1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25 /*
26 * Copyright (c) 2010, Intel Corporation.
27 * All rights reserved.
28 */
29 /*
30 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
31 */
32
33 /*
34 * To understand how the apix module interacts with the interrupt subsystem read
35 * the theory statement in uts/i86pc/os/intr.c.
36 */
37
38 /*
39 * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40 * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42 * PSMI 1.5 extensions are supported in Solaris Nevada.
43 * PSMI 1.6 extensions are supported in Solaris Nevada.
44 * PSMI 1.7 extensions are supported in Solaris Nevada.
45 */
46 #define PSMI_1_7
47
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>
61 #include <sys/promif.h>
62 #include <sys/x86_archext.h>
63 #include <sys/cpc_impl.h>
64 #include <sys/uadmin.h>
65 #include <sys/panic.h>
66 #include <sys/debug.h>
67 #include <sys/archsystm.h>
68 #include <sys/trap.h>
69 #include <sys/machsystm.h>
70 #include <sys/sysmacros.h>
71 #include <sys/cpuvar.h>
72 #include <sys/rm_platter.h>
73 #include <sys/privregs.h>
74 #include <sys/note.h>
75 #include <sys/pci_intr_lib.h>
76 #include <sys/spl.h>
77 #include <sys/clock.h>
78 #include <sys/cyclic.h>
79 #include <sys/dditypes.h>
80 #include <sys/sunddi.h>
81 #include <sys/x_call.h>
82 #include <sys/reboot.h>
83 #include <sys/mach_intr.h>
84 #include <sys/apix.h>
85 #include <sys/apix_irm_impl.h>
86
87 static int apix_probe();
88 static void apix_init();
89 static void apix_picinit(void);
90 static int apix_intr_enter(int, int *);
91 static void apix_intr_exit(int, int);
92 static void apix_setspl(int);
93 static int apix_disable_intr(processorid_t);
94 static void apix_enable_intr(processorid_t);
95 static int apix_get_clkvect(int);
96 static int apix_get_ipivect(int, int);
97 static void apix_post_cyclic_setup(void *);
98 static int apix_post_cpu_start();
99 static int apix_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
100 psm_intr_op_t, int *);
101
102 /*
103 * Helper functions for apix_intr_ops()
104 */
105 static void apix_redistribute_compute(void);
106 static int apix_get_pending(apix_vector_t *);
107 static apix_vector_t *apix_get_req_vector(ddi_intr_handle_impl_t *, ushort_t);
108 static int apix_get_intr_info(ddi_intr_handle_impl_t *, apic_get_intr_t *);
109 static char *apix_get_apic_type(void);
110 static int apix_intx_get_pending(int);
111 static void apix_intx_set_mask(int irqno);
112 static void apix_intx_clear_mask(int irqno);
113 static int apix_intx_get_shared(int irqno);
114 static void apix_intx_set_shared(int irqno, int delta);
115 static apix_vector_t *apix_intx_xlate_vector(dev_info_t *, int,
116 struct intrspec *);
117 static int apix_intx_alloc_vector(dev_info_t *, int, struct intrspec *);
118
119 extern int apic_clkinit(int);
120
121 /* IRM initialization for APIX PSM module */
122 extern void apix_irm_init(void);
123
124 extern int irm_enable;
125
126 /*
127 * Local static data
128 */
129 static struct psm_ops apix_ops = {
130 apix_probe,
131
132 apix_init,
133 apix_picinit,
134 apix_intr_enter,
135 apix_intr_exit,
136 apix_setspl,
137 apix_addspl,
138 apix_delspl,
139 apix_disable_intr,
140 apix_enable_intr,
141 NULL, /* psm_softlvl_to_irq */
142 NULL, /* psm_set_softintr */
143
144 apic_set_idlecpu,
145 apic_unset_idlecpu,
146
147 apic_clkinit,
148 apix_get_clkvect,
149 NULL, /* psm_hrtimeinit */
150 apic_gethrtime,
151
152 apic_get_next_processorid,
153 apic_cpu_start,
154 apix_post_cpu_start,
155 apic_shutdown,
156 apix_get_ipivect,
157 apic_send_ipi,
158
159 NULL, /* psm_translate_irq */
160 NULL, /* psm_notify_error */
161 NULL, /* psm_notify_func */
162 apic_timer_reprogram,
163 apic_timer_enable,
164 apic_timer_disable,
165 apix_post_cyclic_setup,
166 apic_preshutdown,
167 apix_intr_ops, /* Advanced DDI Interrupt framework */
168 apic_state, /* save, restore apic state for S3 */
169 apic_cpu_ops, /* CPU control interface. */
170 };
171
172 struct psm_ops *psmops = &apix_ops;
173
174 static struct psm_info apix_psm_info = {
175 PSM_INFO_VER01_7, /* version */
176 PSM_OWN_EXCLUSIVE, /* ownership */
177 &apix_ops, /* operation */
178 APIX_NAME, /* machine name */
179 "apix MPv1.4 compatible",
180 };
181
182 static void *apix_hdlp;
183
184 static int apix_is_enabled = 0;
185
186 /*
187 * Flag to indicate if APIX is to be enabled only for platforms
188 * with specific hw feature(s).
189 */
190 int apix_hw_chk_enable = 1;
191
192 /*
193 * Hw features that are checked for enabling APIX support.
194 */
195 #define APIX_SUPPORT_X2APIC 0x00000001
196 uint_t apix_supported_hw = APIX_SUPPORT_X2APIC;
197
198 /*
199 * apix_lock is used for cpu selection and vector re-binding
200 */
201 lock_t apix_lock;
202 apix_impl_t *apixs[NCPU];
203 /*
204 * Mapping between device interrupt and the allocated vector. Indexed
205 * by major number.
206 */
207 apix_dev_vector_t **apix_dev_vector;
208 /*
209 * Mapping between device major number and cpu id. It gets used
210 * when interrupt binding policy round robin with affinity is
211 * applied. With that policy, devices with the same major number
212 * will be bound to the same CPU.
213 */
214 processorid_t *apix_major_to_cpu; /* major to cpu mapping */
215 kmutex_t apix_mutex; /* for apix_dev_vector & apix_major_to_cpu */
216
217 int apix_nipis = 16; /* Maximum number of IPIs */
218 /*
219 * Maximum number of vectors in a CPU that can be used for interrupt
220 * allocation (including IPIs and the reserved vectors).
221 */
222 int apix_cpu_nvectors = APIX_NVECTOR;
223
224 /* gcpu.h */
225
226 extern void apic_do_interrupt(struct regs *rp, trap_trace_rec_t *ttp);
227 extern void apic_change_eoi();
228
229 /*
230 * This is the loadable module wrapper
231 */
232
233 int
_init(void)234 _init(void)
235 {
236 if (apic_coarse_hrtime)
237 apix_ops.psm_gethrtime = &apic_gettime;
238 return (psm_mod_init(&apix_hdlp, &apix_psm_info));
239 }
240
241 int
_fini(void)242 _fini(void)
243 {
244 return (psm_mod_fini(&apix_hdlp, &apix_psm_info));
245 }
246
247 int
_info(struct modinfo * modinfop)248 _info(struct modinfo *modinfop)
249 {
250 return (psm_mod_info(&apix_hdlp, &apix_psm_info, modinfop));
251 }
252
253 static int
apix_probe()254 apix_probe()
255 {
256 int rval;
257
258 if (apix_enable == 0)
259 return (PSM_FAILURE);
260
261 /* check for hw features if specified */
262 if (apix_hw_chk_enable) {
263 /* check if x2APIC mode is supported */
264 if ((apix_supported_hw & APIX_SUPPORT_X2APIC) ==
265 APIX_SUPPORT_X2APIC) {
266 if (!((apic_local_mode() == LOCAL_X2APIC) ||
267 apic_detect_x2apic())) {
268 /* x2APIC mode is not supported in the hw */
269 apix_enable = 0;
270 }
271 }
272 if (apix_enable == 0)
273 return (PSM_FAILURE);
274 }
275
276 rval = apic_probe_common(apix_psm_info.p_mach_idstring);
277 if (rval == PSM_SUCCESS)
278 apix_is_enabled = 1;
279 else
280 apix_is_enabled = 0;
281 return (rval);
282 }
283
284 /*
285 * Initialize the data structures needed by pcplusmpx module.
286 * Specifically, the data structures used by addspl() and delspl()
287 * routines.
288 */
289 static void
apix_softinit()290 apix_softinit()
291 {
292 int i, *iptr;
293 apix_impl_t *hdlp;
294 int nproc;
295
296 nproc = max(apic_nproc, apic_max_nproc);
297
298 hdlp = kmem_zalloc(nproc * sizeof (apix_impl_t), KM_SLEEP);
299 for (i = 0; i < nproc; i++) {
300 apixs[i] = &hdlp[i];
301 apixs[i]->x_cpuid = i;
302 LOCK_INIT_CLEAR(&apixs[i]->x_lock);
303 }
304
305 /* cpu 0 is always up (for now) */
306 apic_cpus[0].aci_status = APIC_CPU_ONLINE | APIC_CPU_INTR_ENABLE;
307
308 iptr = (int *)&apic_irq_table[0];
309 for (i = 0; i <= APIC_MAX_VECTOR; i++) {
310 apic_level_intr[i] = 0;
311 *iptr++ = NULL;
312 }
313 mutex_init(&airq_mutex, NULL, MUTEX_DEFAULT, NULL);
314
315 apix_dev_vector = kmem_zalloc(sizeof (apix_dev_vector_t *) * devcnt,
316 KM_SLEEP);
317
318 if (apic_intr_policy == INTR_ROUND_ROBIN_WITH_AFFINITY) {
319 apix_major_to_cpu = kmem_zalloc(sizeof (int) * devcnt,
320 KM_SLEEP);
321 for (i = 0; i < devcnt; i++)
322 apix_major_to_cpu[i] = IRQ_UNINIT;
323 }
324
325 mutex_init(&apix_mutex, NULL, MUTEX_DEFAULT, NULL);
326 }
327
328 static int
apix_get_pending_spl(void)329 apix_get_pending_spl(void)
330 {
331 int cpuid = CPU->cpu_id;
332
333 return (bsrw_insn(apixs[cpuid]->x_intr_pending));
334 }
335
336 static uintptr_t
apix_get_intr_handler(int cpu,short vec)337 apix_get_intr_handler(int cpu, short vec)
338 {
339 apix_vector_t *apix_vector;
340
341 ASSERT(cpu < apic_nproc && vec < APIX_NVECTOR);
342 if (cpu >= apic_nproc)
343 return (NULL);
344
345 apix_vector = apixs[cpu]->x_vectbl[vec];
346
347 return ((uintptr_t)(apix_vector->v_autovect));
348 }
349
350 static void
apix_init()351 apix_init()
352 {
353 extern void (*do_interrupt_common)(struct regs *, trap_trace_rec_t *);
354
355 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_softinit\n"));
356
357 do_interrupt_common = apix_do_interrupt;
358 addintr = apix_add_avintr;
359 remintr = apix_rem_avintr;
360 get_pending_spl = apix_get_pending_spl;
361 get_intr_handler = apix_get_intr_handler;
362 psm_get_localapicid = apic_get_localapicid;
363 psm_get_ioapicid = apic_get_ioapicid;
364
365 apix_softinit();
366
367 #if !defined(__amd64)
368 if (cpuid_have_cr8access(CPU))
369 apic_have_32bit_cr8 = 1;
370 #endif
371
372 /*
373 * Initialize IRM pool parameters
374 */
375 if (irm_enable) {
376 int i;
377 int lowest_irq;
378 int highest_irq;
379
380 /* number of CPUs present */
381 apix_irminfo.apix_ncpus = apic_nproc;
382 /* total number of entries in all of the IOAPICs present */
383 lowest_irq = apic_io_vectbase[0];
384 highest_irq = apic_io_vectend[0];
385 for (i = 1; i < apic_io_max; i++) {
386 if (apic_io_vectbase[i] < lowest_irq)
387 lowest_irq = apic_io_vectbase[i];
388 if (apic_io_vectend[i] > highest_irq)
389 highest_irq = apic_io_vectend[i];
390 }
391 apix_irminfo.apix_ioapic_max_vectors =
392 highest_irq - lowest_irq + 1;
393 /*
394 * Number of available per-CPU vectors excluding
395 * reserved vectors for Dtrace, int80, system-call,
396 * fast-trap, etc.
