1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2004 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5210/ar5210.h"
25 #include "ar5210/ar5210reg.h"
26 #include "ar5210/ar5210phy.h"
27
28 #include "ah_eeprom_v1.h"
29
30 #define AR_NUM_GPIO 6 /* 6 GPIO bits */
31 #define AR_GPIOD_MASK 0x2f /* 6-bit mask */
32
33 void
ar5210GetMacAddress(struct ath_hal * ah,uint8_t * mac)34 ar5210GetMacAddress(struct ath_hal *ah, uint8_t *mac)
35 {
36 struct ath_hal_5210 *ahp = AH5210(ah);
37
38 OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
39 }
40
41 HAL_BOOL
ar5210SetMacAddress(struct ath_hal * ah,const uint8_t * mac)42 ar5210SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
43 {
44 struct ath_hal_5210 *ahp = AH5210(ah);
45
46 OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
47 return AH_TRUE;
48 }
49
50 void
ar5210GetBssIdMask(struct ath_hal * ah,uint8_t * mask)51 ar5210GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
52 {
53 static const uint8_t ones[IEEE80211_ADDR_LEN] =
54 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
55 OS_MEMCPY(mask, ones, IEEE80211_ADDR_LEN);
56 }
57
58 HAL_BOOL
ar5210SetBssIdMask(struct ath_hal * ah,const uint8_t * mask)59 ar5210SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
60 {
61 return AH_FALSE;
62 }
63
64 /*
65 * Read 16 bits of data from the specified EEPROM offset.
66 */
67 HAL_BOOL
ar5210EepromRead(struct ath_hal * ah,u_int off,uint16_t * data)68 ar5210EepromRead(struct ath_hal *ah, u_int off, uint16_t *data)
69 {
70 (void) OS_REG_READ(ah, AR_EP_AIR(off)); /* activate read op */
71 if (!ath_hal_wait(ah, AR_EP_STA,
72 AR_EP_STA_RDCMPLT | AR_EP_STA_RDERR, AR_EP_STA_RDCMPLT)) {
73 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: read failed for entry 0x%x\n",
74 __func__, AR_EP_AIR(off));
75 return AH_FALSE;
76 }
77 *data = OS_REG_READ(ah, AR_EP_RDATA) & 0xffff;
78 return AH_TRUE;
79 }
80
81 #ifdef AH_SUPPORT_WRITE_EEPROM
82 /*
83 * Write 16 bits of data to the specified EEPROM offset.
84 */
85 HAL_BOOL
ar5210EepromWrite(struct ath_hal * ah,u_int off,uint16_t data)86 ar5210EepromWrite(struct ath_hal *ah, u_int off, uint16_t data)
87 {
88 return AH_FALSE;
89 }
90 #endif /* AH_SUPPORT_WRITE_EEPROM */
91
92 /*
93 * Attempt to change the cards operating regulatory domain to the given value
94 */
95 HAL_BOOL
ar5210SetRegulatoryDomain(struct ath_hal * ah,uint16_t regDomain,HAL_STATUS * status)96 ar5210SetRegulatoryDomain(struct ath_hal *ah,
97 uint16_t regDomain, HAL_STATUS *status)
98 {
99 HAL_STATUS ecode;
100
101 if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
102 ecode = HAL_EINVAL;
103 goto bad;
104 }
105 /*
106 * Check if EEPROM is configured to allow this; must
107 * be a proper version and the protection bits must
108 * permit re-writing that segment of the EEPROM.
109 */
110 if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
111 ecode = HAL_EEWRITE;
112 goto bad;
113 }
114 ecode = HAL_EIO; /* disallow all writes */
115 bad:
116 if (status)
117 *status = ecode;
118 return AH_FALSE;
119 }
120
121 /*
122 * Return the wireless modes (a,b,g,t) supported by hardware.
123 *
124 * This value is what is actually supported by the hardware
125 * and is unaffected by regulatory/country code settings.
126 *
127 */
128 u_int
ar5210GetWirelessModes(struct ath_hal * ah)129 ar5210GetWirelessModes(struct ath_hal *ah)
130 {
131 /* XXX could enable turbo mode but can't do all rates */
132 return HAL_MODE_11A;
133 }
134
135 /*
136 * Called if RfKill is supported (according to EEPROM). Set the interrupt and
137 * GPIO values so the ISR and can disable RF on a switch signal
138 */
139 void
ar5210EnableRfKill(struct ath_hal * ah)140 ar5210EnableRfKill(struct ath_hal *ah)
141 {
142 uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
143 int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
144 int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
145
146 /*
147 * If radio disable switch connection to GPIO bit 0 is enabled
148 * program GPIO interrupt.
