xref: /freebsd/contrib/llvm-project/lld/COFF/Chunks.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
1 //===- Chunks.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "Chunks.h"
10 #include "COFFLinkerContext.h"
11 #include "InputFiles.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "Writer.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/Twine.h"
18 #include "llvm/BinaryFormat/COFF.h"
19 #include "llvm/Object/COFF.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/raw_ostream.h"
23 #include <algorithm>
24 #include <iterator>
25 
26 using namespace llvm;
27 using namespace llvm::object;
28 using namespace llvm::support::endian;
29 using namespace llvm::COFF;
30 using llvm::support::ulittle32_t;
31 
32 namespace lld::coff {
33 
SectionChunk(ObjFile * f,const coff_section * h,Kind k)34 SectionChunk::SectionChunk(ObjFile *f, const coff_section *h, Kind k)
35     : Chunk(k), file(f), header(h), repl(this) {
36   // Initialize relocs.
37   if (file)
38     setRelocs(file->getCOFFObj()->getRelocations(header));
39 
40   // Initialize sectionName.
41   StringRef sectionName;
42   if (file) {
43     if (Expected<StringRef> e = file->getCOFFObj()->getSectionName(header))
44       sectionName = *e;
45   }
46   sectionNameData = sectionName.data();
47   sectionNameSize = sectionName.size();
48 
49   setAlignment(header->getAlignment());
50 
51   hasData = !(header->Characteristics & IMAGE_SCN_CNT_UNINITIALIZED_DATA);
52 
53   // If linker GC is disabled, every chunk starts out alive.  If linker GC is
54   // enabled, treat non-comdat sections as roots. Generally optimized object
55   // files will be built with -ffunction-sections or /Gy, so most things worth
56   // stripping will be in a comdat.
57   if (file)
58     live = !file->ctx.config.doGC || !isCOMDAT();
59   else
60     live = true;
61 }
62 
63 // SectionChunk is one of the most frequently allocated classes, so it is
64 // important to keep it as compact as possible. As of this writing, the number
65 // below is the size of this class on x64 platforms.
66 static_assert(sizeof(SectionChunk) <= 88, "SectionChunk grew unexpectedly");
67 
add16(uint8_t * p,int16_t v)68 static void add16(uint8_t *p, int16_t v) { write16le(p, read16le(p) + v); }
add32(uint8_t * p,int32_t v)69 static void add32(uint8_t *p, int32_t v) { write32le(p, read32le(p) + v); }
add64(uint8_t * p,int64_t v)70 static void add64(uint8_t *p, int64_t v) { write64le(p, read64le(p) + v); }
or16(uint8_t * p,uint16_t v)71 static void or16(uint8_t *p, uint16_t v) { write16le(p, read16le(p) | v); }
or32(uint8_t * p,uint32_t v)72 static void or32(uint8_t *p, uint32_t v) { write32le(p, read32le(p) | v); }
73 
74 // Verify that given sections are appropriate targets for SECREL
75 // relocations. This check is relaxed because unfortunately debug
76 // sections have section-relative relocations against absolute symbols.
checkSecRel(const SectionChunk * sec,OutputSection * os)77 static bool checkSecRel(const SectionChunk *sec, OutputSection *os) {
78   if (os)
79     return true;
80   if (sec->isCodeView())
81     return false;
82   error("SECREL relocation cannot be applied to absolute symbols");
83   return false;
84 }
85 
applySecRel(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)86 static void applySecRel(const SectionChunk *sec, uint8_t *off,
87                         OutputSection *os, uint64_t s) {
88   if (!checkSecRel(sec, os))
89     return;
90   uint64_t secRel = s - os->getRVA();
91   if (secRel > UINT32_MAX) {
92     error("overflow in SECREL relocation in section: " + sec->getSectionName());
93     return;
94   }
95   add32(off, secRel);
96 }
97 
applySecIdx(uint8_t * off,OutputSection * os,unsigned numOutputSections)98 static void applySecIdx(uint8_t *off, OutputSection *os,
99                         unsigned numOutputSections) {
100   // numOutputSections is the largest valid section index. Make sure that
101   // it fits in 16 bits.
102   assert(numOutputSections <= 0xffff && "size of outputSections is too big");
103 
104   // Absolute symbol doesn't have section index, but section index relocation
105   // against absolute symbol should be resolved to one plus the last output
106   // section index. This is required for compatibility with MSVC.
107   if (os)
108     add16(off, os->sectionIndex);
109   else
110     add16(off, numOutputSections + 1);
111 }
112 
applyRelX64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const113 void SectionChunk::applyRelX64(uint8_t *off, uint16_t type, OutputSection *os,
114                                uint64_t s, uint64_t p,
115                                uint64_t imageBase) const {
116   switch (type) {
117   case IMAGE_REL_AMD64_ADDR32:
118     add32(off, s + imageBase);
119     break;
120   case IMAGE_REL_AMD64_ADDR64:
121     add64(off, s + imageBase);
122     break;
123   case IMAGE_REL_AMD64_ADDR32NB: add32(off, s); break;
124   case IMAGE_REL_AMD64_REL32:    add32(off, s - p - 4); break;
125   case IMAGE_REL_AMD64_REL32_1:  add32(off, s - p - 5); break;
126   case IMAGE_REL_AMD64_REL32_2:  add32(off, s - p - 6); break;
127   case IMAGE_REL_AMD64_REL32_3:  add32(off, s - p - 7); break;
128   case IMAGE_REL_AMD64_REL32_4:  add32(off, s - p - 8); break;
129   case IMAGE_REL_AMD64_REL32_5:  add32(off, s - p - 9); break;
130   case IMAGE_REL_AMD64_SECTION:
131     applySecIdx(off, os, file->ctx.outputSections.size());
132     break;
133   case IMAGE_REL_AMD64_SECREL:   applySecRel(this, off, os, s); break;
134   default:
135     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
136           toString(file));
137   }
138 }
139 
applyRelX86(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const140 void SectionChunk::applyRelX86(uint8_t *off, uint16_t type, OutputSection *os,
