1 /*-
2 * SPDX-License-Identifier: ISC
3 *
4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5 * Copyright (c) 2002-2008 Atheros Communications, Inc.
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19 #include "opt_ah.h"
20
21 #include "ah.h"
22 #include "ah_internal.h"
23
24 #include "ar5212/ar5212.h"
25 #include "ar5212/ar5212reg.h"
26 #include "ar5212/ar5212phy.h"
27
28 #include "ah_eeprom_v3.h"
29
30 #define AH_5212_2413
31 #include "ar5212/ar5212.ini"
32
33 #define N(a) (sizeof(a)/sizeof(a[0]))
34
35 struct ar2413State {
36 RF_HAL_FUNCS base; /* public state, must be first */
37 uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
38
39 uint32_t Bank1Data[N(ar5212Bank1_2413)];
40 uint32_t Bank2Data[N(ar5212Bank2_2413)];
41 uint32_t Bank3Data[N(ar5212Bank3_2413)];
42 uint32_t Bank6Data[N(ar5212Bank6_2413)];
43 uint32_t Bank7Data[N(ar5212Bank7_2413)];
44
45 /*
46 * Private state for reduced stack usage.
47 */
48 /* filled out Vpd table for all pdGains (chanL) */
49 uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
50 [MAX_PWR_RANGE_IN_HALF_DB];
51 /* filled out Vpd table for all pdGains (chanR) */
52 uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
53 [MAX_PWR_RANGE_IN_HALF_DB];
54 /* filled out Vpd table for all pdGains (interpolated) */
55 uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
56 [MAX_PWR_RANGE_IN_HALF_DB];
57 };
58 #define AR2413(ah) ((struct ar2413State *) AH5212(ah)->ah_rfHal)
59
60 extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61 uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63 static void
ar2413WriteRegs(struct ath_hal * ah,u_int modesIndex,u_int freqIndex,int writes)64 ar2413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65 int writes)
66 {
67 HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2413, modesIndex, writes);
68 HAL_INI_WRITE_ARRAY(ah, ar5212Common_2413, 1, writes);
69 HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2413, freqIndex, writes);
70 }
71
72 /*
73 * Take the MHz channel value and set the Channel value
74 *
75 * ASSUMES: Writes enabled to analog bus
76 */
77 static HAL_BOOL
ar2413SetChannel(struct ath_hal * ah,const struct ieee80211_channel * chan)78 ar2413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79 {
80 uint16_t freq = ath_hal_gethwchannel(ah, chan);
81 uint32_t channelSel = 0;
82 uint32_t bModeSynth = 0;
83 uint32_t aModeRefSel = 0;
84 uint32_t reg32 = 0;
85
86 OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88 if (freq < 4800) {
89 uint32_t txctl;
90
91 if (((freq - 2192) % 5) == 0) {
92 channelSel = ((freq - 672) * 2 - 3040)/10;
93 bModeSynth = 0;
94 } else if (((freq - 2224) % 5) == 0) {
95 channelSel = ((freq - 704) * 2 - 3040) / 10;
96 bModeSynth = 1;
97 } else {
98 HALDEBUG(ah, HAL_DEBUG_ANY,
99 "%s: invalid channel %u MHz\n",
100 __func__, freq);
101 return AH_FALSE;
102 }
103
104 channelSel = (channelSel << 2) & 0xff;
105 channelSel = ath_hal_reverseBits(channelSel, 8);
106
107 txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108 if (freq == 2484) {
109 /* Enable channel spreading for channel 14 */
110 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111 txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112 } else {
113 OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114 txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115 }
116 } else if (((freq % 5) == 2) && (freq <= 5435)) {
117 freq = freq - 2; /* Align to even 5MHz raster */
118 channelSel = ath_hal_reverseBits(
119 (uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120 aModeRefSel = ath_hal_reverseBits(0, 2);
121 } else if ((freq % 20) == 0 && freq >= 5120) {
122 channelSel = ath_hal_reverseBits(
