of 0.5 dBm.
1298 */
1299 HAL_BOOL
ar5211SetTxPowerLimit(struct ath_hal * ah,uint32_t limit)1300 ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1301 {
1302
1303 AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1304 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1305 return AH_TRUE;
1306 }
1307
1308 /*
1309 * Sets the transmit power in the baseband for the given
1310 * operating channel and mode.
1311 */
1312 static HAL_BOOL
ar5211SetTransmitPower(struct ath_hal * ah,const struct ieee80211_channel * chan)1313 ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1314 {
1315 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1316 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1317 TRGT_POWER_INFO *pi;
1318 RD_EDGES_POWER *rep;
1319 PCDACS_EEPROM eepromPcdacs;
1320 u_int nchan, cfgCtl;
1321 int i;
1322
1323 /* setup the pcdac struct to point to the correct info, based on mode */
1324 switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1325 case IEEE80211_CHAN_A:
1326 eepromPcdacs.numChannels = ee->ee_numChannels11a;
1327 eepromPcdacs.pChannelList= ee->ee_channels11a;
1328 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1329 nchan = ee->ee_numTargetPwr_11a;
1330 pi = ee->ee_trgtPwr_11a;
1331 break;
1332 case IEEE80211_CHAN_PUREG:
1333 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1334 eepromPcdacs.pChannelList= ee->ee_channels11g;
1335 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1336 nchan = ee->ee_numTargetPwr_11g;
1337 pi = ee->ee_trgtPwr_11g;
1338 break;
1339 case IEEE80211_CHAN_B:
1340 eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1341 eepromPcdacs.pChannelList= ee->ee_channels11b;
1342 eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1343 nchan = ee->ee_numTargetPwr_11b;
1344 pi = ee->ee_trgtPwr_11b;
1345 break;
1346 default:
1347 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1348 __func__, chan->ic_flags);
1349 return AH_FALSE;
1350 }
1351
1352 ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1353
1354 rep = AH_NULL;
1355 /* Match CTL to EEPROM value */
1356 cfgCtl = ath_hal_getctl(ah, chan);
1357 for (i = 0; i < ee->ee_numCtls; i++)
1358 if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1359 rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1360 break;
1361 }
1362 ar5211SetRateTable(ah, rep, pi, nchan, chan);
1363
1364 return AH_TRUE;
1365 }
1366
1367 /*
1368 * Read the transmit power levels from the structures taken
1369 * from EEPROM. Interpolate read transmit power values for
1370 * this channel. Organize the transmit power values into a
1371 * table for writing into the hardware.
1372 */
1373 void
ar5211SetPowerTable(struct ath_hal * ah,PCDACS_EEPROM * pSrcStruct,uint16_t channel)1374 ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1375 uint16_t channel)
1376 {
1377 static FULL_PCDAC_STRUCT pcdacStruct;
1378 static uint16_t pcdacTable[PWR_TABLE_SIZE];
1379
1380 uint16_t i, j;
1381 uint16_t *pPcdacValues;
1382 int16_t *pScaledUpDbm;
1383 int16_t minScaledPwr;
1384 int16_t maxScaledPwr;
1385 int16_t pwr;
1386 uint16_t pcdacMin = 0;
1387 uint16_t pcdacMax = 63;
1388 uint16_t pcdacTableIndex;
1389 uint16_t scaledPcdac;
1390 uint32_t addr;
1391 uint32_t temp32;
1392
1393 OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1394 OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1395 pPcdacValues = pcdacStruct.PcdacValues;
1396 pScaledUpDbm = pcdacStruct.PwrValues;
1397
1398 /* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1399 for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1400 pPcdacValues[j] = i;
1401
1402 pcdacStruct.numPcdacValues = j;
1403 pcdacStruct.pcdacMin = PCDAC_START;
1404 pcdacStruct.pcdacMax = PCDAC_STOP;
1405
1406 /* Fill out the power values for this channel */
1407 for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1408 pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1409
1410 /* Now scale the pcdac values to fit in the 64 entry power table */
1411 minScaledPwr = pScaledUpDbm[0];
1412 maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1413
1414 /* find minimum and make monotonic */
1415 for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1416 if (minScaledPwr >= pScaledUpDbm[j]) {
1417 minScaledPwr = pScaledUpDbm[j];
1418 pcdacMin = j;
1419 }
1420 /*
1421 * Make the full_hsh monotonically increasing otherwise
1422 * interpolation algorithm will get fooled gotta start
1423 * working from the top, hence i = 63 - j.