397 */
398 apix_irminfo.apix_per_cpu_vectors = APIX_NAVINTR -
399 APIX_SW_RESERVED_VECTORS;
400
401 /* Number of vectors (pre) allocated (SCI and HPET) */
402 apix_irminfo.apix_vectors_allocated = 0;
403 if (apic_hpet_vect != -1)
404 apix_irminfo.apix_vectors_allocated++;
405 if (apic_sci_vect != -1)
406 apix_irminfo.apix_vectors_allocated++;
407 }
408 }
409
410 static void
apix_init_intr()411 apix_init_intr()
412 {
413 processorid_t cpun = psm_get_cpu_id();
414 uint_t nlvt;
415 uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
416 extern void cmi_cmci_trap(void);
417
418 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
419
420 if (apic_mode == LOCAL_APIC) {
421 /*
422 * We are running APIC in MMIO mode.
423 */
424 if (apic_flat_model) {
425 apic_reg_ops->apic_write(APIC_FORMAT_REG,
426 APIC_FLAT_MODEL);
427 } else {
428 apic_reg_ops->apic_write(APIC_FORMAT_REG,
429 APIC_CLUSTER_MODEL);
430 }
431
432 apic_reg_ops->apic_write(APIC_DEST_REG,
433 AV_HIGH_ORDER >> cpun);
434 }
435
436 if (apic_directed_EOI_supported()) {
437 /*
438 * Setting the 12th bit in the Spurious Interrupt Vector
439 * Register suppresses broadcast EOIs generated by the local
440 * APIC. The suppression of broadcast EOIs happens only when
441 * interrupts are level-triggered.
442 */
443 svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
444 }
445
446 /* need to enable APIC before unmasking NMI */
447 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
448
449 /*
450 * Presence of an invalid vector with delivery mode AV_FIXED can
451 * cause an error interrupt, even if the entry is masked...so
452 * write a valid vector to LVT entries along with the mask bit
453 */
454
455 /* All APICs have timer and LINT0/1 */
456 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
457 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
458 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI); /* enable NMI */
459
460 /*
461 * On integrated APICs, the number of LVT entries is
462 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
463 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
464 */
465
466 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
467 nlvt = 3;
468 } else {
469 nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
470 0xFF) + 1;
471 }
472
473 if (nlvt >= 5) {
474 /* Enable performance counter overflow interrupt */
475
476 if (!is_x86_feature(x86_featureset, X86FSET_MSR))
477 apic_enable_cpcovf_intr = 0;
478 if (apic_enable_cpcovf_intr) {
479 if (apic_cpcovf_vect == 0) {
480 int ipl = APIC_PCINT_IPL;
481
482 apic_cpcovf_vect = apix_get_ipivect(ipl, -1);
483 ASSERT(apic_cpcovf_vect);
484
485 (void) add_avintr(NULL, ipl,
486 (avfunc)kcpc_hw_overflow_intr,
487 "apic pcint", apic_cpcovf_vect,
488 NULL, NULL, NULL, NULL);
489 kcpc_hw_overflow_intr_installed = 1;
490 kcpc_hw_enable_cpc_intr =
491 apic_cpcovf_mask_clear;
492 }
493 apic_reg_ops->apic_write(APIC_PCINT_VECT,
494 apic_cpcovf_vect);
495 }
496 }
497
498 if (nlvt >= 6) {
499 /* Only mask TM intr if the BIOS apparently doesn't use it */
500
501 uint32_t lvtval;
502
503 lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
504 if (((lvtval & AV_MASK) == AV_MASK) ||
505 ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
506 apic_reg_ops->apic_write(APIC_THERM_VECT,
507 AV_MASK|APIC_RESV_IRQ);
508 }
509 }
510
511 /* Enable error interrupt */
512
513 if (nlvt >= 4 && apic_enable_error_intr) {
514 if (apic_errvect == 0) {
515 int ipl = 0xf; /* get highest priority intr */
516 apic_errvect = apix_get_ipivect(ipl, -1);
517 ASSERT(apic_errvect);
518 /*
519 * Not PSMI compliant, but we are going to merge
520 * with ON anyway
521 */
522 (void) add_avintr(NULL, ipl,
523 (avfunc)apic_error_intr, "apic error intr",
524 apic_errvect, NULL, NULL, NULL, NULL);
525 }
526 apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
527 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
528 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
529 }
530
531 /* Enable CMCI interrupt */
532 if (cmi_enable_cmci) {
533 mutex_enter(&cmci_cpu_setup_lock);
534 if (cmci_cpu_setup_registered == 0) {
535 mutex_enter(&cpu_lock);
536 register_cpu_setup_func(cmci_cpu_setup, NULL);
537 mutex_exit(&cpu_lock);
538 cmci_cpu_setup_registered = 1;
539 }
540 mutex_exit(&cmci_cpu_setup_lock);
541
542 if (apic_cmci_vect == 0) {
543 int ipl = 0x2;
544 apic_cmci_vect = apix_get_ipivect(ipl, -1);
545 ASSERT(apic_cmci_vect);
546
547 (void) add_avintr(NULL, ipl,
548 (avfunc)cmi_cmci_trap, "apic cmci intr",
549 apic_cmci_vect, NULL, NULL, NULL, NULL);
550 }
551 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
552 }
553
554 apic_reg_ops->apic_write_task_reg(0);
555 }
556
557 static void
apix_picinit(void)558 apix_picinit(void)
559 {
560 int i, j;
561 uint_t isr;
562
563 APIC_VERBOSE(INIT, (CE_CONT, "apix: psm_picinit\n"));
564
565 /*
566 * initialize interrupt remapping before apic
567 * hardware initialization
568 */
569 apic_intrmap_init(apic_mode);
570 if (apic_vt_ops == psm_vt_ops)
571 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IIR;
572
573 /*
574 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
575 * bit on without clearing it with EOI. Since softint
576 * uses vector 0x20 to interrupt itself, so softint will
577 * not work on this machine. In order to fix this problem
578 * a check is made to verify all the isr bits are clear.
579 * If not, EOIs are issued to clear the bits.
580 */
581 for (i = 7; i >= 1; i--) {
582 isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
583 if (isr != 0)
584 for (j = 0; ((j < 32) && (isr != 0)); j++)
585 if (isr & (1 << j)) {
586 apic_reg_ops->apic_write(
587 APIC_EOI_REG, 0);
588 isr &= ~(1 << j);
589 apic_error |= APIC_ERR_BOOT_EOI;
590 }
591 }
592
593 /* set a flag so we know we have run apic_picinit() */
594 apic_picinit_called = 1;
595 LOCK_INIT_CLEAR(&apic_gethrtime_lock);
596 LOCK_INIT_CLEAR(&apic_ioapic_lock);
597 LOCK_INIT_CLEAR(&apic_error_lock);
598 LOCK_INIT_CLEAR(&apic_mode_switch_lock);
599
600 picsetup(); /* initialise the 8259 */
601
602 /* add nmi handler - least priority nmi handler */
603 LOCK_INIT_CLEAR(&apic_nmi_lock);
604
605 if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
606 "apix NMI handler", (caddr_t)NULL))
607 cmn_err(CE_WARN, "apix: Unable to add nmi handler");
608
609 apix_init_intr();
610
611 /* enable apic mode if imcr present */
612 if (apic_imcrp) {
613 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
614 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
615 }
616
617 ioapix_init_intr(IOAPIC_MASK);
618
619 /* setup global IRM pool if applicable */
620 if (irm_enable)
621 apix_irm_init();
622 }
623
624 static __inline__ void
apix_send_eoi(void)625 apix_send_eoi(void)
626 {
627 if (apic_mode == LOCAL_APIC)
628 LOCAL_APIC_WRITE_REG(APIC_EOI_REG, 0);
629 else
630 X2APIC_WRITE(APIC_EOI_REG, 0);
631 }
632
633 /*
634 * platform_intr_enter
635 *
636 * Called at the beginning of the interrupt service routine, but unlike
637 * pcplusmp, does not mask interrupts. An EOI is given to the interrupt
638 * controller to enable other HW interrupts but interrupts are still
639 * masked by the IF flag.
640 *
641 * Return -1 for spurious interrupts
642 *
643 */
644 static int
apix_intr_enter(int ipl,int * vectorp)645 apix_intr_enter(int ipl, int *vectorp)
646 {
647 struct cpu *cpu = CPU;
648 uint32_t cpuid = CPU->cpu_id;
649 apic_cpus_info_t *cpu_infop;
650 uchar_t vector;
651 apix_vector_t *vecp;
652 int nipl = -1;
653
654 /*
655 * The real vector delivered is (*vectorp + 0x20), but our caller
656 * subtracts 0x20 from the vector before passing it to us.
657 * (That's why APIC_BASE_VECT is 0x20.)
658 */
659 vector = *vectorp = (uchar_t)*vectorp + APIC_BASE_VECT;
660
661 cpu_infop = &apic_cpus[cpuid];
662 if (vector == APIC_SPUR_INTR) {
663 cpu_infop->aci_spur_cnt++;
664 return (APIC_INT_SPURIOUS);
665 }
666
667 vecp = xv_vector(cpuid, vector);
668 if (vecp == NULL) {
669 if (APIX_IS_FAKE_INTR(vector))
670 nipl = apix_rebindinfo.i_pri;
671 apix_send_eoi();
672 return (nipl);
673 }
674 nipl = vecp->v_pri;
675
676 /* if interrupted by the clock, increment apic_nsec_since_boot */
677 if (vector == (apic_clkvect + APIC_BASE_VECT)) {
678 if (!apic_oneshot) {
679 /* NOTE: this is not MT aware */
680 apic_hrtime_stamp++;
681 apic_nsec_since_boot += apic_nsec_per_intr;
682 apic_hrtime_stamp++;
683 last_count_read = apic_hertz_count;
684 apix_redistribute_compute();
685 }
686
687 apix_send_eoi();
688
689 return (nipl);
690 }
691
692 ASSERT(vecp->v_state != APIX_STATE_OBSOLETED);
693
694 /* pre-EOI handling for level-triggered interrupts */
695 if (!APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method) &&
696 (vecp->v_type & APIX_TYPE_FIXED) && apic_level_intr[vecp->v_inum])
697 apix_level_intr_pre_eoi(vecp->v_inum);
698
699 /* send back EOI */
700 apix_send_eoi();
701
702 cpu_infop->aci_current[nipl] = vector;
703 if ((nipl > ipl) && (nipl > cpu->cpu_base_spl)) {
704 cpu_infop->aci_curipl = (uchar_t)nipl;
705 cpu_infop->aci_ISR_in_progress |= 1 << nipl;
706 }
707
708 #ifdef DEBUG
709 if (vector >= APIX_IPI_MIN)
710 return (nipl); /* skip IPI */
711
712 APIC_DEBUG_BUF_PUT(vector);
713 APIC_DEBUG_BUF_PUT(vecp->v_inum);
714 APIC_DEBUG_BUF_PUT(nipl);
715 APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
716 if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
717 drv_usecwait(apic_stretch_interrupts);
718 #endif /* DEBUG */
719
720 return (nipl);
721 }
722
723 /*
724 * Any changes made to this function must also change X2APIC
725 * version of intr_exit.