149 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
150 * verified that it is a later version of eeprom, it has a place for
151 * rfkill bit and it is set to 1, indicating that GPIO bit 0 hardware
152 * connection is present.
153 */
154 ar5210Gpio0SetIntr(ah, select, (ar5210GpioGet(ah, select) == polarity));
155 }
156
157 /*
158 * Configure GPIO Output lines
159 */
160 HAL_BOOL
ar5210GpioCfgOutput(struct ath_hal * ah,uint32_t gpio,HAL_GPIO_MUX_TYPE type)161 ar5210GpioCfgOutput(struct ath_hal *ah, uint32_t gpio, HAL_GPIO_MUX_TYPE type)
162 {
163 HALASSERT(gpio < AR_NUM_GPIO);
164
165 OS_REG_WRITE(ah, AR_GPIOCR,
166 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
167 | AR_GPIOCR_OUT1(gpio));
168
169 return AH_TRUE;
170 }
171
172 /*
173 * Configure GPIO Input lines
174 */
175 HAL_BOOL
ar5210GpioCfgInput(struct ath_hal * ah,uint32_t gpio)176 ar5210GpioCfgInput(struct ath_hal *ah, uint32_t gpio)
177 {
178 HALASSERT(gpio < AR_NUM_GPIO);
179
180 OS_REG_WRITE(ah, AR_GPIOCR,
181 (OS_REG_READ(ah, AR_GPIOCR) &~ AR_GPIOCR_ALL(gpio))
182 | AR_GPIOCR_IN(gpio));
183
184 return AH_TRUE;
185 }
186
187 /*
188 * Once configured for I/O - set output lines
189 */
190 HAL_BOOL
ar5210GpioSet(struct ath_hal * ah,uint32_t gpio,uint32_t val)191 ar5210GpioSet(struct ath_hal *ah, uint32_t gpio, uint32_t val)
192 {
193 uint32_t reg;
194
195 HALASSERT(gpio < AR_NUM_GPIO);
196
197 reg = OS_REG_READ(ah, AR_GPIODO);
198 reg &= ~(1 << gpio);
199 reg |= (val&1) << gpio;
200
201 OS_REG_WRITE(ah, AR_GPIODO, reg);
202 return AH_TRUE;
203 }
204
205 /*
206 * Once configured for I/O - get input lines
207 */
208 uint32_t
ar5210GpioGet(struct ath_hal * ah,uint32_t gpio)209 ar5210GpioGet(struct ath_hal *ah, uint32_t gpio)
210 {
211 if (gpio < AR_NUM_GPIO) {
212 uint32_t val = OS_REG_READ(ah, AR_GPIODI);
213 val = ((val & AR_GPIOD_MASK) >> gpio) & 0x1;
214 return val;
215 } else {
216 return 0xffffffff;
217 }
218 }
219
220 /*
221 * Set the GPIO 0 Interrupt
222 */
223 void
ar5210Gpio0SetIntr(struct ath_hal * ah,u_int gpio,uint32_t ilevel)224 ar5210Gpio0SetIntr(struct ath_hal *ah, u_int gpio, uint32_t ilevel)
225 {
226 uint32_t val = OS_REG_READ(ah, AR_GPIOCR);
227
228 /* Clear the bits that we will modify. */
229 val &= ~(AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_SELH | AR_GPIOCR_INT_ENA |
230 AR_GPIOCR_ALL(gpio));
231
232 val |= AR_GPIOCR_INT_SEL(gpio) | AR_GPIOCR_INT_ENA;
233 if (ilevel)
234 val |= AR_GPIOCR_INT_SELH;
235
236 /* Don't need to change anything for low level interrupt. */
237 OS_REG_WRITE(ah, AR_GPIOCR, val);
238
239 /* Change the interrupt mask. */
240 ar5210SetInterrupts(ah, AH5210(ah)->ah_maskReg | HAL_INT_GPIO);
241 }
242
243 /*
244 * Change the LED blinking pattern to correspond to the connectivity
245 */
246 void
ar5210SetLedState(struct ath_hal * ah,HAL_LED_STATE state)247 ar5210SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
248 {
249 uint32_t val;
250
251 val = OS_REG_READ(ah, AR_PCICFG);
252 switch (state) {
253 case HAL_LED_INIT:
254 val &= ~(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
255 break;
256 case HAL_LED_RUN:
257 /* normal blink when connected */
258 val &= ~AR_PCICFG_LED_PEND;
259 val |= AR_PCICFG_LED_ACT;
260 break;
261 default:
