1 //===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
9 #include "llvm/ADT/APFloat.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallBitVector.h"
13 #include "llvm/Analysis/CmpInstAnalysis.h"
14 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
15 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
16 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
17 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
18 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
20 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
21 #include "llvm/CodeGen/GlobalISel/Utils.h"
22 #include "llvm/CodeGen/LowLevelTypeUtils.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterBankInfo.h"
29 #include "llvm/CodeGen/TargetInstrInfo.h"
30 #include "llvm/CodeGen/TargetLowering.h"
31 #include "llvm/CodeGen/TargetOpcodes.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/InstrTypes.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/DivisionByConstantInfo.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include <cmath>
41 #include <optional>
42 #include <tuple>
43
44 #define DEBUG_TYPE "gi-combiner"
45
46 using namespace llvm;
47 using namespace MIPatternMatch;
48
49 // Option to allow testing of the combiner while no targets know about indexed
50 // addressing.
51 static cl::opt<bool>
52 ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false),
53 cl::desc("Force all indexed operations to be "
54 "legal for the GlobalISel combiner"));
55
CombinerHelper(GISelChangeObserver & Observer,MachineIRBuilder & B,bool IsPreLegalize,GISelKnownBits * KB,MachineDominatorTree * MDT,const LegalizerInfo * LI)56 CombinerHelper::CombinerHelper(GISelChangeObserver &Observer,
57 MachineIRBuilder &B, bool IsPreLegalize,
58 GISelKnownBits *KB, MachineDominatorTree *MDT,
59 const LegalizerInfo *LI)
60 : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB),
61 MDT(MDT), IsPreLegalize(IsPreLegalize), LI(LI),
62 RBI(Builder.getMF().getSubtarget().getRegBankInfo()),
63 TRI(Builder.getMF().getSubtarget().getRegisterInfo()) {
64 (void)this->KB;
65 }
66
getTargetLowering() const67 const TargetLowering &CombinerHelper::getTargetLowering() const {
68 return *Builder.getMF().getSubtarget().getTargetLowering();
69 }
70
71 /// \returns The little endian in-memory byte position of byte \p I in a
72 /// \p ByteWidth bytes wide type.
73 ///
74 /// E.g. Given a 4-byte type x, x[0] -> byte 0
littleEndianByteAt(const unsigned ByteWidth,const unsigned I)75 static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) {
76 assert(I < ByteWidth && "I must be in [0, ByteWidth)");
77 return I;
78 }
79
80 /// Determines the LogBase2 value for a non-null input value using the
81 /// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
buildLogBase2(Register V,MachineIRBuilder & MIB)82 static Register buildLogBase2(Register V, MachineIRBuilder &MIB) {
83 auto &MRI = *MIB.getMRI();
84 LLT Ty = MRI.getType(V);
85 auto Ctlz = MIB.buildCTLZ(Ty, V);
86 auto Base = MIB.buildConstant(Ty, Ty.getScalarSizeInBits() - 1);
87 return MIB.buildSub(Ty, Base, Ctlz).getReg(0);
88 }
89
90 /// \returns The big endian in-memory byte position of byte \p I in a
91 /// \p ByteWidth bytes wide type.
92 ///
93 /// E.g. Given a 4-byte type x, x[0] -> byte 3
bigEndianByteAt(const unsigned ByteWidth,const unsigned I)94 static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) {
95 assert(I < ByteWidth && "I must be in [0, ByteWidth)");
96 return ByteWidth - I - 1;
97 }
98
99 /// Given a map from byte offsets in memory to indices in a load/store,
100 /// determine if that map corresponds to a little or big endian byte pattern.
101 ///
102 /// \param MemOffset2Idx maps memory offsets to address offsets.
103 /// \param LowestIdx is the lowest index in \p MemOffset2Idx.
104 ///
105 /// \returns true if the map corresponds to a big endian byte pattern, false if
106 /// it corresponds to a little endian byte pattern, and std::nullopt otherwise.
107 ///
108 /// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns
109 /// are as follows:
110 ///
111 /// AddrOffset Little endian Big endian
112 /// 0 0 3
113 /// 1 1 2
114 /// 2 2 1
115 /// 3 3 0
116 static std::optional<bool>
isBigEndian(const SmallDenseMap<int64_t,int64_t,8> & MemOffset2Idx,int64_t LowestIdx)117 isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
118 int64_t LowestIdx) {
119 // Need at least two byte positions to decide on endianness.
120 unsigned Width = MemOffset2Idx.size();
121 if (Width < 2)
122 return std::nullopt;
123 bool BigEndian = true, LittleEndian = true;
124 for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) {
125 auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset);
126 if (MemOffsetAndIdx == MemOffset2Idx.end())
127 return std::nullopt;
128 const int64_t Idx = MemOffsetAndIdx->second - LowestIdx;
129 assert(Idx >= 0 && "Expected non-negative byte offset?");
130 LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset);
131 BigEndian &= Idx == bigEndianByteAt(Width, MemOffset);
132 if (!BigEndian && !LittleEndian)
133 return std::nullopt;
134 }
135
136 assert((BigEndian != LittleEndian) &&
137 "Pattern cannot be both big and little endian!");
138 return BigEndian;
139 }
140
isPreLegalize() const141 bool CombinerHelper::isPreLegalize() const { return IsPreLegalize; }
142
isLegal(const LegalityQuery & Query) const143 bool CombinerHelper::isLegal(const LegalityQuery &Query) const {
144 assert(LI && "Must have LegalizerInfo to query isLegal!");
145 return LI->getAction(Query).Action == LegalizeActions::Legal;
146 }
147
isLegalOrBeforeLegalizer(const LegalityQuery & Query) const148 bool CombinerHelper::isLegalOrBeforeLegalizer(
149 const LegalityQuery &Query) const {
150 return isPreLegalize() || isLegal(Query);
151 }
152
isConstantLegalOrBeforeLegalizer(const LLT Ty) const153 bool CombinerHelper::isConstantLegalOrBeforeLegalizer(const LLT Ty) const {
154 if (!Ty.isVector())
155 return isLegalOrBeforeLegalizer({TargetOpcode::G_CONSTANT, {Ty}});
156 // Vector constants are represented as a G_BUILD_VECTOR of scalar G_CONSTANTs.
157 if (isPreLegalize())
158 return true;
159 LLT EltTy = Ty.getElementType();
160 return isLegal({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}) &&
161 isLegal({TargetOpcode::G_CONSTANT, {EltTy}});
162 }
163
replaceRegWith(MachineRegisterInfo & MRI,Register FromReg,Register ToReg) const164 void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg,
165 Register ToReg) const {
166 Observer.changingAllUsesOfReg(MRI, FromReg);
167
168 if (MRI.constrainRegAttrs(ToReg, FromReg))
169 MRI.replaceRegWith(FromReg, ToReg);
170 else
171 Builder.buildCopy(ToReg, FromReg);
172
173 Observer.finishedChangingAllUsesOfReg();
174 }
175
replaceRegOpWith(MachineRegisterInfo & MRI,MachineOperand & FromRegOp,Register ToReg) const176 void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI,
177 MachineOperand &FromRegOp,
178 Register ToReg) const {
179 assert(FromRegOp.getParent() && "Expected an operand in an MI");
180 Observer.changingInstr(*FromRegOp.getParent());
181
182 FromRegOp.setReg(ToReg);
183
184 Observer.changedInstr(*FromRegOp.getParent());
185 }
186
replaceOpcodeWith(MachineInstr & FromMI,unsigned ToOpcode) const187 void CombinerHelper::replaceOpcodeWith(MachineInstr &FromMI,
188 unsigned ToOpcode) const {
189 Observer.changingInstr(FromMI);
190
191 FromMI.setDesc(Builder.getTII().get(ToOpcode));
192
193 Observer.changedInstr(FromMI);
194 }
195
getRegBank(Register Reg) const196 const RegisterBank *CombinerHelper::getRegBank(Register Reg) const {
197 return RBI->getRegBank(Reg, MRI, *TRI);
198 }
199
setRegBank(Register Reg,const RegisterBank * RegBank)200 void CombinerHelper::setRegBank(Register Reg, const RegisterBank *RegBank) {
201 if (RegBank)
202 MRI.setRegBank(Reg, *RegBank);
203 }
204
tryCombineCopy(MachineInstr & MI)205 bool CombinerHelper::tryCombineCopy(MachineInstr &MI) {
206 if (matchCombineCopy(MI)) {
207 applyCombineCopy(MI);
208 return true;
209 }
210 return false;
211 }
matchCombineCopy(MachineInstr & MI)212 bool CombinerHelper::matchCombineCopy(MachineInstr &MI) {
213 if (MI.getOpcode() != TargetOpcode::COPY)
214 return false;
215 Register DstReg = MI.getOperand(0).getReg();
216 Register SrcReg = MI.getOperand(1).getReg();
217 return canReplaceReg(DstReg, SrcReg, MRI);
218 }
applyCombineCopy(MachineInstr & MI)219 void CombinerHelper::applyCombineCopy(MachineInstr &MI) {
220 Register DstReg = MI.getOperand(0).getReg();
221 Register SrcReg = MI.getOperand(1).getReg();
222 MI.eraseFromParent();
223 replaceRegWith(MRI, DstReg, SrcReg);
224 }
225
matchFreezeOfSingleMaybePoisonOperand(MachineInstr & MI,BuildFnTy & MatchInfo)226 bool CombinerHelper::matchFreezeOfSingleMaybePoisonOperand(
227 MachineInstr &MI, BuildFnTy &MatchInfo) {
228 // Ported from InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating.
229 Register DstOp = MI.getOperand(0).getReg();
230 Register OrigOp = MI.getOperand(1).getReg();
231
232 if (!MRI.hasOneNonDBGUse(OrigOp))
233 return false;
234
235 MachineInstr *OrigDef = MRI.getUniqueVRegDef(OrigOp);
236 // Even if only a single operand of the PHI is not guaranteed non-poison,
237 // moving freeze() backwards across a PHI can cause optimization issues for
238 // other users of that operand.
239 //
240 // Moving freeze() from one of the output registers of a G_UNMERGE_VALUES to
241 // the source register is unprofitable because it makes the freeze() more
242 // strict than is necessary (it would affect the whole register instead of
243 // just the subreg being frozen).
244 if (OrigDef->isPHI() || isa<GUnmerge>(OrigDef))
245 return false;
246
247 if (canCreateUndefOrPoison(OrigOp, MRI,
248 /*ConsiderFlagsAndMetadata=*/false))
249 return false;
250
251 std::optional<MachineOperand> MaybePoisonOperand;
252 for (MachineOperand &Operand : OrigDef->uses()) {
253 if (!Operand.isReg())
254 return false;
255
256 if (isGuaranteedNotToBeUndefOrPoison(Operand.getReg(), MRI))
257 continue;
258
259 if (!MaybePoisonOperand)
260 MaybePoisonOperand = Operand;
261 else {
262 // We have more than one maybe-poison operand. Moving the freeze is
263 // unsafe.
264 return false;
265 }
266 }
267
268 // Eliminate freeze if all operands are guaranteed non-poison.
269 if (!MaybePoisonOperand) {
270 MatchInfo = [=](MachineIRBuilder &B) {
271 Observer.changingInstr(*OrigDef);
272 cast<GenericMachineInstr>(OrigDef)->dropPoisonGeneratingFlags();
273 Observer.changedInstr(*OrigDef);
274 B.buildCopy(DstOp, OrigOp);
275 };
276 return true;
277 }
278
279 Register MaybePoisonOperandReg = MaybePoisonOperand->getReg();
280 LLT MaybePoisonOperandRegTy = MRI.getType(MaybePoisonOperandReg);
281
282 MatchInfo = [=](MachineIRBuilder &B) mutable {
283 Observer.changingInstr(*OrigDef);
284 cast<GenericMachineInstr>(OrigDef)->dropPoisonGeneratingFlags();
285 Observer.changedInstr(*OrigDef);
286 B.setInsertPt(*OrigDef->getParent(), OrigDef->getIterator());
287 auto Freeze = B.buildFreeze(MaybePoisonOperandRegTy, MaybePoisonOperandReg);
288 replaceRegOpWith(
289 MRI, *OrigDef->findRegisterUseOperand(MaybePoisonOperandReg, TRI),
290 Freeze.getReg(0));
291 replaceRegWith(MRI, DstOp, OrigOp);
292 };
293 return true;
294 }
295
matchCombineConcatVectors(MachineInstr & MI,SmallVector<Register> & Ops)296 bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI,
297 SmallVector<Register> &Ops) {
298 assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS &&
299 "Invalid instruction");
300 bool IsUndef = true;
301 MachineInstr *Undef = nullptr;
302
303 // Walk over all the operands of concat vectors and check if they are
304 // build_vector themselves or undef.
305 // Then collect their operands in Ops.
306 for (const MachineOperand &MO : MI.uses()) {
307 Register Reg = MO.getReg();
308 MachineInstr *Def = MRI.getVRegDef(Reg);
309 assert(Def && "Operand not defined");
310 if (!MRI.hasOneNonDBGUse(Reg))
311 return false;
312 switch (Def->getOpcode()) {
313 case TargetOpcode::G_BUILD_VECTOR:
314 IsUndef = false;
315 // Remember the operands of the build_vector to fold
316 // them into the yet-to-build flattened concat vectors.
317 for (const MachineOperand &BuildVecMO : Def->uses())
318 Ops.push_back(BuildVecMO.getReg());
319 break;
320 case TargetOpcode::G_IMPLICIT_DEF: {
321 LLT OpType = MRI.getType(Reg);
322 // Keep one undef value for all the undef operands.
323 if (!Undef) {
324 Builder.setInsertPt(*MI.getParent(), MI);
325 Undef = Builder.buildUndef(OpType.getScalarType());
326 }
327 assert(MRI.getType(Undef->getOperand(0).getReg()) ==
328 OpType.getScalarType() &&
329 "All undefs should have the same type");
330 // Break the undef vector in as many scalar elements as needed
331 // for the flattening.
332 for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements();
333 EltIdx != EltEnd; ++EltIdx)
334 Ops.push_back(Undef->getOperand(0).getReg());
335 break;
336 }
337 default:
338 return false;
339 }
340 }
341
342 // Check if the combine is illegal
343 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
344 if (!isLegalOrBeforeLegalizer(
345 {TargetOpcode::G_BUILD_VECTOR, {DstTy, MRI.getType(Ops[0])}})) {
346 return false;
347 }
348
349 if (IsUndef)
350 Ops.clear();
351
352 return true;
353 }
applyCombineConcatVectors(MachineInstr & MI,SmallVector<Register> & Ops)354 void CombinerHelper::applyCombineConcatVectors(MachineInstr &MI,
355 SmallVector<Register> &Ops) {
356 // We determined that the concat_vectors can be flatten.
357 // Generate the flattened build_vector.
358 Register DstReg = MI.getOperand(0).getReg();
359 Builder.setInsertPt(*MI.getParent(), MI);
360 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
361
362 // Note: IsUndef is sort of redundant. We could have determine it by
363 // checking that at all Ops are undef. Alternatively, we could have
364 // generate a build_vector of undefs and rely on another combine to
365 // clean that up. For now, given we already gather this information
366 // in matchCombineConcatVectors, just save compile time and issue the
367 // right thing.
368 if (Ops.empty())
369 Builder.buildUndef(NewDstReg);
370 else
371 Builder.buildBuildVector(NewDstReg, Ops);
372 MI.eraseFromParent();
373 replaceRegWith(MRI, DstReg, NewDstReg);
374 }
375
matchCombineShuffleConcat(MachineInstr & MI,SmallVector<Register> & Ops)376 bool CombinerHelper::matchCombineShuffleConcat(MachineInstr &MI,
377 SmallVector<Register> &Ops) {
378 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
379 auto ConcatMI1 =
380 dyn_cast<GConcatVectors>(MRI.getVRegDef(MI.getOperand(1).getReg()));
381 auto ConcatMI2 =
382 dyn_cast<GConcatVectors>(MRI.getVRegDef(MI.getOperand(2).getReg()));
383 if (!ConcatMI1 || !ConcatMI2)
384 return false;
385
386 // Check that the sources of the Concat instructions have the same type
387 if (MRI.getType(ConcatMI1->getSourceReg(0)) !=
388 MRI.getType(ConcatMI2->getSourceReg(0)))
389 return false;
390
391 LLT ConcatSrcTy = MRI.getType(ConcatMI1->getReg(1));
392 LLT ShuffleSrcTy1 = MRI.getType(MI.getOperand(1).getReg());
393 unsigned ConcatSrcNumElt = ConcatSrcTy.getNumElements();
394 for (unsigned i = 0; i < Mask.size(); i += ConcatSrcNumElt) {
395 // Check if the index takes a whole source register from G_CONCAT_VECTORS
396 // Assumes that all Sources of G_CONCAT_VECTORS are the same type
397 if (Mask[i] == -1) {
398 for (unsigned j = 1; j < ConcatSrcNumElt; j++) {
399 if (i + j >= Mask.size())
400 return false;
401 if (Mask[i + j] != -1)
402 return false;
403 }
404 if (!isLegalOrBeforeLegalizer(
405 {TargetOpcode::G_IMPLICIT_DEF, {ConcatSrcTy}}))
406 return false;
407 Ops.push_back(0);
408 } else if (Mask[i] % ConcatSrcNumElt == 0) {
409 for (unsigned j = 1; j < ConcatSrcNumElt; j++) {
410 if (i + j >= Mask.size())
411 return false;
412 if (Mask[i + j] != Mask[i] + static_cast<int>(j))
413 return false;
414 }
415 // Retrieve the source register from its respective G_CONCAT_VECTORS
416 // instruction
417 if (Mask[i] < ShuffleSrcTy1.getNumElements()) {
418 Ops.push_back(ConcatMI1->getSourceReg(Mask[i] / ConcatSrcNumElt));
419 } else {
420 Ops.push_back(ConcatMI2->getSourceReg(Mask[i] / ConcatSrcNumElt -
421 ConcatMI1->getNumSources()));
422 }
423 } else {
424 return false;
425 }
426 }
427
428 if (!isLegalOrBeforeLegalizer(
429 {TargetOpcode::G_CONCAT_VECTORS,
430 {MRI.getType(MI.getOperand(0).getReg()), ConcatSrcTy}}))
431 return false;
432
433 return !Ops.empty();
434 }
435
applyCombineShuffleConcat(MachineInstr & MI,SmallVector<Register> & Ops)436 void CombinerHelper::applyCombineShuffleConcat(MachineInstr &MI,
437 SmallVector<Register> &Ops) {
438 LLT SrcTy = MRI.getType(Ops[0]);
439 Register UndefReg = 0;
440
441 for (Register &Reg : Ops) {
442 if (Reg == 0) {
443 if (UndefReg == 0)
444 UndefReg = Builder.buildUndef(SrcTy).getReg(0);
445 Reg = UndefReg;
446 }
447 }
448
449 if (Ops.size() > 1)
450 Builder.buildConcatVectors(MI.getOperand(0).getReg(), Ops);
451 else
452 Builder.buildCopy(MI.getOperand(0).getReg(), Ops[0]);
453 MI.eraseFromParent();
454 }
455
tryCombineShuffleVector(MachineInstr & MI)456 bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) {
457 SmallVector<Register, 4> Ops;
458 if (matchCombineShuffleVector(MI, Ops)) {
459 applyCombineShuffleVector(MI, Ops);
460 return true;
461 }
462 return false;
463 }
464
matchCombineShuffleVector(MachineInstr & MI,SmallVectorImpl<Register> & Ops)465 bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI,
466 SmallVectorImpl<Register> &Ops) {
467 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
468 "Invalid instruction kind");
469 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
470 Register Src1 = MI.getOperand(1).getReg();
471 LLT SrcType = MRI.getType(Src1);
472 // As bizarre as it may look, shuffle vector can actually produce
473 // scalar! This is because at the IR level a <1 x ty> shuffle
474 // vector is perfectly valid.
475 unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1;
476 unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1;
477
478 // If the resulting vector is smaller than the size of the source
479 // vectors being concatenated, we won't be able to replace the
480 // shuffle vector into a concat_vectors.
481 //
482 // Note: We may still be able to produce a concat_vectors fed by
483 // extract_vector_elt and so on. It is less clear that would
484 // be better though, so don't bother for now.
485 //
486 // If the destination is a scalar, the size of the sources doesn't
487 // matter. we will lower the shuffle to a plain copy. This will
488 // work only if the source and destination have the same size. But
489 // that's covered by the next condition.
490 //
491 // TODO: If the size between the source and destination don't match
492 // we could still emit an extract vector element in that case.
493 if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1)
494 return false;
495
496 // Check that the shuffle mask can be broken evenly between the
497 // different sources.
498 if (DstNumElts % SrcNumElts != 0)
499 return false;
500
501 // Mask length is a multiple of the source vector length.
502 // Check if the shuffle is some kind of concatenation of the input
503 // vectors.
504 unsigned NumConcat = DstNumElts / SrcNumElts;
505 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
506 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
507 for (unsigned i = 0; i != DstNumElts; ++i) {
508 int Idx = Mask[i];
509 // Undef value.
510 if (Idx < 0)
511 continue;
512 // Ensure the indices in each SrcType sized piece are sequential and that
513 // the same source is used for the whole piece.
514 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
515 (ConcatSrcs[i / SrcNumElts] >= 0 &&
516 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts)))
517 return false;
518 // Remember which source this index came from.
519 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
520 }
521
522 // The shuffle is concatenating multiple vectors together.
523 // Collect the different operands for that.
524 Register UndefReg;
525 Register Src2 = MI.getOperand(2).getReg();
526 for (auto Src : ConcatSrcs) {
527 if (Src < 0) {
528 if (!UndefReg) {
529 Builder.setInsertPt(*MI.getParent(), MI);
530 UndefReg = Builder.buildUndef(SrcType).getReg(0);
531 }
532 Ops.push_back(UndefReg);
533 } else if (Src == 0)
534 Ops.push_back(Src1);
535 else
536 Ops.push_back(Src2);
537 }
538 return true;
539 }
540
applyCombineShuffleVector(MachineInstr & MI,const ArrayRef<Register> Ops)541 void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI,
542 const ArrayRef<Register> Ops) {
543 Register DstReg = MI.getOperand(0).getReg();
544 Builder.setInsertPt(*MI.getParent(), MI);
545 Register NewDstReg = MRI.cloneVirtualRegister(DstReg);
546
547 if (Ops.size() == 1)
548 Builder.buildCopy(NewDstReg, Ops[0]);
549 else
550 Builder.buildMergeLikeInstr(NewDstReg, Ops);
551
552 MI.eraseFromParent();
553 replaceRegWith(MRI, DstReg, NewDstReg);
554 }
555
matchShuffleToExtract(MachineInstr & MI)556 bool CombinerHelper::matchShuffleToExtract(MachineInstr &MI) {
557 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR &&
558 "Invalid instruction kind");
559
560 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
561 return Mask.size() == 1;
562 }
563
applyShuffleToExtract(MachineInstr & MI)564 void CombinerHelper::applyShuffleToExtract(MachineInstr &MI) {
565 Register DstReg = MI.getOperand(0).getReg();
566 Builder.setInsertPt(*MI.getParent(), MI);
567
568 int I = MI.getOperand(3).getShuffleMask()[0];
569 Register Src1 = MI.getOperand(1).getReg();
570 LLT Src1Ty = MRI.getType(Src1);
571 int Src1NumElts = Src1Ty.isVector() ? Src1Ty.getNumElements() : 1;
572 Register SrcReg;
573 if (I >= Src1NumElts) {
574 SrcReg = MI.getOperand(2).getReg();
575 I -= Src1NumElts;
576 } else if (I >= 0)
577 SrcReg = Src1;
578
579 if (I < 0)
580 Builder.buildUndef(DstReg);
581 else if (!MRI.getType(SrcReg).isVector())
582 Builder.buildCopy(DstReg, SrcReg);
583 else
584 Builder.buildExtractVectorElementConstant(DstReg, SrcReg, I);
585
586 MI.eraseFromParent();
587 }
588
589 namespace {
590
591 /// Select a preference between two uses. CurrentUse is the current preference
592 /// while *ForCandidate is attributes of the candidate under consideration.
ChoosePreferredUse(MachineInstr & LoadMI,PreferredTuple & CurrentUse,const LLT TyForCandidate,unsigned OpcodeForCandidate,MachineInstr * MIForCandidate)593 PreferredTuple ChoosePreferredUse(MachineInstr &LoadMI,
594 PreferredTuple &CurrentUse,
595 const LLT TyForCandidate,
596 unsigned OpcodeForCandidate,
597 MachineInstr *MIForCandidate) {
598 if (!CurrentUse.Ty.isValid()) {
599 if (CurrentUse.ExtendOpcode == OpcodeForCandidate ||
600 CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT)
601 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
602 return CurrentUse;
603 }
604
605 // We permit the extend to hoist through basic blocks but this is only
606 // sensible if the target has extending loads. If you end up lowering back
607 // into a load and extend during the legalizer then the end result is
608 // hoisting the extend up to the load.
609
610 // Prefer defined extensions to undefined extensions as these are more
611 // likely to reduce the number of instructions.
612 if (OpcodeForCandidate == TargetOpcode::G_ANYEXT &&
613 CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT)
614 return CurrentUse;
615 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT &&
616 OpcodeForCandidate != TargetOpcode::G_ANYEXT)
617 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
618
619 // Prefer sign extensions to zero extensions as sign-extensions tend to be
620 // more expensive. Don't do this if the load is already a zero-extend load
621 // though, otherwise we'll rewrite a zero-extend load into a sign-extend
622 // later.
623 if (!isa<GZExtLoad>(LoadMI) && CurrentUse.Ty == TyForCandidate) {
624 if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT &&
625 OpcodeForCandidate == TargetOpcode::G_ZEXT)
626 return CurrentUse;
627 else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT &&
628 OpcodeForCandidate == TargetOpcode::G_SEXT)
629 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
630 }
631
632 // This is potentially target specific. We've chosen the largest type
633 // because G_TRUNC is usually free. One potential catch with this is that
634 // some targets have a reduced number of larger registers than smaller
635 // registers and this choice potentially increases the live-range for the
636 // larger value.
637 if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) {
638 return {TyForCandidate, OpcodeForCandidate, MIForCandidate};
639 }
640 return CurrentUse;
641 }
642
643 /// Find a suitable place to insert some instructions and insert them. This
644 /// function accounts for special cases like inserting before a PHI node.
645 /// The current strategy for inserting before PHI's is to duplicate the
646 /// instructions for each predecessor. However, while that's ok for G_TRUNC
647 /// on most targets since it generally requires no code, other targets/cases may
648 /// want to try harder to find a dominating block.
InsertInsnsWithoutSideEffectsBeforeUse(MachineIRBuilder & Builder,MachineInstr & DefMI,MachineOperand & UseMO,std::function<void (MachineBasicBlock *,MachineBasicBlock::iterator,MachineOperand & UseMO)> Inserter)649 static void InsertInsnsWithoutSideEffectsBeforeUse(
650 MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO,
651 std::function<void(MachineBasicBlock *, MachineBasicBlock::iterator,
652 MachineOperand &UseMO)>
653 Inserter) {
654 MachineInstr &UseMI = *UseMO.getParent();
655
656 MachineBasicBlock *InsertBB = UseMI.getParent();
657
658 // If the use is a PHI then we want the predecessor block instead.
659 if (UseMI.isPHI()) {
660 MachineOperand *PredBB = std::next(&UseMO);
661 InsertBB = PredBB->getMBB();
662 }
663
664 // If the block is the same block as the def then we want to insert just after
665 // the def instead of at the start of the block.
666 if (InsertBB == DefMI.getParent()) {
667 MachineBasicBlock::iterator InsertPt = &DefMI;
668 Inserter(InsertBB, std::next(InsertPt), UseMO);
669 return;
670 }
671
672 // Otherwise we want the start of the BB
673 Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO);
674 }
675 } // end anonymous namespace
676
tryCombineExtendingLoads(MachineInstr & MI)677 bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) {
678 PreferredTuple Preferred;
679 if (matchCombineExtendingLoads(MI, Preferred)) {
680 applyCombineExtendingLoads(MI, Preferred);
681 return true;
682 }
683 return false;
684 }
685
getExtLoadOpcForExtend(unsigned ExtOpc)686 static unsigned getExtLoadOpcForExtend(unsigned ExtOpc) {
687 unsigned CandidateLoadOpc;
688 switch (ExtOpc) {
689 case TargetOpcode::G_ANYEXT:
690 CandidateLoadOpc = TargetOpcode::G_LOAD;
691 break;
692 case TargetOpcode::G_SEXT:
693 CandidateLoadOpc = TargetOpcode::G_SEXTLOAD;
694 break;
695 case TargetOpcode::G_ZEXT:
696 CandidateLoadOpc = TargetOpcode::G_ZEXTLOAD;
697 break;
698 default:
699 llvm_unreachable("Unexpected extend opc");
700 }
701 return CandidateLoadOpc;
702 }
703
matchCombineExtendingLoads(MachineInstr & MI,PreferredTuple & Preferred)704 bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI,
705 PreferredTuple &Preferred) {
706 // We match the loads and follow the uses to the extend instead of matching
707 // the extends and following the def to the load. This is because the load
708 // must remain in the same position for correctness (unless we also add code
709 // to find a safe place to sink it) whereas the extend is freely movable.
710 // It also prevents us from duplicating the load for the volatile case or just
711 // for performance.
712 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(&MI);
713 if (!LoadMI)
714 return false;
715
716 Register LoadReg = LoadMI->getDstReg();
717
718 LLT LoadValueTy = MRI.getType(LoadReg);
719 if (!LoadValueTy.isScalar())
720 return false;
721
722 // Most architectures are going to legalize <s8 loads into at least a 1 byte
723 // load, and the MMOs can only describe memory accesses in multiples of bytes.
724 // If we try to perform extload combining on those, we can end up with
725 // %a(s8) = extload %ptr (load 1 byte from %ptr)
726 // ... which is an illegal extload instruction.
727 if (LoadValueTy.getSizeInBits() < 8)
728 return false;
729
730 // For non power-of-2 types, they will very likely be legalized into multiple
731 // loads. Don't bother trying to match them into extending loads.
732 if (!llvm::has_single_bit<uint32_t>(LoadValueTy.getSizeInBits()))
733 return false;
734
735 // Find the preferred type aside from the any-extends (unless it's the only
736 // one) and non-extending ops. We'll emit an extending load to that type and
737 // and emit a variant of (extend (trunc X)) for the others according to the
738 // relative type sizes. At the same time, pick an extend to use based on the
739 // extend involved in the chosen type.
740 unsigned PreferredOpcode =
741 isa<GLoad>(&MI)
742 ? TargetOpcode::G_ANYEXT
743 : isa<GSExtLoad>(&MI) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
744 Preferred = {LLT(), PreferredOpcode, nullptr};
745 for (auto &UseMI : MRI.use_nodbg_instructions(LoadReg)) {
746 if (UseMI.getOpcode() == TargetOpcode::G_SEXT ||
747 UseMI.getOpcode() == TargetOpcode::G_ZEXT ||
748 (UseMI.getOpcode() == TargetOpcode::G_ANYEXT)) {
749 const auto &MMO = LoadMI->getMMO();
750 // Don't do anything for atomics.
751 if (MMO.isAtomic())
752 continue;
753 // Check for legality.
754 if (!isPreLegalize()) {
755 LegalityQuery::MemDesc MMDesc(MMO);
756 unsigned CandidateLoadOpc = getExtLoadOpcForExtend(UseMI.getOpcode());
757 LLT UseTy = MRI.getType(UseMI.getOperand(0).getReg());
758 LLT SrcTy = MRI.getType(LoadMI->getPointerReg());
759 if (LI->getAction({CandidateLoadOpc, {UseTy, SrcTy}, {MMDesc}})
760 .Action != LegalizeActions::Legal)
761 continue;
762 }
763 Preferred = ChoosePreferredUse(MI, Preferred,
764 MRI.getType(UseMI.getOperand(0).getReg()),
765 UseMI.getOpcode(), &UseMI);
766 }
767 }
768
769 // There were no extends
770 if (!Preferred.MI)
771 return false;
772 // It should be impossible to chose an extend without selecting a different
773 // type since by definition the result of an extend is larger.
774 assert(Preferred.Ty != LoadValueTy && "Extending to same type?");
775
776 LLVM_DEBUG(dbgs() << "Preferred use is: " << *Preferred.MI);
777 return true;
778 }
779
applyCombineExtendingLoads(MachineInstr & MI,PreferredTuple & Preferred)780 void CombinerHelper::applyCombineExtendingLoads(MachineInstr &MI,
781 PreferredTuple &Preferred) {
782 // Rewrite the load to the chosen extending load.
783 Register ChosenDstReg = Preferred.MI->getOperand(0).getReg();
784
785 // Inserter to insert a truncate back to the original type at a given point
786 // with some basic CSE to limit truncate duplication to one per BB.
787 DenseMap<MachineBasicBlock *, MachineInstr *> EmittedInsns;
788 auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB,
789 MachineBasicBlock::iterator InsertBefore,
790 MachineOperand &UseMO) {
791 MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB);
792 if (PreviouslyEmitted) {
793 Observer.changingInstr(*UseMO.getParent());
794 UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg());
795 Observer.changedInstr(*UseMO.getParent());
796 return;
797 }
798
799 Builder.setInsertPt(*InsertIntoBB, InsertBefore);
800 Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg());
801 MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg);
802 EmittedInsns[InsertIntoBB] = NewMI;
803 replaceRegOpWith(MRI, UseMO, NewDstReg);
804 };
805
806 Observer.changingInstr(MI);
807 unsigned LoadOpc = getExtLoadOpcForExtend(Preferred.ExtendOpcode);
808 MI.setDesc(Builder.getTII().get(LoadOpc));
809
810 // Rewrite all the uses to fix up the types.
811 auto &LoadValue = MI.getOperand(0);
812 SmallVector<MachineOperand *, 4> Uses;
813 for (auto &UseMO : MRI.use_operands(LoadValue.getReg()))
814 Uses.push_back(&UseMO);
815
816 for (auto *UseMO : Uses) {
817 MachineInstr *UseMI = UseMO->getParent();
818
819 // If the extend is compatible with the preferred extend then we should fix
820 // up the type and extend so that it uses the preferred use.
821 if (UseMI->getOpcode() == Preferred.ExtendOpcode ||
822 UseMI->getOpcode() == TargetOpcode::G_ANYEXT) {
823 Register UseDstReg = UseMI->getOperand(0).getReg();
824 MachineOperand &UseSrcMO = UseMI->getOperand(1);
825 const LLT UseDstTy = MRI.getType(UseDstReg);
826 if (UseDstReg != ChosenDstReg) {
827 if (Preferred.Ty == UseDstTy) {
828 // If the use has the same type as the preferred use, then merge
829 // the vregs and erase the extend. For example:
830 // %1:_(s8) = G_LOAD ...
831 // %2:_(s32) = G_SEXT %1(s8)
832 // %3:_(s32) = G_ANYEXT %1(s8)
833 // ... = ... %3(s32)
834 // rewrites to:
835 // %2:_(s32) = G_SEXTLOAD ...
836 // ... = ... %2(s32)
837 replaceRegWith(MRI, UseDstReg, ChosenDstReg);
838 Observer.erasingInstr(*UseMO->getParent());
839 UseMO->getParent()->eraseFromParent();
840 } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) {
841 // If the preferred size is smaller, then keep the extend but extend
842 // from the result of the extending load. For example:
843 // %1:_(s8) = G_LOAD ...
844 // %2:_(s32) = G_SEXT %1(s8)
845 // %3:_(s64) = G_ANYEXT %1(s8)
846 // ... = ... %3(s64)
847 /// rewrites to:
848 // %2:_(s32) = G_SEXTLOAD ...
849 // %3:_(s64) = G_ANYEXT %2:_(s32)
850 // ... = ... %3(s64)
851 replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg);
852 } else {
853 // If the preferred size is large, then insert a truncate. For
854 // example:
855 // %1:_(s8) = G_LOAD ...
856 // %2:_(s64) = G_SEXT %1(s8)
857 // %3:_(s32) = G_ZEXT %1(s8)
858 // ... = ... %3(s32)
859 /// rewrites to:
860 // %2:_(s64) = G_SEXTLOAD ...
861 // %4:_(s8) = G_TRUNC %2:_(s32)
862 // %3:_(s64) = G_ZEXT %2:_(s8)
863 // ... = ... %3(s64)
864 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO,
865 InsertTruncAt);
866 }
867 continue;
868 }
869 // The use is (one of) the uses of the preferred use we chose earlier.
870 // We're going to update the load to def this value later so just erase
871 // the old extend.
872 Observer.erasingInstr(*UseMO->getParent());
873 UseMO->getParent()->eraseFromParent();
874 continue;
875 }
876
877 // The use isn't an extend. Truncate back to the type we originally loaded.
878 // This is free on many targets.
879 InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt);
880 }
881
882 MI.getOperand(0).setReg(ChosenDstReg);
883 Observer.changedInstr(MI);
884 }
885
matchCombineLoadWithAndMask(MachineInstr & MI,BuildFnTy & MatchInfo)886 bool CombinerHelper::matchCombineLoadWithAndMask(MachineInstr &MI,
887 BuildFnTy &MatchInfo) {
888 assert(MI.getOpcode() == TargetOpcode::G_AND);
889
890 // If we have the following code:
891 // %mask = G_CONSTANT 255
892 // %ld = G_LOAD %ptr, (load s16)
893 // %and = G_AND %ld, %mask
894 //
895 // Try to fold it into
896 // %ld = G_ZEXTLOAD %ptr, (load s8)
897
898 Register Dst = MI.getOperand(0).getReg();
899 if (MRI.getType(Dst).isVector())
900 return false;
901
902 auto MaybeMask =
903 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
904 if (!MaybeMask)
905 return false;
906
907 APInt MaskVal = MaybeMask->Value;
908
909 if (!MaskVal.isMask())
910 return false;
911
912 Register SrcReg = MI.getOperand(1).getReg();
913 // Don't use getOpcodeDef() here since intermediate instructions may have
914 // multiple users.
915 GAnyLoad *LoadMI = dyn_cast<GAnyLoad>(MRI.getVRegDef(SrcReg));
916 if (!LoadMI || !MRI.hasOneNonDBGUse(LoadMI->getDstReg()))
917 return false;
918
919 Register LoadReg = LoadMI->getDstReg();
920 LLT RegTy = MRI.getType(LoadReg);
921 Register PtrReg = LoadMI->getPointerReg();
922 unsigned RegSize = RegTy.getSizeInBits();
923 LocationSize LoadSizeBits = LoadMI->getMemSizeInBits();
924 unsigned MaskSizeBits = MaskVal.countr_one();
925
926 // The mask may not be larger than the in-memory type, as it might cover sign
927 // extended bits
928 if (MaskSizeBits > LoadSizeBits.getValue())
929 return false;
930
931 // If the mask covers the whole destination register, there's nothing to
932 // extend
933 if (MaskSizeBits >= RegSize)
934 return false;
935
936 // Most targets cannot deal with loads of size < 8 and need to re-legalize to
937 // at least byte loads. Avoid creating such loads here
938 if (MaskSizeBits < 8 || !isPowerOf2_32(MaskSizeBits))
939 return false;
940
941 const MachineMemOperand &MMO = LoadMI->getMMO();
942 LegalityQuery::MemDesc MemDesc(MMO);
943
944 // Don't modify the memory access size if this is atomic/volatile, but we can
945 // still adjust the opcode to indicate the high bit behavior.
946 if (LoadMI->isSimple())
947 MemDesc.MemoryTy = LLT::scalar(MaskSizeBits);
948 else if (LoadSizeBits.getValue() > MaskSizeBits ||
949 LoadSizeBits.getValue() == RegSize)
950 return false;
951
952 // TODO: Could check if it's legal with the reduced or original memory size.
953 if (!isLegalOrBeforeLegalizer(
954 {TargetOpcode::G_ZEXTLOAD, {RegTy, MRI.getType(PtrReg)}, {MemDesc}}))
955 return false;
956
957 MatchInfo = [=](MachineIRBuilder &B) {
958 B.setInstrAndDebugLoc(*LoadMI);
959 auto &MF = B.getMF();
960 auto PtrInfo = MMO.getPointerInfo();
961 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, MemDesc.MemoryTy);
962 B.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, Dst, PtrReg, *NewMMO);
963 LoadMI->eraseFromParent();
964 };
965 return true;
966 }
967
isPredecessor(const MachineInstr & DefMI,const MachineInstr & UseMI)968 bool CombinerHelper::isPredecessor(const MachineInstr &DefMI,
969 const MachineInstr &UseMI) {
970 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
971 "shouldn't consider debug uses");
972 assert(DefMI.getParent() == UseMI.getParent());
973 if (&DefMI == &UseMI)
974 return true;
975 const MachineBasicBlock &MBB = *DefMI.getParent();
976 auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) {
977 return &MI == &DefMI || &MI == &UseMI;
978 });
979 if (DefOrUse == MBB.end())
980 llvm_unreachable("Block must contain both DefMI and UseMI!");
981 return &*DefOrUse == &DefMI;
982 }
983
dominates(const MachineInstr & DefMI,const MachineInstr & UseMI)984 bool CombinerHelper::dominates(const MachineInstr &DefMI,
985 const MachineInstr &UseMI) {
986 assert(!DefMI.isDebugInstr() && !UseMI.isDebugInstr() &&
987 "shouldn't consider debug uses");
988 if (MDT)
989 return MDT->dominates(&DefMI, &UseMI);
990 else if (DefMI.getParent() != UseMI.getParent())
991 return false;
992
993 return isPredecessor(DefMI, UseMI);
994 }
995
matchSextTruncSextLoad(MachineInstr & MI)996 bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) {
997 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
998 Register SrcReg = MI.getOperand(1).getReg();
999 Register LoadUser = SrcReg;
1000
1001 if (MRI.getType(SrcReg).isVector())
1002 return false;
1003
1004 Register TruncSrc;
1005 if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc))))
1006 LoadUser = TruncSrc;
1007
1008 uint64_t SizeInBits = MI.getOperand(2).getImm();
1009 // If the source is a G_SEXTLOAD from the same bit width, then we don't
1010 // need any extend at all, just a truncate.
1011 if (auto *LoadMI = getOpcodeDef<GSExtLoad>(LoadUser, MRI)) {
1012 // If truncating more than the original extended value, abort.