726 */
727 static void
apix_intr_exit(int prev_ipl,int arg2)728 apix_intr_exit(int prev_ipl, int arg2)
729 {
730 int cpuid = psm_get_cpu_id();
731 apic_cpus_info_t *cpu_infop = &apic_cpus[cpuid];
732 apix_impl_t *apixp = apixs[cpuid];
733
734 UNREFERENCED_1PARAMETER(arg2);
735
736 cpu_infop->aci_curipl = (uchar_t)prev_ipl;
737 /* ISR above current pri could not be in progress */
738 cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
739
740 if (apixp->x_obsoletes != NULL) {
741 if (APIX_CPU_LOCK_HELD(cpuid))
742 return;
743
744 APIX_ENTER_CPU_LOCK(cpuid);
745 (void) apix_obsolete_vector(apixp->x_obsoletes);
746 APIX_LEAVE_CPU_LOCK(cpuid);
747 }
748 }
749
750 /*
751 * The pcplusmp setspl code uses the TPR to mask all interrupts at or below the
752 * given ipl, but apix never uses the TPR and we never mask a subset of the
753 * interrupts. They are either all blocked by the IF flag or all can come in.
754 *
755 * For setspl, we mask all interrupts for XC_HI_PIL (15), otherwise, interrupts
756 * can come in if currently enabled by the IF flag. This table shows the state
757 * of the IF flag when we leave this function.
758 *
759 * curr IF | ipl == 15 ipl != 15
760 * --------+---------------------------
761 * 0 | 0 0
762 * 1 | 0 1
763 */
764 static void
apix_setspl(int ipl)765 apix_setspl(int ipl)
766 {
767 /*
768 * Interrupts at ipl above this cannot be in progress, so the following
769 * mask is ok.
770 */
771 apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
772
773 if (ipl == XC_HI_PIL)
774 cli();
775 }
776
777 int
apix_addspl(int virtvec,int ipl,int min_ipl,int max_ipl)778 apix_addspl(int virtvec, int ipl, int min_ipl, int max_ipl)
779 {
780 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
781 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
782 apix_vector_t *vecp = xv_vector(cpuid, vector);
783
784 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
785 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
786
787 if (vecp->v_type == APIX_TYPE_FIXED)
788 apix_intx_set_shared(vecp->v_inum, 1);
789
790 /* There are more interrupts, so it's already been enabled */
791 if (vecp->v_share > 1)
792 return (PSM_SUCCESS);
793
794 /* return if it is not hardware interrupt */
795 if (vecp->v_type == APIX_TYPE_IPI)
796 return (PSM_SUCCESS);
797
798 /*
799 * if apix_picinit() has not been called yet, just return.
800 * At the end of apic_picinit(), we will call setup_io_intr().
801 */
802 if (!apic_picinit_called)
803 return (PSM_SUCCESS);
804
805 (void) apix_setup_io_intr(vecp);
806
807 return (PSM_SUCCESS);
808 }
809
810 int
apix_delspl(int virtvec,int ipl,int min_ipl,int max_ipl)811 apix_delspl(int virtvec, int ipl, int min_ipl, int max_ipl)
812 {
813 uint32_t cpuid = APIX_VIRTVEC_CPU(virtvec);
814 uchar_t vector = (uchar_t)APIX_VIRTVEC_VECTOR(virtvec);
815 apix_vector_t *vecp = xv_vector(cpuid, vector);
816
817 UNREFERENCED_3PARAMETER(ipl, min_ipl, max_ipl);
818 ASSERT(vecp != NULL && LOCK_HELD(&apix_lock));
819
820 if (vecp->v_type == APIX_TYPE_FIXED)
821 apix_intx_set_shared(vecp->v_inum, -1);
822
823 /* There are more interrupts */
824 if (vecp->v_share > 1)
825 return (PSM_SUCCESS);
826
827 /* return if it is not hardware interrupt */
828 if (vecp->v_type == APIX_TYPE_IPI)
829 return (PSM_SUCCESS);
830
831 if (!apic_picinit_called) {
832 cmn_err(CE_WARN, "apix: delete 0x%x before apic init",
833 virtvec);
834 return (PSM_SUCCESS);
835 }
836
837 apix_disable_vector(vecp);
838
839 return (PSM_SUCCESS);
840 }
841
842 /*
843 * Try and disable all interrupts. We just assign interrupts to other
844 * processors based on policy. If any were bound by user request, we
845 * let them continue and return failure. We do not bother to check
846 * for cache affinity while rebinding.
847 */
848 static int
apix_disable_intr(processorid_t cpun)849 apix_disable_intr(processorid_t cpun)
850 {
851 apix_impl_t *apixp = apixs[cpun];
852 apix_vector_t *vecp, *newp;
853 int bindcpu, i, hardbound = 0, errbound = 0, ret, loop, type;
854
855 lock_set(&apix_lock);
856
857 apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
858 apic_cpus[cpun].aci_curipl = 0;
859
860 /* if this is for SUSPEND operation, skip rebinding */
861 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
862 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
863 vecp = apixp->x_vectbl[i];
864 if (!IS_VECT_ENABLED(vecp))
865 continue;
866
867 apix_disable_vector(vecp);
868 }
869 lock_clear(&apix_lock);
870 return (PSM_SUCCESS);
871 }
872
873 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
874 vecp = apixp->x_vectbl[i];
875 if (!IS_VECT_ENABLED(vecp))
876 continue;
877
878 if (vecp->v_flags & APIX_VECT_USER_BOUND) {
879 hardbound++;
880 continue;
881 }
882 type = vecp->v_type;
883
884 /*
885 * If there are bound interrupts on this cpu, then
886 * rebind them to other processors.
887 */
888 loop = 0;
889 do {
890 bindcpu = apic_find_cpu(APIC_CPU_INTR_ENABLE);
891
892 if (type != APIX_TYPE_MSI)
893 newp = apix_set_cpu(vecp, bindcpu, &ret);
894 else
895 newp = apix_grp_set_cpu(vecp, bindcpu, &ret);
896 } while ((newp == NULL) && (loop++ < apic_nproc));
897
898 if (loop >= apic_nproc) {
899 errbound++;
900 cmn_err(CE_WARN, "apix: failed to rebind vector %x/%x",
901 vecp->v_cpuid, vecp->v_vector);
902 }
903 }
904
905 lock_clear(&apix_lock);
906
907 if (hardbound || errbound) {
908 cmn_err(CE_WARN, "Could not disable interrupts on %d"
909 "due to user bound interrupts or failed operation",
910 cpun);
911 return (PSM_FAILURE);
912 }
913
914 return (PSM_SUCCESS);
915 }
916
917 /*
918 * Bind interrupts to specified CPU
919 */
920 static void
apix_enable_intr(processorid_t cpun)921 apix_enable_intr(processorid_t cpun)
922 {
923 apix_vector_t *vecp;
924 int i, ret;
925 processorid_t n;
926
927 lock_set(&apix_lock);
928
929 apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
930
931 /* interrupt enabling for system resume */
932 if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND) {
933 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
934 vecp = xv_vector(cpun, i);
935 if (!IS_VECT_ENABLED(vecp))
936 continue;
937
938 apix_enable_vector(vecp);
939 }
940 apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
941 }
942
943 for (n = 0; n < apic_nproc; n++) {
944 if (!apic_cpu_in_range(n) || n == cpun ||
945 (apic_cpus[n].aci_status & APIC_CPU_INTR_ENABLE) == 0)
946 continue;
947
948 for (i = APIX_AVINTR_MIN; i <= APIX_AVINTR_MAX; i++) {
949 vecp = xv_vector(n, i);
950 if (!IS_VECT_ENABLED(vecp) ||
951 vecp->v_bound_cpuid != cpun)
952 continue;
953
954 if (vecp->v_type != APIX_TYPE_MSI)
955 (void) apix_set_cpu(vecp, cpun, &ret);
956 else
957 (void) apix_grp_set_cpu(vecp, cpun, &ret);
958 }
959 }
960
961 lock_clear(&apix_lock);
962 }
963
964 /*
965 * Allocate vector for IPI
966 * type == -1 indicates it is an internal request. Do not change
967 * resv_vector for these requests.
968 */
969 static int
apix_get_ipivect(int ipl,int type)970 apix_get_ipivect(int ipl, int type)
971 {
972 uchar_t vector;
973
974 if ((vector = apix_alloc_ipi(ipl)) > 0) {
975 if (type != -1)
976 apic_resv_vector[ipl] = vector;
977 return (vector);
978 }
979 apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
980 return (-1); /* shouldn't happen */
981 }
982
983 static int
apix_get_clkvect(int ipl)984 apix_get_clkvect(int ipl)
985 {
986 int vector;
987
988 if ((vector = apix_get_ipivect(ipl, -1)) == -1)
989 return (-1);
990
991 apic_clkvect = vector - APIC_BASE_VECT;
992 APIC_VERBOSE(IPI, (CE_CONT, "apix: clock vector = %x\n",
993 apic_clkvect));
994 return (vector);
995 }
996
997 static int
apix_post_cpu_start()998 apix_post_cpu_start()
999 {
1000 int cpun;
1001 static int cpus_started = 1;
1002
1003 /* We know this CPU + BSP started successfully. */
1004 cpus_started++;
1005
1006 /*
1007 * On BSP we would have enabled X2APIC, if supported by processor,
1008 * in acpi_probe(), but on AP we do it here.
1009 *
1010 * We enable X2APIC mode only if BSP is running in X2APIC & the
1011 * local APIC mode of the current CPU is MMIO (xAPIC).
1012 */
1013 if (apic_mode == LOCAL_X2APIC && apic_detect_x2apic() &&
1014 apic_local_mode() == LOCAL_APIC) {
1015 apic_enable_x2apic();
1016 }
1017
1018 /*
1019 * Switch back to x2apic IPI sending method for performance when target
1020 * CPU has entered x2apic mode.
1021 */
1022 if (apic_mode == LOCAL_X2APIC) {
1023 apic_switch_ipi_callback(B_FALSE);
1024 }
1025
1026 splx(ipltospl(LOCK_LEVEL));
1027 apix_init_intr();
1028
1029 /*
1030 * since some systems don't enable the internal cache on the non-boot
1031 * cpus, so we have to enable them here
1032 */
1033 setcr0(getcr0() & ~(CR0_CD | CR0_NW));
1034
1035 #ifdef DEBUG
1036 APIC_AV_PENDING_SET();
1037 #else
1038 if (apic_mode == LOCAL_APIC)
1039 APIC_AV_PENDING_SET();
1040 #endif /* DEBUG */
1041
1042 /*
1043 * We may be booting, or resuming from suspend; aci_status will
1044 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
1045 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
1046 */
1047 cpun = psm_get_cpu_id();
1048 apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
1049
1050 apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
1051
1052 return (PSM_SUCCESS);
1053 }
1054
1055 /*
1056 * If this module needs a periodic handler for the interrupt distribution, it
1057 * can be added here. The argument to the periodic handler is not currently
1058 * used, but is reserved for future.
