1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33 #include "opt_ddb.h"
34 #include "opt_ktrace.h"
35 #include "opt_kstack_pages.h"
36 #include "opt_stack.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bitstring.h>
41 #include <sys/conf.h>
42 #include <sys/elf.h>
43 #include <sys/eventhandler.h>
44 #include <sys/exec.h>
45 #include <sys/fcntl.h>
46 #include <sys/ipc.h>
47 #include <sys/jail.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/lock.h>
51 #include <sys/loginclass.h>
52 #include <sys/malloc.h>
53 #include <sys/mman.h>
54 #include <sys/mount.h>
55 #include <sys/mutex.h>
56 #include <sys/namei.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/shm.h>
66 #include <sys/smp.h>
67 #include <sys/stack.h>
68 #include <sys/stat.h>
69 #include <sys/dtrace_bsd.h>
70 #include <sys/sysctl.h>
71 #include <sys/filedesc.h>
72 #include <sys/tty.h>
73 #include <sys/signalvar.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/user.h>
77 #include <sys/vnode.h>
78 #include <sys/wait.h>
79 #ifdef KTRACE
80 #include <sys/ktrace.h>
81 #endif
82
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #endif
86
87 #include <vm/vm.h>
88 #include <vm/vm_param.h>
89 #include <vm/vm_extern.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_radix.h>
96 #include <vm/uma.h>
97
98 #include <fs/devfs/devfs.h>
99
100 #ifdef COMPAT_FREEBSD32
101 #include <compat/freebsd32/freebsd32.h>
102 #include <compat/freebsd32/freebsd32_util.h>
103 #endif
104
105 SDT_PROVIDER_DEFINE(proc);
106
107 MALLOC_DEFINE(M_SESSION, "session", "session header");
108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
110
111 static void doenterpgrp(struct proc *, struct pgrp *);
112 static void orphanpg(struct pgrp *pg);
113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
116 int preferthread);
117 static void pgdelete(struct pgrp *);
118 static int pgrp_init(void *mem, int size, int flags);
119 static int proc_ctor(void *mem, int size, void *arg, int flags);
120 static void proc_dtor(void *mem, int size, void *arg);
121 static int proc_init(void *mem, int size, int flags);
122 static void proc_fini(void *mem, int size);
123 static void pargs_free(struct pargs *pa);
124
125 /*
126 * Other process lists
127 */
128 struct pidhashhead *pidhashtbl = NULL;
129 struct sx *pidhashtbl_lock;
130 u_long pidhash;
131 u_long pidhashlock;
132 struct pgrphashhead *pgrphashtbl;
133 u_long pgrphash;
134 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
135 struct sx __exclusive_cache_line allproc_lock;
136 struct sx __exclusive_cache_line proctree_lock;
137 struct mtx __exclusive_cache_line ppeers_lock;
138 struct mtx __exclusive_cache_line procid_lock;
139 uma_zone_t proc_zone;
140 uma_zone_t pgrp_zone;
141
142 /*
143 * The offset of various fields in struct proc and struct thread.
144 * These are used by kernel debuggers to enumerate kernel threads and
145 * processes.
146 */
147 const int proc_off_p_pid = offsetof(struct proc, p_pid);
148 const int proc_off_p_comm = offsetof(struct proc, p_comm);
149 const int proc_off_p_list = offsetof(struct proc, p_list);
150 const int proc_off_p_hash = offsetof(struct proc, p_hash);
151 const int proc_off_p_threads = offsetof(struct proc, p_threads);
152 const int thread_off_td_tid = offsetof(struct thread, td_tid);
153 const int thread_off_td_name = offsetof(struct thread, td_name);
154 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
155 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
156 const int thread_off_td_plist = offsetof(struct thread, td_plist);
157
158 EVENTHANDLER_LIST_DEFINE(process_ctor);
159 EVENTHANDLER_LIST_DEFINE(process_dtor);
160 EVENTHANDLER_LIST_DEFINE(process_init);
161 EVENTHANDLER_LIST_DEFINE(process_fini);
162 EVENTHANDLER_LIST_DEFINE(process_exit);
163 EVENTHANDLER_LIST_DEFINE(process_fork);
164 EVENTHANDLER_LIST_DEFINE(process_exec);
165
166 int kstack_pages = KSTACK_PAGES;
167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
168 &kstack_pages, 0,
169 "Kernel stack size in pages");
170 static int vmmap_skip_res_cnt = 0;
171 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
172 &vmmap_skip_res_cnt, 0,
173 "Skip calculation of the pages resident count in kern.proc.vmmap");
174
175 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
176 #ifdef COMPAT_FREEBSD32
177 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
178 #endif
179
180 /*
181 * Initialize global process hashing structures.
182 */
183 void
procinit(void)184 procinit(void)
185 {
186 u_long i;
187
188 sx_init(&allproc_lock, "allproc");
189 sx_init(&proctree_lock, "proctree");
190 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
191 mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
192 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
193 pidhashlock = (pidhash + 1) / 64;
194 if (pidhashlock > 0)
195 pidhashlock--;
196 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
197 M_PROC, M_WAITOK | M_ZERO);
198 for (i = 0; i < pidhashlock + 1; i++)
199 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
200 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
201 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
202 proc_ctor, proc_dtor, proc_init, proc_fini,
203 UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
205 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
206 uihashinit();
207 }
208
209 /*
210 * Prepare a proc for use.
211 */
212 static int
proc_ctor(void * mem,int size,void * arg,int flags)213 proc_ctor(void *mem, int size, void *arg, int flags)
214 {
215 struct proc *p;
216 struct thread *td;
217
218 p = (struct proc *)mem;
219 #ifdef KDTRACE_HOOKS
220 kdtrace_proc_ctor(p);
221 #endif
222 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
223 td = FIRST_THREAD_IN_PROC(p);
224 if (td != NULL) {
225 /* Make sure all thread constructors are executed */
226 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
227 }
228 return (0);
229 }
230
231 /*
232 * Reclaim a proc after use.
233 */
234 static void
proc_dtor(void * mem,int size,void * arg)235 proc_dtor(void *mem, int size, void *arg)
236 {
237 struct proc *p;
238 struct thread *td;
239
240 /* INVARIANTS checks go here */
241 p = (struct proc *)mem;
242 td = FIRST_THREAD_IN_PROC(p);
243 if (td != NULL) {
244 #ifdef INVARIANTS
245 KASSERT((p->p_numthreads == 1),
246 ("bad number of threads in exiting process"));
247 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
248 #endif
249 /* Free all OSD associated to this thread. */
250 osd_thread_exit(td);
251 ast_kclear(td);
252
253 /* Make sure all thread destructors are executed */
254 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
255 }
256 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
257 #ifdef KDTRACE_HOOKS
258 kdtrace_proc_dtor(p);
259 #endif
260 if (p->p_ksi != NULL)
261 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
262 }
263
264 /*
265 * Initialize type-stable parts of a proc (when newly created).
266 */
267 static int
proc_init(void * mem,int size,int flags)268 proc_init(void *mem, int size, int flags)
269 {
270 struct proc *p;
271
272 p = (struct proc *)mem;
273 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
274 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
275 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
276 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
277 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
278 cv_init(&p->p_pwait, "ppwait");
279 TAILQ_INIT(&p->p_threads); /* all threads in proc */
280 EVENTHANDLER_DIRECT_INVOKE(process_init, p);
281 p->p_stats = pstats_alloc();
282 p->p_pgrp = NULL;
283 TAILQ_INIT(&p->p_kqtim_stop);
284 return (0);
285 }
286
287 /*
288 * UMA should ensure that this function is never called.
289 * Freeing a proc structure would violate type stability.
290 */
291 static void
proc_fini(void * mem,int size)292 proc_fini(void *mem, int size)
293 {
294 #ifdef notnow
295 struct proc *p;
296
297 p = (struct proc *)mem;
298 EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
299 pstats_free(p->p_stats);
300 thread_free(FIRST_THREAD_IN_PROC(p));
301 mtx_destroy(&p->p_mtx);
302 if (p->p_ksi != NULL)
303 ksiginfo_free(p->p_ksi);
304 #else
305 panic("proc reclaimed");
306 #endif
307 }
308
309 static int
pgrp_init(void * mem,int size,int flags)310 pgrp_init(void *mem, int size, int flags)
311 {
312 struct pgrp *pg;
313
314 pg = mem;
315 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
316 sx_init(&pg->pg_killsx, "killpg racer");
317 return (0);
318 }
319
320 /*
321 * PID space management.
322 *
323 * These bitmaps are used by fork_findpid.
324 */
325 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
326 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
327 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
328 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
329
330 static bitstr_t *proc_id_array[] = {
331 proc_id_pidmap,
332 proc_id_grpidmap,
333 proc_id_sessidmap,
334 proc_id_reapmap,
335 };
336
337 void
proc_id_set(int type,pid_t id)338 proc_id_set(int type, pid_t id)
339 {
340
341 KASSERT(type >= 0 && type < nitems(proc_id_array),
342 ("invalid type %d\n", type));
343 mtx_lock(&procid_lock);
344 KASSERT(bit_test(proc_id_array[type], id) == 0,
345 ("bit %d already set in %d\n", id, type));
346 bit_set(proc_id_array[type], id);
347 mtx_unlock(&procid_lock);
348 }
349
350 void
proc_id_set_cond(int type,pid_t id)351 proc_id_set_cond(int type, pid_t id)
352 {
353
354 KASSERT(type >= 0 && type < nitems(proc_id_array),
355 ("invalid type %d\n", type));
356 if (bit_test(proc_id_array[type], id))
357 return;
358 mtx_lock(&procid_lock);
359 bit_set(proc_id_array[type], id);
360 mtx_unlock(&procid_lock);
361 }
362
363 void
proc_id_clear(int type,pid_t id)364 proc_id_clear(int type, pid_t id)
365 {
366
367 KASSERT(type >= 0 && type < nitems(proc_id_array),
368 ("invalid type %d\n", type));
369 mtx_lock(&procid_lock);
370 KASSERT(bit_test(proc_id_array[type], id) != 0,
371 ("bit %d not set in %d\n", id, type));
372 bit_clear(proc_id_array[type], id);
373 mtx_unlock(&procid_lock);
374 }
375
376 /*
377 * Is p an inferior of the current process?
378 */
379 int
inferior(struct proc * p)380 inferior(struct proc *p)
381 {
382
383 sx_assert(&proctree_lock, SX_LOCKED);
384 PROC_LOCK_ASSERT(p, MA_OWNED);
385 for (; p != curproc; p = proc_realparent(p)) {
386 if (p->p_pid == 0)
387 return (0);
388 }
389 return (1);
390 }
391
392 /*
393 * Shared lock all the pid hash lists.
394 */
395 void
pidhash_slockall(void)396 pidhash_slockall(void)
397 {
398 u_long i;
399
400 for (i = 0; i < pidhashlock + 1; i++)
401 sx_slock(&pidhashtbl_lock[i]);
402 }
403
404 /*
405 * Shared unlock all the pid hash lists.
406 */
407 void
pidhash_sunlockall(void)408 pidhash_sunlockall(void)
409 {
410 u_long i;
411
412 for (i = 0; i < pidhashlock + 1; i++)
413 sx_sunlock(&pidhashtbl_lock[i]);
414 }
415
416 /*
417 * Similar to pfind(), this function locate a process by number.
418 */
419 struct proc *
pfind_any_locked(pid_t pid)420 pfind_any_locked(pid_t pid)
421 {
422 struct proc *p;
423
424 sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
425 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
426 if (p->p_pid == pid) {
427 PROC_LOCK(p);
428 if (p->p_state == PRS_NEW) {
429 PROC_UNLOCK(p);
430 p = NULL;
431 }
432 break;
433 }
434 }
435 return (p);
436 }
437
438 /*
439 * Locate a process by number.
440 *
441 * By not returning processes in the PRS_NEW state, we allow callers to avoid
442 * testing for that condition to avoid dereferencing p_ucred, et al.
443 */
444 static __always_inline struct proc *
_pfind(pid_t pid,bool zombie)445 _pfind(pid_t pid, bool zombie)
446 {
447 struct proc *p;
448
449 p = curproc;
450 if (p->p_pid == pid) {
451 PROC_LOCK(p);
452 return (p);
453 }
454 sx_slock(PIDHASHLOCK(pid));
455 LIST_FOREACH(p, PIDHASH(pid), p_hash) {
456 if (p->p_pid == pid) {
457 PROC_LOCK(p);
458 if (p->p_state == PRS_NEW ||
459 (!zombie && p->p_state == PRS_ZOMBIE)) {
460 PROC_UNLOCK(p);
461 p = NULL;
462 }
463 break;
464 }
465 }
466 sx_sunlock(PIDHASHLOCK(pid));
467 return (p);
468 }
469
470 struct proc *
pfind(pid_t pid)471 pfind(pid_t pid)
472 {
473
474 return (_pfind(pid, false));
475 }
476
477 /*
478 * Same as pfind but allow zombies.
479 */
480 struct proc *
pfind_any(pid_t pid)481 pfind_any(pid_t pid)
482 {
483
484 return (_pfind(pid, true));
485 }
486
487 /*
488 * Locate a process group by number.
489 * The caller must hold proctree_lock.
490 */
491 struct pgrp *
pgfind(pid_t pgid)492 pgfind(pid_t pgid)
493 {
494 struct pgrp *pgrp;
495
496 sx_assert(&proctree_lock, SX_LOCKED);
497
498 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
499 if (pgrp->pg_id == pgid) {
500 PGRP_LOCK(pgrp);
501 return (pgrp);
502 }
503 }
504 return (NULL);
505 }
506
507 /*
508 * Locate process and do additional manipulations, depending on flags.