1013 auto LoadSizeBits = LoadMI->getMemSizeInBits();
1014 if (TruncSrc &&
1015 MRI.getType(TruncSrc).getSizeInBits() < LoadSizeBits.getValue())
1016 return false;
1017 if (LoadSizeBits == SizeInBits)
1018 return true;
1019 }
1020 return false;
1021 }
1022
applySextTruncSextLoad(MachineInstr & MI)1023 void CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) {
1024 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1025 Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1026 MI.eraseFromParent();
1027 }
1028
matchSextInRegOfLoad(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)1029 bool CombinerHelper::matchSextInRegOfLoad(
1030 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
1031 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1032
1033 Register DstReg = MI.getOperand(0).getReg();
1034 LLT RegTy = MRI.getType(DstReg);
1035
1036 // Only supports scalars for now.
1037 if (RegTy.isVector())
1038 return false;
1039
1040 Register SrcReg = MI.getOperand(1).getReg();
1041 auto *LoadDef = getOpcodeDef<GLoad>(SrcReg, MRI);
1042 if (!LoadDef || !MRI.hasOneNonDBGUse(DstReg))
1043 return false;
1044
1045 uint64_t MemBits = LoadDef->getMemSizeInBits().getValue();
1046
1047 // If the sign extend extends from a narrower width than the load's width,
1048 // then we can narrow the load width when we combine to a G_SEXTLOAD.
1049 // Avoid widening the load at all.
1050 unsigned NewSizeBits = std::min((uint64_t)MI.getOperand(2).getImm(), MemBits);
1051
1052 // Don't generate G_SEXTLOADs with a < 1 byte width.
1053 if (NewSizeBits < 8)
1054 return false;
1055 // Don't bother creating a non-power-2 sextload, it will likely be broken up
1056 // anyway for most targets.
1057 if (!isPowerOf2_32(NewSizeBits))
1058 return false;
1059
1060 const MachineMemOperand &MMO = LoadDef->getMMO();
1061 LegalityQuery::MemDesc MMDesc(MMO);
1062
1063 // Don't modify the memory access size if this is atomic/volatile, but we can
1064 // still adjust the opcode to indicate the high bit behavior.
1065 if (LoadDef->isSimple())
1066 MMDesc.MemoryTy = LLT::scalar(NewSizeBits);
1067 else if (MemBits > NewSizeBits || MemBits == RegTy.getSizeInBits())
1068 return false;
1069
1070 // TODO: Could check if it's legal with the reduced or original memory size.
1071 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SEXTLOAD,
1072 {MRI.getType(LoadDef->getDstReg()),
1073 MRI.getType(LoadDef->getPointerReg())},
1074 {MMDesc}}))
1075 return false;
1076
1077 MatchInfo = std::make_tuple(LoadDef->getDstReg(), NewSizeBits);
1078 return true;
1079 }
1080
applySextInRegOfLoad(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)1081 void CombinerHelper::applySextInRegOfLoad(
1082 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
1083 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1084 Register LoadReg;
1085 unsigned ScalarSizeBits;
1086 std::tie(LoadReg, ScalarSizeBits) = MatchInfo;
1087 GLoad *LoadDef = cast<GLoad>(MRI.getVRegDef(LoadReg));
1088
1089 // If we have the following:
1090 // %ld = G_LOAD %ptr, (load 2)
1091 // %ext = G_SEXT_INREG %ld, 8
1092 // ==>
1093 // %ld = G_SEXTLOAD %ptr (load 1)
1094
1095 auto &MMO = LoadDef->getMMO();
1096 Builder.setInstrAndDebugLoc(*LoadDef);
1097 auto &MF = Builder.getMF();
1098 auto PtrInfo = MMO.getPointerInfo();
1099 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8);
1100 Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(),
1101 LoadDef->getPointerReg(), *NewMMO);
1102 MI.eraseFromParent();
1103 }
1104
1105 /// Return true if 'MI' is a load or a store that may be fold it's address
1106 /// operand into the load / store addressing mode.
canFoldInAddressingMode(GLoadStore * MI,const TargetLowering & TLI,MachineRegisterInfo & MRI)1107 static bool canFoldInAddressingMode(GLoadStore *MI, const TargetLowering &TLI,
1108 MachineRegisterInfo &MRI) {
1109 TargetLowering::AddrMode AM;
1110 auto *MF = MI->getMF();
1111 auto *Addr = getOpcodeDef<GPtrAdd>(MI->getPointerReg(), MRI);
1112 if (!Addr)
1113 return false;
1114
1115 AM.HasBaseReg = true;
1116 if (auto CstOff = getIConstantVRegVal(Addr->getOffsetReg(), MRI))
1117 AM.BaseOffs = CstOff->getSExtValue(); // [reg +/- imm]
1118 else
1119 AM.Scale = 1; // [reg +/- reg]
1120
1121 return TLI.isLegalAddressingMode(
1122 MF->getDataLayout(), AM,
1123 getTypeForLLT(MI->getMMO().getMemoryType(),
1124 MF->getFunction().getContext()),
1125 MI->getMMO().getAddrSpace());
1126 }
1127
getIndexedOpc(unsigned LdStOpc)1128 static unsigned getIndexedOpc(unsigned LdStOpc) {
1129 switch (LdStOpc) {
1130 case TargetOpcode::G_LOAD:
1131 return TargetOpcode::G_INDEXED_LOAD;
1132 case TargetOpcode::G_STORE:
1133 return TargetOpcode::G_INDEXED_STORE;
1134 case TargetOpcode::G_ZEXTLOAD:
1135 return TargetOpcode::G_INDEXED_ZEXTLOAD;
1136 case TargetOpcode::G_SEXTLOAD:
1137 return TargetOpcode::G_INDEXED_SEXTLOAD;
1138 default:
1139 llvm_unreachable("Unexpected opcode");
1140 }
1141 }
1142
isIndexedLoadStoreLegal(GLoadStore & LdSt) const1143 bool CombinerHelper::isIndexedLoadStoreLegal(GLoadStore &LdSt) const {
1144 // Check for legality.
1145 LLT PtrTy = MRI.getType(LdSt.getPointerReg());
1146 LLT Ty = MRI.getType(LdSt.getReg(0));
1147 LLT MemTy = LdSt.getMMO().getMemoryType();
1148 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs(
1149 {{MemTy, MemTy.getSizeInBits().getKnownMinValue(),
1150 AtomicOrdering::NotAtomic}});
1151 unsigned IndexedOpc = getIndexedOpc(LdSt.getOpcode());
1152 SmallVector<LLT> OpTys;
1153 if (IndexedOpc == TargetOpcode::G_INDEXED_STORE)
1154 OpTys = {PtrTy, Ty, Ty};
1155 else
1156 OpTys = {Ty, PtrTy}; // For G_INDEXED_LOAD, G_INDEXED_[SZ]EXTLOAD
1157
1158 LegalityQuery Q(IndexedOpc, OpTys, MemDescrs);
1159 return isLegal(Q);
1160 }
1161
1162 static cl::opt<unsigned> PostIndexUseThreshold(
1163 "post-index-use-threshold", cl::Hidden, cl::init(32),
1164 cl::desc("Number of uses of a base pointer to check before it is no longer "
1165 "considered for post-indexing."));
1166
findPostIndexCandidate(GLoadStore & LdSt,Register & Addr,Register & Base,Register & Offset,bool & RematOffset)1167 bool CombinerHelper::findPostIndexCandidate(GLoadStore &LdSt, Register &Addr,
1168 Register &Base, Register &Offset,
1169 bool &RematOffset) {
1170 // We're looking for the following pattern, for either load or store:
1171 // %baseptr:_(p0) = ...
1172 // G_STORE %val(s64), %baseptr(p0)
1173 // %offset:_(s64) = G_CONSTANT i64 -256
1174 // %new_addr:_(p0) = G_PTR_ADD %baseptr, %offset(s64)
1175 const auto &TLI = getTargetLowering();
1176
1177 Register Ptr = LdSt.getPointerReg();
1178 // If the store is the only use, don't bother.
1179 if (MRI.hasOneNonDBGUse(Ptr))
1180 return false;
1181
1182 if (!isIndexedLoadStoreLegal(LdSt))
1183 return false;
1184
1185 if (getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Ptr, MRI))
1186 return false;
1187
1188 MachineInstr *StoredValDef = getDefIgnoringCopies(LdSt.getReg(0), MRI);
1189 auto *PtrDef = MRI.getVRegDef(Ptr);
1190
1191 unsigned NumUsesChecked = 0;
1192 for (auto &Use : MRI.use_nodbg_instructions(Ptr)) {
1193 if (++NumUsesChecked > PostIndexUseThreshold)
1194 return false; // Try to avoid exploding compile time.
1195
1196 auto *PtrAdd = dyn_cast<GPtrAdd>(&Use);
1197 // The use itself might be dead. This can happen during combines if DCE
1198 // hasn't had a chance to run yet. Don't allow it to form an indexed op.
1199 if (!PtrAdd || MRI.use_nodbg_empty(PtrAdd->getReg(0)))
1200 continue;
1201
1202 // Check the user of this isn't the store, otherwise we'd be generate a
1203 // indexed store defining its own use.
1204 if (StoredValDef == &Use)
1205 continue;
1206
1207 Offset = PtrAdd->getOffsetReg();
1208 if (!ForceLegalIndexing &&
1209 !TLI.isIndexingLegal(LdSt, PtrAdd->getBaseReg(), Offset,
1210 /*IsPre*/ false, MRI))
1211 continue;
1212
1213 // Make sure the offset calculation is before the potentially indexed op.
1214 MachineInstr *OffsetDef = MRI.getVRegDef(Offset);
1215 RematOffset = false;
1216 if (!dominates(*OffsetDef, LdSt)) {
1217 // If the offset however is just a G_CONSTANT, we can always just
1218 // rematerialize it where we need it.
1219 if (OffsetDef->getOpcode() != TargetOpcode::G_CONSTANT)
1220 continue;
1221 RematOffset = true;
1222 }
1223
1224 for (auto &BasePtrUse : MRI.use_nodbg_instructions(PtrAdd->getBaseReg())) {
1225 if (&BasePtrUse == PtrDef)
1226 continue;
1227
1228 // If the user is a later load/store that can be post-indexed, then don't
1229 // combine this one.
1230 auto *BasePtrLdSt = dyn_cast<GLoadStore>(&BasePtrUse);
1231 if (BasePtrLdSt && BasePtrLdSt != &LdSt &&
1232 dominates(LdSt, *BasePtrLdSt) &&
1233 isIndexedLoadStoreLegal(*BasePtrLdSt))
1234 return false;
1235
1236 // Now we're looking for the key G_PTR_ADD instruction, which contains
1237 // the offset add that we want to fold.
1238 if (auto *BasePtrUseDef = dyn_cast<GPtrAdd>(&BasePtrUse)) {
1239 Register PtrAddDefReg = BasePtrUseDef->getReg(0);
1240 for (auto &BaseUseUse : MRI.use_nodbg_instructions(PtrAddDefReg)) {
1241 // If the use is in a different block, then we may produce worse code
1242 // due to the extra register pressure.
1243 if (BaseUseUse.getParent() != LdSt.getParent())
1244 return false;
1245
1246 if (auto *UseUseLdSt = dyn_cast<GLoadStore>(&BaseUseUse))
1247 if (canFoldInAddressingMode(UseUseLdSt, TLI, MRI))
1248 return false;
1249 }
1250 if (!dominates(LdSt, BasePtrUse))
1251 return false; // All use must be dominated by the load/store.
1252 }
1253 }
1254
1255 Addr = PtrAdd->getReg(0);
1256 Base = PtrAdd->getBaseReg();
1257 return true;
1258 }
1259
1260 return false;
1261 }
1262
findPreIndexCandidate(GLoadStore & LdSt,Register & Addr,Register & Base,Register & Offset)1263 bool CombinerHelper::findPreIndexCandidate(GLoadStore &LdSt, Register &Addr,
1264 Register &Base, Register &Offset) {
1265 auto &MF = *LdSt.getParent()->getParent();
1266 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1267
1268 Addr = LdSt.getPointerReg();
1269 if (!mi_match(Addr, MRI, m_GPtrAdd(m_Reg(Base), m_Reg(Offset))) ||
1270 MRI.hasOneNonDBGUse(Addr))
1271 return false;
1272
1273 if (!ForceLegalIndexing &&
1274 !TLI.isIndexingLegal(LdSt, Base, Offset, /*IsPre*/ true, MRI))
1275 return false;
1276
1277 if (!isIndexedLoadStoreLegal(LdSt))
1278 return false;
1279
1280 MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI);
1281 if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX)
1282 return false;
1283
1284 if (auto *St = dyn_cast<GStore>(&LdSt)) {
1285 // Would require a copy.
1286 if (Base == St->getValueReg())
1287 return false;
1288
1289 // We're expecting one use of Addr in MI, but it could also be the
1290 // value stored, which isn't actually dominated by the instruction.
1291 if (St->getValueReg() == Addr)
1292 return false;
1293 }
1294
1295 // Avoid increasing cross-block register pressure.
1296 for (auto &AddrUse : MRI.use_nodbg_instructions(Addr))
1297 if (AddrUse.getParent() != LdSt.getParent())
1298 return false;
1299
1300 // FIXME: check whether all uses of the base pointer are constant PtrAdds.
1301 // That might allow us to end base's liveness here by adjusting the constant.
1302 bool RealUse = false;
1303 for (auto &AddrUse : MRI.use_nodbg_instructions(Addr)) {
1304 if (!dominates(LdSt, AddrUse))
1305 return false; // All use must be dominated by the load/store.
1306
1307 // If Ptr may be folded in addressing mode of other use, then it's
1308 // not profitable to do this transformation.
1309 if (auto *UseLdSt = dyn_cast<GLoadStore>(&AddrUse)) {
1310 if (!canFoldInAddressingMode(UseLdSt, TLI, MRI))
1311 RealUse = true;
1312 } else {
1313 RealUse = true;
1314 }
1315 }
1316 return RealUse;
1317 }
1318
matchCombineExtractedVectorLoad(MachineInstr & MI,BuildFnTy & MatchInfo)1319 bool CombinerHelper::matchCombineExtractedVectorLoad(MachineInstr &MI,
1320 BuildFnTy &MatchInfo) {
1321 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
1322
1323 // Check if there is a load that defines the vector being extracted from.
1324 auto *LoadMI = getOpcodeDef<GLoad>(MI.getOperand(1).getReg(), MRI);
1325 if (!LoadMI)
1326 return false;
1327
1328 Register Vector = MI.getOperand(1).getReg();
1329 LLT VecEltTy = MRI.getType(Vector).getElementType();
1330
1331 assert(MRI.getType(MI.getOperand(0).getReg()) == VecEltTy);
1332
1333 // Checking whether we should reduce the load width.
1334 if (!MRI.hasOneNonDBGUse(Vector))
1335 return false;
1336
1337 // Check if the defining load is simple.
1338 if (!LoadMI->isSimple())
1339 return false;
1340
1341 // If the vector element type is not a multiple of a byte then we are unable
1342 // to correctly compute an address to load only the extracted element as a
1343 // scalar.
1344 if (!VecEltTy.isByteSized())
1345 return false;
1346
1347 // Check for load fold barriers between the extraction and the load.
1348 if (MI.getParent() != LoadMI->getParent())
1349 return false;
1350 const unsigned MaxIter = 20;
1351 unsigned Iter = 0;
1352 for (auto II = LoadMI->getIterator(), IE = MI.getIterator(); II != IE; ++II) {
1353 if (II->isLoadFoldBarrier())
1354 return false;
1355 if (Iter++ == MaxIter)
1356 return false;
1357 }
1358
1359 // Check if the new load that we are going to create is legal
1360 // if we are in the post-legalization phase.
1361 MachineMemOperand MMO = LoadMI->getMMO();
1362 Align Alignment = MMO.getAlign();
1363 MachinePointerInfo PtrInfo;
1364 uint64_t Offset;
1365
1366 // Finding the appropriate PtrInfo if offset is a known constant.
1367 // This is required to create the memory operand for the narrowed load.
1368 // This machine memory operand object helps us infer about legality
1369 // before we proceed to combine the instruction.
1370 if (auto CVal = getIConstantVRegVal(Vector, MRI)) {
1371 int Elt = CVal->getZExtValue();
1372 // FIXME: should be (ABI size)*Elt.
1373 Offset = VecEltTy.getSizeInBits() * Elt / 8;
1374 PtrInfo = MMO.getPointerInfo().getWithOffset(Offset);
1375 } else {
1376 // Discard the pointer info except the address space because the memory
1377 // operand can't represent this new access since the offset is variable.
1378 Offset = VecEltTy.getSizeInBits() / 8;
1379 PtrInfo = MachinePointerInfo(MMO.getPointerInfo().getAddrSpace());
1380 }
1381
1382 Alignment = commonAlignment(Alignment, Offset);
1383
1384 Register VecPtr = LoadMI->getPointerReg();
1385 LLT PtrTy = MRI.getType(VecPtr);
1386
1387 MachineFunction &MF = *MI.getMF();
1388 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, VecEltTy);
1389
1390 LegalityQuery::MemDesc MMDesc(*NewMMO);
1391
1392 LegalityQuery Q = {TargetOpcode::G_LOAD, {VecEltTy, PtrTy}, {MMDesc}};
1393
1394 if (!isLegalOrBeforeLegalizer(Q))
1395 return false;
1396
1397 // Load must be allowed and fast on the target.
1398 LLVMContext &C = MF.getFunction().getContext();
1399 auto &DL = MF.getDataLayout();
1400 unsigned Fast = 0;
1401 if (!getTargetLowering().allowsMemoryAccess(C, DL, VecEltTy, *NewMMO,
1402 &Fast) ||
1403 !Fast)
1404 return false;
1405
1406 Register Result = MI.getOperand(0).getReg();
1407 Register Index = MI.getOperand(2).getReg();
1408
1409 MatchInfo = [=](MachineIRBuilder &B) {
1410 GISelObserverWrapper DummyObserver;
1411 LegalizerHelper Helper(B.getMF(), DummyObserver, B);
1412 //// Get pointer to the vector element.
1413 Register finalPtr = Helper.getVectorElementPointer(
1414 LoadMI->getPointerReg(), MRI.getType(LoadMI->getOperand(0).getReg()),
1415 Index);
1416 // New G_LOAD instruction.
1417 B.buildLoad(Result, finalPtr, PtrInfo, Alignment);
1418 // Remove original GLOAD instruction.
1419 LoadMI->eraseFromParent();
1420 };
1421
1422 return true;
1423 }
1424
matchCombineIndexedLoadStore(MachineInstr & MI,IndexedLoadStoreMatchInfo & MatchInfo)1425 bool CombinerHelper::matchCombineIndexedLoadStore(
1426 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1427 auto &LdSt = cast<GLoadStore>(MI);
1428
1429 if (LdSt.isAtomic())
1430 return false;
1431
1432 MatchInfo.IsPre = findPreIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
1433 MatchInfo.Offset);
1434 if (!MatchInfo.IsPre &&
1435 !findPostIndexCandidate(LdSt, MatchInfo.Addr, MatchInfo.Base,
1436 MatchInfo.Offset, MatchInfo.RematOffset))
1437 return false;
1438
1439 return true;
1440 }
1441
applyCombineIndexedLoadStore(MachineInstr & MI,IndexedLoadStoreMatchInfo & MatchInfo)1442 void CombinerHelper::applyCombineIndexedLoadStore(
1443 MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) {
1444 MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr);
1445 unsigned Opcode = MI.getOpcode();
1446 bool IsStore = Opcode == TargetOpcode::G_STORE;
1447 unsigned NewOpcode = getIndexedOpc(Opcode);
1448
1449 // If the offset constant didn't happen to dominate the load/store, we can
1450 // just clone it as needed.
1451 if (MatchInfo.RematOffset) {
1452 auto *OldCst = MRI.getVRegDef(MatchInfo.Offset);
1453 auto NewCst = Builder.buildConstant(MRI.getType(MatchInfo.Offset),
1454 *OldCst->getOperand(1).getCImm());
1455 MatchInfo.Offset = NewCst.getReg(0);
1456 }
1457
1458 auto MIB = Builder.buildInstr(NewOpcode);
1459 if (IsStore) {
1460 MIB.addDef(MatchInfo.Addr);
1461 MIB.addUse(MI.getOperand(0).getReg());
1462 } else {
1463 MIB.addDef(MI.getOperand(0).getReg());
1464 MIB.addDef(MatchInfo.Addr);
1465 }
1466
1467 MIB.addUse(MatchInfo.Base);
1468 MIB.addUse(MatchInfo.Offset);
1469 MIB.addImm(MatchInfo.IsPre);
1470 MIB->cloneMemRefs(*MI.getMF(), MI);
1471 MI.eraseFromParent();
1472 AddrDef.eraseFromParent();
1473
1474 LLVM_DEBUG(dbgs() << " Combinined to indexed operation");
1475 }
1476
matchCombineDivRem(MachineInstr & MI,MachineInstr * & OtherMI)1477 bool CombinerHelper::matchCombineDivRem(MachineInstr &MI,
1478 MachineInstr *&OtherMI) {
1479 unsigned Opcode = MI.getOpcode();
1480 bool IsDiv, IsSigned;
1481
1482 switch (Opcode) {
1483 default:
1484 llvm_unreachable("Unexpected opcode!");
1485 case TargetOpcode::G_SDIV:
1486 case TargetOpcode::G_UDIV: {
1487 IsDiv = true;
1488 IsSigned = Opcode == TargetOpcode::G_SDIV;
1489 break;
1490 }
1491 case TargetOpcode::G_SREM:
1492 case TargetOpcode::G_UREM: {
1493 IsDiv = false;
1494 IsSigned = Opcode == TargetOpcode::G_SREM;
1495 break;
1496 }
1497 }
1498
1499 Register Src1 = MI.getOperand(1).getReg();
1500 unsigned DivOpcode, RemOpcode, DivremOpcode;
1501 if (IsSigned) {
1502 DivOpcode = TargetOpcode::G_SDIV;
1503 RemOpcode = TargetOpcode::G_SREM;
1504 DivremOpcode = TargetOpcode::G_SDIVREM;
1505 } else {
1506 DivOpcode = TargetOpcode::G_UDIV;
1507 RemOpcode = TargetOpcode::G_UREM;
1508 DivremOpcode = TargetOpcode::G_UDIVREM;
1509 }
1510
1511 if (!isLegalOrBeforeLegalizer({DivremOpcode, {MRI.getType(Src1)}}))
1512 return false;
1513
1514 // Combine:
1515 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1516 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1517 // into:
1518 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1519
1520 // Combine:
1521 // %rem:_ = G_[SU]REM %src1:_, %src2:_
1522 // %div:_ = G_[SU]DIV %src1:_, %src2:_
1523 // into:
1524 // %div:_, %rem:_ = G_[SU]DIVREM %src1:_, %src2:_
1525
1526 for (auto &UseMI : MRI.use_nodbg_instructions(Src1)) {
1527 if (MI.getParent() == UseMI.getParent() &&
1528 ((IsDiv && UseMI.getOpcode() == RemOpcode) ||
1529 (!IsDiv && UseMI.getOpcode() == DivOpcode)) &&
1530 matchEqualDefs(MI.getOperand(2), UseMI.getOperand(2)) &&
1531 matchEqualDefs(MI.getOperand(1), UseMI.getOperand(1))) {
1532 OtherMI = &UseMI;
1533 return true;
1534 }
1535 }
1536
1537 return false;
1538 }
1539
applyCombineDivRem(MachineInstr & MI,MachineInstr * & OtherMI)1540 void CombinerHelper::applyCombineDivRem(MachineInstr &MI,
1541 MachineInstr *&OtherMI) {
1542 unsigned Opcode = MI.getOpcode();
1543 assert(OtherMI && "OtherMI shouldn't be empty.");
1544
1545 Register DestDivReg, DestRemReg;
1546 if (Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_UDIV) {
1547 DestDivReg = MI.getOperand(0).getReg();
1548 DestRemReg = OtherMI->getOperand(0).getReg();
1549 } else {
1550 DestDivReg = OtherMI->getOperand(0).getReg();
1551 DestRemReg = MI.getOperand(0).getReg();
1552 }
1553
1554 bool IsSigned =
1555 Opcode == TargetOpcode::G_SDIV || Opcode == TargetOpcode::G_SREM;
1556
1557 // Check which instruction is first in the block so we don't break def-use
1558 // deps by "moving" the instruction incorrectly. Also keep track of which
1559 // instruction is first so we pick it's operands, avoiding use-before-def
1560 // bugs.
1561 MachineInstr *FirstInst = dominates(MI, *OtherMI) ? &MI : OtherMI;
1562 Builder.setInstrAndDebugLoc(*FirstInst);
1563
1564 Builder.buildInstr(IsSigned ? TargetOpcode::G_SDIVREM
1565 : TargetOpcode::G_UDIVREM,
1566 {DestDivReg, DestRemReg},
1567 { FirstInst->getOperand(1), FirstInst->getOperand(2) });
1568 MI.eraseFromParent();
1569 OtherMI->eraseFromParent();
1570 }
1571
matchOptBrCondByInvertingCond(MachineInstr & MI,MachineInstr * & BrCond)1572 bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI,
1573 MachineInstr *&BrCond) {
1574 assert(MI.getOpcode() == TargetOpcode::G_BR);
1575
1576 // Try to match the following:
1577 // bb1:
1578 // G_BRCOND %c1, %bb2
1579 // G_BR %bb3
1580 // bb2:
1581 // ...
1582 // bb3:
1583
1584 // The above pattern does not have a fall through to the successor bb2, always
1585 // resulting in a branch no matter which path is taken. Here we try to find
1586 // and replace that pattern with conditional branch to bb3 and otherwise
1587 // fallthrough to bb2. This is generally better for branch predictors.
1588
1589 MachineBasicBlock *MBB = MI.getParent();
1590 MachineBasicBlock::iterator BrIt(MI);
1591 if (BrIt == MBB->begin())
1592 return false;
1593 assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator");
1594
1595 BrCond = &*std::prev(BrIt);
1596 if (BrCond->getOpcode() != TargetOpcode::G_BRCOND)
1597 return false;
1598
1599 // Check that the next block is the conditional branch target. Also make sure
1600 // that it isn't the same as the G_BR's target (otherwise, this will loop.)
1601 MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB();
1602 return BrCondTarget != MI.getOperand(0).getMBB() &&
1603 MBB->isLayoutSuccessor(BrCondTarget);
1604 }
1605
applyOptBrCondByInvertingCond(MachineInstr & MI,MachineInstr * & BrCond)1606 void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI,
1607 MachineInstr *&BrCond) {
1608 MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB();
1609 Builder.setInstrAndDebugLoc(*BrCond);
1610 LLT Ty = MRI.getType(BrCond->getOperand(0).getReg());
1611 // FIXME: Does int/fp matter for this? If so, we might need to restrict
1612 // this to i1 only since we might not know for sure what kind of
1613 // compare generated the condition value.
1614 auto True = Builder.buildConstant(
1615 Ty, getICmpTrueVal(getTargetLowering(), false, false));
1616 auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True);
1617
1618 auto *FallthroughBB = BrCond->getOperand(1).getMBB();
1619 Observer.changingInstr(MI);
1620 MI.getOperand(0).setMBB(FallthroughBB);
1621 Observer.changedInstr(MI);
1622
1623 // Change the conditional branch to use the inverted condition and
1624 // new target block.
1625 Observer.changingInstr(*BrCond);
1626 BrCond->getOperand(0).setReg(Xor.getReg(0));
1627 BrCond->getOperand(1).setMBB(BrTarget);
1628 Observer.changedInstr(*BrCond);
1629 }
1630
1631
tryEmitMemcpyInline(MachineInstr & MI)1632 bool CombinerHelper::tryEmitMemcpyInline(MachineInstr &MI) {
1633 MachineIRBuilder HelperBuilder(MI);
1634 GISelObserverWrapper DummyObserver;
1635 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1636 return Helper.lowerMemcpyInline(MI) ==
1637 LegalizerHelper::LegalizeResult::Legalized;
1638 }
1639
tryCombineMemCpyFamily(MachineInstr & MI,unsigned MaxLen)1640 bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
1641 MachineIRBuilder HelperBuilder(MI);
1642 GISelObserverWrapper DummyObserver;
1643 LegalizerHelper Helper(HelperBuilder.getMF(), DummyObserver, HelperBuilder);
1644 return Helper.lowerMemCpyFamily(MI, MaxLen) ==
1645 LegalizerHelper::LegalizeResult::Legalized;
1646 }
1647
constantFoldFpUnary(const MachineInstr & MI,const MachineRegisterInfo & MRI,const APFloat & Val)1648 static APFloat constantFoldFpUnary(const MachineInstr &MI,
1649 const MachineRegisterInfo &MRI,
1650 const APFloat &Val) {
1651 APFloat Result(Val);
1652 switch (MI.getOpcode()) {
1653 default:
1654 llvm_unreachable("Unexpected opcode!");
1655 case TargetOpcode::G_FNEG: {
1656 Result.changeSign();
1657 return Result;
1658 }
1659 case TargetOpcode::G_FABS: {
1660 Result.clearSign();
1661 return Result;
1662 }
1663 case TargetOpcode::G_FPTRUNC: {
1664 bool Unused;
1665 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1666 Result.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven,
1667 &Unused);
1668 return Result;
1669 }
1670 case TargetOpcode::G_FSQRT: {
1671 bool Unused;
1672 Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1673 &Unused);
1674 Result = APFloat(sqrt(Result.convertToDouble()));
1675 break;
1676 }
1677 case TargetOpcode::G_FLOG2: {
1678 bool Unused;
1679 Result.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1680 &Unused);
1681 Result = APFloat(log2(Result.convertToDouble()));
1682 break;
1683 }
1684 }
1685 // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise,
1686 // `buildFConstant` will assert on size mismatch. Only `G_FSQRT`, and
1687 // `G_FLOG2` reach here.
1688 bool Unused;
1689 Result.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &Unused);
1690 return Result;
1691 }
1692
applyCombineConstantFoldFpUnary(MachineInstr & MI,const ConstantFP * Cst)1693 void CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI,
1694 const ConstantFP *Cst) {
1695 APFloat Folded = constantFoldFpUnary(MI, MRI, Cst->getValue());
1696 const ConstantFP *NewCst = ConstantFP::get(Builder.getContext(), Folded);
1697 Builder.buildFConstant(MI.getOperand(0), *NewCst);
1698 MI.eraseFromParent();
1699 }
1700
matchPtrAddImmedChain(MachineInstr & MI,PtrAddChain & MatchInfo)1701 bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI,
1702 PtrAddChain &MatchInfo) {
1703 // We're trying to match the following pattern:
1704 // %t1 = G_PTR_ADD %base, G_CONSTANT imm1
1705 // %root = G_PTR_ADD %t1, G_CONSTANT imm2
1706 // -->
1707 // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2)
1708
1709 if (MI.getOpcode() != TargetOpcode::G_PTR_ADD)
1710 return false;
1711
1712 Register Add2 = MI.getOperand(1).getReg();
1713 Register Imm1 = MI.getOperand(2).getReg();
1714 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1715 if (!MaybeImmVal)
1716 return false;
1717
1718 MachineInstr *Add2Def = MRI.getVRegDef(Add2);
1719 if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD)
1720 return false;
1721
1722 Register Base = Add2Def->getOperand(1).getReg();
1723 Register Imm2 = Add2Def->getOperand(2).getReg();
1724 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1725 if (!MaybeImm2Val)
1726 return false;
1727
1728 // Check if the new combined immediate forms an illegal addressing mode.
1729 // Do not combine if it was legal before but would get illegal.
1730 // To do so, we need to find a load/store user of the pointer to get
1731 // the access type.
1732 Type *AccessTy = nullptr;
1733 auto &MF = *MI.getMF();
1734 for (auto &UseMI : MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
1735 if (auto *LdSt = dyn_cast<GLoadStore>(&UseMI)) {
1736 AccessTy = getTypeForLLT(MRI.getType(LdSt->getReg(0)),
1737 MF.getFunction().getContext());
1738 break;
1739 }
1740 }
1741 TargetLoweringBase::AddrMode AMNew;
1742 APInt CombinedImm = MaybeImmVal->Value + MaybeImm2Val->Value;
1743 AMNew.BaseOffs = CombinedImm.getSExtValue();
1744 if (AccessTy) {
1745 AMNew.HasBaseReg = true;
1746 TargetLoweringBase::AddrMode AMOld;
1747 AMOld.BaseOffs = MaybeImmVal->Value.getSExtValue();
1748 AMOld.HasBaseReg = true;
1749 unsigned AS = MRI.getType(Add2).getAddressSpace();
1750 const auto &TLI = *MF.getSubtarget().getTargetLowering();
1751 if (TLI.isLegalAddressingMode(MF.getDataLayout(), AMOld, AccessTy, AS) &&
1752 !TLI.isLegalAddressingMode(MF.getDataLayout(), AMNew, AccessTy, AS))
1753 return false;
1754 }
1755
1756 // Pass the combined immediate to the apply function.
1757 MatchInfo.Imm = AMNew.BaseOffs;
1758 MatchInfo.Base = Base;
1759 MatchInfo.Bank = getRegBank(Imm2);
1760 return true;
1761 }
1762
applyPtrAddImmedChain(MachineInstr & MI,PtrAddChain & MatchInfo)1763 void CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI,
1764 PtrAddChain &MatchInfo) {
1765 assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD");
1766 MachineIRBuilder MIB(MI);
1767 LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg());
1768 auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm);
1769 setRegBank(NewOffset.getReg(0), MatchInfo.Bank);
1770 Observer.changingInstr(MI);
1771 MI.getOperand(1).setReg(MatchInfo.Base);
1772 MI.getOperand(2).setReg(NewOffset.getReg(0));
1773 Observer.changedInstr(MI);
1774 }
1775
matchShiftImmedChain(MachineInstr & MI,RegisterImmPair & MatchInfo)1776 bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI,
1777 RegisterImmPair &MatchInfo) {
1778 // We're trying to match the following pattern with any of
1779 // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions:
1780 // %t1 = SHIFT %base, G_CONSTANT imm1
1781 // %root = SHIFT %t1, G_CONSTANT imm2
1782 // -->
1783 // %root = SHIFT %base, G_CONSTANT (imm1 + imm2)
1784
1785 unsigned Opcode = MI.getOpcode();
1786 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1787 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1788 Opcode == TargetOpcode::G_USHLSAT) &&
1789 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1790
1791 Register Shl2 = MI.getOperand(1).getReg();
1792 Register Imm1 = MI.getOperand(2).getReg();
1793 auto MaybeImmVal = getIConstantVRegValWithLookThrough(Imm1, MRI);
1794 if (!MaybeImmVal)
1795 return false;
1796
1797 MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2);
1798 if (Shl2Def->getOpcode() != Opcode)
1799 return false;
1800
1801 Register Base = Shl2Def->getOperand(1).getReg();
1802 Register Imm2 = Shl2Def->getOperand(2).getReg();
1803 auto MaybeImm2Val = getIConstantVRegValWithLookThrough(Imm2, MRI);
1804 if (!MaybeImm2Val)
1805 return false;
1806
1807 // Pass the combined immediate to the apply function.
1808 MatchInfo.Imm =
1809 (MaybeImmVal->Value.getZExtValue() + MaybeImm2Val->Value).getZExtValue();
1810 MatchInfo.Reg = Base;
1811
1812 // There is no simple replacement for a saturating unsigned left shift that
1813 // exceeds the scalar size.
1814 if (Opcode == TargetOpcode::G_USHLSAT &&
1815 MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits())
1816 return false;
1817
1818 return true;
1819 }
1820
applyShiftImmedChain(MachineInstr & MI,RegisterImmPair & MatchInfo)1821 void CombinerHelper::applyShiftImmedChain(MachineInstr &MI,
1822 RegisterImmPair &MatchInfo) {
1823 unsigned Opcode = MI.getOpcode();
1824 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1825 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT ||
1826 Opcode == TargetOpcode::G_USHLSAT) &&
1827 "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT");
1828
1829 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
1830 unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits();
1831 auto Imm = MatchInfo.Imm;
1832
1833 if (Imm >= ScalarSizeInBits) {
1834 // Any logical shift that exceeds scalar size will produce zero.
1835 if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) {
1836 Builder.buildConstant(MI.getOperand(0), 0);
1837 MI.eraseFromParent();
1838 return;
1839 }
1840 // Arithmetic shift and saturating signed left shift have no effect beyond
1841 // scalar size.
1842 Imm = ScalarSizeInBits - 1;
1843 }
1844
1845 LLT ImmTy = MRI.getType(MI.getOperand(2).getReg());
1846 Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0);
1847 Observer.changingInstr(MI);
1848 MI.getOperand(1).setReg(MatchInfo.Reg);
1849 MI.getOperand(2).setReg(NewImm);
1850 Observer.changedInstr(MI);
1851 }
1852
matchShiftOfShiftedLogic(MachineInstr & MI,ShiftOfShiftedLogic & MatchInfo)1853 bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI,
1854 ShiftOfShiftedLogic &MatchInfo) {
1855 // We're trying to match the following pattern with any of
1856 // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination
1857 // with any of G_AND/G_OR/G_XOR logic instructions.
1858 // %t1 = SHIFT %X, G_CONSTANT C0
1859 // %t2 = LOGIC %t1, %Y
1860 // %root = SHIFT %t2, G_CONSTANT C1
1861 // -->
1862 // %t3 = SHIFT %X, G_CONSTANT (C0+C1)
1863 // %t4 = SHIFT %Y, G_CONSTANT C1
1864 // %root = LOGIC %t3, %t4
1865 unsigned ShiftOpcode = MI.getOpcode();
1866 assert((ShiftOpcode == TargetOpcode::G_SHL ||
1867 ShiftOpcode == TargetOpcode::G_ASHR ||
1868 ShiftOpcode == TargetOpcode::G_LSHR ||
1869 ShiftOpcode == TargetOpcode::G_USHLSAT ||
1870 ShiftOpcode == TargetOpcode::G_SSHLSAT) &&
1871 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1872
1873 // Match a one-use bitwise logic op.
1874 Register LogicDest = MI.getOperand(1).getReg();
1875 if (!MRI.hasOneNonDBGUse(LogicDest))
1876 return false;
1877
1878 MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest);
1879 unsigned LogicOpcode = LogicMI->getOpcode();
1880 if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR &&
1881 LogicOpcode != TargetOpcode::G_XOR)
1882 return false;
1883
1884 // Find a matching one-use shift by constant.
1885 const Register C1 = MI.getOperand(2).getReg();
1886 auto MaybeImmVal = getIConstantVRegValWithLookThrough(C1, MRI);
1887 if (!MaybeImmVal || MaybeImmVal->Value == 0)
1888 return false;
1889
1890 const uint64_t C1Val = MaybeImmVal->Value.getZExtValue();
1891
1892 auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) {
1893 // Shift should match previous one and should be a one-use.
1894 if (MI->getOpcode() != ShiftOpcode ||
1895 !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
1896 return false;
1897
1898 // Must be a constant.
1899 auto MaybeImmVal =
1900 getIConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI);
1901 if (!MaybeImmVal)
1902 return false;
1903
1904 ShiftVal = MaybeImmVal->Value.getSExtValue();
1905 return true;
1906 };
1907
1908 // Logic ops are commutative, so check each operand for a match.
1909 Register LogicMIReg1 = LogicMI->getOperand(1).getReg();
1910 MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1);
1911 Register LogicMIReg2 = LogicMI->getOperand(2).getReg();
1912 MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2);
1913 uint64_t C0Val;
1914
1915 if (matchFirstShift(LogicMIOp1, C0Val)) {
1916 MatchInfo.LogicNonShiftReg = LogicMIReg2;
1917 MatchInfo.Shift2 = LogicMIOp1;
1918 } else if (matchFirstShift(LogicMIOp2, C0Val)) {
1919 MatchInfo.LogicNonShiftReg = LogicMIReg1;
1920 MatchInfo.Shift2 = LogicMIOp2;
1921 } else
1922 return false;
1923
1924 MatchInfo.ValSum = C0Val + C1Val;
1925
1926 // The fold is not valid if the sum of the shift values exceeds bitwidth.
1927 if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits())
1928 return false;
1929
1930 MatchInfo.Logic = LogicMI;
1931 return true;
1932 }
1933
applyShiftOfShiftedLogic(MachineInstr & MI,ShiftOfShiftedLogic & MatchInfo)1934 void CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI,
1935 ShiftOfShiftedLogic &MatchInfo) {
1936 unsigned Opcode = MI.getOpcode();
1937 assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR ||
1938 Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT ||
1939 Opcode == TargetOpcode::G_SSHLSAT) &&
1940 "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT");
1941
1942 LLT ShlType = MRI.getType(MI.getOperand(2).getReg());
1943 LLT DestType = MRI.getType(MI.getOperand(0).getReg());
1944
1945 Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0);
1946
1947 Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg();
1948 Register Shift1 =
1949 Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0);
1950
1951 // If LogicNonShiftReg is the same to Shift1Base, and shift1 const is the same
1952 // to MatchInfo.Shift2 const, CSEMIRBuilder will reuse the old shift1 when
1953 // build shift2. So, if we erase MatchInfo.Shift2 at the end, actually we
1954 // remove old shift1. And it will cause crash later. So erase it earlier to
1955 // avoid the crash.
1956 MatchInfo.Shift2->eraseFromParent();
1957
1958 Register Shift2Const = MI.getOperand(2).getReg();
1959 Register Shift2 = Builder
1960 .buildInstr(Opcode, {DestType},
1961 {MatchInfo.LogicNonShiftReg, Shift2Const})
1962 .getReg(0);
1963
1964 Register Dest = MI.getOperand(0).getReg();
1965 Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2});
1966
1967 // This was one use so it's safe to remove it.