1059 */
1060 static void
apix_post_cyclic_setup(void * arg)1061 apix_post_cyclic_setup(void *arg)
1062 {
1063 UNREFERENCED_1PARAMETER(arg);
1064
1065 cyc_handler_t cyh;
1066 cyc_time_t cyt;
1067
1068 /* cpu_lock is held */
1069 /* set up a periodic handler for intr redistribution */
1070
1071 /*
1072 * In peridoc mode intr redistribution processing is done in
1073 * apic_intr_enter during clk intr processing
1074 */
1075 if (!apic_oneshot)
1076 return;
1077
1078 /*
1079 * Register a periodical handler for the redistribution processing.
1080 * Though we would generally prefer to use the DDI interface for
1081 * periodic handler invocation, ddi_periodic_add(9F), we are
1082 * unfortunately already holding cpu_lock, which ddi_periodic_add will
1083 * attempt to take for us. Thus, we add our own cyclic directly:
1084 */
1085 cyh.cyh_func = (void (*)(void *))apix_redistribute_compute;
1086 cyh.cyh_arg = NULL;
1087 cyh.cyh_level = CY_LOW_LEVEL;
1088
1089 cyt.cyt_when = 0;
1090 cyt.cyt_interval = apic_redistribute_sample_interval;
1091
1092 apic_cyclic_id = cyclic_add(&cyh, &cyt);
1093 }
1094
1095 /*
1096 * Called the first time we enable x2apic mode on this cpu.
1097 * Update some of the function pointers to use x2apic routines.
1098 */
1099 void
x2apic_update_psm()1100 x2apic_update_psm()
1101 {
1102 struct psm_ops *pops = &apix_ops;
1103
1104 ASSERT(pops != NULL);
1105
1106 /*
1107 * The pcplusmp module's version of x2apic_update_psm makes additional
1108 * changes that we do not have to make here. It needs to make those
1109 * changes because pcplusmp relies on the TPR register and the means of
1110 * addressing that changes when using the local apic versus the x2apic.
1111 * It's also worth noting that the apix driver specific function end up
1112 * being apix_foo as opposed to apic_foo and x2apic_foo.
1113 */
1114 pops->psm_send_ipi = x2apic_send_ipi;
1115
1116 send_dirintf = pops->psm_send_ipi;
1117
1118 apic_mode = LOCAL_X2APIC;
1119 apic_change_ops();
1120 }
1121
1122 /*
1123 * This function provides external interface to the nexus for all
1124 * functionalities related to the new DDI interrupt framework.
1125 *
1126 * Input:
1127 * dip - pointer to the dev_info structure of the requested device
1128 * hdlp - pointer to the internal interrupt handle structure for the
1129 * requested interrupt
1130 * intr_op - opcode for this call
1131 * result - pointer to the integer that will hold the result to be
1132 * passed back if return value is PSM_SUCCESS
1133 *
1134 * Output:
1135 * return value is either PSM_SUCCESS or PSM_FAILURE
1136 */
1137 static int
apix_intr_ops(dev_info_t * dip,ddi_intr_handle_impl_t * hdlp,psm_intr_op_t intr_op,int * result)1138 apix_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1139 psm_intr_op_t intr_op, int *result)
1140 {
1141 int cap;
1142 apix_vector_t *vecp, *newvecp;
1143 struct intrspec *ispec, intr_spec;
1144 processorid_t target;
1145
1146 ispec = &intr_spec;
1147 ispec->intrspec_pri = hdlp->ih_pri;
1148 ispec->intrspec_vec = hdlp->ih_inum;
1149 ispec->intrspec_func = hdlp->ih_cb_func;
1150
1151 switch (intr_op) {
1152 case PSM_INTR_OP_ALLOC_VECTORS:
1153 switch (hdlp->ih_type) {
1154 case DDI_INTR_TYPE_MSI:
1155 /* allocate MSI vectors */
1156 *result = apix_alloc_msi(dip, hdlp->ih_inum,
1157 hdlp->ih_scratch1,
1158 (int)(uintptr_t)hdlp->ih_scratch2);
1159 break;
1160 case DDI_INTR_TYPE_MSIX:
1161 /* allocate MSI-X vectors */
1162 *result = apix_alloc_msix(dip, hdlp->ih_inum,
1163 hdlp->ih_scratch1,
1164 (int)(uintptr_t)hdlp->ih_scratch2);
1165 break;
1166 case DDI_INTR_TYPE_FIXED:
1167 /* allocate or share vector for fixed */
1168 if ((ihdl_plat_t *)hdlp->ih_private == NULL) {
1169 return (PSM_FAILURE);
1170 }
1171 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1172 *result = apix_intx_alloc_vector(dip, hdlp->ih_inum,
1173 ispec);
1174 break;
1175 default:
1176 return (PSM_FAILURE);
1177 }
1178 break;
1179 case PSM_INTR_OP_FREE_VECTORS:
1180 apix_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
1181 hdlp->ih_type);
1182 break;
1183 case PSM_INTR_OP_XLATE_VECTOR:
1184 /*
1185 * Vectors are allocated by ALLOC and freed by FREE.
1186 * XLATE finds and returns APIX_VIRTVEC_VECTOR(cpu, vector).
1187 */
1188 *result = APIX_INVALID_VECT;
1189 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1190 if (vecp != NULL) {
1191 *result = APIX_VIRTVECTOR(vecp->v_cpuid,
1192 vecp->v_vector);
1193 break;
1194 }
1195
1196 /*
1197 * No vector to device mapping exists. If this is FIXED type
1198 * then check if this IRQ is already mapped for another device
1199 * then return the vector number for it (i.e. shared IRQ case).
1200 * Otherwise, return PSM_FAILURE.
1201 */
1202 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) {
1203 vecp = apix_intx_xlate_vector(dip, hdlp->ih_inum,
1204 ispec);
1205 *result = (vecp == NULL) ? APIX_INVALID_VECT :
1206 APIX_VIRTVECTOR(vecp->v_cpuid, vecp->v_vector);
1207 }
1208 if (*result == APIX_INVALID_VECT)
1209 return (PSM_FAILURE);
1210 break;
1211 case PSM_INTR_OP_GET_PENDING:
1212 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1213 if (vecp == NULL)
1214 return (PSM_FAILURE);
1215
1216 *result = apix_get_pending(vecp);
1217 break;
1218 case PSM_INTR_OP_CLEAR_MASK:
1219 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1220 return (PSM_FAILURE);
1221
1222 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1223 if (vecp == NULL)
1224 return (PSM_FAILURE);
1225
1226 apix_intx_clear_mask(vecp->v_inum);
1227 break;
1228 case PSM_INTR_OP_SET_MASK:
1229 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1230 return (PSM_FAILURE);
1231
1232 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1233 if (vecp == NULL)
1234 return (PSM_FAILURE);
1235
1236 apix_intx_set_mask(vecp->v_inum);
1237 break;
1238 case PSM_INTR_OP_GET_SHARED:
1239 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
1240 return (PSM_FAILURE);
1241
1242 vecp = apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type);
1243 if (vecp == NULL)
1244 return (PSM_FAILURE);
1245
1246 *result = apix_intx_get_shared(vecp->v_inum);
1247 break;
1248 case PSM_INTR_OP_SET_PRI:
1249 /*
1250 * Called prior to adding the interrupt handler or when
1251 * an interrupt handler is unassigned.
1252 */
1253 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1254 return (PSM_SUCCESS);
1255
1256 if (apix_get_dev_map(dip, hdlp->ih_inum, hdlp->ih_type) == NULL)
1257 return (PSM_FAILURE);
1258
1259 break;
1260 case PSM_INTR_OP_SET_CPU:
1261 case PSM_INTR_OP_GRP_SET_CPU:
1262 /*
1263 * The interrupt handle given here has been allocated
1264 * specifically for this command, and ih_private carries
1265 * a CPU value.
1266 */
1267 *result = EINVAL;
1268 target = (int)(intptr_t)hdlp->ih_private;
1269 if (!apic_cpu_in_range(target)) {
1270 DDI_INTR_IMPLDBG((CE_WARN,
1271 "[grp_]set_cpu: cpu out of range: %d\n", target));
1272 return (PSM_FAILURE);
1273 }
1274
1275 lock_set(&apix_lock);
1276
1277 vecp = apix_get_req_vector(hdlp, hdlp->ih_flags);
1278 if (!IS_VECT_ENABLED(vecp)) {
1279 DDI_INTR_IMPLDBG((CE_WARN,
1280 "[grp]_set_cpu: invalid vector 0x%x\n",
1281 hdlp->ih_vector));
1282 lock_clear(&apix_lock);
1283 return (PSM_FAILURE);
1284 }
1285
1286 *result = 0;
1287
1288 if (intr_op == PSM_INTR_OP_SET_CPU)
1289 newvecp = apix_set_cpu(vecp, target, result);
1290 else
1291 newvecp = apix_grp_set_cpu(vecp, target, result);
1292
1293 lock_clear(&apix_lock);
1294
1295 if (newvecp == NULL) {
1296 *result = EIO;
1297 return (PSM_FAILURE);
1298 }
1299 newvecp->v_bound_cpuid = target;
1300 hdlp->ih_vector = APIX_VIRTVECTOR(newvecp->v_cpuid,
1301 newvecp->v_vector);
1302 break;
1303
1304 case PSM_INTR_OP_GET_INTR:
1305 /*
1306 * The interrupt handle given here has been allocated
1307 * specifically for this command, and ih_private carries
1308 * a pointer to a apic_get_intr_t.
1309 */
1310 if (apix_get_intr_info(hdlp, hdlp->ih_private) != PSM_SUCCESS)
1311 return (PSM_FAILURE);
1312 break;
1313
1314 case PSM_INTR_OP_CHECK_MSI:
1315 /*
1316 * Check MSI/X is supported or not at APIC level and
1317 * masked off the MSI/X bits in hdlp->ih_type if not
1318 * supported before return. If MSI/X is supported,
1319 * leave the ih_type unchanged and return.
1320 *
1321 * hdlp->ih_type passed in from the nexus has all the
1322 * interrupt types supported by the device.
1323 */
1324 if (apic_support_msi == 0) { /* uninitialized */
1325 /*
1326 * if apic_support_msi is not set, call
1327 * apic_check_msi_support() to check whether msi
1328 * is supported first
1329 */
1330 if (apic_check_msi_support() == PSM_SUCCESS)
1331 apic_support_msi = 1; /* supported */
1332 else
1333 apic_support_msi = -1; /* not-supported */
1334 }
1335 if (apic_support_msi == 1) {
1336 if (apic_msix_enable)
1337 *result = hdlp->ih_type;
1338 else
1339 *result = hdlp->ih_type & ~DDI_INTR_TYPE_MSIX;
1340 } else
1341 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1342 DDI_INTR_TYPE_MSIX);
1343 break;
1344 case PSM_INTR_OP_GET_CAP:
1345 cap = DDI_INTR_FLAG_PENDING;
1346 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1347 cap |= DDI_INTR_FLAG_MASKABLE;
1348 *result = cap;
1349 break;
1350 case PSM_INTR_OP_APIC_TYPE:
1351 ((apic_get_type_t *)(hdlp->ih_private))->avgi_type =
1352 apix_get_apic_type();
1353 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_intr =
1354 APIX_IPI_MIN;
1355 ((apic_get_type_t *)(hdlp->ih_private))->avgi_num_cpu =
1356 apic_nproc;
1357 hdlp->ih_ver = apic_get_apic_version();
1358 break;
1359 case PSM_INTR_OP_SET_CAP:
1360 default:
1361 return (PSM_FAILURE);
1362 }
1363
1364 return (PSM_SUCCESS);
1365 }
1366
1367 static void
apix_cleanup_busy(void)1368 apix_cleanup_busy(void)
1369 {
1370 int i, j;
1371 apix_vector_t *vecp;
1372
1373 for (i = 0; i < apic_nproc; i++) {
1374 if (!apic_cpu_in_range(i))
1375 continue;
1376 apic_cpus[i].aci_busy = 0;
1377 for (j = APIX_AVINTR_MIN; j < APIX_AVINTR_MAX; j++) {
1378 if ((vecp = xv_vector(i, j)) != NULL)
1379 vecp->v_busy = 0;
1380 }
1381 }
1382 }
1383
1384 static void
apix_redistribute_compute(void)1385 apix_redistribute_compute(void)
1386 {
1387 int i, j, max_busy;
1388
1389 if (!apic_enable_dynamic_migration)
1390 return;
1391
1392 if (++apic_nticks == apic_sample_factor_redistribution) {
1393 /*
1394 * Time to call apic_intr_redistribute().