141                                uint64_t s, uint64_t p,
142                                uint64_t imageBase) const {
143   switch (type) {
144   case IMAGE_REL_I386_ABSOLUTE: break;
145   case IMAGE_REL_I386_DIR32:
146     add32(off, s + imageBase);
147     break;
148   case IMAGE_REL_I386_DIR32NB:  add32(off, s); break;
149   case IMAGE_REL_I386_REL32:    add32(off, s - p - 4); break;
150   case IMAGE_REL_I386_SECTION:
151     applySecIdx(off, os, file->ctx.outputSections.size());
152     break;
153   case IMAGE_REL_I386_SECREL:   applySecRel(this, off, os, s); break;
154   default:
155     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
156           toString(file));
157   }
158 }
159 
applyMOV(uint8_t * off,uint16_t v)160 static void applyMOV(uint8_t *off, uint16_t v) {
161   write16le(off, (read16le(off) & 0xfbf0) | ((v & 0x800) >> 1) | ((v >> 12) & 0xf));
162   write16le(off + 2, (read16le(off + 2) & 0x8f00) | ((v & 0x700) << 4) | (v & 0xff));
163 }
164 
readMOV(uint8_t * off,bool movt)165 static uint16_t readMOV(uint8_t *off, bool movt) {
166   uint16_t op1 = read16le(off);
167   if ((op1 & 0xfbf0) != (movt ? 0xf2c0 : 0xf240))
168     error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
169           " instruction in MOV32T relocation");
170   uint16_t op2 = read16le(off + 2);
171   if ((op2 & 0x8000) != 0)
172     error("unexpected instruction in " + Twine(movt ? "MOVT" : "MOVW") +
173           " instruction in MOV32T relocation");
174   return (op2 & 0x00ff) | ((op2 >> 4) & 0x0700) | ((op1 << 1) & 0x0800) |
175          ((op1 & 0x000f) << 12);
176 }
177 
applyMOV32T(uint8_t * off,uint32_t v)178 void applyMOV32T(uint8_t *off, uint32_t v) {
179   uint16_t immW = readMOV(off, false);    // read MOVW operand
180   uint16_t immT = readMOV(off + 4, true); // read MOVT operand
181   uint32_t imm = immW | (immT << 16);
182   v += imm;                         // add the immediate offset
183   applyMOV(off, v);           // set MOVW operand
184   applyMOV(off + 4, v >> 16); // set MOVT operand
185 }
186 
applyBranch20T(uint8_t * off,int32_t v)187 static void applyBranch20T(uint8_t *off, int32_t v) {
188   if (!isInt<21>(v))
189     error("relocation out of range");
190   uint32_t s = v < 0 ? 1 : 0;
191   uint32_t j1 = (v >> 19) & 1;
192   uint32_t j2 = (v >> 18) & 1;
193   or16(off, (s << 10) | ((v >> 12) & 0x3f));
194   or16(off + 2, (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
195 }
196 
applyBranch24T(uint8_t * off,int32_t v)197 void applyBranch24T(uint8_t *off, int32_t v) {
198   if (!isInt<25>(v))
199     error("relocation out of range");
200   uint32_t s = v < 0 ? 1 : 0;
201   uint32_t j1 = ((~v >> 23) & 1) ^ s;
202   uint32_t j2 = ((~v >> 22) & 1) ^ s;
203   or16(off, (s << 10) | ((v >> 12) & 0x3ff));
204   // Clear out the J1 and J2 bits which may be set.
205   write16le(off + 2, (read16le(off + 2) & 0xd000) | (j1 << 13) | (j2 << 11) | ((v >> 1) & 0x7ff));
206 }
207 
applyRelARM(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const208 void SectionChunk::applyRelARM(uint8_t *off, uint16_t type, OutputSection *os,
209                                uint64_t s, uint64_t p,
210                                uint64_t imageBase) const {
211   // Pointer to thumb code must have the LSB set.
212   uint64_t sx = s;
213   if (os && (os->header.Characteristics & IMAGE_SCN_MEM_EXECUTE))
214     sx |= 1;
215   switch (type) {
216   case IMAGE_REL_ARM_ADDR32:
217     add32(off, sx + imageBase);
218     break;
219   case IMAGE_REL_ARM_ADDR32NB:  add32(off, sx); break;
220   case IMAGE_REL_ARM_MOV32T:
221     applyMOV32T(off, sx + imageBase);
222     break;
223   case IMAGE_REL_ARM_BRANCH20T: applyBranch20T(off, sx - p - 4); break;
224   case IMAGE_REL_ARM_BRANCH24T: applyBranch24T(off, sx - p - 4); break;
225   case IMAGE_REL_ARM_BLX23T:    applyBranch24T(off, sx - p - 4); break;
226   case IMAGE_REL_ARM_SECTION:
227     applySecIdx(off, os, file->ctx.outputSections.size());
228     break;
229   case IMAGE_REL_ARM_SECREL:    applySecRel(this, off, os, s); break;
230   case IMAGE_REL_ARM_REL32:     add32(off, sx - p - 4); break;
231   default:
232     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
233           toString(file));
234   }
235 }
236 
237 // Interpret the existing immediate value as a byte offset to the
238 // target symbol, then update the instruction with the immediate as
239 // the page offset from the current instruction to the target.
applyArm64Addr(uint8_t * off,uint64_t s,uint64_t p,int shift)240 void applyArm64Addr(uint8_t *off, uint64_t s, uint64_t p, int shift) {
241   uint32_t orig = read32le(off);
242   int64_t imm =
243       SignExtend64<21>(((orig >> 29) & 0x3) | ((orig >> 3) & 0x1FFFFC));
244   s += imm;
245   imm = (s >> shift) - (p >> shift);
246   uint32_t immLo = (imm & 0x3) << 29;
247   uint32_t immHi = (imm & 0x1FFFFC) << 3;
248   uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
249   write32le(off, (orig & ~mask) | immLo | immHi);
250 }
251 
252 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
253 // Optionally limit the range of the written immediate by one or more bits
254 // (rangeLimit).
applyArm64Imm(uint8_t * off,uint64_t imm,uint32_t rangeLimit)255 void applyArm64Imm(uint8_t *off, uint64_t imm, uint32_t rangeLimit) {
256   uint32_t orig = read32le(off);
257   imm += (orig >> 10) & 0xFFF;
258   orig &= ~(0xFFF << 10);
259   write32le(off, orig | ((imm & (0xFFF >> rangeLimit)) << 10));
260 }
261 
262 // Add the 12 bit page offset to the existing immediate.
263 // Ldr/str instructions store the opcode immediate scaled
264 // by the load/store size (giving a larger range for larger
265 // loads/stores). The immediate is always (both before and after
266 // fixing up the relocation) stored scaled similarly.