1968 MatchInfo.Logic->eraseFromParent();
1969
1970 MI.eraseFromParent();
1971 }
1972
matchCommuteShift(MachineInstr & MI,BuildFnTy & MatchInfo)1973 bool CombinerHelper::matchCommuteShift(MachineInstr &MI, BuildFnTy &MatchInfo) {
1974 assert(MI.getOpcode() == TargetOpcode::G_SHL && "Expected G_SHL");
1975 // Combine (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
1976 // Combine (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
1977 auto &Shl = cast<GenericMachineInstr>(MI);
1978 Register DstReg = Shl.getReg(0);
1979 Register SrcReg = Shl.getReg(1);
1980 Register ShiftReg = Shl.getReg(2);
1981 Register X, C1;
1982
1983 if (!getTargetLowering().isDesirableToCommuteWithShift(MI, !isPreLegalize()))
1984 return false;
1985
1986 if (!mi_match(SrcReg, MRI,
1987 m_OneNonDBGUse(m_any_of(m_GAdd(m_Reg(X), m_Reg(C1)),
1988 m_GOr(m_Reg(X), m_Reg(C1))))))
1989 return false;
1990
1991 APInt C1Val, C2Val;
1992 if (!mi_match(C1, MRI, m_ICstOrSplat(C1Val)) ||
1993 !mi_match(ShiftReg, MRI, m_ICstOrSplat(C2Val)))
1994 return false;
1995
1996 auto *SrcDef = MRI.getVRegDef(SrcReg);
1997 assert((SrcDef->getOpcode() == TargetOpcode::G_ADD ||
1998 SrcDef->getOpcode() == TargetOpcode::G_OR) && "Unexpected op");
1999 LLT SrcTy = MRI.getType(SrcReg);
2000 MatchInfo = [=](MachineIRBuilder &B) {
2001 auto S1 = B.buildShl(SrcTy, X, ShiftReg);
2002 auto S2 = B.buildShl(SrcTy, C1, ShiftReg);
2003 B.buildInstr(SrcDef->getOpcode(), {DstReg}, {S1, S2});
2004 };
2005 return true;
2006 }
2007
matchCombineMulToShl(MachineInstr & MI,unsigned & ShiftVal)2008 bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI,
2009 unsigned &ShiftVal) {
2010 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2011 auto MaybeImmVal =
2012 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2013 if (!MaybeImmVal)
2014 return false;
2015
2016 ShiftVal = MaybeImmVal->Value.exactLogBase2();
2017 return (static_cast<int32_t>(ShiftVal) != -1);
2018 }
2019
applyCombineMulToShl(MachineInstr & MI,unsigned & ShiftVal)2020 void CombinerHelper::applyCombineMulToShl(MachineInstr &MI,
2021 unsigned &ShiftVal) {
2022 assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL");
2023 MachineIRBuilder MIB(MI);
2024 LLT ShiftTy = MRI.getType(MI.getOperand(0).getReg());
2025 auto ShiftCst = MIB.buildConstant(ShiftTy, ShiftVal);
2026 Observer.changingInstr(MI);
2027 MI.setDesc(MIB.getTII().get(TargetOpcode::G_SHL));
2028 MI.getOperand(2).setReg(ShiftCst.getReg(0));
2029 Observer.changedInstr(MI);
2030 }
2031
2032 // shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source
matchCombineShlOfExtend(MachineInstr & MI,RegisterImmPair & MatchData)2033 bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI,
2034 RegisterImmPair &MatchData) {
2035 assert(MI.getOpcode() == TargetOpcode::G_SHL && KB);
2036 if (!getTargetLowering().isDesirableToPullExtFromShl(MI))
2037 return false;
2038
2039 Register LHS = MI.getOperand(1).getReg();
2040
2041 Register ExtSrc;
2042 if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) &&
2043 !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) &&
2044 !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc))))
2045 return false;
2046
2047 Register RHS = MI.getOperand(2).getReg();
2048 MachineInstr *MIShiftAmt = MRI.getVRegDef(RHS);
2049 auto MaybeShiftAmtVal = isConstantOrConstantSplatVector(*MIShiftAmt, MRI);
2050 if (!MaybeShiftAmtVal)
2051 return false;
2052
2053 if (LI) {
2054 LLT SrcTy = MRI.getType(ExtSrc);
2055
2056 // We only really care about the legality with the shifted value. We can
2057 // pick any type the constant shift amount, so ask the target what to
2058 // use. Otherwise we would have to guess and hope it is reported as legal.
2059 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy);
2060 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}}))
2061 return false;
2062 }
2063
2064 int64_t ShiftAmt = MaybeShiftAmtVal->getSExtValue();
2065 MatchData.Reg = ExtSrc;
2066 MatchData.Imm = ShiftAmt;
2067
2068 unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countl_one();
2069 unsigned SrcTySize = MRI.getType(ExtSrc).getScalarSizeInBits();
2070 return MinLeadingZeros >= ShiftAmt && ShiftAmt < SrcTySize;
2071 }
2072
applyCombineShlOfExtend(MachineInstr & MI,const RegisterImmPair & MatchData)2073 void CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI,
2074 const RegisterImmPair &MatchData) {
2075 Register ExtSrcReg = MatchData.Reg;
2076 int64_t ShiftAmtVal = MatchData.Imm;
2077
2078 LLT ExtSrcTy = MRI.getType(ExtSrcReg);
2079 auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal);
2080 auto NarrowShift =
2081 Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags());
2082 Builder.buildZExt(MI.getOperand(0), NarrowShift);
2083 MI.eraseFromParent();
2084 }
2085
matchCombineMergeUnmerge(MachineInstr & MI,Register & MatchInfo)2086 bool CombinerHelper::matchCombineMergeUnmerge(MachineInstr &MI,
2087 Register &MatchInfo) {
2088 GMerge &Merge = cast<GMerge>(MI);
2089 SmallVector<Register, 16> MergedValues;
2090 for (unsigned I = 0; I < Merge.getNumSources(); ++I)
2091 MergedValues.emplace_back(Merge.getSourceReg(I));
2092
2093 auto *Unmerge = getOpcodeDef<GUnmerge>(MergedValues[0], MRI);
2094 if (!Unmerge || Unmerge->getNumDefs() != Merge.getNumSources())
2095 return false;
2096
2097 for (unsigned I = 0; I < MergedValues.size(); ++I)
2098 if (MergedValues[I] != Unmerge->getReg(I))
2099 return false;
2100
2101 MatchInfo = Unmerge->getSourceReg();
2102 return true;
2103 }
2104
peekThroughBitcast(Register Reg,const MachineRegisterInfo & MRI)2105 static Register peekThroughBitcast(Register Reg,
2106 const MachineRegisterInfo &MRI) {
2107 while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg))))
2108 ;
2109
2110 return Reg;
2111 }
2112
matchCombineUnmergeMergeToPlainValues(MachineInstr & MI,SmallVectorImpl<Register> & Operands)2113 bool CombinerHelper::matchCombineUnmergeMergeToPlainValues(
2114 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2115 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2116 "Expected an unmerge");
2117 auto &Unmerge = cast<GUnmerge>(MI);
2118 Register SrcReg = peekThroughBitcast(Unmerge.getSourceReg(), MRI);
2119
2120 auto *SrcInstr = getOpcodeDef<GMergeLikeInstr>(SrcReg, MRI);
2121 if (!SrcInstr)
2122 return false;
2123
2124 // Check the source type of the merge.
2125 LLT SrcMergeTy = MRI.getType(SrcInstr->getSourceReg(0));
2126 LLT Dst0Ty = MRI.getType(Unmerge.getReg(0));
2127 bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits();
2128 if (SrcMergeTy != Dst0Ty && !SameSize)
2129 return false;
2130 // They are the same now (modulo a bitcast).
2131 // We can collect all the src registers.
2132 for (unsigned Idx = 0; Idx < SrcInstr->getNumSources(); ++Idx)
2133 Operands.push_back(SrcInstr->getSourceReg(Idx));
2134 return true;
2135 }
2136
applyCombineUnmergeMergeToPlainValues(MachineInstr & MI,SmallVectorImpl<Register> & Operands)2137 void CombinerHelper::applyCombineUnmergeMergeToPlainValues(
2138 MachineInstr &MI, SmallVectorImpl<Register> &Operands) {
2139 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2140 "Expected an unmerge");
2141 assert((MI.getNumOperands() - 1 == Operands.size()) &&
2142 "Not enough operands to replace all defs");
2143 unsigned NumElems = MI.getNumOperands() - 1;
2144
2145 LLT SrcTy = MRI.getType(Operands[0]);
2146 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2147 bool CanReuseInputDirectly = DstTy == SrcTy;
2148 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2149 Register DstReg = MI.getOperand(Idx).getReg();
2150 Register SrcReg = Operands[Idx];
2151
2152 // This combine may run after RegBankSelect, so we need to be aware of
2153 // register banks.
2154 const auto &DstCB = MRI.getRegClassOrRegBank(DstReg);
2155 if (!DstCB.isNull() && DstCB != MRI.getRegClassOrRegBank(SrcReg)) {
2156 SrcReg = Builder.buildCopy(MRI.getType(SrcReg), SrcReg).getReg(0);
2157 MRI.setRegClassOrRegBank(SrcReg, DstCB);
2158 }
2159
2160 if (CanReuseInputDirectly)
2161 replaceRegWith(MRI, DstReg, SrcReg);
2162 else
2163 Builder.buildCast(DstReg, SrcReg);
2164 }
2165 MI.eraseFromParent();
2166 }
2167
matchCombineUnmergeConstant(MachineInstr & MI,SmallVectorImpl<APInt> & Csts)2168 bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI,
2169 SmallVectorImpl<APInt> &Csts) {
2170 unsigned SrcIdx = MI.getNumOperands() - 1;
2171 Register SrcReg = MI.getOperand(SrcIdx).getReg();
2172 MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg);
2173 if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT &&
2174 SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT)
2175 return false;
2176 // Break down the big constant in smaller ones.
2177 const MachineOperand &CstVal = SrcInstr->getOperand(1);
2178 APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT
2179 ? CstVal.getCImm()->getValue()
2180 : CstVal.getFPImm()->getValueAPF().bitcastToAPInt();
2181
2182 LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg());
2183 unsigned ShiftAmt = Dst0Ty.getSizeInBits();
2184 // Unmerge a constant.
2185 for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) {
2186 Csts.emplace_back(Val.trunc(ShiftAmt));
2187 Val = Val.lshr(ShiftAmt);
2188 }
2189
2190 return true;
2191 }
2192
applyCombineUnmergeConstant(MachineInstr & MI,SmallVectorImpl<APInt> & Csts)2193 void CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI,
2194 SmallVectorImpl<APInt> &Csts) {
2195 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2196 "Expected an unmerge");
2197 assert((MI.getNumOperands() - 1 == Csts.size()) &&
2198 "Not enough operands to replace all defs");
2199 unsigned NumElems = MI.getNumOperands() - 1;
2200 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2201 Register DstReg = MI.getOperand(Idx).getReg();
2202 Builder.buildConstant(DstReg, Csts[Idx]);
2203 }
2204
2205 MI.eraseFromParent();
2206 }
2207
matchCombineUnmergeUndef(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)2208 bool CombinerHelper::matchCombineUnmergeUndef(
2209 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
2210 unsigned SrcIdx = MI.getNumOperands() - 1;
2211 Register SrcReg = MI.getOperand(SrcIdx).getReg();
2212 MatchInfo = [&MI](MachineIRBuilder &B) {
2213 unsigned NumElems = MI.getNumOperands() - 1;
2214 for (unsigned Idx = 0; Idx < NumElems; ++Idx) {
2215 Register DstReg = MI.getOperand(Idx).getReg();
2216 B.buildUndef(DstReg);
2217 }
2218 };
2219 return isa<GImplicitDef>(MRI.getVRegDef(SrcReg));
2220 }
2221
matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr & MI)2222 bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2223 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2224 "Expected an unmerge");
2225 if (MRI.getType(MI.getOperand(0).getReg()).isVector() ||
2226 MRI.getType(MI.getOperand(MI.getNumDefs()).getReg()).isVector())
2227 return false;
2228 // Check that all the lanes are dead except the first one.
2229 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2230 if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg()))
2231 return false;
2232 }
2233 return true;
2234 }
2235
applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr & MI)2236 void CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) {
2237 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2238 Register Dst0Reg = MI.getOperand(0).getReg();
2239 Builder.buildTrunc(Dst0Reg, SrcReg);
2240 MI.eraseFromParent();
2241 }
2242
matchCombineUnmergeZExtToZExt(MachineInstr & MI)2243 bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) {
2244 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2245 "Expected an unmerge");
2246 Register Dst0Reg = MI.getOperand(0).getReg();
2247 LLT Dst0Ty = MRI.getType(Dst0Reg);
2248 // G_ZEXT on vector applies to each lane, so it will
2249 // affect all destinations. Therefore we won't be able
2250 // to simplify the unmerge to just the first definition.
2251 if (Dst0Ty.isVector())
2252 return false;
2253 Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg();
2254 LLT SrcTy = MRI.getType(SrcReg);
2255 if (SrcTy.isVector())
2256 return false;
2257
2258 Register ZExtSrcReg;
2259 if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg))))
2260 return false;
2261
2262 // Finally we can replace the first definition with
2263 // a zext of the source if the definition is big enough to hold
2264 // all of ZExtSrc bits.
2265 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2266 return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits();
2267 }
2268
applyCombineUnmergeZExtToZExt(MachineInstr & MI)2269 void CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) {
2270 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES &&
2271 "Expected an unmerge");
2272
2273 Register Dst0Reg = MI.getOperand(0).getReg();
2274
2275 MachineInstr *ZExtInstr =
2276 MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg());
2277 assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT &&
2278 "Expecting a G_ZEXT");
2279
2280 Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg();
2281 LLT Dst0Ty = MRI.getType(Dst0Reg);
2282 LLT ZExtSrcTy = MRI.getType(ZExtSrcReg);
2283
2284 if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) {
2285 Builder.buildZExt(Dst0Reg, ZExtSrcReg);
2286 } else {
2287 assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() &&
2288 "ZExt src doesn't fit in destination");
2289 replaceRegWith(MRI, Dst0Reg, ZExtSrcReg);
2290 }
2291
2292 Register ZeroReg;
2293 for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) {
2294 if (!ZeroReg)
2295 ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0);
2296 replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg);
2297 }
2298 MI.eraseFromParent();
2299 }
2300
matchCombineShiftToUnmerge(MachineInstr & MI,unsigned TargetShiftSize,unsigned & ShiftVal)2301 bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI,
2302 unsigned TargetShiftSize,
2303 unsigned &ShiftVal) {
2304 assert((MI.getOpcode() == TargetOpcode::G_SHL ||
2305 MI.getOpcode() == TargetOpcode::G_LSHR ||
2306 MI.getOpcode() == TargetOpcode::G_ASHR) && "Expected a shift");
2307
2308 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2309 if (Ty.isVector()) // TODO:
2310 return false;
2311
2312 // Don't narrow further than the requested size.
2313 unsigned Size = Ty.getSizeInBits();
2314 if (Size <= TargetShiftSize)
2315 return false;
2316
2317 auto MaybeImmVal =
2318 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2319 if (!MaybeImmVal)
2320 return false;
2321
2322 ShiftVal = MaybeImmVal->Value.getSExtValue();
2323 return ShiftVal >= Size / 2 && ShiftVal < Size;
2324 }
2325
applyCombineShiftToUnmerge(MachineInstr & MI,const unsigned & ShiftVal)2326 void CombinerHelper::applyCombineShiftToUnmerge(MachineInstr &MI,
2327 const unsigned &ShiftVal) {
2328 Register DstReg = MI.getOperand(0).getReg();
2329 Register SrcReg = MI.getOperand(1).getReg();
2330 LLT Ty = MRI.getType(SrcReg);
2331 unsigned Size = Ty.getSizeInBits();
2332 unsigned HalfSize = Size / 2;
2333 assert(ShiftVal >= HalfSize);
2334
2335 LLT HalfTy = LLT::scalar(HalfSize);
2336
2337 auto Unmerge = Builder.buildUnmerge(HalfTy, SrcReg);
2338 unsigned NarrowShiftAmt = ShiftVal - HalfSize;
2339
2340 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
2341 Register Narrowed = Unmerge.getReg(1);
2342
2343 // dst = G_LSHR s64:x, C for C >= 32
2344 // =>
2345 // lo, hi = G_UNMERGE_VALUES x
2346 // dst = G_MERGE_VALUES (G_LSHR hi, C - 32), 0
2347
2348 if (NarrowShiftAmt != 0) {
2349 Narrowed = Builder.buildLShr(HalfTy, Narrowed,
2350 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2351 }
2352
2353 auto Zero = Builder.buildConstant(HalfTy, 0);
2354 Builder.buildMergeLikeInstr(DstReg, {Narrowed, Zero});
2355 } else if (MI.getOpcode() == TargetOpcode::G_SHL) {
2356 Register Narrowed = Unmerge.getReg(0);
2357 // dst = G_SHL s64:x, C for C >= 32
2358 // =>
2359 // lo, hi = G_UNMERGE_VALUES x
2360 // dst = G_MERGE_VALUES 0, (G_SHL hi, C - 32)
2361 if (NarrowShiftAmt != 0) {
2362 Narrowed = Builder.buildShl(HalfTy, Narrowed,
2363 Builder.buildConstant(HalfTy, NarrowShiftAmt)).getReg(0);
2364 }
2365
2366 auto Zero = Builder.buildConstant(HalfTy, 0);
2367 Builder.buildMergeLikeInstr(DstReg, {Zero, Narrowed});
2368 } else {
2369 assert(MI.getOpcode() == TargetOpcode::G_ASHR);
2370 auto Hi = Builder.buildAShr(
2371 HalfTy, Unmerge.getReg(1),
2372 Builder.buildConstant(HalfTy, HalfSize - 1));
2373
2374 if (ShiftVal == HalfSize) {
2375 // (G_ASHR i64:x, 32) ->
2376 // G_MERGE_VALUES hi_32(x), (G_ASHR hi_32(x), 31)
2377 Builder.buildMergeLikeInstr(DstReg, {Unmerge.getReg(1), Hi});
2378 } else if (ShiftVal == Size - 1) {
2379 // Don't need a second shift.
2380 // (G_ASHR i64:x, 63) ->
2381 // %narrowed = (G_ASHR hi_32(x), 31)
2382 // G_MERGE_VALUES %narrowed, %narrowed
2383 Builder.buildMergeLikeInstr(DstReg, {Hi, Hi});
2384 } else {
2385 auto Lo = Builder.buildAShr(
2386 HalfTy, Unmerge.getReg(1),
2387 Builder.buildConstant(HalfTy, ShiftVal - HalfSize));
2388
2389 // (G_ASHR i64:x, C) ->, for C >= 32
2390 // G_MERGE_VALUES (G_ASHR hi_32(x), C - 32), (G_ASHR hi_32(x), 31)
2391 Builder.buildMergeLikeInstr(DstReg, {Lo, Hi});
2392 }
2393 }
2394
2395 MI.eraseFromParent();
2396 }
2397
tryCombineShiftToUnmerge(MachineInstr & MI,unsigned TargetShiftAmount)2398 bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI,
2399 unsigned TargetShiftAmount) {
2400 unsigned ShiftAmt;
2401 if (matchCombineShiftToUnmerge(MI, TargetShiftAmount, ShiftAmt)) {
2402 applyCombineShiftToUnmerge(MI, ShiftAmt);
2403 return true;
2404 }
2405
2406 return false;
2407 }
2408
matchCombineI2PToP2I(MachineInstr & MI,Register & Reg)2409 bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2410 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2411 Register DstReg = MI.getOperand(0).getReg();
2412 LLT DstTy = MRI.getType(DstReg);
2413 Register SrcReg = MI.getOperand(1).getReg();
2414 return mi_match(SrcReg, MRI,
2415 m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg))));
2416 }
2417
applyCombineI2PToP2I(MachineInstr & MI,Register & Reg)2418 void CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) {
2419 assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR");
2420 Register DstReg = MI.getOperand(0).getReg();
2421 Builder.buildCopy(DstReg, Reg);
2422 MI.eraseFromParent();
2423 }
2424
applyCombineP2IToI2P(MachineInstr & MI,Register & Reg)2425 void CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) {
2426 assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT");
2427 Register DstReg = MI.getOperand(0).getReg();
2428 Builder.buildZExtOrTrunc(DstReg, Reg);
2429 MI.eraseFromParent();
2430 }
2431
matchCombineAddP2IToPtrAdd(MachineInstr & MI,std::pair<Register,bool> & PtrReg)2432 bool CombinerHelper::matchCombineAddP2IToPtrAdd(
2433 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2434 assert(MI.getOpcode() == TargetOpcode::G_ADD);
2435 Register LHS = MI.getOperand(1).getReg();
2436 Register RHS = MI.getOperand(2).getReg();
2437 LLT IntTy = MRI.getType(LHS);
2438
2439 // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the
2440 // instruction.
2441 PtrReg.second = false;
2442 for (Register SrcReg : {LHS, RHS}) {
2443 if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) {
2444 // Don't handle cases where the integer is implicitly converted to the
2445 // pointer width.
2446 LLT PtrTy = MRI.getType(PtrReg.first);
2447 if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits())
2448 return true;
2449 }
2450
2451 PtrReg.second = true;
2452 }
2453
2454 return false;
2455 }
2456
applyCombineAddP2IToPtrAdd(MachineInstr & MI,std::pair<Register,bool> & PtrReg)2457 void CombinerHelper::applyCombineAddP2IToPtrAdd(
2458 MachineInstr &MI, std::pair<Register, bool> &PtrReg) {
2459 Register Dst = MI.getOperand(0).getReg();
2460 Register LHS = MI.getOperand(1).getReg();
2461 Register RHS = MI.getOperand(2).getReg();
2462
2463 const bool DoCommute = PtrReg.second;
2464 if (DoCommute)
2465 std::swap(LHS, RHS);
2466 LHS = PtrReg.first;
2467
2468 LLT PtrTy = MRI.getType(LHS);
2469
2470 auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS);
2471 Builder.buildPtrToInt(Dst, PtrAdd);
2472 MI.eraseFromParent();
2473 }
2474
matchCombineConstPtrAddToI2P(MachineInstr & MI,APInt & NewCst)2475 bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI,
2476 APInt &NewCst) {
2477 auto &PtrAdd = cast<GPtrAdd>(MI);
2478 Register LHS = PtrAdd.getBaseReg();
2479 Register RHS = PtrAdd.getOffsetReg();
2480 MachineRegisterInfo &MRI = Builder.getMF().getRegInfo();
2481
2482 if (auto RHSCst = getIConstantVRegVal(RHS, MRI)) {
2483 APInt Cst;
2484 if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) {
2485 auto DstTy = MRI.getType(PtrAdd.getReg(0));
2486 // G_INTTOPTR uses zero-extension
2487 NewCst = Cst.zextOrTrunc(DstTy.getSizeInBits());
2488 NewCst += RHSCst->sextOrTrunc(DstTy.getSizeInBits());
2489 return true;
2490 }
2491 }
2492
2493 return false;
2494 }
2495
applyCombineConstPtrAddToI2P(MachineInstr & MI,APInt & NewCst)2496 void CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI,
2497 APInt &NewCst) {
2498 auto &PtrAdd = cast<GPtrAdd>(MI);
2499 Register Dst = PtrAdd.getReg(0);
2500
2501 Builder.buildConstant(Dst, NewCst);
2502 PtrAdd.eraseFromParent();
2503 }
2504
matchCombineAnyExtTrunc(MachineInstr & MI,Register & Reg)2505 bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) {
2506 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT");
2507 Register DstReg = MI.getOperand(0).getReg();
2508 Register SrcReg = MI.getOperand(1).getReg();
2509 Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI);
2510 if (OriginalSrcReg.isValid())
2511 SrcReg = OriginalSrcReg;
2512 LLT DstTy = MRI.getType(DstReg);
2513 return mi_match(SrcReg, MRI,
2514 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))));
2515 }
2516
matchCombineZextTrunc(MachineInstr & MI,Register & Reg)2517 bool CombinerHelper::matchCombineZextTrunc(MachineInstr &MI, Register &Reg) {
2518 assert(MI.getOpcode() == TargetOpcode::G_ZEXT && "Expected a G_ZEXT");
2519 Register DstReg = MI.getOperand(0).getReg();
2520 Register SrcReg = MI.getOperand(1).getReg();
2521 LLT DstTy = MRI.getType(DstReg);
2522 if (mi_match(SrcReg, MRI,
2523 m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy))))) {
2524 unsigned DstSize = DstTy.getScalarSizeInBits();
2525 unsigned SrcSize = MRI.getType(SrcReg).getScalarSizeInBits();
2526 return KB->getKnownBits(Reg).countMinLeadingZeros() >= DstSize - SrcSize;
2527 }
2528 return false;
2529 }
2530
matchCombineExtOfExt(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)2531 bool CombinerHelper::matchCombineExtOfExt(
2532 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2533 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2534 MI.getOpcode() == TargetOpcode::G_SEXT ||
2535 MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2536 "Expected a G_[ASZ]EXT");
2537 Register SrcReg = MI.getOperand(1).getReg();
2538 Register OriginalSrcReg = getSrcRegIgnoringCopies(SrcReg, MRI);
2539 if (OriginalSrcReg.isValid())
2540 SrcReg = OriginalSrcReg;
2541 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2542 // Match exts with the same opcode, anyext([sz]ext) and sext(zext).
2543 unsigned Opc = MI.getOpcode();
2544 unsigned SrcOpc = SrcMI->getOpcode();
2545 if (Opc == SrcOpc ||
2546 (Opc == TargetOpcode::G_ANYEXT &&
2547 (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) ||
2548 (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) {
2549 MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc);
2550 return true;
2551 }
2552 return false;
2553 }
2554
applyCombineExtOfExt(MachineInstr & MI,std::tuple<Register,unsigned> & MatchInfo)2555 void CombinerHelper::applyCombineExtOfExt(
2556 MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) {
2557 assert((MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2558 MI.getOpcode() == TargetOpcode::G_SEXT ||
2559 MI.getOpcode() == TargetOpcode::G_ZEXT) &&
2560 "Expected a G_[ASZ]EXT");
2561
2562 Register Reg = std::get<0>(MatchInfo);
2563 unsigned SrcExtOp = std::get<1>(MatchInfo);
2564
2565 // Combine exts with the same opcode.
2566 if (MI.getOpcode() == SrcExtOp) {
2567 Observer.changingInstr(MI);
2568 MI.getOperand(1).setReg(Reg);
2569 Observer.changedInstr(MI);
2570 return;
2571 }
2572
2573 // Combine:
2574 // - anyext([sz]ext x) to [sz]ext x
2575 // - sext(zext x) to zext x
2576 if (MI.getOpcode() == TargetOpcode::G_ANYEXT ||
2577 (MI.getOpcode() == TargetOpcode::G_SEXT &&
2578 SrcExtOp == TargetOpcode::G_ZEXT)) {
2579 Register DstReg = MI.getOperand(0).getReg();
2580 Builder.buildInstr(SrcExtOp, {DstReg}, {Reg});
2581 MI.eraseFromParent();
2582 }
2583 }
2584
matchCombineTruncOfExt(MachineInstr & MI,std::pair<Register,unsigned> & MatchInfo)2585 bool CombinerHelper::matchCombineTruncOfExt(
2586 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2587 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2588 Register SrcReg = MI.getOperand(1).getReg();
2589 MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
2590 unsigned SrcOpc = SrcMI->getOpcode();
2591 if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT ||
2592 SrcOpc == TargetOpcode::G_ZEXT) {
2593 MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc);
2594 return true;
2595 }
2596 return false;
2597 }
2598
applyCombineTruncOfExt(MachineInstr & MI,std::pair<Register,unsigned> & MatchInfo)2599 void CombinerHelper::applyCombineTruncOfExt(
2600 MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) {
2601 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2602 Register SrcReg = MatchInfo.first;
2603 unsigned SrcExtOp = MatchInfo.second;
2604 Register DstReg = MI.getOperand(0).getReg();
2605 LLT SrcTy = MRI.getType(SrcReg);
2606 LLT DstTy = MRI.getType(DstReg);
2607 if (SrcTy == DstTy) {
2608 MI.eraseFromParent();
2609 replaceRegWith(MRI, DstReg, SrcReg);
2610 return;
2611 }
2612 if (SrcTy.getSizeInBits() < DstTy.getSizeInBits())
2613 Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg});
2614 else
2615 Builder.buildTrunc(DstReg, SrcReg);
2616 MI.eraseFromParent();
2617 }
2618
getMidVTForTruncRightShiftCombine(LLT ShiftTy,LLT TruncTy)2619 static LLT getMidVTForTruncRightShiftCombine(LLT ShiftTy, LLT TruncTy) {
2620 const unsigned ShiftSize = ShiftTy.getScalarSizeInBits();
2621 const unsigned TruncSize = TruncTy.getScalarSizeInBits();
2622
2623 // ShiftTy > 32 > TruncTy -> 32
2624 if (ShiftSize > 32 && TruncSize < 32)
2625 return ShiftTy.changeElementSize(32);
2626
2627 // TODO: We could also reduce to 16 bits, but that's more target-dependent.
2628 // Some targets like it, some don't, some only like it under certain
2629 // conditions/processor versions, etc.
2630 // A TL hook might be needed for this.
2631
2632 // Don't combine
2633 return ShiftTy;
2634 }
2635
matchCombineTruncOfShift(MachineInstr & MI,std::pair<MachineInstr *,LLT> & MatchInfo)2636 bool CombinerHelper::matchCombineTruncOfShift(
2637 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2638 assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC");
2639 Register DstReg = MI.getOperand(0).getReg();
2640 Register SrcReg = MI.getOperand(1).getReg();
2641
2642 if (!MRI.hasOneNonDBGUse(SrcReg))
2643 return false;
2644
2645 LLT SrcTy = MRI.getType(SrcReg);
2646 LLT DstTy = MRI.getType(DstReg);
2647
2648 MachineInstr *SrcMI = getDefIgnoringCopies(SrcReg, MRI);
2649 const auto &TL = getTargetLowering();
2650
2651 LLT NewShiftTy;
2652 switch (SrcMI->getOpcode()) {
2653 default:
2654 return false;
2655 case TargetOpcode::G_SHL: {
2656 NewShiftTy = DstTy;
2657
2658 // Make sure new shift amount is legal.
2659 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2660 if (Known.getMaxValue().uge(NewShiftTy.getScalarSizeInBits()))
2661 return false;
2662 break;
2663 }
2664 case TargetOpcode::G_LSHR:
2665 case TargetOpcode::G_ASHR: {
2666 // For right shifts, we conservatively do not do the transform if the TRUNC
2667 // has any STORE users. The reason is that if we change the type of the
2668 // shift, we may break the truncstore combine.
2669 //
2670 // TODO: Fix truncstore combine to handle (trunc(lshr (trunc x), k)).
2671 for (auto &User : MRI.use_instructions(DstReg))
2672 if (User.getOpcode() == TargetOpcode::G_STORE)
2673 return false;
2674
2675 NewShiftTy = getMidVTForTruncRightShiftCombine(SrcTy, DstTy);
2676 if (NewShiftTy == SrcTy)
2677 return false;
2678
2679 // Make sure we won't lose information by truncating the high bits.
2680 KnownBits Known = KB->getKnownBits(SrcMI->getOperand(2).getReg());
2681 if (Known.getMaxValue().ugt(NewShiftTy.getScalarSizeInBits() -
2682 DstTy.getScalarSizeInBits()))
2683 return false;
2684 break;
2685 }
2686 }
2687
2688 if (!isLegalOrBeforeLegalizer(
2689 {SrcMI->getOpcode(),
2690 {NewShiftTy, TL.getPreferredShiftAmountTy(NewShiftTy)}}))
2691 return false;
2692
2693 MatchInfo = std::make_pair(SrcMI, NewShiftTy);
2694 return true;
2695 }
2696
applyCombineTruncOfShift(MachineInstr & MI,std::pair<MachineInstr *,LLT> & MatchInfo)2697 void CombinerHelper::applyCombineTruncOfShift(
2698 MachineInstr &MI, std::pair<MachineInstr *, LLT> &MatchInfo) {
2699 MachineInstr *ShiftMI = MatchInfo.first;
2700 LLT NewShiftTy = MatchInfo.second;
2701
2702 Register Dst = MI.getOperand(0).getReg();
2703 LLT DstTy = MRI.getType(Dst);
2704
2705 Register ShiftAmt = ShiftMI->getOperand(2).getReg();
2706 Register ShiftSrc = ShiftMI->getOperand(1).getReg();
2707 ShiftSrc = Builder.buildTrunc(NewShiftTy, ShiftSrc).getReg(0);
2708
2709 Register NewShift =
2710 Builder
2711 .buildInstr(ShiftMI->getOpcode(), {NewShiftTy}, {ShiftSrc, ShiftAmt})
2712 .getReg(0);
2713
2714 if (NewShiftTy == DstTy)
2715 replaceRegWith(MRI, Dst, NewShift);
2716 else
2717 Builder.buildTrunc(Dst, NewShift);
2718
2719 eraseInst(MI);
2720 }
2721
matchAnyExplicitUseIsUndef(MachineInstr & MI)2722 bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) {
2723 return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2724 return MO.isReg() &&
2725 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2726 });
2727 }
2728
matchAllExplicitUsesAreUndef(MachineInstr & MI)2729 bool CombinerHelper::matchAllExplicitUsesAreUndef(MachineInstr &MI) {
2730 return all_of(MI.explicit_uses(), [this](const MachineOperand &MO) {
2731 return !MO.isReg() ||
2732 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2733 });
2734 }
2735
matchUndefShuffleVectorMask(MachineInstr & MI)2736 bool CombinerHelper::matchUndefShuffleVectorMask(MachineInstr &MI) {
2737 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
2738 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
2739 return all_of(Mask, [](int Elt) { return Elt < 0; });
2740 }
2741
matchUndefStore(MachineInstr & MI)2742 bool CombinerHelper::matchUndefStore(MachineInstr &MI) {
2743 assert(MI.getOpcode() == TargetOpcode::G_STORE);
2744 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(0).getReg(),
2745 MRI);
2746 }
2747
matchUndefSelectCmp(MachineInstr & MI)2748 bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) {
2749 assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2750 return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(),
2751 MRI);
2752 }
2753
matchInsertExtractVecEltOutOfBounds(MachineInstr & MI)2754 bool CombinerHelper::matchInsertExtractVecEltOutOfBounds(MachineInstr &MI) {
2755 assert((MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT ||
2756 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT) &&
2757 "Expected an insert/extract element op");
2758 LLT VecTy = MRI.getType(MI.getOperand(1).getReg());
2759 unsigned IdxIdx =
2760 MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
2761 auto Idx = getIConstantVRegVal(MI.getOperand(IdxIdx).getReg(), MRI);
2762 if (!Idx)
2763 return false;
2764 return Idx->getZExtValue() >= VecTy.getNumElements();
2765 }
2766
matchConstantSelectCmp(MachineInstr & MI,unsigned & OpIdx)2767 bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) {
2768 GSelect &SelMI = cast<GSelect>(MI);
2769 auto Cst =
2770 isConstantOrConstantSplatVector(*MRI.getVRegDef(SelMI.getCondReg()), MRI);
2771 if (!Cst)
2772 return false;
2773 OpIdx = Cst->isZero() ? 3 : 2;
2774 return true;
2775 }
2776
eraseInst(MachineInstr & MI)2777 void CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); }
2778
matchEqualDefs(const MachineOperand & MOP1,const MachineOperand & MOP2)2779 bool CombinerHelper::matchEqualDefs(const MachineOperand &MOP1,
2780 const MachineOperand &MOP2) {
2781 if (!MOP1.isReg() || !MOP2.isReg())
2782 return false;
2783 auto InstAndDef1 = getDefSrcRegIgnoringCopies(MOP1.getReg(), MRI);
2784 if (!InstAndDef1)
2785 return false;
2786 auto InstAndDef2 = getDefSrcRegIgnoringCopies(MOP2.getReg(), MRI);
2787 if (!InstAndDef2)
2788 return false;
2789 MachineInstr *I1 = InstAndDef1->MI;
2790 MachineInstr *I2 = InstAndDef2->MI;
2791
2792 // Handle a case like this:
2793 //
2794 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<2 x s64>)
2795 //
2796 // Even though %0 and %1 are produced by the same instruction they are not
2797 // the same values.
2798 if (I1 == I2)
2799 return MOP1.getReg() == MOP2.getReg();
2800
2801 // If we have an instruction which loads or stores, we can't guarantee that
2802 // it is identical.
2803 //
2804 // For example, we may have
2805 //
2806 // %x1 = G_LOAD %addr (load N from @somewhere)
2807 // ...
2808 // call @foo
2809 // ...
2810 // %x2 = G_LOAD %addr (load N from @somewhere)
2811 // ...
2812 // %or = G_OR %x1, %x2
2813 //
2814 // It's possible that @foo will modify whatever lives at the address we're
2815 // loading from. To be safe, let's just assume that all loads and stores
2816 // are different (unless we have something which is guaranteed to not
2817 // change.)
2818 if (I1->mayLoadOrStore() && !I1->isDereferenceableInvariantLoad())
2819 return false;
2820
2821 // If both instructions are loads or stores, they are equal only if both
2822 // are dereferenceable invariant loads with the same number of bits.
2823 if (I1->mayLoadOrStore() && I2->mayLoadOrStore()) {
2824 GLoadStore *LS1 = dyn_cast<GLoadStore>(I1);
2825 GLoadStore *LS2 = dyn_cast<GLoadStore>(I2);
2826 if (!LS1 || !LS2)
2827 return false;
2828
2829 if (!I2->isDereferenceableInvariantLoad() ||
2830 (LS1->getMemSizeInBits() != LS2->getMemSizeInBits()))
2831 return false;
2832 }
2833
2834 // Check for physical registers on the instructions first to avoid cases
2835 // like this:
2836 //
2837 // %a = COPY $physreg
2838 // ...
2839 // SOMETHING implicit-def $physreg
2840 // ...
2841 // %b = COPY $physreg
2842 //
2843 // These copies are not equivalent.
2844 if (any_of(I1->uses(), [](const MachineOperand &MO) {
2845 return MO.isReg() && MO.getReg().isPhysical();
2846 })) {
2847 // Check if we have a case like this:
2848 //
2849 // %a = COPY $physreg
2850 // %b = COPY %a
2851 //
2852 // In this case, I1 and I2 will both be equal to %a = COPY $physreg.
2853 // From that, we know that they must have the same value, since they must
2854 // have come from the same COPY.
2855 return I1->isIdenticalTo(*I2);
2856 }
2857
2858 // We don't have any physical registers, so we don't necessarily need the
2859 // same vreg defs.
2860 //
2861 // On the off-chance that there's some target instruction feeding into the
2862 // instruction, let's use produceSameValue instead of isIdenticalTo.
2863 if (Builder.getTII().produceSameValue(*I1, *I2, &MRI)) {
2864 // Handle instructions with multiple defs that produce same values. Values
2865 // are same for operands with same index.
2866 // %0:_(s8), %1:_(s8), %2:_(s8), %3:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2867 // %5:_(s8), %6:_(s8), %7:_(s8), %8:_(s8) = G_UNMERGE_VALUES %4:_(<4 x s8>)
2868 // I1 and I2 are different instructions but produce same values,
2869 // %1 and %6 are same, %1 and %7 are not the same value.
