1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2425
31 #define AH_5212_2417
32 #include "ar5212/ar5212.ini"
33
34 #define N(a) (sizeof(a)/sizeof(a[0]))
35
36 struct ar2425State {
37 RF_HAL_FUNCS base; /* public state, must be first */
38 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
39
40 uint32_t Bank1Data[N(ar5212Bank1_2425)];
41 uint32_t Bank2Data[N(ar5212Bank2_2425)];
42 uint32_t Bank3Data[N(ar5212Bank3_2425)];
43 uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
44 uint32_t Bank7Data[N(ar5212Bank7_2425)];
45 };
46 #define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
47
48 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49 uint32_t numBits, uint32_t firstBit, uint32_t column);
50
51 static void
ar2425WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)52 ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53 int writes)
54 {
55 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58 #if 0
59 /*
60 * for SWAN similar to Condor
61 * Bit 0 enables link to go to L1 when MAC goes to sleep.
62 * Bit 3 enables the loop back the link down to reset.
63 */
64 if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
65 OS_REG_WRITE(ah, AR_PCIE_PMC,
66 AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67 }
68 /*
69 * for Standby issue in Swan/Condor.
70 * Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71 * before last Training Sequence 2 (TS2)
72 * Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73 * Power Reset along with PCI Reset
74 */
75 OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76 #endif
77 }
78
79 /*
80 * Take the MHz channel value and set the Channel value
81 *
82 * ASSUMES: Writes enabled to analog bus
83 */
84 static HAL_BOOL
ar2425SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)85 ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
86 {
87 uint16_t freq = ath_hal_gethwchannel(ah, chan);
88 uint32_t channelSel = 0;
89 uint32_t bModeSynth = 0;
90 uint32_t aModeRefSel = 0;
91 uint32_t reg32 = 0;
92
93 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
94
95 if (freq < 4800) {
96 uint32_t txctl;
97
98 channelSel = freq - 2272;
99 channelSel = ath_hal_reverseBits(channelSel, 8);
100
101 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102 if (freq == 2484) {
103 // Enable channel spreading for channel 14
104 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106 } else {
107 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109 }
110
111 } else if (((freq % 5) == 2) && (freq <= 5435)) {
112 freq = freq - 2; /* Align to even 5MHz raster */
113 channelSel = ath_hal_reverseBits(
114 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115 aModeRefSel = ath_hal_reverseBits(0, 2);
116 } else if ((freq % 20) == 0 && freq >= 5120) {
117 channelSel = ath_hal_reverseBits(
118 ((freq - 4800) / 20 << 2), 8);
119 aModeRefSel = ath_hal_reverseBits(1, 2);
120 } else if ((freq % 10) == 0) {
121 channelSel = ath_hal_reverseBits(
122 ((freq - 4800) / 10 << 1), 8);
123 aModeRefSel = ath_hal_reverseBits(1, 2);
124 } else if ((freq % 5) == 0) {
125 channelSel = ath_hal_reverseBits(
126 (freq - 4800) / 5, 8);
127 aModeRefSel = ath_hal_reverseBits(1, 2);
128 } else {
129 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130 __func__, freq);
131 return AH_FALSE;
132 }
133
134 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135 (1 << 12) | 0x1;
136 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137
138 reg32 >>= 8;
139 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140
141 AH_PRIVATE(ah)->ah_curchan = chan;
142 return AH_TRUE;
143 }
144
145 /*
146 * Reads EEPROM header info from device structure and programs
147 * all rf registers
148 *
149 * REQUIRES: Access to the analog rf device
150 */
151 static HAL_BOOL
ar2425SetRfRegs(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t modesIndex,uint16_t * rfXpdGain)152 ar2425SetRfRegs(struct ath_hal *ah,
153 const struct ieee80211_channel *chan,
154 uint16_t modesIndex, uint16_t *rfXpdGain)
155 {
156 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
157 int i; \
158 for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
159 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
160 } while (0)
161 struct ath_hal_5212 *ahp = AH5212(ah);
162 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
163 struct ar2425State *priv = AR2425(ah);
164 uint16_t ob2GHz = 0, db2GHz = 0;
165 int regWrites = 0;
166
167 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
168 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
169
170 HALASSERT(priv);
171
172 /* Setup rf parameters */
173 if (IEEE80211_IS_CHAN_B(chan)) {
174 ob2GHz = ee->ee_obFor24;
175 db2GHz = ee->ee_dbFor24;
176 } else {
177 ob2GHz = ee->ee_obFor24g;
178 db2GHz = ee->ee_dbFor24g;
179 }
180
181 /* Bank 1 Write */