1424 */
1425 i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1426 if (i == 0)
1427 break;
1428 if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1429 /*
1430 * It could be a glitch, so make the power for
1431 * this pcdac the same as the power from the
1432 * next highest pcdac.
1433 */
1434 pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1435 }
1436 }
1437
1438 for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1439 if (maxScaledPwr < pScaledUpDbm[j]) {
1440 maxScaledPwr = pScaledUpDbm[j];
1441 pcdacMax = j;
1442 }
1443
1444 /* Find the first power level with a pcdac */
1445 pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
1446
1447 /* Write all the first pcdac entries based off the pcdacMin */
1448 pcdacTableIndex = 0;
1449 for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1450 pcdacTable[pcdacTableIndex++] = pcdacMin;
1451
1452 i = 0;
1453 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1454 pwr += PWR_STEP;
1455 /* stop if dbM > max_power_possible */
1456 while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1457 (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1458 i++;
1459 /* scale by 2 and add 1 to enable round up or down as needed */
1460 scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1461 pScaledUpDbm[i], pScaledUpDbm[i+1],
1462 (uint16_t)(pPcdacValues[i] * 2),
1463 (uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1464
1465 pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1466 if (pcdacTable[pcdacTableIndex] > pcdacMax)
1467 pcdacTable[pcdacTableIndex] = pcdacMax;
1468 pcdacTableIndex++;
1469 }
1470
1471 /* Write all the last pcdac entries based off the last valid pcdac */
1472 while (pcdacTableIndex < PWR_TABLE_SIZE) {
1473 pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1474 pcdacTableIndex++;
1475 }
1476
1477 /* Finally, write the power values into the baseband power table */
1478 addr = AR_PHY_BASE + (608 << 2);
1479 for (i = 0; i < 32; i++) {
1480 temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1481 temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1482 OS_REG_WRITE(ah, addr, temp32);
1483 addr += 4;
1484 }
1485
1486 }
1487
1488 /*
1489 * Set the transmit power in the baseband for the given
1490 * operating channel and mode.
1491 */
1492 static void
ar5211SetRateTable(struct ath_hal * ah,RD_EDGES_POWER * pRdEdgesPower,TRGT_POWER_INFO * pPowerInfo,uint16_t numChannels,const struct ieee80211_channel * chan)1493 ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1494 TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1495 const struct ieee80211_channel *chan)
1496 {
1497 uint16_t freq = ath_hal_gethwchannel(ah, chan);
1498 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1499 struct ath_hal_5211 *ahp = AH5211(ah);
1500 static uint16_t ratesArray[NUM_RATES];
1501 static const uint16_t tpcScaleReductionTable[5] =
1502 { 0, 3, 6, 9, MAX_RATE_POWER };
1503
1504 uint16_t *pRatesPower;
1505 uint16_t lowerChannel, lowerIndex=0, lowerPower=0;
1506 uint16_t upperChannel, upperIndex=0, upperPower=0;
1507 uint16_t twiceMaxEdgePower=63;
1508 uint16_t twicePower = 0;
1509 uint16_t i, numEdges;
1510 uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1511 uint16_t twiceMaxRDPower;
1512 int16_t scaledPower = 0; /* for gcc -O2 */
1513 uint16_t mask = 0x3f;
1514 HAL_BOOL paPreDEnable = 0;
1515 int8_t twiceAntennaGain, twiceAntennaReduction = 0;