2870 return I1->findRegisterDefOperandIdx(InstAndDef1->Reg, /*TRI=*/nullptr) ==
2871 I2->findRegisterDefOperandIdx(InstAndDef2->Reg, /*TRI=*/nullptr);
2872 }
2873 return false;
2874 }
2875
matchConstantOp(const MachineOperand & MOP,int64_t C)2876 bool CombinerHelper::matchConstantOp(const MachineOperand &MOP, int64_t C) {
2877 if (!MOP.isReg())
2878 return false;
2879 auto *MI = MRI.getVRegDef(MOP.getReg());
2880 auto MaybeCst = isConstantOrConstantSplatVector(*MI, MRI);
2881 return MaybeCst && MaybeCst->getBitWidth() <= 64 &&
2882 MaybeCst->getSExtValue() == C;
2883 }
2884
matchConstantFPOp(const MachineOperand & MOP,double C)2885 bool CombinerHelper::matchConstantFPOp(const MachineOperand &MOP, double C) {
2886 if (!MOP.isReg())
2887 return false;
2888 std::optional<FPValueAndVReg> MaybeCst;
2889 if (!mi_match(MOP.getReg(), MRI, m_GFCstOrSplat(MaybeCst)))
2890 return false;
2891
2892 return MaybeCst->Value.isExactlyValue(C);
2893 }
2894
replaceSingleDefInstWithOperand(MachineInstr & MI,unsigned OpIdx)2895 void CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI,
2896 unsigned OpIdx) {
2897 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2898 Register OldReg = MI.getOperand(0).getReg();
2899 Register Replacement = MI.getOperand(OpIdx).getReg();
2900 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2901 MI.eraseFromParent();
2902 replaceRegWith(MRI, OldReg, Replacement);
2903 }
2904
replaceSingleDefInstWithReg(MachineInstr & MI,Register Replacement)2905 void CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI,
2906 Register Replacement) {
2907 assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?");
2908 Register OldReg = MI.getOperand(0).getReg();
2909 assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?");
2910 MI.eraseFromParent();
2911 replaceRegWith(MRI, OldReg, Replacement);
2912 }
2913
matchConstantLargerBitWidth(MachineInstr & MI,unsigned ConstIdx)2914 bool CombinerHelper::matchConstantLargerBitWidth(MachineInstr &MI,
2915 unsigned ConstIdx) {
2916 Register ConstReg = MI.getOperand(ConstIdx).getReg();
2917 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2918
2919 // Get the shift amount
2920 auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
2921 if (!VRegAndVal)
2922 return false;
2923
2924 // Return true of shift amount >= Bitwidth
2925 return (VRegAndVal->Value.uge(DstTy.getSizeInBits()));
2926 }
2927
applyFunnelShiftConstantModulo(MachineInstr & MI)2928 void CombinerHelper::applyFunnelShiftConstantModulo(MachineInstr &MI) {
2929 assert((MI.getOpcode() == TargetOpcode::G_FSHL ||
2930 MI.getOpcode() == TargetOpcode::G_FSHR) &&
2931 "This is not a funnel shift operation");
2932
2933 Register ConstReg = MI.getOperand(3).getReg();
2934 LLT ConstTy = MRI.getType(ConstReg);
2935 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
2936
2937 auto VRegAndVal = getIConstantVRegValWithLookThrough(ConstReg, MRI);
2938 assert((VRegAndVal) && "Value is not a constant");
2939
2940 // Calculate the new Shift Amount = Old Shift Amount % BitWidth
2941 APInt NewConst = VRegAndVal->Value.urem(
2942 APInt(ConstTy.getSizeInBits(), DstTy.getScalarSizeInBits()));
2943
2944 auto NewConstInstr = Builder.buildConstant(ConstTy, NewConst.getZExtValue());
2945 Builder.buildInstr(
2946 MI.getOpcode(), {MI.getOperand(0)},
2947 {MI.getOperand(1), MI.getOperand(2), NewConstInstr.getReg(0)});
2948
2949 MI.eraseFromParent();
2950 }
2951
matchSelectSameVal(MachineInstr & MI)2952 bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) {
2953 assert(MI.getOpcode() == TargetOpcode::G_SELECT);
2954 // Match (cond ? x : x)
2955 return matchEqualDefs(MI.getOperand(2), MI.getOperand(3)) &&
2956 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(2).getReg(),
2957 MRI);
2958 }
2959
matchBinOpSameVal(MachineInstr & MI)2960 bool CombinerHelper::matchBinOpSameVal(MachineInstr &MI) {
2961 return matchEqualDefs(MI.getOperand(1), MI.getOperand(2)) &&
2962 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(),
2963 MRI);
2964 }
2965
matchOperandIsZero(MachineInstr & MI,unsigned OpIdx)2966 bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) {
2967 return matchConstantOp(MI.getOperand(OpIdx), 0) &&
2968 canReplaceReg(MI.getOperand(0).getReg(), MI.getOperand(OpIdx).getReg(),
2969 MRI);
2970 }
2971
matchOperandIsUndef(MachineInstr & MI,unsigned OpIdx)2972 bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) {
2973 MachineOperand &MO = MI.getOperand(OpIdx);
2974 return MO.isReg() &&
2975 getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI);
2976 }
2977
matchOperandIsKnownToBeAPowerOfTwo(MachineInstr & MI,unsigned OpIdx)2978 bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI,
2979 unsigned OpIdx) {
2980 MachineOperand &MO = MI.getOperand(OpIdx);
2981 return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB);
2982 }
2983
replaceInstWithFConstant(MachineInstr & MI,double C)2984 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) {
2985 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2986 Builder.buildFConstant(MI.getOperand(0), C);
2987 MI.eraseFromParent();
2988 }
2989
replaceInstWithConstant(MachineInstr & MI,int64_t C)2990 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, int64_t C) {
2991 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2992 Builder.buildConstant(MI.getOperand(0), C);
2993 MI.eraseFromParent();
2994 }
2995
replaceInstWithConstant(MachineInstr & MI,APInt C)2996 void CombinerHelper::replaceInstWithConstant(MachineInstr &MI, APInt C) {
2997 assert(MI.getNumDefs() == 1 && "Expected only one def?");
2998 Builder.buildConstant(MI.getOperand(0), C);
2999 MI.eraseFromParent();
3000 }
3001
replaceInstWithFConstant(MachineInstr & MI,ConstantFP * CFP)3002 void CombinerHelper::replaceInstWithFConstant(MachineInstr &MI,
3003 ConstantFP *CFP) {
3004 assert(MI.getNumDefs() == 1 && "Expected only one def?");
3005 Builder.buildFConstant(MI.getOperand(0), CFP->getValueAPF());
3006 MI.eraseFromParent();
3007 }
3008
replaceInstWithUndef(MachineInstr & MI)3009 void CombinerHelper::replaceInstWithUndef(MachineInstr &MI) {
3010 assert(MI.getNumDefs() == 1 && "Expected only one def?");
3011 Builder.buildUndef(MI.getOperand(0));
3012 MI.eraseFromParent();
3013 }
3014
matchSimplifyAddToSub(MachineInstr & MI,std::tuple<Register,Register> & MatchInfo)3015 bool CombinerHelper::matchSimplifyAddToSub(
3016 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
3017 Register LHS = MI.getOperand(1).getReg();
3018 Register RHS = MI.getOperand(2).getReg();
3019 Register &NewLHS = std::get<0>(MatchInfo);
3020 Register &NewRHS = std::get<1>(MatchInfo);
3021
3022 // Helper lambda to check for opportunities for
3023 // ((0-A) + B) -> B - A
3024 // (A + (0-B)) -> A - B
3025 auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) {
3026 if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS))))
3027 return false;
3028 NewLHS = MaybeNewLHS;
3029 return true;
3030 };
3031
3032 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
3033 }
3034
matchCombineInsertVecElts(MachineInstr & MI,SmallVectorImpl<Register> & MatchInfo)3035 bool CombinerHelper::matchCombineInsertVecElts(
3036 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
3037 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT &&
3038 "Invalid opcode");
3039 Register DstReg = MI.getOperand(0).getReg();
3040 LLT DstTy = MRI.getType(DstReg);
3041 assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?");
3042 unsigned NumElts = DstTy.getNumElements();
3043 // If this MI is part of a sequence of insert_vec_elts, then
3044 // don't do the combine in the middle of the sequence.
3045 if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() ==
3046 TargetOpcode::G_INSERT_VECTOR_ELT)
3047 return false;
3048 MachineInstr *CurrInst = &MI;
3049 MachineInstr *TmpInst;
3050 int64_t IntImm;
3051 Register TmpReg;
3052 MatchInfo.resize(NumElts);
3053 while (mi_match(
3054 CurrInst->getOperand(0).getReg(), MRI,
3055 m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) {
3056 if (IntImm >= NumElts || IntImm < 0)
3057 return false;
3058 if (!MatchInfo[IntImm])
3059 MatchInfo[IntImm] = TmpReg;
3060 CurrInst = TmpInst;
3061 }
3062 // Variable index.
3063 if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
3064 return false;
3065 if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) {
3066 for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) {
3067 if (!MatchInfo[I - 1].isValid())
3068 MatchInfo[I - 1] = TmpInst->getOperand(I).getReg();
3069 }
3070 return true;
3071 }
3072 // If we didn't end in a G_IMPLICIT_DEF and the source is not fully
3073 // overwritten, bail out.
3074 return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF ||
3075 all_of(MatchInfo, [](Register Reg) { return !!Reg; });
3076 }
3077
applyCombineInsertVecElts(MachineInstr & MI,SmallVectorImpl<Register> & MatchInfo)3078 void CombinerHelper::applyCombineInsertVecElts(
3079 MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) {
3080 Register UndefReg;
3081 auto GetUndef = [&]() {
3082 if (UndefReg)
3083 return UndefReg;
3084 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3085 UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0);
3086 return UndefReg;
3087 };
3088 for (Register &Reg : MatchInfo) {
3089 if (!Reg)
3090 Reg = GetUndef();
3091 }
3092 Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo);
3093 MI.eraseFromParent();
3094 }
3095
applySimplifyAddToSub(MachineInstr & MI,std::tuple<Register,Register> & MatchInfo)3096 void CombinerHelper::applySimplifyAddToSub(
3097 MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) {
3098 Register SubLHS, SubRHS;
3099 std::tie(SubLHS, SubRHS) = MatchInfo;
3100 Builder.buildSub(MI.getOperand(0).getReg(), SubLHS, SubRHS);
3101 MI.eraseFromParent();
3102 }
3103
matchHoistLogicOpWithSameOpcodeHands(MachineInstr & MI,InstructionStepsMatchInfo & MatchInfo)3104 bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands(
3105 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
3106 // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ...
3107 //
3108 // Creates the new hand + logic instruction (but does not insert them.)
3109 //
3110 // On success, MatchInfo is populated with the new instructions. These are
3111 // inserted in applyHoistLogicOpWithSameOpcodeHands.
3112 unsigned LogicOpcode = MI.getOpcode();
3113 assert(LogicOpcode == TargetOpcode::G_AND ||
3114 LogicOpcode == TargetOpcode::G_OR ||
3115 LogicOpcode == TargetOpcode::G_XOR);
3116 MachineIRBuilder MIB(MI);
3117 Register Dst = MI.getOperand(0).getReg();
3118 Register LHSReg = MI.getOperand(1).getReg();
3119 Register RHSReg = MI.getOperand(2).getReg();
3120
3121 // Don't recompute anything.
3122 if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg))
3123 return false;
3124
3125 // Make sure we have (hand x, ...), (hand y, ...)
3126 MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI);
3127 MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI);
3128 if (!LeftHandInst || !RightHandInst)
3129 return false;
3130 unsigned HandOpcode = LeftHandInst->getOpcode();
3131 if (HandOpcode != RightHandInst->getOpcode())
3132 return false;
3133 if (!LeftHandInst->getOperand(1).isReg() ||
3134 !RightHandInst->getOperand(1).isReg())
3135 return false;
3136
3137 // Make sure the types match up, and if we're doing this post-legalization,
3138 // we end up with legal types.
3139 Register X = LeftHandInst->getOperand(1).getReg();
3140 Register Y = RightHandInst->getOperand(1).getReg();
3141 LLT XTy = MRI.getType(X);
3142 LLT YTy = MRI.getType(Y);
3143 if (!XTy.isValid() || XTy != YTy)
3144 return false;
3145
3146 // Optional extra source register.
3147 Register ExtraHandOpSrcReg;
3148 switch (HandOpcode) {
3149 default:
3150 return false;
3151 case TargetOpcode::G_ANYEXT:
3152 case TargetOpcode::G_SEXT:
3153 case TargetOpcode::G_ZEXT: {
3154 // Match: logic (ext X), (ext Y) --> ext (logic X, Y)
3155 break;
3156 }
3157 case TargetOpcode::G_TRUNC: {
3158 // Match: logic (trunc X), (trunc Y) -> trunc (logic X, Y)
3159 const MachineFunction *MF = MI.getMF();
3160 const DataLayout &DL = MF->getDataLayout();
3161 LLVMContext &Ctx = MF->getFunction().getContext();
3162
3163 LLT DstTy = MRI.getType(Dst);
3164 const TargetLowering &TLI = getTargetLowering();
3165
3166 // Be extra careful sinking truncate. If it's free, there's no benefit in
3167 // widening a binop.
3168 if (TLI.isZExtFree(DstTy, XTy, DL, Ctx) &&
3169 TLI.isTruncateFree(XTy, DstTy, DL, Ctx))
3170 return false;
3171 break;
3172 }
3173 case TargetOpcode::G_AND:
3174 case TargetOpcode::G_ASHR:
3175 case TargetOpcode::G_LSHR:
3176 case TargetOpcode::G_SHL: {
3177 // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z
3178 MachineOperand &ZOp = LeftHandInst->getOperand(2);
3179 if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2)))
3180 return false;
3181 ExtraHandOpSrcReg = ZOp.getReg();
3182 break;
3183 }
3184 }
3185
3186 if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}}))
3187 return false;
3188
3189 // Record the steps to build the new instructions.
3190 //
3191 // Steps to build (logic x, y)
3192 auto NewLogicDst = MRI.createGenericVirtualRegister(XTy);
3193 OperandBuildSteps LogicBuildSteps = {
3194 [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); },
3195 [=](MachineInstrBuilder &MIB) { MIB.addReg(X); },
3196 [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }};
3197 InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps);
3198
3199 // Steps to build hand (logic x, y), ...z
3200 OperandBuildSteps HandBuildSteps = {
3201 [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); },
3202 [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }};
3203 if (ExtraHandOpSrcReg.isValid())
3204 HandBuildSteps.push_back(
3205 [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); });
3206 InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps);
3207
3208 MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps});
3209 return true;
3210 }
3211
applyBuildInstructionSteps(MachineInstr & MI,InstructionStepsMatchInfo & MatchInfo)3212 void CombinerHelper::applyBuildInstructionSteps(
3213 MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) {
3214 assert(MatchInfo.InstrsToBuild.size() &&
3215 "Expected at least one instr to build?");
3216 for (auto &InstrToBuild : MatchInfo.InstrsToBuild) {
3217 assert(InstrToBuild.Opcode && "Expected a valid opcode?");
3218 assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?");
3219 MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode);
3220 for (auto &OperandFn : InstrToBuild.OperandFns)
3221 OperandFn(Instr);
3222 }
3223 MI.eraseFromParent();
3224 }
3225
matchAshrShlToSextInreg(MachineInstr & MI,std::tuple<Register,int64_t> & MatchInfo)3226 bool CombinerHelper::matchAshrShlToSextInreg(
3227 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3228 assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3229 int64_t ShlCst, AshrCst;
3230 Register Src;
3231 if (!mi_match(MI.getOperand(0).getReg(), MRI,
3232 m_GAShr(m_GShl(m_Reg(Src), m_ICstOrSplat(ShlCst)),
3233 m_ICstOrSplat(AshrCst))))
3234 return false;
3235 if (ShlCst != AshrCst)
3236 return false;
3237 if (!isLegalOrBeforeLegalizer(
3238 {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}}))
3239 return false;
3240 MatchInfo = std::make_tuple(Src, ShlCst);
3241 return true;
3242 }
3243
applyAshShlToSextInreg(MachineInstr & MI,std::tuple<Register,int64_t> & MatchInfo)3244 void CombinerHelper::applyAshShlToSextInreg(
3245 MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) {
3246 assert(MI.getOpcode() == TargetOpcode::G_ASHR);
3247 Register Src;
3248 int64_t ShiftAmt;
3249 std::tie(Src, ShiftAmt) = MatchInfo;
3250 unsigned Size = MRI.getType(Src).getScalarSizeInBits();
3251 Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt);
3252 MI.eraseFromParent();
3253 }
3254
3255 /// and(and(x, C1), C2) -> C1&C2 ? and(x, C1&C2) : 0
matchOverlappingAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)3256 bool CombinerHelper::matchOverlappingAnd(
3257 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3258 assert(MI.getOpcode() == TargetOpcode::G_AND);
3259
3260 Register Dst = MI.getOperand(0).getReg();
3261 LLT Ty = MRI.getType(Dst);
3262
3263 Register R;
3264 int64_t C1;
3265 int64_t C2;
3266 if (!mi_match(
3267 Dst, MRI,
3268 m_GAnd(m_GAnd(m_Reg(R), m_ICst(C1)), m_ICst(C2))))
3269 return false;
3270
3271 MatchInfo = [=](MachineIRBuilder &B) {
3272 if (C1 & C2) {
3273 B.buildAnd(Dst, R, B.buildConstant(Ty, C1 & C2));
3274 return;
3275 }
3276 auto Zero = B.buildConstant(Ty, 0);
3277 replaceRegWith(MRI, Dst, Zero->getOperand(0).getReg());
3278 };
3279 return true;
3280 }
3281
matchRedundantAnd(MachineInstr & MI,Register & Replacement)3282 bool CombinerHelper::matchRedundantAnd(MachineInstr &MI,
3283 Register &Replacement) {
3284 // Given
3285 //
3286 // %y:_(sN) = G_SOMETHING
3287 // %x:_(sN) = G_SOMETHING
3288 // %res:_(sN) = G_AND %x, %y
3289 //
3290 // Eliminate the G_AND when it is known that x & y == x or x & y == y.
3291 //
3292 // Patterns like this can appear as a result of legalization. E.g.
3293 //
3294 // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y
3295 // %one:_(s32) = G_CONSTANT i32 1
3296 // %and:_(s32) = G_AND %cmp, %one
3297 //
3298 // In this case, G_ICMP only produces a single bit, so x & 1 == x.
3299 assert(MI.getOpcode() == TargetOpcode::G_AND);
3300 if (!KB)
3301 return false;
3302
3303 Register AndDst = MI.getOperand(0).getReg();
3304 Register LHS = MI.getOperand(1).getReg();
3305 Register RHS = MI.getOperand(2).getReg();
3306
3307 // Check the RHS (maybe a constant) first, and if we have no KnownBits there,
3308 // we can't do anything. If we do, then it depends on whether we have
3309 // KnownBits on the LHS.
3310 KnownBits RHSBits = KB->getKnownBits(RHS);
3311 if (RHSBits.isUnknown())
3312 return false;
3313
3314 KnownBits LHSBits = KB->getKnownBits(LHS);
3315
3316 // Check that x & Mask == x.
3317 // x & 1 == x, always
3318 // x & 0 == x, only if x is also 0
3319 // Meaning Mask has no effect if every bit is either one in Mask or zero in x.
3320 //
3321 // Check if we can replace AndDst with the LHS of the G_AND
3322 if (canReplaceReg(AndDst, LHS, MRI) &&
3323 (LHSBits.Zero | RHSBits.One).isAllOnes()) {
3324 Replacement = LHS;
3325 return true;
3326 }
3327
3328 // Check if we can replace AndDst with the RHS of the G_AND
3329 if (canReplaceReg(AndDst, RHS, MRI) &&
3330 (LHSBits.One | RHSBits.Zero).isAllOnes()) {
3331 Replacement = RHS;
3332 return true;
3333 }
3334
3335 return false;
3336 }
3337
matchRedundantOr(MachineInstr & MI,Register & Replacement)3338 bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) {
3339 // Given
3340 //
3341 // %y:_(sN) = G_SOMETHING
3342 // %x:_(sN) = G_SOMETHING
3343 // %res:_(sN) = G_OR %x, %y
3344 //
3345 // Eliminate the G_OR when it is known that x | y == x or x | y == y.
3346 assert(MI.getOpcode() == TargetOpcode::G_OR);
3347 if (!KB)
3348 return false;
3349
3350 Register OrDst = MI.getOperand(0).getReg();
3351 Register LHS = MI.getOperand(1).getReg();
3352 Register RHS = MI.getOperand(2).getReg();
3353
3354 KnownBits LHSBits = KB->getKnownBits(LHS);
3355 KnownBits RHSBits = KB->getKnownBits(RHS);
3356
3357 // Check that x | Mask == x.
3358 // x | 0 == x, always
3359 // x | 1 == x, only if x is also 1
3360 // Meaning Mask has no effect if every bit is either zero in Mask or one in x.
3361 //
3362 // Check if we can replace OrDst with the LHS of the G_OR
3363 if (canReplaceReg(OrDst, LHS, MRI) &&
3364 (LHSBits.One | RHSBits.Zero).isAllOnes()) {
3365 Replacement = LHS;
3366 return true;
3367 }
3368
3369 // Check if we can replace OrDst with the RHS of the G_OR
3370 if (canReplaceReg(OrDst, RHS, MRI) &&
3371 (LHSBits.Zero | RHSBits.One).isAllOnes()) {
3372 Replacement = RHS;
3373 return true;
3374 }
3375
3376 return false;
3377 }
3378
matchRedundantSExtInReg(MachineInstr & MI)3379 bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) {
3380 // If the input is already sign extended, just drop the extension.
3381 Register Src = MI.getOperand(1).getReg();
3382 unsigned ExtBits = MI.getOperand(2).getImm();
3383 unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits();
3384 return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1);
3385 }
3386
isConstValidTrue(const TargetLowering & TLI,unsigned ScalarSizeBits,int64_t Cst,bool IsVector,bool IsFP)3387 static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits,
3388 int64_t Cst, bool IsVector, bool IsFP) {
3389 // For i1, Cst will always be -1 regardless of boolean contents.
3390 return (ScalarSizeBits == 1 && Cst == -1) ||
3391 isConstTrueVal(TLI, Cst, IsVector, IsFP);
3392 }
3393
matchNotCmp(MachineInstr & MI,SmallVectorImpl<Register> & RegsToNegate)3394 bool CombinerHelper::matchNotCmp(MachineInstr &MI,
3395 SmallVectorImpl<Register> &RegsToNegate) {
3396 assert(MI.getOpcode() == TargetOpcode::G_XOR);
3397 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3398 const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering();
3399 Register XorSrc;
3400 Register CstReg;
3401 // We match xor(src, true) here.
3402 if (!mi_match(MI.getOperand(0).getReg(), MRI,
3403 m_GXor(m_Reg(XorSrc), m_Reg(CstReg))))
3404 return false;
3405
3406 if (!MRI.hasOneNonDBGUse(XorSrc))
3407 return false;
3408
3409 // Check that XorSrc is the root of a tree of comparisons combined with ANDs
3410 // and ORs. The suffix of RegsToNegate starting from index I is used a work
3411 // list of tree nodes to visit.
3412 RegsToNegate.push_back(XorSrc);
3413 // Remember whether the comparisons are all integer or all floating point.
3414 bool IsInt = false;
3415 bool IsFP = false;
3416 for (unsigned I = 0; I < RegsToNegate.size(); ++I) {
3417 Register Reg = RegsToNegate[I];
3418 if (!MRI.hasOneNonDBGUse(Reg))
3419 return false;
3420 MachineInstr *Def = MRI.getVRegDef(Reg);
3421 switch (Def->getOpcode()) {
3422 default:
3423 // Don't match if the tree contains anything other than ANDs, ORs and
3424 // comparisons.
3425 return false;
3426 case TargetOpcode::G_ICMP:
3427 if (IsFP)
3428 return false;
3429 IsInt = true;
3430 // When we apply the combine we will invert the predicate.
3431 break;
3432 case TargetOpcode::G_FCMP:
3433 if (IsInt)
3434 return false;
3435 IsFP = true;
3436 // When we apply the combine we will invert the predicate.
3437 break;
3438 case TargetOpcode::G_AND:
3439 case TargetOpcode::G_OR:
3440 // Implement De Morgan's laws:
3441 // ~(x & y) -> ~x | ~y
3442 // ~(x | y) -> ~x & ~y
3443 // When we apply the combine we will change the opcode and recursively
3444 // negate the operands.
3445 RegsToNegate.push_back(Def->getOperand(1).getReg());
3446 RegsToNegate.push_back(Def->getOperand(2).getReg());
3447 break;
3448 }
3449 }
3450
3451 // Now we know whether the comparisons are integer or floating point, check
3452 // the constant in the xor.
3453 int64_t Cst;
3454 if (Ty.isVector()) {
3455 MachineInstr *CstDef = MRI.getVRegDef(CstReg);
3456 auto MaybeCst = getIConstantSplatSExtVal(*CstDef, MRI);
3457 if (!MaybeCst)
3458 return false;
3459 if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP))
3460 return false;
3461 } else {
3462 if (!mi_match(CstReg, MRI, m_ICst(Cst)))
3463 return false;
3464 if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP))
3465 return false;
3466 }
3467
3468 return true;
3469 }
3470
applyNotCmp(MachineInstr & MI,SmallVectorImpl<Register> & RegsToNegate)3471 void CombinerHelper::applyNotCmp(MachineInstr &MI,
3472 SmallVectorImpl<Register> &RegsToNegate) {
3473 for (Register Reg : RegsToNegate) {
3474 MachineInstr *Def = MRI.getVRegDef(Reg);
3475 Observer.changingInstr(*Def);
3476 // For each comparison, invert the opcode. For each AND and OR, change the
3477 // opcode.
3478 switch (Def->getOpcode()) {
3479 default:
3480 llvm_unreachable("Unexpected opcode");
3481 case TargetOpcode::G_ICMP:
3482 case TargetOpcode::G_FCMP: {
3483 MachineOperand &PredOp = Def->getOperand(1);
3484 CmpInst::Predicate NewP = CmpInst::getInversePredicate(
3485 (CmpInst::Predicate)PredOp.getPredicate());
3486 PredOp.setPredicate(NewP);
3487 break;
3488 }
3489 case TargetOpcode::G_AND:
3490 Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR));
3491 break;
3492 case TargetOpcode::G_OR:
3493 Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3494 break;
3495 }
3496 Observer.changedInstr(*Def);
3497 }
3498
3499 replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
3500 MI.eraseFromParent();
3501 }
3502
matchXorOfAndWithSameReg(MachineInstr & MI,std::pair<Register,Register> & MatchInfo)3503 bool CombinerHelper::matchXorOfAndWithSameReg(
3504 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3505 // Match (xor (and x, y), y) (or any of its commuted cases)
3506 assert(MI.getOpcode() == TargetOpcode::G_XOR);
3507 Register &X = MatchInfo.first;
3508 Register &Y = MatchInfo.second;
3509 Register AndReg = MI.getOperand(1).getReg();
3510 Register SharedReg = MI.getOperand(2).getReg();
3511
3512 // Find a G_AND on either side of the G_XOR.
3513 // Look for one of
3514 //
3515 // (xor (and x, y), SharedReg)
3516 // (xor SharedReg, (and x, y))
3517 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) {
3518 std::swap(AndReg, SharedReg);
3519 if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y))))
3520 return false;
3521 }
3522
3523 // Only do this if we'll eliminate the G_AND.
3524 if (!MRI.hasOneNonDBGUse(AndReg))
3525 return false;
3526
3527 // We can combine if SharedReg is the same as either the LHS or RHS of the
3528 // G_AND.
3529 if (Y != SharedReg)
3530 std::swap(X, Y);
3531 return Y == SharedReg;
3532 }
3533
applyXorOfAndWithSameReg(MachineInstr & MI,std::pair<Register,Register> & MatchInfo)3534 void CombinerHelper::applyXorOfAndWithSameReg(
3535 MachineInstr &MI, std::pair<Register, Register> &MatchInfo) {
3536 // Fold (xor (and x, y), y) -> (and (not x), y)
3537 Register X, Y;
3538 std::tie(X, Y) = MatchInfo;
3539 auto Not = Builder.buildNot(MRI.getType(X), X);
3540 Observer.changingInstr(MI);
3541 MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND));
3542 MI.getOperand(1).setReg(Not->getOperand(0).getReg());
3543 MI.getOperand(2).setReg(Y);
3544 Observer.changedInstr(MI);
3545 }
3546
matchPtrAddZero(MachineInstr & MI)3547 bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) {
3548 auto &PtrAdd = cast<GPtrAdd>(MI);
3549 Register DstReg = PtrAdd.getReg(0);
3550 LLT Ty = MRI.getType(DstReg);
3551 const DataLayout &DL = Builder.getMF().getDataLayout();
3552
3553 if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace()))
3554 return false;
3555
3556 if (Ty.isPointer()) {
3557 auto ConstVal = getIConstantVRegVal(PtrAdd.getBaseReg(), MRI);
3558 return ConstVal && *ConstVal == 0;
3559 }
3560
3561 assert(Ty.isVector() && "Expecting a vector type");
3562 const MachineInstr *VecMI = MRI.getVRegDef(PtrAdd.getBaseReg());
3563 return isBuildVectorAllZeros(*VecMI, MRI);
3564 }
3565
applyPtrAddZero(MachineInstr & MI)3566 void CombinerHelper::applyPtrAddZero(MachineInstr &MI) {
3567 auto &PtrAdd = cast<GPtrAdd>(MI);
3568 Builder.buildIntToPtr(PtrAdd.getReg(0), PtrAdd.getOffsetReg());
3569 PtrAdd.eraseFromParent();
3570 }
3571
3572 /// The second source operand is known to be a power of 2.
applySimplifyURemByPow2(MachineInstr & MI)3573 void CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) {
3574 Register DstReg = MI.getOperand(0).getReg();
3575 Register Src0 = MI.getOperand(1).getReg();
3576 Register Pow2Src1 = MI.getOperand(2).getReg();
3577 LLT Ty = MRI.getType(DstReg);
3578
3579 // Fold (urem x, pow2) -> (and x, pow2-1)
3580 auto NegOne = Builder.buildConstant(Ty, -1);
3581 auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne);
3582 Builder.buildAnd(DstReg, Src0, Add);
3583 MI.eraseFromParent();
3584 }
3585
matchFoldBinOpIntoSelect(MachineInstr & MI,unsigned & SelectOpNo)3586 bool CombinerHelper::matchFoldBinOpIntoSelect(MachineInstr &MI,
3587 unsigned &SelectOpNo) {
3588 Register LHS = MI.getOperand(1).getReg();
3589 Register RHS = MI.getOperand(2).getReg();
3590
3591 Register OtherOperandReg = RHS;
3592 SelectOpNo = 1;
3593 MachineInstr *Select = MRI.getVRegDef(LHS);
3594
3595 // Don't do this unless the old select is going away. We want to eliminate the
3596 // binary operator, not replace a binop with a select.
3597 if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3598 !MRI.hasOneNonDBGUse(LHS)) {
3599 OtherOperandReg = LHS;
3600 SelectOpNo = 2;
3601 Select = MRI.getVRegDef(RHS);
3602 if (Select->getOpcode() != TargetOpcode::G_SELECT ||
3603 !MRI.hasOneNonDBGUse(RHS))
3604 return false;
3605 }
3606
3607 MachineInstr *SelectLHS = MRI.getVRegDef(Select->getOperand(2).getReg());
3608 MachineInstr *SelectRHS = MRI.getVRegDef(Select->getOperand(3).getReg());
3609
3610 if (!isConstantOrConstantVector(*SelectLHS, MRI,
3611 /*AllowFP*/ true,
3612 /*AllowOpaqueConstants*/ false))
3613 return false;
3614 if (!isConstantOrConstantVector(*SelectRHS, MRI,
3615 /*AllowFP*/ true,
3616 /*AllowOpaqueConstants*/ false))
3617 return false;
3618
3619 unsigned BinOpcode = MI.getOpcode();
3620
3621 // We know that one of the operands is a select of constants. Now verify that
3622 // the other binary operator operand is either a constant, or we can handle a
3623 // variable.
3624 bool CanFoldNonConst =
3625 (BinOpcode == TargetOpcode::G_AND || BinOpcode == TargetOpcode::G_OR) &&
3626 (isNullOrNullSplat(*SelectLHS, MRI) ||
3627 isAllOnesOrAllOnesSplat(*SelectLHS, MRI)) &&
3628 (isNullOrNullSplat(*SelectRHS, MRI) ||
3629 isAllOnesOrAllOnesSplat(*SelectRHS, MRI));
3630 if (CanFoldNonConst)
3631 return true;
3632
3633 return isConstantOrConstantVector(*MRI.getVRegDef(OtherOperandReg), MRI,
3634 /*AllowFP*/ true,
3635 /*AllowOpaqueConstants*/ false);
3636 }
3637
3638 /// \p SelectOperand is the operand in binary operator \p MI that is the select
3639 /// to fold.
applyFoldBinOpIntoSelect(MachineInstr & MI,const unsigned & SelectOperand)3640 void CombinerHelper::applyFoldBinOpIntoSelect(MachineInstr &MI,
3641 const unsigned &SelectOperand) {
3642 Register Dst = MI.getOperand(0).getReg();
3643 Register LHS = MI.getOperand(1).getReg();
3644 Register RHS = MI.getOperand(2).getReg();
3645 MachineInstr *Select = MRI.getVRegDef(MI.getOperand(SelectOperand).getReg());
3646
3647 Register SelectCond = Select->getOperand(1).getReg();
3648 Register SelectTrue = Select->getOperand(2).getReg();
3649 Register SelectFalse = Select->getOperand(3).getReg();
3650
3651 LLT Ty = MRI.getType(Dst);
3652 unsigned BinOpcode = MI.getOpcode();
3653
3654 Register FoldTrue, FoldFalse;
3655
3656 // We have a select-of-constants followed by a binary operator with a
3657 // constant. Eliminate the binop by pulling the constant math into the select.
3658 // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
3659 if (SelectOperand == 1) {
3660 // TODO: SelectionDAG verifies this actually constant folds before
3661 // committing to the combine.
3662
3663 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {SelectTrue, RHS}).getReg(0);
3664 FoldFalse =
3665 Builder.buildInstr(BinOpcode, {Ty}, {SelectFalse, RHS}).getReg(0);
3666 } else {
3667 FoldTrue = Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectTrue}).getReg(0);
3668 FoldFalse =
3669 Builder.buildInstr(BinOpcode, {Ty}, {LHS, SelectFalse}).getReg(0);
3670 }
3671
3672 Builder.buildSelect(Dst, SelectCond, FoldTrue, FoldFalse, MI.getFlags());
3673 MI.eraseFromParent();
3674 }
3675
3676 std::optional<SmallVector<Register, 8>>
findCandidatesForLoadOrCombine(const MachineInstr * Root) const3677 CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const {
3678 assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!");
3679 // We want to detect if Root is part of a tree which represents a bunch
3680 // of loads being merged into a larger load. We'll try to recognize patterns
3681 // like, for example:
3682 //
3683 // Reg Reg
3684 // \ /
3685 // OR_1 Reg
3686 // \ /
3687 // OR_2
3688 // \ Reg
3689 // .. /
3690 // Root
3691 //
3692 // Reg Reg Reg Reg
3693 // \ / \ /
3694 // OR_1 OR_2
3695 // \ /
3696 // \ /
3697 // ...
3698 // Root
3699 //
3700 // Each "Reg" may have been produced by a load + some arithmetic. This
3701 // function will save each of them.
3702 SmallVector<Register, 8> RegsToVisit;
3703 SmallVector<const MachineInstr *, 7> Ors = {Root};
3704
3705 // In the "worst" case, we're dealing with a load for each byte. So, there
3706 // are at most #bytes - 1 ORs.
3707 const unsigned MaxIter =
3708 MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1;
3709 for (unsigned Iter = 0; Iter < MaxIter; ++Iter) {
3710 if (Ors.empty())
3711 break;
3712 const MachineInstr *Curr = Ors.pop_back_val();
3713 Register OrLHS = Curr->getOperand(1).getReg();
3714 Register OrRHS = Curr->getOperand(2).getReg();
3715
3716 // In the combine, we want to elimate the entire tree.
3717 if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS))
3718 return std::nullopt;
3719
3720 // If it's a G_OR, save it and continue to walk. If it's not, then it's
3721 // something that may be a load + arithmetic.
3722 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI))
3723 Ors.push_back(Or);
3724 else
3725 RegsToVisit.push_back(OrLHS);
3726 if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI))
3727 Ors.push_back(Or);
3728 else
3729 RegsToVisit.push_back(OrRHS);
3730 }
3731
3732 // We're going to try and merge each register into a wider power-of-2 type,
3733 // so we ought to have an even number of registers.
3734 if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0)
3735 return std::nullopt;
3736 return RegsToVisit;
3737 }
3738
3739 /// Helper function for findLoadOffsetsForLoadOrCombine.
3740 ///
3741 /// Check if \p Reg is the result of loading a \p MemSizeInBits wide value,
3742 /// and then moving that value into a specific byte offset.
3743 ///
3744 /// e.g. x[i] << 24
3745 ///
3746 /// \returns The load instruction and the byte offset it is moved into.
3747 static std::optional<std::pair<GZExtLoad *, int64_t>>
matchLoadAndBytePosition(Register Reg,unsigned MemSizeInBits,const MachineRegisterInfo & MRI)3748 matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits,
3749 const MachineRegisterInfo &MRI) {
3750 assert(MRI.hasOneNonDBGUse(Reg) &&
3751 "Expected Reg to only have one non-debug use?");
3752 Register MaybeLoad;
3753 int64_t Shift;
3754 if (!mi_match(Reg, MRI,
3755 m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) {
3756 Shift = 0;
3757 MaybeLoad = Reg;
3758 }
3759
3760 if (Shift % MemSizeInBits != 0)
3761 return std::nullopt;
3762
3763 // TODO: Handle other types of loads.
3764 auto *Load = getOpcodeDef<GZExtLoad>(MaybeLoad, MRI);
3765 if (!Load)
3766 return std::nullopt;
3767
3768 if (!Load->isUnordered() || Load->getMemSizeInBits() != MemSizeInBits)
3769 return std::nullopt;
3770
3771 return std::make_pair(Load, Shift / MemSizeInBits);
3772 }
3773
3774 std::optional<std::tuple<GZExtLoad *, int64_t, GZExtLoad *>>
findLoadOffsetsForLoadOrCombine(SmallDenseMap<int64_t,int64_t,8> & MemOffset2Idx,const SmallVector<Register,8> & RegsToVisit,const unsigned MemSizeInBits)3775 CombinerHelper::findLoadOffsetsForLoadOrCombine(
3776 SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx,
3777 const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) {
3778
3779 // Each load found for the pattern. There should be one for each RegsToVisit.
3780 SmallSetVector<const MachineInstr *, 8> Loads;
3781
3782 // The lowest index used in any load. (The lowest "i" for each x[i].)
3783 int64_t LowestIdx = INT64_MAX;
3784
3785 // The load which uses the lowest index.
3786 GZExtLoad *LowestIdxLoad = nullptr;
3787
3788 // Keeps track of the load indices we see. We shouldn't see any indices twice.
3789 SmallSet<int64_t, 8> SeenIdx;
3790
3791 // Ensure each load is in the same MBB.
3792 // TODO: Support multiple MachineBasicBlocks.
3793 MachineBasicBlock *MBB = nullptr;
3794 const MachineMemOperand *MMO = nullptr;
3795
3796 // Earliest instruction-order load in the pattern.
3797 GZExtLoad *EarliestLoad = nullptr;
3798
3799 // Latest instruction-order load in the pattern.
3800 GZExtLoad *LatestLoad = nullptr;
3801
3802 // Base pointer which every load should share.
3803 Register BasePtr;
3804
3805 // We want to find a load for each register. Each load should have some
3806 // appropriate bit twiddling arithmetic. During this loop, we will also keep
3807 // track of the load which uses the lowest index. Later, we will check if we
3808 // can use its pointer in the final, combined load.
3809 for (auto Reg : RegsToVisit) {
3810 // Find the load, and find the position that it will end up in (e.g. a
3811 // shifted) value.
3812 auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI);
3813 if (!LoadAndPos)
3814 return std::nullopt;
3815 GZExtLoad *Load;
3816 int64_t DstPos;
3817 std::tie(Load, DstPos) = *LoadAndPos;
3818
3819 // TODO: Handle multiple MachineBasicBlocks. Currently not handled because
3820 // it is difficult to check for stores/calls/etc between loads.
3821 MachineBasicBlock *LoadMBB = Load->getParent();
3822 if (!MBB)
3823 MBB = LoadMBB;
3824 if (LoadMBB != MBB)
3825 return std::nullopt;
3826
3827 // Make sure that the MachineMemOperands of every seen load are compatible.
3828 auto &LoadMMO = Load->getMMO();
3829 if (!MMO)
3830 MMO = &LoadMMO;
3831 if (MMO->getAddrSpace() != LoadMMO.getAddrSpace())
3832 return std::nullopt;
3833
3834 // Find out what the base pointer and index for the load is.
3835 Register LoadPtr;
3836 int64_t Idx;
3837 if (!mi_match(Load->getOperand(1).getReg(), MRI,
3838 m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) {
3839 LoadPtr = Load->getOperand(1).getReg();
3840 Idx = 0;
3841 }
3842
3843 // Don't combine things like a[i], a[i] -> a bigger load.
3844 if (!SeenIdx.insert(Idx).second)
3845 return std::nullopt;
3846
3847 // Every load must share the same base pointer; don't combine things like:
3848 //
3849 // a[i], b[i + 1] -> a bigger load.
3850 if (!BasePtr.isValid())
3851 BasePtr = LoadPtr;
3852 if (BasePtr != LoadPtr)
3853 return std::nullopt;
3854
3855 if (Idx < LowestIdx) {
3856 LowestIdx = Idx;
3857 LowestIdxLoad = Load;
3858 }
3859
3860 // Keep track of the byte offset that this load ends up at. If we have seen
3861 // the byte offset, then stop here. We do not want to combine:
3862 //
3863 // a[i] << 16, a[i + k] << 16 -> a bigger load.
3864 if (!MemOffset2Idx.try_emplace(DstPos, Idx).second)
3865 return std::nullopt;
3866 Loads.insert(Load);
3867
3868 // Keep track of the position of the earliest/latest loads in the pattern.
3869 // We will check that there are no load fold barriers between them later
3870 // on.
3871 //
3872 // FIXME: Is there a better way to check for load fold barriers?
3873 if (!EarliestLoad || dominates(*Load, *EarliestLoad))
3874 EarliestLoad = Load;
3875 if (!LatestLoad || dominates(*LatestLoad, *Load))
3876 LatestLoad = Load;
3877 }
3878
3879 // We found a load for each register. Let's check if each load satisfies the
3880 // pattern.
3881 assert(Loads.size() == RegsToVisit.size() &&
3882 "Expected to find a load for each register?");
3883 assert(EarliestLoad != LatestLoad && EarliestLoad &&
3884 LatestLoad && "Expected at least two loads?");
3885
3886 // Check if there are any stores, calls, etc. between any of the loads. If
3887 // there are, then we can't safely perform the combine.
3888 //
3889 // MaxIter is chosen based off the (worst case) number of iterations it
3890 // typically takes to succeed in the LLVM test suite plus some padding.
3891 //
3892 // FIXME: Is there a better way to check for load fold barriers?
3893 const unsigned MaxIter = 20;
3894 unsigned Iter = 0;
3895 for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(),
3896 LatestLoad->getIterator())) {
3897 if (Loads.count(&MI))
3898 continue;
3899 if (MI.isLoadFoldBarrier())
3900 return std::nullopt;
3901 if (Iter++ == MaxIter)
3902 return std::nullopt;
3903 }
3904
3905 return std::make_tuple(LowestIdxLoad, LowestIdx, LatestLoad);
3906 }
3907
matchLoadOrCombine(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)3908 bool CombinerHelper::matchLoadOrCombine(
3909 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
3910 assert(MI.getOpcode() == TargetOpcode::G_OR);
3911 MachineFunction &MF = *MI.getMF();
3912 // Assuming a little-endian target, transform:
3913 // s8 *a = ...
3914 // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
3915 // =>
3916 // s32 val = *((i32)a)
3917 //
3918 // s8 *a = ...
3919 // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
3920 // =>
3921 // s32 val = BSWAP(*((s32)a))
3922 Register Dst = MI.getOperand(0).getReg();
3923 LLT Ty = MRI.getType(Dst);
3924 if (Ty.isVector())
3925 return false;
3926
3927 // We need to combine at least two loads into this type. Since the smallest
3928 // possible load is into a byte, we need at least a 16-bit wide type.
3929 const unsigned WideMemSizeInBits = Ty.getSizeInBits();
3930 if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0)
3931 return false;
3932
3933 // Match a collection of non-OR instructions in the pattern.
3934 auto RegsToVisit = findCandidatesForLoadOrCombine(&MI);
3935 if (!RegsToVisit)
3936 return false;
3937
3938 // We have a collection of non-OR instructions. Figure out how wide each of
3939 // the small loads should be based off of the number of potential loads we
3940 // found.
3941 const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size();
3942 if (NarrowMemSizeInBits % 8 != 0)
3943 return false;
3944
3945 // Check if each register feeding into each OR is a load from the same
3946 // base pointer + some arithmetic.
3947 //
3948 // e.g. a[0], a[1] << 8, a[2] << 16, etc.
3949 //
3950 // Also verify that each of these ends up putting a[i] into the same memory
3951 // offset as a load into a wide type would.