267 // Even if larger loads/stores have a larger range, limit the
268 // effective offset to 12 bit, since it is intended to be a
269 // page offset.
applyArm64Ldr(uint8_t * off,uint64_t imm)270 static void applyArm64Ldr(uint8_t *off, uint64_t imm) {
271   uint32_t orig = read32le(off);
272   uint32_t size = orig >> 30;
273   // 0x04000000 indicates SIMD/FP registers
274   // 0x00800000 indicates 128 bit
275   if ((orig & 0x4800000) == 0x4800000)
276     size += 4;
277   if ((imm & ((1 << size) - 1)) != 0)
278     error("misaligned ldr/str offset");
279   applyArm64Imm(off, imm >> size, size);
280 }
281 
applySecRelLow12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)282 static void applySecRelLow12A(const SectionChunk *sec, uint8_t *off,
283                               OutputSection *os, uint64_t s) {
284   if (checkSecRel(sec, os))
285     applyArm64Imm(off, (s - os->getRVA()) & 0xfff, 0);
286 }
287 
applySecRelHigh12A(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)288 static void applySecRelHigh12A(const SectionChunk *sec, uint8_t *off,
289                                OutputSection *os, uint64_t s) {
290   if (!checkSecRel(sec, os))
291     return;
292   uint64_t secRel = (s - os->getRVA()) >> 12;
293   if (0xfff < secRel) {
294     error("overflow in SECREL_HIGH12A relocation in section: " +
295           sec->getSectionName());
296     return;
297   }
298   applyArm64Imm(off, secRel & 0xfff, 0);
299 }
300 
applySecRelLdr(const SectionChunk * sec,uint8_t * off,OutputSection * os,uint64_t s)301 static void applySecRelLdr(const SectionChunk *sec, uint8_t *off,
302                            OutputSection *os, uint64_t s) {
303   if (checkSecRel(sec, os))
304     applyArm64Ldr(off, (s - os->getRVA()) & 0xfff);
305 }
306 
applyArm64Branch26(uint8_t * off,int64_t v)307 void applyArm64Branch26(uint8_t *off, int64_t v) {
308   if (!isInt<28>(v))
309     error("relocation out of range");
310   or32(off, (v & 0x0FFFFFFC) >> 2);
311 }
312 
applyArm64Branch19(uint8_t * off,int64_t v)313 static void applyArm64Branch19(uint8_t *off, int64_t v) {
314   if (!isInt<21>(v))
315     error("relocation out of range");
316   or32(off, (v & 0x001FFFFC) << 3);
317 }
318 
applyArm64Branch14(uint8_t * off,int64_t v)319 static void applyArm64Branch14(uint8_t *off, int64_t v) {
320   if (!isInt<16>(v))
321     error("relocation out of range");
322   or32(off, (v & 0x0000FFFC) << 3);
323 }
324 
applyRelARM64(uint8_t * off,uint16_t type,OutputSection * os,uint64_t s,uint64_t p,uint64_t imageBase) const325 void SectionChunk::applyRelARM64(uint8_t *off, uint16_t type, OutputSection *os,
326                                  uint64_t s, uint64_t p,
327                                  uint64_t imageBase) const {
328   switch (type) {
329   case IMAGE_REL_ARM64_PAGEBASE_REL21: applyArm64Addr(off, s, p, 12); break;
330   case IMAGE_REL_ARM64_REL21:          applyArm64Addr(off, s, p, 0); break;
331   case IMAGE_REL_ARM64_PAGEOFFSET_12A: applyArm64Imm(off, s & 0xfff, 0); break;
332   case IMAGE_REL_ARM64_PAGEOFFSET_12L: applyArm64Ldr(off, s & 0xfff); break;
333   case IMAGE_REL_ARM64_BRANCH26:       applyArm64Branch26(off, s - p); break;
334   case IMAGE_REL_ARM64_BRANCH19:       applyArm64Branch19(off, s - p); break;
335   case IMAGE_REL_ARM64_BRANCH14:       applyArm64Branch14(off, s - p); break;
336   case IMAGE_REL_ARM64_ADDR32:
337     add32(off, s + imageBase);
338     break;
339   case IMAGE_REL_ARM64_ADDR32NB:       add32(off, s); break;
340   case IMAGE_REL_ARM64_ADDR64:
341     add64(off, s + imageBase);
342     break;
343   case IMAGE_REL_ARM64_SECREL:         applySecRel(this, off, os, s); break;
344   case IMAGE_REL_ARM64_SECREL_LOW12A:  applySecRelLow12A(this, off, os, s); break;
345   case IMAGE_REL_ARM64_SECREL_HIGH12A: applySecRelHigh12A(this, off, os, s); break;
346   case IMAGE_REL_ARM64_SECREL_LOW12L:  applySecRelLdr(this, off, os, s); break;
347   case IMAGE_REL_ARM64_SECTION:
348     applySecIdx(off, os, file->ctx.outputSections.size());
349     break;
350   case IMAGE_REL_ARM64_REL32:          add32(off, s - p - 4); break;
351   default:
352     error("unsupported relocation type 0x" + Twine::utohexstr(type) + " in " +
353           toString(file));
354   }
355 }
356 
maybeReportRelocationToDiscarded(const SectionChunk * fromChunk,Defined * sym,const coff_relocation & rel,bool isMinGW)357 static void maybeReportRelocationToDiscarded(const SectionChunk *fromChunk,
358                                              Defined *sym,
359                                              const coff_relocation &rel,
360                                              bool isMinGW) {
361   // Don't report these errors when the relocation comes from a debug info
362   // section or in mingw mode. MinGW mode object files (built by GCC) can
363   // have leftover sections with relocations against discarded comdat
364   // sections. Such sections are left as is, with relocations untouched.
365   if (fromChunk->isCodeView() || fromChunk->isDWARF() || isMinGW)
366     return;
367 
368   // Get the name of the symbol. If it's null, it was discarded early, so we
369   // have to go back to the object file.