182 RF_BANK_SETUP(priv, 1, 1);
183
184 /* Bank 2 Write */
185 RF_BANK_SETUP(priv, 2, modesIndex);
186
187 /* Bank 3 Write */
188 RF_BANK_SETUP(priv, 3, modesIndex);
189
190 /* Bank 6 Write */
191 RF_BANK_SETUP(priv, 6, modesIndex);
192
193 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
194 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
195
196 /* Bank 7 Setup */
197 RF_BANK_SETUP(priv, 7, modesIndex);
198
199 /* Write Analog registers */
200 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
201 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
202 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
203 if (IS_2417(ah)) {
204 HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
205 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
206 regWrites);
207 } else
208 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
209 regWrites);
210 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
211
212 /* Now that we have reprogrammed rfgain value, clear the flag. */
213 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
216 return AH_TRUE;
217 #undef RF_BANK_SETUP
218 }
219
220 /*
221 * Return a reference to the requested RF Bank.
222 */
223 static uint32_t *
ar2425GetRfBank(struct ath_hal * ah,int bank)224 ar2425GetRfBank(struct ath_hal *ah, int bank)
225 {
226 struct ar2425State *priv = AR2425(ah);
227
228 HALASSERT(priv != AH_NULL);
229 switch (bank) {
230 case 1: return priv->Bank1Data;
231 case 2: return priv->Bank2Data;
232 case 3: return priv->Bank3Data;
233 case 6: return priv->Bank6Data;
234 case 7: return priv->Bank7Data;
235 }
236 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
237 __func__, bank);
238 return AH_NULL;
239 }
240
241 /*
242 * Return indices surrounding the value in sorted integer lists.
243 *
244 * NB: the input list is assumed to be sorted in ascending order
245 */
246 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)247 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
248 uint32_t *vlo, uint32_t *vhi)
249 {
250 int16_t target = v;
251 const uint16_t *ep = lp+listSize;
252 const uint16_t *tp;
253
254 /*
255 * Check first and last elements for out-of-bounds conditions.
256 */
257 if (target < lp[0]) {
258 *vlo = *vhi = 0;
259 return;
260 }
261 if (target >= ep[-1]) {
262 *vlo = *vhi = listSize - 1;
263 return;
264 }
265
266 /* look for value being near or between 2 values in list */
267 for (tp = lp; tp < ep; tp++) {
268 /*
269 * If value is close to the current value of the list
270 * then target is not between values, it is one of the values
271 */
272 if (*tp == target) {
273 *vlo = *vhi = tp - (const uint16_t *) lp;
274 return;
275 }
276 /*
277 * Look for value being between current value and next value
278 * if so return these 2 values
279 */
280 if (target < tp[1]) {
281 *vlo = tp - (const uint16_t *) lp;
282 *vhi = *vlo + 1;
283 return;
284 }
285 }
286 }
287
288 /*
289 * Fill the Vpdlist for indices Pmax-Pmin
290 */
291 static HAL_BOOL
ar2425FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])292 ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
293 const int16_t *pwrList, const uint16_t *VpdList,
294 uint16_t numIntercepts,
295 uint16_t retVpdList[][64])
296 {
297 uint16_t ii, jj, kk;
298 int16_t currPwr = (int16_t)(2*Pmin);
299 /* since Pmin is pwr*2 and pwrList is 4*pwr */
300 uint32_t idxL, idxR;
301
302 ii = 0;
303 jj = 0;
304
305 if (numIntercepts < 2)
306 return AH_FALSE;
307
308 while (ii <= (uint16_t)(Pmax - Pmin)) {
309 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310 numIntercepts, &(idxL), &(idxR));
311 if (idxR < 1)
312 idxR = 1; /* extrapolate below */
313 if (idxL == (uint32_t)(numIntercepts - 1))
314 idxL = numIntercepts - 2; /* extrapolate above */
315 if (pwrList[idxL] == pwrList[idxR])
316 kk = VpdList[idxL];
317 else
318 kk = (uint16_t)
319 (((currPwr - pwrList[idxL])*VpdList[idxR]+
320 (pwrList[idxR] - currPwr)*VpdList[idxL])/
321 (pwrList[idxR] - pwrList[idxL]));
322 retVpdList[pdGainIdx][ii] = kk;
323 ii++;
324 currPwr += 2; /* half dB steps */
325 }
326
327 return AH_TRUE;
328 }
329
330 /*
331 * Returns interpolated or the scaled up interpolated value
332 */
333 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)334 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335 int16_t targetLeft, int16_t targetRight)
336 {
337 int16_t rv;
338
339 if (srcRight != srcLeft) {
340 rv = ((target - srcLeft)*targetRight +
341 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
342 } else {
343 rv = targetLeft;
344 }
345 return rv;
346 }
347
348 /*
349 * Uses the data points read from EEPROM to reconstruct the pdadc power table
350 * Called by ar2425SetPowerTable()
351 */
352 static void
ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])353 ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354 const RAW_DATA_STRUCT_2413 *pRawDataset,