1395 * reset apic_nticks. This will cause max_busy
1396 * to be calculated below and if it is more than
1397 * apic_int_busy, we will do the whole thing
1398 */
1399 apic_nticks = 0;
1400 }
1401 max_busy = 0;
1402 for (i = 0; i < apic_nproc; i++) {
1403 if (!apic_cpu_in_range(i))
1404 continue;
1405 /*
1406 * Check if curipl is non zero & if ISR is in
1407 * progress
1408 */
1409 if (((j = apic_cpus[i].aci_curipl) != 0) &&
1410 (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
1411
1412 int vect;
1413 apic_cpus[i].aci_busy++;
1414 vect = apic_cpus[i].aci_current[j];
1415 apixs[i]->x_vectbl[vect]->v_busy++;
1416 }
1417
1418 if (!apic_nticks &&
1419 (apic_cpus[i].aci_busy > max_busy))
1420 max_busy = apic_cpus[i].aci_busy;
1421 }
1422 if (!apic_nticks) {
1423 if (max_busy > apic_int_busy_mark) {
1424 /*
1425 * We could make the following check be
1426 * skipped > 1 in which case, we get a
1427 * redistribution at half the busy mark (due to
1428 * double interval). Need to be able to collect
1429 * more empirical data to decide if that is a
1430 * good strategy. Punt for now.
1431 */
1432 apix_cleanup_busy();
1433 apic_skipped_redistribute = 0;
1434 } else
1435 apic_skipped_redistribute++;
1436 }
1437 }
1438
1439 /*
1440 * intr_ops() service routines
1441 */
1442
1443 static int
apix_get_pending(apix_vector_t * vecp)1444 apix_get_pending(apix_vector_t *vecp)
1445 {
1446 int bit, index, irr, pending;
1447
1448 /* need to get on the bound cpu */
1449 mutex_enter(&cpu_lock);
1450 affinity_set(vecp->v_cpuid);
1451
1452 index = vecp->v_vector / 32;
1453 bit = vecp->v_vector % 32;
1454 irr = apic_reg_ops->apic_read(APIC_IRR_REG + index);
1455
1456 affinity_clear();
1457 mutex_exit(&cpu_lock);
1458
1459 pending = (irr & (1 << bit)) ? 1 : 0;
1460 if (!pending && vecp->v_type == APIX_TYPE_FIXED)
1461 pending = apix_intx_get_pending(vecp->v_inum);
1462
1463 return (pending);
1464 }
1465
1466 static apix_vector_t *
apix_get_req_vector(ddi_intr_handle_impl_t * hdlp,ushort_t flags)1467 apix_get_req_vector(ddi_intr_handle_impl_t *hdlp, ushort_t flags)
1468 {
1469 apix_vector_t *vecp;
1470 processorid_t cpuid;
1471 int32_t virt_vec = 0;
1472
1473 switch (flags & PSMGI_INTRBY_FLAGS) {
1474 case PSMGI_INTRBY_IRQ:
1475 return (apix_intx_get_vector(hdlp->ih_vector));
1476 case PSMGI_INTRBY_VEC:
1477 virt_vec = (virt_vec == 0) ? hdlp->ih_vector : virt_vec;
1478
1479 cpuid = APIX_VIRTVEC_CPU(virt_vec);
1480 if (!apic_cpu_in_range(cpuid))
1481 return (NULL);
1482
1483 vecp = xv_vector(cpuid, APIX_VIRTVEC_VECTOR(virt_vec));
1484 break;
1485 case PSMGI_INTRBY_DEFAULT:
1486 vecp = apix_get_dev_map(hdlp->ih_dip, hdlp->ih_inum,
1487 hdlp->ih_type);
1488 break;
1489 default:
1490 return (NULL);
1491 }
1492
1493 return (vecp);
1494 }
1495
1496 static int
apix_get_intr_info(ddi_intr_handle_impl_t * hdlp,apic_get_intr_t * intr_params_p)1497 apix_get_intr_info(ddi_intr_handle_impl_t *hdlp,
1498 apic_get_intr_t *intr_params_p)
1499 {
1500 apix_vector_t *vecp;
1501 struct autovec *av_dev;
1502 int i;
1503
1504 vecp = apix_get_req_vector(hdlp, intr_params_p->avgi_req_flags);
1505 if (IS_VECT_FREE(vecp)) {
1506 intr_params_p->avgi_num_devs = 0;
1507 intr_params_p->avgi_cpu_id = 0;
1508 intr_params_p->avgi_req_flags = 0;
1509 return (PSM_SUCCESS);
1510 }
1511
1512 if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
1513 intr_params_p->avgi_cpu_id = vecp->v_cpuid;
1514
1515 /* Return user bound info for intrd. */
1516 if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
1517 intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
1518 intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
1519 }
1520 }
1521
1522 if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR)
1523 intr_params_p->avgi_vector = vecp->v_vector;
1524
1525 if (intr_params_p->avgi_req_flags &
1526 (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS))
1527 /* Get number of devices from apic_irq table shared field. */
1528 intr_params_p->avgi_num_devs = vecp->v_share;
1529
1530 if (intr_params_p->avgi_req_flags & PSMGI_REQ_GET_DEVS) {
1531
1532 intr_params_p->avgi_req_flags |= PSMGI_REQ_NUM_DEVS;
1533
1534 /* Some devices have NULL dip. Don't count these. */
1535 if (intr_params_p->avgi_num_devs > 0) {
1536 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1537 av_dev = av_dev->av_link) {
1538 if (av_dev->av_vector && av_dev->av_dip)
1539 i++;
1540 }
1541 intr_params_p->avgi_num_devs =
1542 (uint8_t)MIN(intr_params_p->avgi_num_devs, i);
1543 }
1544
1545 /* There are no viable dips to return. */
1546 if (intr_params_p->avgi_num_devs == 0) {
1547 intr_params_p->avgi_dip_list = NULL;
1548
1549 } else { /* Return list of dips */
1550
1551 /* Allocate space in array for that number of devs. */
1552 intr_params_p->avgi_dip_list = kmem_zalloc(
1553 intr_params_p->avgi_num_devs *
1554 sizeof (dev_info_t *),
1555 KM_NOSLEEP);
1556 if (intr_params_p->avgi_dip_list == NULL) {
1557 DDI_INTR_IMPLDBG((CE_WARN,
1558 "apix_get_vector_intr_info: no memory"));
1559 return (PSM_FAILURE);
1560 }
1561
1562 /*
1563 * Loop through the device list of the autovec table
1564 * filling in the dip array.
1565 *
1566 * Note that the autovect table may have some special
1567 * entries which contain NULL dips. These will be
1568 * ignored.
1569 */
1570 for (i = 0, av_dev = vecp->v_autovect; av_dev;
1571 av_dev = av_dev->av_link) {
1572 if (av_dev->av_vector && av_dev->av_dip)
1573 intr_params_p->avgi_dip_list[i++] =
1574 av_dev->av_dip;
1575 }
1576 }
1577 }
1578
1579 return (PSM_SUCCESS);
1580 }
1581
1582 static char *
apix_get_apic_type(void)1583 apix_get_apic_type(void)
1584 {
1585 return (apix_psm_info.p_mach_idstring);
1586 }
1587
1588 apix_vector_t *
apix_set_cpu(apix_vector_t * vecp,int new_cpu,int * result)1589 apix_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1590 {
1591 apix_vector_t *newp = NULL;
1592 dev_info_t *dip;
1593 int inum, cap_ptr;
1594 ddi_acc_handle_t handle;
1595 ddi_intr_msix_t *msix_p = NULL;
1596 ushort_t msix_ctrl;
1597 uintptr_t off;
1598 uint32_t mask;
1599
1600 ASSERT(LOCK_HELD(&apix_lock));
1601 *result = ENXIO;
1602
1603 /* Fail if this is an MSI intr and is part of a group. */
1604 if (vecp->v_type == APIX_TYPE_MSI) {
1605 if (i_ddi_intr_get_current_nintrs(APIX_GET_DIP(vecp)) > 1)
1606 return (NULL);
1607 else
1608 return (apix_grp_set_cpu(vecp, new_cpu, result));
1609 }
1610
1611 /*
1612 * Mask MSI-X. It's unmasked when MSI-X gets enabled.
1613 */
1614 if (vecp->v_type == APIX_TYPE_MSIX && IS_VECT_ENABLED(vecp)) {
1615 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1616 return (NULL);
1617 inum = vecp->v_devp->dv_inum;
1618
1619 handle = i_ddi_get_pci_config_handle(dip);
1620 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1621 msix_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1622 if ((msix_ctrl & PCI_MSIX_FUNCTION_MASK) == 0) {
1623 /*
1624 * Function is not masked, then mask "inum"th
1625 * entry in the MSI-X table
1626 */
1627 msix_p = i_ddi_get_msix(dip);
1628 off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1629 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1630 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1631 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off,
1632 mask | 1);
1633 }
1634 }
1635
1636 *result = 0;
1637 if ((newp = apix_rebind(vecp, new_cpu, 1)) == NULL)
1638 *result = EIO;
1639
1640 /* Restore mask bit */
1641 if (msix_p != NULL)
1642 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, mask);
1643
1644 return (newp);
1645 }
1646
1647 /*
1648 * Set cpu for MSIs
1649 */
1650 apix_vector_t *
apix_grp_set_cpu(apix_vector_t * vecp,int new_cpu,int * result)1651 apix_grp_set_cpu(apix_vector_t *vecp, int new_cpu, int *result)
1652 {
1653 apix_vector_t *newp, *vp;
1654 uint32_t orig_cpu = vecp->v_cpuid;
1655 int orig_vect = vecp->v_vector;
1656 int i, num_vectors, cap_ptr, msi_mask_off;
1657 uint32_t msi_pvm;
1658 ushort_t msi_ctrl;
1659 ddi_acc_handle_t handle;
1660 dev_info_t *dip;
1661
1662 APIC_VERBOSE(INTR, (CE_CONT, "apix_grp_set_cpu: oldcpu: %x, vector: %x,"
1663 " newcpu:%x\n", vecp->v_cpuid, vecp->v_vector, new_cpu));
1664
1665 ASSERT(LOCK_HELD(&apix_lock));
1666
1667 *result = ENXIO;
1668
1669 if (vecp->v_type != APIX_TYPE_MSI) {
1670 DDI_INTR_IMPLDBG((CE_WARN, "set_grp: intr not MSI\n"));
1671 return (NULL);
1672 }
1673
1674 if ((dip = APIX_GET_DIP(vecp)) == NULL)
1675 return (NULL);
1676
1677 num_vectors = i_ddi_intr_get_current_nintrs(dip);
1678 if ((num_vectors < 1) || ((num_vectors - 1) & orig_vect)) {
1679 APIC_VERBOSE(INTR, (CE_WARN,
1680 "set_grp: base vec not part of a grp or not aligned: "
1681 "vec:0x%x, num_vec:0x%x\n", orig_vect, num_vectors));
1682 return (NULL);
1683 }
1684
1685 if (vecp->v_inum != apix_get_min_dev_inum(dip, vecp->v_type))
1686 return (NULL);
1687
1688 *result = EIO;
1689 for (i = 1; i < num_vectors; i++) {
1690 if ((vp = xv_vector(orig_cpu, orig_vect + i)) == NULL)
1691 return (NULL);
1692 #ifdef DEBUG
1693 /*
1694 * Sanity check: CPU and dip is the same for all entries.