370   ObjFile *file = fromChunk->file;
371   StringRef name;
372   if (sym) {
373     name = sym->getName();
374   } else {
375     COFFSymbolRef coffSym =
376         check(file->getCOFFObj()->getSymbol(rel.SymbolTableIndex));
377     name = check(file->getCOFFObj()->getSymbolName(coffSym));
378   }
379 
380   std::vector<std::string> symbolLocations =
381       getSymbolLocations(file, rel.SymbolTableIndex);
382 
383   std::string out;
384   llvm::raw_string_ostream os(out);
385   os << "relocation against symbol in discarded section: " + name;
386   for (const std::string &s : symbolLocations)
387     os << s;
388   error(os.str());
389 }
390 
writeTo(uint8_t * buf) const391 void SectionChunk::writeTo(uint8_t *buf) const {
392   if (!hasData)
393     return;
394   // Copy section contents from source object file to output file.
395   ArrayRef<uint8_t> a = getContents();
396   if (!a.empty())
397     memcpy(buf, a.data(), a.size());
398 
399   // Apply relocations.
400   size_t inputSize = getSize();
401   for (const coff_relocation &rel : getRelocs()) {
402     // Check for an invalid relocation offset. This check isn't perfect, because
403     // we don't have the relocation size, which is only known after checking the
404     // machine and relocation type. As a result, a relocation may overwrite the
405     // beginning of the following input section.
406     if (rel.VirtualAddress >= inputSize) {
407       error("relocation points beyond the end of its parent section");
408       continue;
409     }
410 
411     applyRelocation(buf + rel.VirtualAddress, rel);
412   }
413 
414   // Write the offset to EC entry thunk preceding section contents. The low bit
415   // is always set, so it's effectively an offset from the last byte of the
416   // offset.
417   if (Defined *entryThunk = getEntryThunk())
418     write32le(buf - sizeof(uint32_t), entryThunk->getRVA() - rva + 1);
419 }
420 
applyRelocation(uint8_t * off,const coff_relocation & rel) const421 void SectionChunk::applyRelocation(uint8_t *off,
422                                    const coff_relocation &rel) const {
423   auto *sym = dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
424 
425   // Get the output section of the symbol for this relocation.  The output
426   // section is needed to compute SECREL and SECTION relocations used in debug
427   // info.
428   Chunk *c = sym ? sym->getChunk() : nullptr;
429   OutputSection *os = c ? file->ctx.getOutputSection(c) : nullptr;
430 
431   // Skip the relocation if it refers to a discarded section, and diagnose it
432   // as an error if appropriate. If a symbol was discarded early, it may be
433   // null. If it was discarded late, the output section will be null, unless
434   // it was an absolute or synthetic symbol.
435   if (!sym ||
436       (!os && !isa<DefinedAbsolute>(sym) && !isa<DefinedSynthetic>(sym))) {
437     maybeReportRelocationToDiscarded(this, sym, rel, file->ctx.config.mingw);
438     return;
439   }
440 
441   uint64_t s = sym->getRVA();
442 
443   // Compute the RVA of the relocation for relative relocations.
444   uint64_t p = rva + rel.VirtualAddress;
445   uint64_t imageBase = file->ctx.config.imageBase;
446   switch (getArch()) {
447   case Triple::x86_64:
448     applyRelX64(off, rel.Type, os, s, p, imageBase);
449     break;
450   case Triple::x86:
451     applyRelX86(off, rel.Type, os, s, p, imageBase);
452     break;
453   case Triple::thumb:
454     applyRelARM(off, rel.Type, os, s, p, imageBase);
455     break;
456   case Triple::aarch64:
457     applyRelARM64(off, rel.Type, os, s, p, imageBase);
458     break;
459   default:
460     llvm_unreachable("unknown machine type");
461   }
462 }
463 
464 // Defend against unsorted relocations. This may be overly conservative.
sortRelocations()465 void SectionChunk::sortRelocations() {
466   auto cmpByVa = [](const coff_relocation &l, const coff_relocation &r) {
467     return l.VirtualAddress < r.VirtualAddress;
468   };
469   if (llvm::is_sorted(getRelocs(), cmpByVa))
470     return;
471   warn("some relocations in " + file->getName() + " are not sorted");
472   MutableArrayRef<coff_relocation> newRelocs(
473       bAlloc().Allocate<coff_relocation>(relocsSize), relocsSize);
474   memcpy(newRelocs.data(), relocsData, relocsSize * sizeof(coff_relocation));
475   llvm::sort(newRelocs, cmpByVa);
476   setRelocs(newRelocs);
477 }
478 
479 // Similar to writeTo, but suitable for relocating a subsection of the overall
480 // section.
writeAndRelocateSubsection(ArrayRef<uint8_t> sec,ArrayRef<uint8_t> subsec,uint32_t & nextRelocIndex,uint8_t * buf) const481 void SectionChunk::writeAndRelocateSubsection(ArrayRef<uint8_t> sec,
482                                               ArrayRef<uint8_t> subsec,
483                                               uint32_t &nextRelocIndex,
484                                               uint8_t *buf) const {
485   assert(!subsec.empty() && !sec.empty());
486   assert(sec.begin() <= subsec.begin() && subsec.end() <= sec.end() &&
487          "subsection is not part of this section");
488   size_t vaBegin = std::distance(sec.begin(), subsec.begin());
489   size_t vaEnd = std::distance(sec.begin(), subsec.end());
490   memcpy(buf, subsec.data(), subsec.size());
491   for (; nextRelocIndex < relocsSize; ++nextRelocIndex) {
492     const coff_relocation &rel = relocsData[nextRelocIndex];
493     // Only apply relocations that apply to this subsection. These checks
494     // assume that all subsections completely contain their relocations.
495     // Relocations must not straddle the beginning or end of a subsection.
496     if (rel.VirtualAddress < vaBegin)
497       continue;
498     if (rel.VirtualAddress + 1 >= vaEnd)
499       break;
500     applyRelocation(&buf[rel.VirtualAddress - vaBegin], rel);
501   }
502 }
503 
addAssociative(SectionChunk * child)504 void SectionChunk::addAssociative(SectionChunk *child) {
505   // Insert the child section into the list of associated children. Keep the
506   // list ordered by section name so that ICF does not depend on section order.
507   assert(child->assocChildren == nullptr &&
508          "associated sections cannot have their own associated children");
509   SectionChunk *prev = this;
510   SectionChunk *next = assocChildren;
511   for (; next != nullptr; prev = next, next = next->assocChildren) {
512     if (next->getSectionName() <= child->getSectionName())
513       break;
514   }
515 
516   // Insert child between prev and next.