355 uint16_t pdGainOverlap_t2,
356 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
357 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
358 {
359 /* Note the items statically allocated below are to reduce stack usage */
360 uint32_t ii, jj, kk;
361 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
362 uint32_t idxL, idxR;
363 uint32_t numPdGainsUsed = 0;
364 static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
365 /* filled out Vpd table for all pdGains (chanL) */
366 static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
367 /* filled out Vpd table for all pdGains (chanR) */
368 static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
369 /* filled out Vpd table for all pdGains (interpolated) */
370 /*
371 * If desired to support -ve power levels in future, just
372 * change pwr_I_0 to signed 5-bits.
373 */
374 static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
375 /* to accommodate -ve power levels later on. */
376 static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
377 /* to accommodate -ve power levels later on */
378 uint16_t numVpd = 0;
379 uint16_t Vpd_step;
380 int16_t tmpVal ;
381 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
382
383 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
384
385 /* Get upper lower index */
386 GetLowerUpperIndex(channel, pRawDataset->pChannels,
387 pRawDataset->numChannels, &(idxL), &(idxR));
388
389 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
390 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
391 /* work backwards 'cause highest pdGain for lowest power */
392 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
393 if (numVpd > 0) {
394 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
395 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
396 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
397 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
398 }
399 Pmin_t2[numPdGainsUsed] = (int16_t)
400 (Pmin_t2[numPdGainsUsed] / 2);
401 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
402 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
403 Pmax_t2[numPdGainsUsed] =
404 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
405 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
406 ar2425FillVpdTable(
407 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
408 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
409 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
410 );
411 ar2425FillVpdTable(
412 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
413 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
414 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
415 );
416 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
417 VpdTable_I[numPdGainsUsed][kk] =
418 interpolate_signed(
419 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
420 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
421 }
422 /* fill VpdTable_I for this pdGain */
423 numPdGainsUsed++;
424 }
425 /* if this pdGain is used */
426 }
427
428 *pMinCalPower = Pmin_t2[0];
429 kk = 0; /* index for the final table */
430 for (ii = 0; ii < numPdGainsUsed; ii++) {
431 if (ii == (numPdGainsUsed - 1))
432 pPdGainBoundaries[ii] = Pmax_t2[ii] +
433 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
434 else
435 pPdGainBoundaries[ii] = (uint16_t)
436 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
437
438 /* Find starting index for this pdGain */
439 if (ii == 0)
440 ss = 0; /* for the first pdGain, start from index 0 */
441 else
442 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
443 pdGainOverlap_t2;
444 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
445 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
446 /*
447 *-ve ss indicates need to extrapolate data below for this pdGain
448 */
449 while (ss < 0) {
450 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
451 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
452 ss++;
453 }
454
455 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
456 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
457 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
458
459 while (ss < (int16_t)maxIndex)
460 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
461
462 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
463 VpdTable_I[ii][sizeCurrVpdTable-2]);
464 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
465 /*
466 * for last gain, pdGainBoundary == Pmax_t2, so will
467 * have to extrapolate
468 */
469 if (tgtIndex > maxIndex) { /* need to extrapolate above */
470 while(ss < (int16_t)tgtIndex) {
471 tmpVal = (uint16_t)
472 (VpdTable_I[ii][sizeCurrVpdTable-1] +
473 (ss-maxIndex)*Vpd_step);
474 pPDADCValues[kk++] = (tmpVal > 127) ?