3952 SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx;
3953 GZExtLoad *LowestIdxLoad, *LatestLoad;
3954 int64_t LowestIdx;
3955 auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine(
3956 MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits);
3957 if (!MaybeLoadInfo)
3958 return false;
3959 std::tie(LowestIdxLoad, LowestIdx, LatestLoad) = *MaybeLoadInfo;
3960
3961 // We have a bunch of loads being OR'd together. Using the addresses + offsets
3962 // we found before, check if this corresponds to a big or little endian byte
3963 // pattern. If it does, then we can represent it using a load + possibly a
3964 // BSWAP.
3965 bool IsBigEndianTarget = MF.getDataLayout().isBigEndian();
3966 std::optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx);
3967 if (!IsBigEndian)
3968 return false;
3969 bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian;
3970 if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}}))
3971 return false;
3972
3973 // Make sure that the load from the lowest index produces offset 0 in the
3974 // final value.
3975 //
3976 // This ensures that we won't combine something like this:
3977 //
3978 // load x[i] -> byte 2
3979 // load x[i+1] -> byte 0 ---> wide_load x[i]
3980 // load x[i+2] -> byte 1
3981 const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits;
3982 const unsigned ZeroByteOffset =
3983 *IsBigEndian
3984 ? bigEndianByteAt(NumLoadsInTy, 0)
3985 : littleEndianByteAt(NumLoadsInTy, 0);
3986 auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset);
3987 if (ZeroOffsetIdx == MemOffset2Idx.end() ||
3988 ZeroOffsetIdx->second != LowestIdx)
3989 return false;
3990
3991 // We wil reuse the pointer from the load which ends up at byte offset 0. It
3992 // may not use index 0.
3993 Register Ptr = LowestIdxLoad->getPointerReg();
3994 const MachineMemOperand &MMO = LowestIdxLoad->getMMO();
3995 LegalityQuery::MemDesc MMDesc(MMO);
3996 MMDesc.MemoryTy = Ty;
3997 if (!isLegalOrBeforeLegalizer(
3998 {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}}))
3999 return false;
4000 auto PtrInfo = MMO.getPointerInfo();
4001 auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8);
4002
4003 // Load must be allowed and fast on the target.
4004 LLVMContext &C = MF.getFunction().getContext();
4005 auto &DL = MF.getDataLayout();
4006 unsigned Fast = 0;
4007 if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) ||
4008 !Fast)
4009 return false;
4010
4011 MatchInfo = [=](MachineIRBuilder &MIB) {
4012 MIB.setInstrAndDebugLoc(*LatestLoad);
4013 Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst;
4014 MIB.buildLoad(LoadDst, Ptr, *NewMMO);
4015 if (NeedsBSwap)
4016 MIB.buildBSwap(Dst, LoadDst);
4017 };
4018 return true;
4019 }
4020
matchExtendThroughPhis(MachineInstr & MI,MachineInstr * & ExtMI)4021 bool CombinerHelper::matchExtendThroughPhis(MachineInstr &MI,
4022 MachineInstr *&ExtMI) {
4023 auto &PHI = cast<GPhi>(MI);
4024 Register DstReg = PHI.getReg(0);
4025
4026 // TODO: Extending a vector may be expensive, don't do this until heuristics
4027 // are better.
4028 if (MRI.getType(DstReg).isVector())
4029 return false;
4030
4031 // Try to match a phi, whose only use is an extend.
4032 if (!MRI.hasOneNonDBGUse(DstReg))
4033 return false;
4034 ExtMI = &*MRI.use_instr_nodbg_begin(DstReg);
4035 switch (ExtMI->getOpcode()) {
4036 case TargetOpcode::G_ANYEXT:
4037 return true; // G_ANYEXT is usually free.
4038 case TargetOpcode::G_ZEXT:
4039 case TargetOpcode::G_SEXT:
4040 break;
4041 default:
4042 return false;
4043 }
4044
4045 // If the target is likely to fold this extend away, don't propagate.
4046 if (Builder.getTII().isExtendLikelyToBeFolded(*ExtMI, MRI))
4047 return false;
4048
4049 // We don't want to propagate the extends unless there's a good chance that
4050 // they'll be optimized in some way.
4051 // Collect the unique incoming values.
4052 SmallPtrSet<MachineInstr *, 4> InSrcs;
4053 for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) {
4054 auto *DefMI = getDefIgnoringCopies(PHI.getIncomingValue(I), MRI);
4055 switch (DefMI->getOpcode()) {
4056 case TargetOpcode::G_LOAD:
4057 case TargetOpcode::G_TRUNC:
4058 case TargetOpcode::G_SEXT:
4059 case TargetOpcode::G_ZEXT:
4060 case TargetOpcode::G_ANYEXT:
4061 case TargetOpcode::G_CONSTANT:
4062 InSrcs.insert(DefMI);
4063 // Don't try to propagate if there are too many places to create new
4064 // extends, chances are it'll increase code size.
4065 if (InSrcs.size() > 2)
4066 return false;
4067 break;
4068 default:
4069 return false;
4070 }
4071 }
4072 return true;
4073 }
4074
applyExtendThroughPhis(MachineInstr & MI,MachineInstr * & ExtMI)4075 void CombinerHelper::applyExtendThroughPhis(MachineInstr &MI,
4076 MachineInstr *&ExtMI) {
4077 auto &PHI = cast<GPhi>(MI);
4078 Register DstReg = ExtMI->getOperand(0).getReg();
4079 LLT ExtTy = MRI.getType(DstReg);
4080
4081 // Propagate the extension into the block of each incoming reg's block.
4082 // Use a SetVector here because PHIs can have duplicate edges, and we want
4083 // deterministic iteration order.
4084 SmallSetVector<MachineInstr *, 8> SrcMIs;
4085 SmallDenseMap<MachineInstr *, MachineInstr *, 8> OldToNewSrcMap;
4086 for (unsigned I = 0; I < PHI.getNumIncomingValues(); ++I) {
4087 auto SrcReg = PHI.getIncomingValue(I);
4088 auto *SrcMI = MRI.getVRegDef(SrcReg);
4089 if (!SrcMIs.insert(SrcMI))
4090 continue;
4091
4092 // Build an extend after each src inst.
4093 auto *MBB = SrcMI->getParent();
4094 MachineBasicBlock::iterator InsertPt = ++SrcMI->getIterator();
4095 if (InsertPt != MBB->end() && InsertPt->isPHI())
4096 InsertPt = MBB->getFirstNonPHI();
4097
4098 Builder.setInsertPt(*SrcMI->getParent(), InsertPt);
4099 Builder.setDebugLoc(MI.getDebugLoc());
4100 auto NewExt = Builder.buildExtOrTrunc(ExtMI->getOpcode(), ExtTy, SrcReg);
4101 OldToNewSrcMap[SrcMI] = NewExt;
4102 }
4103
4104 // Create a new phi with the extended inputs.
4105 Builder.setInstrAndDebugLoc(MI);
4106 auto NewPhi = Builder.buildInstrNoInsert(TargetOpcode::G_PHI);
4107 NewPhi.addDef(DstReg);
4108 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
4109 if (!MO.isReg()) {
4110 NewPhi.addMBB(MO.getMBB());
4111 continue;
4112 }
4113 auto *NewSrc = OldToNewSrcMap[MRI.getVRegDef(MO.getReg())];
4114 NewPhi.addUse(NewSrc->getOperand(0).getReg());
4115 }
4116 Builder.insertInstr(NewPhi);
4117 ExtMI->eraseFromParent();
4118 }
4119
matchExtractVecEltBuildVec(MachineInstr & MI,Register & Reg)4120 bool CombinerHelper::matchExtractVecEltBuildVec(MachineInstr &MI,
4121 Register &Reg) {
4122 assert(MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT);
4123 // If we have a constant index, look for a G_BUILD_VECTOR source
4124 // and find the source register that the index maps to.
4125 Register SrcVec = MI.getOperand(1).getReg();
4126 LLT SrcTy = MRI.getType(SrcVec);
4127
4128 auto Cst = getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
4129 if (!Cst || Cst->Value.getZExtValue() >= SrcTy.getNumElements())
4130 return false;
4131
4132 unsigned VecIdx = Cst->Value.getZExtValue();
4133
4134 // Check if we have a build_vector or build_vector_trunc with an optional
4135 // trunc in front.
4136 MachineInstr *SrcVecMI = MRI.getVRegDef(SrcVec);
4137 if (SrcVecMI->getOpcode() == TargetOpcode::G_TRUNC) {
4138 SrcVecMI = MRI.getVRegDef(SrcVecMI->getOperand(1).getReg());
4139 }
4140
4141 if (SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR &&
4142 SrcVecMI->getOpcode() != TargetOpcode::G_BUILD_VECTOR_TRUNC)
4143 return false;
4144
4145 EVT Ty(getMVTForLLT(SrcTy));
4146 if (!MRI.hasOneNonDBGUse(SrcVec) &&
4147 !getTargetLowering().aggressivelyPreferBuildVectorSources(Ty))
4148 return false;
4149
4150 Reg = SrcVecMI->getOperand(VecIdx + 1).getReg();
4151 return true;
4152 }
4153
applyExtractVecEltBuildVec(MachineInstr & MI,Register & Reg)4154 void CombinerHelper::applyExtractVecEltBuildVec(MachineInstr &MI,
4155 Register &Reg) {
4156 // Check the type of the register, since it may have come from a
4157 // G_BUILD_VECTOR_TRUNC.
4158 LLT ScalarTy = MRI.getType(Reg);
4159 Register DstReg = MI.getOperand(0).getReg();
4160 LLT DstTy = MRI.getType(DstReg);
4161
4162 if (ScalarTy != DstTy) {
4163 assert(ScalarTy.getSizeInBits() > DstTy.getSizeInBits());
4164 Builder.buildTrunc(DstReg, Reg);
4165 MI.eraseFromParent();
4166 return;
4167 }
4168 replaceSingleDefInstWithReg(MI, Reg);
4169 }
4170
matchExtractAllEltsFromBuildVector(MachineInstr & MI,SmallVectorImpl<std::pair<Register,MachineInstr * >> & SrcDstPairs)4171 bool CombinerHelper::matchExtractAllEltsFromBuildVector(
4172 MachineInstr &MI,
4173 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4174 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4175 // This combine tries to find build_vector's which have every source element
4176 // extracted using G_EXTRACT_VECTOR_ELT. This can happen when transforms like
4177 // the masked load scalarization is run late in the pipeline. There's already
4178 // a combine for a similar pattern starting from the extract, but that
4179 // doesn't attempt to do it if there are multiple uses of the build_vector,
4180 // which in this case is true. Starting the combine from the build_vector
4181 // feels more natural than trying to find sibling nodes of extracts.
4182 // E.g.
4183 // %vec(<4 x s32>) = G_BUILD_VECTOR %s1(s32), %s2, %s3, %s4
4184 // %ext1 = G_EXTRACT_VECTOR_ELT %vec, 0
4185 // %ext2 = G_EXTRACT_VECTOR_ELT %vec, 1
4186 // %ext3 = G_EXTRACT_VECTOR_ELT %vec, 2
4187 // %ext4 = G_EXTRACT_VECTOR_ELT %vec, 3
4188 // ==>
4189 // replace ext{1,2,3,4} with %s{1,2,3,4}
4190
4191 Register DstReg = MI.getOperand(0).getReg();
4192 LLT DstTy = MRI.getType(DstReg);
4193 unsigned NumElts = DstTy.getNumElements();
4194
4195 SmallBitVector ExtractedElts(NumElts);
4196 for (MachineInstr &II : MRI.use_nodbg_instructions(DstReg)) {
4197 if (II.getOpcode() != TargetOpcode::G_EXTRACT_VECTOR_ELT)
4198 return false;
4199 auto Cst = getIConstantVRegVal(II.getOperand(2).getReg(), MRI);
4200 if (!Cst)
4201 return false;
4202 unsigned Idx = Cst->getZExtValue();
4203 if (Idx >= NumElts)
4204 return false; // Out of range.
4205 ExtractedElts.set(Idx);
4206 SrcDstPairs.emplace_back(
4207 std::make_pair(MI.getOperand(Idx + 1).getReg(), &II));
4208 }
4209 // Match if every element was extracted.
4210 return ExtractedElts.all();
4211 }
4212
applyExtractAllEltsFromBuildVector(MachineInstr & MI,SmallVectorImpl<std::pair<Register,MachineInstr * >> & SrcDstPairs)4213 void CombinerHelper::applyExtractAllEltsFromBuildVector(
4214 MachineInstr &MI,
4215 SmallVectorImpl<std::pair<Register, MachineInstr *>> &SrcDstPairs) {
4216 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
4217 for (auto &Pair : SrcDstPairs) {
4218 auto *ExtMI = Pair.second;
4219 replaceRegWith(MRI, ExtMI->getOperand(0).getReg(), Pair.first);
4220 ExtMI->eraseFromParent();
4221 }
4222 MI.eraseFromParent();
4223 }
4224
applyBuildFn(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4225 void CombinerHelper::applyBuildFn(
4226 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4227 applyBuildFnNoErase(MI, MatchInfo);
4228 MI.eraseFromParent();
4229 }
4230
applyBuildFnNoErase(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4231 void CombinerHelper::applyBuildFnNoErase(
4232 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4233 MatchInfo(Builder);
4234 }
4235
matchOrShiftToFunnelShift(MachineInstr & MI,BuildFnTy & MatchInfo)4236 bool CombinerHelper::matchOrShiftToFunnelShift(MachineInstr &MI,
4237 BuildFnTy &MatchInfo) {
4238 assert(MI.getOpcode() == TargetOpcode::G_OR);
4239
4240 Register Dst = MI.getOperand(0).getReg();
4241 LLT Ty = MRI.getType(Dst);
4242 unsigned BitWidth = Ty.getScalarSizeInBits();
4243
4244 Register ShlSrc, ShlAmt, LShrSrc, LShrAmt, Amt;
4245 unsigned FshOpc = 0;
4246
4247 // Match (or (shl ...), (lshr ...)).
4248 if (!mi_match(Dst, MRI,
4249 // m_GOr() handles the commuted version as well.
4250 m_GOr(m_GShl(m_Reg(ShlSrc), m_Reg(ShlAmt)),
4251 m_GLShr(m_Reg(LShrSrc), m_Reg(LShrAmt)))))
4252 return false;
4253
4254 // Given constants C0 and C1 such that C0 + C1 is bit-width:
4255 // (or (shl x, C0), (lshr y, C1)) -> (fshl x, y, C0) or (fshr x, y, C1)
4256 int64_t CstShlAmt, CstLShrAmt;
4257 if (mi_match(ShlAmt, MRI, m_ICstOrSplat(CstShlAmt)) &&
4258 mi_match(LShrAmt, MRI, m_ICstOrSplat(CstLShrAmt)) &&
4259 CstShlAmt + CstLShrAmt == BitWidth) {
4260 FshOpc = TargetOpcode::G_FSHR;
4261 Amt = LShrAmt;
4262
4263 } else if (mi_match(LShrAmt, MRI,
4264 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4265 ShlAmt == Amt) {
4266 // (or (shl x, amt), (lshr y, (sub bw, amt))) -> (fshl x, y, amt)
4267 FshOpc = TargetOpcode::G_FSHL;
4268
4269 } else if (mi_match(ShlAmt, MRI,
4270 m_GSub(m_SpecificICstOrSplat(BitWidth), m_Reg(Amt))) &&
4271 LShrAmt == Amt) {
4272 // (or (shl x, (sub bw, amt)), (lshr y, amt)) -> (fshr x, y, amt)
4273 FshOpc = TargetOpcode::G_FSHR;
4274
4275 } else {
4276 return false;
4277 }
4278
4279 LLT AmtTy = MRI.getType(Amt);
4280 if (!isLegalOrBeforeLegalizer({FshOpc, {Ty, AmtTy}}))
4281 return false;
4282
4283 MatchInfo = [=](MachineIRBuilder &B) {
4284 B.buildInstr(FshOpc, {Dst}, {ShlSrc, LShrSrc, Amt});
4285 };
4286 return true;
4287 }
4288
4289 /// Match an FSHL or FSHR that can be combined to a ROTR or ROTL rotate.
matchFunnelShiftToRotate(MachineInstr & MI)4290 bool CombinerHelper::matchFunnelShiftToRotate(MachineInstr &MI) {
4291 unsigned Opc = MI.getOpcode();
4292 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4293 Register X = MI.getOperand(1).getReg();
4294 Register Y = MI.getOperand(2).getReg();
4295 if (X != Y)
4296 return false;
4297 unsigned RotateOpc =
4298 Opc == TargetOpcode::G_FSHL ? TargetOpcode::G_ROTL : TargetOpcode::G_ROTR;
4299 return isLegalOrBeforeLegalizer({RotateOpc, {MRI.getType(X), MRI.getType(Y)}});
4300 }
4301
applyFunnelShiftToRotate(MachineInstr & MI)4302 void CombinerHelper::applyFunnelShiftToRotate(MachineInstr &MI) {
4303 unsigned Opc = MI.getOpcode();
4304 assert(Opc == TargetOpcode::G_FSHL || Opc == TargetOpcode::G_FSHR);
4305 bool IsFSHL = Opc == TargetOpcode::G_FSHL;
4306 Observer.changingInstr(MI);
4307 MI.setDesc(Builder.getTII().get(IsFSHL ? TargetOpcode::G_ROTL
4308 : TargetOpcode::G_ROTR));
4309 MI.removeOperand(2);
4310 Observer.changedInstr(MI);
4311 }
4312
4313 // Fold (rot x, c) -> (rot x, c % BitSize)
matchRotateOutOfRange(MachineInstr & MI)4314 bool CombinerHelper::matchRotateOutOfRange(MachineInstr &MI) {
4315 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4316 MI.getOpcode() == TargetOpcode::G_ROTR);
4317 unsigned Bitsize =
4318 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4319 Register AmtReg = MI.getOperand(2).getReg();
4320 bool OutOfRange = false;
4321 auto MatchOutOfRange = [Bitsize, &OutOfRange](const Constant *C) {
4322 if (auto *CI = dyn_cast<ConstantInt>(C))
4323 OutOfRange |= CI->getValue().uge(Bitsize);
4324 return true;
4325 };
4326 return matchUnaryPredicate(MRI, AmtReg, MatchOutOfRange) && OutOfRange;
4327 }
4328
applyRotateOutOfRange(MachineInstr & MI)4329 void CombinerHelper::applyRotateOutOfRange(MachineInstr &MI) {
4330 assert(MI.getOpcode() == TargetOpcode::G_ROTL ||
4331 MI.getOpcode() == TargetOpcode::G_ROTR);
4332 unsigned Bitsize =
4333 MRI.getType(MI.getOperand(0).getReg()).getScalarSizeInBits();
4334 Register Amt = MI.getOperand(2).getReg();
4335 LLT AmtTy = MRI.getType(Amt);
4336 auto Bits = Builder.buildConstant(AmtTy, Bitsize);
4337 Amt = Builder.buildURem(AmtTy, MI.getOperand(2).getReg(), Bits).getReg(0);
4338 Observer.changingInstr(MI);
4339 MI.getOperand(2).setReg(Amt);
4340 Observer.changedInstr(MI);
4341 }
4342
matchICmpToTrueFalseKnownBits(MachineInstr & MI,int64_t & MatchInfo)4343 bool CombinerHelper::matchICmpToTrueFalseKnownBits(MachineInstr &MI,
4344 int64_t &MatchInfo) {
4345 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4346 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4347
4348 // We want to avoid calling KnownBits on the LHS if possible, as this combine
4349 // has no filter and runs on every G_ICMP instruction. We can avoid calling
4350 // KnownBits on the LHS in two cases:
4351 //
4352 // - The RHS is unknown: Constants are always on RHS. If the RHS is unknown
4353 // we cannot do any transforms so we can safely bail out early.
4354 // - The RHS is zero: we don't need to know the LHS to do unsigned <0 and
4355 // >=0.
4356 auto KnownRHS = KB->getKnownBits(MI.getOperand(3).getReg());
4357 if (KnownRHS.isUnknown())
4358 return false;
4359
4360 std::optional<bool> KnownVal;
4361 if (KnownRHS.isZero()) {
4362 // ? uge 0 -> always true
4363 // ? ult 0 -> always false
4364 if (Pred == CmpInst::ICMP_UGE)
4365 KnownVal = true;
4366 else if (Pred == CmpInst::ICMP_ULT)
4367 KnownVal = false;
4368 }
4369
4370 if (!KnownVal) {
4371 auto KnownLHS = KB->getKnownBits(MI.getOperand(2).getReg());
4372 switch (Pred) {
4373 default:
4374 llvm_unreachable("Unexpected G_ICMP predicate?");
4375 case CmpInst::ICMP_EQ:
4376 KnownVal = KnownBits::eq(KnownLHS, KnownRHS);
4377 break;
4378 case CmpInst::ICMP_NE:
4379 KnownVal = KnownBits::ne(KnownLHS, KnownRHS);
4380 break;
4381 case CmpInst::ICMP_SGE:
4382 KnownVal = KnownBits::sge(KnownLHS, KnownRHS);
4383 break;
4384 case CmpInst::ICMP_SGT:
4385 KnownVal = KnownBits::sgt(KnownLHS, KnownRHS);
4386 break;
4387 case CmpInst::ICMP_SLE:
4388 KnownVal = KnownBits::sle(KnownLHS, KnownRHS);
4389 break;
4390 case CmpInst::ICMP_SLT:
4391 KnownVal = KnownBits::slt(KnownLHS, KnownRHS);
4392 break;
4393 case CmpInst::ICMP_UGE:
4394 KnownVal = KnownBits::uge(KnownLHS, KnownRHS);
4395 break;
4396 case CmpInst::ICMP_UGT:
4397 KnownVal = KnownBits::ugt(KnownLHS, KnownRHS);
4398 break;
4399 case CmpInst::ICMP_ULE:
4400 KnownVal = KnownBits::ule(KnownLHS, KnownRHS);
4401 break;
4402 case CmpInst::ICMP_ULT:
4403 KnownVal = KnownBits::ult(KnownLHS, KnownRHS);
4404 break;
4405 }
4406 }
4407
4408 if (!KnownVal)
4409 return false;
4410 MatchInfo =
4411 *KnownVal
4412 ? getICmpTrueVal(getTargetLowering(),
4413 /*IsVector = */
4414 MRI.getType(MI.getOperand(0).getReg()).isVector(),
4415 /* IsFP = */ false)
4416 : 0;
4417 return true;
4418 }
4419
matchICmpToLHSKnownBits(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4420 bool CombinerHelper::matchICmpToLHSKnownBits(
4421 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4422 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
4423 // Given:
4424 //
4425 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4426 // %cmp = G_ICMP ne %x, 0
4427 //
4428 // Or:
4429 //
4430 // %x = G_WHATEVER (... x is known to be 0 or 1 ...)
4431 // %cmp = G_ICMP eq %x, 1
4432 //
4433 // We can replace %cmp with %x assuming true is 1 on the target.
4434 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
4435 if (!CmpInst::isEquality(Pred))
4436 return false;
4437 Register Dst = MI.getOperand(0).getReg();
4438 LLT DstTy = MRI.getType(Dst);
4439 if (getICmpTrueVal(getTargetLowering(), DstTy.isVector(),
4440 /* IsFP = */ false) != 1)
4441 return false;
4442 int64_t OneOrZero = Pred == CmpInst::ICMP_EQ;
4443 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICst(OneOrZero)))
4444 return false;
4445 Register LHS = MI.getOperand(2).getReg();
4446 auto KnownLHS = KB->getKnownBits(LHS);
4447 if (KnownLHS.getMinValue() != 0 || KnownLHS.getMaxValue() != 1)
4448 return false;
4449 // Make sure replacing Dst with the LHS is a legal operation.
4450 LLT LHSTy = MRI.getType(LHS);
4451 unsigned LHSSize = LHSTy.getSizeInBits();
4452 unsigned DstSize = DstTy.getSizeInBits();
4453 unsigned Op = TargetOpcode::COPY;
4454 if (DstSize != LHSSize)
4455 Op = DstSize < LHSSize ? TargetOpcode::G_TRUNC : TargetOpcode::G_ZEXT;
4456 if (!isLegalOrBeforeLegalizer({Op, {DstTy, LHSTy}}))
4457 return false;
4458 MatchInfo = [=](MachineIRBuilder &B) { B.buildInstr(Op, {Dst}, {LHS}); };
4459 return true;
4460 }
4461
4462 // Replace (and (or x, c1), c2) with (and x, c2) iff c1 & c2 == 0
matchAndOrDisjointMask(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4463 bool CombinerHelper::matchAndOrDisjointMask(
4464 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4465 assert(MI.getOpcode() == TargetOpcode::G_AND);
4466
4467 // Ignore vector types to simplify matching the two constants.
4468 // TODO: do this for vectors and scalars via a demanded bits analysis.
4469 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
4470 if (Ty.isVector())
4471 return false;
4472
4473 Register Src;
4474 Register AndMaskReg;
4475 int64_t AndMaskBits;
4476 int64_t OrMaskBits;
4477 if (!mi_match(MI, MRI,
4478 m_GAnd(m_GOr(m_Reg(Src), m_ICst(OrMaskBits)),
4479 m_all_of(m_ICst(AndMaskBits), m_Reg(AndMaskReg)))))
4480 return false;
4481
4482 // Check if OrMask could turn on any bits in Src.
4483 if (AndMaskBits & OrMaskBits)
4484 return false;
4485
4486 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4487 Observer.changingInstr(MI);
4488 // Canonicalize the result to have the constant on the RHS.
4489 if (MI.getOperand(1).getReg() == AndMaskReg)
4490 MI.getOperand(2).setReg(AndMaskReg);
4491 MI.getOperand(1).setReg(Src);
4492 Observer.changedInstr(MI);
4493 };
4494 return true;
4495 }
4496
4497 /// Form a G_SBFX from a G_SEXT_INREG fed by a right shift.
matchBitfieldExtractFromSExtInReg(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4498 bool CombinerHelper::matchBitfieldExtractFromSExtInReg(
4499 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4500 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
4501 Register Dst = MI.getOperand(0).getReg();
4502 Register Src = MI.getOperand(1).getReg();
4503 LLT Ty = MRI.getType(Src);
4504 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4505 if (!LI || !LI->isLegalOrCustom({TargetOpcode::G_SBFX, {Ty, ExtractTy}}))
4506 return false;
4507 int64_t Width = MI.getOperand(2).getImm();
4508 Register ShiftSrc;
4509 int64_t ShiftImm;
4510 if (!mi_match(
4511 Src, MRI,
4512 m_OneNonDBGUse(m_any_of(m_GAShr(m_Reg(ShiftSrc), m_ICst(ShiftImm)),
4513 m_GLShr(m_Reg(ShiftSrc), m_ICst(ShiftImm))))))
4514 return false;
4515 if (ShiftImm < 0 || ShiftImm + Width > Ty.getScalarSizeInBits())
4516 return false;
4517
4518 MatchInfo = [=](MachineIRBuilder &B) {
4519 auto Cst1 = B.buildConstant(ExtractTy, ShiftImm);
4520 auto Cst2 = B.buildConstant(ExtractTy, Width);
4521 B.buildSbfx(Dst, ShiftSrc, Cst1, Cst2);
4522 };
4523 return true;
4524 }
4525
4526 /// Form a G_UBFX from "(a srl b) & mask", where b and mask are constants.
matchBitfieldExtractFromAnd(MachineInstr & MI,BuildFnTy & MatchInfo)4527 bool CombinerHelper::matchBitfieldExtractFromAnd(MachineInstr &MI,
4528 BuildFnTy &MatchInfo) {
4529 GAnd *And = cast<GAnd>(&MI);
4530 Register Dst = And->getReg(0);
4531 LLT Ty = MRI.getType(Dst);
4532 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4533 // Note that isLegalOrBeforeLegalizer is stricter and does not take custom
4534 // into account.
4535 if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
4536 return false;
4537
4538 int64_t AndImm, LSBImm;
4539 Register ShiftSrc;
4540 const unsigned Size = Ty.getScalarSizeInBits();
4541 if (!mi_match(And->getReg(0), MRI,
4542 m_GAnd(m_OneNonDBGUse(m_GLShr(m_Reg(ShiftSrc), m_ICst(LSBImm))),
4543 m_ICst(AndImm))))
4544 return false;
4545
4546 // The mask is a mask of the low bits iff imm & (imm+1) == 0.
4547 auto MaybeMask = static_cast<uint64_t>(AndImm);
4548 if (MaybeMask & (MaybeMask + 1))
4549 return false;
4550
4551 // LSB must fit within the register.
4552 if (static_cast<uint64_t>(LSBImm) >= Size)
4553 return false;
4554
4555 uint64_t Width = APInt(Size, AndImm).countr_one();
4556 MatchInfo = [=](MachineIRBuilder &B) {
4557 auto WidthCst = B.buildConstant(ExtractTy, Width);
4558 auto LSBCst = B.buildConstant(ExtractTy, LSBImm);
4559 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {ShiftSrc, LSBCst, WidthCst});
4560 };
4561 return true;
4562 }
4563
matchBitfieldExtractFromShr(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4564 bool CombinerHelper::matchBitfieldExtractFromShr(
4565 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4566 const unsigned Opcode = MI.getOpcode();
4567 assert(Opcode == TargetOpcode::G_ASHR || Opcode == TargetOpcode::G_LSHR);
4568
4569 const Register Dst = MI.getOperand(0).getReg();
4570
4571 const unsigned ExtrOpcode = Opcode == TargetOpcode::G_ASHR
4572 ? TargetOpcode::G_SBFX
4573 : TargetOpcode::G_UBFX;
4574
4575 // Check if the type we would use for the extract is legal
4576 LLT Ty = MRI.getType(Dst);
4577 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4578 if (!LI || !LI->isLegalOrCustom({ExtrOpcode, {Ty, ExtractTy}}))
4579 return false;
4580
4581 Register ShlSrc;
4582 int64_t ShrAmt;
4583 int64_t ShlAmt;
4584 const unsigned Size = Ty.getScalarSizeInBits();
4585
4586 // Try to match shr (shl x, c1), c2
4587 if (!mi_match(Dst, MRI,
4588 m_BinOp(Opcode,
4589 m_OneNonDBGUse(m_GShl(m_Reg(ShlSrc), m_ICst(ShlAmt))),
4590 m_ICst(ShrAmt))))
4591 return false;
4592
4593 // Make sure that the shift sizes can fit a bitfield extract
4594 if (ShlAmt < 0 || ShlAmt > ShrAmt || ShrAmt >= Size)
4595 return false;
4596
4597 // Skip this combine if the G_SEXT_INREG combine could handle it
4598 if (Opcode == TargetOpcode::G_ASHR && ShlAmt == ShrAmt)
4599 return false;
4600
4601 // Calculate start position and width of the extract
4602 const int64_t Pos = ShrAmt - ShlAmt;
4603 const int64_t Width = Size - ShrAmt;
4604
4605 MatchInfo = [=](MachineIRBuilder &B) {
4606 auto WidthCst = B.buildConstant(ExtractTy, Width);
4607 auto PosCst = B.buildConstant(ExtractTy, Pos);
4608 B.buildInstr(ExtrOpcode, {Dst}, {ShlSrc, PosCst, WidthCst});
4609 };
4610 return true;
4611 }
4612
matchBitfieldExtractFromShrAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4613 bool CombinerHelper::matchBitfieldExtractFromShrAnd(
4614 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4615 const unsigned Opcode = MI.getOpcode();
4616 assert(Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_ASHR);
4617
4618 const Register Dst = MI.getOperand(0).getReg();
4619 LLT Ty = MRI.getType(Dst);
4620 LLT ExtractTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
4621 if (LI && !LI->isLegalOrCustom({TargetOpcode::G_UBFX, {Ty, ExtractTy}}))
4622 return false;
4623
4624 // Try to match shr (and x, c1), c2
4625 Register AndSrc;
4626 int64_t ShrAmt;
4627 int64_t SMask;
4628 if (!mi_match(Dst, MRI,
4629 m_BinOp(Opcode,
4630 m_OneNonDBGUse(m_GAnd(m_Reg(AndSrc), m_ICst(SMask))),
4631 m_ICst(ShrAmt))))
4632 return false;
4633
4634 const unsigned Size = Ty.getScalarSizeInBits();
4635 if (ShrAmt < 0 || ShrAmt >= Size)
4636 return false;
4637
4638 // If the shift subsumes the mask, emit the 0 directly.
4639 if (0 == (SMask >> ShrAmt)) {
4640 MatchInfo = [=](MachineIRBuilder &B) {
4641 B.buildConstant(Dst, 0);
4642 };
4643 return true;
4644 }
4645
4646 // Check that ubfx can do the extraction, with no holes in the mask.
4647 uint64_t UMask = SMask;
4648 UMask |= maskTrailingOnes<uint64_t>(ShrAmt);
4649 UMask &= maskTrailingOnes<uint64_t>(Size);
4650 if (!isMask_64(UMask))
4651 return false;
4652
4653 // Calculate start position and width of the extract.
4654 const int64_t Pos = ShrAmt;
4655 const int64_t Width = llvm::countr_one(UMask) - ShrAmt;
4656
4657 // It's preferable to keep the shift, rather than form G_SBFX.
4658 // TODO: remove the G_AND via demanded bits analysis.
4659 if (Opcode == TargetOpcode::G_ASHR && Width + ShrAmt == Size)
4660 return false;
4661
4662 MatchInfo = [=](MachineIRBuilder &B) {
4663 auto WidthCst = B.buildConstant(ExtractTy, Width);
4664 auto PosCst = B.buildConstant(ExtractTy, Pos);
4665 B.buildInstr(TargetOpcode::G_UBFX, {Dst}, {AndSrc, PosCst, WidthCst});
4666 };
4667 return true;
4668 }
4669
reassociationCanBreakAddressingModePattern(MachineInstr & MI)4670 bool CombinerHelper::reassociationCanBreakAddressingModePattern(
4671 MachineInstr &MI) {
4672 auto &PtrAdd = cast<GPtrAdd>(MI);
4673
4674 Register Src1Reg = PtrAdd.getBaseReg();
4675 auto *Src1Def = getOpcodeDef<GPtrAdd>(Src1Reg, MRI);
4676 if (!Src1Def)
4677 return false;
4678
4679 Register Src2Reg = PtrAdd.getOffsetReg();
4680
4681 if (MRI.hasOneNonDBGUse(Src1Reg))
4682 return false;
4683
4684 auto C1 = getIConstantVRegVal(Src1Def->getOffsetReg(), MRI);
4685 if (!C1)
4686 return false;
4687 auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4688 if (!C2)
4689 return false;
4690
4691 const APInt &C1APIntVal = *C1;
4692 const APInt &C2APIntVal = *C2;
4693 const int64_t CombinedValue = (C1APIntVal + C2APIntVal).getSExtValue();
4694
4695 for (auto &UseMI : MRI.use_nodbg_instructions(PtrAdd.getReg(0))) {
4696 // This combine may end up running before ptrtoint/inttoptr combines
4697 // manage to eliminate redundant conversions, so try to look through them.
4698 MachineInstr *ConvUseMI = &UseMI;
4699 unsigned ConvUseOpc = ConvUseMI->getOpcode();
4700 while (ConvUseOpc == TargetOpcode::G_INTTOPTR ||
4701 ConvUseOpc == TargetOpcode::G_PTRTOINT) {
4702 Register DefReg = ConvUseMI->getOperand(0).getReg();
4703 if (!MRI.hasOneNonDBGUse(DefReg))
4704 break;
4705 ConvUseMI = &*MRI.use_instr_nodbg_begin(DefReg);
4706 ConvUseOpc = ConvUseMI->getOpcode();
4707 }
4708 auto *LdStMI = dyn_cast<GLoadStore>(ConvUseMI);
4709 if (!LdStMI)
4710 continue;
4711 // Is x[offset2] already not a legal addressing mode? If so then
4712 // reassociating the constants breaks nothing (we test offset2 because
4713 // that's the one we hope to fold into the load or store).
4714 TargetLoweringBase::AddrMode AM;
4715 AM.HasBaseReg = true;
4716 AM.BaseOffs = C2APIntVal.getSExtValue();
4717 unsigned AS = MRI.getType(LdStMI->getPointerReg()).getAddressSpace();
4718 Type *AccessTy = getTypeForLLT(LdStMI->getMMO().getMemoryType(),
4719 PtrAdd.getMF()->getFunction().getContext());
4720 const auto &TLI = *PtrAdd.getMF()->getSubtarget().getTargetLowering();
4721 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4722 AccessTy, AS))
4723 continue;
4724
4725 // Would x[offset1+offset2] still be a legal addressing mode?
4726 AM.BaseOffs = CombinedValue;
4727 if (!TLI.isLegalAddressingMode(PtrAdd.getMF()->getDataLayout(), AM,
4728 AccessTy, AS))
4729 return true;
4730 }
4731
4732 return false;
4733 }
4734
matchReassocConstantInnerRHS(GPtrAdd & MI,MachineInstr * RHS,BuildFnTy & MatchInfo)4735 bool CombinerHelper::matchReassocConstantInnerRHS(GPtrAdd &MI,
4736 MachineInstr *RHS,
4737 BuildFnTy &MatchInfo) {
4738 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4739 Register Src1Reg = MI.getOperand(1).getReg();
4740 if (RHS->getOpcode() != TargetOpcode::G_ADD)
4741 return false;
4742 auto C2 = getIConstantVRegVal(RHS->getOperand(2).getReg(), MRI);
4743 if (!C2)
4744 return false;
4745
4746 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4747 LLT PtrTy = MRI.getType(MI.getOperand(0).getReg());
4748
4749 auto NewBase =
4750 Builder.buildPtrAdd(PtrTy, Src1Reg, RHS->getOperand(1).getReg());
4751 Observer.changingInstr(MI);
4752 MI.getOperand(1).setReg(NewBase.getReg(0));
4753 MI.getOperand(2).setReg(RHS->getOperand(2).getReg());
4754 Observer.changedInstr(MI);
4755 };
4756 return !reassociationCanBreakAddressingModePattern(MI);
4757 }
4758
matchReassocConstantInnerLHS(GPtrAdd & MI,MachineInstr * LHS,MachineInstr * RHS,BuildFnTy & MatchInfo)4759 bool CombinerHelper::matchReassocConstantInnerLHS(GPtrAdd &MI,
4760 MachineInstr *LHS,
4761 MachineInstr *RHS,
4762 BuildFnTy &MatchInfo) {
4763 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> (G_PTR_ADD (G_PTR_ADD(X, Y), C)
4764 // if and only if (G_PTR_ADD X, C) has one use.
4765 Register LHSBase;
4766 std::optional<ValueAndVReg> LHSCstOff;
4767 if (!mi_match(MI.getBaseReg(), MRI,
4768 m_OneNonDBGUse(m_GPtrAdd(m_Reg(LHSBase), m_GCst(LHSCstOff)))))
4769 return false;
4770
4771 auto *LHSPtrAdd = cast<GPtrAdd>(LHS);
4772 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4773 // When we change LHSPtrAdd's offset register we might cause it to use a reg
4774 // before its def. Sink the instruction so the outer PTR_ADD to ensure this
4775 // doesn't happen.
4776 LHSPtrAdd->moveBefore(&MI);
4777 Register RHSReg = MI.getOffsetReg();
4778 // set VReg will cause type mismatch if it comes from extend/trunc
4779 auto NewCst = B.buildConstant(MRI.getType(RHSReg), LHSCstOff->Value);
4780 Observer.changingInstr(MI);
4781 MI.getOperand(2).setReg(NewCst.getReg(0));
4782 Observer.changedInstr(MI);
4783 Observer.changingInstr(*LHSPtrAdd);
4784 LHSPtrAdd->getOperand(2).setReg(RHSReg);
4785 Observer.changedInstr(*LHSPtrAdd);
4786 };
4787 return !reassociationCanBreakAddressingModePattern(MI);
4788 }
4789
matchReassocFoldConstantsInSubTree(GPtrAdd & MI,MachineInstr * LHS,MachineInstr * RHS,BuildFnTy & MatchInfo)4790 bool CombinerHelper::matchReassocFoldConstantsInSubTree(GPtrAdd &MI,
4791 MachineInstr *LHS,
4792 MachineInstr *RHS,
4793 BuildFnTy &MatchInfo) {
4794 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4795 auto *LHSPtrAdd = dyn_cast<GPtrAdd>(LHS);
4796 if (!LHSPtrAdd)
4797 return false;
4798
4799 Register Src2Reg = MI.getOperand(2).getReg();
4800 Register LHSSrc1 = LHSPtrAdd->getBaseReg();
4801 Register LHSSrc2 = LHSPtrAdd->getOffsetReg();
4802 auto C1 = getIConstantVRegVal(LHSSrc2, MRI);
4803 if (!C1)
4804 return false;
4805 auto C2 = getIConstantVRegVal(Src2Reg, MRI);
4806 if (!C2)
4807 return false;
4808
4809 MatchInfo = [=, &MI](MachineIRBuilder &B) {
4810 auto NewCst = B.buildConstant(MRI.getType(Src2Reg), *C1 + *C2);
4811 Observer.changingInstr(MI);
4812 MI.getOperand(1).setReg(LHSSrc1);
4813 MI.getOperand(2).setReg(NewCst.getReg(0));
4814 Observer.changedInstr(MI);
4815 };
4816 return !reassociationCanBreakAddressingModePattern(MI);
4817 }
4818
matchReassocPtrAdd(MachineInstr & MI,BuildFnTy & MatchInfo)4819 bool CombinerHelper::matchReassocPtrAdd(MachineInstr &MI,
4820 BuildFnTy &MatchInfo) {
4821 auto &PtrAdd = cast<GPtrAdd>(MI);
4822 // We're trying to match a few pointer computation patterns here for
4823 // re-association opportunities.
4824 // 1) Isolating a constant operand to be on the RHS, e.g.:
4825 // G_PTR_ADD(BASE, G_ADD(X, C)) -> G_PTR_ADD(G_PTR_ADD(BASE, X), C)
4826 //
4827 // 2) Folding two constants in each sub-tree as long as such folding
4828 // doesn't break a legal addressing mode.
4829 // G_PTR_ADD(G_PTR_ADD(BASE, C1), C2) -> G_PTR_ADD(BASE, C1+C2)
4830 //
4831 // 3) Move a constant from the LHS of an inner op to the RHS of the outer.