509 */
510 int
pget(pid_t pid,int flags,struct proc ** pp)511 pget(pid_t pid, int flags, struct proc **pp)
512 {
513 struct proc *p;
514 struct thread *td1;
515 int error;
516
517 p = curproc;
518 if (p->p_pid == pid) {
519 PROC_LOCK(p);
520 } else {
521 p = NULL;
522 if (pid <= PID_MAX) {
523 if ((flags & PGET_NOTWEXIT) == 0)
524 p = pfind_any(pid);
525 else
526 p = pfind(pid);
527 } else if ((flags & PGET_NOTID) == 0) {
528 td1 = tdfind(pid, -1);
529 if (td1 != NULL)
530 p = td1->td_proc;
531 }
532 if (p == NULL)
533 return (ESRCH);
534 if ((flags & PGET_CANSEE) != 0) {
535 error = p_cansee(curthread, p);
536 if (error != 0)
537 goto errout;
538 }
539 }
540 if ((flags & PGET_CANDEBUG) != 0) {
541 error = p_candebug(curthread, p);
542 if (error != 0)
543 goto errout;
544 }
545 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
546 error = EPERM;
547 goto errout;
548 }
549 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
550 error = ESRCH;
551 goto errout;
552 }
553 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
554 /*
555 * XXXRW: Not clear ESRCH is the right error during proc
556 * execve().
557 */
558 error = ESRCH;
559 goto errout;
560 }
561 if ((flags & PGET_HOLD) != 0) {
562 _PHOLD(p);
563 PROC_UNLOCK(p);
564 }
565 *pp = p;
566 return (0);
567 errout:
568 PROC_UNLOCK(p);
569 return (error);
570 }
571
572 /*
573 * Create a new process group.
574 * pgid must be equal to the pid of p.
575 * Begin a new session if required.
576 */
577 int
enterpgrp(struct proc * p,pid_t pgid,struct pgrp * pgrp,struct session * sess)578 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
579 {
580 struct pgrp *old_pgrp;
581
582 sx_assert(&proctree_lock, SX_XLOCKED);
583
584 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
585 KASSERT(p->p_pid == pgid,
586 ("enterpgrp: new pgrp and pid != pgid"));
587 KASSERT(pgfind(pgid) == NULL,
588 ("enterpgrp: pgrp with pgid exists"));
589 KASSERT(!SESS_LEADER(p),
590 ("enterpgrp: session leader attempted setpgrp"));
591
592 old_pgrp = p->p_pgrp;
593 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
594 sx_xunlock(&proctree_lock);
595 sx_xlock(&old_pgrp->pg_killsx);
596 sx_xunlock(&old_pgrp->pg_killsx);
597 return (ERESTART);
598 }
599 MPASS(old_pgrp == p->p_pgrp);
600
601 if (sess != NULL) {
602 /*
603 * new session
604 */
605 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
606 PROC_LOCK(p);
607 p->p_flag &= ~P_CONTROLT;
608 PROC_UNLOCK(p);
609 PGRP_LOCK(pgrp);
610 sess->s_leader = p;
611 sess->s_sid = p->p_pid;
612 proc_id_set(PROC_ID_SESSION, p->p_pid);
613 refcount_init(&sess->s_count, 1);
614 sess->s_ttyvp = NULL;
615 sess->s_ttydp = NULL;
616 sess->s_ttyp = NULL;
617 bcopy(p->p_session->s_login, sess->s_login,
618 sizeof(sess->s_login));
619 pgrp->pg_session = sess;
620 KASSERT(p == curproc,
621 ("enterpgrp: mksession and p != curproc"));
622 } else {
623 pgrp->pg_session = p->p_session;
624 sess_hold(pgrp->pg_session);
625 PGRP_LOCK(pgrp);
626 }
627 pgrp->pg_id = pgid;
628 proc_id_set(PROC_ID_GROUP, p->p_pid);
629 LIST_INIT(&pgrp->pg_members);
630 pgrp->pg_flags = 0;
631
632 /*
633 * As we have an exclusive lock of proctree_lock,
634 * this should not deadlock.
635 */
636 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
637 SLIST_INIT(&pgrp->pg_sigiolst);
638 PGRP_UNLOCK(pgrp);
639
640 doenterpgrp(p, pgrp);
641
642 sx_xunlock(&old_pgrp->pg_killsx);
643 return (0);
644 }
645
646 /*
647 * Move p to an existing process group
648 */
649 int
enterthispgrp(struct proc * p,struct pgrp * pgrp)650 enterthispgrp(struct proc *p, struct pgrp *pgrp)
651 {
652 struct pgrp *old_pgrp;
653
654 sx_assert(&proctree_lock, SX_XLOCKED);
655 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
656 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
657 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
658 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
659 KASSERT(pgrp->pg_session == p->p_session,
660 ("%s: pgrp's session %p, p->p_session %p proc %p\n",
661 __func__, pgrp->pg_session, p->p_session, p));
662 KASSERT(pgrp != p->p_pgrp,
663 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
664
665 old_pgrp = p->p_pgrp;
666 if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
667 sx_xunlock(&proctree_lock);
668 sx_xlock(&old_pgrp->pg_killsx);
669 sx_xunlock(&old_pgrp->pg_killsx);
670 return (ERESTART);
671 }
672 MPASS(old_pgrp == p->p_pgrp);
673 if (!sx_try_xlock(&pgrp->pg_killsx)) {
674 sx_xunlock(&old_pgrp->pg_killsx);
675 sx_xunlock(&proctree_lock);
676 sx_xlock(&pgrp->pg_killsx);
677 sx_xunlock(&pgrp->pg_killsx);
678 return (ERESTART);
679 }
680
681 doenterpgrp(p, pgrp);
682
683 sx_xunlock(&pgrp->pg_killsx);
684 sx_xunlock(&old_pgrp->pg_killsx);
685 return (0);
686 }
687
688 /*
689 * If true, any child of q which belongs to group pgrp, qualifies the
690 * process group pgrp as not orphaned.
691 */
692 static bool
isjobproc(struct proc * q,struct pgrp * pgrp)693 isjobproc(struct proc *q, struct pgrp *pgrp)
694 {
695 sx_assert(&proctree_lock, SX_LOCKED);
696
697 return (q->p_pgrp != pgrp &&
698 q->p_pgrp->pg_session == pgrp->pg_session);
699 }
700
701 static struct proc *
jobc_reaper(struct proc * p)702 jobc_reaper(struct proc *p)
703 {
704 struct proc *pp;
705
706 sx_assert(&proctree_lock, SA_LOCKED);
707
708 for (pp = p;;) {
709 pp = pp->p_reaper;
710 if (pp->p_reaper == pp ||
711 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
712 return (pp);
713 }
714 }
715
716 static struct proc *
jobc_parent(struct proc * p,struct proc * p_exiting)717 jobc_parent(struct proc *p, struct proc *p_exiting)
718 {
719 struct proc *pp;
720
721 sx_assert(&proctree_lock, SA_LOCKED);
722
723 pp = proc_realparent(p);
724 if (pp->p_pptr == NULL || pp == p_exiting ||
725 (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
726 return (pp);
727 return (jobc_reaper(pp));
728 }
729
730 int
pgrp_calc_jobc(struct pgrp * pgrp)731 pgrp_calc_jobc(struct pgrp *pgrp)
732 {
733 struct proc *q;
734 int cnt;
735
736 #ifdef INVARIANTS
737 if (!mtx_owned(&pgrp->pg_mtx))
738 sx_assert(&proctree_lock, SA_LOCKED);
739 #endif
740
741 cnt = 0;
742 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
743 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
744 q->p_pptr == NULL)
745 continue;
746 if (isjobproc(jobc_parent(q, NULL), pgrp))
747 cnt++;
748 }
749 return (cnt);
750 }
751
752 /*
753 * Move p to a process group
754 */
755 static void
doenterpgrp(struct proc * p,struct pgrp * pgrp)756 doenterpgrp(struct proc *p, struct pgrp *pgrp)
757 {
758 struct pgrp *savepgrp;
759 struct proc *pp;
760
761 sx_assert(&proctree_lock, SX_XLOCKED);
762 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
763 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
764 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
765 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
766
767 savepgrp = p->p_pgrp;
768 pp = jobc_parent(p, NULL);
769
770 PGRP_LOCK(pgrp);
771 PGRP_LOCK(savepgrp);
772 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
773 orphanpg(savepgrp);
774 PROC_LOCK(p);
775 LIST_REMOVE(p, p_pglist);
776 p->p_pgrp = pgrp;
777 PROC_UNLOCK(p);
778 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
779 if (isjobproc(pp, pgrp))
780 pgrp->pg_flags &= ~PGRP_ORPHANED;
781 PGRP_UNLOCK(savepgrp);
782 PGRP_UNLOCK(pgrp);
783 if (LIST_EMPTY(&savepgrp->pg_members))
784 pgdelete(savepgrp);
785 }
786
787 /*
788 * remove process from process group
789 */
790 int
leavepgrp(struct proc * p)791 leavepgrp(struct proc *p)
792 {
793 struct pgrp *savepgrp;
794
795 sx_assert(&proctree_lock, SX_XLOCKED);
796 savepgrp = p->p_pgrp;
797 PGRP_LOCK(savepgrp);
798 PROC_LOCK(p);
799 LIST_REMOVE(p, p_pglist);
800 p->p_pgrp = NULL;
801 PROC_UNLOCK(p);
802 PGRP_UNLOCK(savepgrp);
803 if (LIST_EMPTY(&savepgrp->pg_members))
804 pgdelete(savepgrp);
805 return (0);
806 }
807
808 /*
809 * delete a process group
810 */
811 static void
pgdelete(struct pgrp * pgrp)812 pgdelete(struct pgrp *pgrp)
813 {
814 struct session *savesess;
815 struct tty *tp;
816
817 sx_assert(&proctree_lock, SX_XLOCKED);
818 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
819 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
820
821 /*
822 * Reset any sigio structures pointing to us as a result of
823 * F_SETOWN with our pgid. The proctree lock ensures that
824 * new sigio structures will not be added after this point.
825 */
826 funsetownlst(&pgrp->pg_sigiolst);
827
828 PGRP_LOCK(pgrp);
829 tp = pgrp->pg_session->s_ttyp;
830 LIST_REMOVE(pgrp, pg_hash);
831 savesess = pgrp->pg_session;
832 PGRP_UNLOCK(pgrp);
833
834 /* Remove the reference to the pgrp before deallocating it. */
835 if (tp != NULL) {
836 tty_lock(tp);
837 tty_rel_pgrp(tp, pgrp);
838 }
839
840 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
841 uma_zfree(pgrp_zone, pgrp);
842 sess_release(savesess);
843 }
844
845
846 static void
fixjobc_kill(struct proc * p)847 fixjobc_kill(struct proc *p)
848 {
849 struct proc *q;
850 struct pgrp *pgrp;
851
852 sx_assert(&proctree_lock, SX_LOCKED);
853 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
854 pgrp = p->p_pgrp;
855 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
856 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
857
858 /*
859 * p no longer affects process group orphanage for children.
860 * It is marked by the flag because p is only physically
861 * removed from its process group on wait(2).
862 */
863 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
864 p->p_treeflag |= P_TREE_GRPEXITED;
865
866 /*
867 * Check if exiting p orphans its own group.
868 */
869 pgrp = p->p_pgrp;
870 if (isjobproc(jobc_parent(p, NULL), pgrp)) {
871 PGRP_LOCK(pgrp);
872 if (pgrp_calc_jobc(pgrp) == 0)
873 orphanpg(pgrp);
874 PGRP_UNLOCK(pgrp);
875 }
876
877 /*
878 * Check this process' children to see whether they qualify
879 * their process groups after reparenting to reaper.
880 */
881 LIST_FOREACH(q, &p->p_children, p_sibling) {
882 pgrp = q->p_pgrp;
883 PGRP_LOCK(pgrp);
884 if (pgrp_calc_jobc(pgrp) == 0) {
885 /*
886 * We want to handle exactly the children that
887 * has p as realparent. Then, when calculating
888 * jobc_parent for children, we should ignore
889 * P_TREE_GRPEXITED flag already set on p.
890 */
891 if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
892 orphanpg(pgrp);
893 } else
894 pgrp->pg_flags &= ~PGRP_ORPHANED;
895 PGRP_UNLOCK(pgrp);
896 }
897 LIST_FOREACH(q, &p->p_orphans, p_orphan) {
898 pgrp = q->p_pgrp;
899 PGRP_LOCK(pgrp);
900 if (pgrp_calc_jobc(pgrp) == 0) {
901 if (isjobproc(p, pgrp))
902 orphanpg(pgrp);
903 } else
904 pgrp->pg_flags &= ~PGRP_ORPHANED;
905 PGRP_UNLOCK(pgrp);
906 }
907 }
908
909 void
killjobc(void)910 killjobc(void)
911 {
912 struct session *sp;
913 struct tty *tp;
914 struct proc *p;
915 struct vnode *ttyvp;
916
917 p = curproc;
918 MPASS(p->p_flag & P_WEXIT);
919 sx_assert(&proctree_lock, SX_LOCKED);
920
921 if (SESS_LEADER(p)) {
922 sp = p->p_session;
923
924 /*
925 * s_ttyp is not zero'd; we use this to indicate that
926 * the session once had a controlling terminal. (for
927 * logging and informational purposes)
928 */
929 SESS_LOCK(sp);
930 ttyvp = sp->s_ttyvp;
931 tp = sp->s_ttyp;
932 sp->s_ttyvp = NULL;
933 sp->s_ttydp = NULL;
934 sp->s_leader = NULL;
935 SESS_UNLOCK(sp);
936
937 /*
938 * Signal foreground pgrp and revoke access to
939 * controlling terminal if it has not been revoked
940 * already.
941 *
942 * Because the TTY may have been revoked in the mean
943 * time and could already have a new session associated
944 * with it, make sure we don't send a SIGHUP to a
945 * foreground process group that does not belong to this
946 * session.
947 */
948
949 if (tp != NULL) {
950 tty_lock(tp);
951 if (tp->t_session == sp)
952 tty_signal_pgrp(tp, SIGHUP);
953 tty_unlock(tp);
954 }
955
956 if (ttyvp != NULL) {
957 sx_xunlock(&proctree_lock);
958 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
959 VOP_REVOKE(ttyvp, REVOKEALL);
960 VOP_UNLOCK(ttyvp);
961 }
962 devfs_ctty_unref(ttyvp);
963 sx_xlock(&proctree_lock);
964 }
965 }
966 fixjobc_kill(p);
967 }
968
969 /*
970 * A process group has become orphaned, mark it as such for signal
971 * delivery code. If there are any stopped processes in the group,
972 * hang-up all process in that group.