1516
1517 pRatesPower = ratesArray;
1518 twiceMaxRDPower = chan->ic_maxregpower * 2;
1519
1520 if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1521 twiceAntennaGain = ee->ee_antennaGainMax[0];
1522 } else {
1523 twiceAntennaGain = ee->ee_antennaGainMax[1];
1524 }
1525
1526 twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1527
1528 if (pRdEdgesPower) {
1529 /* Get the edge power */
1530 for (i = 0; i < NUM_EDGES; i++) {
1531 if (pRdEdgesPower[i].rdEdge == 0)
1532 break;
1533 tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1534 }
1535 numEdges = i;
1536
1537 ar5211GetLowerUpperValues(freq, tempChannelList,
1538 numEdges, &lowerChannel, &upperChannel);
1539 /* Get the index for this channel */
1540 for (i = 0; i < numEdges; i++)
1541 if (lowerChannel == tempChannelList[i])
1542 break;
1543 HALASSERT(i != numEdges);
1544
1545 if ((lowerChannel == upperChannel &&
1546 lowerChannel == freq) ||
1547 pRdEdgesPower[i].flag) {
1548 twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1549 HALASSERT(twiceMaxEdgePower > 0);
1550 }
1551 }
1552
1553 /* extrapolate the power values for the test Groups */
1554 for (i = 0; i < numChannels; i++)
1555 tempChannelList[i] = pPowerInfo[i].testChannel;
1556
1557 ar5211GetLowerUpperValues(freq, tempChannelList,
1558 numChannels, &lowerChannel, &upperChannel);
1559
1560 /* get the index for the channel */
1561 for (i = 0; i < numChannels; i++) {
1562 if (lowerChannel == tempChannelList[i])
1563 lowerIndex = i;
1564 if (upperChannel == tempChannelList[i]) {
1565 upperIndex = i;
1566 break;
1567 }
1568 }
1569
1570 for (i = 0; i < NUM_RATES; i++) {
1571 if (IEEE80211_IS_CHAN_OFDM(chan)) {
1572 /* power for rates 6,9,12,18,24 is all the same */
1573 if (i < 5) {
1574 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1575 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1576 } else if (i == 5) {
1577 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1578 upperPower = pPowerInfo[upperIndex].twicePwr36;
1579 } else if (i == 6) {
1580 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1581 upperPower = pPowerInfo[upperIndex].twicePwr48;
1582 } else if (i == 7) {
1583 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1584 upperPower = pPowerInfo[upperIndex].twicePwr54;
1585 }
1586 } else {
1587 switch (i) {
1588 case 0:
1589 case 1:
1590 lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1591 upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1592 break;
1593 case 2:
1594 case 3:
1595 lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1596 upperPower = pPowerInfo[upperIndex].twicePwr36;
1597 break;
1598 case 4:
1599 case 5:
1600 lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1601 upperPower = pPowerInfo[upperIndex].twicePwr48;
1602 break;
1603 case 6:
1604 case 7:
1605 lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1606 upperPower = pPowerInfo[upperIndex].twicePwr54;
1607 break;
1608 }
1609 }
1610
1611 twicePower = ar5211GetInterpolatedValue(freq,
1612 lowerChannel, upperChannel, lowerPower, upperPower, 0);
1613
1614 /* Reduce power by band edge restrictions */
1615 twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1616
1617 /*
1618 * If turbo is set, reduce power to keep power
1619 * consumption under 2 Watts. Note that we always do
1620 * this unless specially configured. Then we limit
1621 * power only for non-AP operation.
