xref: /linux/net/wireless/scan.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2025 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include <kunit/visibility.h>
24 #include "core.h"
25 #include "nl80211.h"
26 #include "wext-compat.h"
27 #include "rdev-ops.h"
28 
29 /**
30  * DOC: BSS tree/list structure
31  *
32  * At the top level, the BSS list is kept in both a list in each
33  * registered device (@bss_list) as well as an RB-tree for faster
34  * lookup. In the RB-tree, entries can be looked up using their
35  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
36  * for other BSSes.
37  *
38  * Due to the possibility of hidden SSIDs, there's a second level
39  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
40  * The hidden_list connects all BSSes belonging to a single AP
41  * that has a hidden SSID, and connects beacon and probe response
42  * entries. For a probe response entry for a hidden SSID, the
43  * hidden_beacon_bss pointer points to the BSS struct holding the
44  * beacon's information.
45  *
46  * Reference counting is done for all these references except for
47  * the hidden_list, so that a beacon BSS struct that is otherwise
48  * not referenced has one reference for being on the bss_list and
49  * one for each probe response entry that points to it using the
50  * hidden_beacon_bss pointer. When a BSS struct that has such a
51  * pointer is get/put, the refcount update is also propagated to
52  * the referenced struct, this ensure that it cannot get removed
53  * while somebody is using the probe response version.
54  *
55  * Note that the hidden_beacon_bss pointer never changes, due to
56  * the reference counting. Therefore, no locking is needed for
57  * it.
58  *
59  * Also note that the hidden_beacon_bss pointer is only relevant
60  * if the driver uses something other than the IEs, e.g. private
61  * data stored in the BSS struct, since the beacon IEs are
62  * also linked into the probe response struct.
63  */
64 
65 /*
66  * Limit the number of BSS entries stored in mac80211. Each one is
67  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
68  * If somebody wants to really attack this though, they'd likely
69  * use small beacons, and only one type of frame, limiting each of
70  * the entries to a much smaller size (in order to generate more
71  * entries in total, so overhead is bigger.)
72  */
73 static int bss_entries_limit = 1000;
74 module_param(bss_entries_limit, int, 0644);
75 MODULE_PARM_DESC(bss_entries_limit,
76                  "limit to number of scan BSS entries (per wiphy, default 1000)");
77 
78 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
79 
bss_free(struct cfg80211_internal_bss * bss)80 static void bss_free(struct cfg80211_internal_bss *bss)
81 {
82 	struct cfg80211_bss_ies *ies;
83 
84 	if (WARN_ON(atomic_read(&bss->hold)))
85 		return;
86 
87 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
88 	if (ies && !bss->pub.hidden_beacon_bss)
89 		kfree_rcu(ies, rcu_head);
90 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
91 	if (ies)
92 		kfree_rcu(ies, rcu_head);
93 
94 	/*
95 	 * This happens when the module is removed, it doesn't
96 	 * really matter any more save for completeness
97 	 */
98 	if (!list_empty(&bss->hidden_list))
99 		list_del(&bss->hidden_list);
100 
101 	kfree(bss);
102 }
103 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)104 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
105 			       struct cfg80211_internal_bss *bss)
106 {
107 	lockdep_assert_held(&rdev->bss_lock);
108 
109 	bss->refcount++;
110 
111 	if (bss->pub.hidden_beacon_bss)
112 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
113 
114 	if (bss->pub.transmitted_bss)
115 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
116 }
117 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)118 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
119 			       struct cfg80211_internal_bss *bss)
120 {
121 	lockdep_assert_held(&rdev->bss_lock);
122 
123 	if (bss->pub.hidden_beacon_bss) {
124 		struct cfg80211_internal_bss *hbss;
125 
126 		hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
127 		hbss->refcount--;
128 		if (hbss->refcount == 0)
129 			bss_free(hbss);
130 	}
131 
132 	if (bss->pub.transmitted_bss) {
133 		struct cfg80211_internal_bss *tbss;
134 
135 		tbss = bss_from_pub(bss->pub.transmitted_bss);
136 		tbss->refcount--;
137 		if (tbss->refcount == 0)
138 			bss_free(tbss);
139 	}
140 
141 	bss->refcount--;
142 	if (bss->refcount == 0)
143 		bss_free(bss);
144 }
145 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)146 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
147 				  struct cfg80211_internal_bss *bss)
148 {
149 	lockdep_assert_held(&rdev->bss_lock);
150 
151 	if (!list_empty(&bss->hidden_list)) {
152 		/*
153 		 * don't remove the beacon entry if it has
154 		 * probe responses associated with it
155 		 */
156 		if (!bss->pub.hidden_beacon_bss)
157 			return false;
158 		/*
159 		 * if it's a probe response entry break its
160 		 * link to the other entries in the group
161 		 */
162 		list_del_init(&bss->hidden_list);
163 	}
164 
165 	list_del_init(&bss->list);
166 	list_del_init(&bss->pub.nontrans_list);
167 	rb_erase(&bss->rbn, &rdev->bss_tree);
168 	rdev->bss_entries--;
169 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
170 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
171 		  rdev->bss_entries, list_empty(&rdev->bss_list));
172 	bss_ref_put(rdev, bss);
173 	return true;
174 }
175 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)176 bool cfg80211_is_element_inherited(const struct element *elem,
177 				   const struct element *non_inherit_elem)
178 {
179 	u8 id_len, ext_id_len, i, loop_len, id;
180 	const u8 *list;
181 
182 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
183 		return false;
184 
185 	if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
186 	    elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
187 		return false;
188 
189 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
190 		return true;
191 
192 	/*
193 	 * non inheritance element format is:
194 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
195 	 * Both lists are optional. Both lengths are mandatory.
196 	 * This means valid length is:
197 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
198 	 */
199 	id_len = non_inherit_elem->data[1];
200 	if (non_inherit_elem->datalen < 3 + id_len)
201 		return true;
202 
203 	ext_id_len = non_inherit_elem->data[2 + id_len];
204 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
205 		return true;
206 
207 	if (elem->id == WLAN_EID_EXTENSION) {
208 		if (!ext_id_len)
209 			return true;
210 		loop_len = ext_id_len;
211 		list = &non_inherit_elem->data[3 + id_len];
212 		id = elem->data[0];
213 	} else {
214 		if (!id_len)
215 			return true;
216 		loop_len = id_len;
217 		list = &non_inherit_elem->data[2];
218 		id = elem->id;
219 	}
220 
221 	for (i = 0; i < loop_len; i++) {
222 		if (list[i] == id)
223 			return false;
224 	}
225 
226 	return true;
227 }
228 EXPORT_SYMBOL(cfg80211_is_element_inherited);
229 
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)230 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
231 					    const u8 *ie, size_t ie_len,
232 					    u8 **pos, u8 *buf, size_t buf_len)
233 {
234 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
235 		    elem->data + elem->datalen > ie + ie_len))
236 		return 0;
237 
238 	if (elem->datalen + 2 > buf + buf_len - *pos)
239 		return 0;
240 
241 	memcpy(*pos, elem, elem->datalen + 2);
242 	*pos += elem->datalen + 2;
243 
244 	/* Finish if it is not fragmented  */
245 	if (elem->datalen != 255)
246 		return *pos - buf;
247 
248 	ie_len = ie + ie_len - elem->data - elem->datalen;
249 	ie = (const u8 *)elem->data + elem->datalen;
250 
251 	for_each_element(elem, ie, ie_len) {
252 		if (elem->id != WLAN_EID_FRAGMENT)
253 			break;
254 
255 		if (elem->datalen + 2 > buf + buf_len - *pos)
256 			return 0;
257 
258 		memcpy(*pos, elem, elem->datalen + 2);
259 		*pos += elem->datalen + 2;
260 
261 		if (elem->datalen != 255)
262 			break;
263 	}
264 
265 	return *pos - buf;
266 }
267 
268 VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)269 cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
270 		    const u8 *subie, size_t subie_len,
271 		    u8 *new_ie, size_t new_ie_len)
272 {
273 	const struct element *non_inherit_elem, *parent, *sub;
274 	u8 *pos = new_ie;
275 	const u8 *mbssid_index_ie;
276 	u8 id, ext_id, bssid_index = 255;
277 	unsigned int match_len;
278 
279 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
280 						  subie, subie_len);
281 
282 	mbssid_index_ie = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, subie,
283 					   subie_len);
284 	if (mbssid_index_ie && mbssid_index_ie[1] > 0 &&
285 	    mbssid_index_ie[2] > 0 && mbssid_index_ie[2] <= 46)
286 		bssid_index = mbssid_index_ie[2];
287 
288 	/* We copy the elements one by one from the parent to the generated
289 	 * elements.
290 	 * If they are not inherited (included in subie or in the non
291 	 * inheritance element), then we copy all occurrences the first time
292 	 * we see this element type.
293 	 */
294 	for_each_element(parent, ie, ielen) {
295 		if (parent->id == WLAN_EID_FRAGMENT)
296 			continue;
297 
298 		if (parent->id == WLAN_EID_EXTENSION) {
299 			if (parent->datalen < 1)
300 				continue;
301 
302 			id = WLAN_EID_EXTENSION;
303 			ext_id = parent->data[0];
304 			match_len = 1;
305 		} else {
306 			id = parent->id;
307 			match_len = 0;
308 		}
309 
310 		/* Find first occurrence in subie */
311 		sub = cfg80211_find_elem_match(id, subie, subie_len,
312 					       &ext_id, match_len, 0);
313 
314 		/* Copy from parent if not in subie and inherited */
315 		if (!sub &&
316 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
317 			if (!cfg80211_copy_elem_with_frags(parent,
318 							   ie, ielen,
319 							   &pos, new_ie,
320 							   new_ie_len))
321 				return 0;
322 
323 			continue;
324 		}
325 
326 		/* For ML probe response, match the MLE in the frame body with
327 		 * MLD id being 'bssid_index'
328 		 */
329 		if (parent->id == WLAN_EID_EXTENSION && parent->datalen > 1 &&
330 		    parent->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK &&
331 		    bssid_index == ieee80211_mle_get_mld_id(parent->data + 1)) {
332 			if (!cfg80211_copy_elem_with_frags(parent,
333 							   ie, ielen,
334 							   &pos, new_ie,
335 							   new_ie_len))
336 				return 0;
337 
338 			/* Continue here to prevent processing the MLE in
339 			 * sub-element, which AP MLD should not carry
340 			 */
341 			continue;
342 		}
343 
344 		/* Already copied if an earlier element had the same type */
345 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
346 					     &ext_id, match_len, 0))
347 			continue;
348 
349 		/* Not inheriting, copy all similar elements from subie */
350 		while (sub) {
351 			if (!cfg80211_copy_elem_with_frags(sub,
352 							   subie, subie_len,
353 							   &pos, new_ie,
354 							   new_ie_len))
355 				return 0;
356 
357 			sub = cfg80211_find_elem_match(id,
358 						       sub->data + sub->datalen,
359 						       subie_len + subie -
360 						       (sub->data +
361 							sub->datalen),
362 						       &ext_id, match_len, 0);
363 		}
364 	}
365 
366 	/* The above misses elements that are included in subie but not in the
367 	 * parent, so do a pass over subie and append those.
368 	 * Skip the non-tx BSSID caps and non-inheritance element.
369 	 */
370 	for_each_element(sub, subie, subie_len) {
371 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
372 			continue;
373 
374 		if (sub->id == WLAN_EID_FRAGMENT)
375 			continue;
376 
377 		if (sub->id == WLAN_EID_EXTENSION) {
378 			if (sub->datalen < 1)
379 				continue;
380 
381 			id = WLAN_EID_EXTENSION;
382 			ext_id = sub->data[0];
383 			match_len = 1;
384 
385 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
386 				continue;
387 		} else {
388 			id = sub->id;
389 			match_len = 0;
390 		}
391 
392 		/* Processed if one was included in the parent */
393 		if (cfg80211_find_elem_match(id, ie, ielen,
394 					     &ext_id, match_len, 0))
395 			continue;
396 
397 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
398 						   &pos, new_ie, new_ie_len))
399 			return 0;
400 	}
401 
402 	return pos - new_ie;
403 }
404 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
405 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)406 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
407 		   const u8 *ssid, size_t ssid_len)
408 {
409 	const struct cfg80211_bss_ies *ies;
410 	const struct element *ssid_elem;
411 
412 	if (bssid && !ether_addr_equal(a->bssid, bssid))
413 		return false;
414 
415 	if (!ssid)
416 		return true;
417 
418 	ies = rcu_access_pointer(a->ies);
419 	if (!ies)
420 		return false;
421 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
422 	if (!ssid_elem)
423 		return false;
424 	if (ssid_elem->datalen != ssid_len)
425 		return false;
426 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
427 }
428 
429 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)430 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
431 			   struct cfg80211_bss *nontrans_bss)
432 {
433 	const struct element *ssid_elem;
434 	struct cfg80211_bss *bss = NULL;
435 
436 	rcu_read_lock();
437 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
438 	if (!ssid_elem) {
439 		rcu_read_unlock();
440 		return -EINVAL;
441 	}
442 
443 	/* check if nontrans_bss is in the list */
444 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
445 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
446 			   ssid_elem->datalen)) {
447 			rcu_read_unlock();
448 			return 0;
449 		}
450 	}
451 
452 	rcu_read_unlock();
453 
454 	/*
455 	 * This is a bit weird - it's not on the list, but already on another
456 	 * one! The only way that could happen is if there's some BSSID/SSID
457 	 * shared by multiple APs in their multi-BSSID profiles, potentially
458 	 * with hidden SSID mixed in ... ignore it.
459 	 */
460 	if (!list_empty(&nontrans_bss->nontrans_list))
461 		return -EINVAL;
462 
463 	/* add to the list */
464 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
465 	return 0;
466 }
467 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)468 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
469 				  unsigned long expire_time)
470 {
471 	struct cfg80211_internal_bss *bss, *tmp;
472 	bool expired = false;
473 
474 	lockdep_assert_held(&rdev->bss_lock);
475 
476 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
477 		if (atomic_read(&bss->hold))
478 			continue;
479 		if (!time_after(expire_time, bss->ts))
480 			continue;
481 
482 		if (__cfg80211_unlink_bss(rdev, bss))
483 			expired = true;
484 	}
485 
486 	if (expired)
487 		rdev->bss_generation++;
488 }
489 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)490 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
491 {
492 	struct cfg80211_internal_bss *bss, *oldest = NULL;
493 	bool ret;
494 
495 	lockdep_assert_held(&rdev->bss_lock);
496 
497 	list_for_each_entry(bss, &rdev->bss_list, list) {
498 		if (atomic_read(&bss->hold))
499 			continue;
500 
501 		if (!list_empty(&bss->hidden_list) &&
502 		    !bss->pub.hidden_beacon_bss)
503 			continue;
504 
505 		if (oldest && time_before(oldest->ts, bss->ts))
506 			continue;
507 		oldest = bss;
508 	}
509 
510 	if (WARN_ON(!oldest))
511 		return false;
512 
513 	/*
514 	 * The callers make sure to increase rdev->bss_generation if anything
515 	 * gets removed (and a new entry added), so there's no need to also do
516 	 * it here.