973 */
974 static void
orphanpg(struct pgrp * pg)975 orphanpg(struct pgrp *pg)
976 {
977 struct proc *p;
978
979 PGRP_LOCK_ASSERT(pg, MA_OWNED);
980
981 pg->pg_flags |= PGRP_ORPHANED;
982
983 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
984 PROC_LOCK(p);
985 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
986 PROC_UNLOCK(p);
987 LIST_FOREACH(p, &pg->pg_members, p_pglist) {
988 PROC_LOCK(p);
989 kern_psignal(p, SIGHUP);
990 kern_psignal(p, SIGCONT);
991 PROC_UNLOCK(p);
992 }
993 return;
994 }
995 PROC_UNLOCK(p);
996 }
997 }
998
999 void
sess_hold(struct session * s)1000 sess_hold(struct session *s)
1001 {
1002
1003 refcount_acquire(&s->s_count);
1004 }
1005
1006 void
sess_release(struct session * s)1007 sess_release(struct session *s)
1008 {
1009
1010 if (refcount_release(&s->s_count)) {
1011 if (s->s_ttyp != NULL) {
1012 tty_lock(s->s_ttyp);
1013 tty_rel_sess(s->s_ttyp, s);
1014 }
1015 proc_id_clear(PROC_ID_SESSION, s->s_sid);
1016 mtx_destroy(&s->s_mtx);
1017 free(s, M_SESSION);
1018 }
1019 }
1020
1021 #ifdef DDB
1022
1023 static void
db_print_pgrp_one(struct pgrp * pgrp,struct proc * p)1024 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1025 {
1026 db_printf(
1027 " pid %d at %p pr %d pgrp %p e %d jc %d\n",
1028 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1029 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1030 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1031 }
1032
DB_SHOW_COMMAND_FLAGS(pgrpdump,pgrpdump,DB_CMD_MEMSAFE)1033 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1034 {
1035 struct pgrp *pgrp;
1036 struct proc *p;
1037 int i;
1038
1039 for (i = 0; i <= pgrphash; i++) {
1040 if (!LIST_EMPTY(&pgrphashtbl[i])) {
1041 db_printf("indx %d\n", i);
1042 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1043 db_printf(
1044 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1045 pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1046 pgrp->pg_session->s_count,
1047 LIST_FIRST(&pgrp->pg_members));
1048 LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1049 db_print_pgrp_one(pgrp, p);
1050 }
1051 }
1052 }
1053 }
1054 #endif /* DDB */
1055
1056 /*
1057 * Calculate the kinfo_proc members which contain process-wide
1058 * informations.
1059 * Must be called with the target process locked.
1060 */
1061 static void
fill_kinfo_aggregate(struct proc * p,struct kinfo_proc * kp)1062 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1063 {
1064 struct thread *td;
1065
1066 PROC_LOCK_ASSERT(p, MA_OWNED);
1067
1068 kp->ki_estcpu = 0;
1069 kp->ki_pctcpu = 0;
1070 FOREACH_THREAD_IN_PROC(p, td) {
1071 thread_lock(td);
1072 kp->ki_pctcpu += sched_pctcpu(td);
1073 kp->ki_estcpu += sched_estcpu(td);
1074 thread_unlock(td);
1075 }
1076 }
1077
1078 /*
1079 * Fill in any information that is common to all threads in the process.
1080 * Must be called with the target process locked.
1081 */
1082 static void
fill_kinfo_proc_only(struct proc * p,struct kinfo_proc * kp)1083 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1084 {
1085 struct thread *td0;
1086 struct ucred *cred;
1087 struct sigacts *ps;
1088 struct timeval boottime;
1089
1090 PROC_LOCK_ASSERT(p, MA_OWNED);
1091
1092 kp->ki_structsize = sizeof(*kp);
1093 kp->ki_paddr = p;
1094 kp->ki_addr =/* p->p_addr; */0; /* XXX */
1095 kp->ki_args = p->p_args;
1096 kp->ki_textvp = p->p_textvp;
1097 #ifdef KTRACE
1098 kp->ki_tracep = ktr_get_tracevp(p, false);
1099 kp->ki_traceflag = p->p_traceflag;
1100 #endif
1101 kp->ki_fd = p->p_fd;
1102 kp->ki_pd = p->p_pd;
1103 kp->ki_vmspace = p->p_vmspace;
1104 kp->ki_flag = p->p_flag;
1105 kp->ki_flag2 = p->p_flag2;
1106 cred = p->p_ucred;
1107 if (cred) {
1108 kp->ki_uid = cred->cr_uid;
1109 kp->ki_ruid = cred->cr_ruid;
1110 kp->ki_svuid = cred->cr_svuid;
1111 kp->ki_cr_flags = 0;
1112 if (cred->cr_flags & CRED_FLAG_CAPMODE)
1113 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1114 /* XXX bde doesn't like KI_NGROUPS */
1115 if (cred->cr_ngroups > KI_NGROUPS) {
1116 kp->ki_ngroups = KI_NGROUPS;
1117 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1118 } else
1119 kp->ki_ngroups = cred->cr_ngroups;
1120 bcopy(cred->cr_groups, kp->ki_groups,
1121 kp->ki_ngroups * sizeof(gid_t));
1122 kp->ki_rgid = cred->cr_rgid;
1123 kp->ki_svgid = cred->cr_svgid;
1124 /* If jailed(cred), emulate the old P_JAILED flag. */
1125 if (jailed(cred)) {
1126 kp->ki_flag |= P_JAILED;
1127 /* If inside the jail, use 0 as a jail ID. */
1128 if (cred->cr_prison != curthread->td_ucred->cr_prison)
1129 kp->ki_jid = cred->cr_prison->pr_id;
1130 }
1131 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1132 sizeof(kp->ki_loginclass));
1133 }
1134 ps = p->p_sigacts;
1135 if (ps) {
1136 mtx_lock(&ps->ps_mtx);
1137 kp->ki_sigignore = ps->ps_sigignore;
1138 kp->ki_sigcatch = ps->ps_sigcatch;
1139 mtx_unlock(&ps->ps_mtx);
1140 }
1141 if (p->p_state != PRS_NEW &&
1142 p->p_state != PRS_ZOMBIE &&
1143 p->p_vmspace != NULL) {
1144 struct vmspace *vm = p->p_vmspace;
1145
1146 kp->ki_size = vm->vm_map.size;
1147 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1148 FOREACH_THREAD_IN_PROC(p, td0)
1149 kp->ki_rssize += td0->td_kstack_pages;
1150 kp->ki_swrss = vm->vm_swrss;
1151 kp->ki_tsize = vm->vm_tsize;
1152 kp->ki_dsize = vm->vm_dsize;
1153 kp->ki_ssize = vm->vm_ssize;
1154 } else if (p->p_state == PRS_ZOMBIE)
1155 kp->ki_stat = SZOMB;
1156 kp->ki_sflag = PS_INMEM;
1157 /* Calculate legacy swtime as seconds since 'swtick'. */
1158 kp->ki_swtime = (ticks - p->p_swtick) / hz;
1159 kp->ki_pid = p->p_pid;
1160 kp->ki_nice = p->p_nice;
1161 kp->ki_fibnum = p->p_fibnum;
1162 kp->ki_start = p->p_stats->p_start;
1163 getboottime(&boottime);
1164 timevaladd(&kp->ki_start, &boottime);
1165 PROC_STATLOCK(p);
1166 rufetch(p, &kp->ki_rusage);
1167 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1168 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1169 PROC_STATUNLOCK(p);
1170 calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1171 /* Some callers want child times in a single value. */
1172 kp->ki_childtime = kp->ki_childstime;
1173 timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1174
1175 FOREACH_THREAD_IN_PROC(p, td0)
1176 kp->ki_cow += td0->td_cow;
1177
1178 if (p->p_comm[0] != '\0')
1179 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1180 if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1181 p->p_sysent->sv_name[0] != '\0')
1182 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1183 kp->ki_siglist = p->p_siglist;
1184 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1185 kp->ki_acflag = p->p_acflag;
1186 kp->ki_lock = p->p_lock;
1187 if (p->p_pptr) {
1188 kp->ki_ppid = p->p_oppid;
1189 if (p->p_flag & P_TRACED)
1190 kp->ki_tracer = p->p_pptr->p_pid;
1191 }
1192 }
1193
1194 /*
1195 * Fill job-related process information.
1196 */
1197 static void
fill_kinfo_proc_pgrp(struct proc * p,struct kinfo_proc * kp)1198 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1199 {
1200 struct tty *tp;
1201 struct session *sp;
1202 struct pgrp *pgrp;
1203
1204 sx_assert(&proctree_lock, SA_LOCKED);
1205 PROC_LOCK_ASSERT(p, MA_OWNED);
1206
1207 pgrp = p->p_pgrp;
1208 if (pgrp == NULL)
1209 return;
1210
1211 kp->ki_pgid = pgrp->pg_id;
1212 kp->ki_jobc = pgrp_calc_jobc(pgrp);
1213
1214 sp = pgrp->pg_session;
1215 tp = NULL;
1216
1217 if (sp != NULL) {
1218 kp->ki_sid = sp->s_sid;
1219 SESS_LOCK(sp);
1220 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1221 if (sp->s_ttyvp)
1222 kp->ki_kiflag |= KI_CTTY;
1223 if (SESS_LEADER(p))
1224 kp->ki_kiflag |= KI_SLEADER;
1225 tp = sp->s_ttyp;
1226 SESS_UNLOCK(sp);
1227 }
1228
1229 if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1230 kp->ki_tdev = tty_udev(tp);
1231 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1232 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1233 if (tp->t_session)
1234 kp->ki_tsid = tp->t_session->s_sid;
1235 } else {
1236 kp->ki_tdev = NODEV;
1237 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1238 }
1239 }
1240
1241 /*
1242 * Fill in information that is thread specific. Must be called with
1243 * target process locked. If 'preferthread' is set, overwrite certain
1244 * process-related fields that are maintained for both threads and
1245 * processes.
1246 */
1247 static void
fill_kinfo_thread(struct thread * td,struct kinfo_proc * kp,int preferthread)1248 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1249 {
1250 struct proc *p;
1251
1252 p = td->td_proc;
1253 kp->ki_tdaddr = td;
1254 PROC_LOCK_ASSERT(p, MA_OWNED);
1255
1256 if (preferthread)
1257 PROC_STATLOCK(p);
1258 thread_lock(td);
1259 if (td->td_wmesg != NULL)
1260 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1261 else
1262 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1263 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1264 sizeof(kp->ki_tdname)) {
1265 strlcpy(kp->ki_moretdname,
1266 td->td_name + sizeof(kp->ki_tdname) - 1,
1267 sizeof(kp->ki_moretdname));
1268 } else {
1269 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1270 }
1271 if (TD_ON_LOCK(td)) {
1272 kp->ki_kiflag |= KI_LOCKBLOCK;
1273 strlcpy(kp->ki_lockname, td->td_lockname,
1274 sizeof(kp->ki_lockname));
1275 } else {
1276 kp->ki_kiflag &= ~KI_LOCKBLOCK;
1277 bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1278 }
1279
1280 if (p->p_state == PRS_NORMAL) { /* approximate. */
1281 if (TD_ON_RUNQ(td) ||
1282 TD_CAN_RUN(td) ||
1283 TD_IS_RUNNING(td)) {
1284 kp->ki_stat = SRUN;
1285 } else if (P_SHOULDSTOP(p)) {
1286 kp->ki_stat = SSTOP;
1287 } else if (TD_IS_SLEEPING(td)) {
1288 kp->ki_stat = SSLEEP;
1289 } else if (TD_ON_LOCK(td)) {
1290 kp->ki_stat = SLOCK;
1291 } else {
1292 kp->ki_stat = SWAIT;
1293 }
1294 } else if (p->p_state == PRS_ZOMBIE) {
1295 kp->ki_stat = SZOMB;
1296 } else {
1297 kp->ki_stat = SIDL;
1298 }
1299
1300 /* Things in the thread */
1301 kp->ki_wchan = td->td_wchan;
1302 kp->ki_pri.pri_level = td->td_priority;
1303 kp->ki_pri.pri_native = td->td_base_pri;
1304
1305 /*
1306 * Note: legacy fields; clamp at the old NOCPU value and/or
1307 * the maximum u_char CPU value.
1308 */
1309 if (td->td_lastcpu == NOCPU)
1310 kp->ki_lastcpu_old = NOCPU_OLD;
1311 else if (td->td_lastcpu > MAXCPU_OLD)
1312 kp->ki_lastcpu_old = MAXCPU_OLD;
1313 else
1314 kp->ki_lastcpu_old = td->td_lastcpu;
1315
1316 if (td->td_oncpu == NOCPU)
1317 kp->ki_oncpu_old = NOCPU_OLD;
1318 else if (td->td_oncpu > MAXCPU_OLD)
1319 kp->ki_oncpu_old = MAXCPU_OLD;
1320 else
1321 kp->ki_oncpu_old = td->td_oncpu;
1322
1323 kp->ki_lastcpu = td->td_lastcpu;
1324 kp->ki_oncpu = td->td_oncpu;
1325 kp->ki_tdflags = td->td_flags;
1326 kp->ki_tid = td->td_tid;
1327 kp->ki_numthreads = p->p_numthreads;
1328 kp->ki_pcb = td->td_pcb;
1329 kp->ki_kstack = (void *)td->td_kstack;
1330 kp->ki_slptime = (ticks - td->td_slptick) / hz;
1331 kp->ki_pri.pri_class = td->td_pri_class;
1332 kp->ki_pri.pri_user = td->td_user_pri;
1333
1334 if (preferthread) {
1335 rufetchtd(td, &kp->ki_rusage);
1336 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1337 kp->ki_pctcpu = sched_pctcpu(td);
1338 kp->ki_estcpu = sched_estcpu(td);
1339 kp->ki_cow = td->td_cow;
1340 }
1341
1342 /* We can't get this anymore but ps etc never used it anyway. */
1343 kp->ki_rqindex = 0;
1344
1345 if (preferthread)
1346 kp->ki_siglist = td->td_siglist;
1347 kp->ki_sigmask = td->td_sigmask;
1348 thread_unlock(td);
1349 if (preferthread)
1350 PROC_STATUNLOCK(p);
1351
1352 if ((td->td_pflags & TDP2_UEXTERR) != 0)
1353 kp->ki_uerrmsg = td->td_exterr_ptr;
1354 }
1355
1356 /*
1357 * Fill in a kinfo_proc structure for the specified process.