517   assert(prev->assocChildren == next);
518   prev->assocChildren = child;
519   child->assocChildren = next;
520 }
521 
getBaserelType(const coff_relocation & rel,Triple::ArchType arch)522 static uint8_t getBaserelType(const coff_relocation &rel,
523                               Triple::ArchType arch) {
524   switch (arch) {
525   case Triple::x86_64:
526     if (rel.Type == IMAGE_REL_AMD64_ADDR64)
527       return IMAGE_REL_BASED_DIR64;
528     if (rel.Type == IMAGE_REL_AMD64_ADDR32)
529       return IMAGE_REL_BASED_HIGHLOW;
530     return IMAGE_REL_BASED_ABSOLUTE;
531   case Triple::x86:
532     if (rel.Type == IMAGE_REL_I386_DIR32)
533       return IMAGE_REL_BASED_HIGHLOW;
534     return IMAGE_REL_BASED_ABSOLUTE;
535   case Triple::thumb:
536     if (rel.Type == IMAGE_REL_ARM_ADDR32)
537       return IMAGE_REL_BASED_HIGHLOW;
538     if (rel.Type == IMAGE_REL_ARM_MOV32T)
539       return IMAGE_REL_BASED_ARM_MOV32T;
540     return IMAGE_REL_BASED_ABSOLUTE;
541   case Triple::aarch64:
542     if (rel.Type == IMAGE_REL_ARM64_ADDR64)
543       return IMAGE_REL_BASED_DIR64;
544     return IMAGE_REL_BASED_ABSOLUTE;
545   default:
546     llvm_unreachable("unknown machine type");
547   }
548 }
549 
550 // Windows-specific.
551 // Collect all locations that contain absolute addresses, which need to be
552 // fixed by the loader if load-time relocation is needed.
553 // Only called when base relocation is enabled.
getBaserels(std::vector<Baserel> * res)554 void SectionChunk::getBaserels(std::vector<Baserel> *res) {
555   for (const coff_relocation &rel : getRelocs()) {
556     uint8_t ty = getBaserelType(rel, getArch());
557     if (ty == IMAGE_REL_BASED_ABSOLUTE)
558       continue;
559     Symbol *target = file->getSymbol(rel.SymbolTableIndex);
560     if (!target || isa<DefinedAbsolute>(target))
561       continue;
562     res->emplace_back(rva + rel.VirtualAddress, ty);
563   }
564 }
565 
566 // MinGW specific.
567 // Check whether a static relocation of type Type can be deferred and
568 // handled at runtime as a pseudo relocation (for references to a module
569 // local variable, which turned out to actually need to be imported from
570 // another DLL) This returns the size the relocation is supposed to update,
571 // in bits, or 0 if the relocation cannot be handled as a runtime pseudo
572 // relocation.
getRuntimePseudoRelocSize(uint16_t type,llvm::COFF::MachineTypes machine)573 static int getRuntimePseudoRelocSize(uint16_t type,
574                                      llvm::COFF::MachineTypes machine) {
575   // Relocations that either contain an absolute address, or a plain
576   // relative offset, since the runtime pseudo reloc implementation
577   // adds 8/16/32/64 bit values to a memory address.
578   //
579   // Given a pseudo relocation entry,
580   //
581   // typedef struct {
582   //   DWORD sym;
583   //   DWORD target;
584   //   DWORD flags;
585   // } runtime_pseudo_reloc_item_v2;
586   //
587   // the runtime relocation performs this adjustment:
588   //     *(base + .target) += *(base + .sym) - (base + .sym)
589   //
590   // This works for both absolute addresses (IMAGE_REL_*_ADDR32/64,
591   // IMAGE_REL_I386_DIR32, where the memory location initially contains
592   // the address of the IAT slot, and for relative addresses (IMAGE_REL*_REL32),
593   // where the memory location originally contains the relative offset to the
594   // IAT slot.
595   //
596   // This requires the target address to be writable, either directly out of
597   // the image, or temporarily changed at runtime with VirtualProtect.
598   // Since this only operates on direct address values, it doesn't work for
599   // ARM/ARM64 relocations, other than the plain ADDR32/ADDR64 relocations.
600   switch (machine) {
601   case AMD64:
602     switch (type) {
603     case IMAGE_REL_AMD64_ADDR64:
604       return 64;
605     case IMAGE_REL_AMD64_ADDR32:
606     case IMAGE_REL_AMD64_REL32:
607     case IMAGE_REL_AMD64_REL32_1:
608     case IMAGE_REL_AMD64_REL32_2:
609     case IMAGE_REL_AMD64_REL32_3:
610     case IMAGE_REL_AMD64_REL32_4:
611     case IMAGE_REL_AMD64_REL32_5:
612       return 32;
613     default:
614       return 0;
615     }
616   case I386:
617     switch (type) {
618     case IMAGE_REL_I386_DIR32:
619     case IMAGE_REL_I386_REL32:
620       return 32;
621     default:
622       return 0;
623     }
624   case ARMNT:
625     switch (type) {
626     case IMAGE_REL_ARM_ADDR32:
627       return 32;
628     default:
629       return 0;
630     }
631   case ARM64:
632     switch (type) {
633     case IMAGE_REL_ARM64_ADDR64:
634       return 64;
635     case IMAGE_REL_ARM64_ADDR32:
636       return 32;
637     default:
638       return 0;
639     }
640   default:
641     llvm_unreachable("unknown machine type");
642   }
643 }
644 
645 // MinGW specific.
646 // Append information to the provided vector about all relocations that
647 // need to be handled at runtime as runtime pseudo relocations (references
648 // to a module local variable, which turned out to actually need to be
649 // imported from another DLL).
getRuntimePseudoRelocs(std::vector<RuntimePseudoReloc> & res)650 void SectionChunk::getRuntimePseudoRelocs(
651     std::vector<RuntimePseudoReloc> &res) {
652   for (const coff_relocation &rel : getRelocs()) {
653     auto *target =
654         dyn_cast_or_null<Defined>(file->getSymbol(rel.SymbolTableIndex));
655     if (!target || !target->isRuntimePseudoReloc)
656       continue;
657     // If the target doesn't have a chunk allocated, it may be a
658     // DefinedImportData symbol which ended up unnecessary after GC.
659     // Normally we wouldn't eliminate section chunks that are referenced, but
660     // references within DWARF sections don't count for keeping section chunks
661     // alive. Thus such dangling references in DWARF sections are expected.