517 	 */
518 
519 	ret = __cfg80211_unlink_bss(rdev, oldest);
520 	WARN_ON(!ret);
521 	return ret;
522 }
523 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)524 static u8 cfg80211_parse_bss_param(u8 data,
525 				   struct cfg80211_colocated_ap *coloc_ap)
526 {
527 	coloc_ap->oct_recommended =
528 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
529 	coloc_ap->same_ssid =
530 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
531 	coloc_ap->multi_bss =
532 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
533 	coloc_ap->transmitted_bssid =
534 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
535 	coloc_ap->unsolicited_probe =
536 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
537 	coloc_ap->colocated_ess =
538 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
539 
540 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
541 }
542 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)543 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
544 				    const struct element **elem, u32 *s_ssid)
545 {
546 
547 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
548 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
549 		return -EINVAL;
550 
551 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
552 	return 0;
553 }
554 
555 VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)556 cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
557 {
558 	struct cfg80211_colocated_ap *ap, *tmp_ap;
559 
560 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
561 		list_del(&ap->list);
562 		kfree(ap);
563 	}
564 }
565 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
566 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,u32 s_ssid_tmp)567 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
568 				  const u8 *pos, u8 length,
569 				  const struct element *ssid_elem,
570 				  u32 s_ssid_tmp)
571 {
572 	u8 bss_params;
573 
574 	entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
575 
576 	/* The length is already verified by the caller to contain bss_params */
577 	if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
578 		struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
579 
580 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
581 		entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
582 		entry->short_ssid_valid = true;
583 
584 		bss_params = tbtt_info->bss_params;
585 
586 		/* Ignore disabled links */
587 		if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
588 			if (le16_get_bits(tbtt_info->mld_params.params,
589 					  IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
590 				return -EINVAL;
591 		}
592 
593 		if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
594 					  psd_20))
595 			entry->psd_20 = tbtt_info->psd_20;
596 	} else {
597 		struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
598 
599 		memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
600 
601 		bss_params = tbtt_info->bss_params;
602 
603 		if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
604 					  psd_20))
605 			entry->psd_20 = tbtt_info->psd_20;
606 	}
607 
608 	/* ignore entries with invalid BSSID */
609 	if (!is_valid_ether_addr(entry->bssid))
610 		return -EINVAL;
611 
612 	/* skip non colocated APs */
613 	if (!cfg80211_parse_bss_param(bss_params, entry))
614 		return -EINVAL;
615 
616 	/* no information about the short ssid. Consider the entry valid
617 	 * for now. It would later be dropped in case there are explicit
618 	 * SSIDs that need to be matched
619 	 */
620 	if (!entry->same_ssid && !entry->short_ssid_valid)
621 		return 0;
622 
623 	if (entry->same_ssid) {
624 		entry->short_ssid = s_ssid_tmp;
625 		entry->short_ssid_valid = true;
626 
627 		/*
628 		 * This is safe because we validate datalen in
629 		 * cfg80211_parse_colocated_ap(), before calling this
630 		 * function.
631 		 */
632 		memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
633 		entry->ssid_len = ssid_elem->datalen;
634 	}
635 
636 	return 0;
637 }
638 
cfg80211_iter_rnr(const u8 * elems,size_t elems_len,enum cfg80211_rnr_iter_ret (* iter)(void * data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len),void * iter_data)639 bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
640 		       enum cfg80211_rnr_iter_ret
641 		       (*iter)(void *data, u8 type,
642 			       const struct ieee80211_neighbor_ap_info *info,
643 			       const u8 *tbtt_info, u8 tbtt_info_len),
644 		       void *iter_data)
645 {
646 	const struct element *rnr;
647 	const u8 *pos, *end;
648 
649 	for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
650 			    elems, elems_len) {
651 		const struct ieee80211_neighbor_ap_info *info;
652 
653 		pos = rnr->data;
654 		end = rnr->data + rnr->datalen;
655 
656 		/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
657 		while (sizeof(*info) <= end - pos) {
658 			u8 length, i, count;
659 			u8 type;
660 
661 			info = (void *)pos;
662 			count = u8_get_bits(info->tbtt_info_hdr,
663 					    IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
664 				1;
665 			length = info->tbtt_info_len;
666 
667 			pos += sizeof(*info);
668 
669 			if (count * length > end - pos)
670 				return false;
671 
672 			type = u8_get_bits(info->tbtt_info_hdr,
673 					   IEEE80211_AP_INFO_TBTT_HDR_TYPE);
674 
675 			for (i = 0; i < count; i++) {
676 				switch (iter(iter_data, type, info,
677 					     pos, length)) {
678 				case RNR_ITER_CONTINUE:
679 					break;
680 				case RNR_ITER_BREAK:
681 					return true;
682 				case RNR_ITER_ERROR:
683 					return false;
684 				}
685 
686 				pos += length;
687 			}
688 		}
689 
690 		if (pos != end)
691 			return false;
692 	}
693 
694 	return true;
695 }
696 EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
697 
698 struct colocated_ap_data {
699 	const struct element *ssid_elem;
700 	struct list_head ap_list;
701 	u32 s_ssid_tmp;
702 	int n_coloc;
703 };
704 
705 static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)706 cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
707 				 const struct ieee80211_neighbor_ap_info *info,
708 				 const u8 *tbtt_info, u8 tbtt_info_len)
709 {
710 	struct colocated_ap_data *data = _data;
711 	struct cfg80211_colocated_ap *entry;
712 	enum nl80211_band band;
713 
714 	if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
715 		return RNR_ITER_CONTINUE;
716 
717 	if (!ieee80211_operating_class_to_band(info->op_class, &band))
718 		return RNR_ITER_CONTINUE;
719 
720 	/* TBTT info must include bss param + BSSID + (short SSID or
721 	 * same_ssid bit to be set). Ignore other options, and move to
722 	 * the next AP info
723 	 */
724 	if (band != NL80211_BAND_6GHZ ||
725 	    !(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
726 					   bss_params) ||
727 	      tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
728 	      tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
729 					   bss_params)))
730 		return RNR_ITER_CONTINUE;
731 
732 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
733 	if (!entry)
734 		return RNR_ITER_ERROR;
735 
736 	entry->center_freq =
737 		ieee80211_channel_to_frequency(info->channel, band);
738 
739 	if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
740 				    data->ssid_elem, data->s_ssid_tmp)) {
741 		struct cfg80211_colocated_ap *tmp;
742 
743 		/* Don't add duplicate BSSIDs on the same channel. */
744 		list_for_each_entry(tmp, &data->ap_list, list) {
745 			if (ether_addr_equal(tmp->bssid, entry->bssid) &&
746 			    tmp->center_freq == entry->center_freq) {
747 				kfree(entry);
748 				return RNR_ITER_CONTINUE;
749 			}
750 		}
751 
752 		data->n_coloc++;
753 		list_add_tail(&entry->list, &data->ap_list);
754 	} else {
755 		kfree(entry);
756 	}
757 
758 	return RNR_ITER_CONTINUE;
759 }
760 
761 VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)762 cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
763 			    struct list_head *list)
764 {
765 	struct colocated_ap_data data = {};
766 	int ret;
767 
768 	INIT_LIST_HEAD(&data.ap_list);
769 
770 	ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
771 	if (ret)
772 		return 0;
773 
774 	if (!cfg80211_iter_rnr(ies->data, ies->len,
775 			       cfg80211_parse_colocated_ap_iter, &data)) {
776 		cfg80211_free_coloc_ap_list(&data.ap_list);
777 		return 0;
778 	}
779 
780 	list_splice_tail(&data.ap_list, list);
781 	return data.n_coloc;
782 }
783 EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
784 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)785 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
786 					struct ieee80211_channel *chan,
787 					bool add_to_6ghz)
788 {
789 	int i;
790 	u32 n_channels = request->n_channels;
791 	struct cfg80211_scan_6ghz_params *params =
792 		&request->scan_6ghz_params[request->n_6ghz_params];
793 
794 	for (i = 0; i < n_channels; i++) {
795 		if (request->channels[i] == chan) {
796 			if (add_to_6ghz)
797 				params->channel_idx = i;
798 			return;
799 		}
800 	}
801 
802 	request->n_channels++;
803 	request->channels[n_channels] = chan;
804 	if (add_to_6ghz)
805 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
806 			n_channels;
807 }
808 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)809 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
810 				     struct cfg80211_scan_request *request)
811 {
812 	int i;
813 	u32 s_ssid;
814 
815 	for (i = 0; i < request->n_ssids; i++) {
816 		/* wildcard ssid in the scan request */
817 		if (!request->ssids[i].ssid_len) {
818 			if (ap->multi_bss && !ap->transmitted_bssid)
819 				continue;
820 
821 			return true;
822 		}
823 
824 		if (ap->ssid_len &&
825 		    ap->ssid_len == request->ssids[i].ssid_len) {
826 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
827 				    ap->ssid_len))
828 				return true;
829 		} else if (ap->short_ssid_valid) {
830 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
831 					   request->ssids[i].ssid_len);
832 
833 			if (ap->short_ssid == s_ssid)
834 				return true;
835 		}
836 	}
837 
838 	return false;
839 }
840 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)841 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
842 {
843 	u8 i;
844 	struct cfg80211_colocated_ap *ap;
845 	int n_channels, count = 0, err;
846 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
847 	LIST_HEAD(coloc_ap_list);
848 	bool need_scan_psc = true;
849 	const struct ieee80211_sband_iftype_data *iftd;
850 	size_t size, offs_ssids, offs_6ghz_params, offs_ies;
851 
852 	rdev_req->scan_6ghz = true;
853 
854 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
855 		return -EOPNOTSUPP;
856 
857 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
858 					       rdev_req->wdev->iftype);
859 	if (!iftd || !iftd->he_cap.has_he)
860 		return -EOPNOTSUPP;
861 
862 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
863 
864 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
865 		struct cfg80211_internal_bss *intbss;
866 
867 		spin_lock_bh(&rdev->bss_lock);
868 		list_for_each_entry(intbss, &rdev->bss_list, list) {
869 			struct cfg80211_bss *res = &intbss->pub;
870 			const struct cfg80211_bss_ies *ies;
871 			const struct element *ssid_elem;
872 			struct cfg80211_colocated_ap *entry;
873 			u32 s_ssid_tmp;
874 			int ret;
875 
876 			ies = rcu_access_pointer(res->ies);
877 			count += cfg80211_parse_colocated_ap(ies,
878 							     &coloc_ap_list);
879 
880 			/* In case the scan request specified a specific BSSID
881 			 * and the BSS is found and operating on 6GHz band then
882 			 * add this AP to the collocated APs list.
883 			 * This is relevant for ML probe requests when the lower
884 			 * band APs have not been discovered.
885 			 */
886 			if (is_broadcast_ether_addr(rdev_req->bssid) ||
887 			    !ether_addr_equal(rdev_req->bssid, res->bssid) ||
888 			    res->channel->band != NL80211_BAND_6GHZ)
889 				continue;
890 
891 			ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
892 						       &s_ssid_tmp);
893 			if (ret)
894 				continue;
895 
896 			entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
897 			if (!entry)
898 				continue;
899 
900 			memcpy(entry->bssid, res->bssid, ETH_ALEN);
901 			entry->short_ssid = s_ssid_tmp;
902 			memcpy(entry->ssid, ssid_elem->data,
903 			       ssid_elem->datalen);
904 			entry->ssid_len = ssid_elem->datalen;
905 			entry->short_ssid_valid = true;
906 			entry->center_freq = res->channel->center_freq;
907 
908 			list_add_tail(&entry->list, &coloc_ap_list);
909 			count++;
910 		}
911 		spin_unlock_bh(&rdev->bss_lock);
912 	}
913 
914 	size = struct_size(request, channels, n_channels);
915 	offs_ssids = size;
916 	size += sizeof(*request->ssids) * rdev_req->n_ssids;
917 	offs_6ghz_params = size;
918 	size += sizeof(*request->scan_6ghz_params) * count;
919 	offs_ies = size;
920 	size += rdev_req->ie_len;
921 
922 	request = kzalloc(size, GFP_KERNEL);
923 	if (!request) {
924 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
925 		return -ENOMEM;
926 	}
927 
928 	*request = *rdev_req;
929 	request->n_channels = 0;
930 	request->n_6ghz_params = 0;
931 	if (rdev_req->n_ssids) {
932 		/*
933 		 * Add the ssids from the parent scan request to the new
934 		 * scan request, so the driver would be able to use them
935 		 * in its probe requests to discover hidden APs on PSC
936 		 * channels.
937 		 */
938 		request->ssids = (void *)request + offs_ssids;
939 		memcpy(request->ssids, rdev_req->ssids,
940 		       sizeof(*request->ssids) * request->n_ssids);
941 	}
942 	request->scan_6ghz_params = (void *)request + offs_6ghz_params;
943 
944 	if (rdev_req->ie_len) {
945 		void *ie = (void *)request + offs_ies;
946 
947 		memcpy(ie, rdev_req->ie, rdev_req->ie_len);
948 		request->ie = ie;
949 	}
950 
951 	/*
952 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
953 	 * and at least one of the reported co-located APs with same SSID
954 	 * indicating that all APs in the same ESS are co-located
955 	 */
956 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
957 		list_for_each_entry(ap, &coloc_ap_list, list) {
958 			if (ap->colocated_ess &&
959 			    cfg80211_find_ssid_match(ap, request)) {
960 				need_scan_psc = false;
961 				break;
962 			}
963 		}
964 	}
965 
966 	/*
967 	 * add to the scan request the channels that need to be scanned
968 	 * regardless of the collocated APs (PSC channels or all channels
969 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
970 	 */
971 	for (i = 0; i < rdev_req->n_channels; i++) {
972 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
973 		    ((need_scan_psc &&
974 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
975 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
976 			cfg80211_scan_req_add_chan(request,
977 						   rdev_req->channels[i],
978 						   false);
979 		}
980 	}
981 
982 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
983 		goto skip;
984 
985 	list_for_each_entry(ap, &coloc_ap_list, list) {
986 		bool found = false;
987 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
988 			&request->scan_6ghz_params[request->n_6ghz_params];
989 		struct ieee80211_channel *chan =
990 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
991 
992 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED ||
993 		    !cfg80211_wdev_channel_allowed(rdev_req->wdev, chan))
994 			continue;
995 
996 		for (i = 0; i < rdev_req->n_channels; i++) {
997 			if (rdev_req->channels[i] == chan)
998 				found = true;
999 		}
1000 
1001 		if (!found)
1002 			continue;
1003 
1004 		if (request->n_ssids > 0 &&
1005 		    !cfg80211_find_ssid_match(ap, request))
1006 			continue;
1007 
1008 		if (!is_broadcast_ether_addr(request->bssid) &&
1009 		    !ether_addr_equal(request->bssid, ap->bssid))
1010 			continue;
1011 
1012 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
1013 			continue;
1014 
1015 		cfg80211_scan_req_add_chan(request, chan, true);
1016 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
1017 		scan_6ghz_params->short_ssid = ap->short_ssid;
1018 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
1019 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
1020 		scan_6ghz_params->psd_20 = ap->psd_20;
1021 
1022 		/*
1023 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
1024 		 * set to false, then all the APs that the scan logic is
1025 		 * interested with on the channel are collocated and thus there
1026 		 * is no need to perform the initial PSC channel listen.