475 127 : tmpVal;
476 ss++;
477 }
478 } /* extrapolated above */
479 } /* for all pdGainUsed */
480
481 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
482 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
483 ii++;
484 }
485 while (kk < 128) {
486 pPDADCValues[kk] = pPDADCValues[kk-1];
487 kk++;
488 }
489
490 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
491 }
492
493 /* Same as 2413 set power table */
494 static HAL_BOOL
ar2425SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)495 ar2425SetPowerTable(struct ath_hal *ah,
496 int16_t *minPower, int16_t *maxPower,
497 const struct ieee80211_channel *chan,
498 uint16_t *rfXpdGain)
499 {
500 uint16_t freq = ath_hal_gethwchannel(ah, chan);
501 struct ath_hal_5212 *ahp = AH5212(ah);
502 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
503 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
504 uint16_t pdGainOverlap_t2;
505 int16_t minCalPower2413_t2;
506 uint16_t *pdadcValues = ahp->ah_pcdacTable;
507 uint16_t gainBoundaries[4];
508 uint32_t i, reg32, regoffset;
509
510 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
511 __func__, freq, chan->ic_flags);
512
513 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
514 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
515 else if (IEEE80211_IS_CHAN_B(chan))
516 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
517 else {
518 HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
519 return AH_FALSE;
520 }
521
522 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
523 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
524
525 ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
526 pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
527 rfXpdGain, pdadcValues);
528
529 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
530 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
531
532 /*
533 * Note the pdadc table may not start at 0 dBm power, could be
534 * negative or greater than 0. Need to offset the power
535 * values by the amount of minPower for griffin
536 */
537 if (minCalPower2413_t2 != 0)
538 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
539 else
540 ahp->ah_txPowerIndexOffset = 0;
541
542 /* Finally, write the power values into the baseband power table */
543 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
544 for (i = 0; i < 32; i++) {
545 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
546 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
547 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
548 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
549 OS_REG_WRITE(ah, regoffset, reg32);
550 regoffset += 4;
551 }
552
553 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
554 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
555 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
556 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
557 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
558 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
559
560 return AH_TRUE;
561 }
562
563 static int16_t
ar2425GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)564 ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
565 {
566 uint32_t ii,jj;
567 uint16_t Pmin=0,numVpd;
568
569 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
570 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
571 /* work backwards 'cause highest pdGain for lowest power */
572 numVpd = data->pDataPerPDGain[jj].numVpd;
573 if (numVpd > 0) {
574 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
575 return(Pmin);
576 }
577 }
578 return(Pmin);
579 }
580
581 static int16_t
ar2425GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)582 ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
583 {
584 uint32_t ii;
585 uint16_t Pmax=0,numVpd;
586
587 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
588 /* work forwards cuase lowest pdGain for highest power */
589 numVpd = data->pDataPerPDGain[ii].numVpd;
590 if (numVpd > 0) {
591 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
592 return(Pmax);
593 }
594 }