662     if (!target->getChunk())
663       continue;
664     int sizeInBits =
665         getRuntimePseudoRelocSize(rel.Type, file->ctx.config.machine);
666     if (sizeInBits == 0) {
667       error("unable to automatically import from " + target->getName() +
668             " with relocation type " +
669             file->getCOFFObj()->getRelocationTypeName(rel.Type) + " in " +
670             toString(file));
671       continue;
672     }
673     int addressSizeInBits = file->ctx.config.is64() ? 64 : 32;
674     if (sizeInBits < addressSizeInBits) {
675       warn("runtime pseudo relocation in " + toString(file) + " against " +
676            "symbol " + target->getName() + " is too narrow (only " +
677            Twine(sizeInBits) + " bits wide); this can fail at runtime " +
678            "depending on memory layout");
679     }
680     // sizeInBits is used to initialize the Flags field; currently no
681     // other flags are defined.
682     res.emplace_back(target, this, rel.VirtualAddress, sizeInBits);
683   }
684 }
685 
isCOMDAT() const686 bool SectionChunk::isCOMDAT() const {
687   return header->Characteristics & IMAGE_SCN_LNK_COMDAT;
688 }
689 
printDiscardedMessage() const690 void SectionChunk::printDiscardedMessage() const {
691   // Removed by dead-stripping. If it's removed by ICF, ICF already
692   // printed out the name, so don't repeat that here.
693   if (sym && this == repl)
694     log("Discarded " + sym->getName());
695 }
696 
getDebugName() const697 StringRef SectionChunk::getDebugName() const {
698   if (sym)
699     return sym->getName();
700   return "";
701 }
702 
getContents() const703 ArrayRef<uint8_t> SectionChunk::getContents() const {
704   ArrayRef<uint8_t> a;
705   cantFail(file->getCOFFObj()->getSectionContents(header, a));
706   return a;
707 }
708 
consumeDebugMagic()709 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic() {
710   assert(isCodeView());
711   return consumeDebugMagic(getContents(), getSectionName());
712 }
713 
consumeDebugMagic(ArrayRef<uint8_t> data,StringRef sectionName)714 ArrayRef<uint8_t> SectionChunk::consumeDebugMagic(ArrayRef<uint8_t> data,
715                                                   StringRef sectionName) {
716   if (data.empty())
717     return {};
718 
719   // First 4 bytes are section magic.
720   if (data.size() < 4)
721     fatal("the section is too short: " + sectionName);
722 
723   if (!sectionName.starts_with(".debug$"))
724     fatal("invalid section: " + sectionName);
725 
726   uint32_t magic = support::endian::read32le(data.data());
727   uint32_t expectedMagic = sectionName == ".debug$H"
728                                ? DEBUG_HASHES_SECTION_MAGIC
729                                : DEBUG_SECTION_MAGIC;
730   if (magic != expectedMagic) {
731     warn("ignoring section " + sectionName + " with unrecognized magic 0x" +
732          utohexstr(magic));
733     return {};
734   }
735   return data.slice(4);
736 }
737 
findByName(ArrayRef<SectionChunk * > sections,StringRef name)738 SectionChunk *SectionChunk::findByName(ArrayRef<SectionChunk *> sections,
739                                        StringRef name) {
740   for (SectionChunk *c : sections)
741     if (c->getSectionName() == name)
742       return c;
743   return nullptr;
744 }
745 
replace(SectionChunk * other)746 void SectionChunk::replace(SectionChunk *other) {
747   p2Align = std::max(p2Align, other->p2Align);
748   other->repl = repl;
749   other->live = false;
750 }
751 
getSectionNumber() const752 uint32_t SectionChunk::getSectionNumber() const {
753   DataRefImpl r;
754   r.p = reinterpret_cast<uintptr_t>(header);
755   SectionRef s(r, file->getCOFFObj());
756   return s.getIndex() + 1;
757 }
758 
CommonChunk(const COFFSymbolRef s)759 CommonChunk::CommonChunk(const COFFSymbolRef s) : sym(s) {
760   // The value of a common symbol is its size. Align all common symbols smaller
761   // than 32 bytes naturally, i.e. round the size up to the next power of two.
762   // This is what MSVC link.exe does.
763   setAlignment(std::min(32U, uint32_t(PowerOf2Ceil(sym.getValue()))));
764   hasData = false;
765 }
766 
getOutputCharacteristics() const767 uint32_t CommonChunk::getOutputCharacteristics() const {
768   return IMAGE_SCN_CNT_UNINITIALIZED_DATA | IMAGE_SCN_MEM_READ |
769          IMAGE_SCN_MEM_WRITE;
770 }
771 
writeTo(uint8_t * buf) const772 void StringChunk::writeTo(uint8_t *buf) const {
773   memcpy(buf, str.data(), str.size());
774   buf[str.size()] = '\0';
775 }
776 
ImportThunkChunkX64(COFFLinkerContext & ctx,Defined * s)777 ImportThunkChunkX64::ImportThunkChunkX64(COFFLinkerContext &ctx, Defined *s)
778     : ImportThunkChunk(ctx, s) {
779   // Intel Optimization Manual says that all branch targets
780   // should be 16-byte aligned. MSVC linker does this too.
781   setAlignment(16);
782 }
783 
writeTo(uint8_t * buf) const784 void ImportThunkChunkX64::writeTo(uint8_t *buf) const {
785   memcpy(buf, importThunkX86, sizeof(importThunkX86));
786   // The first two bytes is a JMP instruction. Fill its operand.
787   write32le(buf + 2, impSymbol->getRVA() - rva - getSize());
788 }
789 
getBaserels(std::vector<Baserel> * res)790 void ImportThunkChunkX86::getBaserels(std::vector<Baserel> *res) {
791   res->emplace_back(getRVA() + 2, ctx.config.machine);
792 }
793 
writeTo(uint8_t * buf) const794 void ImportThunkChunkX86::writeTo(uint8_t *buf) const {
795   memcpy(buf, importThunkX86, sizeof(importThunkX86));
796   // The first two bytes is a JMP instruction. Fill its operand.
797   write32le(buf + 2, impSymbol->getRVA() + ctx.config.imageBase);
798 }
799 
getBaserels(std::vector<Baserel> * res)800 void ImportThunkChunkARM::getBaserels(std::vector<Baserel> *res) {
801   res->emplace_back(getRVA(), IMAGE_REL_BASED_ARM_MOV32T);
802 }
803 
writeTo(uint8_t * buf) const804 void ImportThunkChunkARM::writeTo(uint8_t *buf) const {
805   memcpy(buf, importThunkARM, sizeof(importThunkARM));
806   // Fix mov.w and mov.t operands.