1027 		 */
1028 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
1029 			scan_6ghz_params->psc_no_listen = true;
1030 
1031 		request->n_6ghz_params++;
1032 	}
1033 
1034 skip:
1035 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
1036 
1037 	if (request->n_channels) {
1038 		struct cfg80211_scan_request *old = rdev->int_scan_req;
1039 
1040 		rdev->int_scan_req = request;
1041 
1042 		/*
1043 		 * If this scan follows a previous scan, save the scan start
1044 		 * info from the first part of the scan
1045 		 */
1046 		if (old)
1047 			rdev->int_scan_req->info = old->info;
1048 
1049 		err = rdev_scan(rdev, request);
1050 		if (err) {
1051 			rdev->int_scan_req = old;
1052 			kfree(request);
1053 		} else {
1054 			kfree(old);
1055 		}
1056 
1057 		return err;
1058 	}
1059 
1060 	kfree(request);
1061 	return -EINVAL;
1062 }
1063 
cfg80211_scan(struct cfg80211_registered_device * rdev)1064 int cfg80211_scan(struct cfg80211_registered_device *rdev)
1065 {
1066 	struct cfg80211_scan_request *request;
1067 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
1068 	u32 n_channels = 0, idx, i;
1069 
1070 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
1071 		return rdev_scan(rdev, rdev_req);
1072 
1073 	for (i = 0; i < rdev_req->n_channels; i++) {
1074 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1075 			n_channels++;
1076 	}
1077 
1078 	if (!n_channels)
1079 		return cfg80211_scan_6ghz(rdev);
1080 
1081 	request = kzalloc(struct_size(request, channels, n_channels),
1082 			  GFP_KERNEL);
1083 	if (!request)
1084 		return -ENOMEM;
1085 
1086 	*request = *rdev_req;
1087 	request->n_channels = n_channels;
1088 
1089 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
1090 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
1091 			request->channels[idx++] = rdev_req->channels[i];
1092 	}
1093 
1094 	rdev_req->scan_6ghz = false;
1095 	rdev->int_scan_req = request;
1096 	return rdev_scan(rdev, request);
1097 }
1098 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)1099 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
1100 			   bool send_message)
1101 {
1102 	struct cfg80211_scan_request *request, *rdev_req;
1103 	struct wireless_dev *wdev;
1104 	struct sk_buff *msg;
1105 #ifdef CONFIG_CFG80211_WEXT
1106 	union iwreq_data wrqu;
1107 #endif
1108 
1109 	lockdep_assert_held(&rdev->wiphy.mtx);
1110 
1111 	if (rdev->scan_msg) {
1112 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
1113 		rdev->scan_msg = NULL;
1114 		return;
1115 	}
1116 
1117 	rdev_req = rdev->scan_req;
1118 	if (!rdev_req)
1119 		return;
1120 
1121 	wdev = rdev_req->wdev;
1122 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1123 
1124 	if (wdev_running(wdev) &&
1125 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1126 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1127 	    !cfg80211_scan_6ghz(rdev))
1128 		return;
1129 
1130 	/*
1131 	 * This must be before sending the other events!
1132 	 * Otherwise, wpa_supplicant gets completely confused with
1133 	 * wext events.
1134 	 */
1135 	if (wdev->netdev)
1136 		cfg80211_sme_scan_done(wdev->netdev);
1137 
1138 	if (!request->info.aborted &&
1139 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1140 		/* flush entries from previous scans */
1141 		spin_lock_bh(&rdev->bss_lock);
1142 		__cfg80211_bss_expire(rdev, request->scan_start);
1143 		spin_unlock_bh(&rdev->bss_lock);
1144 	}
1145 
1146 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1147 
1148 #ifdef CONFIG_CFG80211_WEXT
1149 	if (wdev->netdev && !request->info.aborted) {
1150 		memset(&wrqu, 0, sizeof(wrqu));
1151 
1152 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1153 	}
1154 #endif
1155 
1156 	dev_put(wdev->netdev);
1157 
1158 	kfree(rdev->int_scan_req);
1159 	rdev->int_scan_req = NULL;
1160 
1161 	kfree(rdev->scan_req);
1162 	rdev->scan_req = NULL;
1163 
1164 	if (!send_message)
1165 		rdev->scan_msg = msg;
1166 	else
1167 		nl80211_send_scan_msg(rdev, msg);
1168 }
1169 
__cfg80211_scan_done(struct wiphy * wiphy,struct wiphy_work * wk)1170 void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
1171 {
1172 	___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
1173 }
1174 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1175 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1176 			struct cfg80211_scan_info *info)
1177 {
1178 	struct cfg80211_scan_info old_info = request->info;
1179 
1180 	trace_cfg80211_scan_done(request, info);
1181 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1182 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1183 
1184 	request->info = *info;
1185 
1186 	/*
1187 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1188 	 * be of the first part. In such a case old_info.scan_start_tsf should
1189 	 * be non zero.
1190 	 */
1191 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1192 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1193 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1194 		       sizeof(request->info.tsf_bssid));
1195 	}
1196 
1197 	request->notified = true;
1198 	wiphy_work_queue(request->wiphy,
1199 			 &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1200 }
1201 EXPORT_SYMBOL(cfg80211_scan_done);
1202 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1203 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1204 				 struct cfg80211_sched_scan_request *req)
1205 {
1206 	lockdep_assert_held(&rdev->wiphy.mtx);
1207 
1208 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1209 }
1210 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1211 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1212 					struct cfg80211_sched_scan_request *req)
1213 {
1214 	lockdep_assert_held(&rdev->wiphy.mtx);
1215 
1216 	list_del_rcu(&req->list);
1217 	kfree_rcu(req, rcu_head);
1218 }
1219 
1220 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1221 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1222 {
1223 	struct cfg80211_sched_scan_request *pos;
1224 
1225 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1226 				lockdep_is_held(&rdev->wiphy.mtx)) {
1227 		if (pos->reqid == reqid)
1228 			return pos;
1229 	}
1230 	return NULL;
1231 }
1232 
1233 /*
1234  * Determines if a scheduled scan request can be handled. When a legacy
1235  * scheduled scan is running no other scheduled scan is allowed regardless
1236  * whether the request is for legacy or multi-support scan. When a multi-support
1237  * scheduled scan is running a request for legacy scan is not allowed. In this
1238  * case a request for multi-support scan can be handled if resources are
1239  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1240  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1241 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1242 				     bool want_multi)
1243 {
1244 	struct cfg80211_sched_scan_request *pos;
1245 	int i = 0;
1246 
1247 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1248 		/* request id zero means legacy in progress */
1249 		if (!i && !pos->reqid)
1250 			return -EINPROGRESS;
1251 		i++;
1252 	}
1253 
1254 	if (i) {
1255 		/* no legacy allowed when multi request(s) are active */
1256 		if (!want_multi)
1257 			return -EINPROGRESS;
1258 
1259 		/* resource limit reached */
1260 		if (i == rdev->wiphy.max_sched_scan_reqs)
1261 			return -ENOSPC;
1262 	}
1263 	return 0;
1264 }
1265 
cfg80211_sched_scan_results_wk(struct work_struct * work)1266 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1267 {
1268 	struct cfg80211_registered_device *rdev;
1269 	struct cfg80211_sched_scan_request *req, *tmp;
1270 
1271 	rdev = container_of(work, struct cfg80211_registered_device,
1272 			   sched_scan_res_wk);
1273 
1274 	guard(wiphy)(&rdev->wiphy);
1275 
1276 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1277 		if (req->report_results) {
1278 			req->report_results = false;
1279 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1280 				/* flush entries from previous scans */
1281 				spin_lock_bh(&rdev->bss_lock);
1282 				__cfg80211_bss_expire(rdev, req->scan_start);
1283 				spin_unlock_bh(&rdev->bss_lock);
1284 				req->scan_start = jiffies;
1285 			}
1286 			nl80211_send_sched_scan(req,
1287 						NL80211_CMD_SCHED_SCAN_RESULTS);
1288 		}
1289 	}
1290 }
1291 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1292 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1293 {
1294 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1295 	struct cfg80211_sched_scan_request *request;
1296 
1297 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1298 	/* ignore if we're not scanning */
1299 
1300 	rcu_read_lock();
1301 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1302 	if (request) {
1303 		request->report_results = true;
1304 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1305 	}
1306 	rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1309 
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1310 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1311 {
1312 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1313 
1314 	lockdep_assert_held(&wiphy->mtx);
1315 
1316 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1317 
1318 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1319 }
1320 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1321 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1322 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1323 {
1324 	guard(wiphy)(wiphy);
1325 
1326 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1327 }
1328 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1329 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1330 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1331 				 struct cfg80211_sched_scan_request *req,
1332 				 bool driver_initiated)
1333 {
1334 	lockdep_assert_held(&rdev->wiphy.mtx);
1335 
1336 	if (!driver_initiated) {
1337 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1338 		if (err)
1339 			return err;
1340 	}
1341 
1342 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1343 
1344 	cfg80211_del_sched_scan_req(rdev, req);
1345 
1346 	return 0;
1347 }
1348 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1349 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1350 			       u64 reqid, bool driver_initiated)
1351 {
1352 	struct cfg80211_sched_scan_request *sched_scan_req;
1353 
1354 	lockdep_assert_held(&rdev->wiphy.mtx);
1355 
1356 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1357 	if (!sched_scan_req)
1358 		return -ENOENT;
1359 
1360 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1361 					    driver_initiated);
1362 }
1363 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1364 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1365                       unsigned long age_secs)
1366 {
1367 	struct cfg80211_internal_bss *bss;
1368 	unsigned long age_jiffies = secs_to_jiffies(age_secs);
1369 
1370 	spin_lock_bh(&rdev->bss_lock);
1371 	list_for_each_entry(bss, &rdev->bss_list, list)
1372 		bss->ts -= age_jiffies;
1373 	spin_unlock_bh(&rdev->bss_lock);
1374 }
1375 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1376 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1377 {
1378 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1379 }
1380 
cfg80211_bss_flush(struct wiphy * wiphy)1381 void cfg80211_bss_flush(struct wiphy *wiphy)
1382 {
1383 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1384 
1385 	spin_lock_bh(&rdev->bss_lock);
1386 	__cfg80211_bss_expire(rdev, jiffies);
1387 	spin_unlock_bh(&rdev->bss_lock);
1388 }
1389 EXPORT_SYMBOL(cfg80211_bss_flush);
1390 
1391 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1392 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1393 			 const u8 *match, unsigned int match_len,
1394 			 unsigned int match_offset)
1395 {
1396 	const struct element *elem;
1397 
1398 	for_each_element_id(elem, eid, ies, len) {
1399 		if (elem->datalen >= match_offset + match_len &&
1400 		    !memcmp(elem->data + match_offset, match, match_len))
1401 			return elem;
1402 	}
1403 
1404 	return NULL;
1405 }
1406 EXPORT_SYMBOL(cfg80211_find_elem_match);
1407 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1408 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1409 						const u8 *ies,
1410 						unsigned int len)
1411 {
1412 	const struct element *elem;
1413 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1414 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1415 
1416 	if (WARN_ON(oui_type > 0xff))
1417 		return NULL;
1418 
1419 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1420 					match, match_len, 0);
1421 
1422 	if (!elem || elem->datalen < 4)
1423 		return NULL;
1424 
1425 	return elem;
1426 }
1427 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1428 
1429 /**
1430  * enum bss_compare_mode - BSS compare mode
1431  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1432  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1433  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1434  */
1435 enum bss_compare_mode {
1436 	BSS_CMP_REGULAR,
1437 	BSS_CMP_HIDE_ZLEN,
1438 	BSS_CMP_HIDE_NUL,
1439 };
1440 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1441 static int cmp_bss(struct cfg80211_bss *a,
1442 		   struct cfg80211_bss *b,
1443 		   enum bss_compare_mode mode)
1444 {
1445 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1446 	const u8 *ie1 = NULL;
1447 	const u8 *ie2 = NULL;
1448 	int i, r;
1449 
1450 	if (a->channel != b->channel)
1451 		return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1452 		       (a->channel->center_freq * 1000 + a->channel->freq_offset);
1453 
1454 	a_ies = rcu_access_pointer(a->ies);
1455 	if (!a_ies)
1456 		return -1;
1457 	b_ies = rcu_access_pointer(b->ies);
1458 	if (!b_ies)
1459 		return 1;
1460 
1461 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1462 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1463 				       a_ies->data, a_ies->len);
1464 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1465 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1466 				       b_ies->data, b_ies->len);
1467 	if (ie1 && ie2) {
1468 		int mesh_id_cmp;
1469 
1470 		if (ie1[1] == ie2[1])
1471 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1472 		else
1473 			mesh_id_cmp = ie2[1] - ie1[1];
1474 
1475 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1476 				       a_ies->data, a_ies->len);
1477 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1478 				       b_ies->data, b_ies->len);
1479 		if (ie1 && ie2) {
1480 			if (mesh_id_cmp)
1481 				return mesh_id_cmp;
1482 			if (ie1[1] != ie2[1])
1483 				return ie2[1] - ie1[1];
1484 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1485 		}
1486 	}
1487 
1488 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1489 	if (r)
1490 		return r;
1491 
1492 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1493 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1494 
1495 	if (!ie1 && !ie2)
1496 		return 0;
1497 
1498 	/*
1499 	 * Note that with "hide_ssid", the function returns a match if
1500 	 * the already-present BSS ("b") is a hidden SSID beacon for
1501 	 * the new BSS ("a").
1502 	 */
1503 
1504 	/* sort missing IE before (left of) present IE */
1505 	if (!ie1)
1506 		return -1;
1507 	if (!ie2)
1508 		return 1;
1509 
1510 	switch (mode) {
1511 	case BSS_CMP_HIDE_ZLEN:
1512 		/*
1513 		 * In ZLEN mode we assume the BSS entry we're
1514 		 * looking for has a zero-length SSID. So if
1515 		 * the one we're looking at right now has that,
1516 		 * return 0. Otherwise, return the difference
1517 		 * in length, but since we're looking for the
1518 		 * 0-length it's really equivalent to returning
1519 		 * the length of the one we're looking at.
1520 		 *
1521 		 * No content comparison is needed as we assume
1522 		 * the content length is zero.