1358 * Must be called with the target process locked.
1359 */
1360 void
fill_kinfo_proc(struct proc * p,struct kinfo_proc * kp)1361 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1362 {
1363 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1364
1365 bzero(kp, sizeof(*kp));
1366
1367 fill_kinfo_proc_pgrp(p,kp);
1368 fill_kinfo_proc_only(p, kp);
1369 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1370 fill_kinfo_aggregate(p, kp);
1371 }
1372
1373 struct pstats *
pstats_alloc(void)1374 pstats_alloc(void)
1375 {
1376
1377 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1378 }
1379
1380 /*
1381 * Copy parts of p_stats; zero the rest of p_stats (statistics).
1382 */
1383 void
pstats_fork(struct pstats * src,struct pstats * dst)1384 pstats_fork(struct pstats *src, struct pstats *dst)
1385 {
1386
1387 bzero(&dst->pstat_startzero,
1388 __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1389 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1390 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1391 }
1392
1393 void
pstats_free(struct pstats * ps)1394 pstats_free(struct pstats *ps)
1395 {
1396
1397 free(ps, M_SUBPROC);
1398 }
1399
1400 #ifdef COMPAT_FREEBSD32
1401
1402 /*
1403 * This function is typically used to copy out the kernel address, so
1404 * it can be replaced by assignment of zero.
1405 */
1406 static inline uint32_t
ptr32_trim(const void * ptr)1407 ptr32_trim(const void *ptr)
1408 {
1409 uintptr_t uptr;
1410
1411 uptr = (uintptr_t)ptr;
1412 return ((uptr > UINT_MAX) ? 0 : uptr);
1413 }
1414
1415 #define PTRTRIM_CP(src,dst,fld) \
1416 do { (dst).fld = ptr32_trim((src).fld); } while (0)
1417
1418 static void
freebsd32_kinfo_proc_out(const struct kinfo_proc * ki,struct kinfo_proc32 * ki32)1419 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1420 {
1421 int i;
1422
1423 bzero(ki32, sizeof(struct kinfo_proc32));
1424 ki32->ki_structsize = sizeof(struct kinfo_proc32);
1425 CP(*ki, *ki32, ki_layout);
1426 PTRTRIM_CP(*ki, *ki32, ki_args);
1427 PTRTRIM_CP(*ki, *ki32, ki_paddr);
1428 PTRTRIM_CP(*ki, *ki32, ki_addr);
1429 PTRTRIM_CP(*ki, *ki32, ki_tracep);
1430 PTRTRIM_CP(*ki, *ki32, ki_textvp);
1431 PTRTRIM_CP(*ki, *ki32, ki_fd);
1432 PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1433 PTRTRIM_CP(*ki, *ki32, ki_wchan);
1434 CP(*ki, *ki32, ki_pid);
1435 CP(*ki, *ki32, ki_ppid);
1436 CP(*ki, *ki32, ki_pgid);
1437 CP(*ki, *ki32, ki_tpgid);
1438 CP(*ki, *ki32, ki_sid);
1439 CP(*ki, *ki32, ki_tsid);
1440 CP(*ki, *ki32, ki_jobc);
1441 CP(*ki, *ki32, ki_tdev);
1442 CP(*ki, *ki32, ki_tdev_freebsd11);
1443 CP(*ki, *ki32, ki_siglist);
1444 CP(*ki, *ki32, ki_sigmask);
1445 CP(*ki, *ki32, ki_sigignore);
1446 CP(*ki, *ki32, ki_sigcatch);
1447 CP(*ki, *ki32, ki_uid);
1448 CP(*ki, *ki32, ki_ruid);
1449 CP(*ki, *ki32, ki_svuid);
1450 CP(*ki, *ki32, ki_rgid);
1451 CP(*ki, *ki32, ki_svgid);
1452 CP(*ki, *ki32, ki_ngroups);
1453 for (i = 0; i < KI_NGROUPS; i++)
1454 CP(*ki, *ki32, ki_groups[i]);
1455 CP(*ki, *ki32, ki_size);
1456 CP(*ki, *ki32, ki_rssize);
1457 CP(*ki, *ki32, ki_swrss);
1458 CP(*ki, *ki32, ki_tsize);
1459 CP(*ki, *ki32, ki_dsize);
1460 CP(*ki, *ki32, ki_ssize);
1461 CP(*ki, *ki32, ki_xstat);
1462 CP(*ki, *ki32, ki_acflag);
1463 CP(*ki, *ki32, ki_pctcpu);
1464 CP(*ki, *ki32, ki_estcpu);
1465 CP(*ki, *ki32, ki_slptime);
1466 CP(*ki, *ki32, ki_swtime);
1467 CP(*ki, *ki32, ki_cow);
1468 CP(*ki, *ki32, ki_runtime);
1469 TV_CP(*ki, *ki32, ki_start);
1470 TV_CP(*ki, *ki32, ki_childtime);
1471 CP(*ki, *ki32, ki_flag);
1472 CP(*ki, *ki32, ki_kiflag);
1473 CP(*ki, *ki32, ki_traceflag);
1474 CP(*ki, *ki32, ki_stat);
1475 CP(*ki, *ki32, ki_nice);
1476 CP(*ki, *ki32, ki_lock);
1477 CP(*ki, *ki32, ki_rqindex);
1478 CP(*ki, *ki32, ki_oncpu);
1479 CP(*ki, *ki32, ki_lastcpu);
1480
1481 /* XXX TODO: wrap cpu value as appropriate */
1482 CP(*ki, *ki32, ki_oncpu_old);
1483 CP(*ki, *ki32, ki_lastcpu_old);
1484
1485 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1486 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1487 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1488 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1489 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1490 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1491 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1492 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1493 CP(*ki, *ki32, ki_tracer);
1494 CP(*ki, *ki32, ki_flag2);
1495 CP(*ki, *ki32, ki_fibnum);
1496 CP(*ki, *ki32, ki_cr_flags);
1497 CP(*ki, *ki32, ki_jid);
1498 CP(*ki, *ki32, ki_numthreads);
1499 CP(*ki, *ki32, ki_tid);
1500 CP(*ki, *ki32, ki_pri);
1501 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1502 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1503 PTRTRIM_CP(*ki, *ki32, ki_pcb);
1504 PTRTRIM_CP(*ki, *ki32, ki_kstack);
1505 PTRTRIM_CP(*ki, *ki32, ki_udata);
1506 PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1507 CP(*ki, *ki32, ki_sflag);
1508 CP(*ki, *ki32, ki_tdflags);
1509 PTRTRIM_CP(*ki, *ki32, ki_uerrmsg);
1510 }
1511 #endif
1512
1513 static ssize_t
kern_proc_out_size(struct proc * p,int flags)1514 kern_proc_out_size(struct proc *p, int flags)
1515 {
1516 ssize_t size = 0;
1517
1518 PROC_LOCK_ASSERT(p, MA_OWNED);
1519
1520 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1521 #ifdef COMPAT_FREEBSD32
1522 if ((flags & KERN_PROC_MASK32) != 0) {
1523 size += sizeof(struct kinfo_proc32);
1524 } else
1525 #endif
1526 size += sizeof(struct kinfo_proc);
1527 } else {
1528 #ifdef COMPAT_FREEBSD32
1529 if ((flags & KERN_PROC_MASK32) != 0)
1530 size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1531 else
1532 #endif
1533 size += sizeof(struct kinfo_proc) * p->p_numthreads;
1534 }
1535 PROC_UNLOCK(p);
1536 return (size);
1537 }
1538
1539 int
kern_proc_out(struct proc * p,struct sbuf * sb,int flags)1540 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1541 {
1542 struct thread *td;
1543 struct kinfo_proc ki;
1544 #ifdef COMPAT_FREEBSD32
1545 struct kinfo_proc32 ki32;
1546 #endif
1547 int error;
1548
1549 PROC_LOCK_ASSERT(p, MA_OWNED);
1550 MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1551
1552 error = 0;
1553 fill_kinfo_proc(p, &ki);
1554 if ((flags & KERN_PROC_NOTHREADS) != 0) {
1555 #ifdef COMPAT_FREEBSD32
1556 if ((flags & KERN_PROC_MASK32) != 0) {
1557 freebsd32_kinfo_proc_out(&ki, &ki32);
1558 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1559 error = ENOMEM;
1560 } else
1561 #endif
1562 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1563 error = ENOMEM;
1564 } else {
1565 FOREACH_THREAD_IN_PROC(p, td) {
1566 fill_kinfo_thread(td, &ki, 1);
1567 #ifdef COMPAT_FREEBSD32
1568 if ((flags & KERN_PROC_MASK32) != 0) {
1569 freebsd32_kinfo_proc_out(&ki, &ki32);
1570 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1571 error = ENOMEM;
1572 } else
1573 #endif
1574 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1575 error = ENOMEM;
1576 if (error != 0)
1577 break;
1578 }
1579 }
1580 PROC_UNLOCK(p);
1581 return (error);
1582 }
1583
1584 static int
sysctl_out_proc(struct proc * p,struct sysctl_req * req,int flags)1585 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1586 {
1587 struct sbuf sb;
1588 struct kinfo_proc ki;
1589 int error, error2;
1590
1591 if (req->oldptr == NULL)
1592 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1593
1594 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1595 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1596 error = kern_proc_out(p, &sb, flags);
1597 error2 = sbuf_finish(&sb);
1598 sbuf_delete(&sb);
1599 if (error != 0)
1600 return (error);
1601 else if (error2 != 0)
1602 return (error2);
1603 return (0);
1604 }
1605
1606 int
proc_iterate(int (* cb)(struct proc *,void *),void * cbarg)1607 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1608 {
1609 struct proc *p;
1610 int error, i, j;
1611
1612 for (i = 0; i < pidhashlock + 1; i++) {
1613 sx_slock(&proctree_lock);
1614 sx_slock(&pidhashtbl_lock[i]);
1615 for (j = i; j <= pidhash; j += pidhashlock + 1) {
1616 LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1617 if (p->p_state == PRS_NEW)
1618 continue;
1619 error = cb(p, cbarg);
1620 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1621 if (error != 0) {
1622 sx_sunlock(&pidhashtbl_lock[i]);
1623 sx_sunlock(&proctree_lock);
1624 return (error);
1625 }
1626 }
1627 }
1628 sx_sunlock(&pidhashtbl_lock[i]);
1629 sx_sunlock(&proctree_lock);
1630 }
1631 return (0);
1632 }
1633
1634 struct kern_proc_out_args {
1635 struct sysctl_req *req;
1636 int flags;
1637 int oid_number;
1638 int *name;
1639 };
1640
1641 static int
sysctl_kern_proc_iterate(struct proc * p,void * origarg)1642 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1643 {
1644 struct kern_proc_out_args *arg = origarg;
1645 int *name = arg->name;
1646 int oid_number = arg->oid_number;
1647 int flags = arg->flags;
1648 struct sysctl_req *req = arg->req;
1649 int error = 0;
1650
1651 PROC_LOCK(p);
1652
1653 KASSERT(p->p_ucred != NULL,
1654 ("process credential is NULL for non-NEW proc"));
1655 /*
1656 * Show a user only appropriate processes.
1657 */
1658 if (p_cansee(curthread, p))
1659 goto skip;
1660 /*
1661 * TODO - make more efficient (see notes below).
1662 * do by session.