262 val |= AR_PCICFG_LED_PEND;
263 val &= ~AR_PCICFG_LED_ACT;
264 break;
265 }
266 OS_REG_WRITE(ah, AR_PCICFG, val);
267 }
268
269 /*
270 * Return 1 or 2 for the corresponding antenna that is in use
271 */
272 u_int
ar5210GetDefAntenna(struct ath_hal * ah)273 ar5210GetDefAntenna(struct ath_hal *ah)
274 {
275 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
276 return (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1);
277 }
278
279 void
ar5210SetDefAntenna(struct ath_hal * ah,u_int antenna)280 ar5210SetDefAntenna(struct ath_hal *ah, u_int antenna)
281 {
282 uint32_t val = OS_REG_READ(ah, AR_STA_ID1);
283
284 if (antenna != (val & AR_STA_ID1_DEFAULT_ANTENNA ? 2 : 1)) {
285 /*
286 * Antenna change requested, force a toggle of the default.
287 */
288 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_DEFAULT_ANTENNA);
289 }
290 }
291
292 HAL_ANT_SETTING
ar5210GetAntennaSwitch(struct ath_hal * ah)293 ar5210GetAntennaSwitch(struct ath_hal *ah)
294 {
295 return HAL_ANT_VARIABLE;
296 }
297
298 HAL_BOOL
ar5210SetAntennaSwitch(struct ath_hal * ah,HAL_ANT_SETTING settings)299 ar5210SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
300 {
301 /* XXX not sure how to fix antenna */
302 return (settings == HAL_ANT_VARIABLE);
303 }
304
305 /*
306 * Change association related fields programmed into the hardware.
307 * Writing a valid BSSID to the hardware effectively enables the hardware
308 * to synchronize its TSF to the correct beacons and receive frames coming
309 * from that BSSID. It is called by the SME JOIN operation.
310 */
311 void
ar5210WriteAssocid(struct ath_hal * ah,const uint8_t * bssid,uint16_t assocId)312 ar5210WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
313 {
314 struct ath_hal_5210 *ahp = AH5210(ah);
315
316 /* XXX save bssid for possible re-use on reset */
317 OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
318 ahp->ah_associd = assocId;
319 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
320 OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
321 ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
322 if (assocId == 0)
323 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
324 else
325 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_NO_PSPOLL);
326 }
327
328 /*
329 * Get the current hardware tsf for stamlme.
330 */
331 uint64_t
ar5210GetTsf64(struct ath_hal * ah)332 ar5210GetTsf64(struct ath_hal *ah)
333 {
334 uint32_t low1, low2, u32;
335
336 /* sync multi-word read */
337 low1 = OS_REG_READ(ah, AR_TSF_L32);
338 u32 = OS_REG_READ(ah, AR_TSF_U32);
339 low2 = OS_REG_READ(ah, AR_TSF_L32);
340 if (low2 < low1) { /* roll over */
341 /*
342 * If we are not preempted this will work. If we are
343 * then we re-reading AR_TSF_U32 does no good as the
344 * low bits will be meaningless. Likewise reading
345 * L32, U32, U32, then comparing the last two reads
346 * to check for rollover doesn't help if preempted--so
347 * we take this approach as it costs one less PCI
348 * read which can be noticeable when doing things
349 * like timestamping packets in monitor mode.
350 */
351 u32++;
352 }
353 return (((uint64_t) u32) << 32) | ((uint64_t) low2);
354 }
355
356 /*
357 * Get the current hardware tsf for stamlme.