1523 		 */
1524 		return ie2[1];
1525 	case BSS_CMP_REGULAR:
1526 	default:
1527 		/* sort by length first, then by contents */
1528 		if (ie1[1] != ie2[1])
1529 			return ie2[1] - ie1[1];
1530 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1531 	case BSS_CMP_HIDE_NUL:
1532 		if (ie1[1] != ie2[1])
1533 			return ie2[1] - ie1[1];
1534 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1535 		for (i = 0; i < ie2[1]; i++)
1536 			if (ie2[i + 2])
1537 				return -1;
1538 		return 0;
1539 	}
1540 }
1541 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1542 static bool cfg80211_bss_type_match(u16 capability,
1543 				    enum nl80211_band band,
1544 				    enum ieee80211_bss_type bss_type)
1545 {
1546 	bool ret = true;
1547 	u16 mask, val;
1548 
1549 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1550 		return ret;
1551 
1552 	if (band == NL80211_BAND_60GHZ) {
1553 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1554 		switch (bss_type) {
1555 		case IEEE80211_BSS_TYPE_ESS:
1556 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1557 			break;
1558 		case IEEE80211_BSS_TYPE_PBSS:
1559 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1560 			break;
1561 		case IEEE80211_BSS_TYPE_IBSS:
1562 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1563 			break;
1564 		default:
1565 			return false;
1566 		}
1567 	} else {
1568 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1569 		switch (bss_type) {
1570 		case IEEE80211_BSS_TYPE_ESS:
1571 			val = WLAN_CAPABILITY_ESS;
1572 			break;
1573 		case IEEE80211_BSS_TYPE_IBSS:
1574 			val = WLAN_CAPABILITY_IBSS;
1575 			break;
1576 		case IEEE80211_BSS_TYPE_MBSS:
1577 			val = 0;
1578 			break;
1579 		default:
1580 			return false;
1581 		}
1582 	}
1583 
1584 	ret = ((capability & mask) == val);
1585 	return ret;
1586 }
1587 
1588 /* Returned bss is reference counted and must be cleaned up appropriately. */
__cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy,u32 use_for)1589 struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
1590 					struct ieee80211_channel *channel,
1591 					const u8 *bssid,
1592 					const u8 *ssid, size_t ssid_len,
1593 					enum ieee80211_bss_type bss_type,
1594 					enum ieee80211_privacy privacy,
1595 					u32 use_for)
1596 {
1597 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1598 	struct cfg80211_internal_bss *bss, *res = NULL;
1599 	unsigned long now = jiffies;
1600 	int bss_privacy;
1601 
1602 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1603 			       privacy);
1604 
1605 	spin_lock_bh(&rdev->bss_lock);
1606 
1607 	list_for_each_entry(bss, &rdev->bss_list, list) {
1608 		if (!cfg80211_bss_type_match(bss->pub.capability,
1609 					     bss->pub.channel->band, bss_type))
1610 			continue;
1611 
1612 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1613 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1614 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1615 			continue;
1616 		if (channel && bss->pub.channel != channel)
1617 			continue;
1618 		if (!is_valid_ether_addr(bss->pub.bssid))
1619 			continue;
1620 		if ((bss->pub.use_for & use_for) != use_for)
1621 			continue;
1622 		/* Don't get expired BSS structs */
1623 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1624 		    !atomic_read(&bss->hold))
1625 			continue;
1626 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1627 			res = bss;
1628 			bss_ref_get(rdev, res);
1629 			break;
1630 		}
1631 	}
1632 
1633 	spin_unlock_bh(&rdev->bss_lock);
1634 	if (!res)
1635 		return NULL;
1636 	trace_cfg80211_return_bss(&res->pub);
1637 	return &res->pub;
1638 }
1639 EXPORT_SYMBOL(__cfg80211_get_bss);
1640 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1641 static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
1642 			  struct cfg80211_internal_bss *bss)
1643 {
1644 	struct rb_node **p = &rdev->bss_tree.rb_node;
1645 	struct rb_node *parent = NULL;
1646 	struct cfg80211_internal_bss *tbss;
1647 	int cmp;
1648 
1649 	while (*p) {
1650 		parent = *p;
1651 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1652 
1653 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1654 
1655 		if (WARN_ON(!cmp)) {
1656 			/* will sort of leak this BSS */
1657 			return false;
1658 		}
1659 
1660 		if (cmp < 0)
1661 			p = &(*p)->rb_left;
1662 		else
1663 			p = &(*p)->rb_right;
1664 	}
1665 
1666 	rb_link_node(&bss->rbn, parent, p);
1667 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1668 	return true;
1669 }
1670 
1671 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1672 rb_find_bss(struct cfg80211_registered_device *rdev,
1673 	    struct cfg80211_internal_bss *res,
1674 	    enum bss_compare_mode mode)
1675 {
1676 	struct rb_node *n = rdev->bss_tree.rb_node;
1677 	struct cfg80211_internal_bss *bss;
1678 	int r;
1679 
1680 	while (n) {
1681 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1682 		r = cmp_bss(&res->pub, &bss->pub, mode);
1683 
1684 		if (r == 0)
1685 			return bss;
1686 		else if (r < 0)
1687 			n = n->rb_left;
1688 		else
1689 			n = n->rb_right;
1690 	}
1691 
1692 	return NULL;
1693 }
1694 
cfg80211_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1695 static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
1696 				struct cfg80211_internal_bss *bss)
1697 {
1698 	lockdep_assert_held(&rdev->bss_lock);
1699 
1700 	if (!rb_insert_bss(rdev, bss))
1701 		return;
1702 	list_add_tail(&bss->list, &rdev->bss_list);
1703 	rdev->bss_entries++;
1704 }
1705 
cfg80211_rehash_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1706 static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
1707                                 struct cfg80211_internal_bss *bss)
1708 {
1709 	lockdep_assert_held(&rdev->bss_lock);
1710 
1711 	rb_erase(&bss->rbn, &rdev->bss_tree);
1712 	if (!rb_insert_bss(rdev, bss)) {
1713 		list_del(&bss->list);
1714 		if (!list_empty(&bss->hidden_list))
1715 			list_del_init(&bss->hidden_list);
1716 		if (!list_empty(&bss->pub.nontrans_list))
1717 			list_del_init(&bss->pub.nontrans_list);
1718 		rdev->bss_entries--;
1719 	}
1720 	rdev->bss_generation++;
1721 }
1722 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1723 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1724 				   struct cfg80211_internal_bss *new)
1725 {
1726 	const struct cfg80211_bss_ies *ies;
1727 	struct cfg80211_internal_bss *bss;
1728 	const u8 *ie;
1729 	int i, ssidlen;
1730 	u8 fold = 0;
1731 	u32 n_entries = 0;
1732 
1733 	ies = rcu_access_pointer(new->pub.beacon_ies);
1734 	if (WARN_ON(!ies))
1735 		return false;
1736 
1737 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1738 	if (!ie) {
1739 		/* nothing to do */
1740 		return true;
1741 	}
1742 
1743 	ssidlen = ie[1];
1744 	for (i = 0; i < ssidlen; i++)
1745 		fold |= ie[2 + i];
1746 
1747 	if (fold) {
1748 		/* not a hidden SSID */
1749 		return true;
1750 	}
1751 
1752 	/* This is the bad part ... */
1753 
1754 	list_for_each_entry(bss, &rdev->bss_list, list) {
1755 		/*
1756 		 * we're iterating all the entries anyway, so take the
1757 		 * opportunity to validate the list length accounting
1758 		 */
1759 		n_entries++;
1760 
1761 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1762 			continue;
1763 		if (bss->pub.channel != new->pub.channel)
1764 			continue;
1765 		if (rcu_access_pointer(bss->pub.beacon_ies))
1766 			continue;
1767 		ies = rcu_access_pointer(bss->pub.ies);
1768 		if (!ies)
1769 			continue;
1770 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1771 		if (!ie)
1772 			continue;
1773 		if (ssidlen && ie[1] != ssidlen)
1774 			continue;
1775 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1776 			continue;
1777 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1778 			list_del(&bss->hidden_list);
1779 		/* combine them */
1780 		list_add(&bss->hidden_list, &new->hidden_list);
1781 		bss->pub.hidden_beacon_bss = &new->pub;
1782 		new->refcount += bss->refcount;
1783 		rcu_assign_pointer(bss->pub.beacon_ies,
1784 				   new->pub.beacon_ies);
1785 	}
1786 
1787 	WARN_ONCE(n_entries != rdev->bss_entries,
1788 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1789 		  rdev->bss_entries, n_entries);
1790 
1791 	return true;
1792 }
1793 
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1794 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1795 					 const struct cfg80211_bss_ies *new_ies,
1796 					 const struct cfg80211_bss_ies *old_ies)
1797 {
1798 	struct cfg80211_internal_bss *bss;
1799 
1800 	/* Assign beacon IEs to all sub entries */
1801 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1802 		const struct cfg80211_bss_ies *ies;
1803 
1804 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1805 		WARN_ON(ies != old_ies);
1806 
1807 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1808 	}
1809 }
1810 
cfg80211_check_stuck_ecsa(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * old)1811 static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
1812 				      struct cfg80211_internal_bss *known,
1813 				      const struct cfg80211_bss_ies *old)
1814 {
1815 	const struct ieee80211_ext_chansw_ie *ecsa;
1816 	const struct element *elem_new, *elem_old;
1817 	const struct cfg80211_bss_ies *new, *bcn;
1818 
1819 	if (known->pub.proberesp_ecsa_stuck)
1820 		return;
1821 
1822 	new = rcu_dereference_protected(known->pub.proberesp_ies,
1823 					lockdep_is_held(&rdev->bss_lock));
1824 	if (WARN_ON(!new))
1825 		return;
1826 
1827 	if (new->tsf - old->tsf < USEC_PER_SEC)
1828 		return;
1829 
1830 	elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1831 				      old->data, old->len);
1832 	if (!elem_old)
1833 		return;
1834 
1835 	elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1836 				      new->data, new->len);
1837 	if (!elem_new)
1838 		return;
1839 
1840 	bcn = rcu_dereference_protected(known->pub.beacon_ies,
1841 					lockdep_is_held(&rdev->bss_lock));
1842 	if (bcn &&
1843 	    cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
1844 			       bcn->data, bcn->len))
1845 		return;
1846 
1847 	if (elem_new->datalen != elem_old->datalen)
1848 		return;
1849 	if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
1850 		return;
1851 	if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
1852 		return;
1853 
1854 	ecsa = (void *)elem_new->data;
1855 
1856 	if (!ecsa->mode)
1857 		return;
1858 
1859 	if (ecsa->new_ch_num !=
1860 	    ieee80211_frequency_to_channel(known->pub.channel->center_freq))
1861 		return;
1862 
1863 	known->pub.proberesp_ecsa_stuck = 1;
1864 }
1865 
1866 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1867 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1868 			  struct cfg80211_internal_bss *known,
1869 			  struct cfg80211_internal_bss *new,
1870 			  bool signal_valid)
1871 {
1872 	lockdep_assert_held(&rdev->bss_lock);
1873 
1874 	/* Update IEs */
1875 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1876 		const struct cfg80211_bss_ies *old;
1877 
1878 		old = rcu_access_pointer(known->pub.proberesp_ies);
1879 
1880 		rcu_assign_pointer(known->pub.proberesp_ies,
1881 				   new->pub.proberesp_ies);
1882 		/* Override possible earlier Beacon frame IEs */
1883 		rcu_assign_pointer(known->pub.ies,
1884 				   new->pub.proberesp_ies);
1885 		if (old) {
1886 			cfg80211_check_stuck_ecsa(rdev, known, old);
1887 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1888 		}
1889 	}
1890 
1891 	if (rcu_access_pointer(new->pub.beacon_ies)) {
1892 		const struct cfg80211_bss_ies *old;
1893 
1894 		if (known->pub.hidden_beacon_bss &&
1895 		    !list_empty(&known->hidden_list)) {
1896 			const struct cfg80211_bss_ies *f;
1897 
1898 			/* The known BSS struct is one of the probe
1899 			 * response members of a group, but we're
1900 			 * receiving a beacon (beacon_ies in the new
1901 			 * bss is used). This can only mean that the
1902 			 * AP changed its beacon from not having an
1903 			 * SSID to showing it, which is confusing so
1904 			 * drop this information.
1905 			 */
1906 
1907 			f = rcu_access_pointer(new->pub.beacon_ies);
1908 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1909 			return false;
1910 		}
1911 
1912 		old = rcu_access_pointer(known->pub.beacon_ies);
1913 
1914 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1915 
1916 		/* Override IEs if they were from a beacon before */
1917 		if (old == rcu_access_pointer(known->pub.ies))
1918 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1919 
1920 		cfg80211_update_hidden_bsses(known,
1921 					     rcu_access_pointer(new->pub.beacon_ies),
1922 					     old);
1923 
1924 		if (old)
1925 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1926 	}
1927 
1928 	known->pub.beacon_interval = new->pub.beacon_interval;
1929 
1930 	/* don't update the signal if beacon was heard on
1931 	 * adjacent channel.
1932 	 */
1933 	if (signal_valid)
1934 		known->pub.signal = new->pub.signal;
1935 	known->pub.capability = new->pub.capability;
1936 	known->ts = new->ts;
1937 	known->pub.ts_boottime = new->pub.ts_boottime;
1938 	known->parent_tsf = new->parent_tsf;
1939 	known->pub.chains = new->pub.chains;
1940 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1941 	       IEEE80211_MAX_CHAINS);
1942 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1943 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1944 	known->pub.bssid_index = new->pub.bssid_index;
1945 	known->pub.use_for &= new->pub.use_for;
1946 	known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
1947 	known->bss_source = new->bss_source;
1948 
1949 	return true;
1950 }
1951 
1952 /* Returned bss is reference counted and must be cleaned up appropriately. */
1953 static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1954 __cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1955 		      struct cfg80211_internal_bss *tmp,
1956 		      bool signal_valid, unsigned long ts)
1957 {
1958 	struct cfg80211_internal_bss *found = NULL;
1959 	struct cfg80211_bss_ies *ies;
1960 
1961 	if (WARN_ON(!tmp->pub.channel))
1962 		goto free_ies;
1963 
1964 	tmp->ts = ts;
1965 
1966 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
1967 		goto free_ies;
1968 
1969 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1970 
1971 	if (found) {
1972 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1973 			return NULL;
1974 	} else {
1975 		struct cfg80211_internal_bss *new;
1976 		struct cfg80211_internal_bss *hidden;
1977 
1978 		/*
1979 		 * create a copy -- the "res" variable that is passed in
1980 		 * is allocated on the stack since it's not needed in the
1981 		 * more common case of an update
1982 		 */
1983 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1984 			      GFP_ATOMIC);
1985 		if (!new)
1986 			goto free_ies;
1987 		memcpy(new, tmp, sizeof(*new));
1988 		new->refcount = 1;
1989 		INIT_LIST_HEAD(&new->hidden_list);
1990 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1991 		/* we'll set this later if it was non-NULL */
1992 		new->pub.transmitted_bss = NULL;
1993 
1994 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1995 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1996 			if (!hidden)
1997 				hidden = rb_find_bss(rdev, tmp,
1998 						     BSS_CMP_HIDE_NUL);
1999 			if (hidden) {
2000 				new->pub.hidden_beacon_bss = &hidden->pub;
2001 				list_add(&new->hidden_list,
2002 					 &hidden->hidden_list);
2003 				hidden->refcount++;
2004 
2005 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
2006 				rcu_assign_pointer(new->pub.beacon_ies,
2007 						   hidden->pub.beacon_ies);
2008 				if (ies)
2009 					kfree_rcu(ies, rcu_head);
2010 			}
2011 		} else {
2012 			/*
2013 			 * Ok so we found a beacon, and don't have an entry. If
2014 			 * it's a beacon with hidden SSID, we might be in for an
2015 			 * expensive search for any probe responses that should
2016 			 * be grouped with this beacon for updates ...
2017 			 */
2018 			if (!cfg80211_combine_bsses(rdev, new)) {
2019 				bss_ref_put(rdev, new);
2020 				return NULL;
2021 			}
2022 		}
2023 
2024 		if (rdev->bss_entries >= bss_entries_limit &&
2025 		    !cfg80211_bss_expire_oldest(rdev)) {
2026 			bss_ref_put(rdev, new);
2027 			return NULL;
2028 		}
2029 
2030 		/* This must be before the call to bss_ref_get */
2031 		if (tmp->pub.transmitted_bss) {
2032 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
2033 			bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
2034 		}
2035 
2036 		cfg80211_insert_bss(rdev, new);
2037 		found = new;
2038 	}
2039 
2040 	rdev->bss_generation++;
2041 	bss_ref_get(rdev, found);
2042 
2043 	return found;
2044 
2045 free_ies:
2046 	ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
2047 	if (ies)
2048 		kfree_rcu(ies, rcu_head);
2049 	ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
2050 	if (ies)
2051 		kfree_rcu(ies, rcu_head);
2052 
2053 	return NULL;
2054 }
2055 
2056 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)2057 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
2058 		    struct cfg80211_internal_bss *tmp,
2059 		    bool signal_valid, unsigned long ts)
2060 {
2061 	struct cfg80211_internal_bss *res;
2062 
2063 	spin_lock_bh(&rdev->bss_lock);
2064 	res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
2065 	spin_unlock_bh(&rdev->bss_lock);
2066 
2067 	return res;
2068 }
2069 
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band)2070 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
2071 				    enum nl80211_band band)
2072 {
2073 	const struct element *tmp;
2074 
2075 	if (band == NL80211_BAND_6GHZ) {
2076 		struct ieee80211_he_operation *he_oper;
2077 
2078 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
2079 					     ielen);
2080 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
2081 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
2082 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2083 
2084 			he_oper = (void *)&tmp->data[1];
2085 
2086 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2087 			if (!he_6ghz_oper)
2088 				return -1;
2089 
2090 			return he_6ghz_oper->primary;
2091 		}
2092 	} else if (band == NL80211_BAND_S1GHZ) {
2093 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
2094 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
2095 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
2096 
2097 			return s1gop->oper_ch;
2098 		}
2099 	} else {
2100 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
2101 		if (tmp && tmp->datalen == 1)
2102 			return tmp->data[0];
2103 
2104 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
2105 		if (tmp &&
2106 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
2107 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
2108 
2109 			return htop->primary_chan;
2110 		}
2111 	}
2112 
2113 	return -1;
2114 }
2115 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
2116 
2117 /*
2118  * Update RX channel information based on the available frame payload
2119  * information. This is mainly for the 2.4 GHz band where frames can be received
2120  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
2121  * element to indicate the current (transmitting) channel, but this might also
2122  * be needed on other bands if RX frequency does not match with the actual
2123  * operating channel of a BSS, or if the AP reports a different primary channel.