1622 */
1623 if (IEEE80211_IS_CHAN_TURBO(chan) &&
1624 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1625 #ifdef AH_ENABLE_AP_SUPPORT
1626 && AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1627 #endif
1628 ) {
1629 twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1630 }
1631
1632 /* Reduce power by max regulatory domain allowed restrictions */
1633 pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1634
1635 /* Use 6 Mb power level for transmit power scaling reduction */
1636 /* We don't want to reduce higher rates if its not needed */
1637 if (i == 0) {
1638 scaledPower = pRatesPower[0] -
1639 (tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1640 if (scaledPower < 1)
1641 scaledPower = 1;
1642 }
1643
1644 pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1645 }
1646
1647 /* Record txPower at Rate 6 for info gathering */
1648 ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1649
1650 #ifdef AH_DEBUG
1651 HALDEBUG(ah, HAL_DEBUG_RESET,
1652 "%s: final output power setting %d MHz:\n",
1653 __func__, chan->ic_freq);
1654 HALDEBUG(ah, HAL_DEBUG_RESET,
1655 "6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1656 scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1657 HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1658 tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1659 twiceAntennaReduction / 2);
1660 if (IEEE80211_IS_CHAN_TURBO(chan) &&
1661 AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1662 HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1663 ee->ee_turbo2WMaxPower5);
1664 HALDEBUG(ah, HAL_DEBUG_RESET,
1665 " %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1666 pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1667 pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1668 pRatesPower[6] / 2, pRatesPower[7] / 2);
1669 #endif /* AH_DEBUG */
1670
1671 /* Write the power table into the hardware */
1672 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1673 ((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1674 ((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1675 ((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1676 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
1677 OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1678 ((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1679 ((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1680 ((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1681 ((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
1682
1683 /* set max power to the power value at rate 6 */
1684 ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1685
1686 AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1687 }
1688
1689 /*
1690 * Get or interpolate the pcdac value from the calibrated data
1691 */
1692 uint16_t
ar5211GetScaledPower(uint16_t channel,uint16_t pcdacValue,const PCDACS_EEPROM * pSrcStruct)1693 ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1694 const PCDACS_EEPROM *pSrcStruct)
1695 {
1696 uint16_t powerValue;
1697 uint16_t lFreq, rFreq; /* left and right frequency values */
1698 uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
1699 uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
1700 uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
1701 uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1702
1703 if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1704 /* value was copied from srcStruct */
1705 return powerValue;
1706
1707 ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1708 pSrcStruct->numChannels, &lFreq, &rFreq);
1709 ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1710 &llPcdac, &ulPcdac);
1711 ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1712 &lrPcdac, &urPcdac);
1713
1714 /* get the power index for the pcdac value */
1715 ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1716 ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1717 lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1718 llPcdac, ulPcdac, lPwr, uPwr, 0);
1719
1720 ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1721 ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1722 rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1723 lrPcdac, urPcdac, lPwr, uPwr, 0);
1724
1725 return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1726 lScaledPwr, rScaledPwr, 0);
1727 }
1728
1729 /*
1730 * Find the value from the calibrated source data struct
1731 */
1732 HAL_BOOL
ar5211FindValueInList(uint16_t channel,uint16_t pcdacValue,const PCDACS_EEPROM * pSrcStruct,uint16_t * powerValue)1733 ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1734 const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1735 {
1736 const DATA_PER_CHANNEL *pChannelData;
1737 const uint16_t *pPcdac;
1738 uint16_t i, j;
1739
1740 pChannelData = pSrcStruct->pDataPerChannel;
1741 for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1742 if (pChannelData->channelValue == channel) {
1743 pPcdac = pChannelData->PcdacValues;
1744 for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1745 if (*pPcdac == pcdacValue) {
1746 *powerValue = pChannelData->PwrValues[j];
1747 return AH_TRUE;
1748 }
1749 pPcdac++;
1750 }
1751 }
1752 pChannelData++;
1753 }
1754 return AH_FALSE;
1755 }
1756
1757 /*
1758 * Returns interpolated or the scaled up interpolated value
1759 */
1760 uint16_t
ar5211GetInterpolatedValue(uint16_t target,uint16_t srcLeft,uint16_t srcRight,uint16_t targetLeft,uint16_t targetRight,HAL_BOOL scaleUp)1761 ar5211GetInterpolatedValue(uint16_t target,
1762 uint16_t srcLeft, uint16_t srcRight,
1763 uint16_t targetLeft, uint16_t targetRight,
1764 HAL_BOOL scaleUp)
1765 {
1766 uint16_t rv;
1767 int16_t lRatio;
1768 uint16_t scaleValue = EEP_SCALE;
1769
1770 /* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1771 if ((targetLeft * targetRight) == 0)
1772 return 0;
1773 if (scaleUp)
1774 scaleValue = 1;
1775
1776 if (srcRight != srcLeft) {
1777 /*
1778 * Note the ratio always need to be scaled,
1779 * since it will be a fraction.