1663 */
1664 switch (oid_number) {
1665 case KERN_PROC_GID:
1666 if (p->p_ucred->cr_gid != (gid_t)name[0])
1667 goto skip;
1668 break;
1669
1670 case KERN_PROC_PGRP:
1671 /* could do this by traversing pgrp */
1672 if (p->p_pgrp == NULL ||
1673 p->p_pgrp->pg_id != (pid_t)name[0])
1674 goto skip;
1675 break;
1676
1677 case KERN_PROC_RGID:
1678 if (p->p_ucred->cr_rgid != (gid_t)name[0])
1679 goto skip;
1680 break;
1681
1682 case KERN_PROC_SESSION:
1683 if (p->p_session == NULL ||
1684 p->p_session->s_sid != (pid_t)name[0])
1685 goto skip;
1686 break;
1687
1688 case KERN_PROC_TTY:
1689 if ((p->p_flag & P_CONTROLT) == 0 ||
1690 p->p_session == NULL)
1691 goto skip;
1692 /* XXX proctree_lock */
1693 SESS_LOCK(p->p_session);
1694 if (p->p_session->s_ttyp == NULL ||
1695 tty_udev(p->p_session->s_ttyp) !=
1696 (dev_t)name[0]) {
1697 SESS_UNLOCK(p->p_session);
1698 goto skip;
1699 }
1700 SESS_UNLOCK(p->p_session);
1701 break;
1702
1703 case KERN_PROC_UID:
1704 if (p->p_ucred->cr_uid != (uid_t)name[0])
1705 goto skip;
1706 break;
1707
1708 case KERN_PROC_RUID:
1709 if (p->p_ucred->cr_ruid != (uid_t)name[0])
1710 goto skip;
1711 break;
1712
1713 case KERN_PROC_PROC:
1714 break;
1715
1716 default:
1717 break;
1718 }
1719 error = sysctl_out_proc(p, req, flags);
1720 PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1721 return (error);
1722 skip:
1723 PROC_UNLOCK(p);
1724 return (0);
1725 }
1726
1727 static int
sysctl_kern_proc(SYSCTL_HANDLER_ARGS)1728 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1729 {
1730 struct kern_proc_out_args iterarg;
1731 int *name = (int *)arg1;
1732 u_int namelen = arg2;
1733 struct proc *p;
1734 int flags, oid_number;
1735 int error = 0;
1736
1737 oid_number = oidp->oid_number;
1738 if (oid_number != KERN_PROC_ALL &&
1739 (oid_number & KERN_PROC_INC_THREAD) == 0)
1740 flags = KERN_PROC_NOTHREADS;
1741 else {
1742 flags = 0;
1743 oid_number &= ~KERN_PROC_INC_THREAD;
1744 }
1745 #ifdef COMPAT_FREEBSD32
1746 if (req->flags & SCTL_MASK32)
1747 flags |= KERN_PROC_MASK32;
1748 #endif
1749 if (oid_number == KERN_PROC_PID) {
1750 if (namelen != 1)
1751 return (EINVAL);
1752 error = sysctl_wire_old_buffer(req, 0);
1753 if (error)
1754 return (error);
1755 sx_slock(&proctree_lock);
1756 error = pget((pid_t)name[0], PGET_CANSEE, &p);
1757 if (error == 0)
1758 error = sysctl_out_proc(p, req, flags);
1759 sx_sunlock(&proctree_lock);
1760 return (error);
1761 }
1762
1763 switch (oid_number) {
1764 case KERN_PROC_ALL:
1765 if (namelen != 0)
1766 return (EINVAL);
1767 break;
1768 case KERN_PROC_PROC:
1769 if (namelen != 0 && namelen != 1)
1770 return (EINVAL);
1771 break;
1772 default:
1773 if (namelen != 1)
1774 return (EINVAL);
1775 break;
1776 }
1777
1778 if (req->oldptr == NULL) {
1779 /* overestimate by 5 procs */
1780 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1781 if (error)
1782 return (error);
1783 } else {
1784 error = sysctl_wire_old_buffer(req, 0);
1785 if (error != 0)
1786 return (error);
1787 }
1788 iterarg.flags = flags;
1789 iterarg.oid_number = oid_number;
1790 iterarg.req = req;
1791 iterarg.name = name;
1792 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1793 return (error);
1794 }
1795
1796 struct pargs *
pargs_alloc(int len)1797 pargs_alloc(int len)
1798 {
1799 struct pargs *pa;
1800
1801 pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1802 M_WAITOK);
1803 refcount_init(&pa->ar_ref, 1);
1804 pa->ar_length = len;
1805 return (pa);
1806 }
1807
1808 static void
pargs_free(struct pargs * pa)1809 pargs_free(struct pargs *pa)
1810 {
1811
1812 free(pa, M_PARGS);
1813 }
1814
1815 void
pargs_hold(struct pargs * pa)1816 pargs_hold(struct pargs *pa)
1817 {
1818
1819 if (pa == NULL)
1820 return;
1821 refcount_acquire(&pa->ar_ref);
1822 }
1823
1824 void
pargs_drop(struct pargs * pa)1825 pargs_drop(struct pargs *pa)
1826 {
1827
1828 if (pa == NULL)
1829 return;
1830 if (refcount_release(&pa->ar_ref))
1831 pargs_free(pa);
1832 }
1833
1834 static int
proc_read_string(struct thread * td,struct proc * p,const char * sptr,char * buf,size_t len)1835 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1836 size_t len)
1837 {
1838 ssize_t n;
1839
1840 /*
1841 * This may return a short read if the string is shorter than the chunk
1842 * and is aligned at the end of the page, and the following page is not
1843 * mapped.
1844 */
1845 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1846 if (n <= 0)
1847 return (ENOMEM);
1848 return (0);
1849 }
1850
1851 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */
1852
1853 enum proc_vector_type {
1854 PROC_ARG,
1855 PROC_ENV,
1856 PROC_AUX,
1857 };
1858
1859 #ifdef COMPAT_FREEBSD32
1860 static int
get_proc_vector32(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1861 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1862 size_t *vsizep, enum proc_vector_type type)
1863 {
1864 struct freebsd32_ps_strings pss;
1865 Elf32_Auxinfo aux;
1866 vm_offset_t vptr, ptr;
1867 uint32_t *proc_vector32;
1868 char **proc_vector;
1869 size_t vsize, size;
1870 int i, error;
1871
1872 error = 0;
1873 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1874 sizeof(pss))
1875 return (ENOMEM);
1876 switch (type) {
1877 case PROC_ARG:
1878 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1879 vsize = pss.ps_nargvstr;
1880 if (vsize > ARG_MAX)
1881 return (ENOEXEC);
1882 size = vsize * sizeof(int32_t);
1883 break;
1884 case PROC_ENV:
1885 vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1886 vsize = pss.ps_nenvstr;
1887 if (vsize > ARG_MAX)
1888 return (ENOEXEC);
1889 size = vsize * sizeof(int32_t);
1890 break;
1891 case PROC_AUX:
1892 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1893 (pss.ps_nenvstr + 1) * sizeof(int32_t);
1894 if (vptr % 4 != 0)
1895 return (ENOEXEC);
1896 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1897 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1898 sizeof(aux))
1899 return (ENOMEM);
1900 if (aux.a_type == AT_NULL)
1901 break;
1902 ptr += sizeof(aux);
1903 }
1904 if (aux.a_type != AT_NULL)
1905 return (ENOEXEC);
1906 vsize = i + 1;
1907 size = vsize * sizeof(aux);
1908 break;
1909 default:
1910 KASSERT(0, ("Wrong proc vector type: %d", type));
1911 return (EINVAL);
1912 }
1913 proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1914 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1915 error = ENOMEM;
1916 goto done;
1917 }
1918 if (type == PROC_AUX) {
1919 *proc_vectorp = (char **)proc_vector32;
1920 *vsizep = vsize;
1921 return (0);
1922 }
1923 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1924 for (i = 0; i < (int)vsize; i++)
1925 proc_vector[i] = PTRIN(proc_vector32[i]);
1926 *proc_vectorp = proc_vector;
1927 *vsizep = vsize;
1928 done:
1929 free(proc_vector32, M_TEMP);
1930 return (error);
1931 }
1932 #endif
1933
1934 static int
get_proc_vector(struct thread * td,struct proc * p,char *** proc_vectorp,size_t * vsizep,enum proc_vector_type type)1935 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1936 size_t *vsizep, enum proc_vector_type type)
1937 {
1938 struct ps_strings pss;
1939 Elf_Auxinfo aux;
1940 vm_offset_t vptr, ptr;
1941 char **proc_vector;
1942 size_t vsize, size;
1943 int i;
1944
1945 #ifdef COMPAT_FREEBSD32
1946 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1947 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1948 #endif
1949 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1950 sizeof(pss))
1951 return (ENOMEM);
1952 switch (type) {
1953 case PROC_ARG:
1954 vptr = (vm_offset_t)pss.ps_argvstr;
1955 vsize = pss.ps_nargvstr;
1956 if (vsize > ARG_MAX)
1957 return (ENOEXEC);
1958 size = vsize * sizeof(char *);
1959 break;
1960 case PROC_ENV:
1961 vptr = (vm_offset_t)pss.ps_envstr;
1962 vsize = pss.ps_nenvstr;
1963 if (vsize > ARG_MAX)
1964 return (ENOEXEC);
1965 size = vsize * sizeof(char *);
1966 break;
1967 case PROC_AUX:
1968 /*
1969 * The aux array is just above env array on the stack. Check
1970 * that the address is naturally aligned.
1971 */
1972 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1973 * sizeof(char *);
1974 #if __ELF_WORD_SIZE == 64
1975 if (vptr % sizeof(uint64_t) != 0)
1976 #else
1977 if (vptr % sizeof(uint32_t) != 0)
1978 #endif
1979 return (ENOEXEC);
1980 /*
1981 * We count the array size reading the aux vectors from the
1982 * stack until AT_NULL vector is returned. So (to keep the code
1983 * simple) we read the process stack twice: the first time here
1984 * to find the size and the second time when copying the vectors
1985 * to the allocated proc_vector.
1986 */
1987 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1988 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1989 sizeof(aux))
1990 return (ENOMEM);
1991 if (aux.a_type == AT_NULL)
1992 break;
1993 ptr += sizeof(aux);
1994 }
1995 /*
1996 * If the PROC_AUXV_MAX entries are iterated over, and we have
1997 * not reached AT_NULL, it is most likely we are reading wrong
1998 * data: either the process doesn't have auxv array or data has
1999 * been modified. Return the error in this case.
2000 */
2001 if (aux.a_type != AT_NULL)
2002 return (ENOEXEC);
2003 vsize = i + 1;
2004 size = vsize * sizeof(aux);
2005 break;
2006 default:
2007 KASSERT(0, ("Wrong proc vector type: %d", type));
2008 return (EINVAL); /* In case we are built without INVARIANTS. */
2009 }
2010 proc_vector = malloc(size, M_TEMP, M_WAITOK);
2011 if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2012 free(proc_vector, M_TEMP);
2013 return (ENOMEM);
2014 }
2015 *proc_vectorp = proc_vector;
2016 *vsizep = vsize;
2017
2018 return (0);
2019 }
2020
2021 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */
2022
2023 static int
get_ps_strings(struct thread * td,struct proc * p,struct sbuf * sb,enum proc_vector_type type)2024 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2025 enum proc_vector_type type)
2026 {
2027 size_t done, len, nchr, vsize;
2028 int error, i;
2029 char **proc_vector, *sptr;
2030 char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2031
2032 PROC_ASSERT_HELD(p);
2033
2034 /*
2035 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2036 */
2037 nchr = 2 * (PATH_MAX + ARG_MAX);
2038
2039 error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2040 if (error != 0)
2041 return (error);
2042 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2043 /*
2044 * The program may have scribbled into its argv array, e.g. to
2045 * remove some arguments. If that has happened, break out
2046 * before trying to read from NULL.
2047 */
2048 if (proc_vector[i] == NULL)
2049 break;
2050 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2051 error = proc_read_string(td, p, sptr, pss_string,
2052 sizeof(pss_string));
2053 if (error != 0)
2054 goto done;
2055 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2056 if (done + len >= nchr)
2057 len = nchr - done - 1;
2058 sbuf_bcat(sb, pss_string, len);
2059 if (len != GET_PS_STRINGS_CHUNK_SZ)
2060 break;
2061 done += GET_PS_STRINGS_CHUNK_SZ;
2062 }
2063 sbuf_bcat(sb, "", 1);
2064 done += len + 1;
2065 }
2066 done:
2067 free(proc_vector, M_TEMP);
2068 return (error);
2069 }
2070
2071 int
proc_getargv(struct thread * td,struct proc * p,struct sbuf * sb)2072 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2073 {
2074
2075 return (get_ps_strings(curthread, p, sb, PROC_ARG));
2076 }
2077
2078 int
proc_getenvv(struct thread * td,struct proc * p,struct sbuf * sb)2079 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2080 {
2081
2082 return (get_ps_strings(curthread, p, sb, PROC_ENV));
2083 }
2084
2085 int
proc_getauxv(struct thread * td,struct proc * p,struct sbuf * sb)2086 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2087 {
2088 size_t vsize, size;
2089 char **auxv;
2090 int error;
2091
2092 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2093 if (error == 0) {
2094 #ifdef COMPAT_FREEBSD32
2095 if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2096 size = vsize * sizeof(Elf32_Auxinfo);
2097 else
2098 #endif
2099 size = vsize * sizeof(Elf_Auxinfo);
2100 if (sbuf_bcat(sb, auxv, size) != 0)
2101 error = ENOMEM;
2102 free(auxv, M_TEMP);
2103 }
2104 return (error);
2105 }
2106
2107 /*
2108 * This sysctl allows a process to retrieve the argument list or process
2109 * title for another process without groping around in the address space
2110 * of the other process. It also allow a process to set its own "process
2111 * title to a string of its own choice.
2112 */
2113 static int
sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)2114 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2115 {
2116 int *name = (int *)arg1;
2117 u_int namelen = arg2;
2118 struct pargs *newpa, *pa;
2119 struct proc *p;
2120 struct sbuf sb;
2121 int flags, error = 0, error2;
2122 pid_t pid;
2123
2124 if (namelen != 1)
2125 return (EINVAL);
2126
2127 p = curproc;
2128 pid = (pid_t)name[0];
2129 if (pid == -1) {
2130 pid = p->p_pid;
2131 }
2132
2133 /*
2134 * If the query is for this process and it is single-threaded, there
2135 * is nobody to modify pargs, thus we can just read.
2136 */
2137 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2138 (pa = p->p_args) != NULL)
2139 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2140
2141 flags = PGET_CANSEE;
2142 if (req->newptr != NULL)
2143 flags |= PGET_ISCURRENT;
2144 error = pget(pid, flags, &p);
2145 if (error)
2146 return (error);
2147
2148 pa = p->p_args;
2149 if (pa != NULL) {
2150 pargs_hold(pa);
2151 PROC_UNLOCK(p);
2152 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2153 pargs_drop(pa);
2154 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2155 _PHOLD(p);
2156 PROC_UNLOCK(p);
2157 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2158 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2159 error = proc_getargv(curthread, p, &sb);
2160 error2 = sbuf_finish(&sb);
2161 PRELE(p);
2162 sbuf_delete(&sb);
2163 if (error == 0 && error2 != 0)
2164 error = error2;
2165 } else {
2166 PROC_UNLOCK(p);
2167 }
2168 if (error != 0 || req->newptr == NULL)
2169 return (error);
2170
2171 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2172 return (ENOMEM);
2173
2174 if (req->newlen == 0) {
2175 /*
2176 * Clear the argument pointer, so that we'll fetch arguments
2177 * with proc_getargv() until further notice.
2178 */
2179 newpa = NULL;
2180 } else {
2181 newpa = pargs_alloc(req->newlen);
2182 error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2183 if (error != 0) {
2184 pargs_free(newpa);
2185 return (error);
2186 }
2187 }
2188 PROC_LOCK(p);
2189 pa = p->p_args;
2190 p->p_args = newpa;
2191 PROC_UNLOCK(p);
2192 pargs_drop(pa);
2193 return (0);
2194 }
2195
2196 /*
2197 * This sysctl allows a process to retrieve environment of another process.