2124  */
2125 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel)2126 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
2127 			 struct ieee80211_channel *channel)
2128 {
2129 	u32 freq;
2130 	int channel_number;
2131 	struct ieee80211_channel *alt_channel;
2132 
2133 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
2134 							 channel->band);
2135 
2136 	if (channel_number < 0) {
2137 		/* No channel information in frame payload */
2138 		return channel;
2139 	}
2140 
2141 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
2142 
2143 	/*
2144 	 * Frame info (beacon/prob res) is the same as received channel,
2145 	 * no need for further processing.
2146 	 */
2147 	if (freq == ieee80211_channel_to_khz(channel))
2148 		return channel;
2149 
2150 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
2151 	if (!alt_channel) {
2152 		if (channel->band == NL80211_BAND_2GHZ ||
2153 		    channel->band == NL80211_BAND_6GHZ) {
2154 			/*
2155 			 * Better not allow unexpected channels when that could
2156 			 * be going beyond the 1-11 range (e.g., discovering
2157 			 * BSS on channel 12 when radio is configured for
2158 			 * channel 11) or beyond the 6 GHz channel range.
2159 			 */
2160 			return NULL;
2161 		}
2162 
2163 		/* No match for the payload channel number - ignore it */
2164 		return channel;
2165 	}
2166 
2167 	/*
2168 	 * Use the channel determined through the payload channel number
2169 	 * instead of the RX channel reported by the driver.
2170 	 */
2171 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
2172 		return NULL;
2173 	return alt_channel;
2174 }
2175 
2176 struct cfg80211_inform_single_bss_data {
2177 	struct cfg80211_inform_bss *drv_data;
2178 	enum cfg80211_bss_frame_type ftype;
2179 	struct ieee80211_channel *channel;
2180 	u8 bssid[ETH_ALEN];
2181 	u64 tsf;
2182 	u16 capability;
2183 	u16 beacon_interval;
2184 	const u8 *ie;
2185 	size_t ielen;
2186 
2187 	enum bss_source_type bss_source;
2188 	/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
2189 	struct cfg80211_bss *source_bss;
2190 	u8 max_bssid_indicator;
2191 	u8 bssid_index;
2192 
2193 	u8 use_for;
2194 	u64 cannot_use_reasons;
2195 };
2196 
2197 enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 * elems,size_t elems_len)2198 cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
2199 {
2200 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
2201 	struct ieee80211_he_operation *he_oper;
2202 	const struct element *tmp;
2203 
2204 	tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
2205 				     elems, elems_len);
2206 	if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
2207 	    tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
2208 		return IEEE80211_REG_UNSET_AP;
2209 
2210 	he_oper = (void *)&tmp->data[1];
2211 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
2212 
2213 	if (!he_6ghz_oper)
2214 		return IEEE80211_REG_UNSET_AP;
2215 
2216 	switch (u8_get_bits(he_6ghz_oper->control,
2217 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
2218 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
2219 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
2220 		return IEEE80211_REG_LPI_AP;
2221 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
2222 	case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
2223 		return IEEE80211_REG_SP_AP;
2224 	case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
2225 		return IEEE80211_REG_VLP_AP;
2226 	default:
2227 		return IEEE80211_REG_UNSET_AP;
2228 	}
2229 }
2230 
cfg80211_6ghz_power_type_valid(const u8 * elems,size_t elems_len,const u32 flags)2231 static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
2232 					   const u32 flags)
2233 {
2234 	switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
2235 	case IEEE80211_REG_LPI_AP:
2236 		return true;
2237 	case IEEE80211_REG_SP_AP:
2238 		return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
2239 	case IEEE80211_REG_VLP_AP:
2240 		return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
2241 	default:
2242 		return false;
2243 	}
2244 }
2245 
2246 /* Returned bss is reference counted and must be cleaned up appropriately. */
2247 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * data,gfp_t gfp)2248 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
2249 				struct cfg80211_inform_single_bss_data *data,
2250 				gfp_t gfp)
2251 {
2252 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2253 	struct cfg80211_inform_bss *drv_data = data->drv_data;
2254 	struct cfg80211_bss_ies *ies;
2255 	struct ieee80211_channel *channel;
2256 	struct cfg80211_internal_bss tmp = {}, *res;
2257 	int bss_type;
2258 	bool signal_valid;
2259 	unsigned long ts;
2260 
2261 	if (WARN_ON(!wiphy))
2262 		return NULL;
2263 
2264 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2265 		    (drv_data->signal < 0 || drv_data->signal > 100)))
2266 		return NULL;
2267 
2268 	if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
2269 		return NULL;
2270 
2271 	channel = data->channel;
2272 	if (!channel)
2273 		channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
2274 						   drv_data->chan);
2275 	if (!channel)
2276 		return NULL;
2277 
2278 	if (channel->band == NL80211_BAND_6GHZ &&
2279 	    !cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
2280 					    channel->flags)) {
2281 		data->use_for = 0;
2282 		data->cannot_use_reasons =
2283 			NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
2284 	}
2285 
2286 	memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
2287 	tmp.pub.channel = channel;
2288 	if (data->bss_source != BSS_SOURCE_STA_PROFILE)
2289 		tmp.pub.signal = drv_data->signal;
2290 	else
2291 		tmp.pub.signal = 0;
2292 	tmp.pub.beacon_interval = data->beacon_interval;
2293 	tmp.pub.capability = data->capability;
2294 	tmp.pub.ts_boottime = drv_data->boottime_ns;
2295 	tmp.parent_tsf = drv_data->parent_tsf;
2296 	ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
2297 	tmp.pub.chains = drv_data->chains;
2298 	memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
2299 	       IEEE80211_MAX_CHAINS);
2300 	tmp.pub.use_for = data->use_for;
2301 	tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
2302 	tmp.bss_source = data->bss_source;
2303 
2304 	switch (data->bss_source) {
2305 	case BSS_SOURCE_MBSSID:
2306 		tmp.pub.transmitted_bss = data->source_bss;
2307 		fallthrough;
2308 	case BSS_SOURCE_STA_PROFILE:
2309 		ts = bss_from_pub(data->source_bss)->ts;
2310 		tmp.pub.bssid_index = data->bssid_index;
2311 		tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
2312 		break;
2313 	case BSS_SOURCE_DIRECT:
2314 		ts = jiffies;
2315 
2316 		if (channel->band == NL80211_BAND_60GHZ) {
2317 			bss_type = data->capability &
2318 				   WLAN_CAPABILITY_DMG_TYPE_MASK;
2319 			if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2320 			    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2321 				regulatory_hint_found_beacon(wiphy, channel,
2322 							     gfp);
2323 		} else {
2324 			if (data->capability & WLAN_CAPABILITY_ESS)
2325 				regulatory_hint_found_beacon(wiphy, channel,
2326 							     gfp);
2327 		}
2328 		break;
2329 	}
2330 
2331 	/*
2332 	 * If we do not know here whether the IEs are from a Beacon or Probe
2333 	 * Response frame, we need to pick one of the options and only use it
2334 	 * with the driver that does not provide the full Beacon/Probe Response
2335 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2336 	 * override the IEs pointer should we have received an earlier
2337 	 * indication of Probe Response data.
2338 	 */
2339 	ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
2340 	if (!ies)
2341 		return NULL;
2342 	ies->len = data->ielen;
2343 	ies->tsf = data->tsf;
2344 	ies->from_beacon = false;
2345 	memcpy(ies->data, data->ie, data->ielen);
2346 
2347 	switch (data->ftype) {
2348 	case CFG80211_BSS_FTYPE_BEACON:
2349 	case CFG80211_BSS_FTYPE_S1G_BEACON:
2350 		ies->from_beacon = true;
2351 		fallthrough;
2352 	case CFG80211_BSS_FTYPE_UNKNOWN:
2353 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2354 		break;
2355 	case CFG80211_BSS_FTYPE_PRESP:
2356 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2357 		break;
2358 	}
2359 	rcu_assign_pointer(tmp.pub.ies, ies);
2360 
2361 	signal_valid = drv_data->chan == channel;
2362 	spin_lock_bh(&rdev->bss_lock);
2363 	res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
2364 	if (!res)
2365 		goto drop;
2366 
2367 	rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
2368 
2369 	if (data->bss_source == BSS_SOURCE_MBSSID) {
2370 		/* this is a nontransmitting bss, we need to add it to
2371 		 * transmitting bss' list if it is not there
2372 		 */
2373 		if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
2374 			if (__cfg80211_unlink_bss(rdev, res)) {
2375 				rdev->bss_generation++;
2376 				res = NULL;
2377 			}
2378 		}
2379 
2380 		if (!res)
2381 			goto drop;
2382 	}
2383 	spin_unlock_bh(&rdev->bss_lock);
2384 
2385 	trace_cfg80211_return_bss(&res->pub);
2386 	/* __cfg80211_bss_update gives us a referenced result */
2387 	return &res->pub;
2388 
2389 drop:
2390 	spin_unlock_bh(&rdev->bss_lock);
2391 	return NULL;
2392 }
2393 
2394 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2395 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2396 				   const struct element *mbssid_elem,
2397 				   const struct element *sub_elem)
2398 {
2399 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2400 	const struct element *next_mbssid;
2401 	const struct element *next_sub;
2402 
2403 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2404 					 mbssid_end,
2405 					 ielen - (mbssid_end - ie));
2406 
2407 	/*
2408 	 * If it is not the last subelement in current MBSSID IE or there isn't
2409 	 * a next MBSSID IE - profile is complete.
2410 	*/
2411 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2412 	    !next_mbssid)
2413 		return NULL;
2414 
2415 	/* For any length error, just return NULL */
2416 
2417 	if (next_mbssid->datalen < 4)
2418 		return NULL;
2419 
2420 	next_sub = (void *)&next_mbssid->data[1];
2421 
2422 	if (next_mbssid->data + next_mbssid->datalen <
2423 	    next_sub->data + next_sub->datalen)
2424 		return NULL;
2425 
2426 	if (next_sub->id != 0 || next_sub->datalen < 2)
2427 		return NULL;
2428 
2429 	/*
2430 	 * Check if the first element in the next sub element is a start
2431 	 * of a new profile
2432 	 */
2433 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2434 	       NULL : next_mbssid;
2435 }
2436 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2437 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2438 			      const struct element *mbssid_elem,
2439 			      const struct element *sub_elem,
2440 			      u8 *merged_ie, size_t max_copy_len)
2441 {
2442 	size_t copied_len = sub_elem->datalen;
2443 	const struct element *next_mbssid;
2444 
2445 	if (sub_elem->datalen > max_copy_len)
2446 		return 0;
2447 
2448 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2449 
2450 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2451 								mbssid_elem,
2452 								sub_elem))) {
2453 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2454 
2455 		if (copied_len + next_sub->datalen > max_copy_len)
2456 			break;
2457 		memcpy(merged_ie + copied_len, next_sub->data,
2458 		       next_sub->datalen);
2459 		copied_len += next_sub->datalen;
2460 	}
2461 
2462 	return copied_len;
2463 }
2464 EXPORT_SYMBOL(cfg80211_merge_profile);
2465 
2466 static void
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)2467 cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2468 			   struct cfg80211_inform_single_bss_data *tx_data,
2469 			   struct cfg80211_bss *source_bss,
2470 			   gfp_t gfp)
2471 {
2472 	struct cfg80211_inform_single_bss_data data = {
2473 		.drv_data = tx_data->drv_data,
2474 		.ftype = tx_data->ftype,
2475 		.tsf = tx_data->tsf,
2476 		.beacon_interval = tx_data->beacon_interval,
2477 		.source_bss = source_bss,
2478 		.bss_source = BSS_SOURCE_MBSSID,
2479 		.use_for = tx_data->use_for,
2480 		.cannot_use_reasons = tx_data->cannot_use_reasons,
2481 	};
2482 	const u8 *mbssid_index_ie;
2483 	const struct element *elem, *sub;
2484 	u8 *new_ie, *profile;
2485 	u64 seen_indices = 0;
2486 	struct cfg80211_bss *bss;
2487 
2488 	if (!source_bss)
2489 		return;
2490 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2491 				tx_data->ie, tx_data->ielen))
2492 		return;
2493 	if (!wiphy->support_mbssid)
2494 		return;
2495 	if (wiphy->support_only_he_mbssid &&
2496 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
2497 				    tx_data->ie, tx_data->ielen))
2498 		return;
2499 
2500 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2501 	if (!new_ie)
2502 		return;
2503 
2504 	profile = kmalloc(tx_data->ielen, gfp);
2505 	if (!profile)
2506 		goto out;
2507 
2508 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
2509 			    tx_data->ie, tx_data->ielen) {
2510 		if (elem->datalen < 4)
2511 			continue;
2512 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2513 			continue;
2514 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2515 			u8 profile_len;
2516 
2517 			if (sub->id != 0 || sub->datalen < 4) {
2518 				/* not a valid BSS profile */
2519 				continue;
2520 			}
2521 
2522 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2523 			    sub->data[1] != 2) {
2524 				/* The first element within the Nontransmitted
2525 				 * BSSID Profile is not the Nontransmitted
2526 				 * BSSID Capability element.