1695 * May be called when first msi to be enabled, at this time
1696 * add_avintr() is not called for other msi
1697 */
1698 if ((vp->v_share != 0) &&
1699 ((APIX_GET_DIP(vp) != dip) ||
1700 (vp->v_cpuid != vecp->v_cpuid))) {
1701 APIC_VERBOSE(INTR, (CE_WARN,
1702 "set_grp: cpu or dip for vec 0x%x difft than for "
1703 "vec 0x%x\n", orig_vect, orig_vect + i));
1704 APIC_VERBOSE(INTR, (CE_WARN,
1705 " cpu: %d vs %d, dip: 0x%p vs 0x%p\n", orig_cpu,
1706 vp->v_cpuid, (void *)dip,
1707 (void *)APIX_GET_DIP(vp)));
1708 return (NULL);
1709 }
1710 #endif /* DEBUG */
1711 }
1712
1713 cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
1714 handle = i_ddi_get_pci_config_handle(dip);
1715 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1716
1717 /* MSI Per vector masking is supported. */
1718 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1719 if (msi_ctrl & PCI_MSI_64BIT_MASK)
1720 msi_mask_off = cap_ptr + PCI_MSI_64BIT_MASKBITS;
1721 else
1722 msi_mask_off = cap_ptr + PCI_MSI_32BIT_MASK;
1723 msi_pvm = pci_config_get32(handle, msi_mask_off);
1724 pci_config_put32(handle, msi_mask_off, (uint32_t)-1);
1725 APIC_VERBOSE(INTR, (CE_CONT,
1726 "set_grp: pvm supported. Mask set to 0x%x\n",
1727 pci_config_get32(handle, msi_mask_off)));
1728 }
1729
1730 if ((newp = apix_rebind(vecp, new_cpu, num_vectors)) != NULL)
1731 *result = 0;
1732
1733 /* Reenable vectors if per vector masking is supported. */
1734 if (msi_ctrl & PCI_MSI_PVM_MASK) {
1735 pci_config_put32(handle, msi_mask_off, msi_pvm);
1736 APIC_VERBOSE(INTR, (CE_CONT,
1737 "set_grp: pvm supported. Mask restored to 0x%x\n",
1738 pci_config_get32(handle, msi_mask_off)));
1739 }
1740
1741 return (newp);
1742 }
1743
1744 void
apix_intx_set_vector(int irqno,uint32_t cpuid,uchar_t vector)1745 apix_intx_set_vector(int irqno, uint32_t cpuid, uchar_t vector)
1746 {
1747 apic_irq_t *irqp;
1748
1749 mutex_enter(&airq_mutex);
1750 irqp = apic_irq_table[irqno];
1751 irqp->airq_cpu = cpuid;
1752 irqp->airq_vector = vector;
1753 apic_record_rdt_entry(irqp, irqno);
1754 mutex_exit(&airq_mutex);
1755 }
1756
1757 apix_vector_t *
apix_intx_get_vector(int irqno)1758 apix_intx_get_vector(int irqno)
1759 {
1760 apic_irq_t *irqp;
1761 uint32_t cpuid;
1762 uchar_t vector;
1763
1764 mutex_enter(&airq_mutex);
1765 irqp = apic_irq_table[irqno & 0xff];
1766 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
1767 mutex_exit(&airq_mutex);
1768 return (NULL);
1769 }
1770 cpuid = irqp->airq_cpu;
1771 vector = irqp->airq_vector;
1772 mutex_exit(&airq_mutex);
1773
1774 return (xv_vector(cpuid, vector));
1775 }
1776
1777 /*
1778 * Must called with interrupts disabled and apic_ioapic_lock held
1779 */
1780 void
apix_intx_enable(int irqno)1781 apix_intx_enable(int irqno)
1782 {
1783 uchar_t ioapicindex, intin;
1784 apic_irq_t *irqp = apic_irq_table[irqno];
1785 ioapic_rdt_t irdt;
1786 apic_cpus_info_t *cpu_infop;
1787 apix_vector_t *vecp = xv_vector(irqp->airq_cpu, irqp->airq_vector);
1788
1789 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1790
1791 ioapicindex = irqp->airq_ioapicindex;
1792 intin = irqp->airq_intin_no;
1793 cpu_infop = &apic_cpus[irqp->airq_cpu];
1794
1795 irdt.ir_lo = AV_PDEST | AV_FIXED | irqp->airq_rdt_entry;
1796 irdt.ir_hi = cpu_infop->aci_local_id;
1797
1798 apic_vt_ops->apic_intrmap_alloc_entry(&vecp->v_intrmap_private, NULL,
1799 vecp->v_type, 1, ioapicindex);
1800 apic_vt_ops->apic_intrmap_map_entry(vecp->v_intrmap_private,
1801 (void *)&irdt, vecp->v_type, 1);
1802 apic_vt_ops->apic_intrmap_record_rdt(vecp->v_intrmap_private, &irdt);
1803
1804 /* write RDT entry high dword - destination */
1805 WRITE_IOAPIC_RDT_ENTRY_HIGH_DWORD(ioapicindex, intin,
1806 irdt.ir_hi);
1807
1808 /* Write the vector, trigger, and polarity portion of the RDT */
1809 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin, irdt.ir_lo);
1810
1811 vecp->v_state = APIX_STATE_ENABLED;
1812
1813 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_enable: ioapic 0x%x"
1814 " intin 0x%x rdt_low 0x%x rdt_high 0x%x\n",
1815 ioapicindex, intin, irdt.ir_lo, irdt.ir_hi));
1816 }
1817
1818 /*
1819 * Must called with interrupts disabled and apic_ioapic_lock held
1820 */
1821 void
apix_intx_disable(int irqno)1822 apix_intx_disable(int irqno)
1823 {
1824 apic_irq_t *irqp = apic_irq_table[irqno];
1825 int ioapicindex, intin;
1826
1827 ASSERT(LOCK_HELD(&apic_ioapic_lock) && !IS_IRQ_FREE(irqp));
1828 /*
1829 * The assumption here is that this is safe, even for
1830 * systems with IOAPICs that suffer from the hardware
1831 * erratum because all devices have been quiesced before
1832 * they unregister their interrupt handlers. If that
1833 * assumption turns out to be false, this mask operation
1834 * can induce the same erratum result we're trying to
1835 * avoid.
1836 */
1837 ioapicindex = irqp->airq_ioapicindex;
1838 intin = irqp->airq_intin_no;
1839 ioapic_write(ioapicindex, APIC_RDT_CMD + 2 * intin, AV_MASK);
1840
1841 APIC_VERBOSE_IOAPIC((CE_CONT, "apix_intx_disable: ioapic 0x%x"
1842 " intin 0x%x\n", ioapicindex, intin));
1843 }
1844
1845 void
apix_intx_free(int irqno)1846 apix_intx_free(int irqno)
1847 {
1848 apic_irq_t *irqp;
1849
1850 mutex_enter(&airq_mutex);
1851 irqp = apic_irq_table[irqno];
1852
1853 if (IS_IRQ_FREE(irqp)) {
1854 mutex_exit(&airq_mutex);
1855 return;
1856 }
1857
1858 irqp->airq_mps_intr_index = FREE_INDEX;
1859 irqp->airq_cpu = IRQ_UNINIT;
1860 irqp->airq_vector = APIX_INVALID_VECT;
1861 mutex_exit(&airq_mutex);
1862 }
1863
1864 #ifdef DEBUG
1865 int apix_intr_deliver_timeouts = 0;
1866 int apix_intr_rirr_timeouts = 0;
1867 int apix_intr_rirr_reset_failure = 0;
1868 #endif
1869 int apix_max_reps_irr_pending = 10;
1870
1871 #define GET_RDT_BITS(ioapic, intin, bits) \
1872 (READ_IOAPIC_RDT_ENTRY_LOW_DWORD((ioapic), (intin)) & (bits))
1873 #define APIX_CHECK_IRR_DELAY drv_usectohz(5000)
1874
1875 int
apix_intx_rebind(int irqno,processorid_t cpuid,uchar_t vector)1876 apix_intx_rebind(int irqno, processorid_t cpuid, uchar_t vector)
1877 {
1878 apic_irq_t *irqp = apic_irq_table[irqno];
1879 ulong_t iflag;
1880 int waited, ioapic_ix, intin_no, level, repeats, rdt_entry, masked;
1881
1882 ASSERT(irqp != NULL);
1883
1884 iflag = intr_clear();
1885 lock_set(&apic_ioapic_lock);
1886
1887 ioapic_ix = irqp->airq_ioapicindex;
1888 intin_no = irqp->airq_intin_no;
1889 level = apic_level_intr[irqno];
1890
1891 /*
1892 * Wait for the delivery status bit to be cleared. This should
1893 * be a very small amount of time.
1894 */
1895 repeats = 0;
1896 do {
1897 repeats++;
1898
1899 for (waited = 0; waited < apic_max_reps_clear_pending;
1900 waited++) {
1901 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) == 0)
1902 break;
1903 }
1904 if (!level)
1905 break;
1906
1907 /*
1908 * Mask the RDT entry for level-triggered interrupts.
1909 */
1910 irqp->airq_rdt_entry |= AV_MASK;
1911 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1912 intin_no);
1913 if ((masked = (rdt_entry & AV_MASK)) == 0) {
1914 /* Mask it */
1915 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix, intin_no,
1916 AV_MASK | rdt_entry);
1917 }
1918
1919 /*
1920 * If there was a race and an interrupt was injected
1921 * just before we masked, check for that case here.
1922 * Then, unmask the RDT entry and try again. If we're
1923 * on our last try, don't unmask (because we want the
1924 * RDT entry to remain masked for the rest of the
1925 * function).