2198 */
2199 static int
sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)2200 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2201 {
2202 int *name = (int *)arg1;
2203 u_int namelen = arg2;
2204 struct proc *p;
2205 struct sbuf sb;
2206 int error, error2;
2207
2208 if (namelen != 1)
2209 return (EINVAL);
2210
2211 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2212 if (error != 0)
2213 return (error);
2214 if ((p->p_flag & P_SYSTEM) != 0) {
2215 PRELE(p);
2216 return (0);
2217 }
2218
2219 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2220 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2221 error = proc_getenvv(curthread, p, &sb);
2222 error2 = sbuf_finish(&sb);
2223 PRELE(p);
2224 sbuf_delete(&sb);
2225 return (error != 0 ? error : error2);
2226 }
2227
2228 /*
2229 * This sysctl allows a process to retrieve ELF auxiliary vector of
2230 * another process.
2231 */
2232 static int
sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)2233 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2234 {
2235 int *name = (int *)arg1;
2236 u_int namelen = arg2;
2237 struct proc *p;
2238 struct sbuf sb;
2239 int error, error2;
2240
2241 if (namelen != 1)
2242 return (EINVAL);
2243
2244 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2245 if (error != 0)
2246 return (error);
2247 if ((p->p_flag & P_SYSTEM) != 0) {
2248 PRELE(p);
2249 return (0);
2250 }
2251 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2252 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2253 error = proc_getauxv(curthread, p, &sb);
2254 error2 = sbuf_finish(&sb);
2255 PRELE(p);
2256 sbuf_delete(&sb);
2257 return (error != 0 ? error : error2);
2258 }
2259
2260 /*
2261 * Look up the canonical executable path running in the specified process.
2262 * It tries to return the same hardlink name as was used for execve(2).
2263 * This allows the programs that modify their behavior based on their progname,
2264 * to operate correctly.
2265 *
2266 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2267 * calling conventions.
2268 * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2269 * allocated and freed by caller.
2270 * freebuf should be freed by caller, from the M_TEMP malloc type.
2271 */
2272 int
proc_get_binpath(struct proc * p,char * binname,char ** retbuf,char ** freebuf)2273 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2274 char **freebuf)
2275 {
2276 struct nameidata nd;
2277 struct vnode *vp, *dvp;
2278 size_t freepath_size;
2279 int error;
2280 bool do_fullpath;
2281
2282 PROC_LOCK_ASSERT(p, MA_OWNED);
2283
2284 vp = p->p_textvp;
2285 if (vp == NULL) {
2286 PROC_UNLOCK(p);
2287 *retbuf = "";
2288 *freebuf = NULL;
2289 return (0);
2290 }
2291 vref(vp);
2292 dvp = p->p_textdvp;
2293 if (dvp != NULL)
2294 vref(dvp);
2295 if (p->p_binname != NULL)
2296 strlcpy(binname, p->p_binname, MAXPATHLEN);
2297 PROC_UNLOCK(p);
2298
2299 do_fullpath = true;
2300 *freebuf = NULL;
2301 if (dvp != NULL && binname[0] != '\0') {
2302 freepath_size = MAXPATHLEN;
2303 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2304 retbuf, freebuf, &freepath_size) == 0) {
2305 /*
2306 * Recheck the looked up path. The binary
2307 * might have been renamed or replaced, in
2308 * which case we should not report old name.
2309 */
2310 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2311 error = namei(&nd);
2312 if (error == 0) {
2313 if (nd.ni_vp == vp)
2314 do_fullpath = false;
2315 vrele(nd.ni_vp);
2316 NDFREE_PNBUF(&nd);
2317 }
2318 }
2319 }
2320 if (do_fullpath) {
2321 free(*freebuf, M_TEMP);
2322 *freebuf = NULL;
2323 error = vn_fullpath(vp, retbuf, freebuf);
2324 }
2325 vrele(vp);
2326 if (dvp != NULL)
2327 vrele(dvp);
2328 return (error);
2329 }
2330
2331 /*
2332 * This sysctl allows a process to retrieve the path of the executable for
2333 * itself or another process.
2334 */
2335 static int
sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)2336 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2337 {
2338 pid_t *pidp = (pid_t *)arg1;
2339 unsigned int arglen = arg2;
2340 struct proc *p;
2341 char *retbuf, *freebuf, *binname;
2342 int error;
2343
2344 if (arglen != 1)
2345 return (EINVAL);
2346 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2347 binname[0] = '\0';
2348 if (*pidp == -1) { /* -1 means this process */
2349 error = 0;
2350 p = req->td->td_proc;
2351 PROC_LOCK(p);
2352 } else {
2353 error = pget(*pidp, PGET_CANSEE, &p);
2354 }
2355
2356 if (error == 0)
2357 error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2358 free(binname, M_TEMP);
2359 if (error != 0)
2360 return (error);
2361 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2362 free(freebuf, M_TEMP);
2363 return (error);
2364 }
2365
2366 static int
sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)2367 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2368 {
2369 struct proc *p;
2370 char *sv_name;
2371 int *name;
2372 int namelen;
2373 int error;
2374
2375 namelen = arg2;
2376 if (namelen != 1)
2377 return (EINVAL);
2378
2379 name = (int *)arg1;
2380 error = pget((pid_t)name[0], PGET_CANSEE, &p);
2381 if (error != 0)
2382 return (error);
2383 sv_name = p->p_sysent->sv_name;
2384 PROC_UNLOCK(p);
2385 return (sysctl_handle_string(oidp, sv_name, 0, req));
2386 }
2387
2388 #ifdef KINFO_OVMENTRY_SIZE
2389 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2390 #endif
2391
2392 #ifdef COMPAT_FREEBSD7
2393 static int
sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)2394 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2395 {
2396 vm_map_entry_t entry, tmp_entry;
2397 unsigned int last_timestamp, namelen;
2398 char *fullpath, *freepath;
2399 struct kinfo_ovmentry *kve;
2400 struct vattr va;
2401 struct ucred *cred;
2402 int error, *name;
2403 struct vnode *vp;
2404 struct proc *p;
2405 vm_map_t map;
2406 struct vmspace *vm;
2407
2408 namelen = arg2;
2409 if (namelen != 1)
2410 return (EINVAL);
2411
2412 name = (int *)arg1;
2413 error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2414 if (error != 0)
2415 return (error);
2416 vm = vmspace_acquire_ref(p);
2417 if (vm == NULL) {
2418 PRELE(p);
2419 return (ESRCH);
2420 }
2421 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2422
2423 map = &vm->vm_map;
2424 vm_map_lock_read(map);
2425 VM_MAP_ENTRY_FOREACH(entry, map) {
2426 vm_object_t obj, tobj, lobj;
2427 vm_offset_t addr;
2428
2429 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2430 continue;
2431
2432 bzero(kve, sizeof(*kve));
2433 kve->kve_structsize = sizeof(*kve);
2434
2435 kve->kve_private_resident = 0;
2436 obj = entry->object.vm_object;
2437 if (obj != NULL) {
2438 VM_OBJECT_RLOCK(obj);
2439 if (obj->shadow_count == 1)
2440 kve->kve_private_resident =
2441 obj->resident_page_count;
2442 }
2443 kve->kve_resident = 0;
2444 addr = entry->start;
2445 while (addr < entry->end) {
2446 if (pmap_extract(map->pmap, addr))
2447 kve->kve_resident++;
2448 addr += PAGE_SIZE;
2449 }
2450
2451 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2452 if (tobj != obj) {
2453 VM_OBJECT_RLOCK(tobj);
2454 kve->kve_offset += tobj->backing_object_offset;
2455 }
2456 if (lobj != obj)
2457 VM_OBJECT_RUNLOCK(lobj);
2458 lobj = tobj;
2459 }
2460
2461 kve->kve_start = (void*)entry->start;
2462 kve->kve_end = (void*)entry->end;
2463 kve->kve_offset += (off_t)entry->offset;
2464
2465 if (entry->protection & VM_PROT_READ)
2466 kve->kve_protection |= KVME_PROT_READ;
2467 if (entry->protection & VM_PROT_WRITE)
2468 kve->kve_protection |= KVME_PROT_WRITE;
2469 if (entry->protection & VM_PROT_EXECUTE)
2470 kve->kve_protection |= KVME_PROT_EXEC;
2471
2472 if (entry->eflags & MAP_ENTRY_COW)
2473 kve->kve_flags |= KVME_FLAG_COW;
2474 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2475 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2476 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2477 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2478
2479 last_timestamp = map->timestamp;
2480 vm_map_unlock_read(map);
2481
2482 kve->kve_fileid = 0;
2483 kve->kve_fsid = 0;
2484 freepath = NULL;
2485 fullpath = "";
2486 if (lobj) {
2487 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2488 if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2489 kve->kve_type = KVME_TYPE_UNKNOWN;
2490 if (vp != NULL)
2491 vref(vp);
2492 if (lobj != obj)
2493 VM_OBJECT_RUNLOCK(lobj);
2494
2495 kve->kve_ref_count = obj->ref_count;
2496 kve->kve_shadow_count = obj->shadow_count;
2497 VM_OBJECT_RUNLOCK(obj);
2498 if (vp != NULL) {
2499 vn_fullpath(vp, &fullpath, &freepath);
2500 cred = curthread->td_ucred;
2501 vn_lock(vp, LK_SHARED | LK_RETRY);
2502 if (VOP_GETATTR(vp, &va, cred) == 0) {
2503 kve->kve_fileid = va.va_fileid;
2504 /* truncate */
2505 kve->kve_fsid = va.va_fsid;
2506 }
2507 vput(vp);
2508 }
2509 } else {
2510 kve->kve_type = KVME_TYPE_NONE;
2511 kve->kve_ref_count = 0;
2512 kve->kve_shadow_count = 0;
2513 }
2514
2515 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2516 if (freepath != NULL)
2517 free(freepath, M_TEMP);
2518
2519 error = SYSCTL_OUT(req, kve, sizeof(*kve));
2520 vm_map_lock_read(map);
2521 if (error)
2522 break;
2523 if (last_timestamp != map->timestamp) {
2524 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2525 entry = tmp_entry;
2526 }
2527 }
2528 vm_map_unlock_read(map);
2529 vmspace_free(vm);
2530 PRELE(p);
2531 free(kve, M_TEMP);
2532 return (error);
2533 }
2534 #endif /* COMPAT_FREEBSD7 */
2535
2536 #ifdef KINFO_VMENTRY_SIZE
2537 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2538 #endif
2539
2540 void
kern_proc_vmmap_resident(vm_map_t map,vm_map_entry_t entry,int * resident_count,bool * super)2541 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2542 int *resident_count, bool *super)
2543 {
2544 vm_object_t obj, tobj;
2545 vm_page_t m, m_adv;
2546 vm_offset_t addr;
2547 vm_paddr_t pa;
2548 vm_pindex_t pi, pi_adv, pindex;
2549 int incore;
2550
2551 *super = false;
2552 *resident_count = 0;
2553 if (vmmap_skip_res_cnt)
2554 return;
2555
2556 pa = 0;
2557 obj = entry->object.vm_object;
2558 addr = entry->start;
2559 m_adv = NULL;
2560 pi = OFF_TO_IDX(entry->offset);
2561 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2562 if (m_adv != NULL) {
2563 m = m_adv;
2564 } else {
2565 pi_adv = atop(entry->end - addr);
2566 pindex = pi;
2567 for (tobj = obj;; tobj = tobj->backing_object) {
2568 m = vm_radix_lookup_ge(&tobj->rtree, pindex);
2569 if (m != NULL) {
2570 if (m->pindex == pindex)
2571 break;
2572 if (pi_adv > m->pindex - pindex) {
2573 pi_adv = m->pindex - pindex;
2574 m_adv = m;
2575 }
2576 }
2577 if (tobj->backing_object == NULL)
2578 goto next;
2579 pindex += OFF_TO_IDX(tobj->
2580 backing_object_offset);
2581 }
2582 }
2583 m_adv = NULL;
2584 if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2585 (addr & (pagesizes[1] - 1)) == 0 && (incore =
2586 pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2587 *super = true;
2588 /*
2589 * The virtual page might be smaller than the physical
2590 * page, so we use the page size reported by the pmap
2591 * rather than m->psind.
2592 */
2593 pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]);
2594 } else {
2595 /*
2596 * We do not test the found page on validity.
2597 * Either the page is busy and being paged in,
2598 * or it was invalidated. The first case
2599 * should be counted as resident, the second
2600 * is not so clear; we do account both.
2601 */
2602 pi_adv = 1;
2603 }
2604 *resident_count += pi_adv;
2605 next:;
2606 }
2607 }
2608
2609 /*
2610 * Must be called with the process locked and will return unlocked.