2527 				 */
2528 				continue;
2529 			}
2530 
2531 			memset(profile, 0, tx_data->ielen);
2532 			profile_len = cfg80211_merge_profile(tx_data->ie,
2533 							     tx_data->ielen,
2534 							     elem,
2535 							     sub,
2536 							     profile,
2537 							     tx_data->ielen);
2538 
2539 			/* found a Nontransmitted BSSID Profile */
2540 			mbssid_index_ie = cfg80211_find_ie
2541 				(WLAN_EID_MULTI_BSSID_IDX,
2542 				 profile, profile_len);
2543 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2544 			    mbssid_index_ie[2] == 0 ||
2545 			    mbssid_index_ie[2] > 46 ||
2546 			    mbssid_index_ie[2] >= (1 << elem->data[0])) {
2547 				/* No valid Multiple BSSID-Index element */
2548 				continue;
2549 			}
2550 
2551 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2552 				/* We don't support legacy split of a profile */
2553 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2554 						    mbssid_index_ie[2]);
2555 
2556 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2557 
2558 			data.bssid_index = mbssid_index_ie[2];
2559 			data.max_bssid_indicator = elem->data[0];
2560 
2561 			cfg80211_gen_new_bssid(tx_data->bssid,
2562 					       data.max_bssid_indicator,
2563 					       data.bssid_index,
2564 					       data.bssid);
2565 
2566 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2567 			data.ie = new_ie;
2568 			data.ielen = cfg80211_gen_new_ie(tx_data->ie,
2569 							 tx_data->ielen,
2570 							 profile,
2571 							 profile_len,
2572 							 new_ie,
2573 							 IEEE80211_MAX_DATA_LEN);
2574 			if (!data.ielen)
2575 				continue;
2576 
2577 			data.capability = get_unaligned_le16(profile + 2);
2578 			bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
2579 			if (!bss)
2580 				break;
2581 			cfg80211_put_bss(wiphy, bss);
2582 		}
2583 	}
2584 
2585 out:
2586 	kfree(new_ie);
2587 	kfree(profile);
2588 }
2589 
cfg80211_defragment_element(const struct element * elem,const u8 * ies,size_t ieslen,u8 * data,size_t data_len,u8 frag_id)2590 ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
2591 				    size_t ieslen, u8 *data, size_t data_len,
2592 				    u8 frag_id)
2593 {
2594 	const struct element *next;
2595 	ssize_t copied;
2596 	u8 elem_datalen;
2597 
2598 	if (!elem)
2599 		return -EINVAL;
2600 
2601 	/* elem might be invalid after the memmove */
2602 	next = (void *)(elem->data + elem->datalen);
2603 	elem_datalen = elem->datalen;
2604 
2605 	if (elem->id == WLAN_EID_EXTENSION) {
2606 		copied = elem->datalen - 1;
2607 
2608 		if (data) {
2609 			if (copied > data_len)
2610 				return -ENOSPC;
2611 
2612 			memmove(data, elem->data + 1, copied);
2613 		}
2614 	} else {
2615 		copied = elem->datalen;
2616 
2617 		if (data) {
2618 			if (copied > data_len)
2619 				return -ENOSPC;
2620 
2621 			memmove(data, elem->data, copied);
2622 		}
2623 	}
2624 
2625 	/* Fragmented elements must have 255 bytes */
2626 	if (elem_datalen < 255)
2627 		return copied;
2628 
2629 	for (elem = next;
2630 	     elem->data < ies + ieslen &&
2631 		elem->data + elem->datalen <= ies + ieslen;
2632 	     elem = next) {
2633 		/* elem might be invalid after the memmove */
2634 		next = (void *)(elem->data + elem->datalen);
2635 
2636 		if (elem->id != frag_id)
2637 			break;
2638 
2639 		elem_datalen = elem->datalen;
2640 
2641 		if (data) {
2642 			if (copied + elem_datalen > data_len)
2643 				return -ENOSPC;
2644 
2645 			memmove(data + copied, elem->data, elem_datalen);
2646 		}
2647 
2648 		copied += elem_datalen;
2649 
2650 		/* Only the last fragment may be short */
2651 		if (elem_datalen != 255)
2652 			break;
2653 	}
2654 
2655 	return copied;
2656 }
2657 EXPORT_SYMBOL(cfg80211_defragment_element);
2658 
2659 struct cfg80211_mle {
2660 	struct ieee80211_multi_link_elem *mle;
2661 	struct ieee80211_mle_per_sta_profile
2662 		*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
2663 	ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
2664 
2665 	u8 data[];
2666 };
2667 
2668 static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element * mle,const u8 * ie,size_t ielen,gfp_t gfp)2669 cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
2670 		    gfp_t gfp)
2671 {
2672 	const struct element *elem;
2673 	struct cfg80211_mle *res;
2674 	size_t buf_len;
2675 	ssize_t mle_len;
2676 	u8 common_size, idx;
2677 
2678 	if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
2679 		return NULL;
2680 
2681 	/* Required length for first defragmentation */
2682 	buf_len = mle->datalen - 1;
2683 	for_each_element(elem, mle->data + mle->datalen,
2684 			 ielen - sizeof(*mle) + mle->datalen) {
2685 		if (elem->id != WLAN_EID_FRAGMENT)
2686 			break;
2687 
2688 		buf_len += elem->datalen;
2689 	}
2690 
2691 	res = kzalloc(struct_size(res, data, buf_len), gfp);
2692 	if (!res)
2693 		return NULL;
2694 
2695 	mle_len = cfg80211_defragment_element(mle, ie, ielen,
2696 					      res->data, buf_len,
2697 					      WLAN_EID_FRAGMENT);
2698 	if (mle_len < 0)
2699 		goto error;
2700 
2701 	res->mle = (void *)res->data;
2702 
2703 	/* Find the sub-element area in the buffer */
2704 	common_size = ieee80211_mle_common_size((u8 *)res->mle);
2705 	ie = res->data + common_size;
2706 	ielen = mle_len - common_size;
2707 
2708 	idx = 0;
2709 	for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
2710 			    ie, ielen) {
2711 		res->sta_prof[idx] = (void *)elem->data;
2712 		res->sta_prof_len[idx] = elem->datalen;
2713 
2714 		idx++;
2715 		if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
2716 			break;
2717 	}
2718 	if (!for_each_element_completed(elem, ie, ielen))
2719 		goto error;
2720 
2721 	/* Defragment sta_info in-place */
2722 	for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
2723 	     idx++) {
2724 		if (res->sta_prof_len[idx] < 255)
2725 			continue;
2726 
2727 		elem = (void *)res->sta_prof[idx] - 2;
2728 
2729 		if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
2730 		    res->sta_prof[idx + 1])
2731 			buf_len = (u8 *)res->sta_prof[idx + 1] -
2732 				  (u8 *)res->sta_prof[idx];
2733 		else
2734 			buf_len = ielen + ie - (u8 *)elem;
2735 
2736 		res->sta_prof_len[idx] =
2737 			cfg80211_defragment_element(elem,
2738 						    (u8 *)elem, buf_len,
2739 						    (u8 *)res->sta_prof[idx],
2740 						    buf_len,
2741 						    IEEE80211_MLE_SUBELEM_FRAGMENT);
2742 		if (res->sta_prof_len[idx] < 0)
2743 			goto error;
2744 	}
2745 
2746 	return res;
2747 
2748 error:
2749 	kfree(res);
2750 	return NULL;
2751 }
2752 
2753 struct tbtt_info_iter_data {
2754 	const struct ieee80211_neighbor_ap_info *ap_info;
2755 	u8 param_ch_count;
2756 	u32 use_for;
2757 	u8 mld_id, link_id;
2758 	bool non_tx;
2759 };
2760 
2761 static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void * _data,u8 type,const struct ieee80211_neighbor_ap_info * info,const u8 * tbtt_info,u8 tbtt_info_len)2762 cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
2763 			  const struct ieee80211_neighbor_ap_info *info,
2764 			  const u8 *tbtt_info, u8 tbtt_info_len)
2765 {
2766 	const struct ieee80211_rnr_mld_params *mld_params;
2767 	struct tbtt_info_iter_data *data = _data;
2768 	u8 link_id;
2769 	bool non_tx = false;
2770 
2771 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
2772 	    tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
2773 					 mld_params)) {
2774 		const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
2775 			(void *)tbtt_info;
2776 
2777 		non_tx = (tbtt_info_ge_11->bss_params &
2778 			  (IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
2779 			   IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
2780 			 IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2781 		mld_params = &tbtt_info_ge_11->mld_params;
2782 	} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
2783 		 tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
2784 		mld_params = (void *)tbtt_info;
2785 	else
2786 		return RNR_ITER_CONTINUE;
2787 
2788 	link_id = le16_get_bits(mld_params->params,
2789 				IEEE80211_RNR_MLD_PARAMS_LINK_ID);
2790 
2791 	if (data->mld_id != mld_params->mld_id)
2792 		return RNR_ITER_CONTINUE;
2793 
2794 	if (data->link_id != link_id)
2795 		return RNR_ITER_CONTINUE;
2796 
2797 	data->ap_info = info;
2798 	data->param_ch_count =
2799 		le16_get_bits(mld_params->params,
2800 			      IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2801 	data->non_tx = non_tx;
2802 
2803 	if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
2804 		data->use_for = NL80211_BSS_USE_FOR_ALL;
2805 	else
2806 		data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
2807 	return RNR_ITER_BREAK;
2808 }
2809 
2810 static u8
cfg80211_rnr_info_for_mld_ap(const u8 * ie,size_t ielen,u8 mld_id,u8 link_id,const struct ieee80211_neighbor_ap_info ** ap_info,u8 * param_ch_count,bool * non_tx)2811 cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
2812 			     const struct ieee80211_neighbor_ap_info **ap_info,
2813 			     u8 *param_ch_count, bool *non_tx)
2814 {
2815 	struct tbtt_info_iter_data data = {
2816 		.mld_id = mld_id,
2817 		.link_id = link_id,
2818 	};
2819 
2820 	cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
2821 
2822 	*ap_info = data.ap_info;
2823 	*param_ch_count = data.param_ch_count;
2824 	*non_tx = data.non_tx;
2825 
2826 	return data.use_for;
2827 }
2828 
2829 static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss * source_bss,bool is_mbssid,bool same_mld,u8 link_id,u8 bss_change_count,gfp_t gfp)2830 cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
2831 			  bool same_mld, u8 link_id, u8 bss_change_count,
2832 			  gfp_t gfp)
2833 {
2834 	const struct cfg80211_bss_ies *ies;
2835 	struct ieee80211_neighbor_ap_info ap_info;
2836 	struct ieee80211_tbtt_info_ge_11 tbtt_info;
2837 	u32 short_ssid;
2838 	const struct element *elem;
2839 	struct element *res;
2840 
2841 	/*
2842 	 * We only generate the RNR to permit ML lookups. For that we do not
2843 	 * need an entry for the corresponding transmitting BSS, lets just skip
2844 	 * it even though it would be easy to add.
2845 	 */
2846 	if (!same_mld)
2847 		return NULL;
2848 
2849 	/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
2850 	rcu_read_lock();
2851 	ies = rcu_dereference(source_bss->ies);
2852 
2853 	ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
2854 	ap_info.tbtt_info_hdr =
2855 			u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
2856 				       IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
2857 			u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
2858 
2859 	ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
2860 
2861 	/* operating class */
2862 	elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2863 				  ies->data, ies->len);
2864 	if (elem && elem->datalen >= 1) {
2865 		ap_info.op_class = elem->data[0];
2866 	} else {
2867 		struct cfg80211_chan_def chandef;
2868 
2869 		/* The AP is not providing us with anything to work with. So
2870 		 * make up a somewhat reasonable operating class, but don't
2871 		 * bother with it too much as no one will ever use the
2872 		 * information.
2873 		 */
2874 		cfg80211_chandef_create(&chandef, source_bss->channel,
2875 					NL80211_CHAN_NO_HT);
2876 
2877 		if (!ieee80211_chandef_to_operating_class(&chandef,
2878 							  &ap_info.op_class))
2879 			goto out_unlock;
2880 	}
2881 
2882 	/* Just set TBTT offset and PSD 20 to invalid/unknown */
2883 	tbtt_info.tbtt_offset = 255;
2884 	tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
2885 
2886 	memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
2887 	if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
2888 		goto out_unlock;
2889 
2890 	rcu_read_unlock();
2891 
2892 	tbtt_info.short_ssid = cpu_to_le32(short_ssid);
2893 
2894 	tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
2895 
2896 	if (is_mbssid) {
2897 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
2898 		tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
2899 	}
2900 
2901 	tbtt_info.mld_params.mld_id = 0;
2902 	tbtt_info.mld_params.params =
2903 		le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
2904 		le16_encode_bits(bss_change_count,
2905 				 IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
2906 
2907 	res = kzalloc(struct_size(res, data,
2908 				  sizeof(ap_info) + ap_info.tbtt_info_len),
2909 		      gfp);
2910 	if (!res)
2911 		return NULL;
2912 
2913 	/* Copy the data */
2914 	res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
2915 	res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
2916 	memcpy(res->data, &ap_info, sizeof(ap_info));
2917 	memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
2918 
2919 	return res;
2920 
2921 out_unlock:
2922 	rcu_read_unlock();
2923 	return NULL;
2924 }
2925 
2926 static void
cfg80211_parse_ml_elem_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,const struct element * elem,gfp_t gfp)2927 cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
2928 				struct cfg80211_inform_single_bss_data *tx_data,
2929 				struct cfg80211_bss *source_bss,
2930 				const struct element *elem,
2931 				gfp_t gfp)
2932 {
2933 	struct cfg80211_inform_single_bss_data data = {
2934 		.drv_data = tx_data->drv_data,
2935 		.ftype = tx_data->ftype,
2936 		.source_bss = source_bss,
2937 		.bss_source = BSS_SOURCE_STA_PROFILE,
2938 	};
2939 	struct element *reporter_rnr = NULL;
2940 	struct ieee80211_multi_link_elem *ml_elem;
2941 	struct cfg80211_mle *mle;
2942 	const struct element *ssid_elem;
2943 	const u8 *ssid = NULL;
2944 	size_t ssid_len = 0;
2945 	u16 control;
2946 	u8 ml_common_len;
2947 	u8 *new_ie = NULL;
2948 	struct cfg80211_bss *bss;
2949 	u8 mld_id, reporter_link_id, bss_change_count;
2950 	u16 seen_links = 0;
2951 	u8 i;
2952 
2953 	if (!ieee80211_mle_type_ok(elem->data + 1,
2954 				   IEEE80211_ML_CONTROL_TYPE_BASIC,
2955 				   elem->datalen - 1))
2956 		return;
2957 
2958 	ml_elem = (void *)(elem->data + 1);
2959 	control = le16_to_cpu(ml_elem->control);
2960 	ml_common_len = ml_elem->variable[0];
2961 
2962 	/* Must be present when transmitted by an AP (in a probe response) */
2963 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
2964 	    !(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
2965 	    !(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
2966 		return;
2967 
2968 	reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
2969 	bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
2970 
2971 	/*
2972 	 * The MLD ID of the reporting AP is always zero. It is set if the AP
2973 	 * is part of an MBSSID set and will be non-zero for ML Elements
2974 	 * relating to a nontransmitted BSS (matching the Multi-BSSID Index,
2975 	 * Draft P802.11be_D3.2, 35.3.4.2)
2976 	 */
2977 	mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
2978 
2979 	/* Fully defrag the ML element for sta information/profile iteration */
2980 	mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
2981 	if (!mle)
2982 		return;
2983 
2984 	/* No point in doing anything if there is no per-STA profile */
2985 	if (!mle->sta_prof[0])
2986 		goto out;
2987 
2988 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2989 	if (!new_ie)
2990 		goto out;
2991 
2992 	reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
2993 						 u16_get_bits(control,
2994 							      IEEE80211_MLC_BASIC_PRES_MLD_ID),
2995 						 mld_id == 0, reporter_link_id,
2996 						 bss_change_count,
2997 						 gfp);
2998 
2999 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
3000 				       tx_data->ielen);
3001 	if (ssid_elem) {
3002 		ssid = ssid_elem->data;
3003 		ssid_len = ssid_elem->datalen;
3004 	}
3005 
3006 	for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
3007 		const struct ieee80211_neighbor_ap_info *ap_info;
3008 		enum nl80211_band band;
3009 		u32 freq;
3010 		const u8 *profile;
3011 		ssize_t profile_len;
3012 		u8 param_ch_count;
3013 		u8 link_id, use_for;
3014 		bool non_tx;
3015 
3016 		if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
3017 							  mle->sta_prof_len[i]))
3018 			continue;
3019 
3020 		control = le16_to_cpu(mle->sta_prof[i]->control);
3021 
3022 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
3023 			continue;
3024 
3025 		link_id = u16_get_bits(control,
3026 				       IEEE80211_MLE_STA_CONTROL_LINK_ID);
3027 		if (seen_links & BIT(link_id))
3028 			break;
3029 		seen_links |= BIT(link_id);
3030 
3031 		if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
3032 		    !(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
3033 		    !(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
3034 			continue;
3035 
3036 		memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
3037 		data.beacon_interval =
3038 			get_unaligned_le16(mle->sta_prof[i]->variable + 6);
3039 		data.tsf = tx_data->tsf +
3040 			   get_unaligned_le64(mle->sta_prof[i]->variable + 8);
3041 
3042 		/* sta_info_len counts itself */
3043 		profile = mle->sta_prof[i]->variable +
3044 			  mle->sta_prof[i]->sta_info_len - 1;
3045 		profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
3046 			      profile;
3047 
3048 		if (profile_len < 2)
3049 			continue;
3050 
3051 		data.capability = get_unaligned_le16(profile);
3052 		profile += 2;
3053 		profile_len -= 2;
3054 
3055 		/* Find in RNR to look up channel information */
3056 		use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
3057 						       tx_data->ielen,
3058 						       mld_id, link_id,
3059 						       &ap_info,
3060 						       &param_ch_count,
3061 						       &non_tx);
3062 		if (!use_for)
3063 			continue;
3064 
3065 		/*
3066 		 * As of 802.11be_D5.0, the specification does not give us any
3067 		 * way of discovering both the MaxBSSID and the Multiple-BSSID
3068 		 * Index. It does seem like the Multiple-BSSID Index element
3069 		 * may be provided, but section 9.4.2.45 explicitly forbids
3070 		 * including a Multiple-BSSID Element (in this case without any
3071 		 * subelements).
3072 		 * Without both pieces of information we cannot calculate the
3073 		 * reference BSSID, so simply ignore the BSS.