1780 */
1781 lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1782 if (lRatio < 0) {
1783 /* Return as Left target if value would be negative */
1784 rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1785 } else if (lRatio > EEP_SCALE) {
1786 /* Return as Right target if Ratio is greater than 100% (SCALE) */
1787 rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1788 } else {
1789 rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1790 targetLeft) / scaleValue;
1791 }
1792 } else {
1793 rv = targetLeft;
1794 if (scaleUp)
1795 rv *= EEP_SCALE;
1796 }
1797 return rv;
1798 }
1799
1800 /*
1801 * Look for value being within 0.1 of the search values
1802 * however, NDIS can't do float calculations, so multiply everything
1803 * up by EEP_SCALE so can do integer arithmatic
1804 *
1805 * INPUT value -value to search for
1806 * INPUT pList -ptr to the list to search
1807 * INPUT listSize -number of entries in list
1808 * OUTPUT pLowerValue -return the lower value
1809 * OUTPUT pUpperValue -return the upper value
1810 */
1811 void
ar5211GetLowerUpperValues(uint16_t value,const uint16_t * pList,uint16_t listSize,uint16_t * pLowerValue,uint16_t * pUpperValue)1812 ar5211GetLowerUpperValues(uint16_t value,
1813 const uint16_t *pList, uint16_t listSize,
1814 uint16_t *pLowerValue, uint16_t *pUpperValue)
1815 {
1816 const uint16_t listEndValue = *(pList + listSize - 1);
1817 uint32_t target = value * EEP_SCALE;
1818 int i;
1819
1820 /*
1821 * See if value is lower than the first value in the list
1822 * if so return first value
1823 */
1824 if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1825 *pLowerValue = *pList;
1826 *pUpperValue = *pList;
1827 return;
1828 }
1829
1830 /*
1831 * See if value is greater than last value in list
1832 * if so return last value
1833 */
1834 if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1835 *pLowerValue = listEndValue;
1836 *pUpperValue = listEndValue;
1837 return;
1838 }
1839
1840 /* look for value being near or between 2 values in list */
1841 for (i = 0; i < listSize; i++) {
1842 /*
1843 * If value is close to the current value of the list
1844 * then target is not between values, it is one of the values
1845 */
1846 if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1847 *pLowerValue = pList[i];
1848 *pUpperValue = pList[i];
1849 return;
1850 }
1851
1852 /*
1853 * Look for value being between current value and next value
1854 * if so return these 2 values
1855 */
1856 if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1857 *pLowerValue = pList[i];
1858 *pUpperValue = pList[i + 1];
1859 return;
1860 }
1861 }
1862 }
1863
1864 /*
1865 * Get the upper and lower pcdac given the channel and the pcdac
1866 * used in the search
1867 */
1868 void
ar5211GetLowerUpperPcdacs(uint16_t pcdac,uint16_t channel,const PCDACS_EEPROM * pSrcStruct,uint16_t * pLowerPcdac,uint16_t * pUpperPcdac)1869 ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1870 const PCDACS_EEPROM *pSrcStruct,
1871 uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1872 {
1873 const DATA_PER_CHANNEL *pChannelData;
1874 int i;
1875
1876 /* Find the channel information */
1877 pChannelData = pSrcStruct->pDataPerChannel;
1878 for (i = 0; i < pSrcStruct->numChannels; i++) {
1879 if (pChannelData->channelValue == channel)
1880 break;
1881 pChannelData++;
1882 }
1883 ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1884 pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1885 }
1886
1887 #define DYN_ADJ_UP_MARGIN 15