2611 */
2612 int
kern_proc_vmmap_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)2613 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2614 {
2615 vm_map_entry_t entry, tmp_entry;
2616 struct vattr va;
2617 vm_map_t map;
2618 vm_object_t lobj, nobj, obj, tobj;
2619 char *fullpath, *freepath;
2620 struct kinfo_vmentry *kve;
2621 struct ucred *cred;
2622 struct vnode *vp;
2623 struct vmspace *vm;
2624 vm_offset_t addr;
2625 unsigned int last_timestamp;
2626 int error;
2627 key_t key;
2628 unsigned short seq;
2629 bool guard, super;
2630
2631 PROC_LOCK_ASSERT(p, MA_OWNED);
2632
2633 _PHOLD(p);
2634 PROC_UNLOCK(p);
2635 vm = vmspace_acquire_ref(p);
2636 if (vm == NULL) {
2637 PRELE(p);
2638 return (ESRCH);
2639 }
2640 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2641
2642 error = 0;
2643 map = &vm->vm_map;
2644 vm_map_lock_read(map);
2645 VM_MAP_ENTRY_FOREACH(entry, map) {
2646 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2647 continue;
2648
2649 addr = entry->end;
2650 bzero(kve, sizeof(*kve));
2651 obj = entry->object.vm_object;
2652 if (obj != NULL) {
2653 if ((obj->flags & OBJ_ANON) != 0)
2654 kve->kve_obj = (uintptr_t)obj;
2655
2656 for (tobj = obj; tobj != NULL;
2657 tobj = tobj->backing_object) {
2658 VM_OBJECT_RLOCK(tobj);
2659 kve->kve_offset += tobj->backing_object_offset;
2660 lobj = tobj;
2661 }
2662 if (obj->backing_object == NULL)
2663 kve->kve_private_resident =
2664 obj->resident_page_count;
2665 kern_proc_vmmap_resident(map, entry,
2666 &kve->kve_resident, &super);
2667 if (super)
2668 kve->kve_flags |= KVME_FLAG_SUPER;
2669 for (tobj = obj; tobj != NULL; tobj = nobj) {
2670 nobj = tobj->backing_object;
2671 if (tobj != obj && tobj != lobj)
2672 VM_OBJECT_RUNLOCK(tobj);
2673 }
2674 } else {
2675 lobj = NULL;
2676 }
2677
2678 kve->kve_start = entry->start;
2679 kve->kve_end = entry->end;
2680 kve->kve_offset += entry->offset;
2681
2682 if (entry->protection & VM_PROT_READ)
2683 kve->kve_protection |= KVME_PROT_READ;
2684 if (entry->protection & VM_PROT_WRITE)
2685 kve->kve_protection |= KVME_PROT_WRITE;
2686 if (entry->protection & VM_PROT_EXECUTE)
2687 kve->kve_protection |= KVME_PROT_EXEC;
2688 if (entry->max_protection & VM_PROT_READ)
2689 kve->kve_protection |= KVME_MAX_PROT_READ;
2690 if (entry->max_protection & VM_PROT_WRITE)
2691 kve->kve_protection |= KVME_MAX_PROT_WRITE;
2692 if (entry->max_protection & VM_PROT_EXECUTE)
2693 kve->kve_protection |= KVME_MAX_PROT_EXEC;
2694
2695 if (entry->eflags & MAP_ENTRY_COW)
2696 kve->kve_flags |= KVME_FLAG_COW;
2697 if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2698 kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2699 if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2700 kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2701 if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2702 kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2703 if (entry->eflags & MAP_ENTRY_USER_WIRED)
2704 kve->kve_flags |= KVME_FLAG_USER_WIRED;
2705
2706 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2707
2708 last_timestamp = map->timestamp;
2709 vm_map_unlock_read(map);
2710
2711 freepath = NULL;
2712 fullpath = "";
2713 if (lobj != NULL) {
2714 kve->kve_type = vm_object_kvme_type(lobj, &vp);
2715 if (vp != NULL)
2716 vref(vp);
2717 if (lobj != obj)
2718 VM_OBJECT_RUNLOCK(lobj);
2719
2720 kve->kve_ref_count = obj->ref_count;
2721 kve->kve_shadow_count = obj->shadow_count;
2722 if (obj->type == OBJT_DEVICE ||
2723 obj->type == OBJT_MGTDEVICE) {
2724 cdev_pager_get_path(obj, kve->kve_path,
2725 sizeof(kve->kve_path));
2726 }
2727 VM_OBJECT_RUNLOCK(obj);
2728 if ((lobj->flags & OBJ_SYSVSHM) != 0) {
2729 kve->kve_flags |= KVME_FLAG_SYSVSHM;
2730 shmobjinfo(lobj, &key, &seq);
2731 kve->kve_vn_fileid = key;
2732 kve->kve_vn_fsid_freebsd11 = seq;
2733 }
2734 if ((lobj->flags & OBJ_POSIXSHM) != 0) {
2735 kve->kve_flags |= KVME_FLAG_POSIXSHM;
2736 shm_get_path(lobj, kve->kve_path,
2737 sizeof(kve->kve_path));
2738 }
2739 if (vp != NULL) {
2740 vn_fullpath(vp, &fullpath, &freepath);
2741 kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2742 cred = curthread->td_ucred;
2743 vn_lock(vp, LK_SHARED | LK_RETRY);
2744 if (VOP_GETATTR(vp, &va, cred) == 0) {
2745 kve->kve_vn_fileid = va.va_fileid;
2746 kve->kve_vn_fsid = va.va_fsid;
2747 kve->kve_vn_fsid_freebsd11 =
2748 kve->kve_vn_fsid; /* truncate */
2749 kve->kve_vn_mode =
2750 MAKEIMODE(va.va_type, va.va_mode);
2751 kve->kve_vn_size = va.va_size;
2752 kve->kve_vn_rdev = va.va_rdev;
2753 kve->kve_vn_rdev_freebsd11 =
2754 kve->kve_vn_rdev; /* truncate */
2755 kve->kve_status = KF_ATTR_VALID;
2756 }
2757 vput(vp);
2758 strlcpy(kve->kve_path, fullpath, sizeof(
2759 kve->kve_path));
2760 free(freepath, M_TEMP);
2761 }
2762 } else {
2763 kve->kve_type = guard ? KVME_TYPE_GUARD :
2764 KVME_TYPE_NONE;
2765 kve->kve_ref_count = 0;
2766 kve->kve_shadow_count = 0;
2767 }
2768
2769 /* Pack record size down */
2770 if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2771 kve->kve_structsize =
2772 offsetof(struct kinfo_vmentry, kve_path) +
2773 strlen(kve->kve_path) + 1;
2774 else
2775 kve->kve_structsize = sizeof(*kve);
2776 kve->kve_structsize = roundup(kve->kve_structsize,
2777 sizeof(uint64_t));
2778
2779 /* Halt filling and truncate rather than exceeding maxlen */
2780 if (maxlen != -1 && maxlen < kve->kve_structsize) {
2781 error = 0;
2782 vm_map_lock_read(map);
2783 break;
2784 } else if (maxlen != -1)
2785 maxlen -= kve->kve_structsize;
2786
2787 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2788 error = ENOMEM;
2789 vm_map_lock_read(map);
2790 if (error != 0)
2791 break;
2792 if (last_timestamp != map->timestamp) {
2793 vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2794 entry = tmp_entry;
2795 }
2796 }
2797 vm_map_unlock_read(map);
2798 vmspace_free(vm);
2799 PRELE(p);
2800 free(kve, M_TEMP);
2801 return (error);
2802 }
2803
2804 static int
sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)2805 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2806 {
2807 struct proc *p;
2808 struct sbuf sb;
2809 u_int namelen;
2810 int error, error2, *name;
2811
2812 namelen = arg2;
2813 if (namelen != 1)
2814 return (EINVAL);
2815
2816 name = (int *)arg1;
2817 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2818 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2819 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2820 if (error != 0) {
2821 sbuf_delete(&sb);
2822 return (error);
2823 }
2824 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2825 error2 = sbuf_finish(&sb);
2826 sbuf_delete(&sb);
2827 return (error != 0 ? error : error2);
2828 }
2829
2830 #if defined(STACK) || defined(DDB)
2831 static int
sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)2832 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2833 {
2834 struct kinfo_kstack *kkstp;
2835 int error, i, *name, numthreads;
2836 lwpid_t *lwpidarray;
2837 struct thread *td;
2838 struct stack *st;
2839 struct sbuf sb;
2840 struct proc *p;
2841 u_int namelen;
2842
2843 namelen = arg2;
2844 if (namelen != 1)
2845 return (EINVAL);
2846
2847 name = (int *)arg1;
2848 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2849 if (error != 0)
2850 return (error);
2851
2852 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2853 st = stack_create(M_WAITOK);
2854
2855 lwpidarray = NULL;
2856 PROC_LOCK(p);
2857 do {
2858 if (lwpidarray != NULL) {
2859 free(lwpidarray, M_TEMP);
2860 lwpidarray = NULL;
2861 }
2862 numthreads = p->p_numthreads;
2863 PROC_UNLOCK(p);
2864 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2865 M_WAITOK | M_ZERO);
2866 PROC_LOCK(p);
2867 } while (numthreads < p->p_numthreads);
2868
2869 /*
2870 * XXXRW: During the below loop, execve(2) and countless other sorts
2871 * of changes could have taken place. Should we check to see if the
2872 * vmspace has been replaced, or the like, in order to prevent
2873 * giving a snapshot that spans, say, execve(2), with some threads
2874 * before and some after? Among other things, the credentials could
2875 * have changed, in which case the right to extract debug info might
2876 * no longer be assured.
2877 */
2878 i = 0;
2879 FOREACH_THREAD_IN_PROC(p, td) {
2880 KASSERT(i < numthreads,
2881 ("sysctl_kern_proc_kstack: numthreads"));
2882 lwpidarray[i] = td->td_tid;
2883 i++;
2884 }
2885 PROC_UNLOCK(p);
2886 numthreads = i;
2887 for (i = 0; i < numthreads; i++) {
2888 td = tdfind(lwpidarray[i], p->p_pid);
2889 if (td == NULL) {
2890 continue;
2891 }
2892 bzero(kkstp, sizeof(*kkstp));
2893 (void)sbuf_new(&sb, kkstp->kkst_trace,
2894 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2895 thread_lock(td);
2896 kkstp->kkst_tid = td->td_tid;
2897 if (stack_save_td(st, td) == 0)
2898 kkstp->kkst_state = KKST_STATE_STACKOK;
2899 else
2900 kkstp->kkst_state = KKST_STATE_RUNNING;
2901 thread_unlock(td);
2902 PROC_UNLOCK(p);
2903 stack_sbuf_print(&sb, st);
2904 sbuf_finish(&sb);
2905 sbuf_delete(&sb);
2906 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2907 if (error)
2908 break;
2909 }
2910 PRELE(p);
2911 if (lwpidarray != NULL)
2912 free(lwpidarray, M_TEMP);
2913 stack_destroy(st);
2914 free(kkstp, M_TEMP);
2915 return (error);
2916 }
2917 #endif
2918
2919 /*
2920 * This sysctl allows a process to retrieve the full list of groups from
2921 * itself or another process.
2922 */
2923 static int
sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)2924 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2925 {
2926 pid_t *pidp = (pid_t *)arg1;
2927 unsigned int arglen = arg2;
2928 struct proc *p;
2929 struct ucred *cred;
2930 int error;
2931
2932 if (arglen != 1)
2933 return (EINVAL);
2934 if (*pidp == -1) { /* -1 means this process */
2935 p = req->td->td_proc;
2936 PROC_LOCK(p);
2937 } else {
2938 error = pget(*pidp, PGET_CANSEE, &p);
2939 if (error != 0)
2940 return (error);
2941 }
2942
2943 cred = crhold(p->p_ucred);
2944 PROC_UNLOCK(p);
2945
2946 error = SYSCTL_OUT(req, cred->cr_groups,
2947 cred->cr_ngroups * sizeof(gid_t));
2948 crfree(cred);
2949 return (error);
2950 }
2951
2952 /*
2953 * This sysctl allows a process to retrieve or/and set the resource limit for
2954 * another process.
2955 */
2956 static int
sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)2957 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2958 {
2959 int *name = (int *)arg1;
2960 u_int namelen = arg2;
2961 struct rlimit rlim;
2962 struct proc *p;
2963 u_int which;
2964 int flags, error;
2965
2966 if (namelen != 2)
2967 return (EINVAL);
2968
2969 which = (u_int)name[1];
2970 if (which >= RLIM_NLIMITS)
2971 return (EINVAL);
2972
2973 if (req->newptr != NULL && req->newlen != sizeof(rlim))
2974 return (EINVAL);
2975
2976 flags = PGET_HOLD | PGET_NOTWEXIT;
2977 if (req->newptr != NULL)
2978 flags |= PGET_CANDEBUG;
2979 else
2980 flags |= PGET_CANSEE;
2981 error = pget((pid_t)name[0], flags, &p);
2982 if (error != 0)
2983 return (error);
2984
2985 /*
2986 * Retrieve limit.
2987 */
2988 if (req->oldptr != NULL) {
2989 PROC_LOCK(p);
2990 lim_rlimit_proc(p, which, &rlim);
2991 PROC_UNLOCK(p);
2992 }
2993 error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2994 if (error != 0)
2995 goto errout;
2996
2997 /*
2998 * Set limit.
2999 */
3000 if (req->newptr != NULL) {
3001 error = SYSCTL_IN(req, &rlim, sizeof(rlim));
3002 if (error == 0)
3003 error = kern_proc_setrlimit(curthread, p, which, &rlim);
3004 }
3005
3006 errout:
3007 PRELE(p);
3008 return (error);
3009 }
3010
3011 /*
3012 * This sysctl allows a process to retrieve ps_strings structure location of
3013 * another process.
3014 */
3015 static int
sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)3016 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
3017 {
3018 int *name = (int *)arg1;
3019 u_int namelen = arg2;
3020 struct proc *p;
3021 vm_offset_t ps_strings;
3022 int error;
3023 #ifdef COMPAT_FREEBSD32
3024 uint32_t ps_strings32;
3025 #endif
3026
3027 if (namelen != 1)
3028 return (EINVAL);
3029
3030 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3031 if (error != 0)
3032 return (error);
3033 #ifdef COMPAT_FREEBSD32
3034 if ((req->flags & SCTL_MASK32) != 0) {
3035 /*
3036 * We return 0 if the 32 bit emulation request is for a 64 bit
3037 * process.
3038 */
3039 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3040 PTROUT(PROC_PS_STRINGS(p)) : 0;
3041 PROC_UNLOCK(p);
3042 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3043 return (error);
3044 }
3045 #endif
3046 ps_strings = PROC_PS_STRINGS(p);
3047 PROC_UNLOCK(p);
3048 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3049 return (error);
3050 }
3051
3052 /*
3053 * This sysctl allows a process to retrieve umask of another process.
3054 */
3055 static int
sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)3056 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3057 {
3058 int *name = (int *)arg1;
3059 u_int namelen = arg2;
3060 struct proc *p;
3061 int error;
3062 u_short cmask;
3063 pid_t pid;
3064
3065 if (namelen != 1)
3066 return (EINVAL);
3067
3068 pid = (pid_t)name[0];
3069 p = curproc;
3070 if (pid == p->p_pid || pid == 0) {
3071 cmask = p->p_pd->pd_cmask;
3072 goto out;
3073 }
3074
3075 error = pget(pid, PGET_WANTREAD, &p);
3076 if (error != 0)
3077 return (error);
3078
3079 cmask = p->p_pd->pd_cmask;
3080 PRELE(p);
3081 out:
3082 error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3083 return (error);
3084 }
3085
3086 /*
3087 * This sysctl allows a process to set and retrieve binary osreldate of
3088 * another process.