123 ((freq - 4800) / 20 << 2), 8);
124 aModeRefSel = ath_hal_reverseBits(3, 2);
125 } else if ((freq % 10) == 0) {
126 channelSel = ath_hal_reverseBits(
127 ((freq - 4800) / 10 << 1), 8);
128 aModeRefSel = ath_hal_reverseBits(2, 2);
129 } else if ((freq % 5) == 0) {
130 channelSel = ath_hal_reverseBits(
131 (freq - 4800) / 5, 8);
132 aModeRefSel = ath_hal_reverseBits(1, 2);
133 } else {
134 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135 __func__, freq);
136 return AH_FALSE;
137 }
138
139 reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140 (1 << 12) | 0x1;
141 OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143 reg32 >>= 8;
144 OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146 AH_PRIVATE(ah)->ah_curchan = chan;
147
148 return AH_TRUE;
149 }
150
151 /*
152 * Reads EEPROM header info from device structure and programs
153 * all rf registers
154 *
155 * REQUIRES: Access to the analog rf device
156 */
157 static HAL_BOOL
ar2413SetRfRegs(struct ath_hal * ah,const struct ieee80211_channel * chan,uint16_t modesIndex,uint16_t * rfXpdGain)158 ar2413SetRfRegs(struct ath_hal *ah,
159 const struct ieee80211_channel *chan,
160 uint16_t modesIndex, uint16_t *rfXpdGain)
161 {
162 #define RF_BANK_SETUP(_priv, _ix, _col) do { \
163 int i; \
164 for (i = 0; i < N(ar5212Bank##_ix##_2413); i++) \
165 (_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2413[i][_col];\
166 } while (0)
167 struct ath_hal_5212 *ahp = AH5212(ah);
168 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
169 uint16_t ob2GHz = 0, db2GHz = 0;
170 struct ar2413State *priv = AR2413(ah);
171 int regWrites = 0;
172
173 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
174 __func__, chan->ic_freq, chan->ic_flags, modesIndex);
175
176 HALASSERT(priv);
177
178 /* Setup rf parameters */
179 if (IEEE80211_IS_CHAN_B(chan)) {
180 ob2GHz = ee->ee_obFor24;
181 db2GHz = ee->ee_dbFor24;
182 } else {
183 ob2GHz = ee->ee_obFor24g;
184 db2GHz = ee->ee_dbFor24g;
185 }
186
187 /* Bank 1 Write */
188 RF_BANK_SETUP(priv, 1, 1);
189
190 /* Bank 2 Write */
191 RF_BANK_SETUP(priv, 2, modesIndex);
192
193 /* Bank 3 Write */
194 RF_BANK_SETUP(priv, 3, modesIndex);
195
196 /* Bank 6 Write */
197 RF_BANK_SETUP(priv, 6, modesIndex);
198
199 ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 168, 0);
200 ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 165, 0);
201
202 /* Bank 7 Setup */
203 RF_BANK_SETUP(priv, 7, modesIndex);
204
205 /* Write Analog registers */
206 HAL_INI_WRITE_BANK(ah, ar5212Bank1_2413, priv->Bank1Data, regWrites);
207 HAL_INI_WRITE_BANK(ah, ar5212Bank2_2413, priv->Bank2Data, regWrites);
208 HAL_INI_WRITE_BANK(ah, ar5212Bank3_2413, priv->Bank3Data, regWrites);
209 HAL_INI_WRITE_BANK(ah, ar5212Bank6_2413, priv->Bank6Data, regWrites);
210 HAL_INI_WRITE_BANK(ah, ar5212Bank7_2413, priv->Bank7Data, regWrites);
211
212 /* Now that we have reprogrammed rfgain value, clear the flag. */
213 ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215 return AH_TRUE;
216 #undef RF_BANK_SETUP
217 }
218
219 /*
220 * Return a reference to the requested RF Bank.
221 */
222 static uint32_t *
ar2413GetRfBank(struct ath_hal * ah,int bank)223 ar2413GetRfBank(struct ath_hal *ah, int bank)
224 {
225 struct ar2413State *priv = AR2413(ah);
226
227 HALASSERT(priv != AH_NULL);
228 switch (bank) {
229 case 1: return priv->Bank1Data;
230 case 2: return priv->Bank2Data;
231 case 3: return priv->Bank3Data;
232 case 6: return priv->Bank6Data;
233 case 7: return priv->Bank7Data;
234 }
235 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
236 __func__, bank);
237 return AH_NULL;
238 }
239
240 /*
241 * Return indices surrounding the value in sorted integer lists.