1926 */
1927 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1928 intin_no);
1929 if ((masked == 0) && ((rdt_entry & AV_PENDING) != 0) &&
1930 (repeats < apic_max_reps_clear_pending)) {
1931 /* Unmask it */
1932 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1933 intin_no, rdt_entry & ~AV_MASK);
1934 irqp->airq_rdt_entry &= ~AV_MASK;
1935 }
1936 } while ((rdt_entry & AV_PENDING) &&
1937 (repeats < apic_max_reps_clear_pending));
1938
1939 #ifdef DEBUG
1940 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_PENDING) != 0)
1941 apix_intr_deliver_timeouts++;
1942 #endif
1943
1944 if (!level || !APIX_IS_MASK_RDT(apix_mul_ioapic_method))
1945 goto done;
1946
1947 /*
1948 * wait for remote IRR to be cleared for level-triggered
1949 * interrupts
1950 */
1951 repeats = 0;
1952 do {
1953 repeats++;
1954
1955 for (waited = 0; waited < apic_max_reps_clear_pending;
1956 waited++) {
1957 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR)
1958 == 0)
1959 break;
1960 }
1961
1962 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1963 lock_clear(&apic_ioapic_lock);
1964 intr_restore(iflag);
1965
1966 delay(APIX_CHECK_IRR_DELAY);
1967
1968 iflag = intr_clear();
1969 lock_set(&apic_ioapic_lock);
1970 }
1971 } while (repeats < apix_max_reps_irr_pending);
1972
1973 if (repeats >= apix_max_reps_irr_pending) {
1974 #ifdef DEBUG
1975 apix_intr_rirr_timeouts++;
1976 #endif
1977
1978 /*
1979 * If we waited and the Remote IRR bit is still not cleared,
1980 * AND if we've invoked the timeout APIC_REPROGRAM_MAX_TIMEOUTS
1981 * times for this interrupt, try the last-ditch workaround:
1982 */
1983 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
1984 /*
1985 * Trying to clear the bit through normal
1986 * channels has failed. So as a last-ditch
1987 * effort, try to set the trigger mode to
1988 * edge, then to level. This has been
1989 * observed to work on many systems.
1990 */
1991 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1992 intin_no,
1993 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1994 intin_no) & ~AV_LEVEL);
1995 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1996 intin_no,
1997 READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic_ix,
1998 intin_no) | AV_LEVEL);
1999 }
2000
2001 if (GET_RDT_BITS(ioapic_ix, intin_no, AV_REMOTE_IRR) != 0) {
2002 #ifdef DEBUG
2003 apix_intr_rirr_reset_failure++;
2004 #endif
2005 lock_clear(&apic_ioapic_lock);
2006 intr_restore(iflag);
2007 prom_printf("apix: Remote IRR still "
2008 "not clear for IOAPIC %d intin %d.\n"
2009 "\tInterrupts to this pin may cease "
2010 "functioning.\n", ioapic_ix, intin_no);
2011 return (1); /* return failure */
2012 }
2013 }
2014
2015 done:
2016 /* change apic_irq_table */
2017 lock_clear(&apic_ioapic_lock);
2018 intr_restore(iflag);
2019 apix_intx_set_vector(irqno, cpuid, vector);
2020 iflag = intr_clear();
2021 lock_set(&apic_ioapic_lock);
2022
2023 /* reprogramme IO-APIC RDT entry */
2024 apix_intx_enable(irqno);
2025
2026 lock_clear(&apic_ioapic_lock);
2027 intr_restore(iflag);
2028
2029 return (0);
2030 }
2031
2032 static int
apix_intx_get_pending(int irqno)2033 apix_intx_get_pending(int irqno)
2034 {
2035 apic_irq_t *irqp;
2036 int intin, ioapicindex, pending;
2037 ulong_t iflag;
2038
2039 mutex_enter(&airq_mutex);
2040 irqp = apic_irq_table[irqno];
2041 if (IS_IRQ_FREE(irqp)) {
2042 mutex_exit(&airq_mutex);
2043 return (0);
2044 }
2045
2046 /* check IO-APIC delivery status */
2047 intin = irqp->airq_intin_no;
2048 ioapicindex = irqp->airq_ioapicindex;
2049 mutex_exit(&airq_mutex);
2050
2051 iflag = intr_clear();
2052 lock_set(&apic_ioapic_lock);
2053
2054 pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapicindex, intin) &
2055 AV_PENDING) ? 1 : 0;
2056
2057 lock_clear(&apic_ioapic_lock);
2058 intr_restore(iflag);
2059
2060 return (pending);
2061 }
2062
2063 /*
2064 * This function will mask the interrupt on the I/O APIC
2065 */
2066 static void
apix_intx_set_mask(int irqno)2067 apix_intx_set_mask(int irqno)
2068 {
2069 int intin, ioapixindex, rdt_entry;
2070 ulong_t iflag;
2071 apic_irq_t *irqp;
2072
2073 mutex_enter(&airq_mutex);
2074 irqp = apic_irq_table[irqno];
2075
2076 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2077
2078 intin = irqp->airq_intin_no;
2079 ioapixindex = irqp->airq_ioapicindex;
2080 mutex_exit(&airq_mutex);
2081
2082 iflag = intr_clear();
2083 lock_set(&apic_ioapic_lock);
2084
2085 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2086
2087 /* clear mask */
2088 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2089 (AV_MASK | rdt_entry));
2090
2091 lock_clear(&apic_ioapic_lock);
2092 intr_restore(iflag);
2093 }
2094
2095 /*
2096 * This function will clear the mask for the interrupt on the I/O APIC
2097 */
2098 static void
apix_intx_clear_mask(int irqno)2099 apix_intx_clear_mask(int irqno)
2100 {
2101 int intin, ioapixindex, rdt_entry;
2102 ulong_t iflag;
2103 apic_irq_t *irqp;
2104
2105 mutex_enter(&airq_mutex);
2106 irqp = apic_irq_table[irqno];
2107
2108 ASSERT(irqp->airq_mps_intr_index != FREE_INDEX);
2109
2110 intin = irqp->airq_intin_no;
2111 ioapixindex = irqp->airq_ioapicindex;
2112 mutex_exit(&airq_mutex);
2113
2114 iflag = intr_clear();
2115 lock_set(&apic_ioapic_lock);
2116
2117 rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin);
2118
2119 /* clear mask */
2120 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapixindex, intin,
2121 ((~AV_MASK) & rdt_entry));
2122
2123 lock_clear(&apic_ioapic_lock);
2124 intr_restore(iflag);
2125 }
2126
2127 /*
2128 * For level-triggered interrupt, mask the IRQ line. Mask means
2129 * new interrupts will not be delivered. The interrupt already
2130 * accepted by a local APIC is not affected
2131 */
2132 void
apix_level_intr_pre_eoi(int irq)2133 apix_level_intr_pre_eoi(int irq)
2134 {
2135 apic_irq_t *irqp = apic_irq_table[irq];
2136 int apic_ix, intin_ix;
2137
2138 if (irqp == NULL)
2139 return;
2140
2141 ASSERT(apic_level_intr[irq] == TRIGGER_MODE_LEVEL);
2142
2143 lock_set(&apic_ioapic_lock);
2144
2145 intin_ix = irqp->airq_intin_no;
2146 apic_ix = irqp->airq_ioapicindex;
2147
2148 if (irqp->airq_cpu != CPU->cpu_id) {
2149 if (!APIX_IS_MASK_RDT(apix_mul_ioapic_method))
2150 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2151 lock_clear(&apic_ioapic_lock);
2152 return;
2153 }
2154
2155 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC) {
2156 /*
2157 * This is a IOxAPIC and there is EOI register:
2158 * Change the vector to reserved unused vector, so that
2159 * the EOI from Local APIC won't clear the Remote IRR for
2160 * this level trigger interrupt. Instead, we'll manually
2161 * clear it in apix_post_hardint() after ISR handling.
2162 */
2163 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2164 (irqp->airq_rdt_entry & (~0xff)) | APIX_RESV_VECTOR);
2165 } else {
2166 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2167 AV_MASK | irqp->airq_rdt_entry);
2168 }
2169
2170 lock_clear(&apic_ioapic_lock);
2171 }
2172
2173 /*
2174 * For level-triggered interrupt, unmask the IRQ line
2175 * or restore the original vector number.
2176 */
2177 void
apix_level_intr_post_dispatch(int irq)2178 apix_level_intr_post_dispatch(int irq)
2179 {
2180 apic_irq_t *irqp = apic_irq_table[irq];
2181 int apic_ix, intin_ix;
2182
2183 if (irqp == NULL)
2184 return;
2185
2186 lock_set(&apic_ioapic_lock);
2187
2188 intin_ix = irqp->airq_intin_no;
2189 apic_ix = irqp->airq_ioapicindex;
2190
2191 if (APIX_IS_DIRECTED_EOI(apix_mul_ioapic_method)) {
2192 /*
2193 * Already sent EOI back to Local APIC.
2194 * Send EOI to IO-APIC
2195 */
2196 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2197 } else {
2198 /* clear the mask or restore the vector */
2199 WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(apic_ix, intin_ix,
2200 irqp->airq_rdt_entry);
2201
2202 /* send EOI to IOxAPIC */
2203 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_IOXAPIC)
2204 ioapic_write_eoi(apic_ix, irqp->airq_vector);
2205 }
2206
2207 lock_clear(&apic_ioapic_lock);
2208 }
2209
2210 static int
apix_intx_get_shared(int irqno)2211 apix_intx_get_shared(int irqno)
2212 {
2213 apic_irq_t *irqp;
2214 int share;
2215
2216 mutex_enter(&airq_mutex);
2217 irqp = apic_irq_table[irqno];
2218 if (IS_IRQ_FREE(irqp) || (irqp->airq_cpu == IRQ_UNINIT)) {
2219 mutex_exit(&airq_mutex);
2220 return (0);
2221 }
2222 share = irqp->airq_share;
2223 mutex_exit(&airq_mutex);
2224
2225 return (share);
2226 }
2227
2228 static void
apix_intx_set_shared(int irqno,int delta)2229 apix_intx_set_shared(int irqno, int delta)
2230 {
2231 apic_irq_t *irqp;
2232
2233 mutex_enter(&airq_mutex);
2234 irqp = apic_irq_table[irqno];
2235 if (IS_IRQ_FREE(irqp)) {
2236 mutex_exit(&airq_mutex);
2237 return;
2238 }
2239 irqp->airq_share += delta;
2240 mutex_exit(&airq_mutex);
2241 }
2242
2243 /*
2244 * Setup IRQ table. Return IRQ no or -1 on failure
2245 */
2246 static int
apix_intx_setup(dev_info_t * dip,int inum,int irqno,struct apic_io_intr * intrp,struct intrspec * ispec,iflag_t * iflagp)2247 apix_intx_setup(dev_info_t *dip, int inum, int irqno,
2248 struct apic_io_intr *intrp, struct intrspec *ispec, iflag_t *iflagp)
2249 {
2250 int origirq = ispec->intrspec_vec;
2251 int newirq;
2252 short intr_index;
2253 uchar_t ipin, ioapic, ioapicindex;
2254 apic_irq_t *irqp;
2255