3089 */
3090 static int
sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)3091 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3092 {
3093 int *name = (int *)arg1;
3094 u_int namelen = arg2;
3095 struct proc *p;
3096 int flags, error, osrel;
3097
3098 if (namelen != 1)
3099 return (EINVAL);
3100
3101 if (req->newptr != NULL && req->newlen != sizeof(osrel))
3102 return (EINVAL);
3103
3104 flags = PGET_HOLD | PGET_NOTWEXIT;
3105 if (req->newptr != NULL)
3106 flags |= PGET_CANDEBUG;
3107 else
3108 flags |= PGET_CANSEE;
3109 error = pget((pid_t)name[0], flags, &p);
3110 if (error != 0)
3111 return (error);
3112
3113 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3114 if (error != 0)
3115 goto errout;
3116
3117 if (req->newptr != NULL) {
3118 error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3119 if (error != 0)
3120 goto errout;
3121 if (osrel < 0) {
3122 error = EINVAL;
3123 goto errout;
3124 }
3125 p->p_osrel = osrel;
3126 }
3127 errout:
3128 PRELE(p);
3129 return (error);
3130 }
3131
3132 static int
sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)3133 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3134 {
3135 int *name = (int *)arg1;
3136 u_int namelen = arg2;
3137 struct proc *p;
3138 struct kinfo_sigtramp kst;
3139 const struct sysentvec *sv;
3140 int error;
3141 #ifdef COMPAT_FREEBSD32
3142 struct kinfo_sigtramp32 kst32;
3143 #endif
3144
3145 if (namelen != 1)
3146 return (EINVAL);
3147
3148 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3149 if (error != 0)
3150 return (error);
3151 sv = p->p_sysent;
3152 #ifdef COMPAT_FREEBSD32
3153 if ((req->flags & SCTL_MASK32) != 0) {
3154 bzero(&kst32, sizeof(kst32));
3155 if (SV_PROC_FLAG(p, SV_ILP32)) {
3156 if (PROC_HAS_SHP(p)) {
3157 kst32.ksigtramp_start = PROC_SIGCODE(p);
3158 kst32.ksigtramp_end = kst32.ksigtramp_start +
3159 ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3160 *sv->sv_szsigcode :
3161 (uintptr_t)sv->sv_szsigcode);
3162 } else {
3163 kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3164 *sv->sv_szsigcode;
3165 kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3166 }
3167 }
3168 PROC_UNLOCK(p);
3169 error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3170 return (error);
3171 }
3172 #endif
3173 bzero(&kst, sizeof(kst));
3174 if (PROC_HAS_SHP(p)) {
3175 kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3176 kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3177 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3178 (uintptr_t)sv->sv_szsigcode);
3179 } else {
3180 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3181 *sv->sv_szsigcode;
3182 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3183 }
3184 PROC_UNLOCK(p);
3185 error = SYSCTL_OUT(req, &kst, sizeof(kst));
3186 return (error);
3187 }
3188
3189 static int
sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)3190 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3191 {
3192 int *name = (int *)arg1;
3193 u_int namelen = arg2;
3194 pid_t pid;
3195 struct proc *p;
3196 struct thread *td1;
3197 uintptr_t addr;
3198 #ifdef COMPAT_FREEBSD32
3199 uint32_t addr32;
3200 #endif
3201 int error;
3202
3203 if (namelen != 1 || req->newptr != NULL)
3204 return (EINVAL);
3205
3206 pid = (pid_t)name[0];
3207 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3208 if (error != 0)
3209 return (error);
3210
3211 PROC_LOCK(p);
3212 #ifdef COMPAT_FREEBSD32
3213 if (SV_CURPROC_FLAG(SV_ILP32)) {
3214 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3215 error = EINVAL;
3216 goto errlocked;
3217 }
3218 }
3219 #endif
3220 if (pid <= PID_MAX) {
3221 td1 = FIRST_THREAD_IN_PROC(p);
3222 } else {
3223 FOREACH_THREAD_IN_PROC(p, td1) {
3224 if (td1->td_tid == pid)
3225 break;
3226 }
3227 }
3228 if (td1 == NULL) {
3229 error = ESRCH;
3230 goto errlocked;
3231 }
3232 /*
3233 * The access to the private thread flags. It is fine as far
3234 * as no out-of-thin-air values are read from td_pflags, and
3235 * usermode read of the td_sigblock_ptr is racy inherently,
3236 * since target process might have already changed it
3237 * meantime.
3238 */
3239 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3240 addr = (uintptr_t)td1->td_sigblock_ptr;
3241 else
3242 error = ENOTTY;
3243
3244 errlocked:
3245 _PRELE(p);
3246 PROC_UNLOCK(p);
3247 if (error != 0)
3248 return (error);
3249
3250 #ifdef COMPAT_FREEBSD32
3251 if (SV_CURPROC_FLAG(SV_ILP32)) {
3252 addr32 = addr;
3253 error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3254 } else
3255 #endif
3256 error = SYSCTL_OUT(req, &addr, sizeof(addr));
3257 return (error);
3258 }
3259
3260 static int
sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)3261 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3262 {
3263 struct kinfo_vm_layout kvm;
3264 struct proc *p;
3265 struct vmspace *vmspace;
3266 int error, *name;
3267
3268 name = (int *)arg1;
3269 if ((u_int)arg2 != 1)
3270 return (EINVAL);
3271
3272 error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3273 if (error != 0)
3274 return (error);
3275 #ifdef COMPAT_FREEBSD32
3276 if (SV_CURPROC_FLAG(SV_ILP32)) {
3277 if (!SV_PROC_FLAG(p, SV_ILP32)) {
3278 PROC_UNLOCK(p);
3279 return (EINVAL);
3280 }
3281 }
3282 #endif
3283 vmspace = vmspace_acquire_ref(p);
3284 PROC_UNLOCK(p);
3285
3286 memset(&kvm, 0, sizeof(kvm));
3287 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3288 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3289 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3290 kvm.kvm_text_size = vmspace->vm_tsize;
3291 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3292 kvm.kvm_data_size = vmspace->vm_dsize;
3293 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3294 kvm.kvm_stack_size = vmspace->vm_ssize;
3295 kvm.kvm_shp_addr = vmspace->vm_shp_base;
3296 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3297 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3298 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3299 if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3300 kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3301 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3302 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3303 if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3304 kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3305 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3306 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3307 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3308 PROC_HAS_SHP(p))
3309 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3310
3311 #ifdef COMPAT_FREEBSD32
3312 if (SV_CURPROC_FLAG(SV_ILP32)) {
3313 struct kinfo_vm_layout32 kvm32;
3314
3315 memset(&kvm32, 0, sizeof(kvm32));
3316 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3317 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3318 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3319 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3320 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3321 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3322 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3323 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3324 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3325 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3326 kvm32.kvm_map_flags = kvm.kvm_map_flags;
3327 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3328 goto out;
3329 }
3330 #endif
3331
3332 error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3333 #ifdef COMPAT_FREEBSD32
3334 out:
3335 #endif
3336 vmspace_free(vmspace);
3337 return (error);
3338 }
3339
3340 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
3341 "Process table");
3342
3343 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3344 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3345 "Return entire process table");
3346
3347 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3348 sysctl_kern_proc, "Process table");
3349
3350 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3351 sysctl_kern_proc, "Process table");
3352
3353 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3354 sysctl_kern_proc, "Process table");
3355
3356 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3357 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3358
3359 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3360 sysctl_kern_proc, "Process table");
3361
3362 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3363 sysctl_kern_proc, "Process table");
3364
3365 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3366 sysctl_kern_proc, "Process table");
3367
3368 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3369 sysctl_kern_proc, "Process table");
3370
3371 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3372 sysctl_kern_proc, "Return process table, no threads");
3373
3374 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3375 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3376 sysctl_kern_proc_args, "Process argument list");
3377
3378 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3379 sysctl_kern_proc_env, "Process environment");
3380
3381 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3382 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3383
3384 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3385 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3386
3387 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3388 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3389 "Process syscall vector name (ABI type)");
3390
3391 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3392 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3393
3394 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3395 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3396
3397 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3398 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3399
3400 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3401 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3402
3403 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3404 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3405
3406 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3407 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3408
3409 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3410 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3411
3412 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3413 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3414
3415 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3416 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3417 "Return process table, including threads");
3418
3419 #ifdef COMPAT_FREEBSD7
3420 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3421 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3422 #endif
3423
3424 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3425 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3426
3427 #if defined(STACK) || defined(DDB)
3428 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3429 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3430 #endif
3431
3432 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3433 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3434
3435 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3436 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3437 "Process resource limits");
3438
3439 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3440 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3441 "Process ps_strings location");
3442
3443 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3444 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3445
3446 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3447 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3448 "Process binary osreldate");
3449
3450 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3451 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3452 "Process signal trampoline location");
3453
3454 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3455 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3456 "Thread sigfastblock address");
3457
3458 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3459 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3460 "Process virtual address space layout info");
3461
3462 static struct sx stop_all_proc_blocker;
3463 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3464
3465 bool
stop_all_proc_block(void)3466 stop_all_proc_block(void)
3467 {
3468 return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3469 }
3470
3471 void
stop_all_proc_unblock(void)3472 stop_all_proc_unblock(void)
3473 {
3474 sx_xunlock(&stop_all_proc_blocker);
3475 }
3476
3477 int allproc_gen;
3478
3479 /*
3480 * stop_all_proc() purpose is to stop all process which have usermode,
3481 * except current process for obvious reasons. This makes it somewhat
3482 * unreliable when invoked from multithreaded process. The service
3483 * must not be user-callable anyway.
3484 */
3485 void
stop_all_proc(void)3486 stop_all_proc(void)
3487 {
3488 struct proc *cp, *p;
3489 int r, gen;
3490 bool restart, seen_stopped, seen_exiting, stopped_some;
3491
3492 if (!stop_all_proc_block())
3493 return;
3494
3495 cp = curproc;
3496 allproc_loop:
3497 sx_xlock(&allproc_lock);
3498 gen = allproc_gen;
3499 seen_exiting = seen_stopped = stopped_some = restart = false;
3500 LIST_REMOVE(cp, p_list);
3501 LIST_INSERT_HEAD(&allproc, cp, p_list);
3502 for (;;) {
3503 p = LIST_NEXT(cp, p_list);
3504 if (p == NULL)
3505 break;
3506 LIST_REMOVE(cp, p_list);
3507 LIST_INSERT_AFTER(p, cp, p_list);
3508 PROC_LOCK(p);
3509 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP |
3510 P_STOPPED_SIG)) != 0) {
3511 PROC_UNLOCK(p);
3512 continue;
3513 }
3514 if ((p->p_flag2 & P2_WEXIT) != 0) {
3515 seen_exiting = true;
3516 PROC_UNLOCK(p);
3517 continue;
3518 }
3519 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3520 /*
3521 * Stopped processes are tolerated when there
3522 * are no other processes which might continue
3523 * them. P_STOPPED_SINGLE but not
3524 * P_TOTAL_STOP process still has at least one
3525 * thread running.
3526 */
3527 seen_stopped = true;
3528 PROC_UNLOCK(p);
3529 continue;
3530 }
3531 if ((p->p_flag & P_TRACED) != 0) {
3532 /*
3533 * thread_single() below cannot stop traced p,
3534 * so skip it. OTOH, we cannot require
3535 * restart because debugger might be either
3536 * already stopped or traced as well.
3537 */
3538 PROC_UNLOCK(p);
3539 continue;
3540 }
3541 sx_xunlock(&allproc_lock);
3542 _PHOLD(p);
3543 r = thread_single(p, SINGLE_ALLPROC);
3544 if (r != 0)
3545 restart = true;
3546 else
3547 stopped_some = true;
3548 _PRELE(p);
3549 PROC_UNLOCK(p);
3550 sx_xlock(&allproc_lock);
3551 }
3552 /* Catch forked children we did not see in iteration. */
3553 if (gen != allproc_gen)
3554 restart = true;
3555 sx_xunlock(&allproc_lock);
3556 if (restart || stopped_some || seen_exiting || seen_stopped) {
3557 kern_yield(PRI_USER);
3558 goto allproc_loop;
3559 }
3560 }
3561
3562 void
resume_all_proc(void)3563 resume_all_proc(void)
3564 {
3565 struct proc *cp, *p;
3566
3567 cp = curproc;
3568 sx_xlock(&allproc_lock);
3569 again:
3570 LIST_REMOVE(cp, p_list);
3571 LIST_INSERT_HEAD(&allproc, cp, p_list);
3572 for (;;) {
3573 p = LIST_NEXT(cp, p_list);
3574 if (p == NULL)
3575 break;
3576 LIST_REMOVE(cp, p_list);
3577 LIST_INSERT_AFTER(p, cp, p_list);
3578 PROC_LOCK(p);
3579 if ((p->p_flag & P_TOTAL_STOP) != 0) {
3580 sx_xunlock(&allproc_lock);
3581 _PHOLD(p);
3582 thread_single_end(p, SINGLE_ALLPROC);
3583 _PRELE(p);
3584 PROC_UNLOCK(p);
3585 sx_xlock(&allproc_lock);
3586 } else {
3587 PROC_UNLOCK(p);
3588 }
3589 }
3590 /* Did the loop above missed any stopped process ? */
3591 FOREACH_PROC_IN_SYSTEM(p) {
3592 /* No need for proc lock. */
3593 if ((p->p_flag & P_TOTAL_STOP) != 0)
3594 goto again;
3595 }
3596 sx_xunlock(&allproc_lock);
3597
3598 stop_all_proc_unblock();
3599 }
3600
3601 /* #define TOTAL_STOP_DEBUG 1 */
3602 #ifdef TOTAL_STOP_DEBUG
3603 volatile static int ap_resume;
3604 #include <sys/mount.h>
3605
3606 static int
sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)3607 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3608 {
3609 int error, val;
3610
3611 val = 0;
3612 ap_resume = 0;
3613 error = sysctl_handle_int(oidp, &val, 0, req);
3614 if (error != 0 || req->newptr == NULL)
3615 return (error);
3616 if (val != 0) {
3617 stop_all_proc();
3618 syncer_suspend();
3619 while (ap_resume == 0)
3620 ;
3621 syncer_resume();
3622 resume_all_proc();
3623 }
3624 return (0);
3625 }
3626
3627 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3628 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3629 sysctl_debug_stop_all_proc, "I",
3630 "");
3631 #endif
3632