242 *
243 * NB: the input list is assumed to be sorted in ascending order
244 */
245 static void
GetLowerUpperIndex(int16_t v,const uint16_t * lp,uint16_t listSize,uint32_t * vlo,uint32_t * vhi)246 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
247 uint32_t *vlo, uint32_t *vhi)
248 {
249 int16_t target = v;
250 const uint16_t *ep = lp+listSize;
251 const uint16_t *tp;
252
253 /*
254 * Check first and last elements for out-of-bounds conditions.
255 */
256 if (target < lp[0]) {
257 *vlo = *vhi = 0;
258 return;
259 }
260 if (target >= ep[-1]) {
261 *vlo = *vhi = listSize - 1;
262 return;
263 }
264
265 /* look for value being near or between 2 values in list */
266 for (tp = lp; tp < ep; tp++) {
267 /*
268 * If value is close to the current value of the list
269 * then target is not between values, it is one of the values
270 */
271 if (*tp == target) {
272 *vlo = *vhi = tp - (const uint16_t *) lp;
273 return;
274 }
275 /*
276 * Look for value being between current value and next value
277 * if so return these 2 values
278 */
279 if (target < tp[1]) {
280 *vlo = tp - (const uint16_t *) lp;
281 *vhi = *vlo + 1;
282 return;
283 }
284 }
285 }
286
287 /*
288 * Fill the Vpdlist for indices Pmax-Pmin
289 */
290 static HAL_BOOL
ar2413FillVpdTable(uint32_t pdGainIdx,int16_t Pmin,int16_t Pmax,const int16_t * pwrList,const uint16_t * VpdList,uint16_t numIntercepts,uint16_t retVpdList[][64])291 ar2413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
292 const int16_t *pwrList, const uint16_t *VpdList,
293 uint16_t numIntercepts, uint16_t retVpdList[][64])
294 {
295 uint16_t ii, jj, kk;
296 int16_t currPwr = (int16_t)(2*Pmin);
297 /* since Pmin is pwr*2 and pwrList is 4*pwr */
298 uint32_t idxL, idxR;
299
300 ii = 0;
301 jj = 0;
302
303 if (numIntercepts < 2)
304 return AH_FALSE;
305
306 while (ii <= (uint16_t)(Pmax - Pmin)) {
307 GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
308 numIntercepts, &(idxL), &(idxR));
309 if (idxR < 1)
310 idxR = 1; /* extrapolate below */
311 if (idxL == (uint32_t)(numIntercepts - 1))
312 idxL = numIntercepts - 2; /* extrapolate above */
313 if (pwrList[idxL] == pwrList[idxR])
314 kk = VpdList[idxL];
315 else
316 kk = (uint16_t)
317 (((currPwr - pwrList[idxL])*VpdList[idxR]+
318 (pwrList[idxR] - currPwr)*VpdList[idxL])/
319 (pwrList[idxR] - pwrList[idxL]));
320 retVpdList[pdGainIdx][ii] = kk;
321 ii++;
322 currPwr += 2; /* half dB steps */
323 }
324
325 return AH_TRUE;
326 }
327
328 /*
329 * Returns interpolated or the scaled up interpolated value
330 */
331 static int16_t
interpolate_signed(uint16_t target,uint16_t srcLeft,uint16_t srcRight,int16_t targetLeft,int16_t targetRight)332 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
333 int16_t targetLeft, int16_t targetRight)
334 {
335 int16_t rv;
336
337 if (srcRight != srcLeft) {
338 rv = ((target - srcLeft)*targetRight +
339 (srcRight - target)*targetLeft) / (srcRight - srcLeft);
340 } else {
341 rv = targetLeft;
342 }
343 return rv;
344 }
345
346 /*
347 * Uses the data points read from EEPROM to reconstruct the pdadc power table
348 * Called by ar2413SetPowerTable()
349 */
350 static int
ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal * ah,uint16_t channel,const RAW_DATA_STRUCT_2413 * pRawDataset,uint16_t pdGainOverlap_t2,int16_t * pMinCalPower,uint16_t pPdGainBoundaries[],uint16_t pPdGainValues[],uint16_t pPDADCValues[])351 ar2413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
352 const RAW_DATA_STRUCT_2413 *pRawDataset,
353 uint16_t pdGainOverlap_t2,
354 int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
355 uint16_t pPdGainValues[], uint16_t pPDADCValues[])
356 {
357 struct ar2413State *priv = AR2413(ah);
358 #define VpdTable_L priv->vpdTable_L
359 #define VpdTable_R priv->vpdTable_R
360 #define VpdTable_I priv->vpdTable_I
361 uint32_t ii, jj, kk;
362 int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
363 uint32_t idxL, idxR;
364 uint32_t numPdGainsUsed = 0;
365 /*
366 * If desired to support -ve power levels in future, just
367 * change pwr_I_0 to signed 5-bits.