3074 		 */
3075 		if (non_tx)
3076 			continue;
3077 
3078 		/* We could sanity check the BSSID is included */
3079 
3080 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
3081 						       &band))
3082 			continue;
3083 
3084 		freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
3085 		data.channel = ieee80211_get_channel_khz(wiphy, freq);
3086 
3087 		/* Skip if RNR element specifies an unsupported channel */
3088 		if (!data.channel)
3089 			continue;
3090 
3091 		/* Skip if BSS entry generated from MBSSID or DIRECT source
3092 		 * frame data available already.
3093 		 */
3094 		bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
3095 				       ssid_len, IEEE80211_BSS_TYPE_ANY,
3096 				       IEEE80211_PRIVACY_ANY);
3097 		if (bss) {
3098 			struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
3099 
3100 			if (data.capability == bss->capability &&
3101 			    ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
3102 				cfg80211_put_bss(wiphy, bss);
3103 				continue;
3104 			}
3105 			cfg80211_put_bss(wiphy, bss);
3106 		}
3107 
3108 		if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
3109 		    !(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
3110 			use_for = 0;
3111 			data.cannot_use_reasons =
3112 				NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
3113 		}
3114 		data.use_for = use_for;
3115 
3116 		/* Generate new elements */
3117 		memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
3118 		data.ie = new_ie;
3119 		data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
3120 						 profile, profile_len,
3121 						 new_ie,
3122 						 IEEE80211_MAX_DATA_LEN);
3123 		if (!data.ielen)
3124 			continue;
3125 
3126 		/* The generated elements do not contain:
3127 		 *  - Basic ML element
3128 		 *  - A TBTT entry in the RNR for the transmitting AP
3129 		 *
3130 		 * This information is needed both internally and in userspace
3131 		 * as such, we should append it here.
3132 		 */
3133 		if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
3134 		    IEEE80211_MAX_DATA_LEN)
3135 			continue;
3136 
3137 		/* Copy the Basic Multi-Link element including the common
3138 		 * information, and then fix up the link ID and BSS param
3139 		 * change count.
3140 		 * Note that the ML element length has been verified and we
3141 		 * also checked that it contains the link ID.
3142 		 */
3143 		new_ie[data.ielen++] = WLAN_EID_EXTENSION;
3144 		new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
3145 		new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
3146 		memcpy(new_ie + data.ielen, ml_elem,
3147 		       sizeof(*ml_elem) + ml_common_len);
3148 
3149 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
3150 		new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
3151 			param_ch_count;
3152 
3153 		data.ielen += sizeof(*ml_elem) + ml_common_len;
3154 
3155 		if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
3156 			if (data.ielen + sizeof(struct element) +
3157 			    reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
3158 				continue;
3159 
3160 			memcpy(new_ie + data.ielen, reporter_rnr,
3161 			       sizeof(struct element) + reporter_rnr->datalen);
3162 			data.ielen += sizeof(struct element) +
3163 				      reporter_rnr->datalen;
3164 		}
3165 
3166 		bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
3167 		if (!bss)
3168 			break;
3169 		cfg80211_put_bss(wiphy, bss);
3170 	}
3171 
3172 out:
3173 	kfree(reporter_rnr);
3174 	kfree(new_ie);
3175 	kfree(mle);
3176 }
3177 
cfg80211_parse_ml_sta_data(struct wiphy * wiphy,struct cfg80211_inform_single_bss_data * tx_data,struct cfg80211_bss * source_bss,gfp_t gfp)3178 static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
3179 				       struct cfg80211_inform_single_bss_data *tx_data,
3180 				       struct cfg80211_bss *source_bss,
3181 				       gfp_t gfp)
3182 {
3183 	const struct element *elem;
3184 
3185 	if (!source_bss)
3186 		return;
3187 
3188 	if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
3189 		return;
3190 
3191 	for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
3192 			       tx_data->ie, tx_data->ielen)
3193 		cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
3194 						elem, gfp);
3195 }
3196 
3197 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)3198 cfg80211_inform_bss_data(struct wiphy *wiphy,
3199 			 struct cfg80211_inform_bss *data,
3200 			 enum cfg80211_bss_frame_type ftype,
3201 			 const u8 *bssid, u64 tsf, u16 capability,
3202 			 u16 beacon_interval, const u8 *ie, size_t ielen,
3203 			 gfp_t gfp)
3204 {
3205 	struct cfg80211_inform_single_bss_data inform_data = {
3206 		.drv_data = data,
3207 		.ftype = ftype,
3208 		.tsf = tsf,
3209 		.capability = capability,
3210 		.beacon_interval = beacon_interval,
3211 		.ie = ie,
3212 		.ielen = ielen,
3213 		.use_for = data->restrict_use ?
3214 				data->use_for :
3215 				NL80211_BSS_USE_FOR_ALL,
3216 		.cannot_use_reasons = data->cannot_use_reasons,
3217 	};
3218 	struct cfg80211_bss *res;
3219 
3220 	memcpy(inform_data.bssid, bssid, ETH_ALEN);
3221 
3222 	res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
3223 	if (!res)
3224 		return NULL;
3225 
3226 	/* don't do any further MBSSID/ML handling for S1G */
3227 	if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
3228 		return res;
3229 
3230 	cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
3231 
3232 	cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
3233 
3234 	return res;
3235 }
3236 EXPORT_SYMBOL(cfg80211_inform_bss_data);
3237 
3238 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)3239 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
3240 			       struct cfg80211_inform_bss *data,
3241 			       struct ieee80211_mgmt *mgmt, size_t len,
3242 			       gfp_t gfp)
3243 {
3244 	size_t min_hdr_len;
3245 	struct ieee80211_ext *ext = NULL;
3246 	enum cfg80211_bss_frame_type ftype;
3247 	u16 beacon_interval;
3248 	const u8 *bssid;
3249 	u16 capability;
3250 	const u8 *ie;
3251 	size_t ielen;
3252 	u64 tsf;
3253 
3254 	if (WARN_ON(!mgmt))
3255 		return NULL;
3256 
3257 	if (WARN_ON(!wiphy))
3258 		return NULL;
3259 
3260 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
3261 		     offsetof(struct ieee80211_mgmt, u.beacon.variable));
3262 
3263 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
3264 
3265 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
3266 		ext = (void *) mgmt;
3267 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3268 			min_hdr_len = offsetof(struct ieee80211_ext,
3269 					       u.s1g_short_beacon.variable);
3270 		else
3271 			min_hdr_len = offsetof(struct ieee80211_ext,
3272 					       u.s1g_beacon.variable);
3273 	} else {
3274 		/* same for beacons */
3275 		min_hdr_len = offsetof(struct ieee80211_mgmt,
3276 				       u.probe_resp.variable);
3277 	}
3278 
3279 	if (WARN_ON(len < min_hdr_len))
3280 		return NULL;
3281 
3282 	ielen = len - min_hdr_len;
3283 	ie = mgmt->u.probe_resp.variable;
3284 	if (ext) {
3285 		const struct ieee80211_s1g_bcn_compat_ie *compat;
3286 		const struct element *elem;
3287 
3288 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
3289 			ie = ext->u.s1g_short_beacon.variable;
3290 		else
3291 			ie = ext->u.s1g_beacon.variable;
3292 
3293 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
3294 		if (!elem)
3295 			return NULL;
3296 		if (elem->datalen < sizeof(*compat))
3297 			return NULL;
3298 		compat = (void *)elem->data;
3299 		bssid = ext->u.s1g_beacon.sa;
3300 		capability = le16_to_cpu(compat->compat_info);
3301 		beacon_interval = le16_to_cpu(compat->beacon_int);
3302 	} else {
3303 		bssid = mgmt->bssid;
3304 		beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
3305 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
3306 	}
3307 
3308 	tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
3309 
3310 	if (ieee80211_is_probe_resp(mgmt->frame_control))
3311 		ftype = CFG80211_BSS_FTYPE_PRESP;
3312 	else if (ext)
3313 		ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
3314 	else
3315 		ftype = CFG80211_BSS_FTYPE_BEACON;
3316 
3317 	return cfg80211_inform_bss_data(wiphy, data, ftype,
3318 					bssid, tsf, capability,
3319 					beacon_interval, ie, ielen,
3320 					gfp);
3321 }
3322 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
3323 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3324 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3325 {
3326 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3327 
3328 	if (!pub)
3329 		return;
3330 
3331 	spin_lock_bh(&rdev->bss_lock);
3332 	bss_ref_get(rdev, bss_from_pub(pub));
3333 	spin_unlock_bh(&rdev->bss_lock);
3334 }
3335 EXPORT_SYMBOL(cfg80211_ref_bss);
3336 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3337 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3338 {
3339 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3340 
3341 	if (!pub)
3342 		return;
3343 
3344 	spin_lock_bh(&rdev->bss_lock);
3345 	bss_ref_put(rdev, bss_from_pub(pub));
3346 	spin_unlock_bh(&rdev->bss_lock);
3347 }
3348 EXPORT_SYMBOL(cfg80211_put_bss);
3349 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)3350 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
3351 {
3352 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3353 	struct cfg80211_internal_bss *bss, *tmp1;
3354 	struct cfg80211_bss *nontrans_bss, *tmp;
3355 
3356 	if (WARN_ON(!pub))
3357 		return;
3358 
3359 	bss = bss_from_pub(pub);
3360 
3361 	spin_lock_bh(&rdev->bss_lock);
3362 	if (list_empty(&bss->list))
3363 		goto out;
3364 
3365 	list_for_each_entry_safe(nontrans_bss, tmp,
3366 				 &pub->nontrans_list,
3367 				 nontrans_list) {
3368 		tmp1 = bss_from_pub(nontrans_bss);
3369 		if (__cfg80211_unlink_bss(rdev, tmp1))
3370 			rdev->bss_generation++;
3371 	}
3372 
3373 	if (__cfg80211_unlink_bss(rdev, bss))
3374 		rdev->bss_generation++;
3375 out:
3376 	spin_unlock_bh(&rdev->bss_lock);
3377 }
3378 EXPORT_SYMBOL(cfg80211_unlink_bss);
3379 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)3380 void cfg80211_bss_iter(struct wiphy *wiphy,
3381 		       struct cfg80211_chan_def *chandef,
3382 		       void (*iter)(struct wiphy *wiphy,
3383 				    struct cfg80211_bss *bss,
3384 				    void *data),
3385 		       void *iter_data)
3386 {
3387 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3388 	struct cfg80211_internal_bss *bss;
3389 
3390 	spin_lock_bh(&rdev->bss_lock);
3391 
3392 	list_for_each_entry(bss, &rdev->bss_list, list) {
3393 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
3394 						     false))
3395 			iter(wiphy, &bss->pub, iter_data);
3396 	}
3397 
3398 	spin_unlock_bh(&rdev->bss_lock);
3399 }
3400 EXPORT_SYMBOL(cfg80211_bss_iter);
3401 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)3402 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
3403 				     unsigned int link_id,
3404 				     struct ieee80211_channel *chan)
3405 {
3406 	struct wiphy *wiphy = wdev->wiphy;
3407 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3408 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
3409 	struct cfg80211_internal_bss *new = NULL;
3410 	struct cfg80211_internal_bss *bss;
3411 	struct cfg80211_bss *nontrans_bss;
3412 	struct cfg80211_bss *tmp;
3413 
3414 	spin_lock_bh(&rdev->bss_lock);
3415 
3416 	/*
3417 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
3418 	 * changing the control channel, so no need to update in such a case.
3419 	 */
3420 	if (cbss->pub.channel == chan)
3421 		goto done;
3422 
3423 	/* use transmitting bss */
3424 	if (cbss->pub.transmitted_bss)
3425 		cbss = bss_from_pub(cbss->pub.transmitted_bss);
3426 
3427 	cbss->pub.channel = chan;
3428 
3429 	list_for_each_entry(bss, &rdev->bss_list, list) {
3430 		if (!cfg80211_bss_type_match(bss->pub.capability,
3431 					     bss->pub.channel->band,
3432 					     wdev->conn_bss_type))
3433 			continue;
3434 
3435 		if (bss == cbss)
3436 			continue;
3437 
3438 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
3439 			new = bss;
3440 			break;
3441 		}
3442 	}
3443 
3444 	if (new) {
3445 		/* to save time, update IEs for transmitting bss only */
3446 		cfg80211_update_known_bss(rdev, cbss, new, false);
3447 		new->pub.proberesp_ies = NULL;
3448 		new->pub.beacon_ies = NULL;
3449 
3450 		list_for_each_entry_safe(nontrans_bss, tmp,
3451 					 &new->pub.nontrans_list,
3452 					 nontrans_list) {
3453 			bss = bss_from_pub(nontrans_bss);
3454 			if (__cfg80211_unlink_bss(rdev, bss))
3455 				rdev->bss_generation++;
3456 		}
3457 
3458 		WARN_ON(atomic_read(&new->hold));
3459 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
3460 			rdev->bss_generation++;
3461 	}
3462 	cfg80211_rehash_bss(rdev, cbss);
3463 
3464 	list_for_each_entry_safe(nontrans_bss, tmp,
3465 				 &cbss->pub.nontrans_list,
3466 				 nontrans_list) {
3467 		bss = bss_from_pub(nontrans_bss);
3468 		bss->pub.channel = chan;
3469 		cfg80211_rehash_bss(rdev, bss);
3470 	}
3471 
3472 done:
3473 	spin_unlock_bh(&rdev->bss_lock);
3474 }
3475 
3476 #ifdef CONFIG_CFG80211_WEXT
3477 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)3478 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
3479 {
3480 	struct cfg80211_registered_device *rdev;
3481 	struct net_device *dev;
3482 
3483 	ASSERT_RTNL();
3484 
3485 	dev = dev_get_by_index(net, ifindex);
3486 	if (!dev)
3487 		return ERR_PTR(-ENODEV);
3488 	if (dev->ieee80211_ptr)
3489 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
3490 	else
3491 		rdev = ERR_PTR(-ENODEV);
3492 	dev_put(dev);
3493 	return rdev;
3494 }
3495 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3496 int cfg80211_wext_siwscan(struct net_device *dev,
3497 			  struct iw_request_info *info,
3498 			  union iwreq_data *wrqu, char *extra)
3499 {
3500 	struct cfg80211_registered_device *rdev;
3501 	struct wiphy *wiphy;
3502 	struct iw_scan_req *wreq = NULL;
3503 	struct cfg80211_scan_request *creq;
3504 	int i, err, n_channels = 0;
3505 	enum nl80211_band band;
3506 
3507 	if (!netif_running(dev))
3508 		return -ENETDOWN;
3509 
3510 	if (wrqu->data.length == sizeof(struct iw_scan_req))
3511 		wreq = (struct iw_scan_req *)extra;
3512 
3513 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3514 
3515 	if (IS_ERR(rdev))
3516 		return PTR_ERR(rdev);
3517 
3518 	if (rdev->scan_req || rdev->scan_msg)
3519 		return -EBUSY;
3520 
3521 	wiphy = &rdev->wiphy;
3522 
3523 	/* Determine number of channels, needed to allocate creq */
3524 	if (wreq && wreq->num_channels) {
3525 		/* Passed from userspace so should be checked */
3526 		if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
3527 			return -EINVAL;
3528 		n_channels = wreq->num_channels;
3529 	} else {
3530 		n_channels = ieee80211_get_num_supported_channels(wiphy);
3531 	}
3532 
3533 	creq = kzalloc(struct_size(creq, channels, n_channels) +
3534 		       sizeof(struct cfg80211_ssid),
3535 		       GFP_ATOMIC);
3536 	if (!creq)
3537 		return -ENOMEM;
3538 
3539 	creq->wiphy = wiphy;
3540 	creq->wdev = dev->ieee80211_ptr;
3541 	/* SSIDs come after channels */
3542 	creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
3543 	creq->n_channels = n_channels;
3544 	creq->n_ssids = 1;
3545 	creq->scan_start = jiffies;
3546 
3547 	/* translate "Scan on frequencies" request */
3548 	i = 0;
3549 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3550 		int j;
3551 
3552 		if (!wiphy->bands[band])
3553 			continue;
3554 
3555 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
3556 			struct ieee80211_channel *chan;
3557 
3558 			/* ignore disabled channels */
3559 			chan = &wiphy->bands[band]->channels[j];
3560 			if (chan->flags & IEEE80211_CHAN_DISABLED ||
3561 			    !cfg80211_wdev_channel_allowed(creq->wdev, chan))
3562 				continue;
3563 
3564 			/* If we have a wireless request structure and the
3565 			 * wireless request specifies frequencies, then search
3566 			 * for the matching hardware channel.