4832 // G_PTR_ADD (G_PTR_ADD X, C), Y) -> G_PTR_ADD (G_PTR_ADD(X, Y), C)
4833 // iif (G_PTR_ADD X, C) has one use.
4834 MachineInstr *LHS = MRI.getVRegDef(PtrAdd.getBaseReg());
4835 MachineInstr *RHS = MRI.getVRegDef(PtrAdd.getOffsetReg());
4836
4837 // Try to match example 2.
4838 if (matchReassocFoldConstantsInSubTree(PtrAdd, LHS, RHS, MatchInfo))
4839 return true;
4840
4841 // Try to match example 3.
4842 if (matchReassocConstantInnerLHS(PtrAdd, LHS, RHS, MatchInfo))
4843 return true;
4844
4845 // Try to match example 1.
4846 if (matchReassocConstantInnerRHS(PtrAdd, RHS, MatchInfo))
4847 return true;
4848
4849 return false;
4850 }
tryReassocBinOp(unsigned Opc,Register DstReg,Register OpLHS,Register OpRHS,BuildFnTy & MatchInfo)4851 bool CombinerHelper::tryReassocBinOp(unsigned Opc, Register DstReg,
4852 Register OpLHS, Register OpRHS,
4853 BuildFnTy &MatchInfo) {
4854 LLT OpRHSTy = MRI.getType(OpRHS);
4855 MachineInstr *OpLHSDef = MRI.getVRegDef(OpLHS);
4856
4857 if (OpLHSDef->getOpcode() != Opc)
4858 return false;
4859
4860 MachineInstr *OpRHSDef = MRI.getVRegDef(OpRHS);
4861 Register OpLHSLHS = OpLHSDef->getOperand(1).getReg();
4862 Register OpLHSRHS = OpLHSDef->getOperand(2).getReg();
4863
4864 // If the inner op is (X op C), pull the constant out so it can be folded with
4865 // other constants in the expression tree. Folding is not guaranteed so we
4866 // might have (C1 op C2). In that case do not pull a constant out because it
4867 // won't help and can lead to infinite loops.
4868 if (isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSRHS), MRI) &&
4869 !isConstantOrConstantSplatVector(*MRI.getVRegDef(OpLHSLHS), MRI)) {
4870 if (isConstantOrConstantSplatVector(*OpRHSDef, MRI)) {
4871 // (Opc (Opc X, C1), C2) -> (Opc X, (Opc C1, C2))
4872 MatchInfo = [=](MachineIRBuilder &B) {
4873 auto NewCst = B.buildInstr(Opc, {OpRHSTy}, {OpLHSRHS, OpRHS});
4874 B.buildInstr(Opc, {DstReg}, {OpLHSLHS, NewCst});
4875 };
4876 return true;
4877 }
4878 if (getTargetLowering().isReassocProfitable(MRI, OpLHS, OpRHS)) {
4879 // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
4880 // iff (op x, c1) has one use
4881 MatchInfo = [=](MachineIRBuilder &B) {
4882 auto NewLHSLHS = B.buildInstr(Opc, {OpRHSTy}, {OpLHSLHS, OpRHS});
4883 B.buildInstr(Opc, {DstReg}, {NewLHSLHS, OpLHSRHS});
4884 };
4885 return true;
4886 }
4887 }
4888
4889 return false;
4890 }
4891
matchReassocCommBinOp(MachineInstr & MI,BuildFnTy & MatchInfo)4892 bool CombinerHelper::matchReassocCommBinOp(MachineInstr &MI,
4893 BuildFnTy &MatchInfo) {
4894 // We don't check if the reassociation will break a legal addressing mode
4895 // here since pointer arithmetic is handled by G_PTR_ADD.
4896 unsigned Opc = MI.getOpcode();
4897 Register DstReg = MI.getOperand(0).getReg();
4898 Register LHSReg = MI.getOperand(1).getReg();
4899 Register RHSReg = MI.getOperand(2).getReg();
4900
4901 if (tryReassocBinOp(Opc, DstReg, LHSReg, RHSReg, MatchInfo))
4902 return true;
4903 if (tryReassocBinOp(Opc, DstReg, RHSReg, LHSReg, MatchInfo))
4904 return true;
4905 return false;
4906 }
4907
matchConstantFoldCastOp(MachineInstr & MI,APInt & MatchInfo)4908 bool CombinerHelper::matchConstantFoldCastOp(MachineInstr &MI, APInt &MatchInfo) {
4909 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
4910 Register SrcOp = MI.getOperand(1).getReg();
4911
4912 if (auto MaybeCst = ConstantFoldCastOp(MI.getOpcode(), DstTy, SrcOp, MRI)) {
4913 MatchInfo = *MaybeCst;
4914 return true;
4915 }
4916
4917 return false;
4918 }
4919
matchConstantFoldBinOp(MachineInstr & MI,APInt & MatchInfo)4920 bool CombinerHelper::matchConstantFoldBinOp(MachineInstr &MI, APInt &MatchInfo) {
4921 Register Op1 = MI.getOperand(1).getReg();
4922 Register Op2 = MI.getOperand(2).getReg();
4923 auto MaybeCst = ConstantFoldBinOp(MI.getOpcode(), Op1, Op2, MRI);
4924 if (!MaybeCst)
4925 return false;
4926 MatchInfo = *MaybeCst;
4927 return true;
4928 }
4929
matchConstantFoldFPBinOp(MachineInstr & MI,ConstantFP * & MatchInfo)4930 bool CombinerHelper::matchConstantFoldFPBinOp(MachineInstr &MI, ConstantFP* &MatchInfo) {
4931 Register Op1 = MI.getOperand(1).getReg();
4932 Register Op2 = MI.getOperand(2).getReg();
4933 auto MaybeCst = ConstantFoldFPBinOp(MI.getOpcode(), Op1, Op2, MRI);
4934 if (!MaybeCst)
4935 return false;
4936 MatchInfo =
4937 ConstantFP::get(MI.getMF()->getFunction().getContext(), *MaybeCst);
4938 return true;
4939 }
4940
matchConstantFoldFMA(MachineInstr & MI,ConstantFP * & MatchInfo)4941 bool CombinerHelper::matchConstantFoldFMA(MachineInstr &MI,
4942 ConstantFP *&MatchInfo) {
4943 assert(MI.getOpcode() == TargetOpcode::G_FMA ||
4944 MI.getOpcode() == TargetOpcode::G_FMAD);
4945 auto [_, Op1, Op2, Op3] = MI.getFirst4Regs();
4946
4947 const ConstantFP *Op3Cst = getConstantFPVRegVal(Op3, MRI);
4948 if (!Op3Cst)
4949 return false;
4950
4951 const ConstantFP *Op2Cst = getConstantFPVRegVal(Op2, MRI);
4952 if (!Op2Cst)
4953 return false;
4954
4955 const ConstantFP *Op1Cst = getConstantFPVRegVal(Op1, MRI);
4956 if (!Op1Cst)
4957 return false;
4958
4959 APFloat Op1F = Op1Cst->getValueAPF();
4960 Op1F.fusedMultiplyAdd(Op2Cst->getValueAPF(), Op3Cst->getValueAPF(),
4961 APFloat::rmNearestTiesToEven);
4962 MatchInfo = ConstantFP::get(MI.getMF()->getFunction().getContext(), Op1F);
4963 return true;
4964 }
4965
matchNarrowBinopFeedingAnd(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)4966 bool CombinerHelper::matchNarrowBinopFeedingAnd(
4967 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
4968 // Look for a binop feeding into an AND with a mask:
4969 //
4970 // %add = G_ADD %lhs, %rhs
4971 // %and = G_AND %add, 000...11111111
4972 //
4973 // Check if it's possible to perform the binop at a narrower width and zext
4974 // back to the original width like so:
4975 //
4976 // %narrow_lhs = G_TRUNC %lhs
4977 // %narrow_rhs = G_TRUNC %rhs
4978 // %narrow_add = G_ADD %narrow_lhs, %narrow_rhs
4979 // %new_add = G_ZEXT %narrow_add
4980 // %and = G_AND %new_add, 000...11111111
4981 //
4982 // This can allow later combines to eliminate the G_AND if it turns out
4983 // that the mask is irrelevant.
4984 assert(MI.getOpcode() == TargetOpcode::G_AND);
4985 Register Dst = MI.getOperand(0).getReg();
4986 Register AndLHS = MI.getOperand(1).getReg();
4987 Register AndRHS = MI.getOperand(2).getReg();
4988 LLT WideTy = MRI.getType(Dst);
4989
4990 // If the potential binop has more than one use, then it's possible that one
4991 // of those uses will need its full width.
4992 if (!WideTy.isScalar() || !MRI.hasOneNonDBGUse(AndLHS))
4993 return false;
4994
4995 // Check if the LHS feeding the AND is impacted by the high bits that we're
4996 // masking out.
4997 //
4998 // e.g. for 64-bit x, y:
4999 //
5000 // add_64(x, y) & 65535 == zext(add_16(trunc(x), trunc(y))) & 65535
5001 MachineInstr *LHSInst = getDefIgnoringCopies(AndLHS, MRI);
5002 if (!LHSInst)
5003 return false;
5004 unsigned LHSOpc = LHSInst->getOpcode();
5005 switch (LHSOpc) {
5006 default:
5007 return false;
5008 case TargetOpcode::G_ADD:
5009 case TargetOpcode::G_SUB:
5010 case TargetOpcode::G_MUL:
5011 case TargetOpcode::G_AND:
5012 case TargetOpcode::G_OR:
5013 case TargetOpcode::G_XOR:
5014 break;
5015 }
5016
5017 // Find the mask on the RHS.
5018 auto Cst = getIConstantVRegValWithLookThrough(AndRHS, MRI);
5019 if (!Cst)
5020 return false;
5021 auto Mask = Cst->Value;
5022 if (!Mask.isMask())
5023 return false;
5024
5025 // No point in combining if there's nothing to truncate.
5026 unsigned NarrowWidth = Mask.countr_one();
5027 if (NarrowWidth == WideTy.getSizeInBits())
5028 return false;
5029 LLT NarrowTy = LLT::scalar(NarrowWidth);
5030
5031 // Check if adding the zext + truncates could be harmful.
5032 auto &MF = *MI.getMF();
5033 const auto &TLI = getTargetLowering();
5034 LLVMContext &Ctx = MF.getFunction().getContext();
5035 auto &DL = MF.getDataLayout();
5036 if (!TLI.isTruncateFree(WideTy, NarrowTy, DL, Ctx) ||
5037 !TLI.isZExtFree(NarrowTy, WideTy, DL, Ctx))
5038 return false;
5039 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {NarrowTy, WideTy}}) ||
5040 !isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {WideTy, NarrowTy}}))
5041 return false;
5042 Register BinOpLHS = LHSInst->getOperand(1).getReg();
5043 Register BinOpRHS = LHSInst->getOperand(2).getReg();
5044 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5045 auto NarrowLHS = Builder.buildTrunc(NarrowTy, BinOpLHS);
5046 auto NarrowRHS = Builder.buildTrunc(NarrowTy, BinOpRHS);
5047 auto NarrowBinOp =
5048 Builder.buildInstr(LHSOpc, {NarrowTy}, {NarrowLHS, NarrowRHS});
5049 auto Ext = Builder.buildZExt(WideTy, NarrowBinOp);
5050 Observer.changingInstr(MI);
5051 MI.getOperand(1).setReg(Ext.getReg(0));
5052 Observer.changedInstr(MI);
5053 };
5054 return true;
5055 }
5056
matchMulOBy2(MachineInstr & MI,BuildFnTy & MatchInfo)5057 bool CombinerHelper::matchMulOBy2(MachineInstr &MI, BuildFnTy &MatchInfo) {
5058 unsigned Opc = MI.getOpcode();
5059 assert(Opc == TargetOpcode::G_UMULO || Opc == TargetOpcode::G_SMULO);
5060
5061 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(2)))
5062 return false;
5063
5064 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5065 Observer.changingInstr(MI);
5066 unsigned NewOpc = Opc == TargetOpcode::G_UMULO ? TargetOpcode::G_UADDO
5067 : TargetOpcode::G_SADDO;
5068 MI.setDesc(Builder.getTII().get(NewOpc));
5069 MI.getOperand(3).setReg(MI.getOperand(2).getReg());
5070 Observer.changedInstr(MI);
5071 };
5072 return true;
5073 }
5074
matchMulOBy0(MachineInstr & MI,BuildFnTy & MatchInfo)5075 bool CombinerHelper::matchMulOBy0(MachineInstr &MI, BuildFnTy &MatchInfo) {
5076 // (G_*MULO x, 0) -> 0 + no carry out
5077 assert(MI.getOpcode() == TargetOpcode::G_UMULO ||
5078 MI.getOpcode() == TargetOpcode::G_SMULO);
5079 if (!mi_match(MI.getOperand(3).getReg(), MRI, m_SpecificICstOrSplat(0)))
5080 return false;
5081 Register Dst = MI.getOperand(0).getReg();
5082 Register Carry = MI.getOperand(1).getReg();
5083 if (!isConstantLegalOrBeforeLegalizer(MRI.getType(Dst)) ||
5084 !isConstantLegalOrBeforeLegalizer(MRI.getType(Carry)))
5085 return false;
5086 MatchInfo = [=](MachineIRBuilder &B) {
5087 B.buildConstant(Dst, 0);
5088 B.buildConstant(Carry, 0);
5089 };
5090 return true;
5091 }
5092
matchAddEToAddO(MachineInstr & MI,BuildFnTy & MatchInfo)5093 bool CombinerHelper::matchAddEToAddO(MachineInstr &MI, BuildFnTy &MatchInfo) {
5094 // (G_*ADDE x, y, 0) -> (G_*ADDO x, y)
5095 // (G_*SUBE x, y, 0) -> (G_*SUBO x, y)
5096 assert(MI.getOpcode() == TargetOpcode::G_UADDE ||
5097 MI.getOpcode() == TargetOpcode::G_SADDE ||
5098 MI.getOpcode() == TargetOpcode::G_USUBE ||
5099 MI.getOpcode() == TargetOpcode::G_SSUBE);
5100 if (!mi_match(MI.getOperand(4).getReg(), MRI, m_SpecificICstOrSplat(0)))
5101 return false;
5102 MatchInfo = [&](MachineIRBuilder &B) {
5103 unsigned NewOpcode;
5104 switch (MI.getOpcode()) {
5105 case TargetOpcode::G_UADDE:
5106 NewOpcode = TargetOpcode::G_UADDO;
5107 break;
5108 case TargetOpcode::G_SADDE:
5109 NewOpcode = TargetOpcode::G_SADDO;
5110 break;
5111 case TargetOpcode::G_USUBE:
5112 NewOpcode = TargetOpcode::G_USUBO;
5113 break;
5114 case TargetOpcode::G_SSUBE:
5115 NewOpcode = TargetOpcode::G_SSUBO;
5116 break;
5117 }
5118 Observer.changingInstr(MI);
5119 MI.setDesc(B.getTII().get(NewOpcode));
5120 MI.removeOperand(4);
5121 Observer.changedInstr(MI);
5122 };
5123 return true;
5124 }
5125
matchSubAddSameReg(MachineInstr & MI,BuildFnTy & MatchInfo)5126 bool CombinerHelper::matchSubAddSameReg(MachineInstr &MI,
5127 BuildFnTy &MatchInfo) {
5128 assert(MI.getOpcode() == TargetOpcode::G_SUB);
5129 Register Dst = MI.getOperand(0).getReg();
5130 // (x + y) - z -> x (if y == z)
5131 // (x + y) - z -> y (if x == z)
5132 Register X, Y, Z;
5133 if (mi_match(Dst, MRI, m_GSub(m_GAdd(m_Reg(X), m_Reg(Y)), m_Reg(Z)))) {
5134 Register ReplaceReg;
5135 int64_t CstX, CstY;
5136 if (Y == Z || (mi_match(Y, MRI, m_ICstOrSplat(CstY)) &&
5137 mi_match(Z, MRI, m_SpecificICstOrSplat(CstY))))
5138 ReplaceReg = X;
5139 else if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
5140 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
5141 ReplaceReg = Y;
5142 if (ReplaceReg) {
5143 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, ReplaceReg); };
5144 return true;
5145 }
5146 }
5147
5148 // x - (y + z) -> 0 - y (if x == z)
5149 // x - (y + z) -> 0 - z (if x == y)
5150 if (mi_match(Dst, MRI, m_GSub(m_Reg(X), m_GAdd(m_Reg(Y), m_Reg(Z))))) {
5151 Register ReplaceReg;
5152 int64_t CstX;
5153 if (X == Z || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
5154 mi_match(Z, MRI, m_SpecificICstOrSplat(CstX))))
5155 ReplaceReg = Y;
5156 else if (X == Y || (mi_match(X, MRI, m_ICstOrSplat(CstX)) &&
5157 mi_match(Y, MRI, m_SpecificICstOrSplat(CstX))))
5158 ReplaceReg = Z;
5159 if (ReplaceReg) {
5160 MatchInfo = [=](MachineIRBuilder &B) {
5161 auto Zero = B.buildConstant(MRI.getType(Dst), 0);
5162 B.buildSub(Dst, Zero, ReplaceReg);
5163 };
5164 return true;
5165 }
5166 }
5167 return false;
5168 }
5169
buildUDivUsingMul(MachineInstr & MI)5170 MachineInstr *CombinerHelper::buildUDivUsingMul(MachineInstr &MI) {
5171 assert(MI.getOpcode() == TargetOpcode::G_UDIV);
5172 auto &UDiv = cast<GenericMachineInstr>(MI);
5173 Register Dst = UDiv.getReg(0);
5174 Register LHS = UDiv.getReg(1);
5175 Register RHS = UDiv.getReg(2);
5176 LLT Ty = MRI.getType(Dst);
5177 LLT ScalarTy = Ty.getScalarType();
5178 const unsigned EltBits = ScalarTy.getScalarSizeInBits();
5179 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5180 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
5181
5182 auto &MIB = Builder;
5183
5184 bool UseSRL = false;
5185 SmallVector<Register, 16> Shifts, Factors;
5186 auto *RHSDefInstr = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
5187 bool IsSplat = getIConstantSplatVal(*RHSDefInstr, MRI).has_value();
5188
5189 auto BuildExactUDIVPattern = [&](const Constant *C) {
5190 // Don't recompute inverses for each splat element.
5191 if (IsSplat && !Factors.empty()) {
5192 Shifts.push_back(Shifts[0]);
5193 Factors.push_back(Factors[0]);
5194 return true;
5195 }
5196
5197 auto *CI = cast<ConstantInt>(C);
5198 APInt Divisor = CI->getValue();
5199 unsigned Shift = Divisor.countr_zero();
5200 if (Shift) {
5201 Divisor.lshrInPlace(Shift);
5202 UseSRL = true;
5203 }
5204
5205 // Calculate the multiplicative inverse modulo BW.
5206 APInt Factor = Divisor.multiplicativeInverse();
5207 Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
5208 Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
5209 return true;
5210 };
5211
5212 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
5213 // Collect all magic values from the build vector.
5214 if (!matchUnaryPredicate(MRI, RHS, BuildExactUDIVPattern))
5215 llvm_unreachable("Expected unary predicate match to succeed");
5216
5217 Register Shift, Factor;
5218 if (Ty.isVector()) {
5219 Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
5220 Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
5221 } else {
5222 Shift = Shifts[0];
5223 Factor = Factors[0];
5224 }
5225
5226 Register Res = LHS;
5227
5228 if (UseSRL)
5229 Res = MIB.buildLShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
5230
5231 return MIB.buildMul(Ty, Res, Factor);
5232 }
5233
5234 unsigned KnownLeadingZeros =
5235 KB ? KB->getKnownBits(LHS).countMinLeadingZeros() : 0;
5236
5237 bool UseNPQ = false;
5238 SmallVector<Register, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5239 auto BuildUDIVPattern = [&](const Constant *C) {
5240 auto *CI = cast<ConstantInt>(C);
5241 const APInt &Divisor = CI->getValue();
5242
5243 bool SelNPQ = false;
5244 APInt Magic(Divisor.getBitWidth(), 0);
5245 unsigned PreShift = 0, PostShift = 0;
5246
5247 // Magic algorithm doesn't work for division by 1. We need to emit a select
5248 // at the end.
5249 // TODO: Use undef values for divisor of 1.
5250 if (!Divisor.isOne()) {
5251
5252 // UnsignedDivisionByConstantInfo doesn't work correctly if leading zeros
5253 // in the dividend exceeds the leading zeros for the divisor.
5254 UnsignedDivisionByConstantInfo magics =
5255 UnsignedDivisionByConstantInfo::get(
5256 Divisor, std::min(KnownLeadingZeros, Divisor.countl_zero()));
5257
5258 Magic = std::move(magics.Magic);
5259
5260 assert(magics.PreShift < Divisor.getBitWidth() &&
5261 "We shouldn't generate an undefined shift!");
5262 assert(magics.PostShift < Divisor.getBitWidth() &&
5263 "We shouldn't generate an undefined shift!");
5264 assert((!magics.IsAdd || magics.PreShift == 0) && "Unexpected pre-shift");
5265 PreShift = magics.PreShift;
5266 PostShift = magics.PostShift;
5267 SelNPQ = magics.IsAdd;
5268 }
5269
5270 PreShifts.push_back(
5271 MIB.buildConstant(ScalarShiftAmtTy, PreShift).getReg(0));
5272 MagicFactors.push_back(MIB.buildConstant(ScalarTy, Magic).getReg(0));
5273 NPQFactors.push_back(
5274 MIB.buildConstant(ScalarTy,
5275 SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5276 : APInt::getZero(EltBits))
5277 .getReg(0));
5278 PostShifts.push_back(
5279 MIB.buildConstant(ScalarShiftAmtTy, PostShift).getReg(0));
5280 UseNPQ |= SelNPQ;
5281 return true;
5282 };
5283
5284 // Collect the shifts/magic values from each element.
5285 bool Matched = matchUnaryPredicate(MRI, RHS, BuildUDIVPattern);
5286 (void)Matched;
5287 assert(Matched && "Expected unary predicate match to succeed");
5288
5289 Register PreShift, PostShift, MagicFactor, NPQFactor;
5290 auto *RHSDef = getOpcodeDef<GBuildVector>(RHS, MRI);
5291 if (RHSDef) {
5292 PreShift = MIB.buildBuildVector(ShiftAmtTy, PreShifts).getReg(0);
5293 MagicFactor = MIB.buildBuildVector(Ty, MagicFactors).getReg(0);
5294 NPQFactor = MIB.buildBuildVector(Ty, NPQFactors).getReg(0);
5295 PostShift = MIB.buildBuildVector(ShiftAmtTy, PostShifts).getReg(0);
5296 } else {
5297 assert(MRI.getType(RHS).isScalar() &&
5298 "Non-build_vector operation should have been a scalar");
5299 PreShift = PreShifts[0];
5300 MagicFactor = MagicFactors[0];
5301 PostShift = PostShifts[0];
5302 }
5303
5304 Register Q = LHS;
5305 Q = MIB.buildLShr(Ty, Q, PreShift).getReg(0);
5306
5307 // Multiply the numerator (operand 0) by the magic value.
5308 Q = MIB.buildUMulH(Ty, Q, MagicFactor).getReg(0);
5309
5310 if (UseNPQ) {
5311 Register NPQ = MIB.buildSub(Ty, LHS, Q).getReg(0);
5312
5313 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5314 // G_UMULH to act as a SRL-by-1 for NPQ, else multiply by zero.
5315 if (Ty.isVector())
5316 NPQ = MIB.buildUMulH(Ty, NPQ, NPQFactor).getReg(0);
5317 else
5318 NPQ = MIB.buildLShr(Ty, NPQ, MIB.buildConstant(ShiftAmtTy, 1)).getReg(0);
5319
5320 Q = MIB.buildAdd(Ty, NPQ, Q).getReg(0);
5321 }
5322
5323 Q = MIB.buildLShr(Ty, Q, PostShift).getReg(0);
5324 auto One = MIB.buildConstant(Ty, 1);
5325 auto IsOne = MIB.buildICmp(
5326 CmpInst::Predicate::ICMP_EQ,
5327 Ty.isScalar() ? LLT::scalar(1) : Ty.changeElementSize(1), RHS, One);
5328 return MIB.buildSelect(Ty, IsOne, LHS, Q);
5329 }
5330
matchUDivByConst(MachineInstr & MI)5331 bool CombinerHelper::matchUDivByConst(MachineInstr &MI) {
5332 assert(MI.getOpcode() == TargetOpcode::G_UDIV);
5333 Register Dst = MI.getOperand(0).getReg();
5334 Register RHS = MI.getOperand(2).getReg();
5335 LLT DstTy = MRI.getType(Dst);
5336
5337 auto &MF = *MI.getMF();
5338 AttributeList Attr = MF.getFunction().getAttributes();
5339 const auto &TLI = getTargetLowering();
5340 LLVMContext &Ctx = MF.getFunction().getContext();
5341 auto &DL = MF.getDataLayout();
5342 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5343 return false;
5344
5345 // Don't do this for minsize because the instruction sequence is usually
5346 // larger.
5347 if (MF.getFunction().hasMinSize())
5348 return false;
5349
5350 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
5351 return matchUnaryPredicate(
5352 MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); });
5353 }
5354
5355 auto *RHSDef = MRI.getVRegDef(RHS);
5356 if (!isConstantOrConstantVector(*RHSDef, MRI))
5357 return false;
5358
5359 // Don't do this if the types are not going to be legal.
5360 if (LI) {
5361 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_MUL, {DstTy, DstTy}}))
5362 return false;
5363 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMULH, {DstTy}}))
5364 return false;
5365 if (!isLegalOrBeforeLegalizer(
5366 {TargetOpcode::G_ICMP,
5367 {DstTy.isVector() ? DstTy.changeElementSize(1) : LLT::scalar(1),
5368 DstTy}}))
5369 return false;
5370 }
5371
5372 return matchUnaryPredicate(
5373 MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); });
5374 }
5375
applyUDivByConst(MachineInstr & MI)5376 void CombinerHelper::applyUDivByConst(MachineInstr &MI) {
5377 auto *NewMI = buildUDivUsingMul(MI);
5378 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5379 }
5380
matchSDivByConst(MachineInstr & MI)5381 bool CombinerHelper::matchSDivByConst(MachineInstr &MI) {
5382 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5383 Register Dst = MI.getOperand(0).getReg();
5384 Register RHS = MI.getOperand(2).getReg();
5385 LLT DstTy = MRI.getType(Dst);
5386
5387 auto &MF = *MI.getMF();
5388 AttributeList Attr = MF.getFunction().getAttributes();
5389 const auto &TLI = getTargetLowering();
5390 LLVMContext &Ctx = MF.getFunction().getContext();
5391 auto &DL = MF.getDataLayout();
5392 if (TLI.isIntDivCheap(getApproximateEVTForLLT(DstTy, DL, Ctx), Attr))
5393 return false;
5394
5395 // Don't do this for minsize because the instruction sequence is usually
5396 // larger.
5397 if (MF.getFunction().hasMinSize())
5398 return false;
5399
5400 // If the sdiv has an 'exact' flag we can use a simpler lowering.
5401 if (MI.getFlag(MachineInstr::MIFlag::IsExact)) {
5402 return matchUnaryPredicate(
5403 MRI, RHS, [](const Constant *C) { return C && !C->isNullValue(); });
5404 }
5405
5406 // Don't support the general case for now.
5407 return false;
5408 }
5409
applySDivByConst(MachineInstr & MI)5410 void CombinerHelper::applySDivByConst(MachineInstr &MI) {
5411 auto *NewMI = buildSDivUsingMul(MI);
5412 replaceSingleDefInstWithReg(MI, NewMI->getOperand(0).getReg());
5413 }
5414
buildSDivUsingMul(MachineInstr & MI)5415 MachineInstr *CombinerHelper::buildSDivUsingMul(MachineInstr &MI) {
5416 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5417 auto &SDiv = cast<GenericMachineInstr>(MI);
5418 Register Dst = SDiv.getReg(0);
5419 Register LHS = SDiv.getReg(1);
5420 Register RHS = SDiv.getReg(2);
5421 LLT Ty = MRI.getType(Dst);
5422 LLT ScalarTy = Ty.getScalarType();
5423 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5424 LLT ScalarShiftAmtTy = ShiftAmtTy.getScalarType();
5425 auto &MIB = Builder;
5426
5427 bool UseSRA = false;
5428 SmallVector<Register, 16> Shifts, Factors;
5429
5430 auto *RHSDef = cast<GenericMachineInstr>(getDefIgnoringCopies(RHS, MRI));
5431 bool IsSplat = getIConstantSplatVal(*RHSDef, MRI).has_value();
5432
5433 auto BuildSDIVPattern = [&](const Constant *C) {
5434 // Don't recompute inverses for each splat element.
5435 if (IsSplat && !Factors.empty()) {
5436 Shifts.push_back(Shifts[0]);
5437 Factors.push_back(Factors[0]);
5438 return true;
5439 }
5440
5441 auto *CI = cast<ConstantInt>(C);
5442 APInt Divisor = CI->getValue();
5443 unsigned Shift = Divisor.countr_zero();
5444 if (Shift) {
5445 Divisor.ashrInPlace(Shift);
5446 UseSRA = true;
5447 }
5448
5449 // Calculate the multiplicative inverse modulo BW.
5450 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5451 APInt Factor = Divisor.multiplicativeInverse();
5452 Shifts.push_back(MIB.buildConstant(ScalarShiftAmtTy, Shift).getReg(0));
5453 Factors.push_back(MIB.buildConstant(ScalarTy, Factor).getReg(0));
5454 return true;
5455 };
5456
5457 // Collect all magic values from the build vector.
5458 bool Matched = matchUnaryPredicate(MRI, RHS, BuildSDIVPattern);
5459 (void)Matched;
5460 assert(Matched && "Expected unary predicate match to succeed");
5461
5462 Register Shift, Factor;
5463 if (Ty.isVector()) {
5464 Shift = MIB.buildBuildVector(ShiftAmtTy, Shifts).getReg(0);
5465 Factor = MIB.buildBuildVector(Ty, Factors).getReg(0);
5466 } else {
5467 Shift = Shifts[0];
5468 Factor = Factors[0];
5469 }
5470
5471 Register Res = LHS;
5472
5473 if (UseSRA)
5474 Res = MIB.buildAShr(Ty, Res, Shift, MachineInstr::IsExact).getReg(0);
5475
5476 return MIB.buildMul(Ty, Res, Factor);
5477 }
5478
matchDivByPow2(MachineInstr & MI,bool IsSigned)5479 bool CombinerHelper::matchDivByPow2(MachineInstr &MI, bool IsSigned) {
5480 assert((MI.getOpcode() == TargetOpcode::G_SDIV ||
5481 MI.getOpcode() == TargetOpcode::G_UDIV) &&
5482 "Expected SDIV or UDIV");
5483 auto &Div = cast<GenericMachineInstr>(MI);
5484 Register RHS = Div.getReg(2);
5485 auto MatchPow2 = [&](const Constant *C) {
5486 auto *CI = dyn_cast<ConstantInt>(C);
5487 return CI && (CI->getValue().isPowerOf2() ||
5488 (IsSigned && CI->getValue().isNegatedPowerOf2()));
5489 };
5490 return matchUnaryPredicate(MRI, RHS, MatchPow2, /*AllowUndefs=*/false);
5491 }
5492
applySDivByPow2(MachineInstr & MI)5493 void CombinerHelper::applySDivByPow2(MachineInstr &MI) {
5494 assert(MI.getOpcode() == TargetOpcode::G_SDIV && "Expected SDIV");
5495 auto &SDiv = cast<GenericMachineInstr>(MI);
5496 Register Dst = SDiv.getReg(0);
5497 Register LHS = SDiv.getReg(1);
5498 Register RHS = SDiv.getReg(2);
5499 LLT Ty = MRI.getType(Dst);
5500 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5501 LLT CCVT =
5502 Ty.isVector() ? LLT::vector(Ty.getElementCount(), 1) : LLT::scalar(1);
5503
5504 // Effectively we want to lower G_SDIV %lhs, %rhs, where %rhs is a power of 2,
5505 // to the following version:
5506 //
5507 // %c1 = G_CTTZ %rhs
5508 // %inexact = G_SUB $bitwidth, %c1
5509 // %sign = %G_ASHR %lhs, $(bitwidth - 1)
5510 // %lshr = G_LSHR %sign, %inexact
5511 // %add = G_ADD %lhs, %lshr
5512 // %ashr = G_ASHR %add, %c1
5513 // %ashr = G_SELECT, %isoneorallones, %lhs, %ashr
5514 // %zero = G_CONSTANT $0
5515 // %neg = G_NEG %ashr
5516 // %isneg = G_ICMP SLT %rhs, %zero
5517 // %res = G_SELECT %isneg, %neg, %ashr
5518
5519 unsigned BitWidth = Ty.getScalarSizeInBits();
5520 auto Zero = Builder.buildConstant(Ty, 0);
5521
5522 auto Bits = Builder.buildConstant(ShiftAmtTy, BitWidth);
5523 auto C1 = Builder.buildCTTZ(ShiftAmtTy, RHS);
5524 auto Inexact = Builder.buildSub(ShiftAmtTy, Bits, C1);
5525 // Splat the sign bit into the register
5526 auto Sign = Builder.buildAShr(
5527 Ty, LHS, Builder.buildConstant(ShiftAmtTy, BitWidth - 1));
5528
5529 // Add (LHS < 0) ? abs2 - 1 : 0;
5530 auto LSrl = Builder.buildLShr(Ty, Sign, Inexact);
5531 auto Add = Builder.buildAdd(Ty, LHS, LSrl);
5532 auto AShr = Builder.buildAShr(Ty, Add, C1);
5533
5534 // Special case: (sdiv X, 1) -> X
5535 // Special Case: (sdiv X, -1) -> 0-X
5536 auto One = Builder.buildConstant(Ty, 1);
5537 auto MinusOne = Builder.buildConstant(Ty, -1);
5538 auto IsOne = Builder.buildICmp(CmpInst::Predicate::ICMP_EQ, CCVT, RHS, One);
5539 auto IsMinusOne =
5540 Builder.buildICmp(CmpInst::Predicate::ICMP_EQ, CCVT, RHS, MinusOne);
5541 auto IsOneOrMinusOne = Builder.buildOr(CCVT, IsOne, IsMinusOne);
5542 AShr = Builder.buildSelect(Ty, IsOneOrMinusOne, LHS, AShr);
5543
5544 // If divided by a positive value, we're done. Otherwise, the result must be
5545 // negated.
5546 auto Neg = Builder.buildNeg(Ty, AShr);
5547 auto IsNeg = Builder.buildICmp(CmpInst::Predicate::ICMP_SLT, CCVT, RHS, Zero);
5548 Builder.buildSelect(MI.getOperand(0).getReg(), IsNeg, Neg, AShr);
5549 MI.eraseFromParent();
5550 }
5551
applyUDivByPow2(MachineInstr & MI)5552 void CombinerHelper::applyUDivByPow2(MachineInstr &MI) {
5553 assert(MI.getOpcode() == TargetOpcode::G_UDIV && "Expected UDIV");
5554 auto &UDiv = cast<GenericMachineInstr>(MI);
5555 Register Dst = UDiv.getReg(0);
5556 Register LHS = UDiv.getReg(1);
5557 Register RHS = UDiv.getReg(2);
5558 LLT Ty = MRI.getType(Dst);
5559 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5560
5561 auto C1 = Builder.buildCTTZ(ShiftAmtTy, RHS);
5562 Builder.buildLShr(MI.getOperand(0).getReg(), LHS, C1);
5563 MI.eraseFromParent();
5564 }
5565
matchUMulHToLShr(MachineInstr & MI)5566 bool CombinerHelper::matchUMulHToLShr(MachineInstr &MI) {
5567 assert(MI.getOpcode() == TargetOpcode::G_UMULH);
5568 Register RHS = MI.getOperand(2).getReg();
5569 Register Dst = MI.getOperand(0).getReg();
5570 LLT Ty = MRI.getType(Dst);
5571 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5572 auto MatchPow2ExceptOne = [&](const Constant *C) {
5573 if (auto *CI = dyn_cast<ConstantInt>(C))
5574 return CI->getValue().isPowerOf2() && !CI->getValue().isOne();
5575 return false;
5576 };
5577 if (!matchUnaryPredicate(MRI, RHS, MatchPow2ExceptOne, false))
5578 return false;
5579 return isLegalOrBeforeLegalizer({TargetOpcode::G_LSHR, {Ty, ShiftAmtTy}});
5580 }
5581
applyUMulHToLShr(MachineInstr & MI)5582 void CombinerHelper::applyUMulHToLShr(MachineInstr &MI) {
5583 Register LHS = MI.getOperand(1).getReg();
5584 Register RHS = MI.getOperand(2).getReg();
5585 Register Dst = MI.getOperand(0).getReg();
5586 LLT Ty = MRI.getType(Dst);
5587 LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(Ty);
5588 unsigned NumEltBits = Ty.getScalarSizeInBits();
5589
5590 auto LogBase2 = buildLogBase2(RHS, Builder);
5591 auto ShiftAmt =
5592 Builder.buildSub(Ty, Builder.buildConstant(Ty, NumEltBits), LogBase2);
5593 auto Trunc = Builder.buildZExtOrTrunc(ShiftAmtTy, ShiftAmt);
5594 Builder.buildLShr(Dst, LHS, Trunc);
5595 MI.eraseFromParent();
5596 }
5597
matchRedundantNegOperands(MachineInstr & MI,BuildFnTy & MatchInfo)5598 bool CombinerHelper::matchRedundantNegOperands(MachineInstr &MI,
5599 BuildFnTy &MatchInfo) {
5600 unsigned Opc = MI.getOpcode();
5601 assert(Opc == TargetOpcode::G_FADD || Opc == TargetOpcode::G_FSUB ||
5602 Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5603 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA);
5604
5605 Register Dst = MI.getOperand(0).getReg();
5606 Register X = MI.getOperand(1).getReg();
5607 Register Y = MI.getOperand(2).getReg();
5608 LLT Type = MRI.getType(Dst);
5609
5610 // fold (fadd x, fneg(y)) -> (fsub x, y)
5611 // fold (fadd fneg(y), x) -> (fsub x, y)
5612 // G_ADD is commutative so both cases are checked by m_GFAdd
5613 if (mi_match(Dst, MRI, m_GFAdd(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5614 isLegalOrBeforeLegalizer({TargetOpcode::G_FSUB, {Type}})) {
5615 Opc = TargetOpcode::G_FSUB;
5616 }
5617 /// fold (fsub x, fneg(y)) -> (fadd x, y)
5618 else if (mi_match(Dst, MRI, m_GFSub(m_Reg(X), m_GFNeg(m_Reg(Y)))) &&
5619 isLegalOrBeforeLegalizer({TargetOpcode::G_FADD, {Type}})) {
5620 Opc = TargetOpcode::G_FADD;
5621 }
5622 // fold (fmul fneg(x), fneg(y)) -> (fmul x, y)
5623 // fold (fdiv fneg(x), fneg(y)) -> (fdiv x, y)
5624 // fold (fmad fneg(x), fneg(y), z) -> (fmad x, y, z)
5625 // fold (fma fneg(x), fneg(y), z) -> (fma x, y, z)
5626 else if ((Opc == TargetOpcode::G_FMUL || Opc == TargetOpcode::G_FDIV ||
5627 Opc == TargetOpcode::G_FMAD || Opc == TargetOpcode::G_FMA) &&
5628 mi_match(X, MRI, m_GFNeg(m_Reg(X))) &&
5629 mi_match(Y, MRI, m_GFNeg(m_Reg(Y)))) {
5630 // no opcode change
5631 } else
5632 return false;
5633
5634 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5635 Observer.changingInstr(MI);
5636 MI.setDesc(B.getTII().get(Opc));
5637 MI.getOperand(1).setReg(X);
5638 MI.getOperand(2).setReg(Y);
5639 Observer.changedInstr(MI);
5640 };
5641 return true;
5642 }
5643
matchFsubToFneg(MachineInstr & MI,Register & MatchInfo)5644 bool CombinerHelper::matchFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5645 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
5646
5647 Register LHS = MI.getOperand(1).getReg();
5648 MatchInfo = MI.getOperand(2).getReg();
5649 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
5650
5651 const auto LHSCst = Ty.isVector()
5652 ? getFConstantSplat(LHS, MRI, /* allowUndef */ true)
5653 : getFConstantVRegValWithLookThrough(LHS, MRI);
5654 if (!LHSCst)
5655 return false;
5656
5657 // -0.0 is always allowed
5658 if (LHSCst->Value.isNegZero())
5659 return true;
5660
5661 // +0.0 is only allowed if nsz is set.
5662 if (LHSCst->Value.isPosZero())
5663 return MI.getFlag(MachineInstr::FmNsz);
5664
5665 return false;
5666 }
5667
applyFsubToFneg(MachineInstr & MI,Register & MatchInfo)5668 void CombinerHelper::applyFsubToFneg(MachineInstr &MI, Register &MatchInfo) {
5669 Register Dst = MI.getOperand(0).getReg();
5670 Builder.buildFNeg(
5671 Dst, Builder.buildFCanonicalize(MRI.getType(Dst), MatchInfo).getReg(0));
5672 eraseInst(MI);
5673 }
5674
5675 /// Checks if \p MI is TargetOpcode::G_FMUL and contractable either
5676 /// due to global flags or MachineInstr flags.
isContractableFMul(MachineInstr & MI,bool AllowFusionGlobally)5677 static bool isContractableFMul(MachineInstr &MI, bool AllowFusionGlobally) {
5678 if (MI.getOpcode() != TargetOpcode::G_FMUL)
5679 return false;
5680 return AllowFusionGlobally || MI.getFlag(MachineInstr::MIFlag::FmContract);
5681 }
5682
hasMoreUses(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo & MRI)5683 static bool hasMoreUses(const MachineInstr &MI0, const MachineInstr &MI1,
5684 const MachineRegisterInfo &MRI) {
5685 return std::distance(MRI.use_instr_nodbg_begin(MI0.getOperand(0).getReg()),
5686 MRI.use_instr_nodbg_end()) >
5687 std::distance(MRI.use_instr_nodbg_begin(MI1.getOperand(0).getReg()),
5688 MRI.use_instr_nodbg_end());
5689 }
5690
canCombineFMadOrFMA(MachineInstr & MI,bool & AllowFusionGlobally,bool & HasFMAD,bool & Aggressive,bool CanReassociate)5691 bool CombinerHelper::canCombineFMadOrFMA(MachineInstr &MI,
5692 bool &AllowFusionGlobally,
5693 bool &HasFMAD, bool &Aggressive,
5694 bool CanReassociate) {
5695
5696 auto *MF = MI.getMF();
5697 const auto &TLI = *MF->getSubtarget().getTargetLowering();
5698 const TargetOptions &Options = MF->getTarget().Options;
5699 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5700
5701 if (CanReassociate &&
5702 !(Options.UnsafeFPMath || MI.getFlag(MachineInstr::MIFlag::FmReassoc)))
5703 return false;
5704
5705 // Floating-point multiply-add with intermediate rounding.