2256 UNREFERENCED_1PARAMETER(inum);
2257
2258 if (intrp != NULL) {
2259 intr_index = (short)(intrp - apic_io_intrp);
2260 ioapic = intrp->intr_destid;
2261 ipin = intrp->intr_destintin;
2262
2263 /* Find ioapicindex. If destid was ALL, we will exit with 0. */
2264 for (ioapicindex = apic_io_max - 1; ioapicindex; ioapicindex--)
2265 if (apic_io_id[ioapicindex] == ioapic)
2266 break;
2267 ASSERT((ioapic == apic_io_id[ioapicindex]) ||
2268 (ioapic == INTR_ALL_APIC));
2269
2270 /* check whether this intin# has been used by another irqno */
2271 if ((newirq = apic_find_intin(ioapicindex, ipin)) != -1)
2272 return (newirq);
2273
2274 } else if (iflagp != NULL) { /* ACPI */
2275 intr_index = ACPI_INDEX;
2276 ioapicindex = acpi_find_ioapic(irqno);
2277 ASSERT(ioapicindex != 0xFF);
2278 ioapic = apic_io_id[ioapicindex];
2279 ipin = irqno - apic_io_vectbase[ioapicindex];
2280
2281 if (apic_irq_table[irqno] &&
2282 apic_irq_table[irqno]->airq_mps_intr_index == ACPI_INDEX) {
2283 ASSERT(apic_irq_table[irqno]->airq_intin_no == ipin &&
2284 apic_irq_table[irqno]->airq_ioapicindex ==
2285 ioapicindex);
2286 return (irqno);
2287 }
2288
2289 } else { /* default configuration */
2290 intr_index = DEFAULT_INDEX;
2291 ioapicindex = 0;
2292 ioapic = apic_io_id[ioapicindex];
2293 ipin = (uchar_t)irqno;
2294 }
2295
2296 /* allocate a new IRQ no */
2297 if ((irqp = apic_irq_table[irqno]) == NULL) {
2298 irqp = kmem_zalloc(sizeof (apic_irq_t), KM_SLEEP);
2299 apic_irq_table[irqno] = irqp;
2300 } else {
2301 if (irqp->airq_mps_intr_index != FREE_INDEX) {
2302 newirq = apic_allocate_irq(apic_first_avail_irq);
2303 if (newirq == -1) {
2304 return (-1);
2305 }
2306 irqno = newirq;
2307 irqp = apic_irq_table[irqno];
2308 ASSERT(irqp != NULL);
2309 }
2310 }
2311 apic_max_device_irq = max(irqno, apic_max_device_irq);
2312 apic_min_device_irq = min(irqno, apic_min_device_irq);
2313
2314 irqp->airq_mps_intr_index = intr_index;
2315 irqp->airq_ioapicindex = ioapicindex;
2316 irqp->airq_intin_no = ipin;
2317 irqp->airq_dip = dip;
2318 irqp->airq_origirq = (uchar_t)origirq;
2319 if (iflagp != NULL)
2320 irqp->airq_iflag = *iflagp;
2321 irqp->airq_cpu = IRQ_UNINIT;
2322 irqp->airq_vector = 0;
2323
2324 return (irqno);
2325 }
2326
2327 /*
2328 * Setup IRQ table for non-pci devices. Return IRQ no or -1 on error
2329 */
2330 static int
apix_intx_setup_nonpci(dev_info_t * dip,int inum,int bustype,struct intrspec * ispec)2331 apix_intx_setup_nonpci(dev_info_t *dip, int inum, int bustype,
2332 struct intrspec *ispec)
2333 {
2334 int irqno = ispec->intrspec_vec;
2335 int newirq, i;
2336 iflag_t intr_flag;
2337 ACPI_SUBTABLE_HEADER *hp;
2338 ACPI_MADT_INTERRUPT_OVERRIDE *isop;
2339 struct apic_io_intr *intrp;
2340
2341 if (!apic_enable_acpi || apic_use_acpi_madt_only) {
2342 int busid;
2343
2344 if (bustype == 0)
2345 bustype = eisa_level_intr_mask ? BUS_EISA : BUS_ISA;
2346
2347 /* loop checking BUS_ISA/BUS_EISA */
2348 for (i = 0; i < 2; i++) {
2349 if (((busid = apic_find_bus_id(bustype)) != -1) &&
2350 ((intrp = apic_find_io_intr_w_busid(irqno, busid))
2351 != NULL)) {
2352 return (apix_intx_setup(dip, inum, irqno,
2353 intrp, ispec, NULL));
2354 }
2355 bustype = (bustype == BUS_EISA) ? BUS_ISA : BUS_EISA;
2356 }
2357
2358 /* fall back to default configuration */
2359 return (-1);
2360 }
2361
2362 /* search iso entries first */
2363 if (acpi_iso_cnt != 0) {
2364 hp = (ACPI_SUBTABLE_HEADER *)acpi_isop;
2365 i = 0;
2366 while (i < acpi_iso_cnt) {
2367 if (hp->Type == ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
2368 isop = (ACPI_MADT_INTERRUPT_OVERRIDE *) hp;
2369 if (isop->Bus == 0 &&
2370 isop->SourceIrq == irqno) {
2371 newirq = isop->GlobalIrq;
2372 intr_flag.intr_po = isop->IntiFlags &
2373 ACPI_MADT_POLARITY_MASK;
2374 intr_flag.intr_el = (isop->IntiFlags &
2375 ACPI_MADT_TRIGGER_MASK) >> 2;
2376 intr_flag.bustype = BUS_ISA;
2377
2378 return (apix_intx_setup(dip, inum,
2379 newirq, NULL, ispec, &intr_flag));
2380 }
2381 i++;
2382 }
2383 hp = (ACPI_SUBTABLE_HEADER *)(((char *)hp) +
2384 hp->Length);
2385 }
2386 }
2387 intr_flag.intr_po = INTR_PO_ACTIVE_HIGH;
2388 intr_flag.intr_el = INTR_EL_EDGE;
2389 intr_flag.bustype = BUS_ISA;
2390 return (apix_intx_setup(dip, inum, irqno, NULL, ispec, &intr_flag));
2391 }
2392
2393
2394 /*
2395 * Setup IRQ table for pci devices. Return IRQ no or -1 on error
2396 */
2397 static int
apix_intx_setup_pci(dev_info_t * dip,int inum,int bustype,struct intrspec * ispec)2398 apix_intx_setup_pci(dev_info_t *dip, int inum, int bustype,
2399 struct intrspec *ispec)
2400 {
2401 int busid, devid, pci_irq;
2402 ddi_acc_handle_t cfg_handle;
2403 uchar_t ipin;
2404 iflag_t intr_flag;
2405 struct apic_io_intr *intrp;
2406
2407 if (acpica_get_bdf(dip, &busid, &devid, NULL) != 0)
2408 return (-1);
2409
2410 if (busid == 0 && apic_pci_bus_total == 1)
2411 busid = (int)apic_single_pci_busid;
2412
2413 if (pci_config_setup(dip, &cfg_handle) != DDI_SUCCESS)
2414 return (-1);
2415 ipin = pci_config_get8(cfg_handle, PCI_CONF_IPIN) - PCI_INTA;
2416 pci_config_teardown(&cfg_handle);
2417
2418 if (apic_enable_acpi && !apic_use_acpi_madt_only) { /* ACPI */
2419 if (apic_acpi_translate_pci_irq(dip, busid, devid,
2420 ipin, &pci_irq, &intr_flag) != ACPI_PSM_SUCCESS)
2421 return (-1);
2422
2423 intr_flag.bustype = (uchar_t)bustype;
2424 return (apix_intx_setup(dip, inum, pci_irq, NULL, ispec,
2425 &intr_flag));
2426 }
2427
2428 /* MP configuration table */
2429 pci_irq = ((devid & 0x1f) << 2) | (ipin & 0x3);
2430 if ((intrp = apic_find_io_intr_w_busid(pci_irq, busid)) == NULL) {
2431 pci_irq = apic_handle_pci_pci_bridge(dip, devid, ipin, &intrp);
2432 if (pci_irq == -1)
2433 return (-1);
2434 }
2435
2436 return (apix_intx_setup(dip, inum, pci_irq, intrp, ispec, NULL));
2437 }
2438
2439 /*
2440 * Translate and return IRQ no
2441 */
2442 static int
apix_intx_xlate_irq(dev_info_t * dip,int inum,struct intrspec * ispec)2443 apix_intx_xlate_irq(dev_info_t *dip, int inum, struct intrspec *ispec)
2444 {
2445 int newirq, irqno = ispec->intrspec_vec;
2446 int parent_is_pci_or_pciex = 0, child_is_pciex = 0;
2447 int bustype = 0, dev_len;
2448 char dev_type[16];
2449
2450 if (apic_defconf) {
2451 mutex_enter(&airq_mutex);
2452 goto defconf;
2453 }
2454
2455 if ((dip == NULL) || (!apic_irq_translate && !apic_enable_acpi)) {
2456 mutex_enter(&airq_mutex);
2457 goto nonpci;
2458 }
2459
2460 /*
2461 * use ddi_getlongprop_buf() instead of ddi_prop_lookup_string()
2462 * to avoid extra buffer allocation.
2463 */
2464 dev_len = sizeof (dev_type);
2465 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ddi_get_parent(dip),
2466 DDI_PROP_DONTPASS, "device_type", (caddr_t)dev_type,
2467 &dev_len) == DDI_PROP_SUCCESS) {
2468 if ((strcmp(dev_type, "pci") == 0) ||
2469 (strcmp(dev_type, "pciex") == 0))
2470 parent_is_pci_or_pciex = 1;
2471 }
2472
2473 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
2474 DDI_PROP_DONTPASS, "compatible", (caddr_t)dev_type,
2475 &dev_len) == DDI_PROP_SUCCESS) {
2476 if (strstr(dev_type, "pciex"))
2477 child_is_pciex = 1;
2478 }
2479
2480 mutex_enter(&airq_mutex);
2481
2482 if (parent_is_pci_or_pciex) {
2483 bustype = child_is_pciex ? BUS_PCIE : BUS_PCI;
2484 newirq = apix_intx_setup_pci(dip, inum, bustype, ispec);
2485 if (newirq != -1)
2486 goto done;
2487 bustype = 0;
2488 } else if (strcmp(dev_type, "isa") == 0)
2489 bustype = BUS_ISA;
2490 else if (strcmp(dev_type, "eisa") == 0)
2491 bustype = BUS_EISA;
2492
2493 nonpci:
2494 newirq = apix_intx_setup_nonpci(dip, inum, bustype, ispec);
2495 if (newirq != -1)
2496 goto done;
2497
2498 defconf:
2499 newirq = apix_intx_setup(dip, inum, irqno, NULL, ispec, NULL);
2500 if (newirq == -1) {
2501 mutex_exit(&airq_mutex);
2502 return (-1);
2503 }
2504 done:
2505 ASSERT(apic_irq_table[newirq]);
2506 mutex_exit(&airq_mutex);
2507 return (newirq);
2508 }
2509
2510 static int
apix_intx_alloc_vector(dev_info_t * dip,int inum,struct intrspec * ispec)2511 apix_intx_alloc_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2512 {
2513 int irqno;
2514 apix_vector_t *vecp;
2515
2516 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2517 return (0);
2518
2519 if ((vecp = apix_alloc_intx(dip, inum, irqno)) == NULL)
2520 return (0);
2521
2522 DDI_INTR_IMPLDBG((CE_CONT, "apix_intx_alloc_vector: dip=0x%p name=%s "
2523 "irqno=0x%x cpuid=%d vector=0x%x\n",
2524 (void *)dip, ddi_driver_name(dip), irqno,
2525 vecp->v_cpuid, vecp->v_vector));
2526
2527 return (1);
2528 }
2529
2530 /*
2531 * Return the vector number if the translated IRQ for this device
2532 * has a vector mapping setup. If no IRQ setup exists or no vector is
2533 * allocated to it then return 0.
2534 */
2535 static apix_vector_t *
apix_intx_xlate_vector(dev_info_t * dip,int inum,struct intrspec * ispec)2536 apix_intx_xlate_vector(dev_info_t *dip, int inum, struct intrspec *ispec)
2537 {
2538 int irqno;
2539 apix_vector_t *vecp;
2540
2541 /* get the IRQ number */
2542 if ((irqno = apix_intx_xlate_irq(dip, inum, ispec)) == -1)
2543 return (NULL);
2544
2545 /* get the vector number if a vector is allocated to this irqno */
2546 vecp = apix_intx_get_vector(irqno);
2547
2548 return (vecp);
2549 }
2550
2551 /* stub function */
2552 int
apix_loaded(void)2553 apix_loaded(void)
2554 {
2555 return (apix_is_enabled);
2556 }
2557