358 */
359 uint32_t
ar5210GetTsf32(struct ath_hal * ah)360 ar5210GetTsf32(struct ath_hal *ah)
361 {
362 return OS_REG_READ(ah, AR_TSF_L32);
363 }
364
365 /*
366 * Reset the current hardware tsf for stamlme
367 */
368 void
ar5210ResetTsf(struct ath_hal * ah)369 ar5210ResetTsf(struct ath_hal *ah)
370 {
371 uint32_t val = OS_REG_READ(ah, AR_BEACON);
372
373 OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
374 }
375
376 /*
377 * Grab a semi-random value from hardware registers - may not
378 * change often
379 */
380 uint32_t
ar5210GetRandomSeed(struct ath_hal * ah)381 ar5210GetRandomSeed(struct ath_hal *ah)
382 {
383 uint32_t nf;
384
385 nf = (OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) >> 19) & 0x1ff;
386 if (nf & 0x100)
387 nf = 0 - ((nf ^ 0x1ff) + 1);
388 return (OS_REG_READ(ah, AR_TSF_U32) ^
389 OS_REG_READ(ah, AR_TSF_L32) ^ nf);
390 }
391
392 /*
393 * Detect if our card is present
394 */
395 HAL_BOOL
ar5210DetectCardPresent(struct ath_hal * ah)396 ar5210DetectCardPresent(struct ath_hal *ah)
397 {
398 /*
399 * Read the Silicon Revision register and compare that
400 * to what we read at attach time. If the same, we say
401 * a card/device is present.
402 */
403 return (AH_PRIVATE(ah)->ah_macRev == (OS_REG_READ(ah, AR_SREV) & 0xff));
404 }
405
406 /*
407 * Update MIB Counters
408 */
409 void
ar5210UpdateMibCounters(struct ath_hal * ah,HAL_MIB_STATS * stats)410 ar5210UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS *stats)
411 {
412 stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
413 stats->rts_bad += OS_REG_READ(ah, AR_RTS_FAIL);
414 stats->fcs_bad += OS_REG_READ(ah, AR_FCS_FAIL);
415 stats->rts_good += OS_REG_READ(ah, AR_RTS_OK);
416 stats->beacons += OS_REG_READ(ah, AR_BEACON_CNT);
417 }
418
419 HAL_BOOL
ar5210SetSifsTime(struct ath_hal * ah,u_int us)420 ar5210SetSifsTime(struct ath_hal *ah, u_int us)
421 {
422 struct ath_hal_5210 *ahp = AH5210(ah);
423
424 if (us > ath_hal_mac_usec(ah, 0x7ff)) {
425 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
426 __func__, us);
427 ahp->ah_sifstime = (u_int) -1; /* restore default handling */
428 return AH_FALSE;
429 } else {
430 /* convert to system clocks */
431 OS_REG_RMW_FIELD(ah, AR_IFS0, AR_IFS0_SIFS,
432 ath_hal_mac_clks(ah, us));
433 ahp->ah_sifstime = us;
434 return AH_TRUE;
435 }
436 }
437
438 u_int
ar5210GetSifsTime(struct ath_hal * ah)439 ar5210GetSifsTime(struct ath_hal *ah)
440 {
441 u_int clks = OS_REG_READ(ah, AR_IFS0) & 0x7ff;
442 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
443 }
444
445 HAL_BOOL
ar5210SetSlotTime(struct ath_hal * ah,u_int us)446 ar5210SetSlotTime(struct ath_hal *ah, u_int us)
447 {
448 struct ath_hal_5210 *ahp = AH5210(ah);
449
450 if (us < HAL_SLOT_TIME_9 || us > ath_hal_mac_usec(ah, 0xffff)) {
451 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
452 __func__, us);
453 ahp->ah_slottime = (u_int) -1; /* restore default handling */
454 return AH_FALSE;
455 } else {
456 /* convert to system clocks */
457 OS_REG_WRITE(ah, AR_SLOT_TIME, ath_hal_mac_clks(ah, us));
458 ahp->ah_slottime = us;
459 return AH_TRUE;
460 }
461 }
462
463 u_int
ar5210GetSlotTime(struct ath_hal * ah)464 ar5210GetSlotTime(struct ath_hal *ah)
465 {
466 u_int clks = OS_REG_READ(ah, AR_SLOT_TIME) & 0xffff;
467 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
468 }
469
470 HAL_BOOL
ar5210SetAckTimeout(struct ath_hal * ah,u_int us)471 ar5210SetAckTimeout(struct ath_hal *ah, u_int us)
472 {
473 struct ath_hal_5210 *ahp = AH5210(ah);
474
475 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
476 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
477 __func__, us);
478 ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
479 return AH_FALSE;
480 } else {
481 /* convert to system clocks */
482 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
483 AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
484 ahp->ah_acktimeout = us;
485 return AH_TRUE;
486 }
487 }
488
489 u_int
ar5210GetAckTimeout(struct ath_hal * ah)490 ar5210GetAckTimeout(struct ath_hal *ah)
491 {
492 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