5706 HasFMAD = (!isPreLegalize() && TLI.isFMADLegal(MI, DstType));
5707 // Floating-point multiply-add without intermediate rounding.
5708 bool HasFMA = TLI.isFMAFasterThanFMulAndFAdd(*MF, DstType) &&
5709 isLegalOrBeforeLegalizer({TargetOpcode::G_FMA, {DstType}});
5710 // No valid opcode, do not combine.
5711 if (!HasFMAD && !HasFMA)
5712 return false;
5713
5714 AllowFusionGlobally = Options.AllowFPOpFusion == FPOpFusion::Fast ||
5715 Options.UnsafeFPMath || HasFMAD;
5716 // If the addition is not contractable, do not combine.
5717 if (!AllowFusionGlobally && !MI.getFlag(MachineInstr::MIFlag::FmContract))
5718 return false;
5719
5720 Aggressive = TLI.enableAggressiveFMAFusion(DstType);
5721 return true;
5722 }
5723
matchCombineFAddFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5724 bool CombinerHelper::matchCombineFAddFMulToFMadOrFMA(
5725 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5726 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5727
5728 bool AllowFusionGlobally, HasFMAD, Aggressive;
5729 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5730 return false;
5731
5732 Register Op1 = MI.getOperand(1).getReg();
5733 Register Op2 = MI.getOperand(2).getReg();
5734 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5735 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5736 unsigned PreferredFusedOpcode =
5737 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5738
5739 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5740 // prefer to fold the multiply with fewer uses.
5741 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5742 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5743 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5744 std::swap(LHS, RHS);
5745 }
5746
5747 // fold (fadd (fmul x, y), z) -> (fma x, y, z)
5748 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5749 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg))) {
5750 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5751 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5752 {LHS.MI->getOperand(1).getReg(),
5753 LHS.MI->getOperand(2).getReg(), RHS.Reg});
5754 };
5755 return true;
5756 }
5757
5758 // fold (fadd x, (fmul y, z)) -> (fma y, z, x)
5759 if (isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
5760 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg))) {
5761 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5762 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5763 {RHS.MI->getOperand(1).getReg(),
5764 RHS.MI->getOperand(2).getReg(), LHS.Reg});
5765 };
5766 return true;
5767 }
5768
5769 return false;
5770 }
5771
matchCombineFAddFpExtFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5772 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMA(
5773 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5774 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5775
5776 bool AllowFusionGlobally, HasFMAD, Aggressive;
5777 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5778 return false;
5779
5780 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5781 Register Op1 = MI.getOperand(1).getReg();
5782 Register Op2 = MI.getOperand(2).getReg();
5783 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5784 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5785 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5786
5787 unsigned PreferredFusedOpcode =
5788 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5789
5790 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5791 // prefer to fold the multiply with fewer uses.
5792 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5793 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5794 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5795 std::swap(LHS, RHS);
5796 }
5797
5798 // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
5799 MachineInstr *FpExtSrc;
5800 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5801 isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5802 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5803 MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5804 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5805 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5806 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5807 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5808 {FpExtX.getReg(0), FpExtY.getReg(0), RHS.Reg});
5809 };
5810 return true;
5811 }
5812
5813 // fold (fadd z, (fpext (fmul x, y))) -> (fma (fpext x), (fpext y), z)
5814 // Note: Commutes FADD operands.
5815 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FpExtSrc))) &&
5816 isContractableFMul(*FpExtSrc, AllowFusionGlobally) &&
5817 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5818 MRI.getType(FpExtSrc->getOperand(1).getReg()))) {
5819 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5820 auto FpExtX = B.buildFPExt(DstType, FpExtSrc->getOperand(1).getReg());
5821 auto FpExtY = B.buildFPExt(DstType, FpExtSrc->getOperand(2).getReg());
5822 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5823 {FpExtX.getReg(0), FpExtY.getReg(0), LHS.Reg});
5824 };
5825 return true;
5826 }
5827
5828 return false;
5829 }
5830
matchCombineFAddFMAFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5831 bool CombinerHelper::matchCombineFAddFMAFMulToFMadOrFMA(
5832 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5833 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5834
5835 bool AllowFusionGlobally, HasFMAD, Aggressive;
5836 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive, true))
5837 return false;
5838
5839 Register Op1 = MI.getOperand(1).getReg();
5840 Register Op2 = MI.getOperand(2).getReg();
5841 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5842 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5843 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
5844
5845 unsigned PreferredFusedOpcode =
5846 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5847
5848 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5849 // prefer to fold the multiply with fewer uses.
5850 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5851 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5852 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5853 std::swap(LHS, RHS);
5854 }
5855
5856 MachineInstr *FMA = nullptr;
5857 Register Z;
5858 // fold (fadd (fma x, y, (fmul u, v)), z) -> (fma x, y, (fma u, v, z))
5859 if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5860 (MRI.getVRegDef(LHS.MI->getOperand(3).getReg())->getOpcode() ==
5861 TargetOpcode::G_FMUL) &&
5862 MRI.hasOneNonDBGUse(LHS.MI->getOperand(0).getReg()) &&
5863 MRI.hasOneNonDBGUse(LHS.MI->getOperand(3).getReg())) {
5864 FMA = LHS.MI;
5865 Z = RHS.Reg;
5866 }
5867 // fold (fadd z, (fma x, y, (fmul u, v))) -> (fma x, y, (fma u, v, z))
5868 else if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5869 (MRI.getVRegDef(RHS.MI->getOperand(3).getReg())->getOpcode() ==
5870 TargetOpcode::G_FMUL) &&
5871 MRI.hasOneNonDBGUse(RHS.MI->getOperand(0).getReg()) &&
5872 MRI.hasOneNonDBGUse(RHS.MI->getOperand(3).getReg())) {
5873 Z = LHS.Reg;
5874 FMA = RHS.MI;
5875 }
5876
5877 if (FMA) {
5878 MachineInstr *FMulMI = MRI.getVRegDef(FMA->getOperand(3).getReg());
5879 Register X = FMA->getOperand(1).getReg();
5880 Register Y = FMA->getOperand(2).getReg();
5881 Register U = FMulMI->getOperand(1).getReg();
5882 Register V = FMulMI->getOperand(2).getReg();
5883
5884 MatchInfo = [=, &MI](MachineIRBuilder &B) {
5885 Register InnerFMA = MRI.createGenericVirtualRegister(DstTy);
5886 B.buildInstr(PreferredFusedOpcode, {InnerFMA}, {U, V, Z});
5887 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5888 {X, Y, InnerFMA});
5889 };
5890 return true;
5891 }
5892
5893 return false;
5894 }
5895
matchCombineFAddFpExtFMulToFMadOrFMAAggressive(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)5896 bool CombinerHelper::matchCombineFAddFpExtFMulToFMadOrFMAAggressive(
5897 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
5898 assert(MI.getOpcode() == TargetOpcode::G_FADD);
5899
5900 bool AllowFusionGlobally, HasFMAD, Aggressive;
5901 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
5902 return false;
5903
5904 if (!Aggressive)
5905 return false;
5906
5907 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
5908 LLT DstType = MRI.getType(MI.getOperand(0).getReg());
5909 Register Op1 = MI.getOperand(1).getReg();
5910 Register Op2 = MI.getOperand(2).getReg();
5911 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
5912 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
5913
5914 unsigned PreferredFusedOpcode =
5915 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
5916
5917 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
5918 // prefer to fold the multiply with fewer uses.
5919 if (Aggressive && isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
5920 isContractableFMul(*RHS.MI, AllowFusionGlobally)) {
5921 if (hasMoreUses(*LHS.MI, *RHS.MI, MRI))
5922 std::swap(LHS, RHS);
5923 }
5924
5925 // Builds: (fma x, y, (fma (fpext u), (fpext v), z))
5926 auto buildMatchInfo = [=, &MI](Register U, Register V, Register Z, Register X,
5927 Register Y, MachineIRBuilder &B) {
5928 Register FpExtU = B.buildFPExt(DstType, U).getReg(0);
5929 Register FpExtV = B.buildFPExt(DstType, V).getReg(0);
5930 Register InnerFMA =
5931 B.buildInstr(PreferredFusedOpcode, {DstType}, {FpExtU, FpExtV, Z})
5932 .getReg(0);
5933 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
5934 {X, Y, InnerFMA});
5935 };
5936
5937 MachineInstr *FMulMI, *FMAMI;
5938 // fold (fadd (fma x, y, (fpext (fmul u, v))), z)
5939 // -> (fma x, y, (fma (fpext u), (fpext v), z))
5940 if (LHS.MI->getOpcode() == PreferredFusedOpcode &&
5941 mi_match(LHS.MI->getOperand(3).getReg(), MRI,
5942 m_GFPExt(m_MInstr(FMulMI))) &&
5943 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5944 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5945 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5946 MatchInfo = [=](MachineIRBuilder &B) {
5947 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5948 FMulMI->getOperand(2).getReg(), RHS.Reg,
5949 LHS.MI->getOperand(1).getReg(),
5950 LHS.MI->getOperand(2).getReg(), B);
5951 };
5952 return true;
5953 }
5954
5955 // fold (fadd (fpext (fma x, y, (fmul u, v))), z)
5956 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5957 // FIXME: This turns two single-precision and one double-precision
5958 // operation into two double-precision operations, which might not be
5959 // interesting for all targets, especially GPUs.
5960 if (mi_match(LHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
5961 FMAMI->getOpcode() == PreferredFusedOpcode) {
5962 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
5963 if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5964 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5965 MRI.getType(FMAMI->getOperand(0).getReg()))) {
5966 MatchInfo = [=](MachineIRBuilder &B) {
5967 Register X = FMAMI->getOperand(1).getReg();
5968 Register Y = FMAMI->getOperand(2).getReg();
5969 X = B.buildFPExt(DstType, X).getReg(0);
5970 Y = B.buildFPExt(DstType, Y).getReg(0);
5971 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5972 FMulMI->getOperand(2).getReg(), RHS.Reg, X, Y, B);
5973 };
5974
5975 return true;
5976 }
5977 }
5978
5979 // fold (fadd z, (fma x, y, (fpext (fmul u, v)))
5980 // -> (fma x, y, (fma (fpext u), (fpext v), z))
5981 if (RHS.MI->getOpcode() == PreferredFusedOpcode &&
5982 mi_match(RHS.MI->getOperand(3).getReg(), MRI,
5983 m_GFPExt(m_MInstr(FMulMI))) &&
5984 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
5985 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
5986 MRI.getType(FMulMI->getOperand(0).getReg()))) {
5987 MatchInfo = [=](MachineIRBuilder &B) {
5988 buildMatchInfo(FMulMI->getOperand(1).getReg(),
5989 FMulMI->getOperand(2).getReg(), LHS.Reg,
5990 RHS.MI->getOperand(1).getReg(),
5991 RHS.MI->getOperand(2).getReg(), B);
5992 };
5993 return true;
5994 }
5995
5996 // fold (fadd z, (fpext (fma x, y, (fmul u, v)))
5997 // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
5998 // FIXME: This turns two single-precision and one double-precision
5999 // operation into two double-precision operations, which might not be
6000 // interesting for all targets, especially GPUs.
6001 if (mi_match(RHS.Reg, MRI, m_GFPExt(m_MInstr(FMAMI))) &&
6002 FMAMI->getOpcode() == PreferredFusedOpcode) {
6003 MachineInstr *FMulMI = MRI.getVRegDef(FMAMI->getOperand(3).getReg());
6004 if (isContractableFMul(*FMulMI, AllowFusionGlobally) &&
6005 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstType,
6006 MRI.getType(FMAMI->getOperand(0).getReg()))) {
6007 MatchInfo = [=](MachineIRBuilder &B) {
6008 Register X = FMAMI->getOperand(1).getReg();
6009 Register Y = FMAMI->getOperand(2).getReg();
6010 X = B.buildFPExt(DstType, X).getReg(0);
6011 Y = B.buildFPExt(DstType, Y).getReg(0);
6012 buildMatchInfo(FMulMI->getOperand(1).getReg(),
6013 FMulMI->getOperand(2).getReg(), LHS.Reg, X, Y, B);
6014 };
6015 return true;
6016 }
6017 }
6018
6019 return false;
6020 }
6021
matchCombineFSubFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)6022 bool CombinerHelper::matchCombineFSubFMulToFMadOrFMA(
6023 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
6024 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
6025
6026 bool AllowFusionGlobally, HasFMAD, Aggressive;
6027 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
6028 return false;
6029
6030 Register Op1 = MI.getOperand(1).getReg();
6031 Register Op2 = MI.getOperand(2).getReg();
6032 DefinitionAndSourceRegister LHS = {MRI.getVRegDef(Op1), Op1};
6033 DefinitionAndSourceRegister RHS = {MRI.getVRegDef(Op2), Op2};
6034 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
6035
6036 // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
6037 // prefer to fold the multiply with fewer uses.
6038 int FirstMulHasFewerUses = true;
6039 if (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
6040 isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
6041 hasMoreUses(*LHS.MI, *RHS.MI, MRI))
6042 FirstMulHasFewerUses = false;
6043
6044 unsigned PreferredFusedOpcode =
6045 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
6046
6047 // fold (fsub (fmul x, y), z) -> (fma x, y, -z)
6048 if (FirstMulHasFewerUses &&
6049 (isContractableFMul(*LHS.MI, AllowFusionGlobally) &&
6050 (Aggressive || MRI.hasOneNonDBGUse(LHS.Reg)))) {
6051 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6052 Register NegZ = B.buildFNeg(DstTy, RHS.Reg).getReg(0);
6053 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
6054 {LHS.MI->getOperand(1).getReg(),
6055 LHS.MI->getOperand(2).getReg(), NegZ});
6056 };
6057 return true;
6058 }
6059 // fold (fsub x, (fmul y, z)) -> (fma -y, z, x)
6060 else if ((isContractableFMul(*RHS.MI, AllowFusionGlobally) &&
6061 (Aggressive || MRI.hasOneNonDBGUse(RHS.Reg)))) {
6062 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6063 Register NegY =
6064 B.buildFNeg(DstTy, RHS.MI->getOperand(1).getReg()).getReg(0);
6065 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
6066 {NegY, RHS.MI->getOperand(2).getReg(), LHS.Reg});
6067 };
6068 return true;
6069 }
6070
6071 return false;
6072 }
6073
matchCombineFSubFNegFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)6074 bool CombinerHelper::matchCombineFSubFNegFMulToFMadOrFMA(
6075 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
6076 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
6077
6078 bool AllowFusionGlobally, HasFMAD, Aggressive;
6079 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
6080 return false;
6081
6082 Register LHSReg = MI.getOperand(1).getReg();
6083 Register RHSReg = MI.getOperand(2).getReg();
6084 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
6085
6086 unsigned PreferredFusedOpcode =
6087 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
6088
6089 MachineInstr *FMulMI;
6090 // fold (fsub (fneg (fmul x, y)), z) -> (fma (fneg x), y, (fneg z))
6091 if (mi_match(LHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
6092 (Aggressive || (MRI.hasOneNonDBGUse(LHSReg) &&
6093 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
6094 isContractableFMul(*FMulMI, AllowFusionGlobally)) {
6095 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6096 Register NegX =
6097 B.buildFNeg(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
6098 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
6099 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
6100 {NegX, FMulMI->getOperand(2).getReg(), NegZ});
6101 };
6102 return true;
6103 }
6104
6105 // fold (fsub x, (fneg (fmul, y, z))) -> (fma y, z, x)
6106 if (mi_match(RHSReg, MRI, m_GFNeg(m_MInstr(FMulMI))) &&
6107 (Aggressive || (MRI.hasOneNonDBGUse(RHSReg) &&
6108 MRI.hasOneNonDBGUse(FMulMI->getOperand(0).getReg()))) &&
6109 isContractableFMul(*FMulMI, AllowFusionGlobally)) {
6110 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6111 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
6112 {FMulMI->getOperand(1).getReg(),
6113 FMulMI->getOperand(2).getReg(), LHSReg});
6114 };
6115 return true;
6116 }
6117
6118 return false;
6119 }
6120
matchCombineFSubFpExtFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)6121 bool CombinerHelper::matchCombineFSubFpExtFMulToFMadOrFMA(
6122 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
6123 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
6124
6125 bool AllowFusionGlobally, HasFMAD, Aggressive;
6126 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
6127 return false;
6128
6129 Register LHSReg = MI.getOperand(1).getReg();
6130 Register RHSReg = MI.getOperand(2).getReg();
6131 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
6132
6133 unsigned PreferredFusedOpcode =
6134 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
6135
6136 MachineInstr *FMulMI;
6137 // fold (fsub (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), (fneg z))
6138 if (mi_match(LHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
6139 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
6140 (Aggressive || MRI.hasOneNonDBGUse(LHSReg))) {
6141 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6142 Register FpExtX =
6143 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
6144 Register FpExtY =
6145 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
6146 Register NegZ = B.buildFNeg(DstTy, RHSReg).getReg(0);
6147 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
6148 {FpExtX, FpExtY, NegZ});
6149 };
6150 return true;
6151 }
6152
6153 // fold (fsub x, (fpext (fmul y, z))) -> (fma (fneg (fpext y)), (fpext z), x)
6154 if (mi_match(RHSReg, MRI, m_GFPExt(m_MInstr(FMulMI))) &&
6155 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
6156 (Aggressive || MRI.hasOneNonDBGUse(RHSReg))) {
6157 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6158 Register FpExtY =
6159 B.buildFPExt(DstTy, FMulMI->getOperand(1).getReg()).getReg(0);
6160 Register NegY = B.buildFNeg(DstTy, FpExtY).getReg(0);
6161 Register FpExtZ =
6162 B.buildFPExt(DstTy, FMulMI->getOperand(2).getReg()).getReg(0);
6163 B.buildInstr(PreferredFusedOpcode, {MI.getOperand(0).getReg()},
6164 {NegY, FpExtZ, LHSReg});
6165 };
6166 return true;
6167 }
6168
6169 return false;
6170 }
6171
matchCombineFSubFpExtFNegFMulToFMadOrFMA(MachineInstr & MI,std::function<void (MachineIRBuilder &)> & MatchInfo)6172 bool CombinerHelper::matchCombineFSubFpExtFNegFMulToFMadOrFMA(
6173 MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) {
6174 assert(MI.getOpcode() == TargetOpcode::G_FSUB);
6175
6176 bool AllowFusionGlobally, HasFMAD, Aggressive;
6177 if (!canCombineFMadOrFMA(MI, AllowFusionGlobally, HasFMAD, Aggressive))
6178 return false;
6179
6180 const auto &TLI = *MI.getMF()->getSubtarget().getTargetLowering();
6181 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
6182 Register LHSReg = MI.getOperand(1).getReg();
6183 Register RHSReg = MI.getOperand(2).getReg();
6184
6185 unsigned PreferredFusedOpcode =
6186 HasFMAD ? TargetOpcode::G_FMAD : TargetOpcode::G_FMA;
6187
6188 auto buildMatchInfo = [=](Register Dst, Register X, Register Y, Register Z,
6189 MachineIRBuilder &B) {
6190 Register FpExtX = B.buildFPExt(DstTy, X).getReg(0);
6191 Register FpExtY = B.buildFPExt(DstTy, Y).getReg(0);
6192 B.buildInstr(PreferredFusedOpcode, {Dst}, {FpExtX, FpExtY, Z});
6193 };
6194
6195 MachineInstr *FMulMI;
6196 // fold (fsub (fpext (fneg (fmul x, y))), z) ->
6197 // (fneg (fma (fpext x), (fpext y), z))
6198 // fold (fsub (fneg (fpext (fmul x, y))), z) ->
6199 // (fneg (fma (fpext x), (fpext y), z))
6200 if ((mi_match(LHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
6201 mi_match(LHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
6202 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
6203 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
6204 MRI.getType(FMulMI->getOperand(0).getReg()))) {
6205 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6206 Register FMAReg = MRI.createGenericVirtualRegister(DstTy);
6207 buildMatchInfo(FMAReg, FMulMI->getOperand(1).getReg(),
6208 FMulMI->getOperand(2).getReg(), RHSReg, B);
6209 B.buildFNeg(MI.getOperand(0).getReg(), FMAReg);
6210 };
6211 return true;
6212 }
6213
6214 // fold (fsub x, (fpext (fneg (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
6215 // fold (fsub x, (fneg (fpext (fmul y, z)))) -> (fma (fpext y), (fpext z), x)
6216 if ((mi_match(RHSReg, MRI, m_GFPExt(m_GFNeg(m_MInstr(FMulMI)))) ||
6217 mi_match(RHSReg, MRI, m_GFNeg(m_GFPExt(m_MInstr(FMulMI))))) &&
6218 isContractableFMul(*FMulMI, AllowFusionGlobally) &&
6219 TLI.isFPExtFoldable(MI, PreferredFusedOpcode, DstTy,
6220 MRI.getType(FMulMI->getOperand(0).getReg()))) {
6221 MatchInfo = [=, &MI](MachineIRBuilder &B) {
6222 buildMatchInfo(MI.getOperand(0).getReg(), FMulMI->getOperand(1).getReg(),
6223 FMulMI->getOperand(2).getReg(), LHSReg, B);
6224 };
6225 return true;
6226 }
6227
6228 return false;
6229 }
6230
matchCombineFMinMaxNaN(MachineInstr & MI,unsigned & IdxToPropagate)6231 bool CombinerHelper::matchCombineFMinMaxNaN(MachineInstr &MI,
6232 unsigned &IdxToPropagate) {
6233 bool PropagateNaN;
6234 switch (MI.getOpcode()) {
6235 default:
6236 return false;
6237 case TargetOpcode::G_FMINNUM:
6238 case TargetOpcode::G_FMAXNUM:
6239 PropagateNaN = false;
6240 break;
6241 case TargetOpcode::G_FMINIMUM:
6242 case TargetOpcode::G_FMAXIMUM:
6243 PropagateNaN = true;
6244 break;
6245 }
6246
6247 auto MatchNaN = [&](unsigned Idx) {
6248 Register MaybeNaNReg = MI.getOperand(Idx).getReg();
6249 const ConstantFP *MaybeCst = getConstantFPVRegVal(MaybeNaNReg, MRI);
6250 if (!MaybeCst || !MaybeCst->getValueAPF().isNaN())
6251 return false;
6252 IdxToPropagate = PropagateNaN ? Idx : (Idx == 1 ? 2 : 1);
6253 return true;
6254 };
6255
6256 return MatchNaN(1) || MatchNaN(2);
6257 }
6258
matchAddSubSameReg(MachineInstr & MI,Register & Src)6259 bool CombinerHelper::matchAddSubSameReg(MachineInstr &MI, Register &Src) {
6260 assert(MI.getOpcode() == TargetOpcode::G_ADD && "Expected a G_ADD");
6261 Register LHS = MI.getOperand(1).getReg();
6262 Register RHS = MI.getOperand(2).getReg();
6263
6264 // Helper lambda to check for opportunities for
6265 // A + (B - A) -> B
6266 // (B - A) + A -> B
6267 auto CheckFold = [&](Register MaybeSub, Register MaybeSameReg) {
6268 Register Reg;
6269 return mi_match(MaybeSub, MRI, m_GSub(m_Reg(Src), m_Reg(Reg))) &&
6270 Reg == MaybeSameReg;
6271 };
6272 return CheckFold(LHS, RHS) || CheckFold(RHS, LHS);
6273 }
6274
matchBuildVectorIdentityFold(MachineInstr & MI,Register & MatchInfo)6275 bool CombinerHelper::matchBuildVectorIdentityFold(MachineInstr &MI,
6276 Register &MatchInfo) {
6277 // This combine folds the following patterns:
6278 //
6279 // G_BUILD_VECTOR_TRUNC (G_BITCAST(x), G_LSHR(G_BITCAST(x), k))
6280 // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), G_TRUNC(G_LSHR(G_BITCAST(x), k)))
6281 // into
6282 // x
6283 // if
6284 // k == sizeof(VecEltTy)/2
6285 // type(x) == type(dst)
6286 //
6287 // G_BUILD_VECTOR(G_TRUNC(G_BITCAST(x)), undef)
6288 // into
6289 // x
6290 // if
6291 // type(x) == type(dst)
6292
6293 LLT DstVecTy = MRI.getType(MI.getOperand(0).getReg());
6294 LLT DstEltTy = DstVecTy.getElementType();
6295
6296 Register Lo, Hi;
6297
6298 if (mi_match(
6299 MI, MRI,
6300 m_GBuildVector(m_GTrunc(m_GBitcast(m_Reg(Lo))), m_GImplicitDef()))) {
6301 MatchInfo = Lo;
6302 return MRI.getType(MatchInfo) == DstVecTy;
6303 }
6304
6305 std::optional<ValueAndVReg> ShiftAmount;
6306 const auto LoPattern = m_GBitcast(m_Reg(Lo));
6307 const auto HiPattern = m_GLShr(m_GBitcast(m_Reg(Hi)), m_GCst(ShiftAmount));
6308 if (mi_match(
6309 MI, MRI,
6310 m_any_of(m_GBuildVectorTrunc(LoPattern, HiPattern),
6311 m_GBuildVector(m_GTrunc(LoPattern), m_GTrunc(HiPattern))))) {
6312 if (Lo == Hi && ShiftAmount->Value == DstEltTy.getSizeInBits()) {
6313 MatchInfo = Lo;
6314 return MRI.getType(MatchInfo) == DstVecTy;
6315 }
6316 }
6317
6318 return false;
6319 }
6320
matchTruncBuildVectorFold(MachineInstr & MI,Register & MatchInfo)6321 bool CombinerHelper::matchTruncBuildVectorFold(MachineInstr &MI,
6322 Register &MatchInfo) {
6323 // Replace (G_TRUNC (G_BITCAST (G_BUILD_VECTOR x, y)) with just x
6324 // if type(x) == type(G_TRUNC)
6325 if (!mi_match(MI.getOperand(1).getReg(), MRI,
6326 m_GBitcast(m_GBuildVector(m_Reg(MatchInfo), m_Reg()))))
6327 return false;
6328
6329 return MRI.getType(MatchInfo) == MRI.getType(MI.getOperand(0).getReg());
6330 }
6331
matchTruncLshrBuildVectorFold(MachineInstr & MI,Register & MatchInfo)6332 bool CombinerHelper::matchTruncLshrBuildVectorFold(MachineInstr &MI,
6333 Register &MatchInfo) {
6334 // Replace (G_TRUNC (G_LSHR (G_BITCAST (G_BUILD_VECTOR x, y)), K)) with
6335 // y if K == size of vector element type
6336 std::optional<ValueAndVReg> ShiftAmt;
6337 if (!mi_match(MI.getOperand(1).getReg(), MRI,
6338 m_GLShr(m_GBitcast(m_GBuildVector(m_Reg(), m_Reg(MatchInfo))),
6339 m_GCst(ShiftAmt))))
6340 return false;
6341
6342 LLT MatchTy = MRI.getType(MatchInfo);
6343 return ShiftAmt->Value.getZExtValue() == MatchTy.getSizeInBits() &&
6344 MatchTy == MRI.getType(MI.getOperand(0).getReg());
6345 }
6346
getFPMinMaxOpcForSelect(CmpInst::Predicate Pred,LLT DstTy,SelectPatternNaNBehaviour VsNaNRetVal) const6347 unsigned CombinerHelper::getFPMinMaxOpcForSelect(
6348 CmpInst::Predicate Pred, LLT DstTy,
6349 SelectPatternNaNBehaviour VsNaNRetVal) const {
6350 assert(VsNaNRetVal != SelectPatternNaNBehaviour::NOT_APPLICABLE &&
6351 "Expected a NaN behaviour?");
6352 // Choose an opcode based off of legality or the behaviour when one of the
6353 // LHS/RHS may be NaN.
6354 switch (Pred) {
6355 default:
6356 return 0;
6357 case CmpInst::FCMP_UGT:
6358 case CmpInst::FCMP_UGE:
6359 case CmpInst::FCMP_OGT:
6360 case CmpInst::FCMP_OGE:
6361 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
6362 return TargetOpcode::G_FMAXNUM;
6363 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
6364 return TargetOpcode::G_FMAXIMUM;
6365 if (isLegal({TargetOpcode::G_FMAXNUM, {DstTy}}))
6366 return TargetOpcode::G_FMAXNUM;
6367 if (isLegal({TargetOpcode::G_FMAXIMUM, {DstTy}}))
6368 return TargetOpcode::G_FMAXIMUM;
6369 return 0;
6370 case CmpInst::FCMP_ULT:
6371 case CmpInst::FCMP_ULE:
6372 case CmpInst::FCMP_OLT:
6373 case CmpInst::FCMP_OLE:
6374 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_OTHER)
6375 return TargetOpcode::G_FMINNUM;
6376 if (VsNaNRetVal == SelectPatternNaNBehaviour::RETURNS_NAN)
6377 return TargetOpcode::G_FMINIMUM;
6378 if (isLegal({TargetOpcode::G_FMINNUM, {DstTy}}))
6379 return TargetOpcode::G_FMINNUM;
6380 if (!isLegal({TargetOpcode::G_FMINIMUM, {DstTy}}))
6381 return 0;
6382 return TargetOpcode::G_FMINIMUM;
6383 }
6384 }
6385
6386 CombinerHelper::SelectPatternNaNBehaviour
computeRetValAgainstNaN(Register LHS,Register RHS,bool IsOrderedComparison) const6387 CombinerHelper::computeRetValAgainstNaN(Register LHS, Register RHS,
6388 bool IsOrderedComparison) const {
6389 bool LHSSafe = isKnownNeverNaN(LHS, MRI);
6390 bool RHSSafe = isKnownNeverNaN(RHS, MRI);
6391 // Completely unsafe.
6392 if (!LHSSafe && !RHSSafe)
6393 return SelectPatternNaNBehaviour::NOT_APPLICABLE;
6394 if (LHSSafe && RHSSafe)
6395 return SelectPatternNaNBehaviour::RETURNS_ANY;
6396 // An ordered comparison will return false when given a NaN, so it
6397 // returns the RHS.
6398 if (IsOrderedComparison)
6399 return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_NAN
6400 : SelectPatternNaNBehaviour::RETURNS_OTHER;
6401 // An unordered comparison will return true when given a NaN, so it
6402 // returns the LHS.
6403 return LHSSafe ? SelectPatternNaNBehaviour::RETURNS_OTHER
6404 : SelectPatternNaNBehaviour::RETURNS_NAN;
6405 }
6406
matchFPSelectToMinMax(Register Dst,Register Cond,Register TrueVal,Register FalseVal,BuildFnTy & MatchInfo)6407 bool CombinerHelper::matchFPSelectToMinMax(Register Dst, Register Cond,
6408 Register TrueVal, Register FalseVal,
6409 BuildFnTy &MatchInfo) {
6410 // Match: select (fcmp cond x, y) x, y
6411 // select (fcmp cond x, y) y, x
6412 // And turn it into fminnum/fmaxnum or fmin/fmax based off of the condition.
6413 LLT DstTy = MRI.getType(Dst);
6414 // Bail out early on pointers, since we'll never want to fold to a min/max.
6415 if (DstTy.isPointer())
6416 return false;
6417 // Match a floating point compare with a less-than/greater-than predicate.
6418 // TODO: Allow multiple users of the compare if they are all selects.
6419 CmpInst::Predicate Pred;
6420 Register CmpLHS, CmpRHS;
6421 if (!mi_match(Cond, MRI,
6422 m_OneNonDBGUse(
6423 m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) ||
6424 CmpInst::isEquality(Pred))
6425 return false;
6426 SelectPatternNaNBehaviour ResWithKnownNaNInfo =
6427 computeRetValAgainstNaN(CmpLHS, CmpRHS, CmpInst::isOrdered(Pred));
6428 if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::NOT_APPLICABLE)
6429 return false;
6430 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6431 std::swap(CmpLHS, CmpRHS);
6432 Pred = CmpInst::getSwappedPredicate(Pred);
6433 if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_NAN)
6434 ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_OTHER;
6435 else if (ResWithKnownNaNInfo == SelectPatternNaNBehaviour::RETURNS_OTHER)
6436 ResWithKnownNaNInfo = SelectPatternNaNBehaviour::RETURNS_NAN;
6437 }
6438 if (TrueVal != CmpLHS || FalseVal != CmpRHS)
6439 return false;
6440 // Decide what type of max/min this should be based off of the predicate.
6441 unsigned Opc = getFPMinMaxOpcForSelect(Pred, DstTy, ResWithKnownNaNInfo);
6442 if (!Opc || !isLegal({Opc, {DstTy}}))
6443 return false;
6444 // Comparisons between signed zero and zero may have different results...
6445 // unless we have fmaximum/fminimum. In that case, we know -0 < 0.
6446 if (Opc != TargetOpcode::G_FMAXIMUM && Opc != TargetOpcode::G_FMINIMUM) {
6447 // We don't know if a comparison between two 0s will give us a consistent
6448 // result. Be conservative and only proceed if at least one side is
6449 // non-zero.
6450 auto KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpLHS, MRI);
6451 if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero()) {
6452 KnownNonZeroSide = getFConstantVRegValWithLookThrough(CmpRHS, MRI);
6453 if (!KnownNonZeroSide || !KnownNonZeroSide->Value.isNonZero())
6454 return false;
6455 }
6456 }
6457 MatchInfo = [=](MachineIRBuilder &B) {
6458 B.buildInstr(Opc, {Dst}, {CmpLHS, CmpRHS});
6459 };
6460 return true;
6461 }
6462
matchSimplifySelectToMinMax(MachineInstr & MI,BuildFnTy & MatchInfo)6463 bool CombinerHelper::matchSimplifySelectToMinMax(MachineInstr &MI,
6464 BuildFnTy &MatchInfo) {
6465 // TODO: Handle integer cases.
6466 assert(MI.getOpcode() == TargetOpcode::G_SELECT);
6467 // Condition may be fed by a truncated compare.
6468 Register Cond = MI.getOperand(1).getReg();
6469 Register MaybeTrunc;
6470 if (mi_match(Cond, MRI, m_OneNonDBGUse(m_GTrunc(m_Reg(MaybeTrunc)))))
6471 Cond = MaybeTrunc;
6472 Register Dst = MI.getOperand(0).getReg();
6473 Register TrueVal = MI.getOperand(2).getReg();
6474 Register FalseVal = MI.getOperand(3).getReg();
6475 return matchFPSelectToMinMax(Dst, Cond, TrueVal, FalseVal, MatchInfo);
6476 }
6477
matchRedundantBinOpInEquality(MachineInstr & MI,BuildFnTy & MatchInfo)6478 bool CombinerHelper::matchRedundantBinOpInEquality(MachineInstr &MI,
6479 BuildFnTy &MatchInfo) {
6480 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
6481 // (X + Y) == X --> Y == 0
6482 // (X + Y) != X --> Y != 0
6483 // (X - Y) == X --> Y == 0
6484 // (X - Y) != X --> Y != 0
6485 // (X ^ Y) == X --> Y == 0
6486 // (X ^ Y) != X --> Y != 0
6487 Register Dst = MI.getOperand(0).getReg();
6488 CmpInst::Predicate Pred;
6489 Register X, Y, OpLHS, OpRHS;
6490 bool MatchedSub = mi_match(
6491 Dst, MRI,
6492 m_c_GICmp(m_Pred(Pred), m_Reg(X), m_GSub(m_Reg(OpLHS), m_Reg(Y))));
6493 if (MatchedSub && X != OpLHS)
6494 return false;
6495 if (!MatchedSub) {
6496 if (!mi_match(Dst, MRI,
6497 m_c_GICmp(m_Pred(Pred), m_Reg(X),
6498 m_any_of(m_GAdd(m_Reg(OpLHS), m_Reg(OpRHS)),
6499 m_GXor(m_Reg(OpLHS), m_Reg(OpRHS))))))
6500 return false;
6501 Y = X == OpLHS ? OpRHS : X == OpRHS ? OpLHS : Register();
6502 }
6503 MatchInfo = [=](MachineIRBuilder &B) {
6504 auto Zero = B.buildConstant(MRI.getType(Y), 0);
6505 B.buildICmp(Pred, Dst, Y, Zero);
6506 };
6507 return CmpInst::isEquality(Pred) && Y.isValid();
6508 }
6509
matchShiftsTooBig(MachineInstr & MI)6510 bool CombinerHelper::matchShiftsTooBig(MachineInstr &MI) {
6511 Register ShiftReg = MI.getOperand(2).getReg();
6512 LLT ResTy = MRI.getType(MI.getOperand(0).getReg());
6513 auto IsShiftTooBig = [&](const Constant *C) {
6514 auto *CI = dyn_cast<ConstantInt>(C);
6515 return CI && CI->uge(ResTy.getScalarSizeInBits());
6516 };
6517 return matchUnaryPredicate(MRI, ShiftReg, IsShiftTooBig);
6518 }
6519
matchCommuteConstantToRHS(MachineInstr & MI)6520 bool CombinerHelper::matchCommuteConstantToRHS(MachineInstr &MI) {
6521 unsigned LHSOpndIdx = 1;
6522 unsigned RHSOpndIdx = 2;
6523 switch (MI.getOpcode()) {
6524 case TargetOpcode::G_UADDO:
6525 case TargetOpcode::G_SADDO:
6526 case TargetOpcode::G_UMULO:
6527 case TargetOpcode::G_SMULO:
6528 LHSOpndIdx = 2;
6529 RHSOpndIdx = 3;
6530 break;
6531 default:
6532 break;
6533 }
6534 Register LHS = MI.getOperand(LHSOpndIdx).getReg();
6535 Register RHS = MI.getOperand(RHSOpndIdx).getReg();
6536 if (!getIConstantVRegVal(LHS, MRI)) {
6537 // Skip commuting if LHS is not a constant. But, LHS may be a
6538 // G_CONSTANT_FOLD_BARRIER. If so we commute as long as we don't already
6539 // have a constant on the RHS.
6540 if (MRI.getVRegDef(LHS)->getOpcode() !=
6541 TargetOpcode::G_CONSTANT_FOLD_BARRIER)
6542 return false;
6543 }
6544 // Commute as long as RHS is not a constant or G_CONSTANT_FOLD_BARRIER.
6545 return MRI.getVRegDef(RHS)->getOpcode() !=
6546 TargetOpcode::G_CONSTANT_FOLD_BARRIER &&
6547 !getIConstantVRegVal(RHS, MRI);
6548 }
6549
matchCommuteFPConstantToRHS(MachineInstr & MI)6550 bool CombinerHelper::matchCommuteFPConstantToRHS(MachineInstr &MI) {
6551 Register LHS = MI.getOperand(1).getReg();
6552 Register RHS = MI.getOperand(2).getReg();
6553 std::optional<FPValueAndVReg> ValAndVReg;
6554 if (!mi_match(LHS, MRI, m_GFCstOrSplat(ValAndVReg)))
6555 return false;
6556 return !mi_match(RHS, MRI, m_GFCstOrSplat(ValAndVReg));
6557 }
6558
applyCommuteBinOpOperands(MachineInstr & MI)6559 void CombinerHelper::applyCommuteBinOpOperands(MachineInstr &MI) {
6560 Observer.changingInstr(MI);
6561 unsigned LHSOpndIdx = 1;
6562 unsigned RHSOpndIdx = 2;
6563 switch (MI.getOpcode()) {
6564 case TargetOpcode::G_UADDO:
6565 case TargetOpcode::G_SADDO:
6566 case TargetOpcode::G_UMULO:
6567 case TargetOpcode::G_SMULO:
6568 LHSOpndIdx = 2;
6569 RHSOpndIdx = 3;
6570 break;
6571 default:
6572 break;
6573 }
6574 Register LHSReg = MI.getOperand(LHSOpndIdx).getReg();
6575 Register RHSReg = MI.getOperand(RHSOpndIdx).getReg();
6576 MI.getOperand(LHSOpndIdx).setReg(RHSReg);
6577 MI.getOperand(RHSOpndIdx).setReg(LHSReg);
6578 Observer.changedInstr(MI);
6579 }
6580
isOneOrOneSplat(Register Src,bool AllowUndefs)6581 bool CombinerHelper::isOneOrOneSplat(Register Src, bool AllowUndefs) {
6582 LLT SrcTy = MRI.getType(Src);
6583 if (SrcTy.isFixedVector())
6584 return isConstantSplatVector(Src, 1, AllowUndefs);
6585 if (SrcTy.isScalar()) {
6586 if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
6587 return true;
6588 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6589 return IConstant && IConstant->Value == 1;
6590 }
6591 return false; // scalable vector
6592 }
6593
isZeroOrZeroSplat(Register Src,bool AllowUndefs)6594 bool CombinerHelper::isZeroOrZeroSplat(Register Src, bool AllowUndefs) {
6595 LLT SrcTy = MRI.getType(Src);
6596 if (SrcTy.isFixedVector())
6597 return isConstantSplatVector(Src, 0, AllowUndefs);
6598 if (SrcTy.isScalar()) {
6599 if (AllowUndefs && getOpcodeDef<GImplicitDef>(Src, MRI) != nullptr)
6600 return true;
6601 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6602 return IConstant && IConstant->Value == 0;
6603 }
6604 return false; // scalable vector
6605 }
6606
6607 // Ignores COPYs during conformance checks.
6608 // FIXME scalable vectors.
isConstantSplatVector(Register Src,int64_t SplatValue,bool AllowUndefs)6609 bool CombinerHelper::isConstantSplatVector(Register Src, int64_t SplatValue,
6610 bool AllowUndefs) {
6611 GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
6612 if (!BuildVector)
6613 return false;
6614 unsigned NumSources = BuildVector->getNumSources();
6615
6616 for (unsigned I = 0; I < NumSources; ++I) {
6617 GImplicitDef *ImplicitDef =
6618 getOpcodeDef<GImplicitDef>(BuildVector->getSourceReg(I), MRI);
6619 if (ImplicitDef && AllowUndefs)
6620 continue;
6621 if (ImplicitDef && !AllowUndefs)
6622 return false;
6623 std::optional<ValueAndVReg> IConstant =
6624 getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
6625 if (IConstant && IConstant->Value == SplatValue)
6626 continue;
6627 return false;
6628 }
6629 return true;
6630 }
6631
6632 // Ignores COPYs during lookups.