807   applyMOV32T(buf, impSymbol->getRVA() + ctx.config.imageBase);
808 }
809 
writeTo(uint8_t * buf) const810 void ImportThunkChunkARM64::writeTo(uint8_t *buf) const {
811   int64_t off = impSymbol->getRVA() & 0xfff;
812   memcpy(buf, importThunkARM64, sizeof(importThunkARM64));
813   applyArm64Addr(buf, impSymbol->getRVA(), rva, 12);
814   applyArm64Ldr(buf + 4, off);
815 }
816 
817 // A Thumb2, PIC, non-interworking range extension thunk.
818 const uint8_t armThunk[] = {
819     0x40, 0xf2, 0x00, 0x0c, // P:  movw ip,:lower16:S - (P + (L1-P) + 4)
820     0xc0, 0xf2, 0x00, 0x0c, //     movt ip,:upper16:S - (P + (L1-P) + 4)
821     0xe7, 0x44,             // L1: add  pc, ip
822 };
823 
getSize() const824 size_t RangeExtensionThunkARM::getSize() const {
825   assert(ctx.config.machine == ARMNT);
826   (void)&ctx;
827   return sizeof(armThunk);
828 }
829 
writeTo(uint8_t * buf) const830 void RangeExtensionThunkARM::writeTo(uint8_t *buf) const {
831   assert(ctx.config.machine == ARMNT);
832   uint64_t offset = target->getRVA() - rva - 12;
833   memcpy(buf, armThunk, sizeof(armThunk));
834   applyMOV32T(buf, uint32_t(offset));
835 }
836 
837 // A position independent ARM64 adrp+add thunk, with a maximum range of
838 // +/- 4 GB, which is enough for any PE-COFF.
839 const uint8_t arm64Thunk[] = {
840     0x10, 0x00, 0x00, 0x90, // adrp x16, Dest
841     0x10, 0x02, 0x00, 0x91, // add  x16, x16, :lo12:Dest
842     0x00, 0x02, 0x1f, 0xd6, // br   x16
843 };
844 
getSize() const845 size_t RangeExtensionThunkARM64::getSize() const {
846   assert(ctx.config.machine == ARM64);
847   (void)&ctx;
848   return sizeof(arm64Thunk);
849 }
850 
writeTo(uint8_t * buf) const851 void RangeExtensionThunkARM64::writeTo(uint8_t *buf) const {
852   assert(ctx.config.machine == ARM64);
853   memcpy(buf, arm64Thunk, sizeof(arm64Thunk));
854   applyArm64Addr(buf + 0, target->getRVA(), rva, 12);
855   applyArm64Imm(buf + 4, target->getRVA() & 0xfff, 0);
856 }
857 
LocalImportChunk(COFFLinkerContext & c,Defined * s)858 LocalImportChunk::LocalImportChunk(COFFLinkerContext &c, Defined *s)
859     : sym(s), ctx(c) {
860   setAlignment(ctx.config.wordsize);
861 }
862 
getBaserels(std::vector<Baserel> * res)863 void LocalImportChunk::getBaserels(std::vector<Baserel> *res) {
864   res->emplace_back(getRVA(), ctx.config.machine);
865 }
866 
getSize() const867 size_t LocalImportChunk::getSize() const { return ctx.config.wordsize; }
868 
writeTo(uint8_t * buf) const869 void LocalImportChunk::writeTo(uint8_t *buf) const {
870   if (ctx.config.is64()) {
871     write64le(buf, sym->getRVA() + ctx.config.imageBase);
872   } else {
873     write32le(buf, sym->getRVA() + ctx.config.imageBase);
874   }
875 }
876 
writeTo(uint8_t * buf) const877 void RVATableChunk::writeTo(uint8_t *buf) const {
878   ulittle32_t *begin = reinterpret_cast<ulittle32_t *>(buf);
879   size_t cnt = 0;
880   for (const ChunkAndOffset &co : syms)
881     begin[cnt++] = co.inputChunk->getRVA() + co.offset;
882   llvm::sort(begin, begin + cnt);
883   assert(std::unique(begin, begin + cnt) == begin + cnt &&
884          "RVA tables should be de-duplicated");
885 }
886 
writeTo(uint8_t * buf) const887 void RVAFlagTableChunk::writeTo(uint8_t *buf) const {
888   struct RVAFlag {
889     ulittle32_t rva;
890     uint8_t flag;
891   };
892   auto flags =
893       MutableArrayRef(reinterpret_cast<RVAFlag *>(buf), syms.size());
894   for (auto t : zip(syms, flags)) {
895     const auto &sym = std::get<0>(t);
896     auto &flag = std::get<1>(t);
897     flag.rva = sym.inputChunk->getRVA() + sym.offset;
898     flag.flag = 0;
899   }
900   llvm::sort(flags,
901              [](const RVAFlag &a, const RVAFlag &b) { return a.rva < b.rva; });
902   assert(llvm::unique(flags, [](const RVAFlag &a,
903                                 const RVAFlag &b) { return a.rva == b.rva; }) ==
904              flags.end() &&
905          "RVA tables should be de-duplicated");
906 }
907 
getSize() const908 size_t ECCodeMapChunk::getSize() const {
909   return map.size() * sizeof(chpe_range_entry);
910 }
911 
writeTo(uint8_t * buf) const912 void ECCodeMapChunk::writeTo(uint8_t *buf) const {
913   auto table = reinterpret_cast<chpe_range_entry *>(buf);
914   for (uint32_t i = 0; i < map.size(); i++) {
915     const ECCodeMapEntry &entry = map[i];
916     uint32_t start = entry.first->getRVA();
917     table[i].StartOffset = start | entry.type;
918     table[i].Length = entry.last->getRVA() + entry.last->getSize() - start;
919   }
920 }
921 
922 // MinGW specific, for the "automatic import of variables from DLLs" feature.
getSize() const923 size_t PseudoRelocTableChunk::getSize() const {
924   if (relocs.empty())
925     return 0;
926   return 12 + 12 * relocs.size();
927 }
928 
929 // MinGW specific.
writeTo(uint8_t * buf) const930 void PseudoRelocTableChunk::writeTo(uint8_t *buf) const {
931   if (relocs.empty())
932     return;
933 
934   ulittle32_t *table = reinterpret_cast<ulittle32_t *>(buf);
935   // This is the list header, to signal the runtime pseudo relocation v2
936   // format.