493 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
494 }
495
496 u_int
ar5210GetAckCTSRate(struct ath_hal * ah)497 ar5210GetAckCTSRate(struct ath_hal *ah)
498 {
499 return ((AH5210(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
500 }
501
502 HAL_BOOL
ar5210SetAckCTSRate(struct ath_hal * ah,u_int high)503 ar5210SetAckCTSRate(struct ath_hal *ah, u_int high)
504 {
505 struct ath_hal_5210 *ahp = AH5210(ah);
506
507 if (high) {
508 OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
509 ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
510 } else {
511 OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
512 ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
513 }
514 return AH_TRUE;
515 }
516
517 HAL_BOOL
ar5210SetCTSTimeout(struct ath_hal * ah,u_int us)518 ar5210SetCTSTimeout(struct ath_hal *ah, u_int us)
519 {
520 struct ath_hal_5210 *ahp = AH5210(ah);
521
522 if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
523 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
524 __func__, us);
525 ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
526 return AH_FALSE;
527 } else {
528 /* convert to system clocks */
529 OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
530 AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
531 ahp->ah_ctstimeout = us;
532 return AH_TRUE;
533 }
534 }
535
536 u_int
ar5210GetCTSTimeout(struct ath_hal * ah)537 ar5210GetCTSTimeout(struct ath_hal *ah)
538 {
539 u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
540 return ath_hal_mac_usec(ah, clks); /* convert from system clocks */
541 }
542
543 HAL_BOOL
ar5210SetDecompMask(struct ath_hal * ah,uint16_t keyidx,int en)544 ar5210SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
545 {
546 /* nothing to do */
547 return AH_TRUE;
548 }
549
550 void
ar5210SetCoverageClass(struct ath_hal * ah,uint8_t coverageclass,int now)551 ar5210SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
552 {
553 }
554
555 HAL_STATUS
ar5210SetQuiet(struct ath_hal * ah,uint32_t period,uint32_t duration,uint32_t next_start,HAL_QUIET_FLAG flags)556 ar5210SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
557 uint32_t next_start, HAL_QUIET_FLAG flags)
558 {
559 return HAL_OK;
560 }
561
562 /*
563 * Control Adaptive Noise Immunity Parameters
564 */
565 HAL_BOOL
ar5210AniControl(struct ath_hal * ah,HAL_ANI_CMD cmd,int param)566 ar5210AniControl(struct ath_hal *ah, HAL_ANI_CMD cmd, int param)
567 {
568 return AH_FALSE;
569 }
570
571 void
ar5210RxMonitor(struct ath_hal * ah,const HAL_NODE_STATS * stats,const struct ieee80211_channel * chan)572 ar5210RxMonitor(struct ath_hal *ah, const HAL_NODE_STATS *stats,
573 const struct ieee80211_channel *chan)
574 {
575 }
576
577 void
ar5210AniPoll(struct ath_hal * ah,const struct ieee80211_channel * chan)578 ar5210AniPoll(struct ath_hal *ah, const struct ieee80211_channel *chan)
579 {
580 }
581
582 void
ar5210MibEvent(struct ath_hal * ah,const HAL_NODE_STATS * stats)583 ar5210MibEvent(struct ath_hal *ah, const HAL_NODE_STATS *stats)
584 {
585 }
586
587 HAL_STATUS
ar5210GetCapability(struct ath_hal * ah,HAL_CAPABILITY_TYPE type,uint32_t capability,uint32_t * result)588 ar5210GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
589 uint32_t capability, uint32_t *result)
590 {
591
592 switch (type) {
593 case HAL_CAP_CIPHER: /* cipher handled in hardware */
594 #if 0
595 return (capability == HAL_CIPHER_WEP ? HAL_OK : HAL_ENOTSUPP);
596 #else
597 return HAL_ENOTSUPP;
598 #endif
599 default:
600 return ath_hal_getcapability(ah, type, capability, result);
601 }
602 }
603
604 HAL_BOOL
ar5210SetCapability(struct ath_hal * ah,HAL_CAPABILITY_TYPE type,uint32_t capability,uint32_t setting,HAL_STATUS * status)605 ar5210SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
606 uint32_t capability, uint32_t setting, HAL_STATUS *status)
607 {
608
609 switch (type) {
610 case HAL_CAP_DIAG: /* hardware diagnostic support */
611 /*
612 * NB: could split this up into virtual capabilities,
613 * (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
614 * seems worth the additional complexity.