6633 // FIXME scalable vectors
6634 std::optional<APInt>
getConstantOrConstantSplatVector(Register Src)6635 CombinerHelper::getConstantOrConstantSplatVector(Register Src) {
6636 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6637 if (IConstant)
6638 return IConstant->Value;
6639
6640 GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
6641 if (!BuildVector)
6642 return std::nullopt;
6643 unsigned NumSources = BuildVector->getNumSources();
6644
6645 std::optional<APInt> Value = std::nullopt;
6646 for (unsigned I = 0; I < NumSources; ++I) {
6647 std::optional<ValueAndVReg> IConstant =
6648 getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
6649 if (!IConstant)
6650 return std::nullopt;
6651 if (!Value)
6652 Value = IConstant->Value;
6653 else if (*Value != IConstant->Value)
6654 return std::nullopt;
6655 }
6656 return Value;
6657 }
6658
6659 // FIXME G_SPLAT_VECTOR
isConstantOrConstantVectorI(Register Src) const6660 bool CombinerHelper::isConstantOrConstantVectorI(Register Src) const {
6661 auto IConstant = getIConstantVRegValWithLookThrough(Src, MRI);
6662 if (IConstant)
6663 return true;
6664
6665 GBuildVector *BuildVector = getOpcodeDef<GBuildVector>(Src, MRI);
6666 if (!BuildVector)
6667 return false;
6668
6669 unsigned NumSources = BuildVector->getNumSources();
6670 for (unsigned I = 0; I < NumSources; ++I) {
6671 std::optional<ValueAndVReg> IConstant =
6672 getIConstantVRegValWithLookThrough(BuildVector->getSourceReg(I), MRI);
6673 if (!IConstant)
6674 return false;
6675 }
6676 return true;
6677 }
6678
6679 // TODO: use knownbits to determine zeros
tryFoldSelectOfConstants(GSelect * Select,BuildFnTy & MatchInfo)6680 bool CombinerHelper::tryFoldSelectOfConstants(GSelect *Select,
6681 BuildFnTy &MatchInfo) {
6682 uint32_t Flags = Select->getFlags();
6683 Register Dest = Select->getReg(0);
6684 Register Cond = Select->getCondReg();
6685 Register True = Select->getTrueReg();
6686 Register False = Select->getFalseReg();
6687 LLT CondTy = MRI.getType(Select->getCondReg());
6688 LLT TrueTy = MRI.getType(Select->getTrueReg());
6689
6690 // We only do this combine for scalar boolean conditions.
6691 if (CondTy != LLT::scalar(1))
6692 return false;
6693
6694 if (TrueTy.isPointer())
6695 return false;
6696
6697 // Both are scalars.
6698 std::optional<ValueAndVReg> TrueOpt =
6699 getIConstantVRegValWithLookThrough(True, MRI);
6700 std::optional<ValueAndVReg> FalseOpt =
6701 getIConstantVRegValWithLookThrough(False, MRI);
6702
6703 if (!TrueOpt || !FalseOpt)
6704 return false;
6705
6706 APInt TrueValue = TrueOpt->Value;
6707 APInt FalseValue = FalseOpt->Value;
6708
6709 // select Cond, 1, 0 --> zext (Cond)
6710 if (TrueValue.isOne() && FalseValue.isZero()) {
6711 MatchInfo = [=](MachineIRBuilder &B) {
6712 B.setInstrAndDebugLoc(*Select);
6713 B.buildZExtOrTrunc(Dest, Cond);
6714 };
6715 return true;
6716 }
6717
6718 // select Cond, -1, 0 --> sext (Cond)
6719 if (TrueValue.isAllOnes() && FalseValue.isZero()) {
6720 MatchInfo = [=](MachineIRBuilder &B) {
6721 B.setInstrAndDebugLoc(*Select);
6722 B.buildSExtOrTrunc(Dest, Cond);
6723 };
6724 return true;
6725 }
6726
6727 // select Cond, 0, 1 --> zext (!Cond)
6728 if (TrueValue.isZero() && FalseValue.isOne()) {
6729 MatchInfo = [=](MachineIRBuilder &B) {
6730 B.setInstrAndDebugLoc(*Select);
6731 Register Inner = MRI.createGenericVirtualRegister(CondTy);
6732 B.buildNot(Inner, Cond);
6733 B.buildZExtOrTrunc(Dest, Inner);
6734 };
6735 return true;
6736 }
6737
6738 // select Cond, 0, -1 --> sext (!Cond)
6739 if (TrueValue.isZero() && FalseValue.isAllOnes()) {
6740 MatchInfo = [=](MachineIRBuilder &B) {
6741 B.setInstrAndDebugLoc(*Select);
6742 Register Inner = MRI.createGenericVirtualRegister(CondTy);
6743 B.buildNot(Inner, Cond);
6744 B.buildSExtOrTrunc(Dest, Inner);
6745 };
6746 return true;
6747 }
6748
6749 // select Cond, C1, C1-1 --> add (zext Cond), C1-1
6750 if (TrueValue - 1 == FalseValue) {
6751 MatchInfo = [=](MachineIRBuilder &B) {
6752 B.setInstrAndDebugLoc(*Select);
6753 Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6754 B.buildZExtOrTrunc(Inner, Cond);
6755 B.buildAdd(Dest, Inner, False);
6756 };
6757 return true;
6758 }
6759
6760 // select Cond, C1, C1+1 --> add (sext Cond), C1+1
6761 if (TrueValue + 1 == FalseValue) {
6762 MatchInfo = [=](MachineIRBuilder &B) {
6763 B.setInstrAndDebugLoc(*Select);
6764 Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6765 B.buildSExtOrTrunc(Inner, Cond);
6766 B.buildAdd(Dest, Inner, False);
6767 };
6768 return true;
6769 }
6770
6771 // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
6772 if (TrueValue.isPowerOf2() && FalseValue.isZero()) {
6773 MatchInfo = [=](MachineIRBuilder &B) {
6774 B.setInstrAndDebugLoc(*Select);
6775 Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6776 B.buildZExtOrTrunc(Inner, Cond);
6777 // The shift amount must be scalar.
6778 LLT ShiftTy = TrueTy.isVector() ? TrueTy.getElementType() : TrueTy;
6779 auto ShAmtC = B.buildConstant(ShiftTy, TrueValue.exactLogBase2());
6780 B.buildShl(Dest, Inner, ShAmtC, Flags);
6781 };
6782 return true;
6783 }
6784 // select Cond, -1, C --> or (sext Cond), C
6785 if (TrueValue.isAllOnes()) {
6786 MatchInfo = [=](MachineIRBuilder &B) {
6787 B.setInstrAndDebugLoc(*Select);
6788 Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6789 B.buildSExtOrTrunc(Inner, Cond);
6790 B.buildOr(Dest, Inner, False, Flags);
6791 };
6792 return true;
6793 }
6794
6795 // select Cond, C, -1 --> or (sext (not Cond)), C
6796 if (FalseValue.isAllOnes()) {
6797 MatchInfo = [=](MachineIRBuilder &B) {
6798 B.setInstrAndDebugLoc(*Select);
6799 Register Not = MRI.createGenericVirtualRegister(CondTy);
6800 B.buildNot(Not, Cond);
6801 Register Inner = MRI.createGenericVirtualRegister(TrueTy);
6802 B.buildSExtOrTrunc(Inner, Not);
6803 B.buildOr(Dest, Inner, True, Flags);
6804 };
6805 return true;
6806 }
6807
6808 return false;
6809 }
6810
6811 // TODO: use knownbits to determine zeros
tryFoldBoolSelectToLogic(GSelect * Select,BuildFnTy & MatchInfo)6812 bool CombinerHelper::tryFoldBoolSelectToLogic(GSelect *Select,
6813 BuildFnTy &MatchInfo) {
6814 uint32_t Flags = Select->getFlags();
6815 Register DstReg = Select->getReg(0);
6816 Register Cond = Select->getCondReg();
6817 Register True = Select->getTrueReg();
6818 Register False = Select->getFalseReg();
6819 LLT CondTy = MRI.getType(Select->getCondReg());
6820 LLT TrueTy = MRI.getType(Select->getTrueReg());
6821
6822 // Boolean or fixed vector of booleans.
6823 if (CondTy.isScalableVector() ||
6824 (CondTy.isFixedVector() &&
6825 CondTy.getElementType().getScalarSizeInBits() != 1) ||
6826 CondTy.getScalarSizeInBits() != 1)
6827 return false;
6828
6829 if (CondTy != TrueTy)
6830 return false;
6831
6832 // select Cond, Cond, F --> or Cond, F
6833 // select Cond, 1, F --> or Cond, F
6834 if ((Cond == True) || isOneOrOneSplat(True, /* AllowUndefs */ true)) {
6835 MatchInfo = [=](MachineIRBuilder &B) {
6836 B.setInstrAndDebugLoc(*Select);
6837 Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6838 B.buildZExtOrTrunc(Ext, Cond);
6839 auto FreezeFalse = B.buildFreeze(TrueTy, False);
6840 B.buildOr(DstReg, Ext, FreezeFalse, Flags);
6841 };
6842 return true;
6843 }
6844
6845 // select Cond, T, Cond --> and Cond, T
6846 // select Cond, T, 0 --> and Cond, T
6847 if ((Cond == False) || isZeroOrZeroSplat(False, /* AllowUndefs */ true)) {
6848 MatchInfo = [=](MachineIRBuilder &B) {
6849 B.setInstrAndDebugLoc(*Select);
6850 Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6851 B.buildZExtOrTrunc(Ext, Cond);
6852 auto FreezeTrue = B.buildFreeze(TrueTy, True);
6853 B.buildAnd(DstReg, Ext, FreezeTrue);
6854 };
6855 return true;
6856 }
6857
6858 // select Cond, T, 1 --> or (not Cond), T
6859 if (isOneOrOneSplat(False, /* AllowUndefs */ true)) {
6860 MatchInfo = [=](MachineIRBuilder &B) {
6861 B.setInstrAndDebugLoc(*Select);
6862 // First the not.
6863 Register Inner = MRI.createGenericVirtualRegister(CondTy);
6864 B.buildNot(Inner, Cond);
6865 // Then an ext to match the destination register.
6866 Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6867 B.buildZExtOrTrunc(Ext, Inner);
6868 auto FreezeTrue = B.buildFreeze(TrueTy, True);
6869 B.buildOr(DstReg, Ext, FreezeTrue, Flags);
6870 };
6871 return true;
6872 }
6873
6874 // select Cond, 0, F --> and (not Cond), F
6875 if (isZeroOrZeroSplat(True, /* AllowUndefs */ true)) {
6876 MatchInfo = [=](MachineIRBuilder &B) {
6877 B.setInstrAndDebugLoc(*Select);
6878 // First the not.
6879 Register Inner = MRI.createGenericVirtualRegister(CondTy);
6880 B.buildNot(Inner, Cond);
6881 // Then an ext to match the destination register.
6882 Register Ext = MRI.createGenericVirtualRegister(TrueTy);
6883 B.buildZExtOrTrunc(Ext, Inner);
6884 auto FreezeFalse = B.buildFreeze(TrueTy, False);
6885 B.buildAnd(DstReg, Ext, FreezeFalse);
6886 };
6887 return true;
6888 }
6889
6890 return false;
6891 }
6892
matchSelectIMinMax(const MachineOperand & MO,BuildFnTy & MatchInfo)6893 bool CombinerHelper::matchSelectIMinMax(const MachineOperand &MO,
6894 BuildFnTy &MatchInfo) {
6895 GSelect *Select = cast<GSelect>(MRI.getVRegDef(MO.getReg()));
6896 GICmp *Cmp = cast<GICmp>(MRI.getVRegDef(Select->getCondReg()));
6897
6898 Register DstReg = Select->getReg(0);
6899 Register True = Select->getTrueReg();
6900 Register False = Select->getFalseReg();
6901 LLT DstTy = MRI.getType(DstReg);
6902
6903 if (DstTy.isPointer())
6904 return false;
6905
6906 // We want to fold the icmp and replace the select.
6907 if (!MRI.hasOneNonDBGUse(Cmp->getReg(0)))
6908 return false;
6909
6910 CmpInst::Predicate Pred = Cmp->getCond();
6911 // We need a larger or smaller predicate for
6912 // canonicalization.
6913 if (CmpInst::isEquality(Pred))
6914 return false;
6915
6916 Register CmpLHS = Cmp->getLHSReg();
6917 Register CmpRHS = Cmp->getRHSReg();
6918
6919 // We can swap CmpLHS and CmpRHS for higher hitrate.
6920 if (True == CmpRHS && False == CmpLHS) {
6921 std::swap(CmpLHS, CmpRHS);
6922 Pred = CmpInst::getSwappedPredicate(Pred);
6923 }
6924
6925 // (icmp X, Y) ? X : Y -> integer minmax.
6926 // see matchSelectPattern in ValueTracking.
6927 // Legality between G_SELECT and integer minmax can differ.
6928 if (True != CmpLHS || False != CmpRHS)
6929 return false;
6930
6931 switch (Pred) {
6932 case ICmpInst::ICMP_UGT:
6933 case ICmpInst::ICMP_UGE: {
6934 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMAX, DstTy}))
6935 return false;
6936 MatchInfo = [=](MachineIRBuilder &B) { B.buildUMax(DstReg, True, False); };
6937 return true;
6938 }
6939 case ICmpInst::ICMP_SGT:
6940 case ICmpInst::ICMP_SGE: {
6941 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMAX, DstTy}))
6942 return false;
6943 MatchInfo = [=](MachineIRBuilder &B) { B.buildSMax(DstReg, True, False); };
6944 return true;
6945 }
6946 case ICmpInst::ICMP_ULT:
6947 case ICmpInst::ICMP_ULE: {
6948 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_UMIN, DstTy}))
6949 return false;
6950 MatchInfo = [=](MachineIRBuilder &B) { B.buildUMin(DstReg, True, False); };
6951 return true;
6952 }
6953 case ICmpInst::ICMP_SLT:
6954 case ICmpInst::ICMP_SLE: {
6955 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SMIN, DstTy}))
6956 return false;
6957 MatchInfo = [=](MachineIRBuilder &B) { B.buildSMin(DstReg, True, False); };
6958 return true;
6959 }
6960 default:
6961 return false;
6962 }
6963 }
6964
matchSelect(MachineInstr & MI,BuildFnTy & MatchInfo)6965 bool CombinerHelper::matchSelect(MachineInstr &MI, BuildFnTy &MatchInfo) {
6966 GSelect *Select = cast<GSelect>(&MI);
6967
6968 if (tryFoldSelectOfConstants(Select, MatchInfo))
6969 return true;
6970
6971 if (tryFoldBoolSelectToLogic(Select, MatchInfo))
6972 return true;
6973
6974 return false;
6975 }
6976
6977 /// Fold (icmp Pred1 V1, C1) && (icmp Pred2 V2, C2)
6978 /// or (icmp Pred1 V1, C1) || (icmp Pred2 V2, C2)
6979 /// into a single comparison using range-based reasoning.
6980 /// see InstCombinerImpl::foldAndOrOfICmpsUsingRanges.
tryFoldAndOrOrICmpsUsingRanges(GLogicalBinOp * Logic,BuildFnTy & MatchInfo)6981 bool CombinerHelper::tryFoldAndOrOrICmpsUsingRanges(GLogicalBinOp *Logic,
6982 BuildFnTy &MatchInfo) {
6983 assert(Logic->getOpcode() != TargetOpcode::G_XOR && "unexpected xor");
6984 bool IsAnd = Logic->getOpcode() == TargetOpcode::G_AND;
6985 Register DstReg = Logic->getReg(0);
6986 Register LHS = Logic->getLHSReg();
6987 Register RHS = Logic->getRHSReg();
6988 unsigned Flags = Logic->getFlags();
6989
6990 // We need an G_ICMP on the LHS register.
6991 GICmp *Cmp1 = getOpcodeDef<GICmp>(LHS, MRI);
6992 if (!Cmp1)
6993 return false;
6994
6995 // We need an G_ICMP on the RHS register.
6996 GICmp *Cmp2 = getOpcodeDef<GICmp>(RHS, MRI);
6997 if (!Cmp2)
6998 return false;
6999
7000 // We want to fold the icmps.
7001 if (!MRI.hasOneNonDBGUse(Cmp1->getReg(0)) ||
7002 !MRI.hasOneNonDBGUse(Cmp2->getReg(0)))
7003 return false;
7004
7005 APInt C1;
7006 APInt C2;
7007 std::optional<ValueAndVReg> MaybeC1 =
7008 getIConstantVRegValWithLookThrough(Cmp1->getRHSReg(), MRI);
7009 if (!MaybeC1)
7010 return false;
7011 C1 = MaybeC1->Value;
7012
7013 std::optional<ValueAndVReg> MaybeC2 =
7014 getIConstantVRegValWithLookThrough(Cmp2->getRHSReg(), MRI);
7015 if (!MaybeC2)
7016 return false;
7017 C2 = MaybeC2->Value;
7018
7019 Register R1 = Cmp1->getLHSReg();
7020 Register R2 = Cmp2->getLHSReg();
7021 CmpInst::Predicate Pred1 = Cmp1->getCond();
7022 CmpInst::Predicate Pred2 = Cmp2->getCond();
7023 LLT CmpTy = MRI.getType(Cmp1->getReg(0));
7024 LLT CmpOperandTy = MRI.getType(R1);
7025
7026 if (CmpOperandTy.isPointer())
7027 return false;
7028
7029 // We build ands, adds, and constants of type CmpOperandTy.
7030 // They must be legal to build.
7031 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_AND, CmpOperandTy}) ||
7032 !isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, CmpOperandTy}) ||
7033 !isConstantLegalOrBeforeLegalizer(CmpOperandTy))
7034 return false;
7035
7036 // Look through add of a constant offset on R1, R2, or both operands. This
7037 // allows us to interpret the R + C' < C'' range idiom into a proper range.
7038 std::optional<APInt> Offset1;
7039 std::optional<APInt> Offset2;
7040 if (R1 != R2) {
7041 if (GAdd *Add = getOpcodeDef<GAdd>(R1, MRI)) {
7042 std::optional<ValueAndVReg> MaybeOffset1 =
7043 getIConstantVRegValWithLookThrough(Add->getRHSReg(), MRI);
7044 if (MaybeOffset1) {
7045 R1 = Add->getLHSReg();
7046 Offset1 = MaybeOffset1->Value;
7047 }
7048 }
7049 if (GAdd *Add = getOpcodeDef<GAdd>(R2, MRI)) {
7050 std::optional<ValueAndVReg> MaybeOffset2 =
7051 getIConstantVRegValWithLookThrough(Add->getRHSReg(), MRI);
7052 if (MaybeOffset2) {
7053 R2 = Add->getLHSReg();
7054 Offset2 = MaybeOffset2->Value;
7055 }
7056 }
7057 }
7058
7059 if (R1 != R2)
7060 return false;
7061
7062 // We calculate the icmp ranges including maybe offsets.
7063 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
7064 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, C1);
7065 if (Offset1)
7066 CR1 = CR1.subtract(*Offset1);
7067
7068 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
7069 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, C2);
7070 if (Offset2)
7071 CR2 = CR2.subtract(*Offset2);
7072
7073 bool CreateMask = false;
7074 APInt LowerDiff;
7075 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
7076 if (!CR) {
7077 // We need non-wrapping ranges.
7078 if (CR1.isWrappedSet() || CR2.isWrappedSet())
7079 return false;
7080
7081 // Check whether we have equal-size ranges that only differ by one bit.
7082 // In that case we can apply a mask to map one range onto the other.
7083 LowerDiff = CR1.getLower() ^ CR2.getLower();
7084 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
7085 APInt CR1Size = CR1.getUpper() - CR1.getLower();
7086 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
7087 CR1Size != CR2.getUpper() - CR2.getLower())
7088 return false;
7089
7090 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
7091 CreateMask = true;
7092 }
7093
7094 if (IsAnd)
7095 CR = CR->inverse();
7096
7097 CmpInst::Predicate NewPred;
7098 APInt NewC, Offset;
7099 CR->getEquivalentICmp(NewPred, NewC, Offset);
7100
7101 // We take the result type of one of the original icmps, CmpTy, for
7102 // the to be build icmp. The operand type, CmpOperandTy, is used for
7103 // the other instructions and constants to be build. The types of
7104 // the parameters and output are the same for add and and. CmpTy
7105 // and the type of DstReg might differ. That is why we zext or trunc
7106 // the icmp into the destination register.
7107
7108 MatchInfo = [=](MachineIRBuilder &B) {
7109 if (CreateMask && Offset != 0) {
7110 auto TildeLowerDiff = B.buildConstant(CmpOperandTy, ~LowerDiff);
7111 auto And = B.buildAnd(CmpOperandTy, R1, TildeLowerDiff); // the mask.
7112 auto OffsetC = B.buildConstant(CmpOperandTy, Offset);
7113 auto Add = B.buildAdd(CmpOperandTy, And, OffsetC, Flags);
7114 auto NewCon = B.buildConstant(CmpOperandTy, NewC);
7115 auto ICmp = B.buildICmp(NewPred, CmpTy, Add, NewCon);
7116 B.buildZExtOrTrunc(DstReg, ICmp);
7117 } else if (CreateMask && Offset == 0) {
7118 auto TildeLowerDiff = B.buildConstant(CmpOperandTy, ~LowerDiff);
7119 auto And = B.buildAnd(CmpOperandTy, R1, TildeLowerDiff); // the mask.
7120 auto NewCon = B.buildConstant(CmpOperandTy, NewC);
7121 auto ICmp = B.buildICmp(NewPred, CmpTy, And, NewCon);
7122 B.buildZExtOrTrunc(DstReg, ICmp);
7123 } else if (!CreateMask && Offset != 0) {
7124 auto OffsetC = B.buildConstant(CmpOperandTy, Offset);
7125 auto Add = B.buildAdd(CmpOperandTy, R1, OffsetC, Flags);
7126 auto NewCon = B.buildConstant(CmpOperandTy, NewC);
7127 auto ICmp = B.buildICmp(NewPred, CmpTy, Add, NewCon);
7128 B.buildZExtOrTrunc(DstReg, ICmp);
7129 } else if (!CreateMask && Offset == 0) {
7130 auto NewCon = B.buildConstant(CmpOperandTy, NewC);
7131 auto ICmp = B.buildICmp(NewPred, CmpTy, R1, NewCon);
7132 B.buildZExtOrTrunc(DstReg, ICmp);
7133 } else {
7134 llvm_unreachable("unexpected configuration of CreateMask and Offset");
7135 }
7136 };
7137 return true;
7138 }
7139
tryFoldLogicOfFCmps(GLogicalBinOp * Logic,BuildFnTy & MatchInfo)7140 bool CombinerHelper::tryFoldLogicOfFCmps(GLogicalBinOp *Logic,
7141 BuildFnTy &MatchInfo) {
7142 assert(Logic->getOpcode() != TargetOpcode::G_XOR && "unexpecte xor");
7143 Register DestReg = Logic->getReg(0);
7144 Register LHS = Logic->getLHSReg();
7145 Register RHS = Logic->getRHSReg();
7146 bool IsAnd = Logic->getOpcode() == TargetOpcode::G_AND;
7147
7148 // We need a compare on the LHS register.
7149 GFCmp *Cmp1 = getOpcodeDef<GFCmp>(LHS, MRI);
7150 if (!Cmp1)
7151 return false;
7152
7153 // We need a compare on the RHS register.
7154 GFCmp *Cmp2 = getOpcodeDef<GFCmp>(RHS, MRI);
7155 if (!Cmp2)
7156 return false;
7157
7158 LLT CmpTy = MRI.getType(Cmp1->getReg(0));
7159 LLT CmpOperandTy = MRI.getType(Cmp1->getLHSReg());
7160
7161 // We build one fcmp, want to fold the fcmps, replace the logic op,
7162 // and the fcmps must have the same shape.
7163 if (!isLegalOrBeforeLegalizer(
7164 {TargetOpcode::G_FCMP, {CmpTy, CmpOperandTy}}) ||
7165 !MRI.hasOneNonDBGUse(Logic->getReg(0)) ||
7166 !MRI.hasOneNonDBGUse(Cmp1->getReg(0)) ||
7167 !MRI.hasOneNonDBGUse(Cmp2->getReg(0)) ||
7168 MRI.getType(Cmp1->getLHSReg()) != MRI.getType(Cmp2->getLHSReg()))
7169 return false;
7170
7171 CmpInst::Predicate PredL = Cmp1->getCond();
7172 CmpInst::Predicate PredR = Cmp2->getCond();
7173 Register LHS0 = Cmp1->getLHSReg();
7174 Register LHS1 = Cmp1->getRHSReg();
7175 Register RHS0 = Cmp2->getLHSReg();
7176 Register RHS1 = Cmp2->getRHSReg();
7177
7178 if (LHS0 == RHS1 && LHS1 == RHS0) {
7179 // Swap RHS operands to match LHS.
7180 PredR = CmpInst::getSwappedPredicate(PredR);
7181 std::swap(RHS0, RHS1);
7182 }
7183
7184 if (LHS0 == RHS0 && LHS1 == RHS1) {
7185 // We determine the new predicate.
7186 unsigned CmpCodeL = getFCmpCode(PredL);
7187 unsigned CmpCodeR = getFCmpCode(PredR);
7188 unsigned NewPred = IsAnd ? CmpCodeL & CmpCodeR : CmpCodeL | CmpCodeR;
7189 unsigned Flags = Cmp1->getFlags() | Cmp2->getFlags();
7190 MatchInfo = [=](MachineIRBuilder &B) {
7191 // The fcmp predicates fill the lower part of the enum.
7192 FCmpInst::Predicate Pred = static_cast<FCmpInst::Predicate>(NewPred);
7193 if (Pred == FCmpInst::FCMP_FALSE &&
7194 isConstantLegalOrBeforeLegalizer(CmpTy)) {
7195 auto False = B.buildConstant(CmpTy, 0);
7196 B.buildZExtOrTrunc(DestReg, False);
7197 } else if (Pred == FCmpInst::FCMP_TRUE &&
7198 isConstantLegalOrBeforeLegalizer(CmpTy)) {
7199 auto True =
7200 B.buildConstant(CmpTy, getICmpTrueVal(getTargetLowering(),
7201 CmpTy.isVector() /*isVector*/,
7202 true /*isFP*/));
7203 B.buildZExtOrTrunc(DestReg, True);
7204 } else { // We take the predicate without predicate optimizations.
7205 auto Cmp = B.buildFCmp(Pred, CmpTy, LHS0, LHS1, Flags);
7206 B.buildZExtOrTrunc(DestReg, Cmp);
7207 }
7208 };
7209 return true;
7210 }
7211
7212 return false;
7213 }
7214
matchAnd(MachineInstr & MI,BuildFnTy & MatchInfo)7215 bool CombinerHelper::matchAnd(MachineInstr &MI, BuildFnTy &MatchInfo) {
7216 GAnd *And = cast<GAnd>(&MI);
7217
7218 if (tryFoldAndOrOrICmpsUsingRanges(And, MatchInfo))
7219 return true;
7220
7221 if (tryFoldLogicOfFCmps(And, MatchInfo))
7222 return true;
7223
7224 return false;
7225 }
7226
matchOr(MachineInstr & MI,BuildFnTy & MatchInfo)7227 bool CombinerHelper::matchOr(MachineInstr &MI, BuildFnTy &MatchInfo) {
7228 GOr *Or = cast<GOr>(&MI);
7229
7230 if (tryFoldAndOrOrICmpsUsingRanges(Or, MatchInfo))
7231 return true;
7232
7233 if (tryFoldLogicOfFCmps(Or, MatchInfo))
7234 return true;
7235
7236 return false;
7237 }
7238
matchAddOverflow(MachineInstr & MI,BuildFnTy & MatchInfo)7239 bool CombinerHelper::matchAddOverflow(MachineInstr &MI, BuildFnTy &MatchInfo) {
7240 GAddCarryOut *Add = cast<GAddCarryOut>(&MI);
7241
7242 // Addo has no flags
7243 Register Dst = Add->getReg(0);
7244 Register Carry = Add->getReg(1);
7245 Register LHS = Add->getLHSReg();
7246 Register RHS = Add->getRHSReg();
7247 bool IsSigned = Add->isSigned();
7248 LLT DstTy = MRI.getType(Dst);
7249 LLT CarryTy = MRI.getType(Carry);
7250
7251 // Fold addo, if the carry is dead -> add, undef.
7252 if (MRI.use_nodbg_empty(Carry) &&
7253 isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {DstTy}})) {
7254 MatchInfo = [=](MachineIRBuilder &B) {
7255 B.buildAdd(Dst, LHS, RHS);
7256 B.buildUndef(Carry);
7257 };
7258 return true;
7259 }
7260
7261 // Canonicalize constant to RHS.
7262 if (isConstantOrConstantVectorI(LHS) && !isConstantOrConstantVectorI(RHS)) {
7263 if (IsSigned) {
7264 MatchInfo = [=](MachineIRBuilder &B) {
7265 B.buildSAddo(Dst, Carry, RHS, LHS);
7266 };
7267 return true;
7268 }
7269 // !IsSigned
7270 MatchInfo = [=](MachineIRBuilder &B) {
7271 B.buildUAddo(Dst, Carry, RHS, LHS);
7272 };
7273 return true;
7274 }
7275
7276 std::optional<APInt> MaybeLHS = getConstantOrConstantSplatVector(LHS);
7277 std::optional<APInt> MaybeRHS = getConstantOrConstantSplatVector(RHS);
7278
7279 // Fold addo(c1, c2) -> c3, carry.
7280 if (MaybeLHS && MaybeRHS && isConstantLegalOrBeforeLegalizer(DstTy) &&
7281 isConstantLegalOrBeforeLegalizer(CarryTy)) {
7282 bool Overflow;
7283 APInt Result = IsSigned ? MaybeLHS->sadd_ov(*MaybeRHS, Overflow)
7284 : MaybeLHS->uadd_ov(*MaybeRHS, Overflow);
7285 MatchInfo = [=](MachineIRBuilder &B) {
7286 B.buildConstant(Dst, Result);
7287 B.buildConstant(Carry, Overflow);
7288 };
7289 return true;
7290 }
7291
7292 // Fold (addo x, 0) -> x, no carry
7293 if (MaybeRHS && *MaybeRHS == 0 && isConstantLegalOrBeforeLegalizer(CarryTy)) {
7294 MatchInfo = [=](MachineIRBuilder &B) {
7295 B.buildCopy(Dst, LHS);
7296 B.buildConstant(Carry, 0);
7297 };
7298 return true;
7299 }
7300
7301 // Given 2 constant operands whose sum does not overflow:
7302 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
7303 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
7304 GAdd *AddLHS = getOpcodeDef<GAdd>(LHS, MRI);
7305 if (MaybeRHS && AddLHS && MRI.hasOneNonDBGUse(Add->getReg(0)) &&
7306 ((IsSigned && AddLHS->getFlag(MachineInstr::MIFlag::NoSWrap)) ||
7307 (!IsSigned && AddLHS->getFlag(MachineInstr::MIFlag::NoUWrap)))) {
7308 std::optional<APInt> MaybeAddRHS =
7309 getConstantOrConstantSplatVector(AddLHS->getRHSReg());
7310 if (MaybeAddRHS) {
7311 bool Overflow;
7312 APInt NewC = IsSigned ? MaybeAddRHS->sadd_ov(*MaybeRHS, Overflow)
7313 : MaybeAddRHS->uadd_ov(*MaybeRHS, Overflow);
7314 if (!Overflow && isConstantLegalOrBeforeLegalizer(DstTy)) {
7315 if (IsSigned) {
7316 MatchInfo = [=](MachineIRBuilder &B) {
7317 auto ConstRHS = B.buildConstant(DstTy, NewC);
7318 B.buildSAddo(Dst, Carry, AddLHS->getLHSReg(), ConstRHS);
7319 };
7320 return true;
7321 }
7322 // !IsSigned
7323 MatchInfo = [=](MachineIRBuilder &B) {
7324 auto ConstRHS = B.buildConstant(DstTy, NewC);
7325 B.buildUAddo(Dst, Carry, AddLHS->getLHSReg(), ConstRHS);
7326 };
7327 return true;
7328 }
7329 }
7330 };
7331
7332 // We try to combine addo to non-overflowing add.
7333 if (!isLegalOrBeforeLegalizer({TargetOpcode::G_ADD, {DstTy}}) ||
7334 !isConstantLegalOrBeforeLegalizer(CarryTy))
7335 return false;
7336
7337 // We try to combine uaddo to non-overflowing add.
7338 if (!IsSigned) {
7339 ConstantRange CRLHS =
7340 ConstantRange::fromKnownBits(KB->getKnownBits(LHS), /*IsSigned=*/false);
7341 ConstantRange CRRHS =
7342 ConstantRange::fromKnownBits(KB->getKnownBits(RHS), /*IsSigned=*/false);
7343
7344 switch (CRLHS.unsignedAddMayOverflow(CRRHS)) {
7345 case ConstantRange::OverflowResult::MayOverflow:
7346 return false;
7347 case ConstantRange::OverflowResult::NeverOverflows: {
7348 MatchInfo = [=](MachineIRBuilder &B) {
7349 B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoUWrap);
7350 B.buildConstant(Carry, 0);
7351 };
7352 return true;
7353 }
7354 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
7355 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: {
7356 MatchInfo = [=](MachineIRBuilder &B) {
7357 B.buildAdd(Dst, LHS, RHS);
7358 B.buildConstant(Carry, 1);
7359 };
7360 return true;
7361 }
7362 }
7363 return false;
7364 }
7365
7366 // We try to combine saddo to non-overflowing add.
7367
7368 // If LHS and RHS each have at least two sign bits, then there is no signed
7369 // overflow.
7370 if (KB->computeNumSignBits(RHS) > 1 && KB->computeNumSignBits(LHS) > 1) {
7371 MatchInfo = [=](MachineIRBuilder &B) {
7372 B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap);
7373 B.buildConstant(Carry, 0);
7374 };
7375 return true;
7376 }
7377
7378 ConstantRange CRLHS =
7379 ConstantRange::fromKnownBits(KB->getKnownBits(LHS), /*IsSigned=*/true);
7380 ConstantRange CRRHS =
7381 ConstantRange::fromKnownBits(KB->getKnownBits(RHS), /*IsSigned=*/true);
7382
7383 switch (CRLHS.signedAddMayOverflow(CRRHS)) {
7384 case ConstantRange::OverflowResult::MayOverflow:
7385 return false;
7386 case ConstantRange::OverflowResult::NeverOverflows: {
7387 MatchInfo = [=](MachineIRBuilder &B) {
7388 B.buildAdd(Dst, LHS, RHS, MachineInstr::MIFlag::NoSWrap);
7389 B.buildConstant(Carry, 0);
7390 };
7391 return true;
7392 }
7393 case ConstantRange::OverflowResult::AlwaysOverflowsLow:
7394 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: {
7395 MatchInfo = [=](MachineIRBuilder &B) {
7396 B.buildAdd(Dst, LHS, RHS);
7397 B.buildConstant(Carry, 1);
7398 };
7399 return true;
7400 }
7401 }
7402
7403 return false;
7404 }
7405
applyBuildFnMO(const MachineOperand & MO,BuildFnTy & MatchInfo)7406 void CombinerHelper::applyBuildFnMO(const MachineOperand &MO,
7407 BuildFnTy &MatchInfo) {
7408 MachineInstr *Root = getDefIgnoringCopies(MO.getReg(), MRI);
7409 MatchInfo(Builder);
7410 Root->eraseFromParent();
7411 }
7412
matchFPowIExpansion(MachineInstr & MI,int64_t Exponent)7413 bool CombinerHelper::matchFPowIExpansion(MachineInstr &MI, int64_t Exponent) {
7414 bool OptForSize = MI.getMF()->getFunction().hasOptSize();
7415 return getTargetLowering().isBeneficialToExpandPowI(Exponent, OptForSize);
7416 }
7417
applyExpandFPowI(MachineInstr & MI,int64_t Exponent)7418 void CombinerHelper::applyExpandFPowI(MachineInstr &MI, int64_t Exponent) {
7419 auto [Dst, Base] = MI.getFirst2Regs();
7420 LLT Ty = MRI.getType(Dst);
7421 int64_t ExpVal = Exponent;
7422
7423 if (ExpVal == 0) {
7424 Builder.buildFConstant(Dst, 1.0);
7425 MI.removeFromParent();
7426 return;
7427 }
7428
7429 if (ExpVal < 0)
7430 ExpVal = -ExpVal;
7431
7432 // We use the simple binary decomposition method from SelectionDAG ExpandPowI
7433 // to generate the multiply sequence. There are more optimal ways to do this
7434 // (for example, powi(x,15) generates one more multiply than it should), but
7435 // this has the benefit of being both really simple and much better than a
7436 // libcall.
7437 std::optional<SrcOp> Res;
7438 SrcOp CurSquare = Base;
7439 while (ExpVal > 0) {
7440 if (ExpVal & 1) {
7441 if (!Res)
7442 Res = CurSquare;
7443 else
7444 Res = Builder.buildFMul(Ty, *Res, CurSquare);
7445 }
7446
7447 CurSquare = Builder.buildFMul(Ty, CurSquare, CurSquare);
7448 ExpVal >>= 1;
7449 }
7450
7451 // If the original exponent was negative, invert the result, producing
7452 // 1/(x*x*x).
7453 if (Exponent < 0)
7454 Res = Builder.buildFDiv(Ty, Builder.buildFConstant(Ty, 1.0), *Res,
7455 MI.getFlags());
7456
7457 Builder.buildCopy(Dst, *Res);
7458 MI.eraseFromParent();
7459 }
7460
matchSextOfTrunc(const MachineOperand & MO,BuildFnTy & MatchInfo)7461 bool CombinerHelper::matchSextOfTrunc(const MachineOperand &MO,
7462 BuildFnTy &MatchInfo) {
7463 GSext *Sext = cast<GSext>(getDefIgnoringCopies(MO.getReg(), MRI));
7464 GTrunc *Trunc = cast<GTrunc>(getDefIgnoringCopies(Sext->getSrcReg(), MRI));
7465
7466 Register Dst = Sext->getReg(0);
7467 Register Src = Trunc->getSrcReg();
7468
7469 LLT DstTy = MRI.getType(Dst);
7470 LLT SrcTy = MRI.getType(Src);
7471
7472 if (DstTy == SrcTy) {
7473 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, Src); };
7474 return true;
7475 }
7476
7477 if (DstTy.getScalarSizeInBits() < SrcTy.getScalarSizeInBits() &&
7478 isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {DstTy, SrcTy}})) {
7479 MatchInfo = [=](MachineIRBuilder &B) {
7480 B.buildTrunc(Dst, Src, MachineInstr::MIFlag::NoSWrap);
7481 };
7482 return true;
7483 }
7484
7485 if (DstTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits() &&
7486 isLegalOrBeforeLegalizer({TargetOpcode::G_SEXT, {DstTy, SrcTy}})) {
7487 MatchInfo = [=](MachineIRBuilder &B) { B.buildSExt(Dst, Src); };
7488 return true;
7489 }
7490
7491 return false;
7492 }
7493
matchZextOfTrunc(const MachineOperand & MO,BuildFnTy & MatchInfo)7494 bool CombinerHelper::matchZextOfTrunc(const MachineOperand &MO,
7495 BuildFnTy &MatchInfo) {
7496 GZext *Zext = cast<GZext>(getDefIgnoringCopies(MO.getReg(), MRI));
7497 GTrunc *Trunc = cast<GTrunc>(getDefIgnoringCopies(Zext->getSrcReg(), MRI));
7498
7499 Register Dst = Zext->getReg(0);
7500 Register Src = Trunc->getSrcReg();
7501
7502 LLT DstTy = MRI.getType(Dst);
7503 LLT SrcTy = MRI.getType(Src);
7504
7505 if (DstTy == SrcTy) {
7506 MatchInfo = [=](MachineIRBuilder &B) { B.buildCopy(Dst, Src); };
7507 return true;
7508 }
7509
7510 if (DstTy.getScalarSizeInBits() < SrcTy.getScalarSizeInBits() &&
7511 isLegalOrBeforeLegalizer({TargetOpcode::G_TRUNC, {DstTy, SrcTy}})) {
7512 MatchInfo = [=](MachineIRBuilder &B) {
7513 B.buildTrunc(Dst, Src, MachineInstr::MIFlag::NoUWrap);
7514 };
7515 return true;
7516 }
7517
7518 if (DstTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits() &&
7519 isLegalOrBeforeLegalizer({TargetOpcode::G_ZEXT, {DstTy, SrcTy}})) {
7520 MatchInfo = [=](MachineIRBuilder &B) {
7521 B.buildZExt(Dst, Src, MachineInstr::MIFlag::NonNeg);
7522 };
7523 return true;
7524 }
7525
7526 return false;
7527 }
7528
matchNonNegZext(const MachineOperand & MO,BuildFnTy & MatchInfo)7529 bool CombinerHelper::matchNonNegZext(const MachineOperand &MO,
7530 BuildFnTy &MatchInfo) {
7531 GZext *Zext = cast<GZext>(MRI.getVRegDef(MO.getReg()));
7532
7533 Register Dst = Zext->getReg(0);
7534 Register Src = Zext->getSrcReg();
7535
7536 LLT DstTy = MRI.getType(Dst);
7537 LLT SrcTy = MRI.getType(Src);
7538 const auto &TLI = getTargetLowering();
7539
7540 // Convert zext nneg to sext if sext is the preferred form for the target.
7541 if (isLegalOrBeforeLegalizer({TargetOpcode::G_SEXT, {DstTy, SrcTy}}) &&
7542 TLI.isSExtCheaperThanZExt(getMVTForLLT(SrcTy), getMVTForLLT(DstTy))) {
7543 MatchInfo = [=](MachineIRBuilder &B) { B.buildSExt(Dst, Src); };
7544 return true;
7545 }
7546
7547 return false;
7548 }
7549