3567 			 */
3568 			if (wreq && wreq->num_channels) {
3569 				int k;
3570 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
3571 				for (k = 0; k < wreq->num_channels; k++) {
3572 					struct iw_freq *freq =
3573 						&wreq->channel_list[k];
3574 					int wext_freq =
3575 						cfg80211_wext_freq(freq);
3576 
3577 					if (wext_freq == wiphy_freq)
3578 						goto wext_freq_found;
3579 				}
3580 				goto wext_freq_not_found;
3581 			}
3582 
3583 		wext_freq_found:
3584 			creq->channels[i] = &wiphy->bands[band]->channels[j];
3585 			i++;
3586 		wext_freq_not_found: ;
3587 		}
3588 	}
3589 	/* No channels found? */
3590 	if (!i) {
3591 		err = -EINVAL;
3592 		goto out;
3593 	}
3594 
3595 	/* Set real number of channels specified in creq->channels[] */
3596 	creq->n_channels = i;
3597 
3598 	/* translate "Scan for SSID" request */
3599 	if (wreq) {
3600 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
3601 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN)
3602 				return -EINVAL;
3603 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
3604 			creq->ssids[0].ssid_len = wreq->essid_len;
3605 		}
3606 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
3607 			creq->ssids = NULL;
3608 			creq->n_ssids = 0;
3609 		}
3610 	}
3611 
3612 	for (i = 0; i < NUM_NL80211_BANDS; i++)
3613 		if (wiphy->bands[i])
3614 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
3615 
3616 	eth_broadcast_addr(creq->bssid);
3617 
3618 	scoped_guard(wiphy, &rdev->wiphy) {
3619 		rdev->scan_req = creq;
3620 		err = rdev_scan(rdev, creq);
3621 		if (err) {
3622 			rdev->scan_req = NULL;
3623 			/* creq will be freed below */
3624 		} else {
3625 			nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
3626 			/* creq now owned by driver */
3627 			creq = NULL;
3628 			dev_hold(dev);
3629 		}
3630 	}
3631 
3632  out:
3633 	kfree(creq);
3634 	return err;
3635 }
3636 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)3637 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
3638 				    const struct cfg80211_bss_ies *ies,
3639 				    char *current_ev, char *end_buf)
3640 {
3641 	const u8 *pos, *end, *next;
3642 	struct iw_event iwe;
3643 
3644 	if (!ies)
3645 		return current_ev;
3646 
3647 	/*
3648 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
3649 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
3650 	 */
3651 	pos = ies->data;
3652 	end = pos + ies->len;
3653 
3654 	while (end - pos > IW_GENERIC_IE_MAX) {
3655 		next = pos + 2 + pos[1];
3656 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
3657 			next = next + 2 + next[1];
3658 
3659 		memset(&iwe, 0, sizeof(iwe));
3660 		iwe.cmd = IWEVGENIE;
3661 		iwe.u.data.length = next - pos;
3662 		current_ev = iwe_stream_add_point_check(info, current_ev,
3663 							end_buf, &iwe,
3664 							(void *)pos);
3665 		if (IS_ERR(current_ev))
3666 			return current_ev;
3667 		pos = next;
3668 	}
3669 
3670 	if (end > pos) {
3671 		memset(&iwe, 0, sizeof(iwe));
3672 		iwe.cmd = IWEVGENIE;
3673 		iwe.u.data.length = end - pos;
3674 		current_ev = iwe_stream_add_point_check(info, current_ev,
3675 							end_buf, &iwe,
3676 							(void *)pos);
3677 		if (IS_ERR(current_ev))
3678 			return current_ev;
3679 	}
3680 
3681 	return current_ev;
3682 }
3683 
3684 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)3685 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
3686 	      struct cfg80211_internal_bss *bss, char *current_ev,
3687 	      char *end_buf)
3688 {
3689 	const struct cfg80211_bss_ies *ies;
3690 	struct iw_event iwe;
3691 	const u8 *ie;
3692 	u8 buf[50];
3693 	u8 *cfg, *p, *tmp;
3694 	int rem, i, sig;
3695 	bool ismesh = false;
3696 
3697 	memset(&iwe, 0, sizeof(iwe));
3698 	iwe.cmd = SIOCGIWAP;
3699 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
3700 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
3701 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3702 						IW_EV_ADDR_LEN);
3703 	if (IS_ERR(current_ev))
3704 		return current_ev;
3705 
3706 	memset(&iwe, 0, sizeof(iwe));
3707 	iwe.cmd = SIOCGIWFREQ;
3708 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
3709 	iwe.u.freq.e = 0;
3710 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3711 						IW_EV_FREQ_LEN);
3712 	if (IS_ERR(current_ev))
3713 		return current_ev;
3714 
3715 	memset(&iwe, 0, sizeof(iwe));
3716 	iwe.cmd = SIOCGIWFREQ;
3717 	iwe.u.freq.m = bss->pub.channel->center_freq;
3718 	iwe.u.freq.e = 6;
3719 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
3720 						IW_EV_FREQ_LEN);
3721 	if (IS_ERR(current_ev))
3722 		return current_ev;
3723 
3724 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
3725 		memset(&iwe, 0, sizeof(iwe));
3726 		iwe.cmd = IWEVQUAL;
3727 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
3728 				     IW_QUAL_NOISE_INVALID |
3729 				     IW_QUAL_QUAL_UPDATED;
3730 		switch (wiphy->signal_type) {
3731 		case CFG80211_SIGNAL_TYPE_MBM:
3732 			sig = bss->pub.signal / 100;
3733 			iwe.u.qual.level = sig;
3734 			iwe.u.qual.updated |= IW_QUAL_DBM;
3735 			if (sig < -110)		/* rather bad */
3736 				sig = -110;
3737 			else if (sig > -40)	/* perfect */
3738 				sig = -40;
3739 			/* will give a range of 0 .. 70 */
3740 			iwe.u.qual.qual = sig + 110;
3741 			break;
3742 		case CFG80211_SIGNAL_TYPE_UNSPEC:
3743 			iwe.u.qual.level = bss->pub.signal;
3744 			/* will give range 0 .. 100 */
3745 			iwe.u.qual.qual = bss->pub.signal;
3746 			break;
3747 		default:
3748 			/* not reached */
3749 			break;
3750 		}
3751 		current_ev = iwe_stream_add_event_check(info, current_ev,
3752 							end_buf, &iwe,
3753 							IW_EV_QUAL_LEN);
3754 		if (IS_ERR(current_ev))
3755 			return current_ev;
3756 	}
3757 
3758 	memset(&iwe, 0, sizeof(iwe));
3759 	iwe.cmd = SIOCGIWENCODE;
3760 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
3761 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
3762 	else
3763 		iwe.u.data.flags = IW_ENCODE_DISABLED;
3764 	iwe.u.data.length = 0;
3765 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3766 						&iwe, "");
3767 	if (IS_ERR(current_ev))
3768 		return current_ev;
3769 
3770 	rcu_read_lock();
3771 	ies = rcu_dereference(bss->pub.ies);
3772 	rem = ies->len;
3773 	ie = ies->data;
3774 
3775 	while (rem >= 2) {
3776 		/* invalid data */
3777 		if (ie[1] > rem - 2)
3778 			break;
3779 
3780 		switch (ie[0]) {
3781 		case WLAN_EID_SSID:
3782 			memset(&iwe, 0, sizeof(iwe));
3783 			iwe.cmd = SIOCGIWESSID;
3784 			iwe.u.data.length = ie[1];
3785 			iwe.u.data.flags = 1;
3786 			current_ev = iwe_stream_add_point_check(info,
3787 								current_ev,
3788 								end_buf, &iwe,
3789 								(u8 *)ie + 2);
3790 			if (IS_ERR(current_ev))
3791 				goto unlock;
3792 			break;
3793 		case WLAN_EID_MESH_ID:
3794 			memset(&iwe, 0, sizeof(iwe));
3795 			iwe.cmd = SIOCGIWESSID;
3796 			iwe.u.data.length = ie[1];
3797 			iwe.u.data.flags = 1;
3798 			current_ev = iwe_stream_add_point_check(info,
3799 								current_ev,
3800 								end_buf, &iwe,
3801 								(u8 *)ie + 2);
3802 			if (IS_ERR(current_ev))
3803 				goto unlock;
3804 			break;
3805 		case WLAN_EID_MESH_CONFIG:
3806 			ismesh = true;
3807 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3808 				break;
3809 			cfg = (u8 *)ie + 2;
3810 			memset(&iwe, 0, sizeof(iwe));
3811 			iwe.cmd = IWEVCUSTOM;
3812 			iwe.u.data.length = sprintf(buf,
3813 						    "Mesh Network Path Selection Protocol ID: 0x%02X",
3814 						    cfg[0]);
3815 			current_ev = iwe_stream_add_point_check(info,
3816 								current_ev,
3817 								end_buf,
3818 								&iwe, buf);
3819 			if (IS_ERR(current_ev))
3820 				goto unlock;
3821 			iwe.u.data.length = sprintf(buf,
3822 						    "Path Selection Metric ID: 0x%02X",
3823 						    cfg[1]);
3824 			current_ev = iwe_stream_add_point_check(info,
3825 								current_ev,
3826 								end_buf,
3827 								&iwe, buf);
3828 			if (IS_ERR(current_ev))
3829 				goto unlock;
3830 			iwe.u.data.length = sprintf(buf,
3831 						    "Congestion Control Mode ID: 0x%02X",
3832 						    cfg[2]);
3833 			current_ev = iwe_stream_add_point_check(info,
3834 								current_ev,
3835 								end_buf,
3836 								&iwe, buf);
3837 			if (IS_ERR(current_ev))
3838 				goto unlock;
3839 			iwe.u.data.length = sprintf(buf,
3840 						    "Synchronization ID: 0x%02X",
3841 						    cfg[3]);
3842 			current_ev = iwe_stream_add_point_check(info,
3843 								current_ev,
3844 								end_buf,
3845 								&iwe, buf);
3846 			if (IS_ERR(current_ev))
3847 				goto unlock;
3848 			iwe.u.data.length = sprintf(buf,
3849 						    "Authentication ID: 0x%02X",
3850 						    cfg[4]);
3851 			current_ev = iwe_stream_add_point_check(info,
3852 								current_ev,
3853 								end_buf,
3854 								&iwe, buf);
3855 			if (IS_ERR(current_ev))
3856 				goto unlock;
3857 			iwe.u.data.length = sprintf(buf,
3858 						    "Formation Info: 0x%02X",
3859 						    cfg[5]);
3860 			current_ev = iwe_stream_add_point_check(info,
3861 								current_ev,
3862 								end_buf,
3863 								&iwe, buf);
3864 			if (IS_ERR(current_ev))
3865 				goto unlock;
3866 			iwe.u.data.length = sprintf(buf,
3867 						    "Capabilities: 0x%02X",
3868 						    cfg[6]);
3869 			current_ev = iwe_stream_add_point_check(info,
3870 								current_ev,
3871 								end_buf,
3872 								&iwe, buf);
3873 			if (IS_ERR(current_ev))
3874 				goto unlock;
3875 			break;
3876 		case WLAN_EID_SUPP_RATES:
3877 		case WLAN_EID_EXT_SUPP_RATES:
3878 			/* display all supported rates in readable format */
3879 			p = current_ev + iwe_stream_lcp_len(info);
3880 
3881 			memset(&iwe, 0, sizeof(iwe));
3882 			iwe.cmd = SIOCGIWRATE;
3883 			/* Those two flags are ignored... */
3884 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3885 
3886 			for (i = 0; i < ie[1]; i++) {
3887 				iwe.u.bitrate.value =
3888 					((ie[i + 2] & 0x7f) * 500000);
3889 				tmp = p;
3890 				p = iwe_stream_add_value(info, current_ev, p,
3891 							 end_buf, &iwe,
3892 							 IW_EV_PARAM_LEN);
3893 				if (p == tmp) {
3894 					current_ev = ERR_PTR(-E2BIG);
3895 					goto unlock;
3896 				}
3897 			}
3898 			current_ev = p;
3899 			break;
3900 		}
3901 		rem -= ie[1] + 2;
3902 		ie += ie[1] + 2;
3903 	}
3904 
3905 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3906 	    ismesh) {
3907 		memset(&iwe, 0, sizeof(iwe));
3908 		iwe.cmd = SIOCGIWMODE;
3909 		if (ismesh)
3910 			iwe.u.mode = IW_MODE_MESH;
3911 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3912 			iwe.u.mode = IW_MODE_MASTER;
3913 		else
3914 			iwe.u.mode = IW_MODE_ADHOC;
3915 		current_ev = iwe_stream_add_event_check(info, current_ev,
3916 							end_buf, &iwe,
3917 							IW_EV_UINT_LEN);
3918 		if (IS_ERR(current_ev))
3919 			goto unlock;
3920 	}
3921 
3922 	memset(&iwe, 0, sizeof(iwe));
3923 	iwe.cmd = IWEVCUSTOM;
3924 	iwe.u.data.length = sprintf(buf, "tsf=%016llx",
3925 				    (unsigned long long)(ies->tsf));
3926 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3927 						&iwe, buf);
3928 	if (IS_ERR(current_ev))
3929 		goto unlock;
3930 	memset(&iwe, 0, sizeof(iwe));
3931 	iwe.cmd = IWEVCUSTOM;
3932 	iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
3933 				    elapsed_jiffies_msecs(bss->ts));
3934 	current_ev = iwe_stream_add_point_check(info, current_ev,
3935 						end_buf, &iwe, buf);
3936 	if (IS_ERR(current_ev))
3937 		goto unlock;
3938 
3939 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3940 
3941  unlock:
3942 	rcu_read_unlock();
3943 	return current_ev;
3944 }
3945 
3946 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3947 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3948 				  struct iw_request_info *info,
3949 				  char *buf, size_t len)
3950 {
3951 	char *current_ev = buf;
3952 	char *end_buf = buf + len;
3953 	struct cfg80211_internal_bss *bss;
3954 	int err = 0;
3955 
3956 	spin_lock_bh(&rdev->bss_lock);
3957 	cfg80211_bss_expire(rdev);
3958 
3959 	list_for_each_entry(bss, &rdev->bss_list, list) {
3960 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3961 			err = -E2BIG;
3962 			break;
3963 		}
3964 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3965 					   current_ev, end_buf);
3966 		if (IS_ERR(current_ev)) {
3967 			err = PTR_ERR(current_ev);
3968 			break;
3969 		}
3970 	}
3971 	spin_unlock_bh(&rdev->bss_lock);
3972 
3973 	if (err)
3974 		return err;
3975 	return current_ev - buf;
3976 }
3977 
3978 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)3979 int cfg80211_wext_giwscan(struct net_device *dev,
3980 			  struct iw_request_info *info,
3981 			  union iwreq_data *wrqu, char *extra)
3982 {
3983 	struct iw_point *data = &wrqu->data;
3984 	struct cfg80211_registered_device *rdev;
3985 	int res;
3986 
3987 	if (!netif_running(dev))
3988 		return -ENETDOWN;
3989 
3990 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3991 
3992 	if (IS_ERR(rdev))
3993 		return PTR_ERR(rdev);
3994 
3995 	if (rdev->scan_req || rdev->scan_msg)
3996 		return -EAGAIN;
3997 
3998 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3999 	data->length = 0;
4000 	if (res >= 0) {
4001 		data->length = res;
4002 		res = 0;
4003 	}
4004 
4005 	return res;
4006 }
4007 #endif
4008