615 */
616 #ifdef AH_DEBUG
617 AH_PRIVATE(ah)->ah_diagreg = setting;
618 #else
619 AH_PRIVATE(ah)->ah_diagreg = setting & 0x6; /* ACK+CTS */
620 #endif
621 ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
622 return AH_TRUE;
623 case HAL_CAP_RXORN_FATAL: /* HAL_INT_RXORN treated as fatal */
624 return AH_FALSE; /* NB: disallow */
625 default:
626 return ath_hal_setcapability(ah, type, capability,
627 setting, status);
628 }
629 }
630
631 HAL_BOOL
ar5210GetDiagState(struct ath_hal * ah,int request,const void * args,uint32_t argsize,void ** result,uint32_t * resultsize)632 ar5210GetDiagState(struct ath_hal *ah, int request,
633 const void *args, uint32_t argsize,
634 void **result, uint32_t *resultsize)
635 {
636 #ifdef AH_PRIVATE_DIAG
637 uint32_t pcicfg;
638 HAL_BOOL ok;
639
640 switch (request) {
641 case HAL_DIAG_EEPROM:
642 /* XXX */
643 break;
644 case HAL_DIAG_EEREAD:
645 if (argsize != sizeof(uint16_t))
646 return AH_FALSE;
647 pcicfg = OS_REG_READ(ah, AR_PCICFG);
648 OS_REG_WRITE(ah, AR_PCICFG, pcicfg | AR_PCICFG_EEPROMSEL);
649 ok = ath_hal_eepromRead(ah, *(const uint16_t *)args, *result);
650 OS_REG_WRITE(ah, AR_PCICFG, pcicfg);
651 if (ok)
652 *resultsize = sizeof(uint16_t);
653 return ok;
654 }
655 #endif
656 return ath_hal_getdiagstate(ah, request,
657 args, argsize, result, resultsize);
658 }
659
660 /*
661 * Return what percentage of the extension channel is busy.
662 * This is always disabled for AR5210 series NICs.
663 */
664 uint32_t
ar5210Get11nExtBusy(struct ath_hal * ah)665 ar5210Get11nExtBusy(struct ath_hal *ah)
666 {
667
668 return (0);
669 }
670
671 /*
672 * There's no channel survey support for the AR5210.
673 */
674 HAL_BOOL
ar5210GetMibCycleCounts(struct ath_hal * ah,HAL_SURVEY_SAMPLE * hsample)675 ar5210GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
676 {
677
678 return (AH_FALSE);
679 }
680
681 void
ar5210SetChainMasks(struct ath_hal * ah,uint32_t txchainmask,uint32_t rxchainmask)682 ar5210SetChainMasks(struct ath_hal *ah, uint32_t txchainmask,
683 uint32_t rxchainmask)
684 {
685 }
686
687 void
ar5210EnableDfs(struct ath_hal * ah,HAL_PHYERR_PARAM * pe)688 ar5210EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
689 {
690 }
691
692 void
ar5210GetDfsThresh(struct ath_hal * ah,HAL_PHYERR_PARAM * pe)693 ar5210GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
694 {
695 }
696
697 /*
698 * Update the diagnostic register.
699 *
700 * This merges in the diagnostic register setting with the default
701 * value, which may or may not involve disabling hardware encryption.
702 */
703 void
ar5210UpdateDiagReg(struct ath_hal * ah,uint32_t val)704 ar5210UpdateDiagReg(struct ath_hal *ah, uint32_t val)
705 {
706
707 /* Disable all hardware encryption */
708 val |= AR_DIAG_SW_DIS_CRYPTO;
709 OS_REG_WRITE(ah, AR_DIAG_SW, val);
710 }
711
712 /*
713 * Get the current NAV value from the hardware.
714 */
715 u_int
ar5210GetNav(struct ath_hal * ah)716 ar5210GetNav(struct ath_hal *ah)
717 {
718 uint32_t reg;
719
720 reg = OS_REG_READ(ah, AR_NAV);
721 return (reg);
722 }
723
724 /*
725 * Set the current NAV value to the hardware.
726 */
727 void
ar5210SetNav(struct ath_hal * ah,u_int val)728 ar5210SetNav(struct ath_hal *ah, u_int val)
729 {
730
731 OS_REG_WRITE(ah, AR_NAV, val);
732 }
733
734