937   table[0] = 0;
938   table[1] = 0;
939   table[2] = 1;
940 
941   size_t idx = 3;
942   for (const RuntimePseudoReloc &rpr : relocs) {
943     table[idx + 0] = rpr.sym->getRVA();
944     table[idx + 1] = rpr.target->getRVA() + rpr.targetOffset;
945     table[idx + 2] = rpr.flags;
946     idx += 3;
947   }
948 }
949 
950 // Windows-specific. This class represents a block in .reloc section.
951 // The format is described here.
952 //
953 // On Windows, each DLL is linked against a fixed base address and
954 // usually loaded to that address. However, if there's already another
955 // DLL that overlaps, the loader has to relocate it. To do that, DLLs
956 // contain .reloc sections which contain offsets that need to be fixed
957 // up at runtime. If the loader finds that a DLL cannot be loaded to its
958 // desired base address, it loads it to somewhere else, and add <actual
959 // base address> - <desired base address> to each offset that is
960 // specified by the .reloc section. In ELF terms, .reloc sections
961 // contain relative relocations in REL format (as opposed to RELA.)
962 //
963 // This already significantly reduces the size of relocations compared
964 // to ELF .rel.dyn, but Windows does more to reduce it (probably because
965 // it was invented for PCs in the late '80s or early '90s.)  Offsets in
966 // .reloc are grouped by page where the page size is 12 bits, and
967 // offsets sharing the same page address are stored consecutively to
968 // represent them with less space. This is very similar to the page
969 // table which is grouped by (multiple stages of) pages.
970 //
971 // For example, let's say we have 0x00030, 0x00500, 0x00700, 0x00A00,
972 // 0x20004, and 0x20008 in a .reloc section for x64. The uppermost 4
973 // bits have a type IMAGE_REL_BASED_DIR64 or 0xA. In the section, they
974 // are represented like this:
975 //
976 //   0x00000  -- page address (4 bytes)
977 //   16       -- size of this block (4 bytes)
978 //     0xA030 -- entries (2 bytes each)
979 //     0xA500
980 //     0xA700
981 //     0xAA00
982 //   0x20000  -- page address (4 bytes)
983 //   12       -- size of this block (4 bytes)
984 //     0xA004 -- entries (2 bytes each)
985 //     0xA008
986 //
987 // Usually we have a lot of relocations for each page, so the number of
988 // bytes for one .reloc entry is close to 2 bytes on average.
BaserelChunk(uint32_t page,Baserel * begin,Baserel * end)989 BaserelChunk::BaserelChunk(uint32_t page, Baserel *begin, Baserel *end) {
990   // Block header consists of 4 byte page RVA and 4 byte block size.
991   // Each entry is 2 byte. Last entry may be padding.
992   data.resize(alignTo((end - begin) * 2 + 8, 4));
993   uint8_t *p = data.data();
994   write32le(p, page);
995   write32le(p + 4, data.size());
996   p += 8;
997   for (Baserel *i = begin; i != end; ++i) {
998     write16le(p, (i->type << 12) | (i->rva - page));
999     p += 2;
1000   }
1001 }
1002 
writeTo(uint8_t * buf) const1003 void BaserelChunk::writeTo(uint8_t *buf) const {
1004   memcpy(buf, data.data(), data.size());
1005 }
1006 
getDefaultType(llvm::COFF::MachineTypes machine)1007 uint8_t Baserel::getDefaultType(llvm::COFF::MachineTypes machine) {
1008   switch (machine) {
1009   case AMD64:
1010   case ARM64:
1011     return IMAGE_REL_BASED_DIR64;
1012   case I386:
1013   case ARMNT:
1014     return IMAGE_REL_BASED_HIGHLOW;
1015   default:
1016     llvm_unreachable("unknown machine type");
1017   }
1018 }
1019 
MergeChunk(uint32_t alignment)1020 MergeChunk::MergeChunk(uint32_t alignment)
1021     : builder(StringTableBuilder::RAW, llvm::Align(alignment)) {
1022   setAlignment(alignment);
1023 }
1024 
addSection(COFFLinkerContext & ctx,SectionChunk * c)1025 void MergeChunk::addSection(COFFLinkerContext &ctx, SectionChunk *c) {
1026   assert(isPowerOf2_32(c->getAlignment()));
1027   uint8_t p2Align = llvm::Log2_32(c->getAlignment());
1028   assert(p2Align < std::size(ctx.mergeChunkInstances));
1029   auto *&mc = ctx.mergeChunkInstances[p2Align];
1030   if (!mc)
1031     mc = make<MergeChunk>(c->getAlignment());
1032   mc->sections.push_back(c);
1033 }
1034 
finalizeContents()1035 void MergeChunk::finalizeContents() {
1036   assert(!finalized && "should only finalize once");
1037   for (SectionChunk *c : sections)
1038     if (c->live)
1039       builder.add(toStringRef(c->getContents()));
1040   builder.finalize();
1041   finalized = true;
1042 }
1043 
assignSubsectionRVAs()1044 void MergeChunk::assignSubsectionRVAs() {
1045   for (SectionChunk *c : sections) {
1046     if (!c->live)
1047       continue;
1048     size_t off = builder.getOffset(toStringRef(c->getContents()));
1049     c->setRVA(rva + off);
1050   }
1051 }
1052 
getOutputCharacteristics() const1053 uint32_t MergeChunk::getOutputCharacteristics() const {
1054   return IMAGE_SCN_MEM_READ | IMAGE_SCN_CNT_INITIALIZED_DATA;
1055 }
1056 
getSize() const1057 size_t MergeChunk::getSize() const {
1058   return builder.getSize();
1059 }
1060 
writeTo(uint8_t * buf) const1061 void MergeChunk::writeTo(uint8_t *buf) const {
1062   builder.write(buf);
1063 }
1064 
1065 // MinGW specific.
getSize() const1066 size_t AbsolutePointerChunk::getSize() const { return ctx.config.wordsize; }
1067 
writeTo(uint8_t * buf) const1068 void AbsolutePointerChunk::writeTo(uint8_t *buf) const {
1069   if (ctx.config.is64()) {
1070     write64le(buf, value);
1071   } else {
1072     write32le(buf, value);
1073   }
1074 }
1075 
1076 } // namespace lld::coff
1077