368 */
369 int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
370 /* to accommodate -ve power levels later on. */
371 int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
372 /* to accommodate -ve power levels later on */
373 uint16_t numVpd = 0;
374 uint16_t Vpd_step;
375 int16_t tmpVal ;
376 uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
377
378 /* Get upper lower index */
379 GetLowerUpperIndex(channel, pRawDataset->pChannels,
380 pRawDataset->numChannels, &(idxL), &(idxR));
381
382 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
383 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
384 /* work backwards 'cause highest pdGain for lowest power */
385 numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
386 if (numVpd > 0) {
387 pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
388 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
389 if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
390 Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
391 }
392 Pmin_t2[numPdGainsUsed] = (int16_t)
393 (Pmin_t2[numPdGainsUsed] / 2);
394 Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
395 if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
396 Pmax_t2[numPdGainsUsed] =
397 pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
398 Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
399 ar2413FillVpdTable(
400 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
401 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
402 &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
403 );
404 ar2413FillVpdTable(
405 numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
406 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
407 &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
408 );
409 for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
410 VpdTable_I[numPdGainsUsed][kk] =
411 interpolate_signed(
412 channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
413 (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
414 }
415 /* fill VpdTable_I for this pdGain */
416 numPdGainsUsed++;
417 }
418 /* if this pdGain is used */
419 }
420
421 *pMinCalPower = Pmin_t2[0];
422 kk = 0; /* index for the final table */
423 for (ii = 0; ii < numPdGainsUsed; ii++) {
424 if (ii == (numPdGainsUsed - 1))
425 pPdGainBoundaries[ii] = Pmax_t2[ii] +
426 PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
427 else
428 pPdGainBoundaries[ii] = (uint16_t)
429 ((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
430 if (pPdGainBoundaries[ii] > 63) {
431 HALDEBUG(ah, HAL_DEBUG_ANY,
432 "%s: clamp pPdGainBoundaries[%d] %d\n",
433 __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
434 pPdGainBoundaries[ii] = 63;
435 }
436
437 /* Find starting index for this pdGain */
438 if (ii == 0)
439 ss = 0; /* for the first pdGain, start from index 0 */
440 else
441 ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
442 pdGainOverlap_t2;
443 Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
444 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
445 /*
446 *-ve ss indicates need to extrapolate data below for this pdGain
447 */
448 while (ss < 0) {
449 tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
450 pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
451 ss++;
452 }
453
454 sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
455 tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
456 maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
457
458 while (ss < (int16_t)maxIndex)
459 pPDADCValues[kk++] = VpdTable_I[ii][ss++];
460
461 Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
462 VpdTable_I[ii][sizeCurrVpdTable-2]);
463 Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
464 /*
465 * for last gain, pdGainBoundary == Pmax_t2, so will
466 * have to extrapolate
467 */
468 if (tgtIndex > maxIndex) { /* need to extrapolate above */
469 while(ss < (int16_t)tgtIndex) {
470 tmpVal = (uint16_t)
471 (VpdTable_I[ii][sizeCurrVpdTable-1] +
472 (ss-maxIndex)*Vpd_step);
473 pPDADCValues[kk++] = (tmpVal > 127) ?