1888 #define DYN_ADJ_LO_MARGIN 20
1889
1890 static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1891 9, /* numStepsInLadder */
1892 4, /* defaultStepNum */
1893 { { {4, 1, 1, 1}, 6, "FG8"},
1894 { {4, 0, 1, 1}, 4, "FG7"},
1895 { {3, 1, 1, 1}, 3, "FG6"},
1896 { {4, 0, 0, 1}, 1, "FG5"},
1897 { {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
1898 { {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
1899 { {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
1900 { {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
1901 { {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
1902 }
1903 };
1904
1905 /*
1906 * Initialize the gain structure to good values
1907 */
1908 void
ar5211InitializeGainValues(struct ath_hal * ah)1909 ar5211InitializeGainValues(struct ath_hal *ah)
1910 {
1911 struct ath_hal_5211 *ahp = AH5211(ah);
1912 GAIN_VALUES *gv = &ahp->ah_gainValues;
1913
1914 /* initialize gain optimization values */
1915 gv->currStepNum = gainLadder.defaultStepNum;
1916 gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1917 gv->active = AH_TRUE;
1918 gv->loTrig = 20;
1919 gv->hiTrig = 35;
1920 }
1921
1922 static HAL_BOOL
ar5211InvalidGainReadback(struct ath_hal * ah,GAIN_VALUES * gv)1923 ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1924 {
1925 const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1926 uint32_t gStep, g;
1927 uint32_t L1, L2, L3, L4;
1928
1929 if (IEEE80211_IS_CHAN_CCK(chan)) {
1930 gStep = 0x18;
1931 L1 = 0;
1932 L2 = gStep + 4;
1933 L3 = 0x40;
1934 L4 = L3 + 50;
1935
1936 gv->loTrig = L1;
1937 gv->hiTrig = L4+5;
1938 } else {
1939 gStep = 0x3f;
1940 L1 = 0;
1941 L2 = 50;
1942 L3 = L1;
1943 L4 = L3 + 50;
1944
1945 gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1946 gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1947 }
1948 g = gv->currGain;
1949
1950 return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1951 }
1952
1953 /*
1954 * Enable the probe gain check on the next packet
1955 */
1956 static void
ar5211RequestRfgain(struct ath_hal * ah)1957 ar5211RequestRfgain(struct ath_hal *ah)
1958 {
1959 struct ath_hal_5211 *ahp = AH5211(ah);
1960
1961 /* Enable the gain readback probe */
1962 OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1963 SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1964 | AR_PHY_PAPD_PROBE_NEXT_TX);
1965
1966 ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1967 }
1968
1969 /*
1970 * Exported call to check for a recent gain reading and return
1971 * the current state of the thermal calibration gain engine.
1972 */
1973 HAL_RFGAIN
ar5211GetRfgain(struct ath_hal * ah)1974 ar5211GetRfgain(struct ath_hal *ah)
1975 {
1976 struct ath_hal_5211 *ahp = AH5211(ah);
1977 GAIN_VALUES *gv = &ahp->ah_gainValues;
1978 uint32_t rddata;
1979
1980 if (!gv->active)
1981 return HAL_RFGAIN_INACTIVE;
1982
1983 if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1984 /* Caller had asked to setup a new reading. Check it. */
1985 rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1986
1987 if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1988 /* bit got cleared, we have a new reading. */
1989 gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1990 /* inactive by default */
1991 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1992
1993 if (!ar5211InvalidGainReadback(ah, gv) &&
1994 ar5211IsGainAdjustNeeded(ah, gv) &&
1995 ar5211AdjustGain(ah, gv) > 0) {
1996 /*
1997 * Change needed. Copy ladder info
1998 * into eeprom info.