595 return(Pmax);
596 }
597
598 static
599 HAL_BOOL
ar2425GetChannelMaxMinPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * maxPow,int16_t * minPow)600 ar2425GetChannelMaxMinPower(struct ath_hal *ah,
601 const struct ieee80211_channel *chan,
602 int16_t *maxPow, int16_t *minPow)
603 {
604 uint16_t freq = chan->ic_freq; /* NB: never mapped */
605 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
606 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
607 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
608 uint16_t numChannels;
609 int totalD,totalF, totalMin,last, i;
610
611 *maxPow = 0;
612
613 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
614 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
615 else if (IEEE80211_IS_CHAN_B(chan))
616 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
617 else
618 return(AH_FALSE);
619
620 numChannels = pRawDataset->numChannels;
621 data = pRawDataset->pDataPerChannel;
622
623 /* Make sure the channel is in the range of the TP values
624 * (freq piers)
625 */
626 if (numChannels < 1)
627 return(AH_FALSE);
628
629 if ((freq < data[0].channelValue) ||
630 (freq > data[numChannels-1].channelValue)) {
631 if (freq < data[0].channelValue) {
632 *maxPow = ar2425GetMaxPower(ah, &data[0]);
633 *minPow = ar2425GetMinPower(ah, &data[0]);
634 return(AH_TRUE);
635 } else {
636 *maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
637 *minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
638 return(AH_TRUE);
639 }
640 }
641
642 /* Linearly interpolate the power value now */
643 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
644 last = i++);
645 totalD = data[i].channelValue - data[last].channelValue;
646 if (totalD > 0) {
647 totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
648 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
649 ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
650 totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
651 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
652 ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
653 return(AH_TRUE);
654 } else {
655 if (freq == data[i].channelValue) {
656 *maxPow = ar2425GetMaxPower(ah, &data[i]);
657 *minPow = ar2425GetMinPower(ah, &data[i]);
658 return(AH_TRUE);
659 } else
660 return(AH_FALSE);
661 }
662 }
663
664 /*
665 * Free memory for analog bank scratch buffers
666 */
667 static void
ar2425RfDetach(struct ath_hal * ah)668 ar2425RfDetach(struct ath_hal *ah)
669 {
670 struct ath_hal_5212 *ahp = AH5212(ah);
671
672 HALASSERT(ahp->ah_rfHal != AH_NULL);
673 ath_hal_free(ahp->ah_rfHal);
674 ahp->ah_rfHal = AH_NULL;
675 }
676
677 /*
678 * Allocate memory for analog bank scratch buffers
679 * Scratch Buffer will be reinitialized every reset so no need to zero now
680 */
681 static HAL_BOOL
ar2425RfAttach(struct ath_hal * ah,HAL_STATUS * status)682 ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
683 {
684 struct ath_hal_5212 *ahp = AH5212(ah);
685 struct ar2425State *priv;
686
687 HALASSERT(ah->ah_magic == AR5212_MAGIC);
688
689 HALASSERT(ahp->ah_rfHal == AH_NULL);
690 priv = ath_hal_malloc(sizeof(struct ar2425State));
691 if (priv == AH_NULL) {
692 HALDEBUG(ah, HAL_DEBUG_ANY,
693 "%s: cannot allocate private state\n", __func__);
694 *status = HAL_ENOMEM; /* XXX */
695 return AH_FALSE;
696 }
697 priv->base.rfDetach = ar2425RfDetach;
698 priv->base.writeRegs = ar2425WriteRegs;
699 priv->base.getRfBank = ar2425GetRfBank;
700 priv->base.setChannel = ar2425SetChannel;
701 priv->base.setRfRegs = ar2425SetRfRegs;
702 priv->base.setPowerTable = ar2425SetPowerTable;
703 priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
704 priv->base.getNfAdjust = ar5212GetNfAdjust;
705
706 ahp->ah_pcdacTable = priv->pcdacTable;
707 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
708 ahp->ah_rfHal = &priv->base;
709
710 return AH_TRUE;
711 }
712
713 static HAL_BOOL
ar2425Probe(struct ath_hal * ah)714 ar2425Probe(struct ath_hal *ah)
715 {
716 return IS_2425(ah) || IS_2417(ah);
717 }
718 AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
719