474 127 : tmpVal;
475 ss++;
476 }
477 } /* extrapolated above */
478 } /* for all pdGainUsed */
479
480 while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
481 pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
482 ii++;
483 }
484 while (kk < 128) {
485 pPDADCValues[kk] = pPDADCValues[kk-1];
486 kk++;
487 }
488
489 return numPdGainsUsed;
490 #undef VpdTable_L
491 #undef VpdTable_R
492 #undef VpdTable_I
493 }
494
495 static HAL_BOOL
ar2413SetPowerTable(struct ath_hal * ah,int16_t * minPower,int16_t * maxPower,const struct ieee80211_channel * chan,uint16_t * rfXpdGain)496 ar2413SetPowerTable(struct ath_hal *ah,
497 int16_t *minPower, int16_t *maxPower,
498 const struct ieee80211_channel *chan,
499 uint16_t *rfXpdGain)
500 {
501 uint16_t freq = ath_hal_gethwchannel(ah, chan);
502 struct ath_hal_5212 *ahp = AH5212(ah);
503 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
504 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
505 uint16_t pdGainOverlap_t2;
506 int16_t minCalPower2413_t2;
507 uint16_t *pdadcValues = ahp->ah_pcdacTable;
508 uint16_t gainBoundaries[4];
509 uint32_t reg32, regoffset;
510 int i, numPdGainsUsed;
511 #ifndef AH_USE_INIPDGAIN
512 uint32_t tpcrg1;
513 #endif
514
515 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
516 __func__, freq, chan->ic_flags);
517
518 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
519 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
520 else if (IEEE80211_IS_CHAN_B(chan))
521 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
522 else {
523 HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
524 return AH_FALSE;
525 }
526
527 pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
528 AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
529
530 numPdGainsUsed = ar2413getGainBoundariesAndPdadcsForPowers(ah,
531 freq, pRawDataset, pdGainOverlap_t2,
532 &minCalPower2413_t2,gainBoundaries, rfXpdGain, pdadcValues);
533 HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
534
535 #ifdef AH_USE_INIPDGAIN
536 /*
537 * Use pd_gains curve from eeprom; Atheros always uses
538 * the default curve from the ini file but some vendors
539 * (e.g. Zcomax) want to override this curve and not
540 * honoring their settings results in tx power 5dBm low.
541 */
542 OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
543 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
544 #else
545 tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
546 tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
547 | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
548 switch (numPdGainsUsed) {
549 case 3:
550 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
551 tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
552 /* fall thru... */
553 case 2:
554 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
555 tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
556 /* fall thru... */
557 case 1:
558 tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
559 tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
560 break;
561 }
562 #ifdef AH_DEBUG
563 if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
564 HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
565 "pd_gains (default 0x%x, calculated 0x%x)\n",
566 __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
567 #endif
568 OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
569 #endif
570
571 /*
572 * Note the pdadc table may not start at 0 dBm power, could be
573 * negative or greater than 0. Need to offset the power
574 * values by the amount of minPower for griffin
575 */
576 if (minCalPower2413_t2 != 0)
577 ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
578 else
579 ahp->ah_txPowerIndexOffset = 0;
580
581 /* Finally, write the power values into the baseband power table */
582 regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
583 for (i = 0; i < 32; i++) {
584 reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
585 ((pdadcValues[4*i + 1] & 0xFF) << 8) |
586 ((pdadcValues[4*i + 2] & 0xFF) << 16) |
587 ((pdadcValues[4*i + 3] & 0xFF) << 24) ;
588 OS_REG_WRITE(ah, regoffset, reg32);
589 regoffset += 4;
590 }
591
592 OS_REG_WRITE(ah, AR_PHY_TPCRG5,
593 SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
594 SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
595 SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
596 SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
597 SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
598
599 return AH_TRUE;
600 }
601
602 static int16_t
ar2413GetMinPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)603 ar2413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
604 {
605 uint32_t ii,jj;
606 uint16_t Pmin=0,numVpd;
607
608 for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
609 jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