1999 */
2000 ar5211SetRfgain(ah, gv);
2001 ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2002 }
2003 }
2004 }
2005 return ahp->ah_rfgainState;
2006 }
2007
2008 /*
2009 * Check to see if our readback gain level sits within the linear
2010 * region of our current variable attenuation window
2011 */
2012 static HAL_BOOL
ar5211IsGainAdjustNeeded(struct ath_hal * ah,const GAIN_VALUES * gv)2013 ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2014 {
2015 return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2016 }
2017
2018 /*
2019 * Move the rabbit ears in the correct direction.
2020 */
2021 static int32_t
ar5211AdjustGain(struct ath_hal * ah,GAIN_VALUES * gv)2022 ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2023 {
2024 /* return > 0 for valid adjustments. */
2025 if (!gv->active)
2026 return -1;
2027
2028 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2029 if (gv->currGain >= gv->hiTrig) {
2030 if (gv->currStepNum == 0) {
2031 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2032 "%s: Max gain limit.\n", __func__);
2033 return -1;
2034 }
2035 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2036 "%s: Adding gain: currG=%d [%s] --> ",
2037 __func__, gv->currGain, gv->currStep->stepName);
2038 gv->targetGain = gv->currGain;
2039 while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2040 gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2041 gv->currStep->stepGain);
2042 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2043 }
2044 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2045 gv->targetGain, gv->currStep->stepName);
2046 return 1;
2047 }
2048 if (gv->currGain <= gv->loTrig) {
2049 if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2050 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2051 "%s: Min gain limit.\n", __func__);
2052 return -2;
2053 }
2054 HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2055 "%s: Deducting gain: currG=%d [%s] --> ",
2056 __func__, gv->currGain, gv->currStep->stepName);
2057 gv->targetGain = gv->currGain;
2058 while (gv->targetGain <= gv->loTrig &&
2059 gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2060 gv->targetGain -= 2 *
2061 (gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2062 gv->currStep = &gainLadder.optStep[gv->currStepNum];
2063 }
2064 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2065 gv->targetGain, gv->currStep->stepName);
2066 return 2;
2067 }
2068 return 0; /* caller didn't call needAdjGain first */
2069 }
2070
2071 /*
2072 * Adjust the 5GHz EEPROM information with the desired calibration values.
2073 */
2074 static void
ar5211SetRfgain(struct ath_hal * ah,const GAIN_VALUES * gv)2075 ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2076 {
2077 HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2078
2079 if (!gv->active)
2080 return;
2081 ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2082 ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2083 ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2084 ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2085 }
2086
2087 static void
ar5211SetOperatingMode(struct ath_hal * ah,int opmode)2088 ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2089 {
2090 struct ath_hal_5211 *ahp = AH5211(ah);
2091 uint32_t val;
2092
2093 val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2094 switch (opmode) {
2095 case HAL_M_HOSTAP:
2096 OS_REG_WRITE(ah, AR_STA_ID1, val
2097 | AR_STA_ID1_STA_AP
2098 | AR_STA_ID1_RTS_USE_DEF
2099 | ahp->ah_staId1Defaults);
2100 break;
2101 case HAL_M_IBSS:
2102 OS_REG_WRITE(ah, AR_STA_ID1, val
2103 | AR_STA_ID1_ADHOC
2104 | AR_STA_ID1_DESC_ANTENNA
2105 | ahp->ah_staId1Defaults);
2106 break;
2107 case HAL_M_STA:
2108 case HAL_M_MONITOR:
2109 OS_REG_WRITE(ah, AR_STA_ID1, val
2110 | AR_STA_ID1_DEFAULT_ANTENNA
2111 | ahp->ah_staId1Defaults);
2112 break;
2113 }
2114 }
2115
2116 void
ar5211SetPCUConfig(struct ath_hal * ah)2117 ar5211SetPCUConfig(struct ath_hal *ah)
2118 {
2119 ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2120 }
2121