610 /* work backwards 'cause highest pdGain for lowest power */
611 numVpd = data->pDataPerPDGain[jj].numVpd;
612 if (numVpd > 0) {
613 Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
614 return(Pmin);
615 }
616 }
617 return(Pmin);
618 }
619
620 static int16_t
ar2413GetMaxPower(struct ath_hal * ah,const RAW_DATA_PER_CHANNEL_2413 * data)621 ar2413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
622 {
623 uint32_t ii;
624 uint16_t Pmax=0,numVpd;
625
626 for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
627 /* work forwards cuase lowest pdGain for highest power */
628 numVpd = data->pDataPerPDGain[ii].numVpd;
629 if (numVpd > 0) {
630 Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
631 return(Pmax);
632 }
633 }
634 return(Pmax);
635 }
636
637 static HAL_BOOL
ar2413GetChannelMaxMinPower(struct ath_hal * ah,const struct ieee80211_channel * chan,int16_t * maxPow,int16_t * minPow)638 ar2413GetChannelMaxMinPower(struct ath_hal *ah,
639 const struct ieee80211_channel *chan,
640 int16_t *maxPow, int16_t *minPow)
641 {
642 uint16_t freq = chan->ic_freq; /* NB: never mapped */
643 const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
644 const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
645 const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
646 uint16_t numChannels;
647 int totalD,totalF, totalMin,last, i;
648
649 *maxPow = 0;
650
651 if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
652 pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
653 else if (IEEE80211_IS_CHAN_B(chan))
654 pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
655 else
656 return(AH_FALSE);
657
658 numChannels = pRawDataset->numChannels;
659 data = pRawDataset->pDataPerChannel;
660
661 /* Make sure the channel is in the range of the TP values
662 * (freq piers)
663 */
664 if (numChannels < 1)
665 return(AH_FALSE);
666
667 if ((freq < data[0].channelValue) ||
668 (freq > data[numChannels-1].channelValue)) {
669 if (freq < data[0].channelValue) {
670 *maxPow = ar2413GetMaxPower(ah, &data[0]);
671 *minPow = ar2413GetMinPower(ah, &data[0]);
672 return(AH_TRUE);
673 } else {
674 *maxPow = ar2413GetMaxPower(ah, &data[numChannels - 1]);
675 *minPow = ar2413GetMinPower(ah, &data[numChannels - 1]);
676 return(AH_TRUE);
677 }
678 }
679
680 /* Linearly interpolate the power value now */
681 for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
682 last = i++);
683 totalD = data[i].channelValue - data[last].channelValue;
684 if (totalD > 0) {
685 totalF = ar2413GetMaxPower(ah, &data[i]) - ar2413GetMaxPower(ah, &data[last]);
686 *maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
687 ar2413GetMaxPower(ah, &data[last])*totalD)/totalD);
688 totalMin = ar2413GetMinPower(ah, &data[i]) - ar2413GetMinPower(ah, &data[last]);
689 *minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
690 ar2413GetMinPower(ah, &data[last])*totalD)/totalD);
691 return(AH_TRUE);
692 } else {
693 if (freq == data[i].channelValue) {
694 *maxPow = ar2413GetMaxPower(ah, &data[i]);
695 *minPow = ar2413GetMinPower(ah, &data[i]);
696 return(AH_TRUE);
697 } else
698 return(AH_FALSE);
699 }
700 }
701
702 /*
703 * Free memory for analog bank scratch buffers
704 */
705 static void
ar2413RfDetach(struct ath_hal * ah)706 ar2413RfDetach(struct ath_hal *ah)
707 {
708 struct ath_hal_5212 *ahp = AH5212(ah);
709
710 HALASSERT(ahp->ah_rfHal != AH_NULL);
711 ath_hal_free(ahp->ah_rfHal);
712 ahp->ah_rfHal = AH_NULL;
713 }
714
715 /*
716 * Allocate memory for analog bank scratch buffers
717 * Scratch Buffer will be reinitialized every reset so no need to zero now
718 */
719 static HAL_BOOL
ar2413RfAttach(struct ath_hal * ah,HAL_STATUS * status)720 ar2413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
721 {
722 struct ath_hal_5212 *ahp = AH5212(ah);
723 struct ar2413State *priv;
724
725 HALASSERT(ah->ah_magic == AR5212_MAGIC);
726
727 HALASSERT(ahp->ah_rfHal == AH_NULL);
728 priv = ath_hal_malloc(sizeof(struct ar2413State));
729 if (priv == AH_NULL) {
730 HALDEBUG(ah, HAL_DEBUG_ANY,
731 "%s: cannot allocate private state\n", __func__);
732 *status = HAL_ENOMEM; /* XXX */
733 return AH_FALSE;
734 }
735 priv->base.rfDetach = ar2413RfDetach;
736 priv->base.writeRegs = ar2413WriteRegs;
737 priv->base.getRfBank = ar2413GetRfBank;
738 priv->base.setChannel = ar2413SetChannel;
739 priv->base.setRfRegs = ar2413SetRfRegs;
740 priv->base.setPowerTable = ar2413SetPowerTable;
741 priv->base.getChannelMaxMinPower = ar2413GetChannelMaxMinPower;
742 priv->base.getNfAdjust = ar5212GetNfAdjust;
743
744 ahp->ah_pcdacTable = priv->pcdacTable;
745 ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
746 ahp->ah_rfHal = &priv->base;
747
748 return AH_TRUE;
749 }
750
751 static HAL_BOOL
ar2413Probe(struct ath_hal * ah)752 ar2413Probe(struct ath_hal *ah)
753 {
754 return IS_2413(ah);
755 }
756 AH_RF(RF2413, ar2413Probe, ar2413RfAttach);
757